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Abstract

Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological
abnormalities driving a particular patient’s tumor. However, sequencing-based strategies rely
heavily on representative sampling of tumors. To understand the subclonal structure of primary
breast cancer, we applied whole genome and targeted sequencing to multiple samples from each of
50 patients’ tumors (total 303). The extent of subclonal diversification varied among cases and
followed spatial patterns. No strict temporal order was evident, with point mutations and
rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN,
BRCAZ2 and MYC, occurring early in some tumors and late in others. In 13/50 cancers, potentially
targetable mutations were subclonal. Landmarks of disease progression, such as resisting
chemotherapy and acquiring invasive or metastatic potential, arose within detectable subclones of
antecedent lesions. These findings highlight the importance of including analyses of subclonal
structure and tumor evolution in clinical trials of primary breast cancer.

Introduction

Driver mutations occur in single cells, and are associated with subsequent clonal expansions.
Consequently, a given patient’s breast tumor comprises a complex patchwork of genetically
related, competing clones-3. Genome sequencing has enabled analysis of clonal evolution in
breast cancer through sequencing of primary tumor and metastasis pairs in a few cases*®,
sequencing of single cells2:6 and xenograft models’ as well as deep sequencing for subclonal
mutations’3, These studies have revealed that subclonal evolution is found in breast cancer,
albeit based on relatively small sample sizes.

Most breast cancers are localized at first presentation and managed with curative intent
using surgery often combined with radiotherapy and systemic therapies. Therapies targeted
against the estrogen and HER2 receptors improve survival and benefit may extend to cases
where the targetable alteration is subclonal®°. Therapies directed against a wider range of
biological targets are currently in early phase trials but heterogeneity could complicate study
design and confound analysis'%11. The optimal therapy may be directed against mutations
shared by all cells in a cancer but later, subclonal mutations may be important if they enable
subclones to resist treatment or confer metastatic capacity. In colon, pancreatic and
hematological cancers, preferred temporal orders of somatic mutation accumulation may
predominate12-15 but whether this exists in breast cancer has not been evaluated. In renal,
pancreatic, colon and prostate tumors, geographical stratification of clonal structure is
common, with subclones containing driver mutations expanding locally16-21, Whether early
breast cancers show similar patterns is unknown.

Results

Multiregion sequencing of breast cancer

To determine the patterns of spatial evolution in primary breast cancer, we undertook
sequencing of multiregion samples from 50 invasive cancers (27 ER*/HER2™, 3
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ER*HER2*, and 20 triple negative (ER"PgR™HER2"); Supplementary Table 1). We
sequenced the cancers in two cohorts. In cohort 1, we performed prospective, systematic
needle biopsy sampling of 12 primary, treatment-naive, surgically excised cancers (Fig. la—
b). In cohort 2, we studied multiple treatment-naive needle biopsy or tissue block samples
from 38 cancers (Fig. 1a and c). All but 2 cases in cohort 2 underwent neo-adjuvant
chemotherapy with 10 demonstrating a complete pathological response and 26 having
histopathologically confirmed residual disease. For 18 of these 26 cancers, we sequenced
samples from both pre-treatment and post-treatment residual, invasive disease. For 290
samples from the 50 cancers, we sequenced to high coverage (mean = 166x) (Supplementary
Table 2) 360 known cancer genes, chosen from review of published literature22-24 and
including over 40 genes recurrently mutated in breast cancer325-30 (Supplementary Table 3).
For 13 of these cancers we sequenced selected tumor samples (n = 29) and a matched
constitutional DNA sample in each case to whole genome level with an average depth of 40-
fold (Supplementary Table 2).

We identified driver mutations as recurrent mutations in oncogenes or truncating mutations
and recurrent missense substitutions in tumor suppressor genes3:14:25.27.28,.30.31 (details of
driver mutation annotation in Online Methods). Copy number analysis focused on the 5
most frequent arm level copy number changes3? and 12 frequently amplified genes in breast
cancer33:34 (Supplementary Table 3b).

False positive and false negative mutation calls in multi-sample studies can lead to the
appearance of subclonal heterogeneity that is in fact artifactual. To validate our pipeline, we
repeated the targeted capture experiment using independent libraries for 38 needle biopsy
samples from 5 cancers. Positive predictive values and, critically, negative predictive values
were on average > 99%, confirming our ability to call both the presence and the absence of
individual mutations across multiple samples from a single cancer (Supplementary Table 4).
From whole genome sequencing data, we successfully verified 2,217 of 2,235 (99%)
substitutions and 18 of 19 (95%) indels (Supplementary Table 4). We confirmed 1,567 of
1,778 (88%) structural variants using PCR or breakpoint-associated copy humber changes
(Supplementary Table 4). We achieved 97% concordance between copy number
amplifications called by targeted gene sequencing and by multiplex-ligation dependent
probe amplification (Supplementary Table 4). We validated phylogenetic trees reconstructed
from whole genome data (Supplementary Fig. 1, Supplementary Table 5) by targeted deep
sequencing of mutations on each proposed branch. Cohort 2 contained fresh frozen and
FFPE samples with no systematic differences in mutation calls (Supplementary Fig. 2).

Geographical patterns of subclonal growth

To assess the spatial distribution of subclones for 12 cancers, we sliced the tumour in half
immediately after surgical resection and obtained six needle biopsy samples from the cut
face of each half (Fig. 1b). We performed targeted gene sequencing from 8 biopsies from
each primary tumor and an associated lymph node metastasis in 3 cases (Fig. 1a). We
evaluated the remaining four biopsies from each primary tumour by histopathology to
confirm the presence of invasive cancer and assess Ki67 levels (Supplementary Table 1).
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Eight of twelve tumors demonstrated statistically significant spatial heterogeneity of point
mutations (q < 0.05) and a further 2 samples displayed heterogeneity of copy number
changes alone (Fig. 2a—d, Supplementary Table 6). Layering mutational data onto the spatial
arrangement of biopsies demonstrated that local, geographically constrained expansion is the
predominant pattern of heterogeneity with 10 out of 12 cancers having at least one mutation
confined to 1-3 adjacent regions.

Localized confinement of subclones was not always the case. In four cancers, we found
evidence of admixture of clones (Fig. 2d, Supplementary Fig. 3—4). The subclonal mutations
often had low, but variably distributed, allele fractions in the samples where they were
detected, a pattern suggestive of extensive intermingling of subclones across wide
geographical ranges. This pattern was only common amongst larger tumors (4 of 5 tumors >
3cm). Similar findings have been observed in follicular lymphoma and colorectal
cancer®17,

In all 12 cancers, we identified at least one clonal somatic driver mutation or copy number
event shared by all samples. In 4 cancers, we identified subclonal driver mutations,
including recurrent TP53 missense mutations, MYC amplification, a canonical mutation in
PIK3CA and a nonsense mutation in BRCAZ2. In these 4 examples, the subclonal driver
mutation was absent from 5-7 of the 8 samples sequenced despite a collective coverage of
around 1,000-fold. In 7 of 12 cases, some mutations were subclonal in the tumor as a whole
but could be erroneously characterized as clonal if only a single biopsy were sequenced
(Supplementary Fig. 3).

