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LA-UR 16-xxxx

Notes on Piezoelectricity

Antonio Redondo

Theoretical Division,
Los Alamos National Laboratory,
Los Alamos, New Mexico, 87545

(Dated: February 3, 2016)

Abstract
These notes provide a pedagogical discussion of the physics of piezoelectricity. The exposition

starts with a brief analysis of the classical (continuum) theory of piezoelectric phenomena in solids.

The main subject of the notes is, however, a quantum mechanical analysis. We first derive the

Fröhlich Hamiltonian as part of the description of the electron-phonon interaction. The results of

this analysis are then employed to derive the equations of piezoelectricity. A couple of examples

with the zinc blende and and wurtzite structures are presented at the end
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I. INTRODUCTION

In these notes we consider the mathematical derivation of the equations that describe
piezoelectricity in solids. The exposition starts with a brief overview of the classical (contin-
uum) theory of piezoelectric phenomena in solids. We then proceed to develop a quantum
mechanical description based on the Fröhlich Hamiltonian for the electron-phonon interac-
tion. The results of this analysis are then employed to derive the corresponding equations
for piezoelectricity. The document concludes with a calculation of the piezoelectric matix
elements for the zinc blende and wurtzite structures.

II. CONTINUUM ANALYSIS OF PIEZOELECTRICITY1

The piezoelectric effect is the result of the interaction between the mechanical and electri-
cal states in crystalline materials with no inversion symmetry. In particular, in piezoelectric
bodies, when a mechanical force is applied a resulting internal charge is generated. Con-
versely, a mechanical strain is observed when an electric field is applied. The brothers
Pierre and Jacques Curie were the first ones to report piezoelectricity.2 The converse effect
was mathematically deduced from thermodynamics by Gabriel Lippmann3.

As mentioned above, the application of an electric field to a piezoelectric material results
in internal strains. The concomitant stresses are proportional to the field itself. Conversely,
the electric field that appears when the body is deformed is proportional to the strain. This
observed linear relationship can be expressed as a constitutive equation, an example of which
is the relationship between an electric field, E, and the induced polarization, P,

P = χ(E)E, (1)

where χ is the electric susceptibility. This quantity is characteristic of the material and, as
indicated in Eq. (1), may be a function of the electric filed. When χ does not depend on
E, the relationship is linear. Experiment has shown that piezoelectric materials exhibit a
linear constitutive relationship.

To derive the constitutive equations for piezoelectricity we start from linear elasticity
theory.4 Consider a body undergoing deformation and let r be the position vector (with
components xi, i = 1, 2, 3) of an arbitrary point before the deformation occurs; let r′ be
the position of the same point after the deformation has occurred. The displacement of this
point is then given by the vector u = r′ − r, with components

ui = x′i − xi. (2)

Because the deformation is not necessarily uniform, we note that, in general, the displace-
ment vector will be a function of position. When the body is deformed, the distances
between pairs of points change. Take two points r(a) and r(b) before the deformation, so that

x
(b)
i = x

(a)
i +dxi. The distance between the points is d` = [dx21+dx22+dx23]

1/2. After the defor-

mation we have x
′(b)
i = x

′(a)
i +dx′i, with a corresponding distance d`′ = [dx′21 +dx′22 +dx′23 ]1/2.

We define the strain tensor, κij, by the expression5

d`′2 = d`2 + 2
3∑

i,j=1

κijdxidxj. (3)
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It is not difficult to show6 that

κij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
3∑

k=1

∂uk
∂xi

∂uk
∂xj

)
. (4)

For small deformations, which is the case for most piezoelectric materials, the second order
terms can be neglected to yield the strain tensor for linear elasticity,

κij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5)

In linear elasticity one can show7 that the relationship between the strain and stress tensors
is given by

σij =

(
∂F

∂κij

)
T

, (6)

where σij is the stress tensor, F is the free energy per unit volume and the derivative is
taken at constant temperature T . In an anisotropic dielectric medium (e.g., a crystal) the
free energy is given by8

F = F̃ +
D · E

4π
, (7)

where F̃ is the free energy thermodynamic potential for which the independent variable is
E and D is the electric displacement vector, with components

Di = D0i +
3∑
j=1

εijEj, (8)

where D0 is a constant vector and εij is the dielectric tensor. The resulting stress tensor9 is

