SAND2015- 3669J

Optimizing Your Options: Extracting the Full Economic Value of Transmission When
Planning Under Uncertainty

Francisco D. Munoz
Jean-Paul Watson
Benjamin F. Hobbs

Public policy objectives and the aging transmission system are today’s most important
drivers for the development of new transmission infrastructure in the US. Given the
anticipated magnitude of the required investments, transmission infrastructure
investments must be allocated in a way that maximizes the likelihood of achieving society’s
goals for power system operation.

I. Introduction

Public policy objectives and the aging transmission system are today’s most important
drivers for the development of new transmission infrastructure in the US. Chuptka et al.
(2008) report that the investments in transmission and distribution assets required to
meet forecasted demand, reliability requirements, and environmental and renewable
targets by 2030 will cost approximately USD $880B. This quantity is more than seven times
the total annual revenues from US electricity sales in 2013 (EIA, 2015). Given the
anticipated magnitude of the required investments, transmission infrastructure
investments must be allocated in a way that maximizes the likelihood of achieving society’s
goals for power system operation.

Note that “goals” is plural—it is increasingly recognized that that the multiple benefits of
transmission enhancements—as opposed to just operating cost reductions—must be
considered when evaluating alternative network expansions. These extend beyond the
ability to meet reliability requirements or to reduce fuel costs. Examples include savings in
generation investment through more efficient siting, achievement of public policy goals
(e.g., renewable targets and carbon emissions regulations), and minimization of
environmental impact of new circuits (Pfeiffenberger & Hou, 2012; Chang et al. 2013).
However, a critical part of the planning problem that has received significantly less
attention is how to select a portfolio of transmission investments from a potentially very
large (even thousands) number of potential combinations and timing of investments that is
more cost-effective than any other alternative in simultaneously meeting economic and
sustainability goals, while reckoning with long-run uncertainties. We believe that by using
state-of-the-art optimization tools we can identify such optimal alternatives, extract more
benefits out of transmission expansion investments, and account for the huge economic,
technology, and policy risks that the power sector faces over the next several decades.

Our objective here is to outline limitations of current approaches to transmission planning
and discuss how advanced optimization-based methodologies and supporting
computational tools could be used to systematically achieve a broader range of benefits
and decreased costs than tools in use today. We begin in Section II by recounting how



advanced computational tools have revolutionized power systems operations, yielding
billions of dollars of savings; we argue that analogous improvements are possible in
transmission planning. Next, in Section Il we analyze three recent, large-scale transmission
planning studies conducted for US power system operators. We focus on the methodologies
they used to identify and calculate the benefits of transmission investment portfolios. In
Section IV we discuss the complexities involved in determining the best mix of
transmission investments, and the benefits that can be gained by using optimization-based
methodologies to assist with that task. We discuss a variety of difficult transmission
planning issues that optimization can help users address, including renewable and load
variability and correlations over space and time, long-run uncertainties (e.g., fuel prices),
coordination and co-optimization of transmission and generation assets, and the flexibility
and option value of alternative decisions, including the possibility of deferred investment.
Simultaneous consideration of these issues results in difficult, large-scale optimization
models. In Section V, we discuss some exciting and highly promising state-of-the-art
solution methods and computational platforms that could be used to solve the resulting
models, including decomposition methods and parallel computing. These methods and
platforms have been used to solve multi-decadal transmission planning problems
considering hundreds of short-run wind/solar output and load scenarios per year and,
simultaneously, the flexibility of the system in the face of dozens of long-run scenarios. We
argue that such capabilities will soon enable planners to quickly identify cost-effective
expansion plans, significantly improving power system economic viability and reliability,
while simultaneously achieving sustainability and related policy goals.