Subclonal growth in multifocal cancer

For 4 cancers, we sequenced samples from more than one focus (2-5) of a multifocal cancer.
In each case, separate foci of disease were clonally related (Fig. 3). Within individual foci,
we found that many private mutations had high variant allele fractions, indicating that
during the growth of each focus, complete ‘clonal sweeps’ had occurred in which a clone
completely replaced all other tumor cells in that focus. In 3 of 4 cases, mutations private to a
disease focus included known driver events: BRCA2 and CDKNZ2A inactivation (Fig. 3a),
PTEN point mutation (Fig. 3c-d) and CDK6 amplification (Fig. 3e).

The complex intermixing of minor subclones seen in some unifocal tumors also existed
within and between multiple foci of disease (Fig. 3a-b, colored arrow-heads). By definition,
lesions in multifocal breast cancer are separated by apparently normal breast tissue.
Therefore, the fact that these distinct foci are clonally related shows that subclones in these
developing tumors are capable of transiting considerable distances through normal breast
tissue by the lymphatic, ductal or microcirculatory systems as has been demonstrated in
metastatic prostate cancers3®.

PD9694, a multifocal ER*HER2™ cancer with two macroscopic foci and several microscopic
foci of invasive disease occurring within a large region of scattered DCIS, embodies a
remarkable example of subclonal dissemination (Fig. 3c—d). Two distinct PTEN driver
mutations appeared in the different regions — these mutations had evolved in parallel during
the tumor’s development (Fig. 3c) and were confined to disease with invasive potential (Fig.
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3d). Critically, we detected one or the other of the PTEN mutations in discontiguous areas of
microinvasive disease within predominant DCIS (Fig. 3c). The most plausible explanation
for this is that the two PTEN-null subclones disseminated intraductally within the DCIS,
setting up several new, discrete foci of invasion.

Subclonal driver mutations in multifocal cancers were not restricted to point mutations, with
one sample showing a high-level CDK6 amplification in one focus absent from the other
(Fig. 3e). The CDK6-amplified focus showed only a partial response to neoadjuvant
chemotherapy, whereas the other focus underwent a complete pathological response.

Variable extent of subclonal heterogeneity in breast cancer

Across the 50 cancers in cohorts 1 and 2, we assessed intratumoral heterogeneity in the
targeted gene screen, taking into account fluctuations in normal cell contamination and
sequence coverage. For 23 cancers, no significant difference in point mutations
(Supplementary Table 7) existed across the different tumor subregions (Fig. 1a,
Supplementary Table 6), although in 4 of these cases, there was heterogeneity in copy
number changes. For three cancers, we detected profound heterogeneity, exemplified by
private mutations in most of the samples (PD14753, PD9850, PD12334). Most cancers,
however, had intermediate levels of intratumoral heterogeneity.

We created an index of heterogeneity based on discordance of mutation frequencies
averaged across all possible pairs of samples from each cancer, after adjusting for normal
cell contamination and differences in coverage (Online Methods). Our data indicated no
correlation between the level of heterogeneity and histology, ER status, grade, intratumoral
lymphocyte infiltration or Ki67 score of the tumor (Supplementary Fig. 5b-h).
Heterogeneity in Ki67 scores across samples did not correlate with our index of genomic
heterogeneity (Supplementary Fig. 5i). We detected a trend towards a greater degree of
heterogeneity with increasing age at diagnosis (p = 0.05, F-test) and larger tumor size (p =
0.005, F-test) amongst triple negative cancers. Notably, response to neoadjuvant
chemotherapy, typically anthracycline-based regimens with or without a taxane, did not
correlate with the extent of intratumoral heterogeneity amongst pre-treatment samples in this
cohort, albeit with limited sample size (p = 0.2, F-test) (Supplementary Fig. 5e).

To test if genetic heterogeneity inferred from targeted capture data matches genome-wide
distribution, we performed multiregion whole genome sequencing on 10 cancers (Fig. 4).
For each, the thousands of somatic base substitutions allowed us to reconstruct phylogenetic
trees and to determine the subclonal composition of each sampled region (Fig. 4,
Supplementary Fig. 1). As for the targeted capture analysis, the extent of subclonal
diversification varied markedly between tumors (Fig. 4a—b). We found good correlation
between the branching time implied from whole genome data and the heterogeneity score
determined from targeted capture analysis of samples from the same cancer (Fig. 4d).

Resistant subclones may be unmasked by chemotherapy

For 18 cancers, we sequenced DNA from both diagnostic biopsies and residual, invasive
disease after neoadjuvant chemotherapy. In 6 cases, mutations appeared to be subclonal
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(present in < 100% of tumor cells) in both pre- and post-chemotherapy samples indicating
that some subclones persist despite treatment (Fig. 4a—c, black outlined branches: PD9768,
PD9770, PD9771, PD9777, PD14748, PD14757). In 5 cancers, we identified a subclone in
the post-chemotherapy residual tumor mass not evident in pre-chemotherapy samples (Fig.
4a—c, red outlined branches: PD9768, PD9769, PD9770, PD9771, PD9777). Within these

treatment-resistant subclones, potential driver mutations included amplifications of CDK6
(PD9770), FGFR2 and MYC (PD9777) and a deletion within RUNX1 (PD9769).

Variants found only in post-chemotherapy samples could either represent mutations
acquired during chemotherapy or mutations present in pre-existing subclones that were not
sampled before therapy. For three cases, we had detailed phylogenies from samples before
and after chemotherapy (PD9770, PD9777 and PD9771). In the latter 2, the branching point
of the post-treatment subclone (Fig. 4a; red-filled circles) predated the branching point
inferred from pre-treatment samples only (black cross). Post-treatment (purple outline) and
pre-treatment subclone branches (purple outline) were of similar lengths, suggesting a
similar molecular age. Furthermore, similarity in mutational signature profiles
(Supplementary Fig. 6a) in the pre- and post-treatment branches suggests minimal
contribution from chemotherapy-induced mutagenesis. Clones detected only in residual
tumor mass after neoadjuvant chemotherapy are therefore likely to represent subclones in
which most of the mutations are already present prior to treatment, a conclusion also reached
by evolutionary simulations of breast cancers before and after chemotherapy36.

