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Further Development and Application of GEOFRAC-FLOW to Geothermal 

Reservoirs 

 

Executive Summary 

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic 

model of natural rock fracture systems.  The main characteristics of GEOFRAC are its use of 

statistical input representing fracture patterns in the field in form of the fracture intensity P32 

(fracture area per volume) and the best estimate fracture size E(A).  This information can be 

obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling 

of fracture traces on the other hand. 

In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, 

GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, 

“Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for 

Geothermal Systems - Fracture Flow Modeling”.  GEOFRAC-FLOW allows one to determine 

preferred, interconnected fracture paths and the flow through them. 

In this report other models that can be used to model geothermal reservoirs are briefly reviewed in 

Chapter 2 followed by a summary of the main features of GEOFRAC-FLOW (Chapter 3) and a 

parametric study.  In that study (Chapter 4) the effect of varying fracture orientation and fracture 

apertures was investigated.  This showed that as expected, flow rate increased with aperture.  The 

orientation effect is more complicated but also logical:  For parallel fractures, flow is greater with 

secondary rotation; for randomly oriented fractures, flow is greater with no secondary rotation. 
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Chapters 5 and 6 describe the new developments. GEOFRAC-FLOW as originally developed 

assumed a fractured rock mass with flow entering into and exiting from the rock mass through 

planar boundaries.  This may not correspond to a reality where, in most cases, flow occurs between 

injection and production wells.  Hence a new feature with wells as boundaries was included. – The 

other development is a Graphical User Interface (GUI), which allows one to conveniently enter all 

the input ranging from reservoir geometry to fracture characterization and flow.  Output in form 

of information on flow rates and graphical representations of the fracture networks is then 

provided. 

The other main contribution developed in this report is the application of GEOFRAC-FLOW to 

the Bjarnaflag hydrothermal plant in Northern Iceland.  This is making use of the Nármafjall 

geothermal field.  Note that this application also included the simple heat transfer model described 

in the parallel report “Numerical and Analytical Modeling of Heat Transfer between Fluid and 

Fractured Rocks”.  Input parameters were obtained from information made available by the 

Icelandic energy company Landsvirkjun with some interpretation by the authors of this report.  

The resulting flow rates compare well to the actual values while the energy (heat) extraction is 

higher than the capacity of the powerplant.  This is to be expected given the energy conversion 

effects of the geothermal plant and by the fact that the thermal model does not consider thermal 

drawdown.  One can, therefore, state that the modeling is satisfactory, particularly given the work 

on thermal drawdown reported separately. 
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CHAPTER 1 

INTRODUCTION 

 

In deep geothermal energy projects naturally and artificially induced fractures in rock are used to 

circulate a fluid (usually water) to extract heat; this heat is then either used directly or converted 

to electric energy. MIT has developed a stochastic fracture pattern model GEOFRAC (Ivanova, 

1995; Ivanova et al., 2012). This is based on statistical input on fracture patterns from the field.  

The statistical input is in form of the fracture intensity P32 (fracture area per volume) and the best 

estimate fracture size. P32 can be obtained from fracture spacing information in boreholes and 

scanlines outcrops using the approach by Dershowitz and Herda (1992). Best estimate fracture size 

can be obtained from fracture trace lengths measured on outcrops with suitable bias corrections as 

developed by Zhang et al. (2002). Distribution and estimates of fracture size can also be obtained 

subjectively. GEOFRAC has been applied and tested by estimating the fracture intensity and 

estimated fracture size from tunnel records and from borehole logs.  In the research presented here, 

GEOFRAC predictions were satisfactorily applied for geothermal basin characterization. Since its 

original development, GEOFRAC has been made more effective by basing it on Matlab, and it has 

been expanded by including an intersection algorithm and, most recently, a flow model. 

GEOFRAC belongs to the category of Discrete-Fracture Network models. In this type of model 

the porous medium (matrix) is not represented and all flow is restricted to the fractures. Fractures 

are represented by polygons in three dimensions. Both the fracture - and flow model have been 
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tested and a parametric study was conducted in order to check the sensitivity of the output results 

to the inputs. 

In Chapter 2 the existing theoretical models of geothermal reservoir simulation are briefly 

described with emphasis on hydro-mechanical models. The available commercial software tools 

and their application in large scale projects are also introduced. Chapter 3 describes the basic 

concepts of GEOFRAC, a three-dimensional discrete fracture pattern model. In Chapter 4 the 

parametric analysis is used to capture the sensitivity to the input parameters of GEOFRAC. 

Chapter 5 introduces a new algorithm in GEOFRAC that can be used to model intersections 

between fractures and injection and production wells. In Chapter 6 the use of the GUI to run 

GEOFRAC is introduced and explained. In Chapter 7 a case study is presented, specifically, data 

from the Námafjall geothermal project in Iceland are used as inputs, and results from the simulation 

are compared with the real data. The conclusions in Chapter 8 are intended to explain the overall 

results and to briefly discuss future research. 
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CHAPTER 2 

A REVIEW OF PREVIOUS MODELING 

OF GEOTHERMAL RESERVOIR  

 

The development of simulation model for enhanced geothermal reservoirs requires predicting the 

capacity of hydraulically induced reservoirs. Geothermal reservoir modeling in turn requires an 

adequate mathematical representation of the physical and chemical processes during the long-term 

heat extraction period. During the last 20 years the use of computer modeling of geothermal areas 

has become standard practice. 

The intent of this chapter is to describe available models on the basis of the geological, geometric, 

mechanical (both solid and fluid) and thermal conditions. 

 

2.1 FRACTURE SYSTEM MODELS 

Modeling is an essential phase in studying the fundamental processes occurring in rocks and for 

rock engineering design. Modeling rock masses represents, however, a very complex challenge; 

the most important reason is that the rock is a natural geological material. A rock mass is a 

discontinuous, anisotropic, inhomogeneous and non-elastic medium; it is subjected to stresses 

often by tectonic movements, uplift, subsidence, glaciation and tidal cycles. A rock mass is also a 
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fractured and porous medium containing fluids in either liquid or gas phases, for example, water, 

oil, natural gas and air, under different in situ conditions of temperature and fluid pressures. The 

combination of all these factors makes rock masses a difficult material for mathematical 

representation via numerical modeling. The difficulty increases when coupled thermal, hydraulic 

and mechanical processes need to be considered simultaneously. 

Uncertainties are one of the main characteristics of rock mechanics. It is important to understand 

the uncertainties and assess them—so that it is possible to run models managing risks without 

being conservative.  

The aim of this section is to present numerical methods that are currently used to model rock 

fractures. It will introduce each model with a brief description followed by application cases. After 

this section, some of the models used to simulate particular characteristics of a rock mass such as 

the aperture of fractures and the intensity of the fractures are presented.  

 

2.1.1 Numerical methods  

The most commonly applied numerical methods in rock mechanics are: 

Continuum methods 

 Finite Difference Method (FDM) 

 Finite Element Method (FEM) 

 Boundary Element Method (BEM) 
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Discontinuum methods 

 Discrete Element Method (DEM) 

 Discrete Fracture Network (DFN) methods 

Hybrid continuum/discontinuum models 

 Hybrid FEM/BEM 

 Hybrid DEM/DEM 

 Hybrid FEM/DEM 

 Other hybrid models 

I will briefly describe these methods and their application in rock mechanisms.  

The first category of numerical models consists of the continuum methods. Continuity is a 

macroscopic concept. The continuum assumption implies that, the material cannot be split or 

broken into pieces. All material points originally in the neighborhood of a certain point in the 

problem domain remain in the same neighborhood throughout the deformation or transport 

process. Of course, at the microscopic scale, all materials are discrete systems. However, 

representing the microscopic components individually is mathematically complicated and often 

unnecessary in practice (Jing, 2003). 

Figure 2.1 shows how to model a fractured rock mass (Figure 2.1 a) using a continuum method 

such as FDM or FEM (Figure 2.1 b), the BEM (Figure 2.1 c) (Jing, 2003). The description of these 

methods will be given in the next sections. 
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Figure 2.1 - Representation of a fractured rock mass shown in (a), by FDM or FEM shown in (b), 

BEM shown in (c), and DEM shown in (d). (Jing, 2003) 

 

Discrete element methods are numerical procedures for simulating the complete behavior of 

systems of discrete, interacting bodies. Discrete Element Methods (DEM) and Discrete Fracture 

Networks (DFN) will be described after the continuum method. 

The combination of the continuum and discrete models produces a very interesting group of so-

called hybrid models. Hybrid models are frequently used in rock engineering, for flow and 

stress/deformation problems of fractured rocks. The main types of hybrid models are the hybrid 

BEM/FEM, DEM/BEM models.  

 



13 
 

Finite Difference Methods 

The FDM approximates the governing PDEs by replacing partial derivatives with differences in 

regular (Figure 2.2 a) or irregular grids (Figure 2.2 b) imposed over the problem domain. The 

original PDEs are transformed into a system of algebraic equations in terms of unknowns at grid 

points. After imposing the necessary initial and boundary conditions the solution of the system 

equations is obtained.  

 

Figure 2.2 - (a) Regular quadrilateral grid for the FDM and (b) irregular quadrilateral grid for the 

FDM (Jing, 2003) 

 

Coates and Schoenberg (1995) use the Finite Difference Method in order to model faults and 

fractures. What they try to do is to use the seismic propagation to detect slip surfaces. Figure 2.3 

shows how they use the staggered grid and the locations at which the different components, for 

example, of the stress and velocity, are defined. The use of the FDM was successful and all 

equations used are well presented in their paper. The issue that they also reported in the conclusion 

is that it is not so easy to assess whether a slip surface is a realistic model of a fault. 
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Figure 2.3 - Staggered grid used for the 2-D finite-difference scheme (Coates et al. 1995) 

 

One of the best known commercially available FD codes is FLAC. FLAC is an advanced two-

dimensional continuum model for geotechnical analysis of rock, soil, and structural support. Many 

researchers have used FLAC for studies such as stability of a slope and of a rock mass. (Shen et 

al., 2012; Apuani et al., 2005). 

 

Finite Element Method  

Finite element modeling is a well-established numerical technique that allows one to address the 

influence of the complexities that arise from non-linear behavior in geological deformations. Finite 

element models are used in addressing a broad variety of geological problems ranging from folding 

and fracturing of rocks (e.g., Zhang Y. et al., 2000) to tectonics (Kwon, 2004; Kwon et al., 2007).  
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The FEM requires the division of the problem domain into sub-domains; i.e. elements of smaller 

sizes and standard shapes such as triangles, quadrilaterals, tetrahedrals, etc. with a fixed number 

of nodes at the vertices and/or on the sides (Figure 2.1 b). Polynomials are used to approximate 

the behavior of the PDEs at the element level and generate the local algebraic equations 

representing the behavior of the elements. 

Zhang Y. et al. (2000) compare the results of a numerical modeling of single-layer folding using 

the Finite Element FLAC and Finite- Element MARC (Zhang Y. et al., 1996; Mancktelow, 1999). 

Numerical models of single-layer folds obtained using FLAC are consistent with those using the 

MARC for the same material properties and boundary conditions. The differences in the results 

reported by Zhang et al. (1996) and Mancktelow (1999) were not due to the different computer 

codes used in the two studies. The explanation lies in the different strain rates employed.  

Boundary Element Method  

The BEM solves linear partial differential equations that have been formulated as integral 

equations (i.e., in boundary integral form) (Figure 2.1 c). The BEM requires discretization at the 

boundary of the solution domains, reducing the problem dimensions by one and greatly 

simplifying the input requirements. The information required in the solution domain is separately 

calculated from the information on the boundary, which is obtained by solution of a boundary 

integral equation, instead of direct solution of the PDEs, as in the FDM and FEM (Jing, 2003). 

The BEM, as FDM and FEM, can be used to solve both dynamic and static problems.  

In order to use this method for fracture analysis, the fractures must be assumed to have two 

opposite surfaces. Denote Γc as the path of the fractures in the domain Ω with its two opposite 

surfaces represented by Γc
+ and Γc

- (Figure 2.4). Two techniques were proposed to model the 
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domain. The first is to divide the problem domain into multiple sub-domains with fractures along 

their interfaces, (Figure 2.4 a). The stiffness matrix contributed by opposite surfaces of the same 

fracture will belong to different sub-domain stiffness matrices, in this way the singularity of the 

global matrix is avoided (Jing, 2003). The second is to apply displacement boundary equations at 

one surface of a fracture element and traction boundary equations at its opposite surface, although 

the two opposing surfaces occupy practically the same space in the model (Figure 2.4 b).  

 

Figure 2.4 - Illustrative meshes for fracture analysis with BEM: (a) sub-domain, direct BEM; (b) 

single domain, dual BEM (Jing, 2003) 

 

Discrete Element Method (DEM) 

One of the original fields of DEM is rock mechanics. The first studies were conducted by Cundall 

(1971). The method has seen a wide variety of applications in rock mechanics, soil mechanics, 

granular materials, material processing, and fluid mechanics. This method can be used to represent 

block geometry and internal deformation of blocks (Figure 2.1 d). 
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Deng et al. (2011) state in their paper that DEMs can directly mimic rock and thus exhibit a rich 

set of emergent behaviors that correspond very well to real rock. Deng et al. (2011) implemented 

the DEM to handle rock deformation and fracturing processes. Rock is viewed, for instance, as a 

circular/spherical particle cluster with finite mass, and its mechanical performance is represented 

by the stiffness and strength of particles or bonds between particles (Figure 2.5). The solid rock is 

treated as a cemented granular material of complex-shaped grains. 

 

Figure 2.5 - Physical model of implemented DEM (Deng et al., 2011) 

 

Discrete Fracture Network (DFN) methods 

 Among the methods for modeling fracture flow systems, the DFN approach is one of the most 

accurate, but also the most difficult to implement, as stated by many researchers. The DFN method 

is a special discrete model that can consider fluid flow and transport processes in fractured rock 

masses through a system of connected fractures (Jing, 2003). Like the DEM, this method was 
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created from a need to represent more realistic fracture system geometries in 2-D and 3-D. Up to 

now they are widely used in applications to problems of fractured rocks, and they are an 

irreplaceable tool for modeling fluid flow and transport phenomena. Table 2.1 shows a summary 

of the main fracture models based on DFN (Staub, 2002), and Figures 2.6 through 2.10 show some 

of the models presented in the table. 

Due to its computational complexity these methods restrict fluid flow to the fractures and consider 

the surrounding rock as impermeable. With the progress in numerical techniques researchers are 

trying to model very complex systems of fractures and also take into account the fact that fractures 

can exchange fluid with the surrounding rock matrix (Reichenberg et al., 2006). 
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Table 2.1 - Main review of the DFN model, as regard to their applicability, advantages and 

limitations (Staub, 2002) 
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Figure 2.6 - Three-dimensional orthogonal model (Dershowitz and Einstein, 1988) 

 

 

 

Figure 2.7 - Comparison of (a) the general Baecher model with (b) the Enhanced Baecher (Staub, 

2002) 
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Figure 2.8 - “Generation of Veneziano joint system model” (Einstein, 1993) 

 

 

 

Figure 2.9 - (a) 3-D fractal Box algorithm, and (b) 3-D geometric model (Dershowitz et al, 1998) 
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Figure 2.10 - 3D geometric Levy-Lee fractal model (Dershowitz et al, 1998) 

 

Hybrid methods 

Dershowitz (2006) describes the development of a hybrid model using DFN and EPM. The EPM 

(Equivalent Porous Media) volume elements are integrated with the DFN triangular elements. In 

the case presented in the paper the hybrid model was used to model shaft sinking at an underground 

laboratory. The schematic representation is shown in Figure 2.11. 
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Figure 2.11 - Hybrid DFN/EPM Model Framework (Dershowitz, 2006) 

 

 

The hybrid DFN/EPM model first implements the sedimentary strata using EPM volumetric 

elements (wire frame in Figure 2.11), with properties derived from well testing. Then the EPM 

volumetric elements are linked to DFN elements and the identified major faults are implemented 

using tessellated surfaces (green in Figure 2.11). Finally water conducting fractures are 

stochastically generated are implemented as DFN elements, with geometry and properties, based 

on interpretation of hydro-physical flow logs, packer tests, and borehole image logs (Figure 2.12) 

(Dershowitz,2006). 
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Figure 2.12 - Stochastically Generated Water Conducting Fracture Population (WCF) Throughout 

Model Region (Dershowitz, 2006) 

 

2.1.2 Interpretation of fracture intensity  

Dershowitz and Herda (1992) introduce in their paper a class of fracture intensity measures in 1-

D, 2-D and 3-D. In three dimensions fracture intensity can be defined in terms of P31, the number 

of fractures in a volume; P32, the surface area of discontinuities per unit volume or P33; the volume 

of fractures in a volume (Figure 2.13).  
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Figure 2.13 - Three dimensional fracture intensity measures (Dershowitz and Herda, 1992) 

 

The most useful measure of intensity for three-dimensional fracture modeling is P32, since it does 

not reflect any orientation effect. The size distribution and the number of discontinuities are needed 

for calculating intensity. Zhang and Einstein (2000) present in their paper methods for estimating 

the size distribution and the number of discontinuities. The discontinuity size distribution can be 

inferred from the trace data sampled in circular windows by using the stereological relationship 

between the true trace length distribution and the discontinuity diameter distribution for area (or 

window) sampling (Warburton, 1980). Zhang and Einstein (2000) present a method for estimating 

the true trace length distribution which is affected by bias when measured. Several types of bias 

occur during sampling: e.g., orientation bias, size bias, truncation bias, censoring bias. They 

analyze the biases using statistical tools for lognormal, negative exponential and gamma 

distributions of discontinuity diameters. In order to estimate the total number of discontinuities the 

approach of Mauldon and Mauldon (1997) is used. This approach estimates the probability that a 

discontinuity with its centroid in the objective volume will intersect the wall of a borehole (Figure 

2.14).   
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Figure 2.14 - Vertical borehole in an objective volume (Zhang, Einstein, 2000) 

 

In order to describe both the intensity and the orientation distribution several tensor methods have 

been described. Those described by Oda (1982) and Kawamoto (1988) seems to take advantage of 

the concept of P32 and has a clear physical meaning. 

P32 is one of the principal inputs in GEOFRAC, so its correct estimation is very important. P32 is 

used as intensity of Poisson planes in the Controlled Volume in the primary stochastic process in 

GEOFRAC. More information about the generation of planes in GEOFRAC is presented in the 

next chapter. 

 

 



27 
 

2.1.3 Models for the aperture of the fractures 

Fluid flow in fractures is strongly dependent on the fracture aperture. For this reason it is very 

important, especially for geothermal applications, to have a model that well represents the 

geometric characteristics of the fractures. The relation between aperture and flow is commonly 

expressed in terms of the parallel plate laminar flow solution (Poisseuille equation) through a cubic 

law (Equation 2.1): 

L

Ph
q






12

3

  Equation 2.1 

 where 

h: aperture of the fractures (m) 

ΔP: pressure drop (Pa) 

μ: fluid dynamic viscosity (Pa s) 

ΔL: length of flow (m) 

using a hydraulic aperture related to the mean mechanical fracture aperture. The hydraulic aperture 

is a non-linear function of effective normal stress, the fracture morphology, material properties 

and its history. 

It is important to emphasize that the terminology used by different authors can be confusing. In 

fact, some authors refer to the aperture as the “width” or “opening”. In this thesis I will always use 

“aperture” for the distance between two separate fractures surfaces. 
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Many researchers such as Stone (1984), Vermilye et al. (1995) and Johnston and Mccaffrey (1996), 

through observation of fracture properties from field mapping, have proposed a power-law 

correlation between aperture h and fracture length l (Equation 2.2).  

l = ahb             Equation 2.2 

 

where b varies between 0.6 and 1 and a varies between 20 and 2000. Length and aperture are in 

mm. 

Tezuka and Watanabe (2000) used the Vermilye and Scholz (1995) equation to model the fracture 

network of the Hijiori hot dry rock reservoir. The aperture (in meters) is defined as shown in 

Equation 2.3: 

a = α * √𝑟     Equation 2.3 

where a is the fracture aperture, r is the fracture radius, and α is the factor that controls the 

relationship between the aperture and the radius. They conducted a sensitivity analysis for both 

the parameter α and rmax in order to find the most appropriate values. After comparison between a 

simulated flow and field observations, the values that they chose for the two parameters were: 

α = 4.0*10-3 

rmax = 200 m 

Ivanova et al. (2012) assume that fracture aperture (in meters) can be related with fracture length 

by a power-law function (Equation 2.4):  

 
 )R2( eh   Equation 2.4 
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where Re (in meters) is the equivalent radius of the sphere that circumscribes the fracture 

(polygon), h is the aperture, and a and b are coefficients that depend on the site geology and that 

can be found in the literature (Vermilye and Scholz, 1995; Stone, 1984; Vermilye et al.,1995; 

Johnston and Mccaffrey, 1996). 

Other researchers, such as Dverstop and Andersson, 1989; Cacas, et al., 1990 assume that the 

hydraulic aperture of fractures, h (in meters), follows a lognormal distribution, which can be 

written as:  





he
h

f(h)

h

0,
2

1
=

2

2

2

)(ln






  Equation 2.5 

                                                     

where f (h) is the lognormal distribution of the aperture, h, with parameters μ and σ.  

Ivanova et al. (2012) referring to these studies, implemented in their model this probabilistic 

approach but assuming that it as a truncated lognormal distribution that follows these relation: 

maxmin,
)()(

=
max

min

hhh
hdhf

f(h)
(h)f

hTR 


  Equation2.6 

 

Where hmin and hmax (in meters) are the minimum and the maximum aperture values. This relation 

is presented in Figure 2.15. 
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Figure 2.15 - Truncated lognormal distribution (Ivanova et al. 2012) 

 

2. 2 FLOW SYSTEM MODELS 

This section summarizes the numerical models describing fluid flow in fractured porous media. 

As reported by Diodato, 1994, four conceptual models have dominated the research: 

1) Explicit discrete fractures 

2) Dual continuum 

3) Discrete fracture networks 

4) Single equivalent continuum 

The Explicit Discrete Fracture model allows one to explicitly represent fluid potential gradients 

and fluxes between fractures and porous media with minimal non-physical parameterization. As 

Diodato (1994) explains the data acquisition with this model can become onerous where large 

numbers of fractures need to be represented.  
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Travis (1984) represents fractures with orthogonal orientation. An implicit finite difference 

formulation is used and solved iteratively. The region of interest is represented by a computational 

mesh of rectangular cells as shown in Figure 2.16. The rows, columns, and layers of the cells are 

not equally spaced. Some variables such pressure, density, concentration, and saturation are 

evaluated at the cell centers; others (velocity components) are evaluated at cell interfaces. 