II. Optimization and unit commitment
“All models are wrong, some are useful”, George E. P. Box.

The electric power industry is a major end-user of optimization algorithms because of the
large number of alternative solutions that can be considered, wide availability of data,
and—most importantly—the large cost savings that can be realized (Hobbs, 1995). One
early, notable application of optimization in power systems operations was the use by
Electricite’ de France of linear programming for economic dispatch (Turvey and Anderson,
1977). Here, linear programming solvers were used to determine the output levels of
generation fleets to meet demand at minimum cost for consumers and, later, to compute
nodal electricity prices. An important limitation of early economic dispatch models was
that they failed to capture key real-world generator characteristics such as start-up, shut-
down, and minimum up/down times. Such “lumpy” characteristics are best captured using
discrete (e.g., 0-1) variables, as opposed to the continuous variables used in linear
programming. Consequently, early economic dispatch models eventually evolved into what
today are known as unit commitment (UC) models, which take into account these
additional features—although the former are still used in real-time markets to dispatch
units once generator commitment schedules have been determined.

Unfortunately, the introduction of discrete variables makes the optimization of unit
commitment models significantly more challenging than that of economic dispatch
problems. Optimization models with discrete variables are known as mixed-integer



programs. Finding a provably optimal solution to a mixed-integer program requires
fundamentally different algorithm technologies than those associated with linear
programming. At the time economic dispatch applications based on linear programming
were first introduced, optimal mixed-integer solver technology was in early stages of
development, and only used for research purposes. As an alternative, heuristic solution
techniques for solving unit commitment—based on a technique known as Lagrangian
relaxation—were introduced in the 1980s (Zhuang & Galiana, 1988; Virmani et al., 1989).
Lagrangian relaxation saw widespread use by the late 1990s and early 2000s, after
researchers demonstrated the ability of the technique to consistently identify feasible and
near-optimal solutions, especially in the absence of “coupling” constraints such as
transmission flow limits or emissions caps. However, the growing importance of such
constraints, together with power system restructuring and rising fuel costs, combined to
provide strong incentives to find commitment schedules of even better quality than the
those obtained using Lagrangian relaxation (Hobbs et al., 2001).

Today, most restructured power markets worldwide use advanced mixed-integer
programming techniques to solve unit commitment problems to near-optimality and, most
importantly, within timeframes compatible with current market designs. However, this
transition has proceeded slowly, despite the potential economic benefit. For example, until
2014, the New York ISO used Lagrangian relaxation to solve their day-ahead and real-time
unit commitment problems (NYISO, 2014). Reports from the PJM Interconnection,
California ISO, and the Southwest Power Pool state that the total aggregate savings
resulting from the use of mixed-integer programing instead of Lagrangian relaxation for
unit commitment are approximately USD $250M per year (O’Neill et al., 2011). These
improvements have been possible largely due to a combination of advances in solution
algorithms and computer hardware. In particular, IBM reports cumulative performance
improvements on the order of 100,000-fold for their commercial mixed-integer solver
CPLEX between 1991 and 2013 (Bixby, 2012; Ashterber, 2013). Such software
improvements, coupled with Moore’s Law for hardware improvements, enable a unit
commitment problem that took 24 hours to solve in 1991 to be solved today in a fraction of
a second.

Hence, unit commitment optimization models that were thought to be nearly impossible to
solve in the nineties have become trivial, inducing a revolution in power system operations.
Operators and energy management system vendors have taken advantage of these
capabilities to build in many more capabilities, and to expand the sizes of the systems that
are being solved, resulting in the efficiency improvements noted above. We believe that
these software and hardware improvements are ripe for exploitation in planning
transmission expansion, and can lead to a similar revolution in that context. Specifically,
mixed-integer programs have been developed to represent a range of transmission
expansion models (Alguacil et al.,, 2003; van der Weijde & Hobbs, 2012), and researchers
have demonstrated that state-of-the-art mixed-integer solvers can identify optimal or near-
optimal solutions to these models in practical run-times (Munoz et al., 2015).

