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Public	 policy	 objectives	 and	 the aging	 transmission	 system	 are	 today’s	 most	 important	
drivers	 for	 the	 development	 of	 new	 transmission	 infrastructure	 in	 the	 US. Given	 the	
anticipated	 magnitude	 of	 the	 required	 investments,	 transmission	 infrastructure	
investments	must	be	allocated	in	a	way	that	maximizes	the	likelihood	of	achieving	society’s	
goals	for	power	system	operation.	

I.	Introduction

Public	 policy	 objectives	 and	 the aging	 transmission	 system	 are	 today’s	 most	 important	
drivers	 for	 the	development	of	new	 transmission	 infrastructure	 in	 the	US. Chuptka	et	 al.	
(2008)	 report that	 the	 investments	 in	 transmission	 and	 distribution	 assets required	 to	
meet	 forecasted	 demand,	 reliability	 requirements,	 and	 environmental	 and	 renewable	
targets	by	2030 will	cost	approximately	USD	$880B.	This	quantity	is more	than	seven	times
the	 total	 annual	 revenues	 from	 US	 electricity	 sales	 in 2013 (EIA,	 2015). Given	 the	
anticipated	 magnitude	 of	 the	 required investments,	 transmission	 infrastructure	
investments	must	be	allocated in	a	way	that	maximizes	the	likelihood	of	achieving society’s	
goals	for	power	system	operation.	

Note	that	“goals”	 is	plural—it	 is	 increasingly	recognized	that	 that	 the multiple benefits of
transmission	 enhancements—as	 opposed	 to	 just	 operating	 cost reductions—must	 be	
considered	 when	 evaluating alternative	 network	 expansions. These	 extend	 beyond the	
ability	to	meet reliability	requirements or	to	reduce	fuel	costs.		Examples	include	savings	in	
generation	 investment	 through	more	 efficient	 siting,	 achievement	 of public	 policy goals	
(e.g., renewable	 targets	 and	 carbon	 emissions	 regulations),	 and	 minimization	 of	
environmental	 impact	 of	 new	 circuits (Pfeiffenberger	 &	 Hou,	 2012;	 Chang	 et	 al.	 2013).
However,	 a critical part	 of	 the	 planning	 problem that	 has	 received	 significantly	 less	
attention	 is	how	to	select	a	portfolio	of	 transmission	 investments	 from	a	potentially	very	
large	(even	thousands)	number	of	potential	combinations	and	timing	of	investments	that	is
more	 cost-effective	 than	 any	 other	 alternative in simultaneously	 meeting	 economic	 and	
sustainability	goals,	while	reckoning	with	long-run	uncertainties. We	believe	that	by	using
state-of-the-art	optimization	tools we	can	identify	such	optimal	alternatives,	extract more	
benefits	 out	 of	 transmission	 expansion investments,	 and account	 for	 the	 huge	 economic,	
technology,	and	policy	risks	that	the	power	sector	faces	over	the	next	several	decades.

Our	objective here	is to	outline limitations of	current	approaches	to transmission	planning	
and	 discuss how advanced	 optimization-based	 methodologies	 and	 supporting	
computational	 tools could	 be	 used to	 systematically achieve a broader	 range	 of	 benefits	
and	 decreased	 costs than	 tools	 in	 use today. We	 begin	 in	 Section	 II	 by	 recounting	 how	
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advanced computational	 tools	 have	 revolutionized power	 systems operations,	 yielding	
billions	 of	 dollars	 of	 savings;	 we	 argue that	 analogous improvements	 are	 possible	 in	
transmission	planning.	Next,	in	Section	III	we	analyze three	recent,	large-scale transmission	
planning	studies conducted	for	US	power	system	operators.	We	focus	on	the	methodologies	
they	 used	 to	 identify and	 calculate	 the	 benefits	 of	 transmission	 investment	 portfolios. In
Section	 IV	 we	 discuss	 the	 complexities	 involved	 in	 determining	 the	 best	 mix	 of
transmission	investments,	and	the	benefits	that	can	be	gained by using	optimization-based	
methodologies to	 assist with	 that	 task. We	 discuss	 a	 variety	 of	 difficult	 transmission	
planning	 issues that optimization	 can	 help	 users	 address, including	 renewable	 and	 load	
variability	and	correlations	over	space	and	time,	 long-run	uncertainties (e.g.,	 fuel	prices),	
coordination	and	co-optimization of	transmission	and	generation	assets,	and	the	flexibility	
and	option	value	of	alternative	decisions,	including	the	possibility of	deferred	investment.
Simultaneous	 consideration	 of	 these	 issues	 results	 in	 difficult,	 large-scale	 optimization	
models.	 	 In	 Section V,	 we discuss	 some	 exciting	 and	 highly	 promising	 state-of-the-art	
solution	methods	 and	 computational	 platforms	 that	 could	 be	 used	 to	 solve	 the	 resulting	
models,	 including	 decomposition	 methods	 and	 parallel	 computing. These	 methods	 and	
platforms	 have	 been	 used	 to	 solve	 multi-decadal	 transmission	 planning	 problems	
considering	 hundreds	 of	 short-run wind/solar	 output	 and	 load	 scenarios	 per	 year and,	
simultaneously,	the flexibility	of	the	system	in	the	face	of	dozens	of	long-run	scenarios.		We	
argue	 that	 such	 capabilities	 will	 soon	 enable	 planners	 to	 quickly	 identify	 cost-effective
expansion	plans,	 significantly	 improving	power	 system	 economic	viability and	 reliability,	
while	simultaneously	achieving	sustainability	and	related	policy	goals.	

II.	Optimization	and	unit	commitment

“All	models	are	wrong,	some	are	useful”,	George	E.	P.	Box.