σij =
∂F̃

∂κij
+

1

8π
(EiDj + EjDi) . (9)

The piezoelectric effect is linear in the field; as a result, we can neglect the quadratic
terms in Eq. (9), leading to

σij =

(
∂F̃

∂κij

)
T,E

. (10)

The thermodynamic relation for the differential dF̃ is10

dF̃ = −SdT +
3∑

i,j=1

σijdκij −
D · dE

4π
, (11)

where S is the entropy. To calculate the dependence of the strain tensor on the electric field
for a piezoelectric material it is more convenient to transform to a thermodynamic potential
where the independent variables include the components of the stress tensor instead of those
of the strain tensor. To do so we define a new thermodynamic potential:

Φ̃ = F̃ −
3∑

i,j=1

κijσij. (12)
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The thermodynamic relation for the differential now becomes

dΦ̃ = −SdT −
3∑

i,j=1

κijdσij −
D · dE

4π
, (13)

We need to emphasize that this expression is only valid for piezoelectric materials.
We are ready now to derive the relationship between the strains and the electric field

for piezoelectric crystals. The independent variables of the thermodynamic potential Φ̃
are the temperature T , the components of the stress tensor, σij, and the components of the
electric field, Ei. Then, the displacement vector must also be a function of these independent
variables. We can then do an expansion of D in terms of these independent variables. This
has already been partly done in Eq. (8).

From experiment we know that the dominant terms are the linear terms, so it will be
sufficient to just include constant and linear terms. There will be then, terms that are
linear in the components of the stress tensor, which is a tensor of rank two. From tensor
analysis we know that such a linear expansion takes the form 4π

∑
jk γi,jkσjk where the

constant coefficients γi,jk are the components of a tensor of rank three and the factor of 4π
is introduced for convenience. Since the stress tensor is symmetrical, we may also assume
that the tensor γi,jk, called the piezoelectric tensor, is also symmetrical in the last two
indices,

γi,kj = γi,jk. (14)

Adding the piezoelectric part to the expansion in Eq. (8) we obtain

Di = D0i +
3∑
j=1

εijEj + 4π
3∑

j,k=1

γi,jkσjk. (15)

The thermodynamic potential will have a corresponding set of terms. To see what they are
consider the thermodynamic potential of a non-piezoelectric crystal in the absence of a field
in the elastic approximation,

Φ̃ = Φ = Φ0 −
1

2

3∑
i,j,k,l=1

µijklσijσkl, (16)

where Φ0 is the thermodynamic potential of the undeformed body. The last term is the
elastic energy.11 The tensor µijkl is the elastic constant tensor. For a piezoelectric system
we must add the terms arising from the electrical and piezoelectric interactions,

Φ̃ = Φ0 −
1

2

3∑
i,j,k,l=1

µijklσijσkl −
3∑
i=1

[
1

8π

3∑
j=1

εijEj −
D0i

4π
−

3∑
j,k=1

γi,jkσjk

]
Ei, (17)

To calculate the relationship between the electric field and the strain tensor we invoke
Eq. (13). From the it we see that

κij = −

(
∂Φ̃

∂σij

)
T,E

=
∑
k,l=1

µijklσkl +
3∑

k=1

γk,ijEk. (18)

The first term on the right is the converse of Hooke’s law, that is, the elastic contribution
to the strain; the second term is the piezoelectric contribution. This is the final expression
we are after. It says that the relationship between the electric field and the strain is linear,
which is consistent with the experimental observations.
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III. THE ELECTRON AND PHONON HAMILTONIANS

In this section we start the quantum mechanical analysis of the piezoelectric effect. From
experimental observations and from the classical description given in the previous section
we see that piezoelectricity is a phenomenon in which lattice distortions produce internal
electric fields. The presence of internal electric fields means that there is charge separation
in the piezoelectric crystal. Thus, a quantum mechanical description of this phenomenon
necessarily involves the interaction between charges and phonons, which represent the ionic
lattice distortions. To understand piezoelectricity from a quantum mechanical point of view
we shall invoke the electron-phonon interaction. The electron-phonon interaction involves
the density of the charges and the potential associated with the electric field. Thus, before we
examine the electron and phonon Hamiltonians, let us calculate the charge density operator.

