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ABSTRACT
TIBr has emerged to be one of the most promising materials for y- and x- radiation detection
in recent years. Unfortunately, the performance of this material degrades rapidly due to the
structural changes caused by ionic conduction. To enable molecular dynamics simulations of
structure evolution of TIBr under external electric fields, we have developed a Stillinger-Weber
type of TIBr interatomic potential. During this process, we also have addressed two problems of

wider interests. First, while being simple and suitable for a rapid development, the conventional
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Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-
cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-
Weber potential so that it can now be used for other crystal structures. Second, past improvement
of interatomic potentials cannot always be applied by a broad community because any
modifications of the analytical functions of the potential would require corresponding changes in
the molecular dynamics codes. Here we have developed a polymorphic potential model, and
implemented it as a new pair style in the public molecular dynamics codes LAMMPS. This pair
style takes tabular (rather than analytical) potential functions. Depending on the tables that users
supplied, our polymorphic potential reduces automatically to Stillinger-Weber, Tersoff,
embedded-atom method, and any variations (i.e., modified functions) of these potentials.
Simulations using the polymorphic model are carried out to evaluate the fidelity of our TIBr
potential. In particular, challenging simulations of ionic conduction under external electric fields

are demonstrated.
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1. INTRODUCTION

Thallium bromide (TIBr) has emerged to be one of the most promising materials for y- and
X- radiation detection in recent years, achieving resolution as high as 1% at 662 keV [1,2].
Unfortunately, the performance of this material degrades after operation times as short as a few
hours to a few weeks [3]. To extend the life time of TIBr crystals, the evolution of the atomic
scale structures of the materials due to ionic conduction under the operating external electric
fields must be understood. As ionic conduction may be facilitated by the open channels of edge

dislocations, molecular dynamics (MD) that allows extended defects to be included in simulated



crystals becomes a useful method to study structure evolution of TIBr. Such MD simulations are
not yet possible due to the lack of an interatomic potential for the TI-Br system that has a CsCl
type of crystal structure.

MD simulations of ionic diffusion have been applied to a number of compounds including
Cul [4,5], M3+ doped CeO, [6], zirconia [7,8,9], a-Lil [10], alumina [10,11], and CaF, [12].
These simulations do not apply external electric fields, and therefore the ionic conduction is
indirectly deduced from thermal diffusion. Our objective is to simulate directly the ionic
conduction under external electric fields. One advantage is that the ionic diffusion can be
accelerated by the external fields, therefore mitigating the short time scale issue of MD
simulations. This, however, imposes a more stringent requirement on the interatomic potential
for maintaining the crystal even when a large external field is applied (i.e., cations and anions are
subject to large opposite forces). The previous simulations use either pair potentials [5-9,12], or
pair potentials plus angular energy penalty interactions [10,11]. The angular energy penalty
interactions can stabilize relatively complex crystal structures that the pair potentials cannot. One
good example is the widely-used Stillinger-Weber (SW) potential [13], which uses a parabolic
energy penalty term to penalize non-tetrahedral bond angles. As a result, SW potentials have
been successfully applied to tetrahedral structures such as diamond-cubic, zinc-blende, and
wurtzite”. Depending on parameterization, SW potentials can also be used for fcc elements
[14,15,16]. However, the conventional SW potentials have two limitations [14,15,16]: (1) they
significantly overestimate the elastic constants of closely packed (e.g., fcc) elements; and (2)
they usually cannot be used for other (non-tetrahedral) structures such as sc elements, and NaCl

and CsCIl compounds. Note that although most elements do not exhibit the lowest energy for the

" For convenience, we will use abbreviation to represent structures in the following: dc: diamond-cubic; sc: simple-
cubic; bee: body-centered-cubic; fcc: face-centered-cubic; hcp: hexagonal-closely-packed; zb: zinc-blende; wz:
wurtzite; NaCl: B1; and CsClI: B2.



sc crystal structure, the sc crystal can have a near-lowest energy that cannot be captured by SW
potentials. Potentials capable of prescribing a low energy for the sc structure, therefore, improve
beyond SW potentials on the general energy trends when a variety of configurations are
considered [17].

Many literature potentials are constructed using particular analytical functions. These
potentials can be easily improved if alternative functions are used. For example, Rockett [18]
used alternative functions for the Tersoff [19,20] potentials to better treat short- and long- range
interactions in covalent systems, and we used alternative functions for the Tersoff potential to
improve its prediction on thermal conductivity [21]. Although alternative functions do not
change the potential format and should, therefore, be easily applied, such an approach has not
been widely used because it does require new molecular dynamics codes to be developed for
each modified function.