The	electric	power	industry	is	a	major	end-user	of	optimization	algorithms	because	of	the	
large	 number	 of	 alternative solutions that	 can	 be	 considered,	 wide	 availability	 of	 data,	
and—most	 importantly—the	 large	 cost	 savings	 that	 can	 be	 realized	 (Hobbs,	1995).	 One	
early,	 notable	 application	 of	 optimization	 in	 power	 systems	 operations was	 the	 use	 by	
Electricite’	de	France of	linear	programming	for	economic	dispatch	(Turvey	and	Anderson,	
1977).	 Here,	 linear	 programming	 solvers	 were	 used	 to	 determine	 the	 output	 levels	 of	
generation	 fleets to	meet	demand	at	minimum	cost	 for	consumers and,	 later, to	compute	
nodal	 electricity	 prices.	 An	 important	 limitation	 of	 early	 economic	 dispatch	models	was
that	they	failed to	capture	key	real-world generator	characteristics such	as	start-up,	shut-
down,	and	minimum	up/down	times.	Such	“lumpy” characteristics	are	best	captured using
discrete (e.g.,	 0-1) variables,	 as	 opposed	 to	 the	 continuous	 variables	 used	 in	 linear	
programming.	Consequently,	early	economic	dispatch	models	eventually	evolved	into	what	
today	 are	 known	 as unit	 commitment (UC) models,	 which	 take into	 account	 these	
additional	 features—although	 the	 former	 are still	 used	 in	 real-time	markets	 to	 dispatch	
units	once	generator	commitment	schedules	have	been	determined.

Unfortunately,	 the	 introduction	 of discrete variables	 makes the	 optimization	 of	 unit	
commitment	 models	 significantly	 more	 challenging	 than	 that	 of	 economic	 dispatch
problems.	 Optimization	 models	 with	 discrete	 variables are	 known	 as	 mixed-integer	



programs.	 Finding	 a	 provably optimal	 solution	 to	 a	 mixed-integer	 program	 requires	
fundamentally	 different	 algorithm	 technologies	 than	 those	 associated	 with	 linear	
programming.	 At	 the	 time	 economic	 dispatch	 applications	 based	 on	 linear	 programming	
were	 first	 introduced,	 optimal	 mixed-integer	 solver	 technology	 was	 in	 early	 stages	 of	
development,	 and	 only	 used	 for	 research	 purposes.	 As	 an	 alternative,	 heuristic	 solution	
techniques	 for	 solving	 unit	 commitment—based	 on	 a	 technique	 known	 as	 Lagrangian	
relaxation—were	introduced	in	the	1980s	(Zhuang	&	Galiana,	1988;	Virmani et	al.,	1989).		
Lagrangian	 relaxation saw	 widespread	 use	 by the	 late	 1990s and	 early	 2000s,	 after	
researchers	demonstrated	the	ability	of	the	technique	to	consistently	identify	feasible	and	
near-optimal	 solutions,	 especially	 in	 the	 absence	 of	 “coupling”	 constraints	 such	 as	
transmission	 flow	 limits	 or	 emissions	 caps. However,	 the	 growing	 importance	 of	 such	
constraints,	 together	with	power	 system	restructuring	and	 rising	 fuel	 costs,	 combined	 to	
provide strong	 incentives	 to	 find	 commitment	 schedules	 of	 even	 better	 quality	 than	 the	
those obtained using	Lagrangian	relaxation	(Hobbs	et	al.,	2001).
		
Today,	 most	 restructured	 power markets	 worldwide use	 advanced	 mixed-integer	
programming	techniques	to	solve	unit	commitment	problems	to	near-optimality	and,	most	
importantly,	 within	 timeframes	 compatible	 with	 current	 market	 designs.	 However,	 this	
transition	has	proceeded	slowly,	despite	the	potential	economic	benefit.	For	example,	until	
2014, the	New	York	ISO	used	Lagrangian	relaxation	to	solve	their	day-ahead	and	real-time	
unit	 commitment	 problems	 (NYISO,	 2014).	 Reports	 from	 the	 PJM	 Interconnection,	
California	 ISO,	 and	 the	 Southwest	 Power	 Pool state	 that	 the	 total	 aggregate	 savings
resulting from	 the	 use	 of mixed-integer	 programing	 instead	 of	 Lagrangian	 relaxation	 for	
unit	 commitment	 are	 approximately	 USD	 $250M per	 year	 (O’Neill	 et	 al.,	 2011).	 These	
improvements	 have	 been	 possible	 largely	 due	 to	 a	 combination	 of	 advances in	 solution	
algorithms and	 computer	 hardware.	 In	 particular,	 IBM	 reports	 cumulative	 performance	
improvements	 on	 the	 order	 of	 100,000-fold	 for	 their	 commercial	 mixed-integer	 solver	
CPLEX	 between	 1991	 and	 2013 (Bixby,	 2012;	 Ashterber,	 2013).	 	 Such	 software	
improvements,	 coupled	 with	 Moore’s	 Law	 for	 hardware	 improvements,	 enable a	 unit	
commitment	problem	that	took	24	hours	to	solve	in	1991	to	be	solved	today	in	a	fraction	of	
a	second.	