Metastases can derive from subclones detectable in the primary tumor

For two cases, we studied whole genomes from primary tumor biopsies and a metastatic
deposit. In the first case (PD9771), the lung metastasis and prechemotherapy biopsies all
arose from a subclone that contained over 800 base substitutions (yellow branch, Fig. 4a—b)
and 43 structural variants. Notably, the residual disease sample, which also represents a
chemotherapy-resistant population of cells, arose from a separate subclone (purple branch).
In the second cancer (PD9849), we found that an axillary lymph node metastasis arose from
a defined subclonal lineage detected within the primary tumor (Fig. 4a—b, Supplementary
Fig. 1, PD9849: cluster 3), and not from the trunk of the phylogenetic tree.

This finding has clinical relevance — if metastatic disease arose from a very early branch of
the phylogenetic tree, before all subclonal diversification within the primary tumor, treating
actionable mutations that were subclonal in the primary tumor would not help prevent
disease relapse. Although needing confirmation in larger studies, our results corroborate
FISH-based studies of aneuploidy in metastatic breast cancer, which have also suggested
that metastases arise from subclones of the primary cancer3’.

Subclonal driver mutations and parallel evolution

Across the cohort, the majority of driver point mutations and copy number changes were
present in all lesions sequenced, suggesting they occurred before emergence of the cancer’s
most recent common ancestor (Fig. 5a). Although numbers of subclonal driver mutations are
too low to reach definitive conclusions about individual genes, and phylogenetic
reconstruction gives only relative, not absolute, timing of driver mutations, it is clear that
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many of the common breast cancer genes can be mutated either early or late in disease.
Driver mutations in TP53, PIK3CA, PTEN, BRCA2, CDKN2A were subclonal in some
tumors in our study and fully clonal in others. Likewise, amplifications of MYC, CDK6 and
FGFR1 sometimes occurred late in evolution. In 13 of 50 cancers, subclonal mutations
affected genes that are potential targets of systemic therapies in clinical use or in
development (Supplementary Fig. 6b).

We found four cancers with parallel evolution of driver mutations, including the case with
convergent PTEN mutations discussed above (Fig. 4a—b, Supplementary Fig. 6¢: PD9694,
PD9777, PD9769, PD9850). In a triple negative cancer (PD9777), we found three small,
amplified episomal circles containing FGFR2, each present subclonally within the cancer
and at variable proportions across the different samples, at least two of which must have
arisen independently (Fig. 5b). In an ER*/HER2™~ cancer (PD9850), three separate subclonal
lineages each carried different TP53 driver mutations (including a recurrent, silent mutation
affecting TP53 splicing, Fig. 5¢, Supplementary Fig. 6d). In a triple negative cancer
(PD9769), we found distinct focal genomic rearrangements specifically deleting coding
exons of RUNX1 in two subclonal branches (Fig. 5d, Supplementary Fig. 6e). Three of the
four examples of parallel evolution represent the second hit in a tumor suppressor gene, with
the first hit located on the trunk of the phylogenetic tree (Supplementary Fig. 6¢—e).

Ongoing structural variation in subclonal diversification

We assessed the relative activity of mutational processes over time for the 10 multi-region
whole genomes (Fig. 6b—d). The proportion of structural variants that are subclonal broadly
matched the proportion of subclonal substitutions (r = 0.94), although in some cancers, such
as PD9777, late structural variants are the predominant driver of subclonal diversification
(Fig. 6b—e).

Similar to point mutational signatures (Supplementary Note, Supplementary Fig. 6b),
rearrangement processes active early in tumor evolution tended to continue later in disease
(Fig. 6¢—d). For some cancers, tandem duplications dominated the structural variant
landscape, sometimes numbering hundreds, and these continued to accumulate late in
disease (Fig. 6d). Complex chromosomal events are a frequent feature being present in 7 of
10 cancers, and include 4 breakage-fusion-bridge cycles, a chromothripsis event followed by
amplification and complex, amplification-associated rearrangements (Fig. 6¢). In 5 tumors,
complex events occurred both early and late in tumorigenesis and in some cases resulted in
subclonal amplification of oncogenes (Fig. 6e, Supplementary Table 8), suggesting that
catastrophic events can remodel the genome late in evolution and provide the phenotypic
diversity upon which selection may operate.

Discussion

Most breast cancers are diagnosed at an early stage and are considered curable. Once
established, distant metastatic disease is incurable, meaning that prevention of metastasis
represents our best opportunity to improve breast cancer cure rates. We find that metastases
can derive from subclones in the primary cancer, emphasizing the importance of
understanding the patterns, extent and nature of subclonal diversification in primary tumors.
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We find variable degrees of genomic heterogeneity across breast cancers, notwithstanding
the fact that targeted gene sequencing may underestimate subclones. This contrasts with the
profound heterogeneity seen almost universally in clear cell renal cell carcinoma (RCC),
where subclonal diversification occurs early after VHL mutation!819, In non-small cell lung
cancer, subclonal heterogeneity is less marked38, and minimal in early (stage IA-111A)
tumors3L, Kidney cancers are often large (> 10cm) when diagnosed, whereas breast and lung
cancers are typically smaller. Indeed, we find a correlation between tumor size and degree of
heterogeneity in triple negative breast cancer. The direction of causality is unclear — it may
be that tumors with profound heterogeneity grow to larger sizes, or it may be that beyond a
certain size, complete clonal sweeps, where an especially fit clone expands to replace all
other subclones in the tumor, become unlikely. In colon cancer, there is evidence that the
latter can explain observed patterns of subclonal heterogeneityl’.

Transcriptome and histological studies have shown that breast cancer comprises many
subtypes39-42, with distinct biological, prognostic and therapeutic implications. We find that
subclonal heterogeneity can be present in all major immunohistological subgroups of breast
cancer, but our “all-comers’ study design prevents us from drawing definitive conclusions
about any particular subtype. Heterogeneity may explain cases of borderline ER and HER2
positivity#38, where survival benefits from anti-endocrine therapies extend to cancers with
nuclear ER staining in as few as 1% of tumor cells®44. FISH-based studies have found that
heterogeneity of copy number changes predicts response to neoadjuvant chemotherapy36,
something we did not observe. Resolving this discrepancy will require studies focusing on
specific molecular subtypes of breast cancer with larger sample sizes, potentially in the
setting of clinical trials of neoadjuvant therapies.

Understanding subclonality is fundamental to improving cancer care but will require
prospective integration of genomics studies into clinical trials*®. Important issues such as
which subclones give rise to metastasis and the potential clinical benefits of treating
subclonal actionable mutations can be addressed, provided sample size, sample acquisition
and sample analysis are carefully planned. Drug development is increasingly ‘rational’,
based around improved understanding of each tumor’s individual biology: drug testing
should follow this lead, incorporating the biology of cancer evolution into trial design and
evaluation.