A. The charge density operator12

In many-body theory it is common to describe the wave function of the system by means
of the occupation number representation. Thus, one writes |n1, n2, . . .〉 for the wave function
of a system in which the ni are the occupation numbers of the single electron states φ1, φ2, . . .
The single particle wave functions are assumed to be orthonormal and to form a complete set
for the corresponding Hilbert space. In the case of electrons, given that they are fermions,
in accordance with Pauli’s principle, ni can only take the values 0 and 1.

Associated with this representation one defines creation and annihilation operators, c+i
and ci, respectively, by the expressions

ci|n1, n2, . . . , ni−1, ni, ni+1, . . .〉 =

{
0, if ni = 0,
(−1)Ni |n1, n2, . . . , ni−1, 0, ni+1, . . .〉, if ni = 1,

(19)

c+i |n1, n2, . . . , ni−1, ni, ni+1, . . .〉 =

{
(−1)Ni |n1, n2, . . . , ni−1, 1, ni+1, . . .〉, if ni = 0,
0, if ni = 1,

(20)

with Ni =
∑i−1

j=1 nj. The creation and annihilation operators obey the following anticom-
mutation rules

{ci, cj} = cicj + cjci = 0, (21)

{c+i , c+j } = c+i c
+
j + c+j c

+
i = 0, (22)

{c+i , cj} = c+i cj + cjc
+
i = δij, (23)

where δij is the Kroenecker delta. The creation operator c+i acts on an N − 1 electron
wave function with no electrons in the single particle state φi and produces an N electron
wave function with one electron in φi. Similarly, the annihilation operator ci acts on and N
electron wave function that has one electron in state φi and produces and N − 1 electron
wave function with no electrons in φi.

In periodic solids it is possible to solve the single particle Schrödinger equation for the
functions φ1, φ2, . . . For simplicity, let us assume that the crystal has the shape of a cube of
volume Ω = L3. One type of solution is given by plane waves of the form

φα(r) =
1√
Ω
eikα·r, (24)
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where the allowed values of kα are given by

kα =

(
2πm1

L
,
2πm2

L
,
2πm2

L

)
, (25)

in which the mi are integers.
To construct operators acting on the electron wave functions using the occupation number

representation we start with the solutions to the N electron Schrödinger equation. These
solutions can be written as linear combinations of wave functions of the form

Φ(α1, α2, . . . , αN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φα1(r1) φα1(r2) · · · φα1(rN)
φα2(r1) φα2(r2) · · · φα2(rN)
· · · ·
· · · ·
· · · ·

φαN (r1) φαN (r2) · · · φαN (rN)

∣∣∣∣∣∣∣∣∣∣∣
, (26)

where r1, r1, . . . , rN are the spatial coordinates of the N electrons. These wave functions
are known as Slater determinants; they satisfy the antisymmetry conditions established by
the Pauli principle, namely, that the exchange of any two fermions changes the sign of the
wave function. Then, we can associate with each Slater determinant a wave function in the
occupation number representation by making the assignment

|n1, n2, . . .〉 ↔ Φ(α1, α2, . . . , αN), (27)

in which nα1 = nα2 = · · · = nαN = 1 and ni = 0 for i 6= α1, α2, . . . , αN . The wave
functions |n1, n2, . . .〉 are normalized, 〈n1, n2, . . . |n1, n2, . . .〉 = 1, and form a complete basis
set for the Hilbert space of N electron wave functions if the single particle functions form a
complete basis set for the single particle Hilbert space. As a result, they satisfy the closure
relationship, ∑

n1,n2,...

|n1, n2, . . .〉〈n1, n2, . . . | = 1. (28)

Thus, if V is any operator containing the coordinates of any number of the N electrons we
can write the identity

V =
∑

n1,n2,...

∑
n′
1,n

′
2,...

|n1, n2, . . .〉〈n1, n2, . . . |V|n′1, n′2, . . .〉〈n′1, n′2, . . . |. (29)

The expression in the middle,

〈n1, n2, . . . |V|n′1, n′2, . . .〉 =

∫
dr1 · · · drNΦ∗(α1, α2, . . . , αN)VΦ(α′1, α

′
2, . . . , α

′
N), (30)

is the matrix element of the operator V with respect to the N electron states |n1, n2, . . .〉
and |n′1, n′2, . . .〉.