Hence,	unit	commitment	optimization	models	that	were thought	to	be nearly	impossible	to	
solve	in	the	nineties	have	become	trivial,	inducing	a	revolution	in	power	system	operations.	
Operators	 and	 energy	 management	 system	 vendors	 have	 taken	 advantage	 of	 these	
capabilities	to	build	in	many	more	capabilities,	and	to	expand	the	sizes	of	the	systems	that	
are	being	 solved,	 resulting	 in	 the	efficiency	 improvements	noted	above.	 	We	believe	 that	
these	 software	 and	 hardware	 improvements	 are	 ripe	 for	 exploitation	 in	 planning	
transmission expansion,	 and	can	 lead	 to	a	 similar revolution	 in	 that	 context.	 Specifically,	
mixed-integer	 programs	 have	 been	 developed	 to	 represent	 a	 range	 of	 transmission	
expansion	models (Alguacil	et	al.,	2003;	van	der	Weijde	&	Hobbs,	2012),	and	researchers	
have	demonstrated	that	state-of-the-art	mixed-integer	solvers	can	identify optimal	or	near-
optimal	solutions	to	these	models	in	practical	run-times	(Munoz	et	al.,	2015).

III.	Current	Practices	in	Transmission	Planning



Innovative	 transmission	 planning	 paradigms	 are	 being	 actively	 investigated or	 gradually	
adopted	 by the	 power	 systems	 industry	 in	 response	 to	 the	 challenges	 of	 renewable	
integration,	FERC	Order	1000,	 and	computational	hardware	and	software	 improvements.		
Such new	 planning	 paradigms,	 initially	 developed	 by the	 research	 community, explicitly	
address long-run	uncertainties,	consider	detailed	representations	of	short-run	operations,	
acknowledge	 that	 power	 systems	 must	 consider	 multiple	 societal	 objectives,	 and/or
consider	 the	 effects	 of	 transmission	 planning	 on	 generation	 siting—and	 vice	 versa.	
However,	 the	 full	 implementation	of	 these	 paradigms,	 along	with	 full	 realization	 of	 their	
benefit, requires	the	use	of	modern	optimization	techniques.	Existing	 implementations	of	
these	paradigms	 fall	 short	of	what	modern	optimization	 techniques	 can	provide,	 yielding	
sub-optimal	 expansion	plans	 (Liu	et	 al.,	 2013;	Munoz	et	 al.,	 2014a). We	argue	 that	 these	
new	 paradigms,	 when	 coupled	 with	 state-of-the-art	 optimization	 algorithms	 and	
computational	platforms,	will	lead	to	more	economic,	robust,	and	sustainable	transmission	
investment	plans.	

To	 motivate	 these	 paradigms	 and	 survey	 the	 existing	 state-of-the-practice,	 we	 now	
examine three large-scale	 transmission	 planning	 studies,	 focusing	 on	 the	 increasingly	
sophisticated	 analytical	 tools	 used	 to	 identify	 candidate	 transmission	 portfolios	 and	 the	
criteria	 used	 to	 select	 among	 them.	 These	 studies are	 associated	 with	 major	 US	 power	
systems	 operators:	 the	 California	 ISO (CAISO),	 the	 Midcontinent	 ISO (MISO), and	 the	
Western	Electricity	Coordinating	Council	(WECC). We	highlight	how recent	computational	
advances could	be	exploited	in	such	studies	to	address	features	present	in	newly	proposed	
transmission	expansion	paradigms.		

The	CAISO 2013-2014	Study:	Production	Costing	as	a	Classic	Application	of	
Optimization	

The	 2013-2014	 CAISO	 transmission	 planning	 study	 aims	 to	 select	 new	 transmission	
projects (CAISO,	 2014).	The	objectives	 of	 the	 new	projects	 are	 to	 (1)	 enable	 the	 state	 to
meet	a 33%	renewables	penetration target	by	2020,	(2) enhance the	economic	efficiency	of	
the	system (e.g.,	via	reduced	production	costs),	and	(3) maintain	reliability	standards	in	the	
region under	 the	 increased	 penetration	 of	 renewables. CAISO	 used the	 WECC’s	
Transmission	 Expansion	 Planning	 Policy	 Committee	 (TEPCC)	 dataset	 as	 a	 baseline	 for	
projected	generation	resources	in	the	region	and	in	neighboring	states.	The	development	of	
transmission	 portfolios	 is	 based	 on	 information	 obtained from	 detailed	 ABB	 GridView	
production	 cost	 simulations	 and	 AC	 power	 flow	 analyses	 performed	 using	 GE	 PSLF	 for	
stressful	system	conditions	(e.g.,	a	summer	peak	hour).	Production	cost	simulations	are	a	
type	 of	 optimization—of	 operations—that	 are	 frequently	 used	 for	 simulating	 how	 a	
predefined	 investment	 plan	 performs	 in	 terms	 of operational cost	 and	 compliance	 with	
renewable	 targets	 and	 emissions	 limits (Kahn,	 1995);	 they	 represent	 the	 widest (albeit	
indirect) use	of	optimization	in	transmission	planning	studies.

CAISO	 used the	 results	 from	 production	 cost	 simulations	 to	 identify	 congested	
transmission	 paths and	 to	 rank	 them by	 severity	 (quantified	 as	 event	 magnitude	 and	
duration).	 In	conjunction	with	stakeholder	 input,	 this	 information	was subsequently used	
to	 propose	 a	 set	 of	 alternatives	 for	 transmission	 upgrades	 to mitigate congestion. CAISO	



then	 selected the	most	 cost-effective investment	 portfolio by	 comparing gross	 operating	
benefits	 and investment	 costs among	all	 selected	alternatives. This	planning	process	was
repeated	 for	 three	 different	 plausible	 scenarios	 of	 generation	 developments	 for	meeting	
the	 33%	 state	 renewable	 target	 by	 2020,	 resulting in	 three	 diverging	 transmission	
investment	 portfolios. Subsequently,	 CAISO	 developed a	 single	 investment	
recommendation based	 on	 these	 three	 distinct	 scenario-specific	 portfolios	 following	 an	
engineering	 rule	known	as	 the	 “least	 regrets”	 principle,	which	 seeks	approval	of	 “…those	
transmission	 elements	 that	 have	 a	 high	 likelihood	 of	 being	 needed	 and	well-utilized	 under	
multiple	scenarios” (p.	19). We	will	comment	on	the	effectiveness	of	this	heuristic	decision	
rule	in	Section	IV.