Online Methods

Sample acquisition

In this exploratory study, we analyzed a total of 303 multi-region tumor samples from 50
subjects’ breast cancers and a matched normal sample, derived from blood (n = 49) or
adjacent normal breast tissue (n = 1). Cohort 1 consists of 98 samples from 12 cancers
(average of 8.2 samples per cancer, range = 8-10). Cohort 2 comprises 205 samples from 38
cancers (average of 5.4 per cancer, range = 2-21) (Supplementary table 1). All subjects are
female and in cohort 1 and 2 the average age at diagnosis is 67 years (range = 44-90 years)
and 49 years (range = 29-67 years) respectively (Supplementary table 1). Sample collection
and management complies with local institutional review board approvals and details are
provided in the Supplementary Note. Samples in cohort 1 represent those from 12 patients
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undergoing primary surgery, who provided informed consent to participate in a prospective
study. They encompass 12 geographically pre-determined tissue samples (15-20 mg)
obtained using a 14G Tru-cut needle from fresh surgical specimens following the map in
Figure 1b. In cohort 2 we studied de-identified residual tissue samples collected during
routine clinical care. Samples in cohort 1 are derived from fresh needle biopsy specimens
(n=98) while those in cohort 2 are from a combination of diagnostic tumor biopsies (n = 95)
and surgical specimen tissue blocks (n = 110) fixed in FFPE (n = 104) or fresh frozen at
acquisition (n = 101) (Supplementary Table 1). Experienced local pathologists performed
histopathological review of all primary tumors including IHC for ER and PgR Allred scores,
and HER?2 status with FISH confirmation for HER2 IHC scores of 2+ or 3+ (Supplementary
Table 1). Pathologists assessed intra-tumoral and stromal lymphocytes according to the
criteria previously described6 and Ki67 staining as described in the Supplementary Note
and presented in Supplementary Table 1). Sample size was chosen to ensure that genes
mutated in > 10% of tumors were sampled on average 5 times in the cohort.

DNA extraction

We performed DNA extraction from serial thick sections cut from tumor tissue samples.
Pathologist guided macro-dissection ensured tumor cell enrichment in cases where the
invasive tumor content was estimated to be less than 50% of cells. For two patients with
multi-focal disease (PD9193, PD9694) we used histopathologically guided needle dissection
of FFPE samples. We isolated tumor DNA from fresh or fresh frozen tissues using the
DNeasy® Blood and Tissue Kit and from FFPE tissues using QlAamp® DNA FFPE Tissue
Kit or Argylla Technologies® DNA nanoPurify kit. We used QIAGEN’s® QlAamp® DNA
Blood Maxi Kit, QlAamp® DNA Mini Kit or DNeasy® Blood and Tissue Kit to isolate
DNA from whole blood. In all cases we followed protocols according to the manufacturer’s
recommendations.

Genomic sequencing

We created targeted capture pull-down (average insert size 150bp) and genome-wide, shot-
gun (insert size 300-600bp) libraries from native DNA using previously described
workflows1447 (details in Supplementary Note) and generated paired-end sequence data
(75bp and 100bp respectively) using lllumina HiSeq® machines. The sequence data, aligned
to the human reference genome (NCBI build37) using BWA“8 is deposited in the European
Genome-Phenome Archive (https://www.ebi.ac.uk/ega/ at the EBI) with accession humbers
EGADO00001000965 and EGAD00001000898. Within the custom targeted capture
experiment we sequenced 290 tumor samples from 50 subjects’ cancers to a mean target
coverage of 160x with 63% of exonic regions achieving >= 100-fold coverage
(Supplementary Table 2). We sequenced to whole genome level 29 tumor and 13 matched
normal samples with average sequence coverage of 40 and 31 fold respectively
(Supplementary Table 2). We used both sequencing approaches for 16 tumor samples.

We used 2 in-house cancer gene panels (CGP, versions v1 and v2) designed to pull down a
selection of genes (454 and 360 genes respectively) that are known, or suspected to play a
role in cancer (Supplementary Table 3). The panel targets genes from the Cancer Gene
Census (COSMIC)24, genes recurrently amplified or over-expressed in cancer?2:23 and
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candidate cancer genes such as kinases from the MAP Kinase signaling pathway. All genes
in CGP v2 are also in CGP v1 - only genes present in both CGP v1 and v2 are presented in
these analyses. We performed custom RNA bait design following manufacturers’ guidelines
(SureSelect®, Agilent®, UK) to create designs of approximately 2Mbp in size. The data
from 63 and 240 tumor samples is derived form CGP v1 and v2 respectively Supplementary
Table 1.

Somatic mutation calling

Comprehensive lists of all somatic substitutions, small insertions and deletions (indels)
structural variants including variant allele frequencies from both whole genome and targeted
capture analysis are available for download at ftp://ftp.sanger.ac.uk/pub/cancer/Y atesetAl/.
All high confidence mutation calls within the scope of the cancer gene panel are presented in
Supplementary Table 7. Coding substitution and indel calls and structural variants with
potential oncogenic effects, identified in whole genome data, are summarized in
Supplementary Table 8. Mutation calling algorithms used in the analysis are freely available
at https://github.com/cancerit/ and are described in the Supplementary Note.

Validation approaches

When exploring heterogeneity determining when a mutation is absent is at least as important
as determining when the mutation is present. To address this we performed validation using
custom pull-down and sequencing of mutations identified in any sample (Illumina HiSeqg®
or MiSeq®) in all related samples from the same cancer. We enriched the validation
experiment with mutations that appeared to be heterogeneous (from the branches of
phylogenetic trees) or that defied the consensus tree. Across the 39 whole genome tumour
samples we selected in excess of 2,000 somatic substitution locations for validation and
created a 473kbp custom capture probe design using Agilent® Technologies freely available
online software ‘Sure Select Design Wizard’ using high-stringency repeat masking, a tiling
density of 2X and balanced boosting. We created DNA capture (paired-end, average insert
size 150bp) libraries using native DNA where resources permitted, or if necessary using
whole-genome amplification (WGA). We sequenced multiplexed libraries to an average
depth of 265X using the lllumina MiSeg® platform. When a variant is called present in the
tumor sample and absent in the matched normal sample in both discovery and validation
experiments for one or more related sample we report it as validated somatic (see
Supplementary Note for details of validation calls). Using these criteria 99% (2,217 out of
2,235) of substitutions validated somatic (Supplementary Table 4). The remaining calls are
not detectable in any relevant sample’s validation data (false positive, n=10) or detected in
the matched normal at validation (germline, n=7). We confirmed absence of 1,301 out of
1,683 (77%) of mutations. Overall concordance between the 2 experiments (true positives
and true negatives/ all validation calls) was 90% (5,003 out of 5,527). The overall level of
concordance for the targeted capture experiment is higher, with consistency between 189 out
of 191 validation and discovery calls (99% concordance), likely reflecting the higher
coverage in this experiment (Supplementary Table 4, Supplementary Note).
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Variant annotation