III. Current Practices in Transmission Planning



Innovative transmission planning paradigms are being actively investigated or gradually
adopted by the power systems industry in response to the challenges of renewable
integration, FERC Order 1000, and computational hardware and software improvements.
Such new planning paradigms, initially developed by the research community, explicitly
address long-run uncertainties, consider detailed representations of short-run operations,
acknowledge that power systems must consider multiple societal objectives, and/or
consider the effects of transmission planning on generation siting—and vice versa.
However, the full implementation of these paradigms, along with full realization of their
benefit, requires the use of modern optimization techniques. Existing implementations of
these paradigms fall short of what modern optimization techniques can provide, yielding
sub-optimal expansion plans (Liu et al, 2013; Munoz et al., 2014a). We argue that these
new paradigms, when coupled with state-of-the-art optimization algorithms and
computational platforms, will lead to more economic, robust, and sustainable transmission
investment plans.

To motivate these paradigms and survey the existing state-of-the-practice, we now
examine three large-scale transmission planning studies, focusing on the increasingly
sophisticated analytical tools used to identify candidate transmission portfolios and the
criteria used to select among them. These studies are associated with major US power
systems operators: the California ISO (CAISO), the Midcontinent ISO (MISO), and the
Western Electricity Coordinating Council (WECC). We highlight how recent computational
advances could be exploited in such studies to address features present in newly proposed
transmission expansion paradigms.

The CAISO 2013-2014 Study: Production Costing as a Classic Application of
Optimization

The 2013-2014 CAISO transmission planning study aims to select new transmission
projects (CAISO, 2014). The objectives of the new projects are to (1) enable the state to
meet a 33% renewables penetration target by 2020, (2) enhance the economic efficiency of
the system (e.g., via reduced production costs), and (3) maintain reliability standards in the
region under the increased penetration of renewables. CAISO used the WECC’s
Transmission Expansion Planning Policy Committee (TEPCC) dataset as a baseline for
projected generation resources in the region and in neighboring states. The development of
transmission portfolios is based on information obtained from detailed ABB GridView
production cost simulations and AC power flow analyses performed using GE PSLF for
stressful system conditions (e.g., a summer peak hour). Production cost simulations are a
type of optimization—of operations—that are frequently used for simulating how a
predefined investment plan performs in terms of operational cost and compliance with
renewable targets and emissions limits (Kahn, 1995); they represent the widest (albeit
indirect) use of optimization in transmission planning studies.

CAISO used the results from production cost simulations to identify congested
transmission paths and to rank them by severity (quantified as event magnitude and
duration). In conjunction with stakeholder input, this information was subsequently used
to propose a set of alternatives for transmission upgrades to mitigate congestion. CAISO



then selected the most cost-effective investment portfolio by comparing gross operating
benefits and investment costs among all selected alternatives. This planning process was
repeated for three different plausible scenarios of generation developments for meeting
the 33% state renewable target by 2020, resulting in three diverging transmission
investment portfolios. Subsequently, CAISO developed a single investment
recommendation based on these three distinct scenario-specific portfolios following an
engineering rule known as the “least regrets” principle, which seeks approval of “..those
transmission elements that have a high likelihood of being needed and well-utilized under
multiple scenarios” (p. 19). We will comment on the effectiveness of this heuristic decision
rule in Section IV.

MISO Transmission Expansion Plan 2013: Using Optimization Models for both
Production Simulations and to Define Generation Investment Scenarios

MISO performs annual transmission planning studies to identify those projects needed for
their reliability, economic, and policy purposes over the next 10 years (MISO, 2013). MISO
first identifies a least-cost generation investment portfolio that meets forecasted demand,
renewables targets, and reliability requirements using EPRI’s Electric Generation
Expansion Analysis System (EGEAS). The EGEAS is an optimization-based capacity
planning tool—the capacity of generators are variables in the optimization model—that
finds a generation investment portfolio that minimizes the present worth of capital and
operating cost subject to a reliability constraint (e.g., Loss of Load Probability or Expected
Unserved Energy). This approach is more sophisticated than CAISO’s, mainly because MISO
relies on a formal optimization tool that automatically analyzes millions of possible
combinations of generation portfolios and selects the most cost effective one. The EGEAS
tool has, however, a crucial limitation: it does not take into account transmission
constraints when selecting an optimal portfolio of generation investments. For this reason,
MISO optimizes generation capacity for sub-regions of the system, independently.