MISO Transmission	Expansion	Plan	2013:	Using	Optimization	Models	for	both	
Production	Simulations	and	to	Define Generation	Investment	Scenarios

MISO performs	annual	transmission	planning	studies	to identify	those projects	needed	for	
their	reliability,	economic,	and	policy	purposes over the	next	10	years (MISO,	2013). MISO	
first	identifies a	least-cost	generation	investment	portfolio that	meets forecasted	demand,	
renewables	 targets,	 and	 reliability	 requirements	 using	 EPRI’s Electric	 Generation	
Expansion	 Analysis	 System	 (EGEAS).	 The	 EGEAS	 is	 an	 optimization-based	 capacity
planning	 tool—the	 capacity	 of	 generators	 are	 variables	 in	 the	 optimization	model—that	
finds	 a	 generation	 investment	 portfolio	 that	minimizes	 the	 present	worth	 of	 capital	 and	
operating	cost	subject	to	a	reliability	constraint	(e.g.,	Loss	of	Load	Probability	or	Expected	
Unserved	Energy).	This approach	is	more	sophisticated	than	CAISO’s,	mainly	because	MISO	
relies	 on	 a	 formal	 optimization tool	 that	 automatically analyzes	 millions	 of	 possible	
combinations	of	generation	portfolios	and	selects	the	most	cost	effective	one.	 	The EGEAS
tool	 has,	 however, a crucial	 limitation:	 it does	 not	 take	 into	 account	 transmission	
constraints when	selecting	an	optimal	portfolio	of	generation	investments.	For	this	reason,
MISO	optimizes	generation	capacity for	sub-regions	of	the	system,	independently.

As	in	the	CAISO	study,	MISO	utilizes the portfolio of	generation	resources identified	in	the	
first	 step	as	a	 fixed input	 for	production	 cost	 simulations	performed	using	PROMOD	and	
PLEXOS,	which	 are	 then	 used	 to identify	 the	most	 congested	 paths	 in	 the	 network. One	
difference	compared	to	CAISO’s	approach	in	this	step of	the	planning	process is	that	MISO	
additionally	performs	production	 cost	 simulations	without transmission	constraints.	This	
additional	step	is	used to	estimate	what	MISO	calls the	“maximum	allowed	budget	for	new	
transmission	 investments,” which	 is measured as	 the	 difference	 of	 production	 costs	
between	the	transmission-constrained	and	unconstrained cases.	All	of	 this	 information	 is	
then	 used	 to	 perform	 a	 holistic transmission	 portfolio analysis	 that	 relies	 on	 both	
congestion	 data	 and	 stakeholder	 input.	 The	 study	 also	 considers	 five	 different	 future	
scenarios	of	varying	economic,	policy,	and	technology	conditions	for	which	MISO	develops	
generation	and	transmission	investment	portfolios.	After	identifying	the	investment	needs	
for	each	scenario,	MISO	produces	a	single	investment	recommendation	according	to	a	rule	
that	 is	 similar	 to	 the	one	used	by	 the	CAISO:	 “If	the	same	group	of	projects	is	the	preferred	
solution	 for	 multiple	 scenarios,	 it	 is	 a	 good	 indication	 that	 a	 given	 portfolio	 is	 robust	 and	
would	result	in	a	less	future	regrets	than	a	portfolio	that	does	not” (p.	62).		



Thus,	 both	 the	 CAISO	 and	MISO	 processes	 rely	 on manual identification	 of transmission	
investment,	 which is	 an	 extremely	 laborious	 task	 given	 the	 scale	 of	 the	 power	 systems	
considered and	the	astronomical	number	of	possible	investment	portfolios.	We	argue	that	
modern	 optimization	 methods	 can	 be	 used	 to	 systematically	 evaluate	 extremely	 large	
numbers of	 transmission	 and	 generation	 portfolios	 and to select	 the	most	 cost-effective	
alternative.	In	addition,	both	studies emphasize the	definition	of	robust	transmission	plans	
by	identifying	individual	investments	that	appear	attractive	in	a	number	of	scenarios.	This	
is	 an	 important	 change	 in	 paradigm	 relative	 to	 traditional	 approaches	 of	 planning	 for	 a	
single	 scenario	 of	 demand	 growth,	 fuel	 prices,	 etc.	 	 But, as	 we	 point	 out	 below,	 this	
approach	 to	 robustness	may	miss	alternatives	 that	 “put	 the	 system	on	 its	 toes”…	 that	 is,	
increase	the	flexibility	of	a	transmission	system	to	respond	to	uncertain	developments	ten	
years	out	and	beyond. Optimization can	provide	a	rigorous	assessment	of	the	adaptability	
of	a	transmission	plan,	and	the	resulting	“option	value”.