To identify likely driver events we first identified from the literature the genes that are most
likely to contribute to breast cancer oncogenesis. For each individual mutation that fell in
one of these 45 high confidence breast cancer genes we assigned a likely oncogenic status as
follows: Presumed oncogenic — Mutations that meet any of the following criteria:

i. Canonical oncogenic mutations in recurrent hotspots

ii. Recurrent mutations in a known oncogene: >= 2 confirmed non-synonymous or in
frame deletion, somatic mutations have previously been confirmed at this locus in
COsMIC

iii. Likely damaging events in a known tumor suppressor: Truncating, frameshift,
essential splice variant or within a mutation hotspot (>= 2 somatic mutations) or
Synonymous mutation in a known recurrent splice site hotspot*®

Possible oncogenic — Previously unreported variant in a high confidence breast cancer gene
that occurs within 3 amino acids of >= 2 confirmed somatic mutations or truncating events
in “‘medium confidence’ tumor suppressors (defined as known tumour suppressor role in
cancers other than breast cancer). All other non-synonymous mutations are assigned a status
of unknown relevance. Using these criteria the 260 mutations identified across the dataset
are annotated as follows: 87 oncogenic, 8 possible oncogenic, 124 of unknown oncogenicity
and 41 nononcogenic (synonymous) (Supplementary Table 3).

Copy number analysis

Likely driver copy number changes are reported for individual samples within the targeted
gene capture experiment in Supplementary Table 7, and for whole genome samples in
Supplementary Table 8. Segmental copy number information was derived for each of the 29
tumor samples for which we had whole genome NGS data using the ASCAT algorithm
(allele-specific copy number analysis) of tumors as previously described32. The algorithm
simultaneously determines and utilizes aberrant cell fraction and ploidy estimates to
determine allele specific copy number from NGS data. A segment is considered amplified if
it is present at more than twice the estimated average ploidy across the whole genome.
Homozygous deletions are identified as segments where total copy number equals zero
(subclonal homozygous deletions if copy number is less than 1). Visual inspection of copy
number transitions and reconstructed, associated rearrangement breakpoints are used to
validate driver copy number events as described in the Supplementary Note.

Within the targeted capture experiment we evaluated copy number using libraries from the
ASCAT algorithm and used LogR and BAF values to identify five of the most frequent arm
level copy number changes in breast cancer — 16p and 17p loss and 1q, 8q, 16p gain32 and
amplification of 12 genes frequently identified as amplified in breast cancers (FGFR1, MYC,
CCND1, CCND3, CCNEL, CDK4, CDKS6, IGF1R, ZNF217, AURKA, EGFR and
ERBB2)33:34, Details are provided in the Supplementary Note alongside the targeted capture
copy number validation approach that employed multiplex ligation dependent probe
amplification (Supplementary Table 4).
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Statistical and informatics approaches

We performed statistical analysis and produced graphics using R version 3.0.1: A language
and environment for statistical computing (R Foundation for Statistical Computing, Vienna,
Austria. URL http://www.R-project.org/). The stars() function generated coxcomb plots.
Other packages used include RColorBrewer, xIxs , Ime4, mgcv, as well as packages from
bioconductor®0. All hypothesis tests performed in the manuscript are 2-sided where
appropriate.

Measuring heterogeneity in targeted capture data

(i) Estimating variant allele frequencies and confidence intervals—In a
sequencing experiment with finite coverage it is likely to completely miss mutations present
at low variant allele frequency (VAF). Our point estimate of the VAF is

VAF=x/n

where x is the observed number of reads reporting the variant and n is the coverage. This is
the maximum likelihood estimated under a simple binomial sampling model,

X~Bin (n, VAF) .

It is, however, also possible to observe x reads if the true VAF is greater than the ML
estimate. To decide what is the maximal allele frequency compatible with our data, we
defined a one-sided 95% confidence interval ClI to be that VAF beyond which the
probability to observe x or less reads is smaller than 5%,

Cl=arg max,,, [F (x,n, VAF):F < 0.95],

where F denotes the cumulative density function of the binomial distribution.

(ii) Testing for presence or absence of mutations—For the purposes of determining
if an individual mutation is present or absent, as displayed in the driver mutation heatmap
(Figure 5) we determined the presence of each mutation in a dichotomous fashion in each
sample. A mutation is considered to be: (i) Present if found at positive variant allele
frequency (VAF > 0); (ii) Indeterminate in cases with no detectable VAF = 0, but 95%
confidence intervals spanning ClI > 5% allele frequency, as the absence of such mutations
could not be ruled out with sufficient certainty; (iii) Absent if undetectable (VAF = 0) and
the 95% confidence interval Cl < 5%. Only in such cases are mutations reported as
heterogeneous.

(iii) Measuring Heterogeneity—In addition to sampling fluctuations, the observed VAF
is confounded by the tumor cell fraction T. Any comparison of VAF between samples
should therefore normalize for T. A low tumor cell fraction T will rescale all observed
variant allele frequencies by a factor of T. For the computation of the heterogeneity index,
we hence use the average VAF in sample j as an estimate of Tj and rescale all VAF values
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by 1/T;j. To quantify and compare heterogeneity between cancers we calculated a continuous
index of heterogeneity across all data from the targeted gene screen. This index measures the
average discordance of mutation frequencies between any two pairs of samples, after
adjusting for the extent of tumor cell content. The distance in tumor cell fraction adjusted
VAF of gene i between sample j and k is computed as

Dijk:min (‘VAFij/Tj — VAFik/Tk|, |Clij/Tj — VAFik/Tk‘, ‘VAFij/TJ‘ — Clik/TkD

Note that the above distance uses the distance to the CI if that appears closer to the observed
VAF,

The heterogeneity index is then defined as the average distance between all genes and
samples

HET= (%;%;Zk<; Dij) / (gb (b —1) /2),

where g is the number of genes and b the number of samples.

A heterogeneity value of 0 indicates perfect concordance of all samples and a value of 1
would correspond to a situation, in which one sample has one additional fully clonal
mutation. The heterogeneity index shows a strong inverse correlation with the branch time
derived from whole-genome sequencing data in the sense that late-branching tumors display
higher levels of geographic heterogeneity (rho=-0.73; Supplementary Fig. 3j).

(iv) Testing for heterogeneity—We used generalized linear models (glm’s) with an
overdispersed binomial family to test whether the observed differences in variant allele
frequencies between genes and samples in a given cancer can be explained by sampling
fluctuations and differences in tumor cellularity alone. In a binomial glm the expected count
of mutation i in sample j is given by

E [Xy] =f (ai+85+3)

where f is the inverse logit function. Here a; sets the average frequency of each gene i and f;
the common factor by which the gene frequencies change in sample j due to changes in
tumor cellularity across samples. The parameter vj; reflects the deviation of gene i in sample
j from the trend imposed by the gene-specific allele frequency and cellularity in sample j.
Note that there can be maximally (g-1) x (b - 1) vjj’s because of the g+b shared factors q;
and Bj; the total number of observations is g x b.

