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ABSTRACT 

TlBr has emerged to be one of the most promising materials for - and x- radiation detection 

in recent years. Unfortunately, the performance of this material degrades rapidly due to the 

structural changes caused by ionic conduction. To enable molecular dynamics simulations of 

structure evolution of TlBr under external electric fields, we have developed a Stillinger-Weber 

type of TlBr interatomic potential. During this process, we also have addressed two problems of 

wider interests. First, while being simple and suitable for a rapid development, the conventional 
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Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-

cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-

Weber potential so that it can now be used for other crystal structures. Second, past improvement 

of interatomic potentials cannot always be applied by a broad community because any 

modifications of the analytical functions of the potential would require corresponding changes in 

the molecular dynamics codes. Here we have developed a polymorphic potential model, and 

implemented it as a new pair style in the public molecular dynamics codes LAMMPS. This pair 

style takes tabular (rather than analytical) potential functions. Depending on the tables that users 

supplied, our polymorphic potential reduces automatically to Stillinger-Weber, Tersoff, 

embedded-atom method, and any variations (i.e., modified functions) of these potentials. 

Simulations using the polymorphic model are carried out to evaluate the fidelity of our TlBr 

potential. In particular, challenging simulations of ionic conduction under external electric fields 

are demonstrated.  

 

Keywords: interatomic potential, molecular dynamics, TlBr crystal. 

1. INTRODUCTION 

Thallium bromide (TlBr) has emerged to be one of the most promising materials for - and 

x- radiation detection in recent years, achieving resolution as high as 1% at 662 keV [1,2]. 

Unfortunately, the performance of this material degrades after operation times as short as a few 

hours to a few weeks [3]. To extend the life time of TlBr crystals, the evolution of the atomic 

scale structures of the materials due to ionic conduction under the operating external electric 

fields must be understood. As ionic conduction may be facilitated by the open channels of edge 

dislocations, molecular dynamics (MD) that allows extended defects to be included in simulated 
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crystals becomes a useful method to study structure evolution of TlBr. Such MD simulations are 

not yet possible due to the lack of an interatomic potential for the Tl-Br system that has a CsCl 

type of crystal structure.  

MD simulations of ionic diffusion have been applied to a number of compounds including 

CuI [4,5], M3+ doped CeO2 [6], zirconia [7,8,9], -LiI [10], alumina [10,11], and CaF2 [12]. 

These simulations do not apply external electric fields, and therefore the ionic conduction is 

indirectly deduced from thermal diffusion. Our objective is to simulate directly the ionic 

conduction under external electric fields. One advantage is that the ionic diffusion can be 

accelerated by the external fields, therefore mitigating the short time scale issue of MD 

simulations. This, however, imposes a more stringent requirement on the interatomic potential 

for maintaining the crystal even when a large external field is applied (i.e., cations and anions are 

subject to large opposite forces). The previous simulations use either pair potentials [5-9,12], or 

pair potentials plus angular energy penalty interactions [10,11]. The angular energy penalty 

interactions can stabilize relatively complex crystal structures that the pair potentials cannot. One 

good example is the widely-used Stillinger-Weber (SW) potential [13], which uses a parabolic 

energy penalty term to penalize non-tetrahedral bond angles. As a result, SW potentials have 

been successfully applied to tetrahedral structures such as diamond-cubic, zinc-blende, and 

wurtzite
*
. Depending on parameterization, SW potentials can also be used for fcc elements 

[14,15,16]. However, the conventional SW potentials have two limitations [14,15,16]: (1) they 

significantly overestimate the elastic constants of closely packed (e.g., fcc) elements; and (2) 

they usually cannot be used for other (non-tetrahedral) structures such as sc elements, and NaCl 

and CsCl compounds. Note that although most elements do not exhibit the lowest energy for the 

                                                 
*
 For convenience, we will use abbreviation to represent structures in the following: dc: diamond-cubic; sc: simple-

cubic; bcc: body-centered-cubic; fcc: face-centered-cubic; hcp: hexagonal-closely-packed; zb: zinc-blende; wz: 

wurtzite; NaCl: B1; and CsCl: B2. 
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sc crystal structure, the sc crystal can have a near-lowest energy that cannot be captured by SW 

potentials. Potentials capable of prescribing a low energy for the sc structure, therefore, improve 

beyond SW potentials on the general energy trends when a variety of configurations are 

considered [17]. 

Many literature potentials are constructed using particular analytical functions. These 

potentials can be easily improved if alternative functions are used. For example, Rockett [18] 

used alternative functions for the Tersoff [19,20] potentials to better treat short- and long- range 

interactions in covalent systems, and we used alternative functions for the Tersoff potential to 

improve its prediction on thermal conductivity [21]. Although alternative functions do not 

change the potential format and should, therefore, be easily applied, such an approach has not 

been widely used because it does require new molecular dynamics codes to be developed for 

each modified function. 