 

Figure 2.16 - Typical computational mesh (Travis, 1984) 

 

Travis implemented an algorithm based on finite difference to create the TRACR3D code that 

was used to model time-dependent mass flow and chemical species transport in a three-

dimensional, deformable, heterogeneous, reactive porous/fractured medium (Travis, 1984). 

 

The Dual-continuum approaches are based on an idealized flow medium consisting of a primary 

porosity created by deposition and lithification and a secondary porosity created by fracturing, 
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jointing, or dissolution (Warren and Root 1963). The first studies were introduced by Barenblatt 

et al. (1960) and later extended by Warren and Root (1963). The porous medium and the fractures 

are envisioned as two separate but overlapping continua. Fluid mass transfer between porous 

media and fractures occurs at the fracture-porous medium interfaces (Diodato, 1994).  

More recent studies such as that by IIlman et al. (2004) used a dual continuum two phase flow 

simulator called METRA to represent the matrix and the fractures as dual overlapping continua; 

liquid flux between continua are restricted by a uniform factor. Figure 2.17 shows an example of 

the steady state distribution of fracture saturation (Figure 2.17a), matrix saturation (Figure 2.17 b), 

fracture water flux (Figure 2.17 c), and matrix water flux (Figure 2.17 d) for a single realization of 

fracture permeability with qa=42.5 mm/yr, where qa is the water flux. In Figure 2.17 the materials, 

used in the test, are defined with the acronyms: Tiva Canyon Tuff (TCw), non-welded Paintbrush 

Tuff (PTn), and welded Topopah Spring Tuff (TSw). Illman et al., 2004 state: “The distribution of 

saturation in the fracture continuum is highly variable in the nonwelded and welded units. The 

saturation is highest locally, where permeability in the fracture continuum is low and at the 

TCw/PTn boundary in the fracture continuum, where the contrast in permeability causes a 

permeability barrier. As water moves progressively from the fracture to the matrix continuum in 

the PTn unit, the variability in saturation decreases with depth in the PTn fracture continuum”.  
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TCw 

PTn 

TSw 
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Figure 2.17 - Steady state distribution of: (a) fracture saturation; (b) matrix saturation; (c) fracture 

water flux; and (d) matrix water flux qa=42.5 mm/yr (Illman et al., 2005) 
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In Discrete-fracture-networks all flow is restricted to the fractures. This idealization reduces 

computational resource requirements.  Fractures are often represented as lines or planes in two or 

three dimensions. For contaminant transport, some network models allow for diffusion between 

the fracture and porous medium (Diodato, 1994).  

The model developed at MIT that will be introduced in Chapter 3 belongs to this category. 

Fractures are represented by polygons in three-dimensions, the porous medium is not represented 

and all flow is restricted to the fractures. 

The Single Equivalent Continuum Formulation assumes that the volume of interest is 

considered to be large enough that, on average, permeability is a sum of fracture and porous media 

permeability. Pruess et al. (1990) demonstrated that where the scales of integration are sufficiently 

large, the single equivalent continuum approximation will model well the conserving fluid mass. 

It may, however, be a poor predictor of spatial and temporal distributions of contaminant fluxes 

(Diodato, 1994). 

 

2.3 SOFTWARE TOOLS IN USE AND THEIR APPLICATION 

Thermal-hydrological-mechanical processes are, conventionally, solved by coupling a fracture 

system model with a subsurface flow and heat transfer model. The term ‘coupling’ implies that 

one process affects the initiation and progress of another. It is possible to use coupling processes 

using the same software, as the Rock Mechanics Group at MIT is trying to create with GEOFRAC 

or using different software that model different part of the thermo-hydro-mechanical processes; 

for example, Rutquist et al. (2002) used FLAC, a rock mechanics simulator and TOUGH2, a 

widely used flow and heat transfer simulator, for their simulation. The two simulators run 
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sequentially with the output from one code serving as input to the other one (Podgorney et al., 

2010). 

 

2.3.1 TOUGH2 

TOUGH ("Transport Of Unsaturated Groundwater and Heat") was developed at the Lawrence 

Berkeley National Laboratory (LBNL) in the early 1980s primarily for geothermal reservoir 

engineering. Now it is widely used for many other applications for instance nuclear waste disposal, 

environmental assessment and remediation. 

TOUGH2 is the basic simulator for non-isothermal multiphase flow in fractured porous media. 

The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. It takes 

into account the fluid flow in both liquid and gaseous phases occurring under pressure, as well as 

viscous, and gravity forces according to Darcy's law. Interference between the phases is 

represented by means of relative permeability functions. The code includes Klinkenberg effects 

and binary diffusion in the gas phase and capillary and phase adsorption effects for the liquid 

phase. Heat transport occurs by means of conduction (with thermal conductivity dependent on 

water saturation), convection, and binary diffusion, which includes both sensible and latent heat.  

 

2.3.2 FALCON 

FALCON (Fracturing And Liquid CONvection) is a finite element based simulator solving fully 

coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global 
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implicit approach (Podgorney et al. 2012). It was developed and now improved by the Idaho 

National Laboratory group. 

Podgorney et al. (2010) describe the initial code. The approach is to develop a physics based rock 

deformation and fracture propagation simulator by coupling a discrete element model (DEM) for 

fracturing with a continuum multiphase flow and heat transport model. In this approach, the 

continuum flow and heat transport equations are solved in an underlying finite element mesh with 

evolving porosity and permeability for each element that depends on the local structure of the 

discrete element network. As a first step in the development of the code, governing equations for 

single-phase flow and transport of heat are being coupled with linear elastic equations. The basic 

architecture of the code allows one to conveniently couple different processes and incorporate new 

physics, such as stress dependent permeability-porosity, phase change, implicit fracturing. The 

code in FALCON is developed using a parallel computational framework called MOOSE 

(Multiphysics Object Oriented Simulation Environment) developed at the Idaho National 

Laboratory (INL). 

Podgorney et al. (2012) present some results. Figure 2.18 shows the simplest problem geometries, 

a small fracture network consisting of two horizontal and one vertical fracture. 
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Figure 2.18 - Three-dimensional mesh for the simplest fracture flow problems under consideration 

(Podgorney et al., 2012) 

 

Figure 2.19 shows the simulated temperature and pressure for two examples after several years of 

injection and production. Cold fluid is injected on the right side of the fracture domain, while 

production is on the left side. At early times, small changes are observed in the temperature field 

in the proximity of the production location.  
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Figure 2.19 - Temperature (in fracture domain) and pressure along the center of the reservoir 

matrix domain for tow simulations. (Podgorney et al., 2012) 

 

2.3.3 LEAPFROG 

Leapfrog Geothermal is a 3D modeling tool that can be used in every stage of a project, from initial 

proof-of-concept to reservoir development and production. In 2010 ARANZ Geo together with the 

University of Auckland, Department of Engineering Science Geothermal Group and Contact 

Energy Ltd used the core technology to develop a geothermal “product”. 
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Leapfrog Geothermal can be used for integration with Tough2 for flow modeling, regional 

geothermal resource evaluation, geothermal model review and maintenance, borehole planning for 

exploration, development and reservoir management, 3D fault. 

 

2.3.4 FRACMAN 

FracMan generates fractures in three dimensions within a given rock volume. Dershowitz et al, 

(1998) explain the definition of the input parameters and the theoretical background of Discrete 

Fracture Network introduced the DFN models into the FracMan. To take into account the 

variability of the input parameters, the DFN model is generated several times by means of Monte 

Carlo simulations, and the fracture population statistics analyzed for each simulation model (Staub 

I. et al., 2002). FracMan generates 3-D fracture network models to describe the pattern of faults, 

fractures, solution features and stratigraphic contacts in fractured rock.  

 

2.3.5 CONCLUSIONS 

The software tools presented above are very useful tools to be used in the field of geothermal 

energy. The disadvantage is that they need to be combined in order to obtain a complete fracture 

flow model simulation.  

The program GEOFRAC, developed by the MIT Rock Mechanics Group and presented in Chapter 

3, aims to model a geothermal reservoir as a complete and optimized tool. Particularly the well 

location optimization study that will be implemented as a next step, is quite innovative. 
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CHAPTER 3 

GEOFRAC: 3-D HYDRO-

MECHANICAL MODEL 

 

3.1 INTRODUCTION 

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, 

stochastic model of natural rock fracture systems (Ivanova, 1998). Fractures are represented 

as a network of interconnected polygons and are generated by the model through a sequence 

of stochastic processes (Ivanova et al., 2012). This is based on statistical input representing 

fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) 

and the best estimate fracture size E[A]. P32 can be obtained from spacing information in 

boreholes or from observations on outcrops using the approach by Dershowitz and Herda 

(1992).  Best estimate fracture size E[A] can be obtained from fracture trace lengths on 

outcrops with suitable bias corrections as developed by Zhang et al. (2002).  Distributions 

of fracture size can also be obtained subjectively. GEOFRAC has been applied and tested 

by estimating the fracture intensity and estimated fracture size from tunnel records and from 

borehole logs (Ivanova et al. 2004, Einstein and Locsin 2012).  Since its original 

development, GEOFRAC has been made more effective by basing it on Matlab, and it has 

been expanded by including an intersection algorithm and, most recently, a flow model. 



42 
 

Focus of my research was to apply GEOFRAC in the EGS (Enhanced Geothermal System) 

modeling field. In this chapter I will present the basic concept of GEOFRAC and I will 

introduce the applicability in the geothermal field. The algorithms developed to apply 

GEOFRAC for the geothermal area are explained in more details in the next chapters. 

A parametric study was conducted in order to test the efficiency of this model and to analyze 

the sensitivity of the output flow rate to the parameters used as input in the model. Chapter 

4 will present the results of the parametric study. 

 

3.2 BASIC CONCEPT 

3.2.1 Fracture system model 

The fracture system model in GEOFRAC was developed by Ivanova (1998). The concept is 

a three-dimensional geometric-mechanical model that represents rock fracture systems. The 

model has the characteristics to be hierarchical, so that fractures are grouped into 

hierarchically related fracture sets; and it is stochastic, using statistical methods to generate 

the fracture system from available geologic information. Fractures in GEOFRAC are 

represented as polygons (Figure 3.1). As shown in the figure each polygon is characterized 

by a pole and a radius Re that represent the radius of the equivalent circle that circumscribes 

the polygon. 
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Figure 3.1- Fracture represented as a polygon with a pole and a radius (Ivanova, 1995) 

 

 

The desired mean fracture size E[A] and fracture intensity P32 in a region V are given as 

input. GEOFRAC uses these inputs to generate the fracture system following a sequence of 

stochastic processes (for details on GEOFRAC and on the flow model see Ivanova et al. 

2012, Sousa et al. 2012 and Sousa, 2013): 

Primary Process: Fractures planes are generated in the volume V with a Poisson plane 

process of intensity μ where μ= P32. The orientation of the planes can be specified with the 

Fisher distribution. Recall that this is a single parameter distribution. Low values of the 

parameter κ simulate randomly generated planes; large κ will generate planes mostly parallel 

to each other.   

Secondary Process: A Poisson point process with intensity λ is generated on the planes and 

the fractures are created with a Delaunay-Voronoi tessellation. It represents fracture intensity 

variation by size and location. 
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Tertiary Process: Random translation and rotation of the fractures (polygons) are conducted 

to represent the local variation of fracture position and orientation of individual fractures. In 

the tertiary process a new algorithm was recently added to the model to allow the user to 

model fractures with or without random rotation. The parametric study presented in the 

Chapter 4 will compare results with rotation and no rotation of the fractures.  

The generation process of the fractures is visualized in Figure 3.2. 

 

 

 

 

 

 

 

 

a) Primary Process: Generation of Planes 
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b) Secondary Process:    Division of planes into polygons 

 

c) Tertiary Process: Random translation and rotation 

Figure 3.2 - Generation of a fracture set with the GEOFRAC model. Primary process (a), 

secondary process (b), tertiary process (c) (Ivanova et al., 2012) 
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A parametric study was conducted in order to study the relationship between fractures 

intensity, size, and connectivity (Ivanova et al., 2012). Monte Carlo simulation was used in 

order to determine the mean fracture connectivity C, with the variation of P32 and E[A]. The 

results of the simulations are graphically presented in Figure 3.3. The plot shows the results 

for κ=0 (solid line) and for κ =10 (dotted line). The results suggest that the fracture 

connectivity C is a non-linear function of both the fracture size, measured by the expected 

mean area E[A], and the fracture intensity, measured as cumulative fracture area per unit 

rock volume, P32. 

 

 

Figure 3.3 - Expected fracture connectivity, C, for given E[A] and P32 (Ivanova et al., 2012) 

 

 

 



47 
 

3.2.2 Flow system model 

In section 2.1.2 I described the 4 methods that can be used to represents fracture flow. The 

circulation model in GEOFRAC belongs to the category of Discrete-Fracture Networks. In 

this type of model the porous medium is not represented and all flow is restricted to the 

fractures. Fractures are often represented as lines or planes in two or three dimensions. In 

this specific case the fractures are represented by polygons in three dimensions. The flow 

model in GEOFRAC was developed by Sousa (Sousa, 2012). 

The flow equations used to model the flow through the fractures are those of linear flow 

between parallel plates. The water flows only in the x direction between two parallel plates 

with the no-slip condition for viscous fluids forming the velocity profile in the y direction 

(Figure 3.4).  

 

 

 

 

Figure 3.4- Schematic representation of linear flow between parallel plates 

 

The water flow in fracture is assumed to be governed by the Poisseuille cubic law 

(Zimmerman and Bodvarsson, 1996) represented by the following equation:  

L

Ph
q






12

3

 

Where: 

Equation 3.1 
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q is the volumetric flow rate (m2/sec) per unit width; 

h  is the aperture of the fracture in m; 

μ is the fluid dynamic viscosity in PA s; 

ΔP is the pore pressure change in Pa after the flow travels through distance ΔL. 

Considering the fracture width, w(s) (see Figure 3.5) (in m, variable with length) the equation 

for flow between parallel plates is: 

 

L

Phsw
q






12

)( 3

  

Equation 3. 2  

 

The schematic representation of the fracture width is shown in Figure 3.5. 

 

 

Figure 3.5 – Mean fracture width between fractures intersection 

The fracture aperture in GEOFRAC can be modeled in three different ways: 

w (s) 
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- Deterministic approach using a power law relation between fracture length and aperture. 

- A probabilistic approach based on the truncated lognormal distribution. 

- A fixed value. This was used to perform the parametric study that will be presented in 

the Chapter 4. 

These methods are explained in more detail in Chapter 6. 

In order to calculate the geometric flow paths and the flow rate GEOFRAC follows seven 

steps: 

1) Determination of the fractures that intersect the left boundary;  

2) Determination of the fractures that intersect the right boundary;  

3) Determination of the score of each fracture;   

4) Determination of the highest score paths amongst all initial fractures (that intersect the 

left boundary) and all end fractures (that intersect the right boundary); 

5) Determination of the intersections between the paths; 

6) Determination of the flow thought each path; 

7) Determination of the total flow through the reservoir; 

I will briefly describe the above steps that are more thoroughly explained in Sousa (2012). 
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Step 1 & 2 – Select and store the fractures that intersect the injection and the production 

boundaries 

A function called buildNodesList.m  was created. This function creates an Nx2 matrix 

containing a list of edge connections. 

Figure 3.6 shows an example of how the connections are considered and stored in the matrix 

E: 

 

 

 

 

 

 

The matrix containing the list of edge connections in this case would be as follows: 

 

𝐸 =

⌊
 
 
 
 
 
 
 
 
1 2
2 3
3 4
3 8
4 8
4 5
8 9
5 6
6 7⌋

 
 
 
 
 
 
 
 

 

 

Step 3 - Scoring system:  

The model at this point assigns a score to each fracture. The scoring system is based on the 

concept that for the same drop of pressure the flow rate is proportional to
L

wh



3

 .
  

1 

4 

3 

2 

5 
6 

7 

8 

9 

Figure 3.6 - Representation of the fracture intersections (Sousa, 2013) 
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The score for each fracture is calculated as: 

L

hw
SC




3

      Equation 3.3 

where: 

w  is the mean width of the fracture in m; 

h is the aperture of the fracture in m; 

ΔL is the distance between fractures (See Figure 3.7). 

The fractures with greater aperture and greater mean width will have a greater volumetric 

flow for the same drop of pressure.  

Figure 3.8 illustrates the different geometric components of the scoring formula. The length 

of a “fracture path” corresponds to the distance between the middle points of the 

intersections between fractures. For example in Figure 3.7 the length ΔL of fracture 1 is the 

distance between the middle point of the intersection of fracture 1 and 3 and the middle point 

of the intersection of fracture 1 and 2. Figure 3.8 shows the score components when a fracture 

intersects more than one fracture. 
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Figure 3.8 - Score components: fracture intersects more than one fracture 
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Figure 3.7 - Score components between two fracture intersections 
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Step 4 - Highest score path  

The model then finds the paths that have the highest score based of the score of the fractures. 

The highest score path(s) is calculated using the Dijkstra's algorithm (Dijkstra, 1959). 

In GEOFRAC, the Dijkstra's algorithm is used to calculate the “highest score paths” (or most 

likely path) between all the fractures that intersect the injection boundary and all the fractures 

that intersect the production boundary.  Figure 3.11 shows an example of a most likely 

overall path, i.e. the path with the highest score in a specific reservoir. Figure 3.12 shows 

three different highest score paths between initial fractures and different final fractures.   
 

 

Step 5 – Intersection between paths  

At this point the model generates a list of several branches, each one composed of numerous 

fractures and nodes that are the intersection between branches or the intersection between 

branches and one of the boundaries, as illustrated in Figure 3.9 . Branches are then joined to 

form paths. Each path is composed of several fractures that can be represented schematically 

as shown in Figure 3.10. The path can be represented by an equivalent fracture width and 

equivalent aperture and a length that is equal to the sum of the lengths of all fractures. 

The equivalent aperture can be calculated with Equation 3.4. 

 

3

1
3

1

1



















n

i i

i

eq

hl

l

h      Equation 3.4

 

where, li and hi are the length and aperture of the ith fracture ; 

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
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 l is the total length of the series of fractures, i.e. the sum of all the fractures in the series.  

The equivalent length of a path is the sum of the lengths of all fractures that constitute the 

path (Equation 3.5) 





n

i
ieq ll

1

      Equation 3.5 

Where, li is the length of the ith fracture

 The equivalent width can be computed by a weighted average of all the fractures that are 

part of the path. This is represented by Equation 3.6. 

 






i

ii

eq
l

lw
w     Equation 3.6 

Where  

iw  is the width of the ith fracture 

il  is the length of the ith fracture 
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Figure 3.9 - Intersection of two paths; representation of branches and nodes. 

 

 

 

 

 

Figure 3.10 - Series of fractures modeled as parallel plates 
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a) 3D view 

 

b) X-Y view 

Figure 3.11 - Highest score path between two fractures that intersect the two boundaries 
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a) 3D view 

 

B) X-Y view 

Figure 3.12 - Highest score path between different pairs of fractures 
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After finding the best geometric solution (fracture system) to create the system of the 

branches the model calculates the output flow (equation 3.2) as the sum of the output flow 

from each path. 
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CHAPTER 4 

PARAMETRIC STUDY 

 

4.1 Introduction  

The parametric analysis was conducted in order to check the consistency of the model and 

determine which parameters have the greatest effects on the final results. The parametric 

analysis considers simplified conditions: 

- A synthetic 20x20x10 m  volume  

- Injection and production wells are the left and right boundaries of the volume 

- The water temperature is assumed to be 20°C, i.e. the dynamic viscosity is  

       1.002x10-3 Pa s. 

These simplifications are both justified and necessary since the parametric study intends to 

verify the intrinsic correctness of GEOFRAC flow model.  

The results of this analysis are presented in the next paragraphs and are sub-divided into the 

following sections: 

- output analysis when varying the aperture parameter; 

- output analysis when varying the Fisher parameter that affects the orientation of the planes 

during the primary process; 
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- output analysis when varying the rotation the fractures during the tertiary process. 

Each section will conclude with a brief summary of the results obtained. 

The following code will be used to identify the simulations done using the follow 

abbreviated indicators, in the charts as well as in some comments: 

E[A] - P32 - κ - R – h 

Where:  

E[A] = Expected area of the fracture (m2) 

P32 = Fracture intensity (fracture area/volume) 

κ = Fisher parameter 

R= 0 ‘no rotation’ of the fractures in the tertiary process 

R=1 ‘random rotation’ of the fractures in the tertiary process 

h = Aperture of the fracture (m) 

 

For example: the code 2-3-1-0-0.005 means: 

E[A]=2 m2, P32=3, κ=1, R=0 (no rotation), aperture=0.005 m 
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4.2 Parametric study results  

4.2.1 Output analysis when varying the aperture parameter 

 

GEOFRAC allows the user to generate the aperture (h) of the fractures using three models: 

a deterministic approach, in which the aperture is a function of the radius of the sphere that 

circumscribes the fracture (polygon); a probabilistic approach, which follows a truncated 

lognormal distribution, and a fixed value approach in which the users can fix the value of 

the aperture. This last approach was used for this analysis, in order to establish the sensitivity 

of the results and to confirm the direct relation between the aperture of the fractures and 

Qout (m3/s). Two cases are analyzed: h = 0.005 m and h = 0.01 m. Most of the other 

parameters are kept fixed in this particular sensitivity analysis: 

E[A]= 2 

P32 = 3 

κ =1  

R = 1 (rotation) or 0 (no rotation) 

For both cases shown in Figure 4.1 (h = 0.005 m) and Figure 4.2 (h = 0.01 m), the results 

for no rotation and random rotation of the polygons are reported in the same chart. Just 40 

simulations were run; a number considered representative since the aim of this analysis is to 

study the trend of the results and not to evaluate the exact value of Qout. A detailed study of 

sample analysis is presented in Vecchiarelli and Li (2013). 
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Figure 4.11 - Flow rate for h=0.005 m for no rotation and random rotation of the fractures 

 

 

Figure 4.12 -Flow rate for h=0.01 m for no rotation and random rotation of the fractures 
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In Tables 4.1 and 4.2 the mean, the standard deviation and the coefficient of variation of the 

simulations are summarized. 