An overall test for heterogeneity in a given cancer can then be conducted by testing whether
all yjj are zero, the alternative being that there is variation in any gene. This can be achieved
by means of a likelihood ratio test (LRT) with (g-1) x (b — 1) degrees of freedom. We used
the following R commands to derive a P-value for each sample: # x is a vector of variant
allele counts for all lesions and biopsies; the length of x is g*b
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# n is a vector of the corresponding coverage
# genes is a factor() determining which gene x and n refer to
# biopsies is a factor() determining the biopsy
y <- cbind(x, n-x)
fitl <- gIm(y ~ genes + biopsies —1 + genes:biopsies, family=quasibinomial)
Ppatient <- anova(fitl, test="LRT”, dispersion=1.5)[4,5]

P-values for each patient are subsequently corrected for multiple testing using the
Benjamini-Hochberg procedure. P- and Q-values for each patient are reported in
Supplementary Table 6. Similary we tested for variation in a particular gene i using an
interaction term for this gene only:

fit.gene <- glm(y ~ genes + biopsies —1 + (genes==gene):biopsies, family=quasibinomial)
glm.p.value <- anova(fit.gene, test="LRT”, dispersion=1.5)[4,5]

Additionally, we used glm’s with random effects, implemented in mgcv::gam(), to compute
estimates of the variation of allele frequencies across samples. Gene-wise P-values from glm
and gam models are also listed in Supplementary Table 6 (glm.p.value, gam.stddev,
gam.p.value).

(v) Testing of clinical associations—Possible associations between clinical or
pathological factors and genetic heterogeneity as a response are fitted using R’s Im()
function. F-tests for overall association are then computed using the anova() command.

Basic principles of phylogenetic tree construction

For ten patients with multi-sample whole genome sequencing data, to model the subclonal
structure we employed a number of bioinformatic and deductive reasoning approaches. The
intellectual framework for our methods has been previously described? and this approach
has been extended and reinterpreted by many others since, using the original data®1:52, Al
the conclusions we derive follow from three basic principles that also underlie the ‘mock’
trees derived from targeted capture data: (i) Cancer cells divide by asexual reproduction; (ii)
The exact same mutation does not occur more than once during the evolution of the cancer
(note that this so-called “infinitely many sites’ assumption is potentially not true for hot-spot
mutations in, say, PIK3CA but will be true for virtually all passenger mutations given the
size of the genome and the relative paucity of somatic mutations); (iii) Sequencing reads
from massively parallel sequencing data are a random sample from the alleles present in the
DNA.

The approach used in this paper followed 3 main steps: (i) Identification of large-scale
subclonal copy number changes using the Battenberg algorithm as previously described?.
Code is publically available at https://github.com/cancerit/cgpBattenberg; (ii) Clustering of
subclonal somatic substitutions in whole genome data using a Bayesian Dirichlet process in
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multiple dimensions across related samples as previously described?’; (iii) Hierachical
clustering across multiple samples by applying the “‘pigeon hole principle’ (PHP). Next, we
performed validation of mutations in individual branches by targeted pulldown and
validation of tree structures by independent clustering of indels and targeted pulldown
substitutions following steps i-iii (Supplementary Fig. 1).

Each step is described in further detail below and for individual patients all potential
solutions and reasoning are represented in Supplementary Figure 1, while individual cases
are discussed in the Supplementary Note. Branch length, cluster sizes and poster confidence
intervals are provided in Table 5.

(i) Whole genome data: mutation copy number and cancer cell fraction—For
each mutation we calculated the mutation copy number as previously described??, using the
mutant allele burden and the aberrant cell fraction and the locus specific copy number in the
tumor and matched normal from ASCAT 32. The mutation copy number reflects the
percentage of tumor cells within a sample carrying that mutation, and permits the cross-
comparison of the mutation in related samples despite differences in tumor purity and/ or
copy number profiles as previously demonstrated’.

Mutations present on multiple copies of a chromosomal segment will have a mutation copy
number greater than 1. To group mutations according to the percentage of cells containing it,
the number of chromosomes carrying the mutation must be determined. For all mutations
within amplified regions with a major allele copy number of C, the observed fraction of
mutated reads is compared to the expected fraction of mutated reads resulting from a
mutation present on 1,2,3,...C copies, assuming a binomial distribution. The fraction of
cancer cells reporting the mutation, or ‘cancer cell fraction’, is then determined as the
mutation copy number divided by the value of C with the maximum likelihood. Mutations
are determined as clonal if reported by ~100% or tumor cells and subclonal if present in
significantly less than 100% of cells.

For the purpose of comparing multiple related samples we excluded mutations from
clustering analysis when they occur in a region of different copy number between samples
and where the absence or altered copy number may explain the loss or different allele
burden in the related samples. This approach is essential to reduce overestimation of inter-
sample heterogeneity. Large-scale losses, including those at the arm or whole chromosome
level are frequent during evolution (Fig. 6b). Allelic loss can therefore be accompanied by
loss of large numbers of point mutations and indels, which could be misinterpreted as gained
events (i.e. ongoing evolution) in related samples. We placed the few individual driver
mutations that occurred in regions of differential copy number state on the reconstructed tree
post hoc. This then allowed them to be included in the temporal ordering inference.

(if) Mutational clustering—For individual samples we inferred the number of subclones
and the fraction of cells within each subclone using a previously described Bayesian
Dirichlet process (DP) to cluster mutations according to their cancer cell fraction:47. We
extended this process into multiple dimensions for the 10 patients with multiple related
samples where the number of mutant reads obtained from multiple related samples are
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modeled as independent binomial distributions. Clusters are identified as local peaks in the
posterior mutation density obtained from the DP. For each cluster, a region representing a
‘basin of attraction’ is defined by a set of planes running through the point of minimum
density between each pair of cluster positions. Mutations are assigned to the cluster in whose
basin of attraction they are most likely to fall, using posterior probabilities from the DP. The
R code required to sample clustering of mutations from a Dirichlet process and to make
density plots of the clustering for each pair of samples is released as a supplementary
material alongside this paper.

(iif) Hierarchical ordering of mutation clusters using the ‘Pigeon Hole
Principle’—To determine the most likely phylogenetic tree we applied the PHP to
determine the order in which mutational clusters arose in time and in relation to each other!.
This principle operates upon the premise that if the fraction of cells reporting 2 different
mutations adds up to >100%, then at least one tumor cell must contain both mutations. By
the same principle one can determine if clusters of mutations are collinear i.e. on the same
branch of the phylogenetic tree, and often the temporal order in which they arose. For all
clonally related samples the same underlying phylogenetic tree must exist. This exerts a
greater stringency to the inferred ordering of subclonal clusters — firstly the PHP must be
fulfilled within all individual related samples and the ordering of events cannot be
contradictory across related samples.