As in the CAISO study, MISO utilizes the portfolio of generation resources identified in the
first step as a fixed input for production cost simulations performed using PROMOD and
PLEXOS, which are then used to identify the most congested paths in the network. One
difference compared to CAISO’s approach in this step of the planning process is that MISO
additionally performs production cost simulations without transmission constraints. This
additional step is used to estimate what MISO calls the “maximum allowed budget for new
transmission investments,” which is measured as the difference of production costs
between the transmission-constrained and unconstrained cases. All of this information is
then used to perform a holistic transmission portfolio analysis that relies on both
congestion data and stakeholder input. The study also considers five different future
scenarios of varying economic, policy, and technology conditions for which MISO develops
generation and transmission investment portfolios. After identifying the investment needs
for each scenario, MISO produces a single investment recommendation according to a rule
that is similar to the one used by the CAISO: “If the same group of projects is the preferred
solution for multiple scenarios, it is a good indication that a given portfolio is robust and
would result in a less future regrets than a portfolio that does not” (p. 62).



Thus, both the CAISO and MISO processes rely on manual identification of transmission
investment, which is an extremely laborious task given the scale of the power systems
considered and the astronomical number of possible investment portfolios. We argue that
modern optimization methods can be used to systematically evaluate extremely large
numbers of transmission and generation portfolios and to select the most cost-effective
alternative. In addition, both studies emphasize the definition of robust transmission plans
by identifying individual investments that appear attractive in a number of scenarios. This
is an important change in paradigm relative to traditional approaches of planning for a
single scenario of demand growth, fuel prices, etc. But, as we point out below, this
approach to robustness may miss alternatives that “put the system on its toes”... that is,
increase the flexibility of a transmission system to respond to uncertain developments ten
years out and beyond. Optimization can provide a rigorous assessment of the adaptability
of a transmission plan, and the resulting “option value”.

2013 WECC Interconnection-wide Transmission Plan: Adding Transmission
Investment Variables to the Optimization

The WECC planning approach is, to our best knowledge, the most sophisticated in the US.
For 20-year planning studies, the WECC utilizes an optimization-based long-term planning
tool (LTPT) that explicitly considers transmission and generation investments as decision
variables (WECC, 2013). Consequently, in the WECC study, the investment portfolio is
selected automatically instead of manually, as is done for transmission and generation in
CAISO, or for transmission in MISO. The LTPT operates by iterating between a Scenario
Case Development Tool (SCDT) and a Network Expansion Tool (NXT) until a feasible
investment portfolio is found. The SCDT selects generation capacity based on levelized
energy costs (i.e., it relies on expected capacity factors for renewables). SCDT is therefore a
simpler tool than the EGEAS module used by MISO, which considers instead the full
distribution of loads, wind, and solar parameters as well as generator outages. This
generation investment portfolio is then fed into the NXT module, which automatically
selects a transmission portfolio that results in no branch violations for one study hour—the
summer peak condition—and that minimizes investment cost. The results from NXT are
then used to calculate and assign transmission costs for all generation resources, which
modify the levelized cost of energy assumed in the previous run of SCDT. The LTPT iterates
between the SCDT and NXT until the generation and transmission investment portfolio
does not change between iterations.

The WECC study recognizes the mutual dependence of generation and transmission
investments. Where new lines are placed will affect the attractiveness of different locations
for siting generation, and will influence where plants are built and how they are operated.
Similarly, generation siting affects the benefits of transmission investments. In some parts
of the US, these investments can be coordinated—or “co-optimized”—through integrated
resource planning processes. In other parts, where transmission and generation decision-
making is unbundled, transmission owners need to anticipate how network expansions will
affect incentives to site generation. In our analyses (e.g., Liu et al. 2013), we have found
that a large fraction—up to half—of the benefits of transmission investments arise from the
more efficient siting and construction of generation that results. Models that



simultaneously optimize transmission and generation investments can be used to quantify
these benefits by simulating how generation locations are affected by grid investments. The
WECC-like iterative approach of optimizing generation investments then transmission and
then back to generation, and so forth, can capture some but not all of the benefits of co-
optimization. This limitation has been demonstrated both in general and in case studies
(Liu et al,, 2013; Johnson, 2015) in which such iteration converged to joint investment
plans with higher costs than truly co-optimized solutions.