 

Table 4.2- Values of Qout (m3/s) for h = 0.005 m 

 Mean 

Qout (m3/s) 

Standard 

Deviation 

Qout (m3/s) 

Coefficient of 

variation 

Qout (m3/s) 

no 

rotation 

0.16 0.09 0.54 

rotation 0.05 0.02 0.40 

 

 

Table 4.3 - Values of Qout (m3/s) for h = 0.01 m 

 Mean 

Qout (m3/s) 

Standard 

Deviation 

Qout (m3/s) 

Coefficient of 

variation 

Qout (m3/s) 

no 

rotation 

1.64 0.85 0.52 

rotation 0.48 0.19 0.38 

 

The results correspond well to the theory. The ratio of the cubic values of the aperture 

parameters chosen for this analysis is 0.01^3/0.005^3=8. Qout for the rotation case for 

example is Qout= 5.16 m3/s for h=0.005 m and Qout=47.94 m3/s for h=0.01 m and producing 

a ratio of about 9 which is very close to 8. A similar ratio is obtained for the no rotation case. 

(The differences in absolute values for rotation and no rotation will be discussed later). The 
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variability as expressed by the coefficient of variation is apparently not affected by the 

absolute value of h. 

 

4.2.2 Output analysis when varying the Fisher parameter 

 

In order to check the variability of the results of Qout, using different Fisher parameters, two 

values were selected for the analysis presented in this section: κ =1 and κ=40. These two 

values represent the extreme conditions with κ=1 representing randomly generated planes 

(Figure 4.3) and κ=40 mostly parallel planes (Figure 4.4). The resulting Qout are plotted in 

Figures 4.5 and 4.6. 

 

 

Figure 4.13 - Fracture set poles. Orientation distribution: Univariate Fisher κ =1 
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Figure 4.14 - Fracture set poles. Orientation distribution: Univariate Fisher κ =40 

 

 

Figure 4.15 – Flow rate (Qout) values for κ =1 
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Figure 4.16 - Flow rate (Qout) for κ =40 

For κ =1 (Figure 4.5) the largest values are obtained for h=0.01 m and no rotation. For κ =40 

this is different (Figure 4.6). In fact, for κ =40 and h=0.01 the highest values of Qout occur 

for random rotation. A possible explanation is as follows: the rotation of the fractures starting 

from almost parallel planes (κ=40) adds some randomness that increases the intersections 

between fractures generating more flow. On the other hand starting from random orientation 

of the planes (κ=1) the fractures intersect because of the orientations of the planes with no 

rotation. The rotation appears to remove some of these intersections. In order to better 

understand this behavior the number of paths and their physical location in the control 

volume are shown in the following figures (Figures 4.7 to 4.14) in which the variation of all 

parameters is investigated (κ=1, κ =40; h=0.01 m, h=0.005 m; rotation, no rotation). 
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- Plots of the paths for κ=1 

 

 

Figure 4.7 – Fracture paths system for simulation with κ=1, h=0.005 rotation 
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Figure 4.8 - Fracture paths system for simulation with κ=1,  h=0.01 rotation 
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Figure 4.9 - Fracture paths system for simulation with κ=1,   h=0.005 no rotation 
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Figure 4.10 - Fracture paths system for simulation with κ =1,  h=0.01 no rotation 
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- Plots of the paths κ=40 

 

 

 

Figure 4.11- Fracture paths system for simulation with κ=40,  h=0.005 rotation 
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Figure 4.12 - Fracture paths system for simulation with κ =40,  h=0.01 rotation 
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Figure 4.13- Fracture paths system for simulation with κ =40,  h=0.005 no rotation 
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Figure 4.14 - Fracture paths system for simulation with κ =40,   h=0.01 no rotation 
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The following interpretation can be offered: for κ = 1 (Figures 4.7 to 4.10) the number of 

paths in general is high. There are many fractures that intersect the two boundaries (green 

and red dots in the figures). Figure 4.7 (h=0.005, rotation) shows a somewhat odd behavior 

in that the number of paths decreases then increases again. This influences the flow, which 

in effect is smaller in this particular case. The h=0.01 m no rotation case (Figure 4.10) shows 

a higher number of paths and more branches compared to the other figures. This confirms 

the hypothesis made earlier that, with κ=1 the planes in the volume are randomly oriented, 

and this produces a large number of intersections between fractures.   

The results for κ =40 paths are very consistent and clear. More branches occur in the rotation 

case (Figures 4.11 and 4.12) than in the no rotation case, (Figures 4.13 and 4.14) and as a 

consequence the number of paths is higher in the rotation case. As mentioned before the 

primary process for κ=40 generates planes almost parallel to each other and the rotation of 

the fractures in the tertiary process increases the probability of intersections. 

 

4.2.3 Effect of fracture translation 

In the tertiary process fractures are translated and can be rotated or not rotated. The effect of 

rotation was discussed above. It is worthwhile to investigate what effect translation may 

have. Figure 4.15 shows the possible overlaps of apertures if the fractures are translated and 

not rotated. Such an overlap can produce a fracture path. However, when we investigated 

Qout as a function of translation and rotation as shown in Figure 4.16 one can see that 

translation has no effect both in the rotation- and the no rotation case and that the Qout for 

no rotation is higher (for reasons explained earlier). A possible explanation for the lacking 
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effect of translation can be found with the numbers shown in Table 4.3. The minimum value 

of the translation is 0.016 m; so only few fractures with aperture h=0.01 m will overlap as 

shown in Figure 4.15.  

 

 

 

Figure 4.15 – Schematic representation of the translation between fractures 

 

 

 

Figure 4.16 - Translation of the fractures vs Qout 

 

Table 4.3 - Max and min values of the translation of the fractures 
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translation 

(m) 

min max 

no 

rotation 

0.016 1.659 

rdm 

rotation 

0.057 1.955 

 

 

 

4.3 Conclusion  

The parametric study demonstrates how aperture, the Fisher parameter and rotation of the 

fractures influence the production flow rate. As to be expected greater aperture produces 

greater flow. The effects of orientation are more complex as the effect of fracture plane 

orientation (Fisher parameter) and of rotation of individual fractures interact. For planes 

randomly generated the case with no rotation of the fractures and an aperture of 0.01 m 

generates greater flow than with rotation, while for parallel planes greater flow occurs in 

case of rotation of the fracture and aperture equal to 0.01 m. 

This study of a simple synthetic case shows that the model is consistent but also that are 

some unexpected complexities affected by fracture orientation. 
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CHAPTER 5

BOREHOLE INTERSECTION 

 

 

5.1 INTRODUCTION 

Up to now the fracture and flow system was created and modeled starting from plane boundaries 

of the controlled volume (Figure 5.1). In order to apply GEOFRAC to model a geothermal 

reservoir, borehole1 boundary conditions have to be implemented in the model. With this 

GEOFRAC allows the user to evaluate the flow just through the fractures that intersect the 

injection - and production wells. After the fracture system is modeled with plane boundaries, the 

model checks if fractures intersect the injection and the production wells (Figure 5.1). 

 

 

 

 

 

 

1 The term borehole will be used in this Chapter to represent geothermal wells 
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Injection well 

 

 

 

            

 

 

5.2 INTERSECTION ALGORITHM 

5.2.1 The MATLAB function intersectBorehole 

In order to have the possibility to choose if the model considers the fractures system in the entire 

controlled volume or just the fractures that intersect the boreholes, a new function 

intersectBorehole was created.  

function [frac, inter]=intersectBorehole(P0, d, rb, fractureSet) 

This function takes the fracture set generated in the controlled volume, checks which fractures 

intersect the borehole (cylinder) and returns the intersections and the fractures that intersect the 

cylinder.  

In more detail the inputs are: 

Production well 

Figure 5.1 - Fracture systems intercepted by the two wells 

Plane boundary  

in injection 

Plane boundary in injection 
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PO: [X0, Y0, Z0], i.e. is the center of the borehole at the surface 

d:  depth of the borehole (m) 

rb: radius of the borehole (m) 

FRACTURESET: MATLAB structure folder containing all fractures and geometric 

characteristics. (Polygon vertex coordinates) 

 

 

 

 

 

 

The outputs are: 

FRAC: array of fractures that intersect the borehole 

INTER: array of intersections of the fractures with the borehole 

From this point on GEOFRAC will take as input just the FRAC array in which fractures that 

intersect the borehole are stored. 

In the Matlab file this intersection is done in three steps: 

d 

P0 (x0,y0, z0) 

Borehole  

Figure 5.2 Schematic representation of geometric inputs for the Intersect Borehole 

function 
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STEP 1: Clear polygons outside the interest volume (below the borehole zone) 

From the computational point of view it is better to eliminate fractures that are below the borehole 

depth because one is certain that they will not intersect the borehole. This allows one to reduce the 

quantity of fractures that the code needs to check. The function that it is run at this point is 

clearPolygonsBelowVolume 

 [polygon, cs, rs]=clearPolygonsBelowVolume(polygon,center,P0,d);  

Where  

polygon=fractureSet.polygonall; this is the list of the fractures generated in the controlled 

volume 

center=fractureSet.Call; it is the center of all fractures in the controlled volume 

cs, rs are respectively the center and the radius of the spheres that enclose the polygons 

See the end of this chapter for the code of the function clearPolygonsBelowVolume. 

 

STEP2: Check which spheres that enclose polygons, resulting from step 1, intersect the borehole 

In this step the intersections between the borehole and the spheres that enclose the polygons is 

checked and stored in C. 

 C = intersectBoreholeSphere(cb,cs,rb,rs); 

See the end of this chapter for the function intersectBoreholeSphere 
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Figure 5.3 gives a visual representation in Matlab of an intersection between a cylinder and 

spheres. 

 

Figure 5.3- Matlab representation of intersection between a cylinder and spheres 

 

STEP 3: Calculate if polygons (whose spheres intersect the borehole) actually intersect the well 

In this step just the polygons, whose spheres intersect the borehole and that were stored in the 

preceding step are analyzed. 

m=find(C==1); 

C==1 means that there is intersection and this information is stored in m. 
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The intersection between a sphere and a cylinder can be a circle, a point, the empty set, or a special 

type of curve. In order to ensure any possible intersection between polygon and cylinder, the 

following cases are taken into account: 

- CASE 1- General case If at least one vertex is inside the cylinder, the polygon intersects the 

borehole (Figure 5.4) 

-  

 

 

 

 

 

 

 

 

 

 

 

- CASE 2- Polygon inscribed into the cylinder. The way of modeling case 1 solves also the case of 

polygon inscribed into the borehole (Figure 5.5).  

 

 

 

Figure 5.4 - Schematic representation of intersection between the borehole and 

one vertex of the fracture (polygon) 

http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Cylinder_(geometry)
http://en.wikipedia.org/wiki/Circle
http://en.wikipedia.org/wiki/Point_(geometry)
http://en.wikipedia.org/wiki/Empty_set
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- CASE 3 - All vertices outside the cylinder but a line between 2 vertices (i.g. v_1 and v_2 in Figure 

5.6) intersects the cylinder.  

At this point of the code just the vertexes coordinates are stored in FRACTURESET, so lines 

between vertices are created in the code, and then the intersections between lines and the cylinder 

are calculated. 

 

 

 

 

 

 

 

 

Figure 5.5 - Schematic representation of a fracture (polygon) 

inscribed into the borehole 

Figure 5.6- Schematic representation of an intersection 

between one side of a fracture and the cylinder 

v_1 v_2 
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- CASE 4 - All vertices outside the cylinder, no line between vertices intersect the cylinder (Figure 

5.7). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7- Schematic representation of intersection 

between a fracture (plane) and a borehole (cylinder) 
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CHAPTER 6 

GEOFRAC GRAPHICAL USER 

INTERFACE 

 

6.1 INTRODUCTION 

Geofrac is a program written in the MATLAB computational environment, so one needs to 

run MATLAB in order to use GEOFRAC. GEOFRAC has been made accessible through a 

Graphical User Interface (GUI). The GUI allows the user  to perform the complicated 

simulations of a geothermal basin without the need to understand the details of how the tasks 

are performed. 

After starting MATLAB, one can use the GUI to enter input parameters, as described in 

more detail in section 6.2, and determine the computed fracture system, the output flow rate 

and the thermal energy extracted. How the outputs can be obtained, and how they are 

represented is explained in section 6.3. 
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6.2 INPUT PARAMETERS 

In order to be able to use GEOFRAC one needs to open the GEOFRAC folder though the 

Matlab command Open Folder. In the GEOFRAC folder a file called RunGeofrac.m  opens 

the window shown in Figure 6.1. The GUI is organized in sections: 

- Geometric inputs 

- Stochastic inputs 

- Simulation 

- Flow inputs 

- Thermal inputs 

- Borehole inputs 
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Figure 6.17 – GEOFRAC GUI (user's interface) 

6.2.1 Geometric inputs 

The geometric inputs (Figure 6.2 ) defines the reservoir dimensions.  

 

 

 

 

 

 

s 

Figure 6.18 - Geometric dimensions of the reservoir to be 

modeled 
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Figure 6.3 shows how the coordinates are placed in the space. The coordinates of the 

controlled volume in GEOFRAC are defined in the following way: 

Xm: half of the length of the area of interest (m) 

Ym: half of the width of the area of interest (m) 

Ztop: depth of the area of interest (m) 

 

 

 

 

The left and right sides of the controlled volume (Fig. 6.3) are taken in GEOFRAC as the 

boundaries from and to which the flow is respectively generated and collected. 

At the end of this chapter, a section is dedicated to give some recomendations on how to 

simulate large reservoirs. 

6.2.2 Stochastic inputs 

GEOFRAC uses stochastic models to represent natural fracture systems based on available 

geological information. Figure 6.4 shows the stochastic parameters that need to be set in 

order to generate the fracture system. P32 and E(A) define the intensity and the mean area of 

- Ym 

y 

x 

z 

Ym 
- Xm 

Xm 

Ztop

 
 

- Ym 

Figure 6.19 – Coordinates of the controlled volume according to GEOFRAC  
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the fractures. The orientation distribution parameters define the orientation of the primary 

planes generated in the controlled volume and the aperture mode parameters define the type 

of distribution that one wants to use in order to generate the aperture of the fractures. The 

stochastic parameters are explained in more detail below. 

 

Figure 6.20 - Section of the stochastic inputs in the GUI. 

 

P32, E(A) and Rot 

Three stochastic parameters in GEOFRAC are: 

 P32: fracture intensity (cumulative fracture area per rock volume), that can be 

calculated  from: 
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P32 =

Af , i
i=1

N

å

V
 

Where 

Af,i : fracture area of fracture f; 

V: total volume of fractured rock mass. 

 E(A): mean area of fractures 

 Rot: rotation of the polygons in the tertiary process 

P32, as described in Dershowitz and Herda (1992) and used in Ivanova (1995), is the most 

appropriate description of the fracture intensity in 3D space. P32 can be obtained from 

borehole spacing information or observations on outcrops using the approach by Dershowitz 

and Herda (1992). E(A) can be obtained from fracture trace lengths on outcrops with suitable 

bias corrections as developed by Zhang et al. (2002). 

Once the main fracture plane is established (see next section), the algorithm gives the 

possibility to randomly rotate the fractures in the space. Rot is a parameter that allows the 

user to rotate the polygons (fractures) or to not rotate them. The values in Rot that can be 

inserted are: 

Rot = 1: rotation of the polygons 

Rot = 0: no rotation of the polygons 
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Types of orientation distribution 

The orientation of the planes in the so-called primary process of GEOFRAC can be modeled 

choosing among four types of orientation distribution as explained in Ivanova (1995), 

depending of the information available or the type of distributions that the user is most 

confident in. These four distributions and the parameters that need to be set are shown in 

Table 6.1. 

Table 6.4- Types of orientation distributions in GEOFRAC and parameters that needs to be 

set 

ORIENTATION DISTRIBUTION PARAMETER 

Bivariate Fisher κ1, and κ 2 

Uniform Max Phi max φ 

Uniform  

Univariate Fisher κ 

    

Fracture apertures models 

As explained in Chapter 2, there are numerous models to simulate the apertures of fractures. 

In GEOFRAC the user can decide between two methods: the deterministic and the 

probabilistic method.  

The deterministic method is the one proposed by Ivanova et al. (2012) and assumes that 

fracture aperture may be correlated with fracture length by a power-law function (Equation 

6.1):  

 
 )R2( eh   Equation 6.1 
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where Re is the equivalent radius of the fracture polygon obtained in the secondary process 

as explained in Chapter 3, h is the aperture, and α and β are coefficients that depend on the 

site geology and that are measured on site or can be found in the literature. 

 

The probabilistic model defined in Ivanova et al. (2012) assumes that the distribution of the 

fracture aperture can be represented by a truncated lognormal distribution (Equation 6.2): 

maxmin,
)()(

=
max

min

hhh
hdhf

f(h)
(h)f

hTR 


  Equation 6.2 

 

where hmin and hmax are the minimum and the maximum aperture values and f(h) is the full 

lognormal distribution of the aperture h. 

The methods for the aperture model and the parameter are shown in Table 6.2. 

Table 6.5 - Types of methods for the fracture aperture and parameters that needs to be set 

FRACTURE APERTURE METHODS PARAMETER 

Deterministic α and β 

Probabilistic  mode, hmin and hmax 

 

6.2.3 Simulation  

In GEOFRAC, and as shown in Figure 6.5, it is possible to specify the number of simulations 

in order to improve the accuracy of the results.  
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Figure 6.21 - Simulation parameter: number of simulations and type of simulation 

 

‘Type of simulation’ is a pop-up menu and the user can decide to run: 

- Fracture system 

- Fracture system + Flow system 

- Fracture system + Flow system + Thermal 

This choice allows the user to use GEOFRAC just for the fracture system generation in order 

to use it for other applications, for example for slope stability analysis.  

 

 

 

 

 

 

 

s 
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6.2.4 Flow inputs 

The button “Flow inputs” in the main GUI window, allows one to set the fluid parameters 

if the flow simulation is chosen. (Figure 6.6).  

 

 

Figure 6.22 - Flow parameters in GEOFRAC 

 

 

These parameters are: 

Pi: injection pressure (Pa) of the fluid in the injection well 

Pout: production pressure (Pa) of the fluid in the production well 

Fluid dynamic viscosity (Pa*s) 
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6.2.5 Thermal parameters 

The button “Thermal inputs” in the main GUI window, allows one to set the thermal parameters 

of the fluid and the surrounding rock. These options can be modified only if the Fracture + Flow 

or the Fracture + Flow+ Thermal simulation has been chosen (see section 6.2.4). 
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6.2.6 Borehole Parameters 

The button “Borehole Inputs” in the main GUI window, allows one to set the geometric 

parameters of the geothermal well.

 

Po (x, y, z ) define the center of the well respect to the volume simulated. Radius and length 

of the well need to be set as well. 
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6.3 RESULTS  

After pressing the RUN GEOFRAC button, the simulations starts and it may take some time 

to obtain results, depending on the number of simulations and the size of the controlled 

volume. The resulting charts and numerical results can be personalized with simple coding 

based of the user’s needs. Improvement of the results section is described in the conclusion 

section (Chapter 8). 

If the flow simulation is chosen, GEOFRAC will display the fractures system as shown in 

Figure 6.7, and the pressure and the flow rate in the production well in the MATLAB 

workspace. 

 

 

Figure 6.23 - Flow network system in the controlled volume 
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GEOFRAC generates also an excel file called Results (Table 6.3) with the results of 

selected parameters. The values in bold (last cells) are the mean values of those 

parameters.  

 

Table 6.6- Excel file with the summary of some important results 

 

Numbers 

of 

Polygons 

Numbers 

of paths 
P32mean E(A)mean 

Aperture 

Average 

(m) 

Qout 

(l/s) 

Re mean 

(m) 

1 2109 1295 3.11474 1.47688 0.005 7.4877 0.6259 

2 2009 910 2.831532 1.409423 0.005 5.7135 0.6084 

3 1278 400 1.828845 1.431021 0.005 5.6685 0.6137 

4 1833 1216 2.633562 1.43675 0.005 5.6866 0.6180 

5 2086 868 2.961028 1.419476 0.005 6.2722 0.6128 

6 2093 1760 2.996395 1.431627 0.005 9.7479 0.6131 

7 1659 608 2.430787 1.465212 0.005 4.6046 0.6224 

8 2120 875 3.084176 1.4548 0.005 6.6706 0.6225 

9 2229 1404 3.179268 1.42632 0.005 7.7514 0.6170 

10 2189 1188 3.146575 1.437449 0.005 7.5592 0.6198 

Av. 1784 821 2.566034 1.437124 0.005 6.2396 0.6172 

 

The values of Qout can be plotted using excel as shown in Figure 6.8. 
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Figure 6.24- Example of representation of the Qout results 

 

  

As shown previously, in GEOFRAC it is possible to select two types of aperture distribution. The 

following chart, Figure 6.9, shows a truncated log-normal distribution in which the minimum and 

the maximum aperture value and the mode were chosen. 
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Figure 6.9 - Aperture distribution that follows a truncated lognormal distribution 
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System requirement for large reservoir simulations 

The capacity of GEOFRAC packages simulating large geothermal reservoirs is mainly 

limited by the number of fractures and not by the reservoir volume. The time needed to run 

one simulation is mainly determined by the speed of the processor. For an ordinary desktop 

with less than 8GB ram and an Intel i3 processor, the number of fractures it can handle is 

less than 300. The 300-fracture reservoir takes about half an hour to finish. Work stations 

are able to handle larger number of fractures. For a work station with 32GB ram and a 3.5 

GHz Intel i7 processor, the number of fractures can be as many as 2000, and it takes about 1 

hour to finish the simulation.  

In GEOFRAC it is not possible to enter the number of fractures directly because the inputs 

parameters of the algorithm are P32 and E(A). It is however possible, taking into consideration 

the definition of P32, to obtain the cumulative fracture area per rock volume 

P32 x V = ∑ E(A) 

Once ∑ E(A) is obtained, it is possible to find the approximate number of fractures from 

∑ E(A) / E(A) = Number of fractures (approx.) 

In case of large reservoir it is also recommended not simulate the entire reservoir in order to 

not encounter problems of insufficient computer memory. To do so one should concentrate 

the calculation on the zone defined by the injection and production wells and their depth. 
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GEOFRAC: GUI – File list 

 

RunGeofrac.m Main file of the GUI. When running this file the GUI opens and 

it is possible to set the inputs before running Geofrac. It allows 

one to generate the fracture pattern and the flow pattern. 