We attempted to reconstruct phylogenetic trees from the whole genome discovery
substitution data using all clusters that are estimated to contain at least 150 substitutions or
>=2% of all clustered substitutions. To reflect the lower overall numbers in validation and
indel data this threshold requirement is set at 5%. In tree construction the percentage of all
mutations in a cluster determined the relative branch length. Within an individual sample the
cancer cell fraction fraction of a given cluster “X’, is the fraction of tumor cells reporting the
mutations in cluster X. Credible intervals for the cancer cell fraction are typically small
reflecting high numbers of mutations in most clusters. We allowed 5% variation in either
direction to the assigned cluster sizes when determining ordering

In 7 out of 10 cases we derived a single, unambiguous phylogenetic tree solution from the
whole genome discovery data (Supplementary Fig. 1). In two cases we identified one or
more alternative tree using the discovery data (PD9773, PD9694) while in another case
(PD9777), a soloution could only be deconvoluted using revised VAFs from high depth
validation data. The validation clustering data identified additional tree branches in 2 cases
(PD9775, PD9849). In cases where uncertainty as to the position or size of a branch the
relevant branch(es) are ‘faded out’ in Fig. 4a. Our approaches are described in detail in the
Supplementary Notes section where we focus on patient PD9694 and cases where solutions
are less clear-cut.

Mutational sighature analysis

Mutational signatures are detected in two independent ways: (i) de novo extraction based on
somatic substitutions and their immediate sequence context and (ii) refitting of previously
identified consensus signatures of mutational processes. We used a previously developed
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theoretical model and its corresponding computational framework to perform de novo
extraction®3, Details of mutational signature analysis can be found in the Supplementary
Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design
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' siice from pathological block
O Diagnostic core biopsy

(a) Summary of samples within cohorts 1 and 2. n, number of subjects. (b) Geographical

sampling approach: NW, northwest;

NE, northeast; SW, southwest; SE, southeast within

tumor hemisphere 1 and 2, plus 1 or 2 involved lymph nodes in 3 cases. For multifocal
cancers all samples are taken from the single largest focus. (c) Source of retrospective
clinical samples in relation to primary tumor management. RD, residual disease; NAC, Neo-
adjuvant chemotherapy; pCR, pathological complete response.
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Figure 2. Systematic sampling reveals spatial and temporal tumor evolution
(a—d) Somatic mutation genotypes, presented as coxcomb plots, overlaid on the sample

schema described in Figure 1b. Point estimates of the variant allele fraction (VAF) or copy
number (LogR) is represented by the lateral extension of the outlined wedge. Pale wedges
lacking an outline represent the 95% confidence interval — if coverage is low the confidence
of the VAF is reduced and the pale wedge appears beyond the point estimate. ER, Estrogen
receptor; PgR, Progesterone receptor; IDCA, invasive ductal carcinoma. Driver mutations
and arm level copy number gains (+) and losses (=) detected in each cancer are annotated in
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the case-specific mutation legend. Significant heterogeneity amongst point mutations in
individual cancers is determined using generalized linear models (glm) and Benjamini-
Hochberg correction: *, q < 0.05 indicates significant point mutational heterogeneity; **,
non-significance. (a) No detected intra-tumoral heterogeneity (q=0.8). (b—c) Local
expansion of subclones (red arrow heads). (d) Complex intermixing of subclones: Individual
mutations (each highlighted with a different colored arrowhead) appear in different
combinations of samples. Mock phylogenetic trees are also shown: The presence and
absence of mutations across related samples indicate distinct subclones and dictate the
branching structure, the number of mutations in each subclone determine branch lengths.
See ftp://ftp.sanger.ac.uk/pub/cancer/YatesEtAl/ for coxcomb and heatmap plots for every
cancer in the cohort.
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Figure 3. Subclonal patterns in multifocal breast cancers
(a—c,e) Targeted capture genomic analysis of subclonal structure in four subjects’ multifocal

cancers. Coxcomb plots and mock phylogenetic trees are generated as described in Figure 2.
Plots from multiple samples from the same tumor focus are grouped together within grey
outlined boxes. Colored arrow-heads identify subclones that are shared by fewer than all
invasive foci. (a) Case PD14753: Genotypes of 5 samples from 3 disease foci indicate deep
branching of the tree, driver heterogeneity and subclone intermingling across foci. (b) Case
PD9193: Genotypes of 7 samples from 4 disease foci demonstrate subclone intermingling.
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Orientation within mastectomy specimen: UIQ = Upper Inner Quadrant, UOQ = Upper
Outer quadrant, LIQ = Lower Inner Quadrant, LOQ = Lower Outer Quadrant. (c) Case
PD9694: Parallel evolution with 2 unique PTEN driver mutations in different foci.
Schematic representation of pathological features in the mastectomy specimen. Dashed line
represents the deep (chest wall) margin. Scale represents 3mm in a formalin fixed paraffin
embedded tissue section. (d) Case PD9694: PTEN immunohistochemistry shows PTEN
protein to be present in DCIS but lost in invasive disease foci 1 and 2. Scale = 100 microns.
(e) Genotypes of 3 samples from 2 disease foci in PD9770, prior to chemotherapy and 2
samples from Focus 1 after neoadjuvant chemotherapy. Focus 2 exhibited a pathological
complete response to 3 cycles of each chemotherapy agent.

Nat Med. Author manuscript; available in PMC 2016 January 01.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Yates et al. Page 25
a
TN cancers: neo-adjuvant chemotherapy Primary Surgery
Pathology TN:23 mm T:27 mm TN:35 mm TN:40 mm TN:28 mm TN:60 mm TN: Multi-focal:31 mm ER*‘PgR*HER2: TN:40 mm ER*PgR*HER2 :Multifocal
NAC FEC-T EC-P EC-P Epi Epi FEC Epi-T 30 mm & DCIS:26 mm
Case PD9775 PD9773 PD9776 PD9777 PD9769 PD9771 PD9770 PD9849 PD9852 PD9694
No. point 3,104 (>99%) 2,036 (99%) 13,219 (94%) 4,851 (80%) 6,582 (70%) 11,479 (58%) 7,624 (40%) 4,212 (91%) 6,231 (83%) 3,371 (16%)
mutations
(% clonal) BRCAT+ 4+ SF3B1:
TP53: TP53: PTEN TP53: TP53:p.R175H TP53: TP53: % p.K700E
p.R248W | |p.R248Q ARID1B p.N286fs CTNNBT: p.P151R p.Q165* it CREBBP:
ARID1B: mye CBL: p.S45delS PTEN: PIK3CA: % p.Q493*
p.G1395fs FGFR2 p.P417A PTEN p.T319fs* p.H1047R PTEN del
LOH 1 JAK2 myc FGFR2 PBRM1
17p 172 LOH CENET|(x8) ERLIN2 NF1 i
13q 17p LOH 17p, WHSC1L1 EGFR  BMX:fsi:
3p, 21q FGFR1 ERBB2 3
LOH 10q, LOH
17p 17p
= NRAS
IGF2Rdel  CBL del
RUNXT, AKT2 CDKN2B -
del CCNET1 del ERBB2 =
FGFR2, (x22) CBFB, PBRM1
RUNX1 RAD21 del
del NCOR1