The standard definition on the charge density of particles located at positions ri is

ρ(r) =
∑
i

Qiδ(r− ri), (31)
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where Qi is the charge of the ith particle and δ(r) is the three-dimensional Dirac delta
function. For simplicity, we shall assume that all the particles have the same charge, Qi = Q.
Then, one can use Eq. (29) and the properties of the single particle functions, Eq. (24), to
show12 that the charge density operator is given by

ρ(r) =
Q

Ω

∑
k,q

eiq·rc+k+qck. (32)

B. The electron Hamiltonian12

The Hamiltonian in the Schrödinger equation for the electrons has the form

He = − ~2

2m

N∑
i=1

∇2
i +

N∑
i=1

Ven(ri) +
N∑
i=1

N∑
j=i+1

Vee(|ri − rj|). (33)

The first term is the kinetic energy of the electrons, in which ~ is Planck’s constant divided
by 2π and m is the mass of the electron; Ven is the nuclear attraction and Vee is the electron-
electron repulsion. The first two terms only contain single particle operators, the last term
consists of two particle operators.

Rather than going through the details of the derivation of the electron Hamiltonian in
terms of the occupation number representation, we will give the result here and refer the
reader to the texts in Reference 12 in the bibliography for the proofs.

As we did in the previous section, we choose the single particle wave functions to be plane
waves

φα(r) =
1

Ω
eikα·r, (34)

where kα is the wave vector and Ω is the volume of the crystal. Then the electron Hamilto-
nian is

He =
∑
k

Tkc
+
k ck +

∑
k,k′

Ven,kk′c+k ck′ +
∑
k,k′,q

Vee,qc
+
k−qc

+
k′+q

ck′ck, (35)

where

Tk =
~2k2

2m
, (36)

Ven,kk′ =
1

Ω

∫
drei(k

′−k)·rVen(r), (37)

Vee,q =
1

Ω

∫
dreiq·rVee(r). (38)

C. The phonon Hamiltonian12

Phonons are collective excitations that correspond to the motion of atoms in solids. For
our purposes, they represent the elastic distortions of the lattice present in piezoelectric
phenomena. In the elastic approximation phonons can be described in terms of a set of
harmonic oscillators that represent the vibrations of the atoms. The resulting collective
excitations are bosons.
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One can develop for bosons an occupation representation formalism similar to that of
fermions. One of the main differences is that for bosons the occupation numbers can have
the values ni = 0, 1, 2, 3, . . . In this representation we can also define creation and annihilation
operators, as we did in the case of fermions. We discuss these next in terms of harmonic
oscillators.

In a harmonic oscillator, a particle of mass M moves in a potential energy 1
2
Mω2R2. The

corresponding Hamiltonian is

Ho =
1

2M

3∑
i=1

[
P 2
i + (MωXi)

2
]

=
1

2M

3∑
i=1

[
−~2 ∂2

∂X2
i

+ (MωXi)
2

]
, (39)

where Pi is the ith component of the momentum vector and R = (X1, X2, X3) is the position
vector of the mass M . The components of position and momentum obey the commutation
rules

[Xi, Pj] = XiPj − PjXi = i~δij. (40)

We define the creation and annihilations operators, a+i and ai, by the expressions

a+i =

√
1

2~Mω
(MωXi − iPi) , (41)

ai =

√
1

2~Mω
(MωXi + iPi) (42)

with commutation relations

[ai, a
+
j ] = aia

+
j − a+j ai = δij. (43)

In terms of these operators the Harmonic oscillator Hamiltonian is

Ho =
1

2
~ω

3∑
i=1

(a+i ai + aia
+
i ) =

3∑
i=1

(n̂i +
1

2
)~ω, (44)

with n̂i = a+i ai; n̂i is known as the number operator.
To find the phonon Hamiltonian let us consider first a simple crystal, namely a Bravais

lattice, in which the separation vector between any two atoms can be written in the form

l = m1a1 +m2a2 +m3a3, (45)

where the the mi are integers and the ai are the basis vectors of the lattice. We also define
a reciprocal lattice of vectors g such that for each l there corresponds a g satisfying

eig·l = 1. (46)

We now refer the reader to the texts in Reference 12 for a proof that the phonon Hamil-
tonian for such a crystal takes the form