GeofracCallback.m It contains the link formula between the GUI and the Geofrac 

function. 

 

GeofracGUI.m File generated automatically by MATLAB when one creates a 

new GUI 
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CHAPTER 7 

APPLICATION OF GEOFRAC TO 

MODEL A GEOTHERMAL 

RESERVOIR: A CASE STUDY 

 

The aim of this chapter is to present results of GEOFRAC tested with real data made 

generously available by the energy company, Landsvirkjun, Iceland. This allows us to verify 

the capability of this model for representation of hydrothermal reservoirs, to understand the 

limitations and to implement possible changes in the associated code. 

The geological-hydro-thermal description of the geothermal field selected is presented in the 

first part of the chapter. The parameters selected for the simulation will be then presented 

and discussed. Then the results will end this chapter. 

 

7.1 Hydro-Geological characterization of the Námafjall geothermal field 

The Námafjall geothermal field is located in NE-Iceland about 5 km northeast of Lake 

Myvatn as shown in Figure 7.1. Precisely, it is located in the southern half of the Krafla 

fissure swarm and it is associated with the Krafla volcano. The Krafla geology is 

characterized by active rifting, forming a graben zone through its center, where volcanic 

craters, volcanic pyroclastics and lava flows, all of basaltic composition, dominate. The 

fissure swarm that intersects the Krafla central volcano (100 km long and 5 to 8 km wide) is 
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part of the neo-volcanic zone of axial rifting in N-Iceland (Figures 7.2 and 7.3), (Malimo, 

2012). Figure 7.3 is a zoom out of the square red shape in Figure 7.2. 

 

 

Figure 7.1 -The high temperature areas in North Iceland and location of the Namafjall 

geothermal reservoir (from Isabirye, 1994)  

 

Magma from the Krafla caldera traveled horizontally in the SSW direction along the fissures 

and fractures all the way down to Námafjall, and it serves as the heat source for the 

hydrothermal system. The Námafjall field is characterized by the Námafjall ridge, about 0.5 

km wide and 2.5 km long. (There are several fractures and faults in this area, such as the 

Krummaskard and Griótagjá, and often surface manifestations are clearly aligned with the 

fractures). The geological characteristics of the Námafjall field indicate that the Námafjall 

ridge is part of the Námafjall-Dalfjall-Leirhnjúkur ridge, which has an overall length of 

about 15 km and width of about 1 km (Ragnars et al., 1970).  
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Figure 7.2 - Structural map of Krafla and Námafjall geothermal areas showing the 

Krafla caldera and associated fissure swarm. (from Sæmundsson, 1991).  
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Figure 7.3 - Geological map of the Námafjall area. (from Sæmundsson, 1991).  

Bjarnarflag power plant 
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The surface rocks in the study area are highly permeable. The postglacial lava flow acts as 

good aquifer. There are numerous open fissures and large active faults with a NNE/SSW 

strike, like Grjótagjá and Stóragjá (Ragnars et al. 1970) that add to the already permeable 

nature of the lavas. Figure 7.4 shows a possible groundwater flow model. There is a relation 

between the direction of the lava flows and the direction of groundwater flow probably 

caused by the fact that the fissures developed during the cooling of the lava, are mostly 

parallel to the direction of the lava flow.  

 

 

Figure 7.4 - Possible groundwater flow model to Námafjall and Krafla (Malimo, 2012). 

 

7.2 Námafjall geothermal power plant project 

The Námafjall project was launched in the early 50s for enhanced sulfur production. Shallow 

wells were drilled to increase the outflow of geothermal gas to the surface. The first 

geothermal research program in this area initiated in the 60s. Drilling continued in Námafjall 
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and Klafla. Volcanic activity then stopped the expansion and development of other areas. 

Directional drilling was adopted for the first time in Námafjall in 2006 and continued the 

following years. Figure 7.5 shows the location of the wells in the whole Bjarnarflag area, of 

which Námafjall is a subarea. Table 7.1 lists the wells in order of their completion time and 

reports also the damages that eventually occurred in some of these wells.  

 

Figure 7.5 - Bjarnarflag – location of boreholes, well paths and feed zones 

(Gudmunddsson, 2010). 
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In 1969, Laxá Power Company built a geothermal power plant, and Landsvirkjun acquired 

Laxá Power Company and the power plant on 1983. Furthermore, the steam supply system 

at Bjarnarflag was bought by Landsvirkjun from the State Geothermal Services; this system 

provides steam to produce electricity, as well as supplying steam to a Diatomite Plant and 

the Mývatn district heating system. The size of the power plant is 3 MWe and the energy 

Table 7.7 - Boreholes in Bjarnarflag field (Gudmunddsson, 2010). 
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generated by the Bjarnarflag station amounts to approximately 18 GWh per year. 

(Gudmunddsson, 2010). The location of the Bjarnarflag power plant is shown in Figure 7.3. 

 

7.3 Inputs selected for the simulation in GEOFRAC 

Deep drillings conducted in this area have provided important information on the sources 

and composition of geothermal fluids, thermal properties of the fluids, and the geology and 

fracture system of this geothermal area. Numerical models of the reservoir can help with the 

characterization and optimal use of the geothermal resources. In general, the parameters used 

in the application of GEOFRAC can be found from a preliminary survey and exploration: 

P32 can be obtained from fracture spacing information obtained in boreholes and on outcrops. 

Best estimate fracture size E(A) can be obtained from fracture trace lengths on outcrops with 

suitable bias corrections. Distribution and estimates of fracture size can also be obtained 

subjectively. The list of the inputs needed in GEOFRAC is shown in Figure 7.6. 
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Figure 7.6 - Inputs for GEOFRAC 

 

The inputs selected for the Námafjall simulation are reported and explained in the next 

sections. All the physical data described here were obtained from Rivera Ayala (2010), from 

boreholes and measurements given by Landsvirkjun, the Icelandic geothermal company, and 

from other references mentioned.  

 

Reservoir geometry  

The Namafjall geothermal field is a large reservoir formed by the Krafla caldera. It is about 

10 km long and 5-8 km wide. The magma chamber is at a depth 3-7 km under the caldera.  

In our model the dimension X, Y, Z (Figure 7.7) express the size of the reservoir that we 

want to simulate. Z in particular refers to the injection depth. We conducted simulations on 

Input variables 

Reservoir 

Geometry 

Width [m] 

Length [m] 

Depth [m] 

Fracture Network 

parameter 

P32 [m-1] 

k: Fisher parameter 

E(A) [m-1] 

m: Type of fracture 

distribution 

Fracture Rotation 

Aperture 

[m] 

Fluid Flow 

parameter 

Pin [Pa] 

Pout [Pa] 

μ [KPa*s] 

Fracture roughness 

[m] 

Heat Transfer 

parameter 

kT: Fluid Thermal 

Conductivity [W/(kg*°C)] 

 

Trock: Rock 

Temperature [°C] 

ρ:Fluid Density [kg/m3] 

 
Cp: Fluid Specific Heat 

Capacity [J/(kg*°C)] 

 

Tin: Temperature at 

injection [°C] 
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the slice from 1000-2000m depth; this is in fact the fractured zone in this particular field 

(Isabirye, 1994). For our simulation we therefore assume:  

X=1 km  

Y= 2 km  

Z= 1 km  

 

 

 

 

 

 

Figure 7.7- Coordinates of the controlled volume according to GEOFRAC 

 

Fracture network parameters  

In GEOFRAC fractures planes are generated in the volume V with a Poisson plane process 

of intensity μ where μ= P32. P32 is given as sum of the areas of all fracture i ( ifA ,  ) over the 

total modeled volume (Equation 7.1):  

V

A

P

N

i

if
 1

,

32      Equation 7.1  

The other fracture parameter E(A) is the mean area of fractures.  

X 

x 

y 

z 

Y 

Z 
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According to the geologic survey and boring logs, the hydrothermal reservoir is fractured by 

major fault related fissures and manifestations (Rivera Ayala, 2010). The boring data 

indicated very large spacings between the fractures. So a low value for P32 and high value 

for E(A) is chosen to simulate this geologic condition. The values are:  

P32 = 0.02 m-1 

E(A) = 800000 m2 

The orientation of the planes generated with a stochastic process, can be specified with the 

Fisher distribution. Lower values of the Fisher parameter k indicates more randomly oriented 

planes; higher k indicates that the planes are mostly parallel to each other. From borehole 

data, the major planes in this area appear to be mostly parallel to each other; for this reason 

a k=20 was chosen for this simulation. The mean pole chosen of the major fractures is (π/2, 

0), because the field data indicates that the fractures are mostly horizontal, as shown in 

Figure 7.8. These assumptions are made because, in general, it appears that the major 

permeable zones encountered by the Kafla wells are due to vertical fractures, that drive the 

flow into depth, and horizontal permeable zones between adjacent lava beds, as shown and 

explained in Figure 7.4. 
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k=20 

 

 

[π/2, 0] 

 
 

Figure 7.8 - Schematic representation of the mean orientation of the major fracture 

planes 

 

Random translation and rotation (see Vecchiarelli, 2012) of the fractures (polygons) is 

performed to represent the local variation of fracture position and orientation of minor 

fractures. A new algorithm in GEOFRAC was added to the model to allow the user to model 

fractures with or without random rotation. Because the simulation presented here is 

concentrating on simulating the major planes, we assume that the fractures are all in the same 

plane and no rotation of the individual fractures is considered. 
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No data are available for the aperture of the fractures in this reservoir. GEOFRAC has three 

models available to be used in order to generate fracture aperture. For this case the 

probabilistic approach is used. According to the statistical study done by Dershowitz and 

Einstein, (1988), the apertures of fractures follow a truncated lognormal distribution: 

maxmin,
)()(

=
max

min

hhh
hdhf

f(h)
(h)f

hTR 


   Equation 7.2  

Where hmin and hmax (in meters) are the minimum and the maximum aperture values. This 

relation is presented in Figure 7.9. 

Figure 7.9 - Truncated lognormal distribution  

 

For the simulation hmin = 0.00002 m, mode=0.004m and hmax = 0.01 m are used. The 

distribution of the apertures is shown in Figure 7.10. 

     hmin   hmax 
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Figure 7.10 - Aperture distribution that follows a truncated lognormal distribution 


Fluid flow parameters  

The flow equations used to model the flow through the fractures are those for laminar flow 

between parallel plates (Equation 7.1). 

L

Pwh
q






12

3

  

Equation 7.1  

Where: 

q is the volumetric flow rate (m3/sec) per unit width; 

w is fracture width;  
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h  is the aperture of the fracture in m; 

μ is the fluid dynamic viscosity in Pa * s; 

ΔP is the pore pressure change in Pa after the flow travels through distance ΔL. 

 

The water flows only in the x direction between two parallel plates with the no-slip condition 

for viscous fluids forming the parabolic velocity profile in the y direction. The roughness of 

the fracture (as shown in Figure 7.11) considered in the simulation is ε = 0.4 m.  

 

 

 

Figure 7.11 – Schematic representation of the roughness  

 

The initial thermal condition of the water is assumed to be 60°C. So the value of the viscosity 

is μ=0.468×10-3 Pa∙s and the fluid density, ρ=983kg/m3.  

 

 

Heat transfer parameters  

Figure 7.12 shows selected temperature logs obtained in the well B-9 (see Figure 7.5 for 

location) in the period 1970 - 1993. In the first years, the logs near surface are influenced by 

cooling during drilling and thus do not show the real rock temperature. At 1300 m the 
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temperature was higher than 250 °C. Looking at all the temperature profiles the average 

temperature below 300 m is around 200-250 °C. 

Figure 7.12 - Temperature measurements in well B-9, 1970-1993 (Isabirye, 1994)  

In the area the majority of the wells predict temperatures of 240°C - 260°C (Rivera Ayala, 

2010). For the simulation Trock= 250°C is used. The magma chamber is located below 3-7 

km under the caldera, and it serves as a source of heat for the hydrothermal system; so the 

assumption of constant temperature of the surrounding rock is reasonable. In the simulation 

it is also assumed that at depth temperature of the geothermal fluid is equal to the rock 

temperature. 

For a typical heat exchanger, the outlet temperature, which is also the temperature of the 

injected water, is around 60 °C, so the injection temperature is assumed to be 60 °C. The 
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thermal properties of the fluid at a small scale do not change much with temperature, so 

constant values are used: 

Fluid Thermal Conductivity kt=0.6546 w/(kg*°C) 

Fluid Specific Heat Capacity, Cp = 4185 J/(kg*°C) 

 

7.4 Results 

Figure 7.13 is a schematic representation of the possible flow paths in one simulation. The 

purple numbers represent the temperatures (°C) in each branch while the blue numbers 

represent the flow rates (l/s). This figure shows that GEOFRAC, as a discrete fracture model, 

calculates the flow rates and temperatures explicitly. 

 

Figure 7.13 - Schematic representation of the fracture flow system obtained 

in one simulation 
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Because of the stochastic processes used in GEOFRAC, the results are not deterministic. To 

draw reliable conclusions, a moderate number of simulations has to be run. Here, 20 

simulations are run and analyzed as follows.  

The average value of the total flow rates is 0.21 m3/s. This value is in line with the production 

flow this actual power plant is producing (ISOR, 2013). The Reynolds number of all the 

branches is checked to make sure that the assumption of laminar flow in the flow model is 

satisfied.  

Because of the small apertures and large areas of the fractures, the heat transfer between the 

rock and the flow is very efficient. As we can see from Figure 7.12, the temperature of the 

water reaches that of the rock at the first node after the injection boundary. One has to keep 

in mind, however, that the thermal model in GEOFRAC assumes a constant rock 

temperature, so the results can only model the beginning stage of the injection. Still, the 

results indicate that the large area and small apertures of fractures are very helpful in 

extracting the heat from the underground.  

The average energy extraction rate estimated by GEOFRAC is 116,224 KW; it is much 

higher than the capacity of the power plant, which is around 10 MW (Ragnars et al., 1970). 

This is quite understandable given that the energy conversion efficiency of a geothermal 

plant is often around 20%. In addition, the heat transfer model is based on the above 

mentioned assumption that the temperature of the rock is constant, but in reality, there is 

temperature drawdown in the rock. The heat extraction rate cannot be maintained for a long 

time. Although the results GEOFRAC overestimate the heat extraction rate, they provide the 

upper bound of the power. Future work on the thermal model is needed to produce a long 

term temperature prediction of the reservoir. 
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When the parameters used in GEOFRAC are varied, the changes in the results reflect the 

sensitivity of the model. We conducted such parametric studies (Vecchiarelli et al., 2012; Li 

et al. 2013) and these studies indicate that the fracture parameters such as fracture intensity, 

best estimate of fracture area, and orientation have a very large influence on the fracture 

network. The number of fractures, number of flow paths and their geometry are all dependent 

on these fracture parameters. Aperture plays a very important role in determining the flow 

rate and heat transfer mainly because the cube of the aperture appears in the governing 

equation. In other words the resulting flow rate is very sensitive to the aperture distribution. 

These parametric studies, therefore indicate that the choice of parameters has to be done 

extremely carefully. 

The simulation of a real case with GEOFRAC, showed that this model can be used to 

represent a hydrothermal reservoir. When selecting the inputs in the model it is important to 

understand that the model is very sensitive to the aperture parameter as well as to the 

orientation of the fractures. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK  

 

8.1 Summary and conclusions  

GEOFRAC is a discrete fracture pattern model, which combined with a fracture flow model can 

represent the fracture-flow system in a geothermal reservoir. Recent developments have made 

GEOFRAC more efficient by basing it on Matlab, and it has been expanded by including an 

intersection algorithm and a thermal-flow model. 

In Chapter 2, models and software tools used to model fracture flow systems are presented. Each 

of them has some properties that make it difficult to model and to optimize a geothermal basin. 

Chapter 3 describes the algorithm and the basic concept of GEOFRAC. 

In Chapter 4 the results obtained from a parametric study with the fracture flow model GEOFRAC 

are analyzed and discussed. Specifically, the influence of fracture aperture and orientation on flow 

was investigated. The parametric study demonstrates how aperture, the Fisher parameter for 

fracture orientation and rotation of the individual fractures influence flow rate. As to be expected 

greater apertures produce greater flow. The effects of orientation are more complex as the effect 

of fracture plane orientation (Fisher parameter) and of rotation of individual fractures interact. For 

planes randomly generated the case with no rotation of the fractures and an aperture of 0.01 m 
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generates greater flow than with rotation, while for parallel planes greater flow occurs in the case 

of rotation of the fracture and aperture of 0.01 m. This study of a simple synthetic case shows that 

the model produces consistent results but also that there are some unexpected complexities affected 

by fracture orientation. 

Chapter 5 presents the extension of GEOFRAC with an algorithm that allows the modeling of 

wells intersecting the fractured region. 

In Chapter 6 a GUI that was created in order to simplify the work to the user is presented. 

In Chapter 7 the analysis of a case study shows that GEOFRAC produces reasonably close results 

to the real geothermal conditions. The estimation of important factors such as flow rate and energy 

extraction rate are reasonably close to reality. However, GEOFRAC has still limitations that need 

to be further examined and that are described in the next section. 

Another goal of this research was to understand the uncertainty of field predictions and to detect 

possible limitations and necessary improvements of GEOFRAC. The main limitation in the 

modelling effort was the lack of data regarding fracture intensity P32 and best estimate fracture 

area EA. Restrictive assumptions in the present GEOFRAC are the homogeneity of the parameters 

for the entire reservoir and the assumption of a single phase fluid. 

In conclusion, GEOFRAC seems to accurately model the fracture flow system in a geothermal 

reservoir. The values of flow rates obtained in the parametric study are reasonably comparable to 

the ones found in the literature. The well intersection algorithm adds the possibility to properly 

include injection and production wells. (This feature can eventually be used to improve the location 

of the wells in order to obtain higher flow from the wells). The GUI presented in this report will 

allow any user to easily apply GEOFRAC.  
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8.2 Future research 

Further improvements of GEOFRAC are possible: 

 Implementation of an algorithm to obtain the optimum position of the injection and 

production wells. The borehole intersection algorithm presented in Chapter 5 can be used 

to evaluate the fractures that intersect the wells for a given position. One of the most 

important improvements in the code would be to implement an algorithm to select the 

optimum position of the borehole after the fracture flow system is generated; the 

optimization should be done considering the most fractured area, and the fracture zone with 

the greatest apertures. This will increase the flow rate in the production well and may 

reduce the cost associated with exploration and construction of the wells. 

 Analysis of the change in porosity and permeability due to the cold fluid injection. The 

initial injection of water at 20° C may create a state of stress in the rock that induces more 

fractures in the system or, conversely, close some fractures. 

 Fluid physical conditions (change of density, change of liquid phase to vapor). The 

assumption made up to now is a single phase fluid in its liquid state. 

 Analysis of the temperature of the basin over a long period. Some studies show a reduction 

of the temperature over the long term. It would be useful to analyze this phenomenon and, 

if necessary, create an algorithm that will simulate the flow rate and temperature over time, 

and simulate this decrease in temperature. 

 Geochemistry and reactive transport model.  

 Matrix domain model (Double porosity model). Fluid flow through a geothermal system is 

dominated by flow through the fractures while heat transfer is controlled by the interaction 
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between the matrix and fracture. The amount of flow from the matrix to the fracture affects 

heat transfer.  

 Improve the results section of the GUI. Create a sub-GUI that allows the users to decide 

which results and charts should be shown. 
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Numerical and Analytical Modeling of Heat 

Transfer between Fluid and Fractured Rocks 

Executive Summary 

This final report in the context of the research project, “Recovery Act – Decision Aids for 

Geothermal Systems”, puts everything together in the form of an integrated “fracture pattern-

fracture flow-fracture heat transfer” model, which is then applied to and checked against a case.  

The basis for all this is the discrete fracture network model, GEOFRAC, that has been substantially 

extended and made more user friendly as described in the report, “Further Development and 

Application of GEOFRAC-FLOW to Geothermal Reservoirs”. 

This report, “ Numerical and Analytical Modeling of Heat Transfer between Fluid and Fractured 

Rocks”, first reviews (Chapters 1, 2) the basic processes in heat transfer (conduction, convection, 

radiation) and how they are analytically expressed.  Fluid flow in porous media and fractures is 

also briefly reviewed.  This forms the basis for a review of heat transfer between a fluid and the 

rock mass in which both analytical and numerical models are commented upon, and this for 

continuum-, discrete- and hybrid models. 

In Chapter 3 the discrete fracture network model, GEOFRAC, and the fracture fluid model, 

GEOFRAC-FLOW are used to develop GEOFRAC-THERMAL.  (Note that GEOFRAC-FLOW 

was also developed in the context of this research and was reported in the report, “Decision Aids 

for Geothermal Systems – Fracture Flow Modeling”).  An extensive parametric study was then 

conducted with GEOFRAC-THERMAL in which the effect of geometric-, flow- and heat 

characteristics were investigated.  Most importantly, the model was then applied to the Fenton Hill 

case, and the model results showed good coincidence with the measured values in the initial 

operating phase.  However, at this stage of the research it was not possible to model temperature 

drawdown in the rock. 

As a consequence, additional work on drawdown (coupled) models was done.  The first (0-d or 

lumped thermal capacity) model assumes uniform temperature distribution in the rock; for this, an 

analytical solution was formulated and successfully compared to the Fenton Hill case now properly 

considering rock temperature drawdown.  In the next step a simplified coupled 1-D solution (only 
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transverse heat conduction in the rock, neglected fluid velocity profile and fluid heat conduction) 

was developed.  This was satisfactorily compared to a numerical solution. 

To conclude, one can state, that with GEOFRAC-THERMAL combined with the simple thermal 

drawdown analysis, one can produce practically useful results.  This has been shown through the 

application to a real case.  Nevertheless, more work in the direction of a more sophisticated thermal 

drawdown models is desirable.   
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1. Introduction 

1.1. Context 

With the expected depletion of available fossil fuels in the foreseeable future, alternative energy 

resources have been intensively investigated to ensure the security of energy supply for the long 

term. Geothermal energy, as a renewable energy option, has provided some base-load electricity 

around the world for more than a century. Conventional geothermal resources are limited in their 

location and ultimate potential for supplying electricity. Beyond these conventional resources are 

Enhanced (Engineered) Geothermal Systems (EGS, also termed as Hot Dry Rock system, HDR) 

with an enormous potential for primary energy extraction using heat-mining technology, which is 

designed to extract and utilize the earth’s stored thermal energy.  

Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy 

extraction analysis in EGS, and therefore represents a critical component of EGS design and 

performance evaluation. In conventional fracture dominated geothermal systems with reinjection, 

this modeling process is also helpful for understanding how the thermal front migrates and 

optimizing of reservoir management strategies. 

In order to improve the energy productivity but also the performance of the geothermal systems, a 

better understanding of the heat transfer between fluid and fractured rocks is important. 

1.2. Research Objectives 

The purpose of this research is to develop a model which predicts the temperature profile of both 

the water and the rock, so that better decisions can be made regarding the geothermal system, when 

information on the underground conditions are limited.  

The challenge of modeling this heat transfer process comes from the complex geometry of the rock 

fracture networks, variation of rock and fluid properties, and uncertainty of these underground 

conditions. Also, the large scale and long time period that need to be modeled require intensive 

computational efforts. 

To achieve the research objectives, both numerical and analytical approaches are utilized in the 

modeling of heat transfer between fluid flow and fractured rocks. In the numerical approach, 
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GEOFRAC, a 3-D geology-based stochastic Discrete Fracture Network (DFN) model, is used to 

simulate the fracture networks in the geothermal reservoirs. GEOFRAC-FLOW, a flow model 

based on GEOFRAC, is used to explicitly calculate the flow rate in each fracture. On the basis of 

the two, a heat transfer model GEOFRAC-THERMAL is developed to calculate the temperature 

of water at each node in the network. Comprehensive parametric studies with the three models are 

conducted to demonstrate the capabilities of the models. A thermal drawdown model based on the 

result of GEOFRAC-THERMAL is proposed and studied. 

In the analytical approach, governing equations are formulated and solved for the temperature 

profile of the fluid and the rock. Influence of the factors in the governing equations are analyzed 

for the case of water and granite. Solutions with necessary simplifications, for example the 0-D 

and 1-D solutions, are presented.  

A case with fluid flow and fractured rocks in a simple geometric configuration is constructed to 

compare the fluid temperature calculation between the numerical and analytical approaches. 
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2. Background 

The process of heat transfer between fluid flow and fractured rocks is complex. This chapter 

provides an overview of the basic heat transfer mechanisms. First, a discussion is given of the 

fundamental concepts and equations used to describe heat and mass transfer, with a particular 

focus on geothermal systems. Next, a brief summary is given of previous numerical modelling 

efforts focused on heat transfer in fractured media. Finally, a literature review of analytical 

modelling efforts is presented. 

2.1. Heat Transfer 

There are three distinct modes of heat transfer to consider in any thermal model: conduction (the 

transfer of energy through the interaction of molecules), convection (heat transfer due to the 

movement of molecules within a fluid), and radiation (energy transfer through some sort of wave 

phenomenon, most typically electromagnetic waves). 

2.1.1. Conduction 

The transfer of heat by conduction is perhaps the simplest and most direct form of heat transfer. 

Conductive heat transfer occurs at the molecular scale, by means of collisions and interactions 

between molecules at different energy states. In nonmetallic solids these interactions typically take 

the form of lattice vibrational waves. Heat may also be conducted by the movement of free 

electrons, this behavior being characteristic of metals (Incropera & DeWitt, 2002). Rigorous 

quantitative studies of heat conduction began with Joseph Fourier's 1822 publication of The 

Analytical Theory of Heat (Fourier, 1955). In this work Fourier presented the basic law concerning 

the rate of heat movement at a steady state, now known as Fourier's Law of heat conduction: 

 
𝑞ℎ𝑥 = −𝑘𝑥

𝑑𝑇

𝑑𝑥
 

(2.1) 

where: 

qhx is the heat flux in the x direction; 

 
𝑑𝑇

𝑑𝑥
 is the temperature gradient in the x direction; 

 kx is the thermal conductivity in the x direction. 
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k is a physical constant whose value depends upon the material. A highly conductive material, like 

copper, may have a k value of 386 W/(m·K), while an insulating material, like cork, has a value 

of around 0.04 W/(m·K) –a ten-thousand fold difference. Solids tend to have much higher k values 

than liquids because the molecules of solids are more tightly bonded than those of liquids. Like 

the specific heat capacity, thermal conductivity is often assumed to be a constant, though in many 

cases it exhibits a dependence on temperature.  

A general heat conduction equation to describe the transient heat conduction can be constructed 

by using the energy conservation principle and Fourier’s law of heat conduction on an infinitesimal 

control volume, as shown in Figure 2.1. 

 

Figure 2.1 Energy Conservation in the Infinitesimal Control Volume 

 The energy conservation principle leads to Equation 2.2: 

 −(
𝜕𝑞ℎ𝑥

𝜕𝑥
+

𝜕𝑞ℎ𝑦

𝜕𝑦
+

𝜕𝑞ℎ𝑧

𝜕𝑧
) + 𝑞0 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
 (2.2) 

 

Equation 2.2 can also be rewritten into a more compact form: 

 −∇ ∙ 𝒒𝒉 + 𝑞0 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
 (2.3) 

 

where: 
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qhi represents the heat flux in the i direction; 

qh is the heat flux tensor; 

q0 represents the internal energy generation, such as radioactive decay; 

ρ is the density; 

Cp is the specific heat capacity.  

By applying Fourier’s law of heat conduction, Equation 2.3 can be rewritten as: 

 
𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
) + 𝑞0 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
 (2.4) 

 

In more compacted form: 

 ∇ ∙ (𝑘∇𝑇) + 𝑞0 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
 (2.5) 

 

If the medium is isotropic and homogeneous, having a spatially constant value of thermal 

conductivity, then the equation may be further simplified: 

 
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

𝑞0

𝑘
=

𝜌𝐶𝑝

𝑘

𝜕𝑇

𝜕𝑡
=

1

𝛼

𝜕𝑇

𝜕𝑡
 (2.6) 

 

where α represents the thermal diffusivity, the ratio of thermal conductivity to volumetric heat 

capacity:  

 𝛼 =
𝑘

𝜌𝐶𝑝
 (2.7) 

 

2.1.2. Convection 

Strictly speaking, convection is the transport of energy by motion of a medium. In convection, heat 

transfer is a two-step process involving a moving fluid in contact with a solid at some interface 

between them. The first step is an exchange of heat between the solid and fluid at their interface, 

and the motion of the affected fluid molecules from the interface.  The second step is conduction, 

both within the solid, as well as between the displaced fluid molecules and the remainder of the 
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fluid (Mills, 1999).  As shown in Figure 2.2, the heat is conducted from the bottom solid to the 

fluid, the hot fluid brings the heat to the cold fluid so that heat is transferred.  

 

Figure 2.2 An Example of Heat Convection 

The convective heat flux is directly proportional to the mechanical mass flux of the fluid. When a 

fluid moves with a constant mass flux, the effects of forced convection can be modelled by the 

addition of this convective flux into the energy conservation Equation 2.3. As shown in Figure 2.3 

colored in blue, the mass flow qmi in the i direction brings the convective flux qmiCpT to the 

infinitesimal control volume, the divergence ∇ ∙ (𝒒𝒎𝐶𝑝𝑇) of this convective flux is the energy 

taken away by this flux.  

 

 Figure 2.3 Energy Conservation in the Infinitesimal Control Volume 
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 ∇ ∙ (𝑘∇𝑇) − ∇ ∙ (𝒒𝒎𝐶𝑝𝑇) + 𝑞0 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
 (2.8) 

Where: 

 qm is the mass flux of the fluid; 

qmCpT is the convective heat flux. 

The rate of heat transfer by convection is usually a complicated function of surface geometry and 

temperature, the fluid temperature and velocity, and fluid thermal properties. In an external forced 

flow, the rate of heat transfer is approximately proportional to the difference between the surface 

temperature Ts and temperature of the free stream fluid Tf. The constant of proportionality is called 

the convective heat transfer coefficient hc: 

 𝑞ℎ = ℎ𝑇(𝑇𝑠 − 𝑇𝑓) (2.9) 

hT is a physical constant whose value depends upon the material (as it was with k), but also the 

conditions of the convection (whether the flow is laminar or turbulent and so on).  

2.1.3. Radiation 

Thermal radiation is energy emitted by matter as electromagnetic waves, due to the pool of thermal 

energy in all matter with a temperature above absolute zero. All objects constantly emit energy as 

electromagnetic radiation, of an intensity determined by the object's temperature and surface 

characteristics. This energy can be absorbed by other objects, also as a function of their 

temperature and surface characteristics. The transfer of heat by electromagnetic radiation is termed 

radiative heat transfer (Mills, 1999).  

Not all electromagnetic radiation that reaches a body is absorbed. The energy may be either 

absorbed, reflected, or transmitted through the body, at fractions described by the absorptance Θ, 

reflectance Λ, and transmittance Ω. These coefficients, whose sum must equal unity, will vary 

depending on the wavelength of the incoming radiation. 

The Stefan-Boltzmann law describes the maximum amount of energy that may be emitted from a 

body at a given temperature. The law, which is valid for a theoretical “black body" having Θ = 1, 

predicts a maximum energy flux (qh) of: 

 𝑞ℎ = 𝐵𝑇4 (2.10) 

 

where: 

T is the surface temperature; 
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B is the proportionality constant, which is referred to as the Stefan-Boltzmann constant and 

is equal to 5.67×10-8W/(m2·K). 

When radiation is exchanged between two objects, the rate of heat transfer is a function of the 

difference in the fourth power of their temperatures. The heat flux from object 1 to object 2 is 

given by qh(T1), while the heat flux from object 2 to object 1 is given by qh(T2). The net heat flux 

from object 1 to object 2 is thus described by: 

 𝑞ℎ(𝑇1) − 𝑞ℎ(𝑇2) = 𝐵(𝑇1
4 − 𝑇2

4) (2.11) 

 

The actual rate of heat transfer from object 1 to object 2 is a function of the heat fluxes of the two 

objects, the area through which heat is emitted and absorbed, and their configuration in space. The 

rate can be calculated according to: 

 𝑞ℎ = 𝐴1𝐹1−2𝐵(𝑇1
4 − 𝑇2

4) (2.12) 

where: 

A1 is the area from which radiation is emitted and absorbed; 

F1-2 is the configuration factor, a function of the emittances and absorptances of the two 

objects, as well as their arrangement in space. 

The heat transfer processes between fluid flow and fractured rock are mainly conduction and 

convection. Radiation in this configuration only transfers a negligible amount of heat. In the rock, 

where there is fluid flow in the interconnected pores, heat conduction in the rock and fluid, and 

heat convection in the fluid are the mechanisms that transfer heat. In fractures, heat is transferred 

by both conduction and convection in the fluid. The fluid and rock system, thus form a 3-D coupled 

heat transfer system. 

2.2. Mass Transfer 

There are mainly two modes of fluid mass transfer in the fractured rocks. They are fluid flow in 

interconnected rock pores and fluid flow in rock fractures. These two modes have significantly 

different contact areas between the fluid and the solid, thus need to be considered separately. A 

combined mode of the two is also possible when fluid flows in fractured porous rocks. 
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2.2.1. Fluid Flow in Rock Pores 

Fluid flowing in the interconnected rock pores is very common in the field of groundwater 

hydrology and petroleum engineering. In 1856, the French engineer Henry Darcy performed 

several experiments concerning water flow through sand (Darcy, 1856). His observation can be 

summarized as the Darcy’s law: 

 𝑞𝑣𝑜𝑙 = 𝐾𝐴
ℎ2 − ℎ1

𝑙
 (2.13) 

 

where: 

 qvol is the volumetric flow rate; 

 A is the cross-sectional area of the tube; 

 h1 and h2 are the hydraulic head at the measurement points;  

 l is the distance between the measurement points; 

 K is the hydraulic conductivity. 

The hydraulic head is given as: 

 ℎ =
𝑝

𝜌𝑔
+ 𝑧𝑒𝑙 (2.14) 

where: 

 p is the fluid pressure; 

 ρ is the density of the fluid; 

 g is the gravitational constant; 

 zel is the elevation head, which is the distance to the datum. 

The proportionality constant K in Darcy’s relation is referred to as the hydraulic conductivity. The 

property of hydraulic conductivity is a measure of how easily the fluid is conducted through the 

porous medium. Hydraulic conductivity is influenced by four factors: the dynamic viscosity and 

density of the fluid, gravitation, and the transmitting property of the material the fluid is flowing 

through. This last property is called permeability, which we denote by κ. Permeability has units 

m2, but in practice, the unit Darcy (D) is usually used. 1D is defined as the permeability of a fluid 

with viscosity 1 cP flowing at the rate of 1 cm/s under a pressure gradient of 1 atm/cm, that is 1D 
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≈ 9.869×10-13 m2. The hydraulic conductivity K and permeability κ can be related by Equation 

2.15: 

 𝐾 =
𝜅𝜌𝑔

𝜇
 (2.15) 

where: 

 μ is the dynamic viscosity. 

Generally, the hydraulic conductivity and permeability are tensors. Darcy’s law can be written in 

the differential form: 

 𝑢 = −
1

𝜇
𝐾(∇𝑝 − 𝜌𝑔) (2.16) 

Where: 

u is the volumetric flux called Darcy velocity.  

The Darcy velocity is not the actual velocity at the pore scale, but rather an averaged macroscopic 

volume flux. It is the volume flowing over the entire cross section, including both fluid and matrix. 

The actual velocity, U, is only the flow through the cross section of the fluid. The two velocities 

are hence related by Equation 2.17. 

 𝑈 = 𝜙𝑢 (2.17) 

where: 

 ϕ is the porosity of the porous medium. 

The velocity U is called the intrinsic velocity, as it describes the actual velocity. This velocity is 

important because it is the velocity of fluid that transports heat. 

2.2.2. Fluid Flow in Rock Fractures 

Fractures and faults provide permeable pathways for fluids at a variety of scales, from great depth 

in the crust to flow through fractured aquifers. Fracture-dominated flow is important in many 

situations of technical or scientific interest, such as in naturally-fractured petroleum reservoirs, and 

most geothermal reservoirs.  

The simplest model of flow through a rock fracture is the parallel plate model. This is the only 

fracture model for which an exact calculation of the hydraulic conductivity is possible; this 

calculation yields the well-known cubic law. The derivation of the cubic law begins by assuming 
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that the fracture walls can be represented by two smooth, parallel plates, separated by an aperture 

δ, as shown in Figure 2.4.  

 

Figure 2.4 Fluid Flow between Two Parallel Plates 

As the problem is 2-D, fluid velocity in the Y and Z direction is zero. The assumption that the flow 

is laminar means the streamlines are parallel, i.e. uz=0. The Navier-Stokes Equation in the X 

direction is: 

 
𝜕𝑢𝑥

𝜕𝑡
+ 𝑢𝑥

𝜕𝑢𝑥

𝜕𝑥
+ 𝑢𝑧

𝜕𝑢𝑥

𝜕𝑧
= 𝑓𝑏𝑥 −

1

𝜌
∇𝑝 +

𝜇

𝜌
∇2𝑢𝑥 (2.18) 

 

Because it is steady condition, laminar flow condition and there is no body force on the fluid. 

Equation 2.18 can be simplified as: 

 0 = −
1

𝜌
∇𝑝 +

𝜇

𝜌
(
𝜕2𝑢𝑥

𝜕𝑧2
) (2.19) 

 

Thus, 

 
1

𝜇

𝜕𝑝

𝜕𝑥
=

𝜕2𝑢𝑥

𝜕𝑧2
 (2.20) 

 

The boundary conditions are: 

 
𝑢𝑥 = 0 𝑎𝑡 𝑧 =

𝛿

2
 𝑎𝑛𝑑 𝑧 = −

𝛿

2
 

𝜕𝑢𝑥

𝜕𝑧
= 0 𝑎𝑡 𝑧 = 0 

(2.21) 
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The solution of this differential equation is: 

 𝑢𝑥(𝑦) = −
1

2

1

𝜇
(
𝜕𝑝

𝜕𝑥
) [(

𝛿

2
)
2

− 𝑧2] (2.22) 

 

The negative sign means the direction of the flow is opposite to that of the pressure gradient. 

Because the flow is steady, the pressure gradient in the x direction is uniform. Assume the 

pressures at the inlet and outlet of the fracture are pi and po, respectively; the length of the fracture 

is L. Equation 2.22 can be rewritten as: 

 𝑢𝑥(𝑦) = −
1

2

1

𝜇
(
𝑝0 − 𝑝𝑖

𝐿
) [(

𝛿

2
)
2

− 𝑧2] (2.23) 

 

As shown in Equation 2.23, the velocity profile across the fracture is parabolic. Usually, the bulk 

velocity is used as the average velocity across the fracture, as defined in Equation 2.24. 

 𝑢𝑥̅̅ ̅ =

∫ 𝑢𝑥𝑑𝑦
+
𝛿
2

−
𝛿
2

∫ 𝑑𝑦
+
𝛿
2

−
𝛿
2

=
𝛿2

12𝜇
(
𝑝

𝑖
− 𝑝

𝑜

𝐿
) (2.24) 

 

Assume the width of the fracture is w, the cross sectional area is A, then the flow rate is: 

 𝑄𝑥 = 𝑢𝑥̅̅ ̅𝐴 = 𝑢𝑥̅̅ ̅𝑤𝛿 =
𝑤𝛿3

12𝜇
(
𝑝

𝑖
− 𝑝

𝑜

𝐿
) (2.25) 

 

Because of the aperture cube term, Equation (2.23) is called the cubic law (named Poiseuille law 

for cases with circular cross-section) (Witherspoon et al., 1980). When the cubic law is applied to 

calculate the flow rates in the fractures, reduction factors are often introduced to account for the 

surface roughness of the fractures. These reduction factors are produced by fitting test data with 

the cubic law. Different type of rocks often have different reduction factors. 

Fundamentally, the above two modes of fluid transfer in the rock mass have a lot in common, for 

example, the flow rates are controlled by fluid viscosity, and the flow rates are proportional to the 
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pressure gradient. These similarities are one of the reasons why equivalent hydraulic conductivity 

can be used to calculate fluid flow in rock fractures. However, when it comes to heat transfer, the 

significantly different contact areas of the two modes might make the two mass transfer modes 

perform differently. This will be covered in the following. 

2.3. Analytical Approaches 

Modeling the heat transfer between fluid and fractured rocks in the geothermal systems falls into 

the ‘data limited’ class of Starfield & Cundall (1988). This means that we are unable to characterize 

the system well enough to determine the actual geometry. A simplified geometric representation 

of the fractures is necessary for analytical approaches. The fracture systems in the rocks are usually 

represented by a continuum if the fractures are uniformly distributed in the rock mass, or by 

discrete fractures if there is only a small number of fractures and they can be represented 

individually. When both of the fractures and the porosity of the rock are considered, the models 

are called hybrid models. 

2.3.1. Continuum Models 

In the world of mechanics, a continuum is defined as a volume of material whose properties can 

be represented by one point or one infinitesimal element. The discrete behavior of individual 

fractures is represented by an average property over a representative elementary volume (REV). 

Because the flow in rock fractures and rock pores are both proportional to the pressure gradient, 

equivalent hydraulic conductivity can be used. Then, the fractured rock can be modeled using the 

same approach as that of the porous media.  

Because of the extensive research in underground hydrology and petroleum engineering, the 

conduction and advection in porous media have been well formulated for solute transport. Similar 

mechanisms drive the heat transfer in porous media, so the problem of heat transfer is often solved 

in the similar way to that of solute transport.  

The continuum models often assume the fluid moves in a confined rock stratum, which can also 

be equivalent to porous medium. Heat transfer happens between the confining impermeable rock, 

the fractured rock and the fluid. Lauwerier (1955) published the first and perhaps the most widely 

known solution for the temperature distribution due to injection of a hot fluid in a reservoir, which 

includes heat losses to the impermeable strata surrounding the reservoir. Malofeev (1960) has 
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shown that Lauwerier’s solution is also applicable in the radial flow case. Avdonin (1964) 

considered a non-zero value for the thermal conductivity within the reservoir in the horizontal 

direction. Chen and Reddell (1983) developed analytical solutions of temperature distribution for 

thermal injection into a confined aquifer, with a cap rock of finite thickness. 

Figure 2.5 shows the sketch of a continuum model developed by Ascencio et al. (2014). The 

injected fluid is incompressible and flows through the permeable fractured stratum, which is 

treated as a confined aquifer between the underlying rock and overlying impermeable stratum. The 

flow in the fractured rock stratum is radial and goes to the horizontal infinity. Cylindrical 

coordinates (r, θ, z) are used in this case. The material properties of the rock and the water are 

assumed to be constant without changing with temperature. The confining rock and the fractured 

rocks are homogeneous, isotropic and of infinite horizontal extent. 

 

Figure 2.5 A Sketch of the Conceptual Model developed by Ascencio et al. (2014) 

The model only considers the vertical heat conduction in the impermeable stratum, thus the energy 

equation for the confining rock is given by Equation 2.26: 

 𝜌𝑟𝐶𝑝𝑟

𝜕𝑇𝑐𝑟

𝜕𝑡
= 𝑘𝑟

𝜕2𝑇𝑐𝑟

𝜕𝑧2
, (0 < 𝑟, 0 < 𝑧 < ∞, 0 < 𝑡) (2.26) 

 

where: 
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  “Tcr” represents temperature of the confining impermeable stratum.  

The fractured confined rock stratum is represented by porous medium with equivalent porosity ϕ, 

which is the volume of fractures over the total volume. The energy balance equations for the fluid 

and the fractured rock are written as Equations 2.27 and 2.28: 

 𝜙𝜌𝑓𝐶𝑝𝑓

𝜕𝑇𝑓

𝜕𝑡
= 𝜙𝑘𝑓

𝜕2𝑇𝑓

𝜕𝑧2
−

𝜌𝑓𝐶𝑝𝑓𝑞𝑖

2𝜋𝛿𝑟

𝜕𝑇𝑓

𝜕𝑟
+ 𝑞∗(𝑡, 𝑥𝑓⃗⃗  ⃗), (0 < 𝑟,−

𝛿

2
< 𝑧 < 0, 0 < 𝑡) (2.27) 

 

 (1 − 𝜙)𝜌𝑟𝐶𝑝𝑟

𝜕𝑇𝑟

𝜕𝑡
= (1 − 𝜙)𝑘𝑟

𝜕2𝑇𝑟

𝜕𝑧2
− 𝑞∗(𝑡, 𝑥𝑓⃗⃗  ⃗), (0 < 𝑟,−

𝛿

2
< 𝑧 < 0, 0 < 𝑡) (2.28) 

 

where: 

 the subscript “r” represents the fractured rock; 

 the subscript “f” represents the fluid in the fracture; 

 r is the radius of the cylindrical coordinate; 

 δ is the fracture aperture; 

qi is the injection rate; 

q*(t, 𝑥𝑓⃗⃗  ⃗) is the heat flow from the fractured rock to the fluid in the fractures. 