loSs

& =
% i % MYC FGFR2

Lymph node metastasis O Branches detected
b ** in DCIS samples
Case PD9775 PD9773 PD9776 PD9777 PD9769 PD9771 PD9770 PD9852 PD9694
o [ @ T T | @ I o s s B3 m N 5 ‘o :
smpe & £ ¢ & 8 8 (&5 £ 4|8 ilg § §Rgf3 g £ &8 3§ %:i8:
g 2z g 2 g ¢ 2|l ¢ 21 z|¢2 zle ¢ 2 2 Iz 2 g 2 s E gt
Composite & & 2 B & B ol & = 2 G olEg © s T R g g = D
subclonal | S | £ __1 &} —
composition ® ®® Oje® o0 ©® ® e e e ® @
Subclones p— ==
shared by | €22 SC¥ - u
1 sample o ® e ® e L
Private o i i 76 ‘ 4
sooires el oo oo oe ol @
Legend c d o
Pathological complete Legend: trees with residual Pathology N ER'PgR'HER2 HER2+ 7
response to NAC disease after NAC NAC Epi FEC-T FEC-T FEC-T g g
Residual disease after NAC igi g 5
e d prinl post:NAC Case PD9768 PD14768 PD14748 PD14757  PD14767  PD14758  PD14765  PD14770 Sq
Primary surgery(untreated) ‘New’ b hes d " TP53 MLL2 PIK3CA PIK3CA PIK3CA PTEN PIK3CA PIK3CA E
e raphesidetecta P53 CDH1 PTEN CDH1 PIK3CA ERBB2 I I
111 Metastatic sample v TP53 GATA3 CCND1 g
. G ‘Lost’ branches detected CCND1 TP53 SN
x Divergence point amongst before but not after NAC a g
untreated samples § ,
G Persistent’ branches bive 0 1 2 3 4 5
*._.» Presentin <100% cells detected before and NFAIP3 H ity score

after NAC

(targeted pulldown)

Figure 4. The genome-wide spectrum of branching evolution
(a) Phylogenetic trees generated by clustering genome-wide point mutation data from 10

multiregion sampled primary cancers. Relative branch lengths are determined from the
proportion of mutations in each branch. An ‘X’ indicates the most recent common ancestor
inferred from treatment-naive samples alone. (a and c) Cases where post-treatment samples
are available (green highlighting bar above trees): Red node(s) indicate where subclones
only detected after treatment (branches with red outlines) emerged within the tree. Branches
only detected amongst pre-treatment samples are indicated by a purple outline, black
branches indicate detection in both pre- and post-chemotherapy samples. Likely driver genes
are colored according to mutation type: amplification (red text), homozygous deletion (blue
text), point mutation (black text) and potentially relevant structural variants (purple text).
Cancer type is specified: triple negative = TN, DCIS = ductal carcinoma in situ. Type of
neo-adjuvant chemotherapy (NAC): Epi, Epirubicin; T, Docetaxel; P, Paclitaxel; (F)EC,
(Fluorouracil), Epirubicin, Cyclophosphamide (b) The subclonal composition of individual
samples where colors correspond to the tree branch in (a) and the area is proportional to the
percentage of cells in that sample that contain the mutations in that branch. (c) Mock trees
inferred from targeted capture data for samples with pre- and post-treatment samples. Six
samples with no branching are not presented. Branches are colored as stated above for
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genome data. (d) Pearson’s correlation for heterogeneity estimates from whole genome and
targeted capture data.
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Figure 5. Subclonal driver mutations and parallel evolution
(a) Heatmap of somatic driver mutations and copy number changes identified from genomic

sequencing of 50 tumors. Single base substitutions and small insertions and deletions are
reported by red squares, intense red when detected in all associated samples from the tumor
(omnipresent), pink when present in less than all samples, or clearly subclonal. Omnipresent
and heterogeneous copy humber changes are reported by dark-blue and light-blue squares
respectively. (b—d) Three examples of parallel evolution, see fourth example in Figure 3c—d
and 4a (PD9694). (c) One possible phylogenetic tree and sample subclonal compositions
inferred from targeted capture data (as described in Fig. 2 and 4c legends) with TP53
mutations arising on 3 branches. See also Supplementary Figure 3 (PD9850). (b) Multiple
independent episomal amplification events in FGFR2 and (d) two independent deletions in
RUNX1 detected in 2 samples from the same cancer. In copy number graphs (b and d) the
black dots reflect the number of copies of genomic DNA from that specific locus, with a
level greater than 2 reflecting a net gain and a value less than 2 reflecting a loss.
Reconstructed rearrangement breakpoints are represented by colored lines according to
whether they are detectable in pre (purple) or post (red) chemotherapy samples only. The
type of event is indicated by the position of the arc joining the breakpoints: D, deletion; TD,
tandem duplication.
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Figure 6. Structural variants shape cancer evolution
(a) Comparison of the proportion of substitutions (subs) and structural variants (SVs) that

are subclonal in each cancer. Inset graph shows scatterplot and Pearson’s correlation
coefficient (r). (b) Clonal and subclonal complex rearrangements (as described in the
Supplementary Note section) and arm level loss of heterozygosity (LOH) events. The
average genome-wide ploidy is indicated: T = tetraploid (4 copies), D = diploid (2 copies).
(c) Breakdown of clonal and subclonal structural variants by category (inversion = Inv,
deletion = Del, inter-chromosomal translocation = Trans, tandem duplication = TD). For
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each cancer the total number of mutations assigned to the trunk (T) or branches (B) is
indicated in the top left corner, while the proportion of each mutation type that is subclonal
(i.e. within the branches) is added as a percentage above each bar. (d) Case PD9770:
Examples of two subclonal, complex structural rearrangements arising on separate branches
of the phylogenetic tree. In PD9770c structural rearrangements link multiple regions of
amplification across 3 chromosomes. Amplifications include multiple genomic regions that
have been previously identified as recurrently amplified in cancers and are represented by
red arrows while the locations of known oncogenes are marked by pink bars. In PD9770d
these events are not seen but a breakage fusion-bridge event amplifies segments including
the CDCY gene. Rearrangement types include: Interchromosomal translocations (Tr), tail-to-
tail inversions = TT (green), head-to-head inversions = HH (orange), tandem duplication =
TD (orange), deletions = D (purple)
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