Hp =
∑
q,s

~ωqs

(
a+gsaqs +

1

2

)
. (47)
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Here, s corresponds to three vectors s1, s2 and s3 that give the direction of polarization of the
phonons. When one of the si is parallel to q we say that there can be longitudinally polarized
phonons in the crystal. If s · q = 0 we say that the phonons are transversely polarized. In
Eq. (47), q is the wave vector of the phonons; it is always of the form q = g1−g2, where g1

and g2 are two reciprocal lattice vectors. The ωqs are the corresponding frequencies in the
elastic approximation. The Hamiltonian of Eq. (47) is also valid for all crystals, not just for
Bravais lattices. In general, such crystals have a basis of atoms associated with each point
of the form l = m1a1 +m2a2 +m3a3.

The expression of Eq. (47) represents a set of uncoupled lattice vibrations; thus, its
derivation12 is accomplished by means of a transformation to normal modes in which the
phonons with frequencies ωqs are uncoupled. The second term in the parenthesis represents
the zero point energy and is often neglected when considering the interactions between
phonons and electrons.

In three dimensions, the creation and annihilation operators in Eq. (47) can be defined in
terms of the lattice displacements represented by a phonon of wave vector q with polarization
vector s. If M is the mass of the ions, yq and pq the Fourier transforms of the displacement
and the momentum operators, then [compare to Eqs. (37) and (38)]

aqs =
1√

2~Mωqs

(Mωqsyq + ip−q) · s, (48)

a+qs =
1√

2~Mωqs

(Mωqsy−q − ipq) · s. (49)

IV. THE FRÖHLICH HAMILTONIAN

We consider now the effect of the interaction between electrons and phonons. To do
so we shall employ the Fröhlich Hamiltonian,13 which consists of the bare electron, the
bare phonon and the electron-phonon Hamiltonians. This is an approximate Hamiltonian
that, nevertheless, includes all the effects necessary to explain the piezoelectric effect from
a quantum mechanical point of view.

The description of the solution of the problem of phonons interacting with electrons
requires that the Hamiltonian include three basic terms: (i) the bare electrons, (ii) the bare
phonons, and (iii) the electron-phonon interaction, that is

H = He +Hp +Hep. (50)

Although we have already described the Hamiltonians for the bare electrons and the bare
phonons, it is convenient to make a further approximation for the Hamiltonian of the bare
electrons.

A complete solution should start with the Hamiltonian of Eq. (??), which includes the
long-range Coulomb interactions. We can explore, however, the effect of the electron-phonon
interactions with a simpler model in which we accept the fact that the nuclei are surrounded
by core electrons that are tightly associated with the positive charges of the nuclei. Moreover,
the conduction electrons screen these ionic cores, so that, effectively, the ionic cores interact
with each other and with the electrons only through a short-range screened potential. Under
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this assumption, we can write a Schrödinger equation for the single-electron states of the
form14 [

− ~2

2m
∇2 + U0

]
φk = Ekφk, (51)

where U0 is a one-body potential. Bassani et al.15 have shown that by properly defining U0

the single-electron states are orthogonal to the ionic cores when they are in their equilibrium
positions. Because of the periodicity of the potential U0, to a good approximation, we can
still take the single particle states to be the plane waves of Eq. (??). The bare electron
Hamiltonian can then be written as

He =
∑
k

Ekc+k ck. (52)

In addition, ignoring the zero point motion, the bare phonon Hamiltonian, Eq. (47), is

Hp =
∑
q,s

~ωqsa
+
gsaqs. (53)

It remains to calculate the electron-phonon Hamiltonian, that is, the interaction Hamilto-
nian of the electrons with the screened ions. To this end, we assume that the corresponding
potential, V (|r − R|), only depends on the distance between the position of the electron,
r, and that of the screened ion, R. This assumption is often referred to as the rigid ion
approximation.