With the recognition that the problems described above have been limiting the atomistic 

level studies of emerging important materials, the objective of the present work is threefold: (1) 

modify the SW potential so that it can better describe elastic constants of elements and be 

applicable to a wide range of crystal structures including sc, NaCl, and CsCl; (2) develop a 

polymorphic potential model that incorporates simultaneously SW potential, modified SW 

potential, Tersoff potential [19,20], modified Tersoff potential [18], and embedded-atom method 

(EAM) potential [22]. Implement this polymorphic potential model in public MD codes 

LAMMPS [23] so that future development of potentials using any alternative functions no longer 

requires modification of the molecular dynamics codes; and (3) parameterize the modified SW 

potential for TlBr system and demonstrate the utility of the resulting potential. 

2. MODIFIED SW POTENTIALS 
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In SW potential [13], the total energy of a system of N atoms is expressed as 
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where i1, i2, …, iN is a list of neighbors of atom i, jik is the bond angle formed by atoms j and k 

at the site of atom i, R,IJ(rij) and A,IJ(rij) are, respectively, pairwise repulsive and attractive 

functions, uIJ(rij) is another pair function, gJIK(cosjik) is an angular energy penalty function, and 

subscripts i,j,k and I,J,K indicate, respectively, the atoms and the species of the atoms (note that 

three bodies JIK and KIJ are equivalent). The original SW potentials significantly overestimate 

the elastic constants of elements because the R,IJ(r) and A,IJ(r) functions used in these potentials 

do not allow independent adjustment of bond energy and second derivative of the bond energy 

[14]. Here we propose to use Morse type of functions capable of independent change of bond 

energy and second derivative of bond energy [14] to represent R,IJ(r) and A,IJ(r):  
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where Eb,IJ, r0,IJ, IJ, and IJ are four pair dependent parameters, and fc,IJ(rij) is a cutoff function. 

Note that the parameters introduced here have physical meanings: Eb,IJ and r0,IJ correspond 

respectively to the equilibrium bond energy and bond length, and IJ >> IJ control the curvature 

of the bond energy at the equilibrium bond length. The cutoff function fc,IJ(rij) is expressed as: 
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where rs,IJ and rc,IJ (rs,IJ << rc,IJ) are two independent pair parameters, and IJ and IJ are two 

dependent pair parameters 
    

 IJcIJs

IJ
rr ,,ln

00000001.0ln9.0lnln
  and 
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  IJ

IJs

IJ
r




,

9.0ln
 . Note that rs,IJ and 

rc,IJ have physical meanings as the cutoff function approximately equals one at r  rs,IJ and equals 

zero at r = rc,IJ (i.e., rc,IJ is the cutoff distance). Hence, multiplying any potential function with 

this cutoff function does not affect significantly the potential function at small distances but 

allows the potential function to be smoothly cut off at rc,IJ. Such a cutoff method is superior to 

the spline approach used by the Tersoff potential as the latter does not have continuous second 

and higher order derivatives. A general exponential decay function is used to represent the uIJ(r) 

function: 
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where IJ is a pair parameter. 

For the angular function, SW potentials use a parabolic energy penalty to the non-

tetrahedral angle gJIK(cosjik) = (cosjik-cos0,JIK)
2
 where the parameter cos0,JIK is fixed at the 

tetrahedral bond angle cos0,JIK = -1/3. This function can be made more general by treating 

cos0,JIK as a fitting parameter. Even so, the resulting function is still not fully flexible, for 

instance, it does not have a scaling factor, and its second derivative is fixed at 2. In addition, the 

function is symmetric at cosjik = cos0,JIK, and the energy penalty does not saturate (i.e., the 

absolute slope increases when the angle deviates from cos0,JIK). These cause difficulties for 

capturing the angular function derived from quantum mechanical theories [24]. Here we consider 

a new angular function gJIK(cosjik) = JIK·{1–exp[-0,JIK ·(cosjik-cos0,JIK)
2
]}, whereJIK is 

three-body dependent scaling factor and 0,JIK is another three-body dependent parameter. Note 
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that forJIK = 1, 0,JIK = 1 and cos0,JIK = -1/3, the modified energy penalty is equivalent to the 

parabolic function near cosjik = -1/3 because the first term of the Taylor series of the modified 

function expanded at cosjik = cos0,JIK is in fact the parabolic function. However, replacing the 

leading term with a full series does allow the energy penalty curvature to be adjusted through an 

added parameter 0,JIK and the value of function to be saturated (while retaining the “penalty” 

effect, i.e., the function minimizes at cosjik = cos0,JIK and monotonically increases when cosjik 

deviates from cos0,JIK). An even further flexible function will be to penalize the energy when 

the bond angle deviates from three independent values, which also results in asymmetric 

minimums. Based on this consideration, we propose a general angular function as: 
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where JIK, 0,JIK, 1,JIK, 2,JIK, cos0,JIK, cos1,JIK, cos2,JIK, 1,JIK, and 2,JIK are all three-body 

dependent parameters. Note that when the parameters are given, the denominator in Eq. (6) is 

essentially a normalization constant so that gJIK(cosjik=1) = JIK. It can be seen that when 1,JIK = 