2013	WECC Interconnection-wide	Transmission	Plan:	Adding	Transmission	
Investment	Variables	to	the	Optimization

The	WECC	planning	approach	is,	to	our	best	knowledge,	the	most	sophisticated	in	the	US.	
For	20-year	planning	studies,	the WECC	utilizes	an	optimization-based long-term	planning	
tool	(LTPT)	that	explicitly	considers	transmission	and	generation	 investments	as	decision
variables (WECC,	 2013).	 Consequently,	 in	 the	 WECC	 study,	 the	 investment	 portfolio	 is	
selected	automatically instead	of	manually, as	 is	done	 for	 transmission	and	generation	 in	
CAISO,	 or	 for	 transmission	 in	MISO.	 The	 LTPT	 operates	 by	 iterating	 between	 a	 Scenario	
Case	 Development	 Tool	 (SCDT)	 and	 a	 Network	 Expansion	 Tool	 (NXT) until	 a	 feasible	
investment	 portfolio	 is	 found.	 The	 SCDT	 selects	 generation	 capacity	 based	 on	 levelized	
energy	costs	(i.e.,	it	relies	on	expected	capacity	factors	for	renewables).	SCDT is	therefore	a	
simpler	 tool	 than	 the	 EGEAS	 module	 used	 by	 MISO,	 which	 considers	 instead	 the	 full	
distribution	 of	 loads,	 wind,	 and	 solar	 parameters	 as	 well	 as	 generator	 outages.	 This	
generation	 investment	 portfolio	 is	 then	 fed	 into	 the	 NXT module, which	 automatically
selects	a	transmission	portfolio	that	results	in	no	branch violations	for	one	study	hour—the	
summer	 peak	 condition—and	 that	minimizes investment	 cost. The	 results	 from	NXT	 are	
then	 used	 to	 calculate	 and	 assign	 transmission	 costs	 for	 all	 generation	 resources,	 which	
modify the	levelized	cost	of	energy	assumed	in	the	previous	run	of	SCDT.	The	LTPT	iterates	
between	 the	 SCDT	 and	 NXT	 until	 the	 generation	 and	 transmission	 investment	 portfolio	
does	not	change	between	iterations.

The	 WECC study	 recognizes	 the	 mutual	 dependence	 of	 generation	 and	 transmission	
investments.		Where	new	lines	are	placed	will	affect	the	attractiveness	of	different	locations	
for	siting	generation,	and	will	influence	where	plants	are	built	and	how	they	are	operated.	
Similarly,	generation	siting	affects	the	benefits	of	transmission	investments.	In	some	parts	
of	 the	US,	 these	 investments	 can	be	 coordinated—or	 “co-optimized”—through	 integrated	
resource	planning	processes.		In	other	parts,	where	transmission	and	generation	decision-
making	is	unbundled,	transmission	owners	need	to	anticipate	how	network	expansions	will	
affect	 incentives	to	site	generation.	 	 In	our	analyses	(e.g.,	Liu	et	al.	2013),	we	have	 found	
that	a	large	fraction—up	to	half—of	the	benefits	of	transmission	investments	arise	from	the	
more	 efficient	 siting	 and	 construction	 of	 generation	 that	 results.	 	 Models	 that	



simultaneously	optimize	transmission	and	generation	investments	can	be	used	to	quantify	
these	benefits	by	simulating	how	generation	locations	are affected	by	grid	investments. The	
WECC-like	iterative	approach	of	optimizing	generation	investments	then	transmission	and	
then	back	 to	generation,	 and	 so	 forth,	 can	 capture	 some	but	not	all	of	 the	benefits	of	 co-
optimization.	 	This	 limitation	has	been	demonstrated	both	 in	general	 and	 in	 case	 studies	
(Liu	 et	 al.,	 2013;	 Johnson,	 2015)	 in	 which	 such	 iteration	 converged	 to	 joint	 investment	
plans	with	higher	costs	than	truly	co-optimized	solutions.

IV.	Optimal	Transmission	Planning

“While	we	realize	no	such	comprehensive	structure	exists	in	transmission	planning	to	date,	we	
believe	 that	 analytical	 tools	 based	 upon	 developments	 in	 advanced	 computing	 and	
optimization	 such	 as	 have	 seen	 in	 other	 segments	 of	 the	 industry	 (e.g.,	 operations/market	
dispatch)	 could	help	 inform	 the	design	of	 improved	analytical	and	decision	 frameworks	 for	
transmission	planning.” (Chang	et	al.,	2013)

Several	 research	 articles have	 proposed	 advanced	 optimization-based	 planning	 tools for	
automatic generation of	cost-effective	network	expansions in	the	last	two	decades	(Latorre	
et	 al.,	 2003).	However,	 as	we just discussed,	 these	 tools	 are	 seldom used	 in	practice. We	
now	describe	the	core components	of	a generic optimization-based transmission	planning	
tool.	 In	 addition,	 we enumerate a	 series	 of	 optional	 model	 features found	 in	 advanced	
transmission	 planning	 paradigms,	 including	 the	 co-optimization	 of	 transmission	 and	
generation	 resources,	 capturing	 the key	 features	of detailed	production	 cost	 simulations,	
explicit	modeling	of	uncertainty,	and	the	option	of	delaying	investments.	A	comprehensive	
description	of	these	elements	is	provided	by Donohoo	&	Milligan	(2014).

The	 basic	 components	 of	 an	 optimization	model	 are	 a	 set	 of	 decision	 variables,	 a	 set	 of	
constraints,	 and	an	objective	 function.	 	 In	 the	context	of	 transmission	planning,	 the	main	
decision	 variables correspond	 to	 investment	 options	 in	 different	 corridors	 (e.g.,	 new	
transmission	capacity	between	Devers-Palo	Verde or	between	Tehachapi	and	Big	Creek	in	
California)	and	of	different	types	(e.g.,	a	345-kV	double-circuit	line	versus	a	500-kV single-
circuit	line). In	transmission	planning,	there	is	an	additional	 set	of	decision	variables	that	
are	not	directly	related	to	investment	decisions,	but	are	included	in	the	optimization	model	
to	 capture	operational	details,	 e.g.,	 as	 found	 in	a	production	 cost	 simulation.	Examples	of	
such	 “auxiliary”	 variables	 include	 generator	 dispatch	 levels,	 line	 power	 flows,	 and	 bus	
voltage	angles.	The	set	of	constraints includes	transmission	build	limits	(e.g.,	transmission	
right-of-way	restrictions),	power	flow	limits,	generation	dispatch	limits,	a	power	balance	at	
every	bus in	every	time	interval	considered,	and	compliance	with	renewable	targets	and/or	
emissions	 limits.	The	objective	 function in	 transmission	planning	 is	often	defined	 as	 the	
sum	of	capital	cost	of	transmission	investments	plus	the	net	present	costs	of	operations	for	
the	planning	horizon;	cost	is	minimized	in	such	a	formulation.