With the recognition that the problems described above have been limiting the atomistic
level studies of emerging important materials, the objective of the present work is threefold: (1)
modify the SW potential so that it can better describe elastic constants of elements and be
applicable to a wide range of crystal structures including sc, NaCl, and CsCl; (2) develop a
polymorphic potential model that incorporates simultaneously SW potential, modified SW
potential, Tersoff potential [19,20], modified Tersoff potential [18], and embedded-atom method
(EAM) potential [22]. Implement this polymorphic potential model in public MD codes
LAMMPS [23] so that future development of potentials using any alternative functions no longer
requires modification of the molecular dynamics codes; and (3) parameterize the modified SW

potential for TIBr system and demonstrate the utility of the resulting potential.

2. MODIFIED SW POTENTIALS



In SW potential [13], the total energy of a system of N atoms is expressed as

N iy
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where iy, iy, ..., in is @ list of neighbors of atom i, 6;i is the bond angle formed by atoms j and k
at the site of atom i, ¢rs(rij) and ¢ais(rij) are, respectively, pairwise repulsive and attractive
functions, uy(r;;) is another pair function, gy« (cos6ji) is an angular energy penalty function, and
subscripts i,j,k and 1,J,K indicate, respectively, the atoms and the species of the atoms (note that
three bodies JIK and KIJ are equivalent). The original SW potentials significantly overestimate
the elastic constants of elements because the ¢r 3(r) and ¢a 15(r) functions used in these potentials
do not allow independent adjustment of bond energy and second derivative of the bond energy
[14]. Here we propose to use Morse type of functions capable of independent change of bond

energy and second derivative of bond energy [14] to represent ¢r 15(r) and ¢a 1i(r):
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where Ep 1y, ro,, oy, and By are four pair dependent parameters, and fe (i) is a cutoff function.
Note that the parameters introduced here have physical meanings: Ep; and rq); correspond
respectively to the equilibrium bond energy and bond length, and o,; >> 3;; control the curvature

of the bond energy at the equilibrium bond length. The cutoff function fc ;(rj;) is expressed as:
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where g3 and reyy (s << r¢y3) are two independent pair parameters, and {,; and v,; are two

and ¢ ——M Note that rs; and
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Iy have physical meanings as the cutoff function approximately equals one at r < rs; and equals
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dependent pair parameters v, =

zero at r = r¢y; (i.e., reyy is the cutoff distance). Hence, multiplying any potential function with
this cutoff function does not affect significantly the potential function at small distances but
allows the potential function to be smoothly cut off at r,;. Such a cutoff method is superior to
the spline approach used by the Tersoff potential as the latter does not have continuous second
and higher order derivatives. A general exponential decay function is used to represent the u(r)

function:
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where y); is a pair parameter.

For the angular function, SW potentials use a parabolic energy penalty to the non-
tetrahedral angle gk (cos6jik) = (cose,-ik-coseo,J.K)2 where the parameter cos6g jik is fixed at the
tetrahedral bond angle cos6g jx = -1/3. This function can be made more general by treating
cos6y 51k as a fitting parameter. Even so, the resulting function is still not fully flexible, for
instance, it does not have a scaling factor, and its second derivative is fixed at 2. In addition, the
function is symmetric at cos;ix = cos6o ik, and the energy penalty does not saturate (i.e., the
absolute slope increases when the angle deviates from cos6y jik). These cause difficulties for
capturing the angular function derived from quantum mechanical theories [24]. Here we consider
a new angular function g;ik(cosbjik) = Auk-{1-exp[-Eouk -(cosejik-coseo,J.K)z]}, where Ajk IS

three-body dependent scaling factor and &g 5 is another three-body dependent parameter. Note



that for Ay = 1, &gk = 1 and cosOg 51k = -1/3, the modified energy penalty is equivalent to the
parabolic function near cos6jik = -1/3 because the first term of the Taylor series of the modified
function expanded at cos6jik = cosBo 3k is in fact the parabolic function. However, replacing the
leading term with a full series does allow the energy penalty curvature to be adjusted through an
added parameter &g 5k and the value of function to be saturated (while retaining the “penalty”
effect, i.e., the function minimizes at cos6jik = cos6o 3k and monotonically increases when cosb;ix
deviates from cos6y jik). An even further flexible function will be to penalize the energy when

the bond angle deviates from three independent values, which also results in asymmetric

minimums. Based on this consideration, we propose a general angular function as:
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where Ajk, Eouik, &1k, 201k, COSO0 ik, COSO1 g1k, COSO231k, K11k, and ko gk are all three-body

dependent parameters. Note that when the parameters are given, the denominator in Eq. (6) is

essentially a normalization constant so that g;ik(Cos0jik=1) = Ayk. It can be seen that when k1 jk

K2k = 0, EQ. (6) penalizes the energy when the bond angle deviates from a single value cosbjix
cos6,1k as in the conventional SW potential. Otherwise Eq. (6) can penalize the energy when the
bond angle deviates from three values cos6jik = €086, 31k, COSOjik = COSO; 31k, COSOjik = C0SO, k. EQS.