IV. Optimal Transmission Planning

“While we realize no such comprehensive structure exists in transmission planning to date, we
believe that analytical tools based upon developments in advanced computing and
optimization such as have seen in other segments of the industry (e.g., operations/market
dispatch) could help inform the design of improved analytical and decision frameworks for
transmission planning.” (Chang et al,, 2013)

Several research articles have proposed advanced optimization-based planning tools for
automatic generation of cost-effective network expansions in the last two decades (Latorre
et al,, 2003). However, as we just discussed, these tools are seldom used in practice. We
now describe the core components of a generic optimization-based transmission planning
tool. In addition, we enumerate a series of optional model features found in advanced
transmission planning paradigms, including the co-optimization of transmission and
generation resources, capturing the key features of detailed production cost simulations,
explicit modeling of uncertainty, and the option of delaying investments. A comprehensive
description of these elements is provided by Donohoo & Milligan (2014).

The basic components of an optimization model are a set of decision variables, a set of
constraints, and an objective function. In the context of transmission planning, the main
decision variables correspond to investment options in different corridors (e.g., new
transmission capacity between Devers-Palo Verde or between Tehachapi and Big Creek in
California) and of different types (e.g., a 345-kV double-circuit line versus a 500-kV single-
circuit line). In transmission planning, there is an additional set of decision variables that
are not directly related to investment decisions, but are included in the optimization model
to capture operational details, e.g., as found in a production cost simulation. Examples of
such “auxiliary” variables include generator dispatch levels, line power flows, and bus
voltage angles. The set of constraints includes transmission build limits (e.g., transmission
right-of-way restrictions), power flow limits, generation dispatch limits, a power balance at
every bus in every time interval considered, and compliance with renewable targets and/or
emissions limits. The objective function in transmission planning is often defined as the
sum of capital cost of transmission investments plus the net present costs of operations for
the planning horizon; cost is minimized in such a formulation.

Features found in more advanced transmission planning paradigms can be included by
augmenting the basic model described above in order to obtain a transmission planning
model more representative of the how the system is likely to be operated in the future and



of how investment decisions are made in reality. We summarize some specific examples
below.

a) Co-optimization of generation and other resources: In Liu et al. (2013)(p. 3) we
define co-optimization as the “..simultaneous identification of two or more classes of
investment decisions within one optimization strategy.” In a vertically integrated
environment, co-optimization can be achieved by augmenting the core transmission
planning model described above, specifically by introducing decision variables and
constraints to represent non-transmission investment alternatives, including generation
capacity and/or energy storage devices. The objective function would also be modified to
account for the capital cost of these alternatives. In restructured power systems these
additional decision variables represent a market response to transmission investments, as
generation assets are not centrally planned. Consequently, this approach is often referred
to anticipatory or proactive transmission planning.i

b) Time granularity: One the main limitations of the planning tool used by the WECC to
select a transmission portfolio is that it only optimizes investments for the most stressful
hour of the year, i.e., the summer peak load. This approach is mainly an artifact of a now-
dated planning paradigm, which emphasized the feasibility or security of the system at any
cost. Unfortunately, under such planning criteria it is not possible to capture the broader
economic benefits of new transmission lines under operating conditions other than the
peak load. An important benefit of new transmission capacity for the overall system is the
possibility of reducing congestion costs across a large fraction of hours of the year. This is
particularly important for newer systems with large shares of variable generation from
renewable energy technologies—in general, a single representative time slice is insufficient
to capture all of the individual and complementary (e.g., correlated) properties of these
resources (Joskow, 2011).i In an ideal planning model one would compare and select an
investment portfolio by performing a detailed production cost simulation for all hours in a
year, and for all years in the planning horizon. However, the number of additional decision
variables and constraints needed to model production costs at such a fine resolution often
yields optimization models of unmanageable size.