Features	 found	 in	 more	 advanced	 transmission	 planning	 paradigms	 can	 be	 included	 by	
augmenting	 the	 basic	model	 described	 above in	 order to	obtain	 a	 transmission planning	
model	more	representative	of	the	how	the	system	is	likely	to be	operated	in	the	future	and	



of	how	investment	decisions	are	made	 in	reality. We	summarize some	specific	 examples
below.

a)	 Co-optimization	 of	 generation	 and	 other	 resources: In	 Liu	 et	 al.	 (2013)(p.	 3) we	
define	 co-optimization	 as	 the	 “…simultaneous	 identification	 of	 two	 or	 more	 classes	 of	
investment	 decisions	 within	 one	 optimization	 strategy.” In	 a	 vertically	 integrated	
environment, co-optimization	 can	 be	 achieved	 by	 augmenting	 the	 core	 transmission	
planning	 model	 described	 above, specifically	 by	 introducing	 decision	 variables	 and	
constraints	 to	 represent non-transmission	 investment	 alternatives,	 including generation	
capacity	and/or	energy	storage	devices.	The	objective	function	would	also	be	modified	to	
account	 for	 the	 capital	 cost	 of	 these	 alternatives. In	 restructured	 power	 systems	 these	
additional	decision	variables	represent	a	market	response to	 transmission	 investments, as
generation	assets	are	not	centrally	planned.	Consequently,	this	approach	is	often	referred	
to	anticipatory or	proactive transmission	planning.i

b)	Time	granularity: One	the	main	 limitations	of	 the	planning	tool	used	by	the	WECC	to	
select	a	transmission	portfolio is	that	it	only	optimizes	investments	 for	the	most	stressful	
hour	of	the	year,	i.e.,	the	summer	peak	load.	This	approach	is	mainly	an	artifact	of	a now-
dated planning	paradigm,	which	emphasized	the	feasibility or	security	of	the	system at	any	
cost.	Unfortunately,	under	such	planning	criteria	 it	 is	not	possible	 to	capture	the broader	
economic	 benefits	 of new	 transmission	 lines	 under	 operating	 conditions	 other	 than	 the	
peak	load.	An	important	benefit	of new	transmission	capacity for	the	overall	system is the	
possibility	of	reducing	congestion	costs	across	a	large fraction	of	hours	of	the	year.	This is	
particularly	 important for	 newer systems	 with	 large	 shares	 of	 variable	 generation	 from	
renewable	energy technologies—in	general,	a	single representative time	slice	is	insufficient
to	 capture	 all	 of	 the individual	 and	 complementary	 (e.g.,	 correlated)	 properties of	 these	
resources (Joskow,	2011).ii In	an	 ideal	planning	model	one	would	 compare	and	select	 an	
investment	portfolio	by performing a	detailed	production	cost	simulation	for	all	hours	in	a
year,	and	for	all	years	in	the	planning	horizon. However,	the	number	of	additional	decision	
variables	and	constraints	needed	to	model	production	costs	at	such	a	fine	resolution	often	
yields optimization	models	of	unmanageable size.

c)	Long-run	uncertainty:	The	three	planning	studies	we	describe	in	Section	III account	for	
the	 possibility	 of	 varying	 economic	 conditions,	 fuel	 prices,	 demand	 growth	 rates,	 and	
environmental	 regulation	 through	 a	 series	 of	 scenarios that	 are	 constructed	 using	
stakeholder	 input. Consequently,	 those	 studies	do account	 for	uncertainty in	 the form	of	
sensitivity	 analysis.	 However,	 they	 do not	 explicitly account	 for	 uncertainty	 when
developing investment	 alternatives.	 	 The	 approach	 of	 identifying the	 optimal	 investment	
strategy	 for	 each	 scenario	 independently—as	 done	 in	 the	 CAISO	 and	 MISO	 studies—is	
known	as	scenario	analysis. This procedure	allows	decision	makers	to	analyze the	effect	of	
different	 scenarios	 on	 investment	 plans, though it	 is	 a	weak	 strategy	 for finding a	 single
investment	 portfolio	 that	 will	 perform	 best across	 all	 scenarios,	 simultaneously.	 As	
discussed	by	Wallace	(2000),	the	main	issue	with a scenario	analysis framework is	that	the	
flexibility	of	a transmission plan	to	adapt	to	a	set	of	scenarios	as	they	unfold	over	time	is	
not	modeled	or	economically	valued	at	the	time	of	plan	development.



A	more	sophisticated tool that explicitly	accounts for	uncertainty	within	an	optimization-
based planning	 model	 is	 stochastic	 programming. In	 a	 stochastic	 planning	 model, the	
optimization	 objective	 is	 to	 minimize	 the	 expected net	 present	 cost—the	 probability	
weighted	 sum	 of	 costs	 going	 forward	 across	 all	 scenarios—using	 a	 unique	 investment	
portfolio for	all	 scenarios,	 instead	of	one	per	 scenario	as	 is	 the	 case	 in scenario	analysis.
Consequently,	a	stochastic	plan	is	not	necessarily	optimal	for	any	individual	scenario,	but	it	
is	 likely	 to	be	better in	an	expected	value	 sense,	 assuming	 that	 a	 representative	 range	of	
scenarios	have	been	modeled.	In	Munoz	et	al.	(2014a) we	compared	the	performance	of a	
stochastic	 planning	model	 to	 investment	 strategies developed	 using	 scenario	 analysis.	 In	
that	 study,	we	 found average	 cost	 savings	 of	 approximately	 8%	of	 the	 total	 system	 cost,	
which	was	nearly three	times	the	cost	of	the	transmission	lines	themselves.