(2) — (6) fully define our modified SW (MSW) potential.
3. POLYMORPHIC POTENTIAL MODEL

Any improved interatomic potentials will not be applied unless molecular dynamics codes

are available to run them. To provide potential developers with a great flexibility for modifying



the interatomic potentials without worrying about MD codes, we have constructed a polymorphic

potential model. In this model, the energy of the system is expressed as

1NN
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where §;; is a Dirac function (i.e., ;= 1 when i = j and &;; = 0 when i # j), nj; is an indicator of
the potential type that can be set to either nj = &;j or nij = 1- &jj, Ui(rij) and Vyy(ri;) are two pair
functions, and F;(Xj) is a function of a local variable Xj; that will be discussed below. It can be
seen that when n;; = §;;, the summation in equation (7) excludes the self-interaction term i = j and

is therefore over all pairs of different atoms. When n;; = 1 - &;;, the second term becomes

N
E= %Z F, (X;)-V, (r,), which can be used to incorporate the embedding energy of the

i=1
embedded-atom method as will be clear later in this section. The variable X;; essentially accounts

for the environment surrounding the ij bond, and is defined as

Xij = iZN_:Wm (rik ) GJIK (gjik ) PIK (Arjik ) (8)

where Pyy(Arji) is a function of weighted difference between atomic spacing rjj and rix, which is
written as Arjix = rij - - ik With the weighting factor &;; being either 0 or 1 to include or exclude
rik, Wik(rix) is another pair function, and Gy k(6jix) is a three-body function of bond angle 0j. It
can be seen that this polymorphic interatomic potential model is fully defined when the
indicators n;; and &3, and the six functions Uyy(r), Vis(r), Pi(Ar), Wiy(r), Fiy(X), and Gy (0) (for
all the species I, J, K=1, 2, ...) are given. Note that these six functions can all be supplied as
one-dimensional tables and can therefore be implemented in MD codes using cubic spline

interpolation and/or extrapolation. As a result, users can easily perform simulations using



different potentials by tabulating these functions (in a MD read-in table file) accordingly. For

instance, the polymorphic potential reduces to our MSW potential if we tabulate the functions

according to:

1ij :5ijv§u =0
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where ¢r 13(r), da(r), u(r), and gzk(cosO) are defined by Egs. (2), (3), (5) and (6). The
polymorphic potential reduces to a conventional SW [13] potential if we tabulate the functions

according to:

77|j =5ij’§lj =0
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where Ay, By, €13, o3, My, 713, @, P, @nd g are the normal parameters for the SW potential as

described above. The polymorphic model represents Tersoff types of potential [19,20] if we set
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and Dey3, Su, fews, Bus Mg, Y, Cuy dy, hy, rsyy and reyy are all pairwise parameters. The

polymorphic potential can also represent the Rockett-Tersoff potential [18] if we set
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(13)

where f 1 13(r) is a cutoff function similar to equation (12) but operates at a different cutoff range:

1 r<r,,
r—r.
fc,l,l.] (r) = %‘*‘ %COS{M} rs,l,IJ <r< rc,l,IJ (14)
e, rs,l,l.]
0, r=r.,,

and A, B, 7\,1,”, 7\,2,”, 7\,3,”, Bu, Ny, Cigy dU, hU, Is,1,10, and lc1, are all pairwise parameters. To

use the polymorphic model for the embedded-atom method potential [22], we can simply set:

T :1_§ijf§u =0
Uy, (r) =1¢|J (r)

FL(X)=—2F, (X) (15)
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<

—
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where ¢(r) is a pair function, f;(r) is an atomic electron density function, F;(X) is the embedding
energy function, and X is used to represent electron density (X = p). We have implemented this

polymorphic potential model in the public parallel MD codes LAMMPS [23].
4. PARAMETERIZATION