c) Long-run uncertainty: The three planning studies we describe in Section III account for
the possibility of varying economic conditions, fuel prices, demand growth rates, and
environmental regulation through a series of scenarios that are constructed using
stakeholder input. Consequently, those studies do account for uncertainty in the form of
sensitivity analysis. However, they do not explicitly account for uncertainty when
developing investment alternatives. The approach of identifying the optimal investment
strategy for each scenario independently—as done in the CAISO and MISO studies—is
known as scenario analysis. This procedure allows decision makers to analyze the effect of
different scenarios on investment plans, though it is a weak strategy for finding a single
investment portfolio that will perform best across all scenarios, simultaneously. As
discussed by Wallace (2000), the main issue with a scenario analysis framework is that the
flexibility of a transmission plan to adapt to a set of scenarios as they unfold over time is
not modeled or economically valued at the time of plan development.



A more sophisticated tool that explicitly accounts for uncertainty within an optimization-
based planning model is stochastic programming. In a stochastic planning model, the
optimization objective is to minimize the expected net present cost—the probability
weighted sum of costs going forward across all scenarios—using a unique investment
portfolio for all scenarios, instead of one per scenario as is the case in scenario analysis.
Consequently, a stochastic plan is not necessarily optimal for any individual scenario, but it
is likely to be better in an expected value sense, assuming that a representative range of
scenarios have been modeled. In Munoz et al. (2014a) we compared the performance of a
stochastic planning model to investment strategies developed using scenario analysis. In
that study, we found average cost savings of approximately 8% of the total system cost,
which was nearly three times the cost of the transmission lines themselves.

d) Option value: Most transmission planning studies are performed every year using the
latest available information about near-term system needs. In some cases, a change in
projected system conditions on a given year (such as the enactment of a new
environmental policy) could turn transmission and generation projects that were not
identified as necessary during previous planning studies into optimal investment decisions
for the future, given the new information. Planning models that disregard this option to
delay investment decisions are likely to provide investment recommendations that are
overly conservative; because all decisions have to be made today, there is no opportunity
for learning about the future and then determining investment decisions. In order to
capture the option value of delaying an investment, it is necessary to explicitly consider
uncertainty—through a set of scenarios, for instance—and to incorporate additional
investment decision variables to represent future actions, after uncertainty is revealed.
These additional variables are often referred to as recourse or wait-and-see decisions and
do not necessarily correspond to investments that will be ultimately realized in the future.
This contrasts with here-and-now investment recommendations. By including recourse
decisions as a modeling feature, we can represent the possibility of delaying or modifying
an investment and the effect of these extra degrees of freedom on decisions that we have to
make today.

V. Leveraging Advanced Computing Tools for Transmission Expansion

Accounting for all of the advanced model features we just introduced above will require
sophisticated computing to solve the resulting planning models. Recent advances in
computer hardware and commercial mixed-integer solvers such as CPLEX, Gurobi, and
Xpress-MP—de facto industry standards for solving unit commitment and production cost
models—may suffice for identifying high-quality investment strategies for small and
perhaps medium-sized systems. However, more sophisticated solution strategies will be
needed for large-scale applications (e.g., the entire WECC or Eastern Interconnection), with
thousands of transmission elements, dozens to hundreds of scenarios, and multi-year
modeling of investment alternatives.

One alternative to reduce solution times for large stochastic planning models is to employ
decomposition; well-known exemplars are Benders decomposition and Lagrangian
relaxation (Conejo et al, 2006). Benders decomposition for stochastic transmission