2,JIK = 0, Eq. (6) penalizes the energy when the bond angle deviates from a single value cosjik = 

cos0,JIK as in the conventional SW potential. Otherwise Eq. (6) can penalize the energy when the 

bond angle deviates from three values cosjik = cos0,JIK, cosjik = cos1,JIK, cosjik = cos2,JIK. Eqs. 

(1) – (6) fully define our modified SW (MSW) potential. 

3. POLYMORPHIC POTENTIAL MODEL 

Any improved interatomic potentials will not be applied unless molecular dynamics codes 

are available to run them. To provide potential developers with a great flexibility for modifying 



 8 

the interatomic potentials without worrying about MD codes, we have constructed a polymorphic 

potential model. In this model, the energy of the system is expressed as 
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where ij is a Dirac function (i.e., ij = 1 when i = j and ij = 0 when i  j), ij is an indicator of 

the potential type that can be set to either ij = ij or ij = 1-ij, UIJ(rij) and VIJ(rij) are two pair 

functions, and FIJ(Xij) is a function of a local variable Xij that will be discussed below. It can be 

seen that when ij = ij, the summation in equation (7) excludes the self-interaction term i = j and 

is therefore over all pairs of different atoms. When ij = 1 - ij, the second term becomes
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1
, which can be used to incorporate the embedding energy of the 

embedded-atom method as will be clear later in this section. The variable Xij essentially accounts 

for the environment surrounding the ij bond, and is defined as 
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where PIJ(rjik) is a function of weighted difference between atomic spacing rij and rik, which is 

written as rjik = rij - IJ·rik with the weighting factor IJ being either 0 or 1 to include or exclude 

rik, WIK(rik) is another pair function, and GJIK(jik) is a three-body function of bond angle jik. It 

can be seen that this polymorphic interatomic potential model is fully defined when the 

indicators ij and IJ, and the six functions UIJ(r), VIJ(r), PIJ(r), WIJ(r), FIJ(X), and GJIK() (for 

all the species I, J, K = 1, 2, …) are given. Note that these six functions can all be supplied as 

one-dimensional tables and can therefore be implemented in MD codes using cubic spline 

interpolation and/or extrapolation. As a result, users can easily perform simulations using 
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different potentials by tabulating these functions (in a MD read-in table file) accordingly. For 

instance, the polymorphic potential reduces to our MSW potential if we tabulate the functions 

according to: 
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where R,IJ(r), A,IJ(r), uIJ(r), and gJIK(cos) are defined by Eqs. (2), (3), (5) and (6). The 

polymorphic potential reduces to a conventional SW [13] potential if we tabulate the functions 

according to: 
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where AIJ, BIJ, IJ, IJ, IJ, IJ, aIJ, p, and q are the normal parameters for the SW potential as 

described above. The polymorphic model represents Tersoff types of potential [19,20] if we set 
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where fc,IJ(rij) is a cutoff function defined as 
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and De,IJ, SIJ, re,IJ, IJ, IJ, IJ, cIJ, dIJ, hIJ, rs,IJ and rc,IJ are all pairwise parameters. The 

polymorphic potential can also represent the Rockett-Tersoff potential [18] if we set 
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 (13) 

where fc,1,IJ(r) is a cutoff function similar to equation (12) but operates at a different cutoff range: 
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and AIJ, BIJ, 1,IJ, 2,IJ, 3,IJ, IJ, nIJ, cIJ, dIJ, hIJ, rs,1,IJ, and rc,1,IJ are all pairwise parameters. To 

use the polymorphic model for the embedded-atom method potential [22], we can simply set: 
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where IJ(r) is a pair function, fJ(r) is an atomic electron density function, FI(X) is the embedding 

energy function, and X is used to represent electron density (X = ). We have implemented this 

polymorphic potential model in the public parallel MD codes LAMMPS [23]. 

4. PARAMETERIZATION 

To enable ionic conduction of TlBr under external electric fields, it is mandatory to pursue 

a highly robust interatomic potential that at least maintain the equilibrium crystal structure of 

TlBr when Tl+ and Br
-
 are subject to large opposite external forces due to a high electric field. 