In the occupation number representation, the electron-phonon Hamiltonian becomes

Hep =
∑
k,k′,l

〈k|V (|r− l− y|)|k′〉c+k ck′

=
∑
k,k′,l

ei(k
′−k)·(l+y)Vk−k′c+k ck′ , (54)

where y is the small displacement of the ion from the equilibrium position l and

Vq =
1

Ω

∫
dreiq·rV (r). (55)

Because the displacement of the ions from the equilibrium position is very small, (k′−k)·y�
1, we can write

ei(k
′−k)·y ≈ 1 + i(k′ − k) · y

= 1 +
i√
Λ

(k′ − k) ·
∑
q

eiq·lyq, (56)

where yq is the Fourier transform of y and Λ is the number of unit cells in the volume of
the crystal. Substitution into Eq. (53) yields

Hep =
∑
k,k′,l

ei(k
′−k)·lVk−k′c+k ck′ +

∑
k,k′,l

ei(k
′−k)·l

[
i√
Λ

(k′ − k) ·
∑
q

eiq·lyq

]
Vk−k′c+k ck′

= HBloch +Hdisp. (57)
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The first term is the Bloch Hamiltonian, which is independent of the lattice displacements
from equilibrium; the second term gives the electron-phonon interaction proper. Because
the wave vectors k and k′ are differences of reciprocal lattice vectors, we can simplify the
Bloch Hamiltonian further,

HBloch = Λ
∑
k,g

V−gc
+
k−gck, (58)

where the g are reciprocal lattice vectors. For the displacement Hamiltonian we find that

Hdisp =
i√
Λ

∑
k,k′,l,q

ei(k
′−k+q)·l[(k′ − k) · yq]Vk−k′c+k ck′

= i
√

Λ
∑
k,k′

[(k′ − k) · yk−k′ ]Vk−k′c+k ck′ . (59)

We can now substitute Eqs. (48) and (49) in the second line to obtain

Hdisp = i
∑
k,k′,s

(
Λ~

2Mωk−k′,s

)1/2

[(k′ − k) · s]Vk−k′(a+
k−k′,s

+ ak−k′,s)c
+
k ck′ , (60)

where the summation now also includes the three polarization vectors.
For simplicity, we shall assume that the phonon spectrum is isotropic, so that the phonon

will be either longitudinally or transversely polarized. Because for transverse phonons (k′−
k) · s = 0, only the longitudinal phonons enter in the electron-phonon interaction. We can
also neglect the effects of HBloch, the periodic potential of the stationary lattice. With these
simplifications we are left with the Fröhlich Hamiltonian,

H =
∑
k

Ekc+k ck +
∑
q,s

~ωqsa
+
gsaqs +

∑
k,k′

Mkk′(a+−q + aq)c+k ck′ , (61)

with phonon wave vector q = k−k′ and where the electron-phonon matrix element is defined
by

Mkk′ = i

(
Λ~

2Mωq

)1/2

|k− k′|Vk−k′ . (62)

If necessary, the wave number q may be reduced to the first Brillouin zone.
The last term in Eq. (61) is composed of two parts involving a+−qc

+
k ck′ and aqc

+
k ck′ . They

may be represented by the diagrams shown in Fig. 1. In diagram (a) an electron is scattered
from k′ to k with the emission of a phonon of wave vector k′ − k. The total momentum
is conserved, unless the vector k′ − k lies outside the first Brillouin zone, in which case
q = k′ − k + g for some vector g in the reciprocal lattice. This would be an example of an
electron-phonon Umklapp process. In the second diagram, an electron with wave vector k′

absorbs a phonon with wave vector q and is scattered into k.

V. PIEZOELECTRICITY16

Piezoelectric solids are polar crystals that have heavy positive ions and lighter negative
ions. As mentioned before, piezoelectricity arises from an interaction between charges and
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FIG. 1: (a) Emission and (b) absorption of a phonon in the Fröhlich Hamiltonian. Taken from P L Taylor,

A Quantum Approach to the Solid State (Prentice Hall, Englewood Cliffs, New Jersey, 1970), p. 178.

phonons, in particular, acoustical phonons. In acoustical phonon modes all the ions tend to
vibrate in the same direction, but they need not be displaced by the same amount. If the
heavy ions move less than their lighter counterparts a polarization field is induced in the
crystal. This is the origin of piezoelectricity.

A. Polar coupling to longitudinal acoustical phonons

Acoustical phonons with a transverse polarization do not couple strongly to the ions
in the crystal because they do not produce a significant electric field when they vibrate.
Acoustical longitudinal phonons couple effectively to the ions at long wavelengths. The
atomic vibrations are along the direction q of the phonon wave vector, whereas for transverse
phonons the vibrations are perpendicular to q. The electrical polarization vector Pq is set up
in the direction of the vibration; it is parallel to q for longitudinal phonons and perpendicular
for transverse phonons.