expansion executes a “divide and conquer” strategy in which the algorithm iterates
between an approximation of the investment problem (e.g, to determine which
transmission corridors are selected) and a (typically) large set of production cost models
representing operational conditions under consideration (e.g., to quantify operational costs
and reliability under various scenarios, and for various days or hours). The production cost
models are evaluated using the fixed solution from the investment problem approximation,
while the investment problem is solved using best available approximations of the
generator operating costs obtained from the production cost models. Both the investment
problem and the production cost models are substantially smaller that the monolithic
problem, and are consequently much easier to solve. In contrast to some iterative
strategies presently used in transmission planning, there is a guarantee under certain
circumstances that Benders and related decomposition strategies can identify optimal
solutions, or provide a bound on solution quality if optimality cannot be established. A
bound is a metric that quantifies how much additional improvement, typically quantified as
cost reduction, could be achieved by continuing the iterative process. Further, many
decomposition strategies allow for early termination, e.g., subject to a pre-specified time
bound. In general, it may be sufficient for practitioners to consider sub-optimal solutions in
preliminary and/or exploratory stages of a planning study, and gradually increase target
bounds on solution quality in final study stage

While the application of decomposition strategies to large-scale power systems problems
has been largely restricted to the academic research community, there are cases where
such methods have been used by industry to solve planning problems that otherwise
proved intractable. For instance, the Electric Generation Expansion Analysis System
(EGEAS) has used Benders decomposition since the 1980s to identify optimal generation
investment strategies by iterating between an investment planning model and a
probabilistic production cost model. Similarly, the SDDP tool developed by PSR (PSR, 2015)
for multi-stage hydrothermal system operations under stream flow uncertainty uses a
variant of Benders decomposition. These examples illustrate that the complexity of
decomposition strategies—relative to more straightforward, black-box use of commercial
solvers—has not been a barrier to their adoption in power systems applications ranging
from long-term investment planning to short-term scheduling. However, to our best
knowledge, there are currently no commercial implementations of decomposition methods
for transmission planning.ii

Another rapidly emerging aspect of the commercial computing landscape that could have a
significant impact on our ability to overcome the challenges associated with solving large-
scale planning problems is parallel computing. Software vendors have recently introduced
products that take advantage of parallel compute resources, driven by cost reductions in
large compute servers and online services such as the Amazon EC2 compute cloud. For
example, the Brattle Group uses the pCloudAnalytics module to parallelize large production
cost simulations (NEG, 2015). The New York ISO is now using high-performance computing
to perform reliability and economic studies using the GE MARS tool, reducing simulation
times from 16 hours to 30 minutes (Chao, 2012). However, such applications have an
“embarrassingly parallel” structure, and do not require the use of iterative decomposition
strategies. Unlike investment planning problems, an 8760-hour production cost simulation



can be approximated via a collection of smaller (e.g.,, month-long) independent production
cost problems that can be solved simultaneously and independently. In contrast,
decomposition strategies collect information from the solutions to each sub-problem,
modify the sub-problems based on the aggregate, and iterate. This more complex
communication structure still lends itself to parallelization, specifically because the sub-
problems can be solved independently. Indeed, such parallelization is often required in
order to obtain tractable solution times for decomposition strategies.

While there are still no commercial tools available for transmission planning that use
decomposition algorithms to leverage parallel computer systems, there exist some
promising research implementations that show that it is possible to solve medium to large-
scale problems using current software and hardware technology. For instance, Munoz et al.
(2014b) use a 240-bus network reduction of the WECC to illustrate an application of
decomposition algorithms to transmission and generation investment planning. The
resulting optimization model has 31 million decision variables and 56 million constraints
and it is currently not solvable using off-the-shelf commercial solvers; however, the model
can be solved using Benders decomposition in a medium-sized computer workstation in
nearly 80 hours. A more recent implementation of a variation of the same network used in
Munoz et al. (2014b) is in Munoz & Watson (2015). Here the authors find a near optimal
solution using the Progressive Hedging decomposition algorithm on a high-performance
computer available at a national laboratory. Running the decomposition algorithm in
parallel instead of serially reduced solution times from 40 days to 1.9 hours.

Therefore, we conclude that both sophisticated solution algorithms and parallel computing
technology are promising alternatives to tackle large-scale planning problems in practical
solution times for real-world planning studies and not just research applications. The
challenge is to make these models truly useful to planners by implementing algorithms and
developing interfaces that would enable planners to solve such models on their own
computers.
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