To achieve this, we ensure that (1) the potential best reflect the experimental properties of the 

observed Tl, Br, and TlBr phases (e.g., Tl-hcp, TlBr-CsCl, etc.); and (2) the potential predicts the 

crystalline growth of the ground state structures during molecular dynamics simulations of 
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growth (e.g., vapor deposition). The growth simulation tests are important because they sample a 

variety of configurations (at the growth surface) not known a prior. If any of the random nuclei 

formed on the growth surface has a lower energy than the growth crystal, the simulations is 

likely to give an amorphous growth. Hence, crystalline growth provides strong validation that the 

growth crystal has the lowest energy compared with any other configurations. On the other hand, 

if TlBr can grow into to the correct CsCl type of equilibrium crystal during the growth 

simulations, it is likely that the CsCl type of crystal can be maintained when a large external 

electric field is applied to a TlBr bulk. Hence, the growth simulation capability is essential for 

our applications albeit it is difficult to achieve. 

We proceed by parameterizing first the Tl and Br potentials, and then the TlBr potential at 

the known Tl and Br parameters. The observed room-temperature equilibrium phases are hcp for 

Tl [25], diatomic (Br2) liquid for Br, and CsCl for TlBr [25]. Like many other potentials, our 

MSW model is not intended to capture the Br2 molecules (it is possible to capture the Br2 

molecules, but this does not necessarily result in a better potential not to mention that the 

chemical reaction of elements is not relevant for studying TlBr bulk). However, our calculations 

with the density function theory indicated that the sc Br phase has a lower cohesive energy than 

dc, bcc, fcc, and hcp phases. Hence, we target sc as the lowest energy lattice phase for Br (at 0 

K) while at the same time ensure that the stable Br phase at room temperature is liquid. Lattice 

constants, cohesive energies, and elastic constants for the lowest energy lattices (Tl-hcp, Br-sc, 

and TlBr-CsCl) are fitted under the constraints that the energies of all the other phases (e.g., dc, 

bcc, fcc, NaCl, wz, etc.) are higher than the targeted lowest energy phases. For the 

experimentally observed structures such as Tl-hcp and TlBr-CsCl, the experimental lattice 

constants [25], cohesive energies [26], and elastic constants [27,28] are directly used as the target 
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values for the fitting. For the phases that are not observed (e.g., Br-sc), the DFT results are used 

as the target values. DFT results may be quite different from the experimental values. For 

example, the hcp Tl cohesive energy obtained from experiments and DFT calculations is -1.85 

and -2.40 eV/atom respectively. As a result, we scale the DFT results so that for the observed 

structures, the scaled DFT results match the experiments. 

Mathematica [29] is used to perform the parameterization. To promote global optimization, 

four different numerical optimization routines, namely a conjugate gradient method [30], the 

downhill simplex method of Nelder and Mead [31], a genetic algorithm [32], and a biased 

random walk (simulated annealing) [33], are all used to determine the parameters that minimize 

the weighted mean-square deviation between the target and predicted properties. The goal to 

capture the crystalline growth is much more challenging, requiring a highly iterative 

parameterization process. After each fitting iteration, the four sets of parameters from the four 

optimization routines are tested for vapor deposition simulations. If an amorphous growth is 

detected, the entire process is repeated with an appropriate adjustment of parameters bounds, 

target structures and target properties. The iterations continue until one of the four optimization 

routines results in a satisfactory set of potential parameters. The MSW potential thus determined 

are listed in Tables (I) and (II) for two-body, and three-body parameters respectively. 

Table I. Two-body parameters of MSW potential (length in Å and energy in eV) 

IJ r0,IJ rs,IJ rc,IJ Eb,IJ ,IJ ,IJ ,IJ

TlTl 3.02409 3.97219 4.26900 -0.514663 5.60012 3.39397 1.94224 

BrBr 2.83451 3.60000 4.05800 -0.336014 7.00000 4.37500 3.00000 

TlBr 2.98521 3.90480 4.73600 -0.747107 6.20000 2.00000 2.20000 

 

 

Table II. Three-body parameters of MSW potential (length in Å and energy in eV) 

IJK TlTlTl BrBrBr TlTlBr (=BrTlTl) TlBrBr (=BrBrTl) TlBrTl BrTlBr

JIK 0.05000 0.13144 0.11804 0.05733 2.38107 2.38107 

cos0,JIK 0.07257 -0.50000 -0.53735 -0.54059 -0.29333 -0.29333 
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cos1,JIK -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 

cos2,JIK 0.60000 0.60000 0.53947 0.56717 0.29333 0.29333 

0,JIK 3.50000 0.62340 1.44291 2.79355 0.25182 0.25182 

1,JIK 0.18625 2.60000 0.70848 1.42550 0.24026 0.24026 

2,JIK 0.00000 0.00000 1.72178 2.04092 0.46849 0.46849 

1,JIK 0.20957 0.96000 1.00000 0.75390 1.00000 1.00000 

2,JIK 0.00000 0.00000 0.00000 0.27602 0.94796 0.94796 

 