Roughly speaking, the magnitudes of these two polarization vectors are similar. However,
the electric fields that are produced by these two types of oscillations are quite different. The
field produced by longitudinal phonons is significant while that of the transverse phonons is
negligible. To see this let us consider the first of Maxwell’s equations,

∇ ·D = 4πρ, (63)

where D = E + 4πP is the displacement vector and ρ the free charge density. In a polar
crystal there are few free electrons so that the free charge density is zero and

∇ ·D = 0. (64)

This implies17 that
q · (Eq + 4πPq) = 0. (65)

For longitudinal modes both Eq and Pq are parallel to q, which means that

Eq = −4πPq. (66)

12



The transverse phonons have their electric field perpendicular to q. Photons also have
their electric field perpendicular to q. In fact, any excitation that is trying to produce a
transverse electric field is just trying to produce photons. This process is very inefficient
because photons go at the speed of light and phonons do not. As a result, only a small
electric field is produced by the transverse excitation. This can be seen from Maxwell’s
equations,

∇× E = −1

c

∂B

∂t
, (67)

∇×H =
1

c

∂D

∂t
. (68)

If these fields are generated by a phonon of wave vector q and frequency ωq they are propor-
tional to eiq·r−iωqt. Next, we note that the time derivatives give the original vector multiplied
by −iωq. From electromagnetic theory we also have that B = µH, where µ is the magnetic
permeability, which, for most piezoelectric materials, can be taken to be equal to one. Then,
Eqs. (63) and (64) give

q× E =
ωq

c
H, (69)

q×H = −ωq

c
D. (70)

Taking the cross product of Eq. (69) with q and substituting Eq. (70) we obtain

q× (q× Eq) = −
ω2
q

c2
(Eq + 4πPq). (71)

For transverse phonons q is perpendicular to Eq, so that q× (q× Eq) = −q2Eq, and

Eq =
ω2
q

c2q2 − ω2
q

(4πPq) ≈
ω2
q

c2q2
(4πPq). (72)

Here, we have used the fact that c2q2 � ω2
q because the speed of light is so large. This

shows that the electric field generated by a transverse phonon is very small. In fact, for
acoustical phonons ωq = cq|q|, where cq is of the order of the speed of sound in the crystal.
Then, the ratio in Eq. (72) becomes ω2

q/c
2q2 ≈ 10−10. Hence, the transverse electric fields

can be neglected.

B. The electron-phonon interaction for a piezoelectric crystal

In section IV we derived the Frölich Hamiltoninan between free electrons (such as the
conduction electrons in a metal) and the phonon. In the case of piezoelectric crystals, there
are no free electrons to speak of and the electron-phonon interactions refers to the bound
electrons in the ion cores. In fact, this interaction results from the displacements of the ions
caused by the phonons. Next, we proceed to derive this interaction following the procedure
used for the Frölich Hamiltoninan.

From the continuum treatment in Section II we recall that the strain tensor is given by
Eq. (5). Let u(q) be the displacement created by a phonon of wave vector q, so that

u(q, r, t) = u0e
iq·r−iωqt. (73)
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From Eq. (5) the strain tensor is given by

κjk(q) =
i

2
(ujqk + ukqj) , j, k = 1, 2, 3. (74)

We can use Eq. (15) to find the electric field caused by this strain. To do so we need to
rewrite that equation in terms of the strain tensor. We do this assuming that we are in the
elastic regime, which should be the case for piezoelectricity on account of the very small
displacements of the ions. We can then use Hooke’s law,18

σij =
3∑

k,l=1

Cijklκkl, (75)

where, for elastic solids, Cijkl = Kδijδkl + 2µ(δikδjl − δijδkl/3). The constants K and µ are
the bulk modulus and the shear modulus, respectively. Substituting this expression into Eq.
(15) leads to

Di =
3∑
j=1

εijEj + 4π
3∑

l,m=1

Γi,lmκlm, (76)

with Γi,lm =
∑3

j,k=1 γi,jkCjklm; Γi,lm is also called the piezoelectric constant. For simplicity,
we have set the constant displacement vector D0 equal to zero.

