

LA-UR-16-20714

Approved for public release; distribution is unlimited.

Title: Reversal of the Upper Critical Field Anisotropy and Spin-Locked Superconductivity in K₂Cr₃As₃

Author(s): Balakirev, Fedor Fedorovich
Kong, T.
Jaime, Marcelo
Mcdonald, Ross David
Mielke, Charles H.
Gurevich, A.
Canfield, P.C.
Bud'ko, S.L.

Intended for: Report

Issued: 2016-02-08

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Reversal of the Upper Critical Field Anisotropy and Spin-Locked Superconductivity in $K_2Cr_3As_3$

Balakirev, F. F. (NHMFL, LANL); Kong, T. (Ames Laboratory and Iowa State U., Physics and Astronomy); Jaime, M., McDonald, R. D., Mielke, C. H. (NHMFL, LANL); Gurevich, A. (Old Dominion U., Physics); Canfield, P. C. and Bud'ko, S. L. (Ames Laboratory and Iowa State U., Physics and Astronomy)

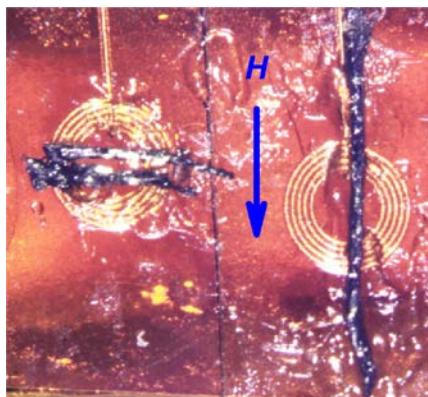
Introduction

Recently, superconductivity in $K_2Cr_3As_3$ ($T_c = 6.1$ K) [1] was discovered. The crystalline lattice contains an array of weakly coupled, double well $[(Cr_3As_3)^2]_{\infty}$ linkages stretched along the c axis, suggesting the possibility of quasi-one-dimensional superconductivity. Moderately anisotropic upper critical field was revealed in single crystals [2], with very large initial slopes, $dH_{c2}^{\parallel}/dT = 12$ T/K along the Cr chains and $dH_{c2}^{\perp}/dT = 7$ T/K perpendicular to the chains. Given the ambiguity of conclusions based on the extrapolations of $H_{c2}(T)$ measured near T_c to low temperatures, we performed high-field measurements of $H_{c2}(T)$ on $K_2Cr_3As_3$ single crystals in pulsed magnetic fields which enabled us to reveal the full anisotropic $H_{c2}(T)$ curves from T_c down to 600 mK.

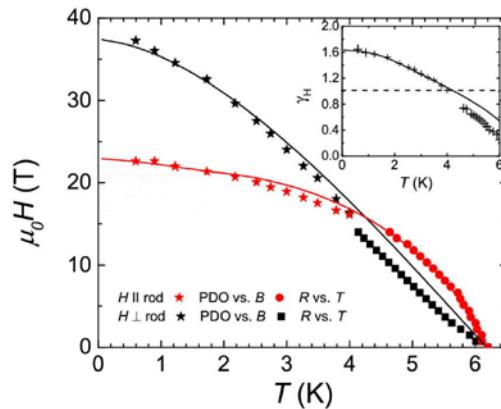
Experimental

The H_{c2} below 4 K was measured in a 65 T pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), Los Alamos, using a contactless technique based on a proximity detector oscillator (PDO). A $K_2Cr_3As_3$ crystal was separated into several pieces and placed, one parallel to field and the other perpendicular to field, on two separate spiral copper coils (Fig.1). The lithographically defined resonating RF coils were designed at NHMFL. The coils are connected to a PDO resonating in the 30-35 MHz range. The oscillatory signal waveforms were recorded directly using a fast 200 million samples per second digitizer during 120 ms magnet pulse.

Results and Discussion


We find that the $H_{c2}^{\parallel}(T)$ exhibits a paramagnetically-limited behavior, whereas no evidence of paramagnetic pair breaking was observed for $H_{c2}^{\perp}(T)$ (Fig.2). As a result, the curves $H_{c2}^{\parallel}(T)$ and $H_{c2}^{\perp}(T)$ cross at $T \sim 4$ K, so that the anisotropy parameter $\gamma(T) = H_{c2}^{\perp} / H_{c2}^{\parallel}$ increases from $\gamma \sim 0.35$ near T_c to $\gamma \sim 1.7$ at 0.6 K. This behavior of $H_{c2}(T)$ is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity with the electron spins locked onto the direction of Cr chains [3].

Acknowledgements


A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida. Work at Ames Lab supported by US DOE under contract No. DE-AC02-07CH11358.

References

- [1] Jin-Ke Bao *et al.*, Phys. Rev. X 5, 011013 (2015)
- [2] T. Kong, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 91, 020507 (2015)
- [3] F. F. Balakirev *et al.*, Phys. Rev. B 91, 220505(R) (2015)

Fig.1 Parts of a single crystal sample mounted on PDO coils. The coils are planar spiral coils, coil geometry preferable for coupling to rod-like samples. Magnetic field direction is shown by the blue arrow.

Fig.2 Upper critical fields H_{c2} along c -axis (red) and perpendicular to c -axis (black), symbols. Solid lines are fits to Werthamer-Helfand-Hohenberg theory for a uniaxial superconductor. Inset shows $\gamma(T) = H_{c2}^{\perp} / H_{c2}^{\parallel}$.