The boundary conditions are: 

 𝑇𝑓 ≠ 𝑇𝑐𝑟;  𝑇𝑟 = 𝑇𝑐𝑟 , (𝑧 = 0) (2.29) 

 

 −𝜙𝑘𝑓

𝜕𝑇𝑓

𝜕𝑧
= 𝜙ℎ(𝑇𝑓 − 𝑇𝑐𝑟), (𝑧 = 0) (2.30) 

 

 (1 − 𝜙)𝑘𝑟

𝜕𝑇𝑟

𝜕𝑧
= 𝑘𝑐𝑟

𝜕𝑇𝑐𝑟

𝜕𝑧
+ 𝜙ℎ(𝑇𝑓 − 𝑇𝑐𝑟), (𝑧 = 0) (2.31) 

 

 
𝜕𝑇𝑟

𝜕𝑧
=

𝜕𝑇𝑓

𝜕𝑧
= 0, (𝑧 = −

𝛿

2
) (2.32) 

 

Equation 2.29 reflects the continuous temperature from the confining rock to the fractured rock. 

Equation 2.30 is the energy conservation between the confining rock and the fluid. Equation 2.31 
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reflects the continuous heat flux between the impermeable stratum and the fractured stratum. 

Equation 2.32 is the symmetry of the system about the 𝑧 = −
𝛿

2
 axis. 

In the fractured rock stratum, a uniform temperature profile is assumed in the Z direction, so 

Equation 2.27 and 2.28 can be integrated with respect to the vertical coordinate z, within the limit 

−
𝛿

2
 and 0. Laplace transform is used to solve the equations and numerical inverse Laplace 

transform is used to plot the temperature-time curve and migration of the thermal front. 

This analytical model makes several assumptions and simplifications, nevertheless, keeps many 

of the important features of the geothermal systems. It characterizes the heat transfer between the 

confining rock, fractured rock and the fluid. The results provide a very useful insight into how the 

thermal front migrates and how the temperature of the fluid changes, which is very important in 

design the reinjection strategies for the geothermal systems. 

However, this model does not account for the existence of the production well, which influences 

the flow direction. The assumption of a uniform velocity profile and temperature profile in the 

fractured stratum in the Z direction may omit the important heat transfer in the fluid. In addition, 

the parameters h and q* in Equation 2.27 and 2.30 are difficult to characterize since the system is 

an non-steady system, i.e. h and q* vary with time and space. 

2.3.2. Discrete Models 

In discrete fracture models, the geometry of each fracture is considered. However, analytical 

models of heat transfer between fluid and fractured rocks have to rely on a number of 

simplifications to make the differential equations and boundary conditions solvable. Abstracted 

geometric configurations are often used to represent the fractures in the geothermal systems.  

Gringarten and Sauty (1975) developed an analytical model for heat extraction in geothermal 

systems. Their model is a linear model involving an infinite series of parallel, equidistant, vertical 

fractures of uniform aperture, separated by blocks of homogeneous and isotropic, impermeable 

rock. A similar configuration, but horizontal fractures are assumed in the model developed by 

Bödvarsson and Tsang (1982). McFarland and Murphy (1976) use one disk shaped, uniform 

aperture, vertical fracture to represent the underground fracture. One vertical fracture in an 

unbounded domain is modeled by Cheng et al. (2001).  
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Figure 2.6 Cross-section of the Analytical Model developed by Bödvarsson and Tsang (1982) 

A schematic of the analytical model developed by  Bödvarsson and Tsang (1982), is shown in 

Figure 2.6. The injection well penetrates into a reservoir with an infinite series of parallel, 

equidistant, horizontal fractures of uniform aperture, separated by blocks of homogeneous and 

isotropic, impermeable rock. Similar to the model developed by Ascencio et al. (2014), steady and 

radial flow is assumed in the horizontal fractures and cylindrical coordinates (r, θ, z) are used for 

convenience. Because of the symmetry about the dashed lines in Figure 2.6, one basic section of 

the fracture system is analyzed, as shown in Figure 2.7.  
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Figure 2.7 One Basic Section of the Fracture System in Figure 2.6 

Only the heat conduction in the vertical direction is considered. The temperature in the rock is 

governed by the heat conduction in the Z direction: 

 
𝜕2𝑇𝑟

𝜕𝑧2
=

𝜌𝑟𝐶𝑝𝑟

𝑘𝑟

𝜕𝑇𝑟

𝜕𝑡
, (0 < 𝑧 < 𝐷) (2.33) 

 

The differential equation governing the fluid temperature in the fracture can be derived by 

performing an energy balance in an infinitesimal control volume in the fracture. The temperature 

and velocity profile of the fluid in the Z direction (transverse direction) is assumed to be uniform. 

 𝜌𝑓𝐶𝑝𝑓

𝜕𝑇𝑓

𝜕𝑡
+

𝜌𝑓𝐶𝑝𝑓𝑞𝑖

2𝜋𝛿𝑟

𝜕𝑇𝑓

𝜕𝑟
−

2𝑘𝑓

𝛿

𝜕𝑇𝑓

𝜕𝑧
|𝑧=0 = 0, (−𝛿 < 𝑧 < 0) (2.34) 

 

The initial and boundary conditions can be expressed as: 

 𝑇𝑓 = 𝑇𝑟 = 𝑇0, (𝑡 = 0) (2.35) 

 

 𝑇𝑓 = 𝑇𝑖, (𝑟 = 0) (2.36) 

 

 𝑇𝑓 = 𝑇𝑟 , (𝑧 = 0) (2.37) 
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𝜕𝑇𝑓

𝜕𝑧
|
𝑧=𝐷

= 0 (2.38) 

 

Equation 2.35 indicates that the water and fracture has the same temperature T0 before injection. 

Equation 2.36 describes that the temperature of the injected fluid is Ti. The temperature of the solid 

at the interface with the fluid is the same as that of the fluid, as indicated in Equation 2.37. Because 

of the symmetry of the basic section, there is no heat flow through the section boundary, as 

described in Equation 2.38. 

This model uses Laplace transform to solve the partial differential equations. Numerical inverse 

Laplace transform is used to transform the solution into the time and space domain. This model is 

capable of calculating the temperature profile of the fluid and rock at any time. It can also calculate 

the migrating of thermal front.  

However, this model greatly simplified the geometry of the fracture network, which may not 

capture the complexity of the underground conditions. Also, without considering the existence of 

the production well, the velocity profile of the fluid is not close to reality. In addition, diffusion in 

the longitudinal direction is neglected which may cause a certain amount of inaccuracy in the result. 

More realistic cases need to be considered, which will be covered in Chapter 4. 

2.3.3. Hybrid Models 

The models capturing the heat transfer between fluid and fractured porous rocks are known as 

hybrid models in this context. These models have to consider both the heat conduction and 

convection in the fluid in both the porous rocks and the fractures. Convection terms have to be put 

in the energy balance equations for both porous rock and fluid in the fractures. Analytical solutions 

are nearly impossible to be found without simplifications. Martínez et al. (2014) used similar 

methods as for solute transport in fractured porous rocks by Roubinet et al. (2012), which is to 

neglect the convection in the porous rock due to the slow velocity relative to the velocity in the 

fracture. The formulation of the problem is then similar to that in section 2.3.2. Instead of the radial 

coordinate, two dimensional Cartesian coordinates in the X-Z direction are used for fluid flowing 

in the X direction, as shown in Figure 2.8. 
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Figure 2.8 Analytical Model Developed by Martinez et al. (2013) 

Since the heat convection is neglected, heat conduction is the only mechanism that drives the heat 

in the porous rock. Because the porous rock has both solid and fluid, the diffusion coefficient D is 

used. To account for the anisotropy of the porous rock, the superscript of D indicates the direction 

of the diffusion. The temperature in the porous rock matrix is governed by the heat diffusion in the 

X and Z directions: 

 
𝜕𝑇𝑟

𝜕𝑡
= 𝐷𝑟

𝑥
𝜕2𝑇𝑟

𝜕𝑥2
+ 𝐷𝑟

𝑧
𝜕2𝑇𝑟

𝜕𝑧2
, (0 < 𝑧 < 𝐷) (2.39) 

 

The fluid temperature in the fracture can be derived by performing an energy balance in an 

infinitesimal control volume in the fracture. The different velocities in the X and Z direction, ux 

and uz, will end up with different diffusion coefficients in the fluid, 𝐷𝑓
𝑥 and 𝐷𝑓

𝑧, respectively, as 

shown in Figure 2.9. 

 

Figure 2.9 Flow Condition in the Fracture 



35 
 

The convection in the X direction is expressed as the convection term: 𝑢𝑥
𝜕𝑇𝑓

𝜕𝑥
. 

 
𝜕𝑇𝑓

𝜕𝑡
+ 𝑢𝑥

𝜕𝑇𝑓

𝜕𝑥
= 𝐷𝑓

𝑥
𝜕2𝑇𝑓

𝜕𝑥2
+ 𝐷𝑓

𝑧
𝜕2𝑇𝑓

𝜕𝑧2
, (−𝛿 < 𝑧 < 0) (2.40) 

 

Similar to Section 2.3.2, the initial and boundary conditions can be expressed as: 

 𝑇𝑓 = 𝑇𝑟 = 𝑇0, (𝑡 = 0) (2.41) 

 

 𝑇𝑓 = 𝑇𝑖, (𝑥 = 0) (2.42) 

 

 𝑇𝑓 = 𝑇𝑟 , (𝑧 = 0) (2.43) 

 

 
𝜕𝑇𝑓

𝜕𝑧
|
𝑧=𝐷

= 0 (2.44) 

 

The temperature and velocity profile of the fluid in the Z direction is assumed to be uniform so 

that Equation 2.40 can be easily integrated in the Z direction. The temperature of the solid at the 

interface with the fluid is the same as that of the fluid, as indicated in Equation 2.43. Because of 

the symmetry of the basic section, there is no heat flow through the section boundary (z=D), as 

described in Equation 2.44. The advantages of this model are that both the longitudinal and 

transverse heat diffusion are considered in the porous rock and that the longitudinal heat diffusion 

and convection are considered in the fracture. This model is expected to be more accurate and 

general if the diffusion term Dr for the porous rock and diffusion term Df for the fluid can be well 

provided. 

Analytical solutions, such as those mentioned above, provide significant physical insight into these 

transport phenomena and act as an invaluable component in field-scale screening and management 

(decision support) models. Yet they rely on a number of simplifying assumptions that might not 

be valid in a specific application.  

2.4. Numerical Approaches 

Except in some simple and idealized cases, the partial differential equations and corresponding 

initial and boundary conditions cannot be solved analytically. To take the complexities of the 
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geothermal systems into consideration, numerical approaches are often used. The development of 

modern computational technology greatly advanced the numerical modeling technique for 

physical processes. Some of the most popular methods for the type of problems we are considering 

are the Finite Difference Method (FDM), the Finite Element Method (FEM), the Finite Volume 

Method (FVM) and the Boundary Element Method (BEM).  

The methods mentioned above have many applications. However, for geothermal systems, it is a 

challenge to use these methods to model the complex geometry of the fracture networks, the 

variation of rock and fluid properties, and the uncertainty of these underground conditions in a 

large scale and long time. Simplifications have to be made to make the numerical models 

computationally possible, but still capture the important physical processes. Similar to the 

analytical models, continuum models can be categorized into three categories, they are continuum 

models, discrete models and hybrid models. 

2.4.1. Continuum Models 

Similar to the analytical continuum models, the fractured rocks can be treated as a continuum, to 

which finite element method can be well applied. The question remaining is how to characterize 

the fractured rocks as continuum so that the heat and mass transfer processes can be modeled.  

 

Figure 2.10 Sketch of Fracture Network in the Rock 
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Figure 2.10 shows the continuum model developed by Reeves (2006). In many cases, there are 

two predominant sets of sub-vertical fractures orthogonal to each other and three or more sets are 

observed in some cases (Kalinina et al., 2013). Due to the nature of these scenarios, the continuum 

model characterizes fracture sets using the strike, dip, aperture, and spacing of parallel fractures in 

the system. Both natural fractures and fractures created by hydro-fracturing can be represented by 

parallel plane sets in the rock mass. This approach can be used to model fluid flow in the fractured 

rock mass, thus generating the hydraulic conductivity tensor.  

When simulating the flow process, because the fractures may not be parallel to the flow path, the 

hydraulic conductivity tensor of one fracture set needs to be transformed: 

 𝑘𝑖𝑗 =
𝑔𝛿3

12𝜇𝐿
𝑇 (2.45) 

 

where, 

 kij is the permeability tensor in the i=x, y, z and j=x, y, z direction, caused by a particular 

set of fractures; 

 δ is the fracture aperture; 

L is the spacing between the fractures; 

μ is the dynamic viscosity;  

T is the transform matrix: 

 𝑇 = [

𝑛2
2 + 𝑛3

2 −𝑛1𝑛2 −𝑛1𝑛3

−𝑛1𝑛2 𝑛1
2 + 𝑛3

2 −𝑛2𝑛3

−𝑛1𝑛3 −𝑛2𝑛3 𝑛1
2 + 𝑛2

2

] (2.46) 

 

𝑛1 = 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜔 𝑛2 = 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜔 𝑛3 = −𝑠𝑖𝑛𝜑 

where, 

 φ is the fracture pole plunge (90°-dip); 

ω is the fracture pole trend (strike-90°). 

φ and ω are shown in Figure 2.11. 
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Figure 2.11 Fracture Pole Plunge ϕ and Pole Trend ω 

For multiple fracture sets, the hydraulic conductivity tensor is the sum of the hydraulic 

conductivity tensors of all the individual fracture sets: 

 𝑘𝑖𝑗 = ∑ 𝑘𝑖𝑗
𝑚

𝑁

𝑚=1

 (2.47) 

 

where, 

 N is the number of fracture sets; 

 kij
m is the hydraulic conductivity tensor. 

After the permeability tensor is built for the rock mass, the rock mass is treated as a homogeneous 

anisotropic porous medium. This is a simplification that makes the process very convenient for 

numerical modeling. In the model developed by Reeves (2006), the Finite Element Heat and Mass 

Transfer code (FEHM) developed by Zyvoloski et al. (1988) is used. This code was written to 

simulate 3-D mass and heat transfer in porous rock. It considers two fluid phases, gas and liquid. 

The mass transfer is governed by Darcy’s law, and heat transfer is governed by Fourier’s law of 

heat conduction (Zyvoloski et al., 1988). 

2.4.2. Discrete Models 

Discrete fracture models refers to the fracture models that explicitly account for the physical 

process of each fracture. These models are often computationally intensive because the models 
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have to deal with the information of all the fractures, the number of which is in the thousands. 

However, with the development of more powerful computers and more efficient numerical 

methods, the computational efforts seem to be less of a problem.  

In the context, stochastic methods are often used to generate fracture networks based on the 

statistical data from the field. The stochastic discrete fracture models provide information of the 

geometry of the fractures and their intersection. Heat and mass transfer is often calculated by 

numerical methods such as the finite element method with adaptive meshing (Smith et al., 2013) 

or finite difference method (Fu et al., 2013). Below is an example of the discrete models to capture 

the heat transfer between the fluid and fractured rock, which was developed by Smith et al. (2013). 

As shown in Figure 2.12, a stochastic fracture network model is generated using the commercial 

software FRACMAN. The geometry information of all the fractures are plotted. 

 

Figure 2.12 2-D Stochastic Fracture Network Generated by FRACMAN 

Then, Cartesian mesh is used and refined near the fractures, as shown in Figure 2.13. The refining 

scheme is called adaptive meshing, since it makes the mesh finer around the discontinuity (the 

fractures) and coarser away from the discontinuity. The elements in the fracture are assigned with 

a significantly higher permeability, and the elements off the fracture are assigned with very low 

permeability or zero permeability if the rock is impermeable.  

 

Figure 2.13 Adaptive Meshing in 2-D 

Adaptive meshing can also be applied to 3-D discrete fracture networks, as shown in Figure 2.14. 
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Figure 2.14 Adaptive Meshing in 3-D 

The finite element method is used to calculate the heat and mass transfer between the fluid and 

fractured rocks after the mesh is generated and refined. Other processes can be coupled to this 

model since the finite element model has already been built. Mechanical processes such as the 

deformation of fractures due to thermal stress can be coupled into this model.  

In the discrete models, the quality of the discrete fracture network is of great importance. Although 

the fracture network is stochastically generated, how close the generation processes are to the 

reality determines the reliability of the fracture network. Adaptive meshing is very helpful with 

capturing the geometry of the fractures and increasing the efficiency of the finite element method. 

But for the geothermal system with a large scale and long life time, the computational efforts 

required to model the entire geothermal system with reasonable accuracy may still be problematic.  

2.4.3. Hybrid Models 

In the field of underground hydrology, petroleum engineering, and underground environmental 

engineering, many heat and mass transfer models are already available. By mapping the hydraulic 

conductivity from a discrete fracture network to an existing heat and mass transfer continuum 

model, a hybrid model was developed by Hao et al. (2012). The model has been proven to be very 

powerful in predicting the thermal drawdown induced by flow channeling in fractured geothermal 

reservoirs.  

A 2-D stochastic discrete fracture network model is firstly used to generate a fracture network, as 

shown in Figure 2.15a, the first picture. Then, the Cartesian grid is overlaid on the fracture network 

map to calculate the grid-based effective hydraulic conductivity. The effective hydraulic 

conductivity of a single fracture is calculated according to the Cubic Law, as shown in Equation 

2.48. 
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 𝐾𝑓
𝑛 =

𝜌𝑔𝛿3

12𝜇𝐿
 (2.48) 

The conceptual schematic for grid-based effective hydraulic conductivity calculation is shown in 

Figure 2.15b. 

 

Figure 2.15 Schematic for Grid-based Effective Hydraulic Conductivity Calculation 

After the hydraulic conductivity grid is mapped out, the coupled fracture flow and heat transfer 

simulations are performed using the Nonisothermal Unsaturated-Saturated Flow and Transport 

code, NUFT (Nitao, 1998; Hao et al., 2012). The NUFT code, which is based on Darcy’s flow 

approximation, represents a current state-of-the-art in modeling multiphase, multicomponent heat 

and mass flow and reactive transport in unsaturated and saturated porous media. An integrated 

finite difference method is used for numerical discretization.  

Similar to the discrete models, other models can be implemented in order to address various flow-, 

heat transfer- and mechanical processes. In this hybrid model, the discrete 2-D fracture network is 

the basis of the conductivity calculation. How this 2-D discrete fracture network model simulates 

the real fracture network determines the reliability of the model. The grid based effective hydraulic 

conductivity calculation is a valid approximation for the flow calculation. The accuracy of the flow 
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calculation depends on the resolution of the grid, which will further affect the accuracy of the heat 

transfer calculation. 
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3. Numerical Approach using GEOFRAC 

Geometric and mechanical characterization of rock fractures is the basis for most of the work of 

engineering geologists, civil and mining engineers when dealing with rock masses (Dershowitz 

and Einstein, 1988). However, the complete description of fractures is difficult because of their 

three-dimensional nature and the limited information we can get from outcrops, borings, tunnels, 

tracer logs, and micro seismic events. Researchers from Lawrence Livermore National Laboratory, 

depicted a realistic fracture network based on their observation of fractures in rock masses, as 

shown in Figure 3.1 (Settgast et al., 2012) .  

 

Figure 3.1 A realistic Fracture Network Derived from Experimental Data (Settgast et al., 2012) 

Also, the analysis of micro seismic events data can be used to depict the fracture networks near an 

exploration borehole. Figure 3.2 shows a picture of fracture network near the Habanero-1 

exploration well in the Cooper Basin, Australia (Barton et al., 2013). The two examples show that 

the DFN models, by considering each fracture separately, can adequately capture the actual 

geometries of the factures. With the fast development of computational power, the DFN models 

have received more and more attentions.  
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Figure 3.2 Network of Fractures Local to Habanero 1 Viewed from the Southeast. Color Indicates Proximity of the Fractures to 

Frictional Failure (Barton et al., 2013) 

To reproduce the fracture network, one needs to rely on stochastic models. To provide parameters 

for this stochastic approach, statistical procedures have to be used to characterize the fracture 

orientations, shape, size, spacing and intensity. Researchers have proposed a number of statistical 

distributions for the fracture geometric characteristics, and a number of stochastic DFN models.  

This chapter first introduces the stochastic DFN model, GEOFRAC; the recent development of the 

fluid flow model, GEOFRAC-FLOW; and heat transfer model, GEOFRAC-THERMAL. 

Comprehensive parametric studies with the three models are conducted to assess the effects that 

changing certain parameter can have on the results. Case studies on two geothermal projects are 

presented to show the capability and accuracy of these models. 

3.1. GEOFRAC 

3.1.1. Algorithm 

With the help of statistical studies on the fractures, stochastic discrete fracture models were 

developed, e.g. Veneziano (1979), Dershowitz (1985), Ivanova (1995). This modeling approach 

has been applied in software such as Fracman and GEOFRAC, which can operate on different 

platforms. The following is a brief summary of the new GEOFRAC model using MATLAB. 
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GEOFRAC is a three-dimensional (3D), geology-based, geometric-mechanical, hierarchical, 

stochastic model of natural rock fracture systems (Ivanova et al., 2012). The model represents 

fracture systems as 3D networks of intersecting polygons, generated through spatial geometric 

algorithms that mimic the mechanical processes of rock fracturing in nature. The fracture 

generation process is visualized in Figure 3.3. 

Primary Process: Generation of Planes Secondary Process: Tessellation. 

 
 

Tertiary Process: Random Translation Tertiary Process: Random Rotation 

 

 

Figure 3.3 Three Fracture Generation Processes (V. Ivanova et al., 2012) 

In GEOFRAC, stochastic processes are used to determine the fracture size, aperture, tessellation, 

and rotation. Detailed information can be found in Ivanova et al. (2012). With the help of built-in 

probability functions in MATLAB, these stochastic processes can be implemented easily. 