To enable ionic conduction of TIBr under external electric fields, it is mandatory to pursue
a highly robust interatomic potential that at least maintain the equilibrium crystal structure of
TIBr when Tl+ and Br are subject to large opposite external forces due to a high electric field.
To achieve this, we ensure that (1) the potential best reflect the experimental properties of the
observed TI, Br, and TIBr phases (e.g., Tl-hcp, TIBr-CsCl, etc.); and (2) the potential predicts the

crystalline growth of the ground state structures during molecular dynamics simulations of
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growth (e.g., vapor deposition). The growth simulation tests are important because they sample a
variety of configurations (at the growth surface) not known a prior. If any of the random nuclei
formed on the growth surface has a lower energy than the growth crystal, the simulations is
likely to give an amorphous growth. Hence, crystalline growth provides strong validation that the
growth crystal has the lowest energy compared with any other configurations. On the other hand,
if TIBr can grow into to the correct CsCl type of equilibrium crystal during the growth
simulations, it is likely that the CsClI type of crystal can be maintained when a large external
electric field is applied to a TIBr bulk. Hence, the growth simulation capability is essential for
our applications albeit it is difficult to achieve.

We proceed by parameterizing first the Tl and Br potentials, and then the TIBr potential at
the known Tl and Br parameters. The observed room-temperature equilibrium phases are hcp for
TI [25], diatomic (Br,) liquid for Br, and CsCl for TIBr [25]. Like many other potentials, our
MSW model is not intended to capture the Br, molecules (it is possible to capture the Br;
molecules, but this does not necessarily result in a better potential not to mention that the
chemical reaction of elements is not relevant for studying TIBr bulk). However, our calculations
with the density function theory indicated that the sc Br phase has a lower cohesive energy than
dc, bcc, fce, and hep phases. Hence, we target sc as the lowest energy lattice phase for Br (at 0
K) while at the same time ensure that the stable Br phase at room temperature is liquid. Lattice
constants, cohesive energies, and elastic constants for the lowest energy lattices (TI-hcp, Br-sc,
and TIBr-CsCl) are fitted under the constraints that the energies of all the other phases (e.g., dc,
bcc, fce, NaCl, wz, etc.) are higher than the targeted lowest energy phases. For the
experimentally observed structures such as Tl-hcp and TIBr-CsCl, the experimental lattice

constants [25], cohesive energies [26], and elastic constants [27,28] are directly used as the target

12



values for the fitting. For the phases that are not observed (e.g., Br-sc), the DFT results are used
as the target values. DFT results may be quite different from the experimental values. For
example, the hcp Tl cohesive energy obtained from experiments and DFT calculations is -1.85
and -2.40 eV/atom respectively. As a result, we scale the DFT results so that for the observed
structures, the scaled DFT results match the experiments.

Mathematica [29] is used to perform the parameterization. To promote global optimization,
four different numerical optimization routines, namely a conjugate gradient method [30], the
downhill simplex method of Nelder and Mead [31], a genetic algorithm [32], and a biased
random walk (simulated annealing) [33], are all used to determine the parameters that minimize
the weighted mean-square deviation between the target and predicted properties. The goal to
capture the crystalline growth is much more challenging, requiring a highly iterative
parameterization process. After each fitting iteration, the four sets of parameters from the four
optimization routines are tested for vapor deposition simulations. If an amorphous growth is
detected, the entire process is repeated with an appropriate adjustment of parameters bounds,
target structures and target properties. The iterations continue until one of the four optimization
routines results in a satisfactory set of potential parameters. The MSW potential thus determined
are listed in Tables (I) and (I1) for two-body, and three-body parameters respectively.

Table I. Two-body parameters of MSW potential (length in A and energy in eV)
1J Fo,1 10 ey Eb,u o1y B Y.

TITI | 3.02409 | 3.97219 | 4.26900 | -0.514663 | 5.60012 | 3.39397 | 1.94224
BrBr | 2.83451 | 3.60000 | 4.05800 | -0.336014 | 7.00000 | 4.37500 | 3.00000
TIBr | 2.98521 | 3.90480 | 4.73600 | -0.747107 | 6.20000 | 2.00000 | 2.20000

Table I1. Three-body parameters of MSW potential (length in A and energy in eV)
K TITITI | BrBrBr | TITIBr (=BrTITI) | TIBrBr (=BrBrTl) | TIBrTI | BrTIBr
Ak 0.05000 | 0.13144 0.11804 0.05733 2.38107 | 2.38107
c0s0p ik | 0.07257 | -0.50000 -0.53735 -0.54059 -0.29333 | -0.29333
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cos0y jk | -1.00000 | -1.00000 -1.00000 -1.00000 -1.00000 | -1.00000
c0s0, ik | 0.60000 | 0.60000 0.53947 0.56717 0.29333 | 0.29333
Eoaik | 3.50000 | 0.62340 1.44291 2.79355 0.25182 | 0.25182
Eiax | 0.18625 | 2.60000 0.70848 1.42550 0.24026 | 0.24026
E,qk | 0.00000 | 0.00000 1.72178 2.04092 0.46849 | 0.46849
ko | 0.20957 | 0.96000 1.00000 0.75390 1.00000 | 1.00000
k2o | 0.00000 | 0.00000 0.00000 0.27602 0.94796 | 0.94796