Because there are no free charges Eq. (64) is satisfied and we have

3∑
i=1

qiDi = 0 =
3∑

i,j=1

qiεijEj(q) + 4π
3∑

i,j,k=1

qiΓi,jkκjk(q). (77)

Moreover, the transverse components of E(q) are negligible so we can write

Ej(q) =
qj
|q|
|E(q)|, (78)

therefore

|E(q)| = −
4π|q|

∑3
i,j,k=1 qiΓi,jkκjk(q)∑3
i,j=1 qiεijqj

. (79)

In addition, the electric field can be written in terms of a potential E = −∇Φ. Because
E ∝ eiq·r we expect that Φ ∝ eiq·r also, so that |E(q)| = −i|q|Φ(q) or

Φ(q) = −
4πi
∑3

i,j,k=1 qiΓi,jkκjk(q)∑3
i,j=1 qiεijqj

=
2π
∑3

i,j,k=1 qiΓi,jk (ujqk + ukqj)∑3
i,j=1 qiεijqj

(80)

The denominator may be written as q2q̂ · ε · q̂ where q = |q| and q̂ is a unit vector in the
direction of the wave vector. Here, ε0(q̂) = q̂ · ε · q̂ is the longitudinal dielectric function of
the anisotropic crystal.
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In analogy to Eqs. (48) and (49) we can write

aq =
1

q
√

2~Mωq

(Mωquq + ip−q) · q, (81)

a+q =
1

q
√

2~Mωq

(Mωqu−q − ipq) · q. (82)

Solving for the displacement yields

(ujqk + ukqj) = 2

(
~

2Mωq

)1/2
qjqk
q

(aq + a+−q). (83)

The potential acting on the electrons bound to the ionic cores is obtained by summing
over all the the phonon modes,

Φ(r) =
∑
q

eiq·rΦ(q). (84)

That is, as expected, Φ(r) and Φ(q) are related by a Fourier transform. From electrostatics,
the interaction energy is obtained by integrating this potential with the electronic charge
density, ρ(r),

Hep =

∫
drρ(r)Φ(r) = Q

∑
q

ρ(q)Φ(q), (85)

where [see Eq. (32)] ρ(q) =
∫
dre−iq·rρ(r) = (Q/Ω)

∑
k c

+
k+qck. Substituting this expression

plus Eqs. (80) and (83) into Eq. (85) gives the electron-phonon Hamiltonian,

Hep =
1√
Ω

∑
k,q

M(q)c+k+qck(aq + a+−q), (86)

with the piezoelectric matrix element given by

M(q) =
4πQ

∑3
i,j,k=1 Γi,jkqiqjqk

q3ε0(q̂)
. (87)

VI. EXAMPLES: ZINC BLENDE AND WURTZITE STRUCTURES

The piezoelectric constants Γi,jk constitute a third rank tensor. The independent compo-
nents are restricted by the symmetry of the point group to which the crystal belongs. The
number of constants for each crystal group have been tabulated.19

As a first example of how to calculate the electron-phonon interaction we shall choose
zinc blende, which belongs20 to the cubic class 4̄3m. This structure has only one nonzero
independent piezoelectric constant, namely, Γ1,23 = Γ2,31 = Γ3,12 or, in terms of the x, y
and z axes, Γx,yz = Γy,zx = Γz,xy. Because the structure is cubic, the longitudinal dielectric
function ε0(q̂) = ε0 is isotropic. Then, the matrix element of Eq. (87) is

M(q) = 24πQ

(
~

2Mωq

)1/2
Γx,yzqxqyqz

q3ε0
. (88)
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As a second example, let us consider the wurtzite structure, which belongs21 to the
hexagonal group class 6mm. The nonzero piezoelectric constants are Γ3,11 = Γ3,22, Γ1,31 =
Γ2,23, and Γ3,12. The piezoelectric matrix element is then

M(q) = 4πQ

(
~

2Mωq

)1/2 Γz,xyq
3
z + (2Γx,zx + Γz,xx)(q

2
x + q2y)qz

q3ε0(q̂)
. (89)

The dielectric tensor is no longer isotropic, so the longitudinal part ε0(q̂) depends on the
angle θ which q makes with the z axis, so that ε0(q̂) = ε11 sin2 θ + ε33 cos2 θ.
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