Geometric information on all the fractures is produced by the model. Validation of this fracture 

model was done by Sousa et al. (2012), who analyzed the connectivity of fracture networks. 
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3.1.2. Inputs 

“X”, “Y”, “Z” are the dimensions of the rock volume being modeled, as shown in Figure 3.4. This 

volume is a cuboid and does not have to be the whole dimension of the reservoir, instead, one can 

choose to model only the volume of interest. For the later need of introducing GEOFRAC-FLOW, 

the direction of flow is also denoted in Figure 3.4. The fluid pressure is applied on the two surface 

that is perpendicular to the Y axis.  

 

Figure 3.4 Dimensions of the Modeled Volume 

“mu” is the fracture intensity in GEOFRAC, and is defined as: 

 𝑚𝑢 =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐴𝑟𝑒𝑎

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑅𝑜𝑐𝑘
= 𝑃32 (3.1) 

P32 is a very commonly used fracture intensity parameter in engineering practice.  

“EA” is the expected area of fractures. In GEOFRAC, fracture areas are assumed to be 

exponentially distributed, and EA is the mean of the distribution.  

“m” is the type of orientation distribution in the primary process of GEOFRAC. “k” is the 

orientation distribution parameter. GEOFRAC has four choices for the distribution type. They are 

the uniform distribution, the uniform maxphi distribution, the Fisher distribution and the bivariate 

Fisher distribution. Figure 3.5 is an example of how a uniform distribution looks like in 3-D (3.5a) 

and in an equal-area projection (3.5b). For the detailed description of the orientation distributions, 

please refer to Appendix A.  
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Figure 3.5 Uniform Orientation Distribution 

“mPole” is the mean orientation of the pole of the fractures. This parameter controls how the 

fractures are oriented relative to the rock mass. Figure 3.6 shows how mPole=(θ, ϕ), is defined. 

For detailed definitions and examples, please refer to Appendix B.  

 

Figure 3.6 Definition of mPole 
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“rot” is the rotation of fractures in the tertiary process in GEOFRAC. When rot=1, the fractures 

will be randomly rotated based on a uniform orientation distribution. When rot=0, the fractures 

will not be randomly rotated. 

“fvalue” is the aperture of the fractures. In GEOFRAC, fracture apertures can be generated using 

both deterministic method and probabilistic method. The deterministic method directly assign all 

the fractures one value for apertures. The probabilistic methods generates the apertures that follows 

a truncated log normal distribution.  

3.1.3. Outputs 

“NON” (Number of Nodes) and “NOB” (Number of Branches) are used to indicate the complexity 

of the fracture network. They are the total number of nodes and branches in the one simulation, 

respectively. Higher values of “NON” and “NOB” indicate more complex fracture networks. 

“Flow Existence” is an indicator of the probability of having a reservoir with fluid flowing through 

it. It equals the ratio of the number of cases with flow to the number of all the cases. It is an output 

associated with GEOFRAC-FLOW (see Section 3.2), but as it reflects the conductivity of the fluid, 

it is considered to be a fracture network parameter. 

“Graphic Results” are the plots of all the fractures after the simulation is done. They provide a 

graphic impression of the fracture network. Figure 3.7 is an example of the graphic output provided 

by GEOFRAC. 

 

Figure 3.7 Graphic Output Generated by GEOFRAC 
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3.2. GEOFRAC-FLOW 

3.2.1. Algorithm 

On the basis of the DFN generated by GEOFRAC, a flow model was developed by Sousa et al. 

(2012). Because this discrete fracture model accounts for individual fractures, fluid flow is 

calculated explicitly in each fracture. As derived in Section 2.2.2, the flow rate in each fracture is: 

 𝑄 =
𝑤𝛿3∆𝑃

12𝜇∆𝐿
 (3.2) 

 

where, 

Q is volumetric flow rate; 

w is fracture width; 

μ is fluid dynamic viscosity; 

δ is aperture of the fracture; 

∆𝑃
𝛥𝐿⁄  is pressure gradient. 

This equation is an idealized case. In reality, flow through fractures differs from the cubic law 

because of the following four factors: 

1. Surface roughness of the fractures.  

2. Flow path tortuosity. The path in the fracture is not straight; the direction changes cause 

water head loss. 

3. Surface contact in a rock fracture. The aperture of a fracture is not constant; there are 

regions where the two fracture surfaces contact each other. 

4. Local water head loss at fracture intersections.  

Witherspoon et al. (1980) modified Equation 3.2 to account for roughness of the fracture surfaces 

to the form of Equation 3.4.  

 𝑄 =
𝑤𝛿3∆𝑃

12𝑓𝜇∆𝐿
=

𝑤𝛿3∆ℎ𝐿𝛾

12𝑓𝜇∆𝐿
 (3.3) 

 

 𝑓 = 1 + 6(
𝜀

𝛿
)1.5 (3.4) 
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where, 

 f is a reduction factor (Witherspoon et al., 1980)； 

 ε is the surface roughness (Jones, Wooten, & Kaluza, 1988), as illustrated in Figure 3.8; 

∆ℎ𝐿
∆𝐿⁄  is fluid head loss; 

γ is the unit weight of the fluid. 

 

Figure 3.8 Surface Roughness of Fractures 

This modified form has been validated by Witherspoon et al. (1980) in their experiments, and is 

used in GEOFRAC-FLOW to govern the fluid flow in fractures. 

For flow in fracture networks, mass and energy conservation equations are used as governing 

equations. The fluid head loss along a fracture can be calculated with: 

 ∆ℎ𝐿 = 𝑓
12𝜇∆𝐿

𝛾𝑤𝛿3
𝑄 (3.5) 

 

As shown in Equation 3.5, head loss is proportional to the length of the fracture, reciprocal to the 

width and the aperture cubed. Aperture is treated as constant; width is stochastically distributed, 

so the length of the flow path determines the head loss in of the flow. Fluids tend to flow in the 

direction which has the greatest pressure gradient, and travel along the paths causing smallest head 

loss. In the model, paths are chosen as the shortest connection between the inlet fracture and outlet 

fracture. These connections can be found by using the Dijkstra’s algorithm (Dijkstra, 1959). After 

the paths are found, a flow path network is built as shown in Figure 3.9 below: 
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Figure 3.9 Example of Flow Network (Sousa, R.L 2012) 

In Figure 3.10, each fracture is represented by a single line, so that the geometry of the fracture 

network can be better presented. 

 

Figure 3.10 Simplified Flow Network 
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To reduce computational cost, the fracture network is simplified by using one branch to 

equivalently represent the fractures from one node (intersection) to another. The equivalent 

fracture aperture, length, and width are expressed below. 

 

𝛿𝑒𝑞 =
1

√∑
𝑙𝑖
𝑙
(

1
𝛿𝑖

3)
𝑛
𝑖=1

3

 

(3.6) 

 𝑙𝑒𝑞 = ∑𝑙𝑖

𝑛

𝑖=1

 (3.7) 

 𝑤𝑒𝑞 =
∑ 𝑤𝑖𝑙𝑖

𝑛
𝑖=1

∑ 𝑙𝑖
𝑛
𝑖=1

 (3.8) 

 

where, 

𝑙𝑖 is the length of the ith fracture; 

δi is the aperture of the ith fracture; 

𝑙 is the total length of the series of fractures. 

wi is the width of the ith fracture. 

The mass and energy conservation equations are solved at the nodes in the network to calculate 

the flow rate in all the branches. The final result of the flow model is shown in Figure 3.11. The 

size of the simulated reservoir is 10*20*10 m3, the blue colored values indicate the flow rate (L/s). 

The maximum Reynolds number of all the flows in the 8 branches is 1086.24, satisfying the 

laminar flow assumption very well. 
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Figure 3.11 Results of GOFRAC-FLOW 

3.2.2. Inputs 

“Pin” and “Pout” are the injection and production well pressures. The flow rate is dependent on 

the difference between the two pressures, but it is necessary to keep both of them because the wells 

need a certain pressure to keep the water in a liquid phase.  

“μ” is the fluid dynamic viscosity. Because it does not change much with temperature, this 

parameter is assumed to be constant in the model. The dynamic viscosity of water at a temperature 

of 60°C is used, which is 0.468×10-3Pa·s. 

“ε” is the roughness of the fracture surfaces. It is used as a flow model parameter because it 

accounts for the interaction between fluid and the rough facture surfaces. 

3.2.3. Outputs 

“Qout” is the total flow rate through the fractured rock mass. The since the flow rate can be 

calculated explicitly for each boundary, “Qout” will be the sum of the flow rates which go into the 

production well. 
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“Re” is the Reynolds Number which is used to check the validity of the results. The assumption 

of laminar flow has to be valid so that the cubic law can be used to calculate the flow rates.  

3.3. GEOFRAC-THERMAL 

3.3.1. Algorithm 

Based on the fracture and flow models, a heat transfer model was developed by Yost and Einstein 

(2013). For the fluid in each fracture, the heat transfer problem is simplified as uniform wall 

temperature (UWT) problem and is governed by the UWT heat convection equation for flow 

between two parallel plates. A sketch of this model is shown in Figure 3.12. The model has the 

following assumptions: 

1. The rock temperature is uniform and constant. 

2. The fluid flows between two parallel plates is laminar and steady. 

 

Figure 3.12 Heat Transfer of Fluid Flowing between Two Parallel Plates 

 𝑇2 = 𝑇𝑟 − (𝑇𝑟 − 𝑇1)exp (−
ℎ𝑇𝑃𝐿

𝑚̇𝐶𝑃𝑓
) (3.9) 

 

 ℎ𝑇 =
𝑁𝑢 × 𝑘𝑓

𝐷ℎ
 (3.10) 

where， 

T1 and T2 is the temperature of the fluid at the inlet and outlet, respectively; 

Tr is rock temperature, in this model it is an constant; 
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hT is heat convection coefficient; 

P is perimeter 2(δ+w); 

L is the fracture length; 

𝑚̇ is the mass flow rate; 

Cpf is the specific heat capacity; 

kf is the fluid heat conductivity; 

Dh is the hydraulic diameter of the conduct. 

Nu is Nusselt number, which is the ratio of convection to pure conduction heat transfer: 

 𝑁𝑢 =
ℎ𝑇𝐿𝐶

𝑘𝑓
 (3.11) 

 

where, LC is the characteristic length, it is the hydraulic diameter in equation 3.12. 

Nu is related to flow state, and the dimensions of the parallel plates. Laminar flow between two 

isothermal parallel plates, usually have long thermal entrance length Leh. Leh is defined as the 

distance required for the Nusselt number to decrease to within 5% of its fully developed value Nu∞.  

 𝐿𝑒ℎ = 0.017𝑅𝑒𝐷𝑃𝑟𝐷ℎ (3.12) 

 

where， 

ReD is the Reynolds Number, for laminar flow, ReD<2300;  

Pr is the Prandtl number, 𝑃𝑟 =
𝐶𝑝𝜇

𝑘
=

4200×0.001

0.58
= 7.24;  

To simplify the calculation, average Nusselt number is used(Mills, 1995). 

 𝑁𝑢𝐷ℎ
̅̅ ̅̅ ̅̅ ̅ = 7.54 +

0.03(𝐷ℎ 𝐿⁄ )𝑅𝑒𝐷ℎ
𝑃𝑟

1 + 0.016[(𝐷ℎ 𝐿⁄ )𝑅𝑒𝐷ℎ
𝑃𝑟]2 3⁄

 (3.13) 

 𝑅𝑒𝐷ℎ
≤ 2800 (3.14) 

This model explicitly calculates the heat transfer in each fracture and obtains the temperature of 

each node by weight averaging the temperature of the inflowing branches. Although the 

assumptions idealize the physical process, the model can capture the basic heat transfer problem 

between the rock and the fluid. Figure 3.13 is an example of the results produced by the heat 

transfer model. In addition to the results from the fracture network model GEOFRAC and flow 
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model GEOFRAC-FLOW, the heat transfer model calculated the temperature of the fluid at each 

node, as indicated in purple in Figure 3.13.  

 

Figure 3.13 Example of the Results Produced by GEOFRAC-THERMAL 

3.3.2. Inputs 

“kt”, the thermal conductivity of water; “ρ”, the density of water; “Cp”, the heat capacity of water 

are material properties that do not change much with temperature. In the model they are all 

constants, kt=0.58W/(m·°C), ρ=103kg/m3, Cp=4.168J/(kg·°C). 

 “Trock” is the rock temperature. Since the heat transfer problem is simplified as a uniform wall 

temperature problem, only one temperature is assigned to the model as the uniform wall 

temperature.  

“Tin” is the injection water temperature. In a heat exchanger-based EGS plant, temperature of the 

water out of the exchanger is then reinjected in the reservoir, so “Tin” is often in a small range of 

temperature. 
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3.3.3. Outputs 

“Tout” is the production well temperature. It can reflect the efficiency of the heat transfer between 

the fluid and the rock. In a geothermal plant, it is one of the factors that determine the type of 

energy converter. For high temperature production wells, steam engines are often used. For low 

temperature production wells, binary heat exchangers are often used.  

“Eout”, energy extraction rate, is the thermal energy extracted by the water circulation per unit 

time, as defined in Equation 3.15. It is one of the factors that determine the capacity of the 

electricity plant. 

 𝐸𝑜𝑢𝑡 = (𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) × 𝑄𝑜𝑢𝑡 × 𝜌𝑓 × 𝐶𝑝𝑓 (3.15) 

where,  

 ρf is the density of the water; 

 Cpf is the specific heat capacity of the water. 

3.4. Parametric Study with the Three Coupled Models 

3.4.1. Scheme of Parametric Study 

The three models are built to simulate the heat and mass transfer in the fractured geothermal 

reservoir. The hierarchy of the three coupled models is shown in Figure 3.14. For now, the three 

models are not fully coupled, which means a change of parameters at a lower level will affect the 

result at the higher level, but changes of parameters at a higher level will not affect the result at 

the lower level. 

 

Figure 3.14 The Hierarchy of Three Coupled Model 
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The three coupled models have a total of 19 parameters. They control the inputs related to reservoir 

geometry, fracture network, flow, and heat transfer. The following map (Figure 3.15) is a structure 

of the inputs (on the left side) and outputs (on the right side) of the models. 

 

Figure 3.15 Structure of Parameters 

With so many inputs for the models, it is necessary to systematically conduct parametric studies 

with the models. Parametric studies can assess the effects that changing certain parameters can 

have on the results. They can help the model developer to check the validity of the model, and also 

help the model user to better understand the models.  

Because the models represent a stochastic process, one result for each parameter combination is 

not representative. In the parametric studies, 20 flow rate results are used to produce a mean value 
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for flow rates. Because some of the simulation runs cannot generate a result with a flow path for a 

particular parameter combination, there can be more than 20 simulations to generate 20 flow rates. 

20 results may not be representative, but can reflect a trend. A study on the proper number of 

simulations that should be run is included in Appendix C. 

The parametric studies with the three models are conducted in the following way. A set of 

reference parameter is chosen, and one parameter is varied each time to see how the results will 

differ from that with the reference parameter. 

Table 3.1 shows the reference parameters. 

Table 3.1 Reference Parameters 

mu (m-1) EA(m2) m k mPole rot fvalue (m) ε X (m) 

1.5 5 4 1 [π/2, π/2] 0 0.0005 0.0005 10 

Y (m) Z (m) ΔP (Pa) μ (Pa∙s) kt (W/m∙K) ρ (kg/m3) Cp (J/kg∙K) Tr (C°) Tw (C°) 

20 10 5000 0.468×10-3 0.6546 983 4185 200 60 
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3.4.2. Fracture Intensity “mu” 

 

Figure 3.16 Flow Existence 

 

Figure 3.17 Total Flow Rate 

 

Figure 3.18 Production Well Temperature 

 

Figure 3.19 Energy Extraction Rate 

With higher fracture intensity, it is more likely to have paths in the reservoir; and the flow rates 

are also higher. Figure 3.16 and 3.17 somehow show this trend, but not exactly because of the 

limited number of simulations for each parameter combination. The output temperature is the same 

as that of the rock, as shown in Figure 3.16; this is so because of the high efficiency of heat transfer. 

As the temperature is the same as that of the rock, the heat extraction rate is proportional to the 

flow rate, as shown in Figure 3.17 and Figure 3.19. 
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3.4.3. Expected Area “EA”: 

 

Figure 3.20 Flow Existence 

 

Figure 3.21 Total Flow Rate 

 

Figure 3.22 Production Well Temperature 

 

Figure 3.23 Energy Extraction Rate 

When the fracture intensity is fixed while varying EA, larger EA would produce a smaller number 

of fractures. Smaller fractures are less likely to intersect with each other, and flow paths are hardly 

created. Larger fractures are more likely to intersect with each other, but because of the small 

number of them, fewer flow paths are created. These characteristics indicate that the curve in 

Figure 3.20 should be increasing and the curve in Figure 3.21 should be concave downward. Figure 
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3.21 matches the prediction very well, but Figure 3.20 does not, probably because of the limited 

number of simulations. “Tout” and “Eout” are similar to section 3.4.2. 

3.4.4. Mean Orientation and Orientation Distribution: 

 

Figure 3.24 Flow Existence 
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Figure 3.25 Number of Nodes 

 

Figure 3.26 Total Flow Rate 
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Effect of Orientation Distribution 

1. Figure 3.24 shows that, generally, the Fisher distribution with k=1 has the highest chance 

of having flow paths in a reservoir. The uniform distribution is second, followed by 

bivariate Fisher with k= [1, 40]. This can be explained by looking at the orientation 

distribution (Appendix A). A more uniform distribution of orientation has greater chances 

to have flow paths.  

2. When the orientation distribution is more uniform, it will result in a smaller difference 

among the 7 mean orientations, as shown in Figure 3.24 and 3.25. 

3. Figure 2.25 shows that with more uniform orientation distributions the model produces 

more complex fracture networks. 

4. In Figure 3.26, the flow rates of different mean orientations have significant deviations 

even for the uniform distribution. It is hard to see any trend. But fracture networks with 

more uniform orientations tend to have higher flow rates. 

Effect of Mean Orientation 

1. Mean orientation has an influence on the Flow Existence, especially when the orientation 

distribution is not uniform. For definition of mean orientations and how it affects the results, 

please refer to Appendix B. As shown in Figure 3.24, when k=40 or k= [1, 40], the mean 

orientation [π/4, π/2] has a high Flow Existence. 

2. As for complexity of the fracture network, the mean orientation [π/4, π/2] has a higher 

chance of forming a complex fracture network, as shown in Figure 3.25. This phenomenon 

possibly results from the geometry of the reservoir. The reservoir can accommodate more 

fractures if the fractures’ mean orientation is [π/4, π/2]. 

3. In terms of flow rate, fractures with mean orientation [π/2, π/2] are more likely to have 

high flow rates. This can be explained by considering the length of flow path. Fractures 

oriented [π/2, π/2], are vertical fractures that are parallel to the direction of pressure 

gradient. 
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3.4.5. Random Rotation: 

 

Figure 3.27 Flow Existence 

 

Figure 3.28 Total Flow Rate 

 

Figure 3.29 Production Well Temperature 

 

Figure 3.30 Energy Extraction Rate 

Fractures with random rotation in the tertiary process are more likely to intersect with each other, 

have higher Flow Existence, and Qout, as shown in Figure 3.27 and 3.28. Because the random 

rotation has little influence on the heat transfer efficiency, Tout and Eout are similar to section 

3.4.2. The heat transfer efficiency is so high that the temperature of the production well, Tout, is 

the same as that of the rock, the energy extraction rate Eout is then proportional to the flow rate 

Qout.  
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3.4.6. Fracture Aperture: 

 

Figure 3.31 Total Flow Rate 

 

Figure 3.32 Production Well Temperature 

 

Figure 3.33 Energy Extraction Rate 

 

Fracture Aperture is a variable that is independent of the three fracture generation processes. In 

theory it should not affect the fracture network variables such as Flow Existence and Number of 

Branches, but it has a dramatic influence on the flow rates as shown in Figure 3.31. When the 

aperture becomes wider, the flow rate increases, and the production well temperature decreases, 

as shown in Figure 3.32. However, the energy extraction rate will still increase because of the high 

flow rate, as shown in Figure 3.33. 
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3.4.7. Pressure Difference: 

 

Figure 3.34 Total Flow Rate 

 

Figure 3.35 Production Well Temperature 

 

Figure 3.36 Energy Extraction Rate 

 

Figure 3.34 shows that higher pressure results in higher flow rate. This is reasonable because in 

the modified Cubic Law (Equation 3.3), the flow rate is proportional to the pressure difference. 

“Tout” is the same as that of the rock even if flow rate increases, as shown in Figure 3.35. This is 

because of the high heat transfer efficiency and relatively long flow path. As the temperature is 

the same as that of the rock, Eout, is proportional to the flow rate, Qout, as shown in Figure 3.36. 
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3.4.8. Rock Temperature: 

 

Figure 3.37 Production Well Temperature 

As the aperture of the fracture is quite small for base case, the heat transfer process is very efficient; 

the production well temperature will be the same as that of the rock, as shown in Figure 3.37. 

3.5. Case Study with GEOFRAC on the Fenton Hill Project 

3.5.1. Project Description 

The project at Fenton Hill was the first attempt anywhere to work with a deep, full-scale HDR 

reservoir. The site – on the edge of the Valles Caldera at the northern end of the Rio Grande rift 

zone in north-central New Mexico – was chosen for its heat and rock characteristics, as well as its 

proximity to the Los Alamos National Laboratory where the project was conceived. The purpose 

of the project was to develop methods to extract energy economically from HDR systems located 

in crystalline, granitic/metamorphic basement rock of suitably high temperature. 

The R&D program was roughly divided into two major phases. Phase I, started with drilling the 

deep wells GT-2, EE-1, GT-2A and GT-2B in 1974 and completed in 1980. It dealt with field 
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development and associated research on a 3 km deep reservoir with a temperature of about 200°C. 

Phase II followed in 1979, with the drilling of EE-2 and EE-3 into a deeper (4.4 km), hotter (300°C) 

reservoir. Figure 3.36 shows a map of the site with testing wells and the trajectory of the wells 

before 1979. 

Full-scale operation of the loop occurred from January 27 to April 13, 1978 (75 days in total). This 

part of Phase I was referred to as Segment 2 and was designed to examine the thermal drawdown, 

flow characteristics, water losses, and fluid geochemistry of the system in detail. In addition, the 

experimental area was closely monitored for induced seismic activity. 