5. EVALUATION OF THE POTENTIAL

5.1 Lattice Constants and Cohesive Energies of Various Phases

Using the polymorphic potential model, calculations are performed to evaluate our TIBr
potential. First, lattice constants and cohesive energies of various Tl, Br, and TIBr lattices are
calculated using molecular statics energy minimization simulations. The results are summarized

in Table 111 along with the available experimental data and our DFT values.

Table I1l. Lattice constants a and ¢ (A), and cohesive energy E. (€V/atom), obtained from the

MSW potential, DFT calculations, and experiments for selected material structures.
material | structure MSW DFT Exp.

a c E. a c E. |a[25] | c[25]]| E.[26]

dc 7.180 | ----- R e e e Bt B s

sC 3.012 | ----- -1.800 | —---- | mmmem | memem | e | e | e

Tl bcc 3.854 | ----- -1.805 | 3.868 | ----- -2.368 | ----- | - | -

fcc 4.825 | ----- -1.848 | 4.873 | ----- 2340 | ----- | e | -

hcp 3.408 | 5.582 | -1.850 | 3.500 | 5.581 | -2.399 | 3.450 | 5.520 | -1.850

dc 6.591 | ----- -0.731 1 6.898 | ----- -0.961 | ----- | - | -

fcc | 4.878 | ----- -0.748 | 4.464 | ----- 1123 | e | e | aeees

bcc 3.847 | ----- -0.780 | 3.703 | ----- -1.160 | ----- | - | —ee-

Br hcp 3.328 | 5743 | -0.787 | ----- | ===== | memm | mmem | e | e
sC 3.004 | ----- -0.827 | 3.006 | ----- -1.218 | ----- | - -1.134°

wz | 4877]7.964[-1.657 ] - | oo | e | e | e | aeeee

zb 6.897 | ----- -1.657 | === | e | mmmem | e | e | e

TIBr NaCl |6.197 | ----- -2.239 | 6.622 | ----- -2.866 | ----- | ---mm | —ee-
CsCl |3.985| ----- -2.389 | 3.959 | ----- -2.881 | 3.985 | ----- -2.389

" Br-sc is the lowest energy lattice in models. No experimental data is available for the
metastable Br-sc phase. Instead, we list the experimental cohesive energy of the lowest energy
phase (Br,-liquid) as a reference.
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Table 111 indicates that of the lattice structures explored, our MSW potential captures the
Tl-hcp, Br-sc, and TIBr-CsCl lattice crystals as the lowest energy phases. This agrees well with
experiments or DFT in that Tl-hcp and TIBr-CsCl phases are observed experimentally at room
temperature whereas Br-sc is predicted by DFT to have the lowest energy of all the lattice
structures shown in Table I11. Here we cannot include the Br;, liquid observed in experiments in
Table I11. Instead, we will show below through growth simulations that our potential gives Br
liquid as the most stable phase at room temperature. Here we can see that in addition to capturing
the correct lowest energy phases, our MSW model also reproduces the experimental cohesive
energies of Tl-hcp and TIBr-CsClI. Our energy of -0.827 eV/atom for Br-sc is not unreasonable
compared with the experimental cohesive energy of -1.134 eV/atom for a more stable Br,-liquid,
especially considering that even DFT cannot accurately capture the absolute values of energies in
the TIBr system. Note that MSW model also captures well the experimental lattice constant of
TIBr-CsCl and DFT lattice constant of Br-sc. The lattice constants of TI-hcp as prescribed by our
MSW is not far off from the experimental values either because while the lattice constant a is
slightly under-estimated, the lattice constant c is slightly over-estimated resulting in a better
description of atomic volume.

Capturing non-tetrahedral crystals (such as hcp, sc, CsCl) as the lowest energy phases
proves that the MSW potential has improved over the conventional SW potentials. SW potentials
are not designed for capturing property trends of a variety of metastable structures. The purpose
of listing some selected metastable phases in Table 111 is to show that the equilibrium phases
have lower energies than these metastable phases. Interestingly, however, our MSW potential
reproduces the DFT order of Br structures with increasing (more negative) cohesive energies as

in dc — fcc — bece — sc, suggesting that by capturing the correct low energy sc phase, the
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transferability to a variety of other configurations can also be achieved. Usually such
transferability is only possible with more sophisticated potentials. Since our MSW is designed
for studying the TIBr bulk, the property trends of many metastable phases are not relevant and so
we do not exploit this further for the Tl and TIBr phases which would necessarily sacrifice the
properties of the equilibrium phases.