d)	Option	value: Most	transmission	planning	studies	are	performed	every	year	using	the	
latest	 available	 information	 about near-term	 system	 needs.	 In	 some	 cases,	 a	 change	 in	
projected	 system	 conditions	 on	 a	 given	 year	 (such	 as the	 enactment	 of	 a	 new	
environmental	 policy)	 could	 turn	 transmission	 and	 generation	 projects	 that	 were	 not	
identified	as	necessary	during	previous	planning	studies into	optimal investment	decisions	
for	 the	 future,	 given	 the	 new	 information.	 Planning	models	 that	 disregard	 this	 option	 to	
delay	 investment	 decisions	 are	 likely	 to	 provide	 investment	 recommendations	 that	 are	
overly	conservative;	because all	decisions	have	to	be	made	today,	there	is	no	opportunity	
for	 learning	 about	 the	 future	 and	 then	 determining	 investment	 decisions.	 In	 order	 to	
capture the	 option	value of	 delaying	 an	 investment, it	 is	 necessary	 to	 explicitly	 consider
uncertainty—through	 a	 set	 of	 scenarios,	 for	 instance—and	 to	 incorporate	 additional	
investment	 decision	 variables	 to	 represent	 future	 actions,	 after	 uncertainty	 is	 revealed.
These	additional	variables	are	often	referred	to	as	recourse or	wait-and-see decisions	and	
do	not	necessarily	correspond	to	investments	that	will	be	ultimately	realized	in	the	future.	
This	 contrasts	 with here-and-now investment	 recommendations.	 By	 including	 recourse	
decisions as a	modeling	feature,	we	can represent	the	possibility	of	delaying	or	modifying	
an	investment	and	the	effect	of	these extra	degrees of	freedom	on	decisions	that	we	have	to	
make	today.

V.	Leveraging	Advanced	Computing Tools for	Transmission	Expansion

Accounting	 for	all	 of	 the	advanced	model	 features	we	 just	 introduced	above will	 require	
sophisticated	 computing to	 solve	 the	 resulting	 planning	 models.	 Recent	 advances	 in
computer	 hardware	 and	 commercial	 mixed-integer	 solvers	 such	 as	 CPLEX,	 Gurobi, and	
Xpress-MP—de	facto	industry	standards	for	solving	unit	commitment	and	production	cost	
models—may suffice	 for	 identifying	 high-quality	 investment	 strategies	 for small and	
perhaps	medium-sized	 systems.	 However,	more	 sophisticated	 solution	 strategies	will	 be	
needed	for	large-scale	applications (e.g.,	the	entire	WECC or	Eastern	Interconnection),	with	
thousands	 of	 transmission	 elements,	 dozens to	 hundreds of	 scenarios,	 and	 multi-year	
modeling	of	investment	alternatives.	

One	alternative	to	reduce solution	times	for	large	stochastic	planning	models	is	to	employ	
decomposition; well-known	 exemplars	 are Benders	 decomposition and	 Lagrangian
relaxation (Conejo	 et	 al.,	 2006).	 Benders	 decomposition	 for	 stochastic	 transmission	



expansion	 executes	 a	 “divide	 and	 conquer”	 strategy	 in	 which	 the	 algorithm	 iterates	
between	 an approximation	 of	 the	 investment	 problem (e.g.,	 to	 determine	 which	
transmission	corridors	are	selected)	and	a	(typically) large	set	of	production	cost	models	
representing	operational	conditions	under	consideration	(e.g.,	to	quantify	operational	costs	
and	reliability under	various	scenarios,	and	for	various	days	or	hours).	The	production	cost	
models	are	evaluated	using	the	fixed	solution	from	the	investment	problem	approximation,	
while	 the	 investment	 problem	 is	 solved	 using	 best	 available	 approximations	 of	 the	
generator	operating	costs	obtained	from	the	production	cost	models.	Both	the	investment	
problem	 and	 the	 production	 cost	 models	 are	 substantially	 smaller	 that	 the	 monolithic	
problem,	 and	 are	 consequently	 much	 easier	 to	 solve.	 In	 contrast	 to some	 iterative	
strategies	 presently	 used	 in	 transmission	 planning,	 there	 is	 a	 guarantee	 under	 certain	
circumstances	 that	 Benders	 and	 related	 decomposition	 strategies	 can	 identify	 optimal	
solutions,	 or	 provide	 a	 bound	 on	 solution	 quality	 if	 optimality	 cannot	 be	 established.	 A	
bound	is	a	metric	that	quantifies how	much	additional	improvement,	typically	quantified	as	
cost	 reduction,	 could	 be	 achieved	 by	 continuing	 the	 iterative	 process.	 Further,	 many	
decomposition	 strategies	 allow	 for	 early	 termination,	 e.g.,	 subject	 to	 a	 pre-specified	 time	
bound.	In	general,	it may	be	sufficient	for	practitioners	to	consider	sub-optimal	solutions	in	
preliminary	and/or	exploratory	 stages	of	 a	planning	 study,	 and	gradually	 increase	 target	
bounds	on	solution quality	in	final	study	stage