5. EVALUATION OF THE POTENTIAL 

5.1 Lattice Constants and Cohesive Energies of Various Phases 

Using the polymorphic potential model, calculations are performed to evaluate our TlBr 

potential. First, lattice constants and cohesive energies of various Tl, Br, and TlBr lattices are 

calculated using molecular statics energy minimization simulations. The results are summarized 

in Table III along with the available experimental data and our DFT values. 

Table III.  Lattice constants a and c (Å), and cohesive energy Ec (eV/atom), obtained from the 

MSW potential, DFT calculations, and experiments for selected material structures.  

material structure MSW DFT Exp. 

a c Ec a c Ec a [25] c [25] Ec [26] 

 

 

Tl 

dc 7.180 ----- -0.999 ----- ----- ----- ----- ----- ----- 

sc 3.012 ----- -1.800 ----- ----- ----- ----- ----- ----- 

bcc 3.854 ----- -1.805 3.868 ----- -2.368 ----- ----- ----- 

fcc 4.825 ----- -1.848 4.873 ----- -2.340 ----- ----- ----- 

hcp 3.408 5.582 -1.850 3.500 5.581 -2.399 3.450 5.520 -1.850 

 

 

 

Br 

dc 6.591 ----- -0.731 6.898 ----- -0.961 ----- ----- ----- 

fcc 4.878 ----- -0.748 4.464 ----- -1.123 ----- ----- ----- 

bcc 3.847 ----- -0.780 3.703 ----- -1.160 ----- ----- ----- 

hcp 3.328 5.743 -0.787 ----- ----- ----- ----- ----- ----- 

sc 3.004 ----- -0.827 3.006 ----- -1.218 ----- ----- -1.134
*
 

 

 

TlBr 

wz 4.877 7.964 -1.657 ----- ----- ----- ----- ----- ----- 

zb 6.897 ----- -1.657 ----- ----- ----- ----- ----- ----- 

NaCl 6.197 ----- -2.239 6.622 ----- -2.866 ----- ----- ----- 

CsCl 3.985 ----- -2.389 3.959 ----- -2.881 3.985 ----- -2.389 
*
:  Br-sc is the lowest energy lattice in models. No experimental data is available for the 

metastable Br-sc phase. Instead, we list the experimental cohesive energy of the lowest energy 

phase (Br2-liquid) as a reference. 
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Table III indicates that of the lattice structures explored, our MSW potential captures the 

Tl-hcp, Br-sc, and TlBr-CsCl lattice crystals as the lowest energy phases. This agrees well with 

experiments or DFT in that Tl-hcp and TlBr-CsCl phases are observed experimentally at room 

temperature whereas Br-sc is predicted by DFT to have the lowest energy of all the lattice 

structures shown in Table III. Here we cannot include the Br2 liquid observed in experiments in 

Table III. Instead, we will show below through growth simulations that our potential gives Br 

liquid as the most stable phase at room temperature. Here we can see that in addition to capturing 

the correct lowest energy phases, our MSW model also reproduces the experimental cohesive 

energies of Tl-hcp and TlBr-CsCl. Our energy of -0.827 eV/atom for Br-sc is not unreasonable 

compared with the experimental cohesive energy of -1.134 eV/atom for a more stable Br2-liquid, 

especially considering that even DFT cannot accurately capture the absolute values of energies in 

the TlBr system. Note that MSW model also captures well the experimental lattice constant of 

TlBr-CsCl and DFT lattice constant of Br-sc. The lattice constants of Tl-hcp as prescribed by our 

MSW is not far off from the experimental values either because while the lattice constant a is 

slightly under-estimated, the lattice constant c is slightly over-estimated resulting in a better 

description of atomic volume. 

Capturing non-tetrahedral crystals (such as hcp, sc, CsCl) as the lowest energy phases 

proves that the MSW potential has improved over the conventional SW potentials. SW potentials 

are not designed for capturing property trends of a variety of metastable structures. The purpose 

of listing some selected metastable phases in Table III is to show that the equilibrium phases 

have lower energies than these metastable phases. Interestingly, however, our MSW potential 

reproduces the DFT order of Br structures with increasing (more negative) cohesive energies as 

in dc  fcc  bcc  sc, suggesting that by capturing the correct low energy sc phase, the 
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transferability to a variety of other configurations can also be achieved. Usually such 

transferability is only possible with more sophisticated potentials. Since our MSW is designed 

for studying the TlBr bulk, the property trends of many metastable phases are not relevant and so 

we do not exploit this further for the Tl and TlBr phases which would necessarily sacrifice the 

properties of the equilibrium phases. 