Finally, we point out that Table I11 only explores limited number of phases and therefore
does not prove that the predicted lowest energy phases indeed have the lowest energies as
compared to any other configurations. As will be discussed below, we will prove this rigorously
through vapor deposition simulations.

5.2 Elastic Constants and Melting Temperature of the Observed Tl and TIBr Phases

Elastic constants and melting temperature of the experimentally observed TI-hcp and TIBr-
CsCl phases are calculated, and the results are summarized in Table IV along with the
experimental values. Here the melting temperature calculations follow the same method
described previously [34]. It can be seen that our MSW model reproduces the experimental
elastic constants for TIBr-CsCl. The model elastic constants for Tl-hcp are generally lower than
the experimental values. Note that we could have fit exactly the experimental elastic constants
for TI-hcp. However, this would result in a melting temperature that is significantly above the
experimental value. The ability to prescribe the observed low elastic constants for closely packed
elements is significant for the MSW model because the conventional SW potentials significantly
overestimate these elastic constants.
Table IV. Elastic constants Cys, C12, C13, Cas, Cas, bulk modulus B (eV/A%), and melting

temperature T, (K) of the observed Tl and TIBr crystalline phases, obtained from the
MSW potential and experiments.

structure method Cny Cp C13 033 Cu B Tm
TI MSW 0.240 | 0.140 | 0.137 | 0.242 | 0.053 | 0.133 | 691
(hep) | Exp. [27,35] | 0.277 | 0.235 | 0.187 | 0.376 | 0.055 | 0.239 | 577
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TIBr MSW 0.2750.104 | 0.104 | 0.275 | 0.067 | 0.161 | 1442
(CsCl) | Exp.[28,36] | 0.275 | 0.104 | 0.104 | 0.275 | 0.067 | 0.161 | 753

We get the melting temperature of TI-hcp reasonably close to the experimental value.
Despite a prolonged effort, our current parameterization of the MSW potential still significantly
overestimates the melting temperature of TIBr-CsClI. This may not be critical when studying
structure evolution of TIBr-CsCl solids. Nonetheless, we point out that (1) due to small time and
length scales, MD simulations are almost never performed under realistic conditions. Hence, MD
simulations are effective to discover new phenomena, but the simulated results should be used to
mainly elucidate the trends observed in experiments; and (2) the overestimated melting
temperature should be kept in mind when interpreting the results especially if the system
involves TIBr melt. Dependence of material properties on temperature relative to the melting
point should be expressed in terms of homologous temperature.

D. Point Defects

Native point defects in TIBr-CsCl, including Tl vacancy Vr, Br vacancy Vg,, Tl at Br

antisite Tlg,, Br at Tl antisite Bry, Tl interstitial between Tl sites Tl; 1, Tl interstitial between Br

sites Tli, Br interstitial between Tl sites Br; 1, and Br interstitial between Br sites Br; ,, are all

studied. In particular, intrinsic defect energies E, are calculated as [37,38]

Ep =E—(Nq +Ng ) Erige =05+ (Nqy =N, ) (En — Egy) (16)

where E, N7, and Ng, are total energy, number of Tl atoms, and number of Br atoms of the
system containing the defect, and Emigr, E1i, and Eg, are cohesive energies (per atom unit) for
the lowest energy phases of TIBr, Tl, and Br respectively. The results obtained from MSW and
DFT calculations are summarized in Table V. It can be seen that MSW potential a lower

energy for Tl vacancy than for Br vacancy, a low energy for Br at Tl antisite than for Tl at Br
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antisite, lower energies for Br interstitials than for TI interstitials. All these are in good
agreement with the DFT calculations. Again here we can only compare the trends, and cannot
make conclusions on the absolute values due to the lack of experimental data.

Table V. Intrinsic defect energy E, (eV) obtained from different models for TIBr-CsCl.
method V1 Ver TlBr Brq T|i,1 Tlilz Bri,1 Bri,z

MSW [1.041.29]2.75]1.05|2.93|3.03|2.00]2.00
DFT ]0.63]159|353|1.66|219)|258|229]|1.56

6. MOLECULAR DYNAMICS VAPOR DEPOSITION VERIFICATIONS

As mentioned above, only when a potential captures the crystalline growth during MD
vapor deposition simulations will it be robust enough to study the ionic conduction under a high
electric field. In addition, crystalline growth simulation capability is a rigorous proof that the
potential captures the lowest energy phases, albeit such a capability is extremely difficult to
achieve. Here we perform vapor deposition simulations to validate that our TIBr MSW potential
captures the crystalline growth of the lowest energy Tl-hcp and TIBr-CsCl crystals. In addition,
we will demonstrate that our potential captures the crystalline growth of Br-sc at a low
temperature but gives a liquid Br structure as the stable phase at room temperature.