While	 the	application	of	decomposition	strategies	to	 large-scale	power	systems	problems	
has	 been	 largely	 restricted	 to	 the	 academic	 research	 community,	 there	 are	 cases	where	
such	 methods	 have	 been	 used	 by	 industry	 to	 solve	 planning	 problems	 that	 otherwise	
proved	 intractable. For	 instance,	 the	 Electric	 Generation	 Expansion	 Analysis	 System	
(EGEAS) has	used Benders	decomposition	 since	 the	1980s	 to identify	optimal	generation	
investment	 strategies	 by	 iterating	 between	 an	 investment planning	 model and	 a	
probabilistic	production	cost	model. Similarly,	the	SDDP	tool	developed	by	PSR	(PSR,	2015)	
for	 multi-stage	 hydrothermal	 system	 operations under	 stream flow	 uncertainty	 uses	 a	
variant	 of	 Benders	 decomposition.	 These	 examples	 illustrate	 that	 the	 complexity	 of	
decomposition	strategies—relative	to	more	straightforward,	black-box	use	of	commercial	
solvers—has	not	been	 a	barrier	 to	 their	 adoption	 in	power	 systems	 applications	 ranging	
from	 long-term	 investment	 planning	 to	 short-term	 scheduling. However,	 to	 our	 best	
knowledge,	there	are	currently	no	commercial	implementations	of	decomposition	methods
for	transmission	planning.iii

Another	rapidly	emerging	aspect	of	the	commercial	computing	landscape that	could	have	a	
significant	impact	on	our	ability	to	overcome	the	challenges	associated	with solving	large-
scale	planning	problems	is	parallel	computing.	Software vendors have	recently	introduced	
products that	 take	advantage	of	parallel	 compute	 resources,	driven	by	 cost	 reductions	 in	
large	 compute	 servers	 and	 online	 services	 such	 as	 the	 Amazon	 EC2	 compute	 cloud.	 For	
example,	the	Brattle	Group uses	the	pCloudAnalytics	module	to	parallelize	large	production	
cost	simulations (NEG,	2015). The New	York	ISO is	now	using	high-performance	computing	
to	perform reliability	 and	economic	 studies	using	 the	GE	MARS	 tool, reducing	 simulation	
times	 from	 16	 hours	 to	 30	 minutes	 (Chao,	 2012). However,	 such	 applications	 have	 an	
“embarrassingly	parallel”	structure,	and	do	not	require	the	use	of	iterative	decomposition	
strategies.	Unlike	investment	planning problems,	an	8760-hour production	cost	simulation	



can	be	approximated	via	a	collection	of	smaller	(e.g.,	month-long)	independent	production	
cost	 problems	 that	 can	 be	 solved	 simultaneously and	 independently. In	 contrast,	
decomposition	 strategies	 collect	 information	 from	 the	 solutions	 to	 each	 sub-problem,	
modify	 the	 sub-problems	 based	 on	 the	 aggregate,	 and	 iterate.	 This	 more	 complex	
communication	 structure	 still	 lends	 itself	 to	 parallelization,	 specifically	 because	 the	 sub-
problems	 can	 be	 solved	 independently.	 Indeed,	 such	 parallelization	 is	 often	 required	 in	
order	to	obtain	tractable	solution	times	for	decomposition	strategies.

While	 there	 are	 still	 no	 commercial	 tools	 available	 for	 transmission	 planning	 that	 use	
decomposition	 algorithms	 to	 leverage	 parallel	 computer	 systems,	 there	 exist	 some
promising	research	implementations	that	show	that	it	is	possible	to	solve	medium	to	large-
scale	problems	using	current software	and	hardware technology.	For	instance,	Munoz	et	al.	
(2014b)	 use	 a	 240-bus	 network	 reduction	 of	 the	 WECC	 to	 illustrate	 an	 application	 of	
decomposition	 algorithms	 to	 transmission	 and	 generation	 investment	 planning.	 The	
resulting	optimization	model	has	31	million	decision	variables	and	56	million	constraints	
and	it	is	currently	not	solvable	using	off-the-shelf	commercial solvers;	however,	the	model	
can	 be	 solved	 using	Benders	 decomposition	 in	 a	medium-sized	 computer	workstation	 in	
nearly	80	hours. A	more	recent	implementation	of	a	variation	of	the	same network	used	in	
Munoz	et	al.	 (2014b)	 is	 in	Munoz	&	Watson	(2015).	Here the	authors	 find a	near	optimal	
solution	 using	 the	 Progressive	 Hedging	 decomposition	 algorithm	 on	 a	 high-performance	
computer	 available	 at	 a	 national	 laboratory.	 Running	 the	 decomposition	 algorithm	 in	
parallel	instead	of	serially	reduced	solution	times	from	40	days	to	1.9	hours.	

Therefore,	we	conclude	that	both	sophisticated	solution	algorithms	and	parallel	computing	
technology	are	promising	alternatives	to	tackle	large-scale	planning	problems	in	practical	
solution	 times	 for	 real-world	 planning	 studies	 and	 not	 just	 research	 applications.	 	 The	
challenge	is	to	make	these	models	truly	useful	to	planners	by	implementing algorithms	and	
developing interfaces	 that	 would	 enable	 planners	 to	 solve	 such	 models	 on	 their	 own	
computers.
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i A	much	more	sophisticated	approach	to	model	the	effect	of	transmission	investments	on	
generation	capacity	additions	is	the	use	of	game	theory	(Sauma	&	Oren,	2006);	however,	
most	existing	applications of	that	approach are	restricted	to	small	systems	with	a	focus	on	
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ii In	Munoz	et	al.	(2014b)	and	Munoz	&	Watson	(2015)	we	studied	the	effect	of	using	a	
sample	of	representative	hours	to	simulate	production	costs	for	a	year	and	to	select	
optimal	transmission	and	generation	investments	for	a	large-scale	system.	We	found	that	at	
least	500	representative	hours	are	needed	to	approximate	an	8760-production	cost	
simulation	with	an	error	of	less	than	3%	in	total	system	cost.	
iii Promising	implementations	of	decomposition	algorithms	to	solve	large-scale	
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