Finally, we point out that Table III only explores limited number of phases and therefore 

does not prove that the predicted lowest energy phases indeed have the lowest energies as 

compared to any other configurations. As will be discussed below, we will prove this rigorously 

through vapor deposition simulations.  

5.2 Elastic Constants and Melting Temperature of the Observed Tl and TlBr Phases 

Elastic constants and melting temperature of the experimentally observed Tl-hcp and TlBr-

CsCl phases are calculated, and the results are summarized in Table IV along with the 

experimental values. Here the melting temperature calculations follow the same method 

described previously [34]. It can be seen that our MSW model reproduces the experimental 

elastic constants for TlBr-CsCl. The model elastic constants for Tl-hcp are generally lower than 

the experimental values. Note that we could have fit exactly the experimental elastic constants 

for Tl-hcp. However, this would result in a melting temperature that is significantly above the 

experimental value. The ability to prescribe the observed low elastic constants for closely packed 

elements is significant for the MSW model because the conventional SW potentials significantly 

overestimate these elastic constants.  

Table IV.  Elastic constants C11, C12, C13, C33, C44, bulk modulus B (eV/Å
3
), and melting 

temperature Tm (K) of the observed Tl and TlBr crystalline phases, obtained from the 

MSW potential and experiments. 

structure method C11 C12 C13 C33 C44 B Tm 

Tl 

(hcp) 

MSW 0.240 0.140 0.137 0.242 0.053 0.133 691 

Exp. [27,35] 0.277 0.235 0.187 0.376 0.055 0.239 577 
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TlBr 

(CsCl) 

MSW 0.275 0.104 0.104 0.275 0.067 0.161 1442 

Exp. [28,36] 0.275 0.104 0.104 0.275 0.067 0.161 753 

 

We get the melting temperature of Tl-hcp reasonably close to the experimental value. 

Despite a prolonged effort, our current parameterization of the MSW potential still significantly 

overestimates the melting temperature of TlBr-CsCl. This may not be critical when studying 

structure evolution of TlBr-CsCl solids. Nonetheless, we point out that (1) due to small time and 

length scales, MD simulations are almost never performed under realistic conditions. Hence, MD 

simulations are effective to discover new phenomena, but the simulated results should be used to 

mainly elucidate the trends observed in experiments; and (2) the overestimated melting 

temperature should be kept in mind when interpreting the results especially if the system 

involves TlBr melt. Dependence of material properties on temperature relative to the melting 

point should be expressed in terms of homologous temperature.  

D. Point Defects 

Native point defects in TlBr-CsCl, including Tl vacancy VTl, Br vacancy VBr, Tl at Br 

antisite TlBr, Br at Tl antisite BrTl, Tl interstitial between Tl sites Tli,1, Tl interstitial between Br 

sites Tli,2, Br interstitial between Tl sites Bri,1, and Br interstitial between Br sites Bri,2, are all 

studied. In particular, intrinsic defect energies '

DE  are calculated as [37,38] 

     BrTlBrTlTlBrBrTlD EENNENNEE  5.0'  (16) 

where E, NTl, and NBr are total energy, number of Tl atoms, and number of Br atoms of the 

system containing the defect, and ETlBr, ETl, and EBr are cohesive energies (per atom unit) for 

the lowest energy phases of TlBr, Tl, and Br respectively. The results obtained from MSW and 

DFT calculations are summarized in Table V. It can be seen that MSW potential a lower 

energy for Tl vacancy than for Br vacancy, a low energy for Br at Tl antisite than for Tl at Br 
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antisite, lower energies for Br interstitials than for Tl interstitials. All these are in good 

agreement with the DFT calculations. Again here we can only compare the trends, and cannot 

make conclusions on the absolute values due to the lack of experimental data. 

Table V.  Intrinsic defect energy '

DE  (eV) obtained from different models for TlBr-CsCl. 

method VTl VBr TlBr BrTl Tli,1 Tli,2 Bri,1 Bri,2 

MSW 1.04 1.29 2.75 1.05 2.93 3.03 2.00 2.00 

DFT 0.63 1.59 3.53 1.66 2.19 2.58 2.29 1.56 

 

 

6. MOLECULAR DYNAMICS VAPOR DEPOSITION VERIFICATIONS 

As mentioned above, only when a potential captures the crystalline growth during MD 

vapor deposition simulations will it be robust enough to study the ionic conduction under a high 

electric field. In addition, crystalline growth simulation capability is a rigorous proof that the 

potential captures the lowest energy phases, albeit such a capability is extremely difficult to 

achieve. Here we perform vapor deposition simulations to validate that our TlBr MSW potential 

captures the crystalline growth of the lowest energy Tl-hcp and TlBr-CsCl crystals. In addition, 

we will demonstrate that our potential captures the crystalline growth of Br-sc at a low 

temperature but gives a liquid Br structure as the stable phase at room temperature. 