6.1 TIl-hcp Growth

For Tl-hcp growth, an initial substrate of an hcp crystal containing 1008 Tl atoms with 28
(2170) layers in the x direction, 9 (0002) layers in the y direction, and 8 (0110) layers in the z
direction is used. Here layers refer to crystallographic planes so that one (0001) layer is
equivalent n (000n) layers etc. The substrate temperature is set at T = 300 K by assigning
velocities to atoms according to the Boltzmann distribution. During simulations, the bottom (-y)

2 (0002) layers are held fixed to prevent crystal shift upon adatom impact on the top surface. The
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next 3 (0002) layers are isothermally controlled at the substrate temperature. This leaves the top
4 layers free where the motion of atoms is solely determined by Newton’s law. Injection of Tl
adatoms from random locations far above the surface simulates the growth. All adatoms have an
initial far-field incident kinetic energy E; = 0.05 eV and an incident angle 6 = 0° (i.e., the moving
direction is perpendicular to the surface). The adatom injection frequency is chosen to give a
deposition rate of R = 2.5 nm/ns. To approximately maintain a constant thickness of the free
surface region, the isothermal region expands upward during simulations. Since surface
roughness might develop, the isothermal region expands at about 80% of the surface growth rate
to ensure that the upper boundary of the isothermal region never exceeds the surface valley
locations. Fig. 1 shows the resulting configuration obtained after 0.66 ns deposition, where the
original substrate is shaded in purple. It can be seen that the MSW potential correctly captures
the crystalline growth of the TI-hcp phase. This strongly validates that TI-hcp has the lowest

energy at room temperature as compared to any other configurations.
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Fig. 1. Vapor deposited hcp Tl film obtained from MD simulations.

6.2 Br-sc Growth

MD simulations are also performed to grow Br on an Br-sc substrate. A sc crystal

containing 1008 Br atoms with 14 (100) layers in the x direction, 9 (010) layers in the y
direction, and 8 (001) layers in the z direction is used as the initial substrate. During simulations,

the bottom 2 (020) layers are held fixed. The next 4 (020) layers are controlled at the desired

growth temperature. Using the same approach as described above, the growth simulation is
performed at two substrate temperatures T = 150 K and T = 300 K, an incident energy E; = 0.05
eV, an incident angle 06 = 0°, and a deposition rate R = 2.5 nm/ns. The resulting configurations
obtained after 1.20 ns deposition are shown in Figs. 2(a) and 2(b) respectively for the 150 K and

300 K temperatures. It can be seen from Fig. 2(a) that the crystalline growth of the sc crystal is
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achieved with our potential, strongly validating that the Br-sc structure have the lowest (free)
energy at 150 K as compared with any other configurations. Fig. 2(b), on the other hand,
indicates an amorphous growth at 300 K. This strongly validates that Br exhibits a liquid phase

at room temperature.
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Fig. 2. MD simulations of Br growth on a Br-sc substrate at a temperature of (a) 150 K and (b)
300 K. Our potential prescribes a liquid Br as the most stable phase at room temperature.

6.3 TIBr-CsCl Growth

For TIBr-CsClI growth, an initial TIBr substrate of a CsCl type of crystal containing 300 Tl

atoms and 300 Br atoms with 20 (200) layers in the x direction, 10 (020) layers in the y
direction, and 12 (002) layers in the z direction is used. Initially, Br terminates the top y surface.

During simulations, the bottom 3 (020) layers are held fixed. The next 4 (020) layers are

controlled at the desired growth temperature. Following the same approach as described above,
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the growth simulation is performed at a substrate temperature T = 700 K, an incident energy E; =
0.05 eV, an incident angle 6 = 0°, a deposition rate R = 2.75 nm/ns, and a stoichiometric vapor
flux ratio TI:Br = 1:1. Fig. 3 shows the system configuration obtained at 0.78 ns deposition time.
It is seen again that our MSW potential correctly captures the crystalline growth of the
equilibrium (CsCl) phase of TIBr. In particular, the randomly injected Tl and Br atoms are
reconstructed correctly to their corresponding sublattices. Because the potential captures the
crystallization from a rather stochastic vapor phase, it enables robust simulations of ionic
conduction by maintaining the CsClI crystal under conditions where the presence of dislocations

and external electric fields may both induce configuration disorders.
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Fig. 3. Vapor deposited CsCl phase of a TIBr film obtained from MD simulations.
7. MOLECULAR DYNAMICS IONIC CONDUCTION