6.1 Tl-hcp Growth 

For Tl-hcp growth, an initial substrate of an hcp crystal containing 1008 Tl atoms with 28 

 0112  layers in the x direction, 9  0002  layers in the y direction, and 8  1010  layers in the z 

direction is used. Here layers refer to crystallographic planes so that one (0001) layer is 

equivalent n (000n) layers etc. The substrate temperature is set at T = 300 K by assigning 

velocities to atoms according to the Boltzmann distribution. During simulations, the bottom (-y) 

2 (0002) layers are held fixed to prevent crystal shift upon adatom impact on the top surface. The 
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next 3 (0002) layers are isothermally controlled at the substrate temperature. This leaves the top 

4 layers free where the motion of atoms is solely determined by Newton’s law. Injection of Tl 

adatoms from random locations far above the surface simulates the growth. All adatoms have an 

initial far-field incident kinetic energy Ei = 0.05 eV and an incident angle  = 0
o
 (i.e., the moving 

direction is perpendicular to the surface). The adatom injection frequency is chosen to give a 

deposition rate of R = 2.5 nm/ns. To approximately maintain a constant thickness of the free 

surface region, the isothermal region expands upward during simulations. Since surface 

roughness might develop, the isothermal region expands at about 80% of the surface growth rate 

to ensure that the upper boundary of the isothermal region never exceeds the surface valley 

locations. Fig. 1 shows the resulting configuration obtained after 0.66 ns deposition, where the 

original substrate is shaded in purple. It can be seen that the MSW potential correctly captures 

the crystalline growth of the Tl-hcp phase. This strongly validates that Tl-hcp has the lowest 

energy at room temperature as compared to any other configurations. 
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Fig. 1. Vapor deposited hcp Tl film obtained from MD simulations. 

6.2 Br-sc Growth 

MD simulations are also performed to grow Br on an Br-sc substrate. A sc crystal 

containing 1008 Br atoms with 14  100  layers in the x direction, 9  010  layers in the y 

direction, and 8  001  layers in the z direction is used as the initial substrate. During simulations, 

the bottom 2  020  layers are held fixed. The next 4  020  layers are controlled at the desired 

growth temperature. Using the same approach as described above, the growth simulation is 

performed at two substrate temperatures T = 150 K and T = 300 K, an incident energy Ei = 0.05 

eV, an incident angle  = 0
o
, and a deposition rate R = 2.5 nm/ns. The resulting configurations 

obtained after 1.20 ns deposition are shown in Figs. 2(a) and 2(b) respectively for the 150 K and 

300 K temperatures. It can be seen from Fig. 2(a) that the crystalline growth of the sc crystal is 
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achieved with our potential, strongly validating that the Br-sc structure have the lowest (free) 

energy at 150 K as compared with any other configurations. Fig. 2(b), on the other hand, 

indicates an amorphous growth at 300 K. This strongly validates that Br exhibits a liquid phase 

at room temperature. 

 

Fig. 2.  MD simulations of Br growth on a Br-sc substrate at a temperature of (a) 150 K and (b) 

300 K. Our potential prescribes a liquid Br as the most stable phase at room temperature. 

6.3 TlBr-CsCl Growth 

For TlBr-CsCl growth, an initial TlBr substrate of a CsCl type of crystal containing 300 Tl 

atoms and 300 Br atoms with 20  200  layers in the x direction, 10  020  layers in the y 

direction, and 12  002  layers in the z direction is used. Initially, Br terminates the top y surface. 

During simulations, the bottom 3  020  layers are held fixed. The next 4  020  layers are 

controlled at the desired growth temperature. Following the same approach as described above, 



 22 

the growth simulation is performed at a substrate temperature T = 700 K, an incident energy Ei = 

0.05 eV, an incident angle  = 0
o
, a deposition rate R = 2.75 nm/ns, and a stoichiometric vapor 

flux ratio Tl:Br = 1:1. Fig. 3 shows the system configuration obtained at 0.78 ns deposition time. 