One major objective of the present work is to allow direct MD simulations of ionic
conduction of TIBr-CsCl crystal under a very high external electric field. The external electric
field can be simulated by applying opposite biased forces to Tl and Br atoms. The simulations
become challenging at large external forces (i.e., electric fields) as these forces may destroy the
stability of the CsCl crystal. Here we demonstrate two cases to demonstrate that our potential
allows simulations to be performed when atoms are subject to large forces of +0.4 eV/A. Note
that these forces correspond to a high electric field of 4x10° V/mm assuming Tl and Br atoms
adopt full charges of 1 e. Since charges on Tl and Br atoms are significantly smaller in real
crystals, the external field should be much larger than 4x10° V//mm.

A TIBr-CsCl crystal containing 16128 Tl atoms and 16128 Br atoms with 84 (110) layers in
the x direction, 24 (110) layers in the y direction, and 32 (002) layers in the z direction is used.

To prevent system from shifting, the bottom region of about 10 A wide is fixed. To remove the
boundary effects, periodic boundary conditions are used in all three coordinate directions. MD
simulation is then performed at a temperature of 1200 K temperature (a homologous temperature
0.832 T,) and a biased force of 0.4 eV/A using the NVT ensemble (i.e., number of atoms,
volume, and temperature are all constant).

In the first case, we assume that the system contains a pair of Tl and Br vacancies by
removing one Tl and one Br atoms that are far away from the fixed region. Comparison of
atomic configurations between a time span of 0.06 ns is shown in Fig. 4. Fig. 4 verifies that our
potential indeed allows stable TIBr-CsCl MD simulations at a very high biased force.

Interestingly, we found that Tl and Br vacancies are not very mobile even at the high biased
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force and the high temperature. In fact, during the 0.06 ns span, Tl vacancy jumped by one lattice

spacing whereas the Br vacancy did not jump.

(@) t=0
12 [110] E=0.4 ¢V/A (assume atomic charge = =1 ¢)

++++++F++

TleBre
(b) t=0.06ns

++++ A+t

Fig. 4. Vacancy ionic conduction simulation at a temperature of 0.832 T, and a biased force of
+0.4 eV/A: (a) Starting time of observation; and (b) 0.06 ns later. The TIBr-CsCl crystal
remains intact at the large electric field. During the 0.06 ns span, Tl vacancy jumped by

one lattice spacing whereas the Br vacancy did not jump.

In the second case, we assume that the system contains a pair of Tl and Br interstitials by

inserting one Tl and one Br atoms that are far away from the fixed region. Comparison of atomic

configurations between a time span of 0.12 ns is shown in Fig. 5. Fig. 5 again verifies that our

potential allows stable TIBr-CsCl MD simulations at a very high biased force. Unlike the

vacancy case, we found that Tl and Br interstitials are very mobile, and both interstitials moved a

significant distance during the 0.12 ns time span.
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Fig. 5. Interstitial ionic conduction simulation at a temperature of 0.832 T, and a biased force
of £0.4 eV/A: (a) Starting time of observation; and (b) 0.12 ns later. The TIBr-CsCl
crystal remains intact at the large electric field. During the 0.12 ns span, Tl and Br
interstitials migrated significant distances.

8. CONCLUSIONS

This work has developed a new modified Stillinger-Weber potential. Unlike the
conventional SW potential that significantly overestimates the elastic constants of closely packed
elements and are limited mainly to tetrahedral structures, our modified potential can capture very
low elastic constants for closely packed elements and can be used for many non-tetrahedral
crystal structures. We have parameterized the modified SW potential for TIBr. Through rigorous
vapor deposition simulation tests, we have demonstrated that this TIBr captures well the
experimental properties of the observed TI and TIBr phases, and give the Br liquid as the most
stable phase at room temperature. Most importantly, we have demonstrated our potential allows
challenging simulations of ionic conduction of TIBr crystals under very high external electric

fields. Test simulations already indicate that interstitials migrate much faster than vacancies. We
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have also developed a polymorphic potential model and implemented it in public MD codes
LAMMPS. This essentially enables future material research to be performed at a higher fidelity
level because improved potentials no longer require modification of the MD codes and therefore

can immediately applied by a broader materials and physics community.
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