It is seen again that our MSW potential correctly captures the crystalline growth of the 

equilibrium (CsCl) phase of TlBr. In particular, the randomly injected Tl and Br atoms are 

reconstructed correctly to their corresponding sublattices. Because the potential captures the 

crystallization from a rather stochastic vapor phase, it enables robust simulations of ionic 

conduction by maintaining the CsCl crystal under conditions where the presence of dislocations 

and external electric fields may both induce configuration disorders. 
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Fig. 3. Vapor deposited CsCl phase of a TlBr film obtained from MD simulations. 

7. MOLECULAR DYNAMICS IONIC CONDUCTION 

One major objective of the present work is to allow direct MD simulations of ionic 

conduction of TlBr-CsCl crystal under a very high external electric field. The external electric 

field can be simulated by applying opposite biased forces to Tl and Br atoms. The simulations 

become challenging at large external forces (i.e., electric fields) as these forces may destroy the 

stability of the CsCl crystal. Here we demonstrate two cases to demonstrate that our potential 

allows simulations to be performed when atoms are subject to large forces of ±0.4 eV/Å. Note 

that these forces correspond to a high electric field of 410
6
 V/mm assuming Tl and Br atoms 

adopt full charges of ±1 e. Since charges on Tl and Br atoms are significantly smaller in real 

crystals, the external field should be much larger than 410
6
 V/mm. 

A TlBr-CsCl crystal containing 16128 Tl atoms and 16128 Br atoms with 84  110  layers in 

the x direction, 24  101  layers in the y direction, and 32  002  layers in the z direction is used. 

To prevent system from shifting, the bottom region of about 10 Å wide is fixed. To remove the 

boundary effects, periodic boundary conditions are used in all three coordinate directions. MD 

simulation is then performed at a temperature of 1200 K temperature (a homologous temperature 

0.832 Tm) and a biased force of ±0.4 eV/Å using the NVT ensemble (i.e., number of atoms, 

volume, and temperature are all constant).  

In the first case, we assume that the system contains a pair of Tl and Br vacancies by 

removing one Tl and one Br atoms that are far away from the fixed region. Comparison of 

atomic configurations between a time span of 0.06 ns is shown in Fig. 4. Fig. 4 verifies that our 

potential indeed allows stable TlBr-CsCl MD simulations at a very high biased force. 

Interestingly, we found that Tl and Br vacancies are not very mobile even at the high biased 
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force and the high temperature. In fact, during the 0.06 ns span, Tl vacancy jumped by one lattice 

spacing whereas the Br vacancy did not jump. 

 

Fig. 4.  Vacancy ionic conduction simulation at a temperature of 0.832 Tm and a biased force of 

±0.4 eV/Å: (a) Starting time of observation; and (b) 0.06 ns later. The TlBr-CsCl crystal 

remains intact at the large electric field. During the 0.06 ns span, Tl vacancy jumped by 

one lattice spacing whereas the Br vacancy did not jump. 

 

In the second case, we assume that the system contains a pair of Tl and Br interstitials by 

inserting one Tl and one Br atoms that are far away from the fixed region. Comparison of atomic 

configurations between a time span of 0.12 ns is shown in Fig. 5. Fig. 5 again verifies that our 

potential allows stable TlBr-CsCl MD simulations at a very high biased force. Unlike the 

vacancy case, we found that Tl and Br interstitials are very mobile, and both interstitials moved a 

significant distance during the 0.12 ns time span. 
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Fig. 5.  Interstitial ionic conduction simulation at a temperature of 0.832 Tm and a biased force 

of ±0.4 eV/Å: (a) Starting time of observation; and (b) 0.12 ns later. The TlBr-CsCl 

crystal remains intact at the large electric field. During the 0.12 ns span, Tl and Br 

interstitials migrated significant distances. 

 

8. CONCLUSIONS 

This work has developed a new modified Stillinger-Weber potential. Unlike the 

conventional SW potential that significantly overestimates the elastic constants of closely packed 

elements and are limited mainly to tetrahedral structures, our modified potential can capture very 

low elastic constants for closely packed elements and can be used for many non-tetrahedral 

crystal structures. We have parameterized the modified SW potential for TlBr. Through rigorous 

vapor deposition simulation tests, we have demonstrated that this TlBr captures well the 

experimental properties of the observed Tl and TlBr phases, and give the Br liquid as the most 

stable phase at room temperature. Most importantly, we have demonstrated our potential allows 

challenging simulations of ionic conduction of TlBr crystals under very high external electric 

fields. Test simulations already indicate that interstitials migrate much faster than vacancies. We 
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have also developed a polymorphic potential model and implemented it in public MD codes 

LAMMPS. This essentially enables future material research to be performed at a higher fidelity 

level because improved potentials no longer require modification of the MD codes and therefore 

can immediately applied by a broader materials and physics community. 
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