3.5.2. Project Data 

The test was done in the 70’s, useful data for GEOFRAC was found in the technical report written 

by Tester and Albright (1979). The plan view of the R&D site is shown in Figure 3.38. The 

Injection well EE-1 is at the top of the map and the major production well GT-2B is at the bottom 

of the map.  
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Figure 3.38 Plan View of the Lower Section of the GT-2 and EE-1 Wellbores. 

The impedance of the reservoir, which is defined in Equation 3.15, decreased during the circulation. 

This is why the injection pressure was not maintained, as shown in Figure 3.39 and 3.40. 

 Impedance =
Injection Well Pressure − Production Well Pressure

Volumetric Flow Rate
 (3.16) 
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Figure 3.39 Impedance of Fenton Hill Geothermal Reservoir 

 

Figure 3.40 Pressure and Flow Rate of the Injection Well 

During the injection test, water loss was observed to decrease, as marked in a red loop in Figure 

3.41. One explanation was that the decrease of water loss was caused by saturation of the rock, so 

it is reasonable to assume that there is no water leakage from the reservoir. 
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Figure 3.41 Pressure and Water Loss 

Thermal drawdown of the production well was also monitored as shown in Figure 3.42 with dots. 

A single circular fracture thermal drawdown model (Harlow & Pracht, 1972) was used to simulate 

the thermal drawdown, and the results are shown with the continuous curve in Figure 3.41. 

 

Figure 3.42 Measured and Modeled Thermal Drawdown of Production Well 
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In Figure 3.43, the thermal power (the same as energy extraction rate) of the closed loop test is 

plotted. Although thermal drawdown was observed as shown in Figure 3.42, the increasing flow 

rate maintained the high heat extraction rate after the day 50 as shown in Figure 3.43. 

 

Figure 3.43 Heat Extraction Rate 

The main production well is GT-2B; 90% of the production is from this well. Thus, the reservoir 

can be simplified as a two-well system, which can be modeled by the current GEOFRAC models. 

Rock temperature was not measured directly. However, the initial water temperature in the well 

was measured, and was close to that of the rock and could be used as rock temperature. 

The fracture network might consist of several major fractures connecting the injection and 

production well, as judged by the researchers of the project. As shown in Figure 3.44, the 

temperature profile had some sudden jumps, each of which indicated that there was a fracture 

conducting fluid at this depth, making the measured temperature non-continuous. 
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Figure 3.44 Temperature Profile of the Production Well 

The horizontal distance between the injection and production wells was about 100m. The estimated 

effective heat transfer area was 8000m2
 by Tester and Albright, (1979). No estimated reservoir 

volume was reported. The flow rate was in the range of 5~30L/s. The impedance of the reservoir 

was in the range of 4-21bar-l/s. There were no data on fracture aperture; 0.2mm was assumed in 

the simulation done by Tester and Albright, (1979). 

The above is a brief summary of the project. For detailed information, please refer to the project 

report by (Tester & Albright, 1979). 
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3.5.3. GEOFRAC Simulation with the Fenton Hill Data 

Inputs for GEOFRAC, GEOFRAC-FLOW and GEOFRAC-THERMAL are chosen based on 

project report. Assumptions and estimations are made for some parameters that are not mentioned 

in the report. The reason for choosing some of the parameters are listed below. 

Table 3.2 Summary of the Input Parameter for GEOFRAC Simulation 

X (m) Y (m) Z (m) mu (m-1) EA(m2) m k mPole rot 

40 100 80 0.2 1000 4 20 [π/2, 0] 0 

fvalue (m) ε (m) ΔP (Pa) μ (Pa∙s) kt (W/m∙K) ρ (kg/m3) Cp (J/kg∙K) Trock (°C) Tin (°C) 

0.0002 0.001 1MPa 0.468×10-3 0.6546 983 4185 180 60 

 

Dimension of the reservoir X, Y and Z is shown in Figure 3.4. According to the footprint (Figure 

3.36) of the project, the X and Y dimensions are 40m and 100m respectively. According to the 

temperature profile of the production well shown in Figure 3.42, the fluid came out from a section 

of well about 80 meters long, therefore, the Z dimension is estimated to be 80 meters.  

“mu” is the fracture intensity. 0.2 is chosen because the geological description in the report 

indicates that there are only a small number of major fractures conducting water. 

 “EA” is the expected area of fractures. In the Fenton Hill report, it is likely that the two wells were 

connected by some large-area fractures or even only one single fracture. So the fracture area is 

then estimated to be large, i.e. ¼ XY. 

“m”, “mPole” and “k” in this simulation were picked according to the geological description. As 

the injection and production wells are connected by some major fractures and the stress history of 

the site is relatively simple, the fractures are expected to be more or less parallel to each other. A 

relatively high parameter k=20 is chosen for the Fisher distribution. The fractures are more or less 

horizontal so the mean orientation of the fracture poles, “mPole” is set to [π/2, 0]. 

 “fvalue” is the aperture of the fracture. In the project report, the simulation was done by using 

0.2mm aperture, so the same value is used as input for GEOFRAC. 

“ε” is the roughness of the fracture. According to Jones et al., (1988), roughness can be several 

times the value of the aperture if the rock is inhomogeneous. In this case 5 times the value of the 

aperture is used. 
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“ΔP” is the pressure difference between the injection and production wells. As shown in Figure 

3.40, pressure is not maintained high in the circulation test. A relatively low pressure difference is 

used to simulation the steady state of the fluid circulation.  

“Trock” and “Tin” are the temperature of the rock and the injected water. They can be found from 

the temperature log of the production well, as shown in Figure 3.42 and 3.44. The initial 

temperature 180°C measured in the production well can be used as temperature of the rock since 

the temperature of the water was the same as that of the rock before injection. The injected water 

temperature depends on the heat exchanger on the ground and is given in the report as 60 °C. 

The rest of the inputs for the simulations are material properties that are assumed to be constant 

with temperature. Typical values are chosen and the summary of the values is shown in Table 3.2. 

Because of the stochastic processes used in GEOFRAC, the results are not deterministic. To draw 

reliable conclusions, a moderate number of simulations has to be run. Here, 20 simulations are run 

and analyzed below. 

Figure 3.47 is a schematic representation of the possible flow paths in one simulation. The purple 

numbers represent the temperatures (°C) at each node while the blue numbers represent the flow 

rates (l/s) in each branch. This figure shows that GEOFRAC, as a discrete fracture model, 

calculates the flow rates and temperatures explicitly. 



77 
 

 

Figure 3.45 Schematic Representation of the Possible Flow Paths Obtained in One Simulation 

The average total flow rate of the 20 simulations is 11.3L/s. This value is in line with the flow rate 

of the production well. The standard deviation of the results is 9.05L/s, which indicates that 

GEOFRAC can provide results that do not deviate much from the real data. The Reynolds number 

of all the branches is checked to make sure that the assumption of laminar flow in the flow model 

is satisfied. 

Because of the small apertures and large areas of the fractures, the heat transfer between the rock 

and the flow is very efficient. As we can see from Figure 3.45, the temperature of the water reaches 

that of the rock at the first node after the injection boundary. One has to keep in mind, however, 

that the thermal model in GEOFRAC assumes a constant rock temperature, so the results can only 

model the beginning stage of the injection. Still, the results indicate that the large area and small 

apertures of fractures are very helpful in extracting the heat from the underground. 
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The energy extraction rate estimated by GEOFRAC is 5.72 MW; it is quite close to the measured 

data as shown in Figure 3.43. The result produced by GEOFRAC is a steady state result, both flow 

rate and temperature do not change with time. However, the measured data indicate increasing 

flow rate and decreasing production well temperature, as shown in Figure 3.40 and 3.42. The two 

compensate each other, providing a relatively constant energy extraction rate. This is the reason 

why the result of GEOFRAC is close to that of the measured.  

This case study with GEOFRAC shows that this model can be used to model the heat and mass 

transfer in a geothermal reservoir. However, the constant temperature assumption for the rock 

limited the capability of this model to simulating only the beginning stage of the injection. Future 

work on the thermal model is needed to produce a long term temperature prediction of the reservoir.  
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4. Analytical Approach for Discrete Fracture Model in 2-D 

4.1. Introduction 

Heat transfer in fractured media is difficult to model analytically. Separate governing equations 

are used for the rock matrix and the fracture, where heat is both conducted and convected. The two 

domains are coupled by a Cauchy boundary condition (simultaneous Type I and II) that assumes 

thermal equilibrium and conservation of energy between the two domains. The current analytical 

approaches have both to fully analytical (closed-form solutions) as well as semi-analytical 

solutions (in which an inverse Laplace transform is performed numerically, etc.) 

Although solutions of the equations are tractable only for very simple geometries, analytical 

solutions provide rapid and exact calculations of temperature for these cases. Consequently, 

analytical solutions have an important application in sensitivity analysis and are indispensable for 

determining the governing parameters in a particular system. Further, they provide a reliable 

solution against which numerical solutions can be verified. 

Several analytical solutions have been developed for the problem of heat exchange between water 

in a single fracture and an impermeable matrix. These solutions do not consider heat generation 

within the rock matrix; the system under consideration is typically cold water flowing through hot 

rock. 

For the case of a single discrete fracture, solutions are provided in 2D Cartesian coordinates by 

Lauwerier (1955), Bodvarsson (1969), Yang et al. (1998), and Kocabas (2004). Some examples 

are the approximate solution of Alishaev (1979) and the semi-analytical solution of Heuer et al. 

(1991), who developed solutions for an arbitrary flow field in a planar fracture.  In addition, 

solutions can be readily adapted from the equivalent problem of matrix solute diffusion; such 

solutions are provided by Grisak and Picken (1981) and Tang et al. (1981). Solutions to the heat 

transport problem were found in radial coordinates by Bödvarsson (1972) and to the equivalent 

solute transport problem by Feenstra et al. (1984) 

Extension of the problem to a series of equally-spaced parallel fractures was presented first in the 

geothermal literature by Gringarten et al. (1975) and Lowell (1976), who developed Laplace-space 

solutions to the problem using Cartesian coordinates in two dimensions. Bödvarsson and Tsang 
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(1982) solved the problem in Laplace space using radial coordinates. Sudicky and Frind (1982) 

presented a solution to the equivalent solute problem, using Cartesian coordinates. 

This chapter presents the partial differential equations used to describe the fully coupled heat 

transfer problem between fluid flow and fractured rocks. Assumptions are made to simplify the 

equations so that the solutions can be found analytically. A case study is used to show the how the 

model works in predicting the temperature drawdown of a geothermal reservoir. 

4.2. Problem Formulation 

The conceptual geothermal reservoir model is shown in Figure 4.1. The injection well and 

production well are connected by a series of equally-spaced parallel fractures. The fractures are 

assumed to be planar, so X-Z Cartesian coordinates are used. One basic section is extracted for 

analysis, as shown in Figure 4.2. When the half fracture spacing D extends to infinity, the solution 

can also be used to analyze the single-fracture reservoir case. 

 

Figure 4.1 Single Planar Fracture 
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Figure 4.2 One Basic Section 

The following assumptions are made to formulate the heat transfer problem. 

1. The rock associated with the fracture is impermeable, therefore only the effects of thermal 

conduction are present. 

2. The flow in the fracture is to be steady-state, single-phase, incompressible, laminar flow. 

Gravity effect is negligible, and the fracture walls are smooth and parallel to each other. 

3. The material properties: density, specific heat capacity and thermal conductivity are 

assumed to be constant. 

4. Initially, the temperature is T0 everywhere in the system. At t=0, the temperature of the 

injected water is fixed at Ti.  

The governing equation for the fluid and rock temperatures can be derived based on the energy 

balance in the control volume: 

 

𝜕𝑇𝑓

𝜕𝑡
− 𝛼𝑓𝑇

𝜕2𝑇𝑓

𝜕𝑧2
− 𝛼𝑓𝐿

𝜕2𝑇𝑓

𝜕𝑥2
+ 𝑢(𝑧)

𝜕𝑇𝑓

𝜕𝑥
= 0, (−

𝛿

2
≤ 𝑧 ≤ 0, 𝑥 ≥ 0) 

 

(4.1) 

 
𝜕𝑇𝑟

𝜕𝑡
= 𝛼𝑟𝑇

𝜕2𝑇𝑟

𝜕𝑧2
+ 𝛼𝑓𝐿

𝜕2𝑇𝑟

𝜕𝑥2
, (0 ≤ 𝑧 ≤ 𝐷, 𝑥 ≥ 0) (4.2) 

 

where: 
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 Tf is the temperature of the fluid in the fracture, because of the symmetry of the system 

about the 𝑧 = −
𝛿

2
 axis, only half of the fracture is considered. The temperature of the fluid is a 

function of both location and time, i.e. 𝑇𝑓 = 𝑇𝑓(𝑥, 𝑧, 𝑡). 

 Tr is the temperature of the rock. The temperature of the rock is a function of both location 

and time, i.e. 𝑇𝑟 = 𝑇𝑟(𝑥, 𝑧, 𝑡). 

 α is the thermal diffusivity. As defined in Equation 2.7, 𝛼 =
𝑘

𝜌𝐶𝑝
. The subscripts “r” and “f” 

represent the rock and the fluid, respectively. The subscripts “L” and “T” represent the longitudinal 

and transverse directions, respectively. It should be noted that the thermal diffusivity of fluid αf 

includes the effect of both thermal conduction and dispersion. 

 u(z) is the fluid velocity in the x direction. In this 2-D case, only the flow in the x direction 

is considered. The velocity distribution varies with flow mode. Laminar flow has parabolic 

velocity distribution in the Z direction, while turbulent flow has a more uniform velocity 

distribution. 

Equation 4.1 and 4.2 are subject to initial conditions that the fluid and rock are at the same 

temperature before injection happens at t=0, as expressed in Equation 4.3 

  𝑇𝑓(𝑥, 𝑧, 0) = 𝑇𝑟(𝑥, 𝑧, 0) = 𝑇0 (4.3) 

 

Equation 4.1 is subject to boundary conditions that the fluid temperature at x=0 is the injected 

fluid temperature Ti, and that the fracture is symmetric about the axis = −
𝛿

2
 , as experessed in 

Equation 4.4 and 4.5: 

  𝑇𝑓(0, 𝑧, 𝑡) = 𝑇𝑖 (4.4) 

 

 

𝜕𝑇𝑓

𝜕𝑧
|
𝑧=−

𝛿
2

= 0 

 

(4.5) 

Equation 4.2 is subject to the boundary condition that there is no heat flux at the boundary of the 

section because of the symmetry in the rock, as expressed in Equation 4.6: 
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𝜕𝑇𝑟

𝜕𝑧
|
𝑧=𝐷

= 0 (4.6) 

 

At the fluid-rock interface z=0, both the temperature and the heat flux are continuous, which are 

Cauchy type I and II boundary conditions: 

 𝑇𝑟|𝑧=0 = 𝑇𝑓|𝑧=0
 (4.7) 

 

 
𝑘𝑟

𝜕𝑇𝑟

𝜕𝑧
|
𝑧=0

=
𝜕𝑇𝑓

𝜕𝑧
|
𝑧=0

 

 

(4.8) 

The set of Equations 4.1-4.8 is a boundary value problem that cannot be solved easily. 

Simplifications have to be made to make the problem solvable either analytically or semi-

analytically. As discussed in Section 4.1, great efforts have been made by researchers to simplify 

and solve the boundary value problem. In what follows, two solutions are presented with 

simplifications made to the boundary value problem. The 0-D and 1-D solutions are named after 

the number of directions in which heat conduction in the rock is considered. These terms are used 

in Chen et al., (2001) and Martínez et al., (2013), so for consistency, the same terms are used in 

the analysis in Sections 4.3 to 4.5. For example, the 2-D solution means that the heat conduction 

in both the longitudinal and transverse direction is considered in the solution.  

4.3. 0-D Solution and Results 

If the heat transfer in the rock is so efficient that the temperature distribution is nearly uniform, we 

may ignore the small differences of temperature within the rock. This approximation leads to the 

lumped thermal capacity model, which is also called 0-D model because the heat conduction 

process is assumed to happen instantaneously. The assumption of a uniform temperature is 

justified when the thermal resistance to conduction in the solid is small compared to the thermal 

resistance to convection. With this assumption, the temperature of the rock will only be a function 

of time, i.e. Tr=Tr(t).  

In the parametric study of GEOFRAC-THERMAL, another important conclusion is drawn that the 

temperature of the fluid at the outlet of the fracture is the same as that of the rock, when the aperture 

of the fracture is relatively small. Due to the assumption of uniform rock temperature, Equation 

3.9-3.14 can be used to calculate the fluid temperature at the outlet after flowing through two 
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isothermal parallel plates. When the aperture is small, the heat convection coefficient is so high 

that the temperature of the fluid reaches that of the rock without travelling in the fracture for a long 

distance, as shown in Figure 4.3, for water as the fluid. 

 

Figure 4.3 Increase of Fluid Temperature along the Fractures with Different Fracture Apertures (δ) 

From the above analysis, we can see that the fluid temperature at the outlet is very likely to be the 

same as that of the rock. In fact, the flow path in a geothermal reservoir is much longer than 30m, 

and the aperture of the fracture is usually very small due to the high underground pressure, so it is 

valid to assume that the fluid temperature at the outlet is the same as that of the rock. 

Besides the two assumptions discussed above, the following assumptions are made: 

1. There is no water leakage in the reservoir; 

2. The heat transfer process happens in a finite volume of rock mass. 
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3. Constant underground heat flux Q0 goes into the reservoir. 

Under these assumptions, energy balance can be performed to derive the governing equations for 

the temperature of the fluid and the rock: 

 
𝑑𝑇𝑅

𝑑𝑡
𝑉𝑅𝜌𝑅𝐶𝑃𝑅 = −(𝑇𝑓 − 𝑇𝑖)𝑄𝜌𝑓𝐶𝑃𝑓 + 𝑄0𝑆𝑅 (4.9) 

 

Equation 4.9 is subject to the initial condition: 

 𝑇|𝑡=0 = 𝑇𝑅0 (4.10) 

 

where, 

 Ti and Tf are the temperature of fluid at inlet and outlet, respectively; 

 TR is the temperature of rock; 

 Q is the fluid flow rate; 

 Q0 is the underground heat flux; 

VR is the volume of the geothermal reservoir; 

ρR and ρf is the density of rock and fluid, respectively; 

CPf and CPR is the specific heat capacity of rock and fluid, respectively; 

SR is footprint area of the geothermal reservoir 

With the temperature of the fluid at the outlet equal to that of the rock, i.e. Tf=Tr, the solution to 

Equation 4.10 is obtained: 

 𝑇𝑅 = 𝐷3𝑒
−𝐷1𝑡 +

𝐷2

𝐷1
 (4.11) 

where, 

 𝐷1 =
𝑄𝜌𝑊𝐶𝑃𝑊

𝑉𝑅𝜌𝑅𝐶𝑃𝑅
; 

 𝐷2 =
𝑄0𝑆𝑅+𝑇𝑤𝑄𝜌𝑊𝐶𝑃𝑊

𝑉𝑅𝜌𝑅𝐶𝑃𝑅
; 

 𝐷3 = 𝑇𝑅0 − 𝑇𝑤 −
𝑄0𝑆𝑅

𝑄𝜌𝑊𝐶𝑃𝑊
; 

Equation 4.11 shows that, if the flow rate is constant, the thermal drawdown of the rock follows 

an exponential curve. A parametric study is conducted to analyze the sensitivity of the thermal 

drawdown equation. The case with flow rate Q=0.01m3/s and Volume=1000*500*500m3 is used 
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as the base case for comparison, which is indicated with thick red lines in Figures 4.4 and 4.5. 

Figure 4.4 shows the effect flow rate has on the thermal drawdown of the reservoir. With higher 

injection rate, the reservoir cools down faster. 

From the thermal drawdown equation, we can also see that the temperature drawdown is also 

sensitive to the volume of the reservoir, as shown in figure 4.5. The drawdown time is longer for 

larger thermal reservoirs. 

Reservoir size and flow rate are the two main factors that determine the service life of a geothermal 

reservoir, the smaller the injection rate and the larger the reservoir, the longer the service life. The 

equation also implies that the effect of underground heat flux is negligible for most practical 

reservoirs, because the terms 
𝑄0𝑆𝑅

𝑉𝑅𝜌𝑅𝐶𝑃𝑅
, and 

𝑄0𝑆𝑅

𝑄𝜌𝑊𝐶𝑃𝑊
 are negligible in comparison with the others. 

  

Figure 4.4 Temperature Drawdown with Different Flow Rates (Q) 
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Figure 4.5 Temperature Drawdown with Different Reservoir Volumes 

The thermal drawdown equation derived from this 0-D model provides a very simple and quick 

approach to evaluate the service life of a geothermal reservoir. However, there are two factors to 

consider when thinking about how the results of this simplified model will deviate from reality. 

One factor is that when a reservoir is cooling down, the rock near the production well tends to have 

higher temperature than that in the injection well. The other factor is that the rock located near the 

flow paths will be cooler than rock located far away from the flow paths. The deviation between 

our simplified approach and a more complex approach depends largely on the conductivity of the 

rock relative to the rate of energy extraction from the reservoir and the average distance between 

the flow paths. Highly conductive rock, with a low rate of removal, and with short distances 

between the flow paths will see a relatively uniform temperature in the reservoir and results 

consistent with the lumped thermal capacitance model, while less conductive rock with high 

energy extraction rate and long distances between the flow paths are more likely to deviate in their 

results.  
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4.4. A Case Study with 0-D Model 

Despite the simplification and assumptions of the 0-D model, it provides a preliminary assessment 

of the temperature drawdown and service life of a geothermal reservoir. A case study has been 

done on the Fenton Hill geothermal project.  

As described in Section 3.5, the data of the Fenton Hill project has been found in the project report 

(Tester & Albright, 1979), and a brief summary for the case study of the 0-D model is as the 

follows. The distance between the injection and main production well is around 100m; the initial 

rock temperature is 178 °C, measured by a sensor in the production wells; and the injection rate is 

around 20L/s. The measured thermal drawdown of the production well is shown with dots in Figure 

4.6. At that time, the researchers used the single circular fracture thermal drawdown model 

(Murphy et al., 1981) to predict the drawdown of the reservoir, as shown with continuous curve in 

Figure 4.5. For detailed information about the model, please refer to the project report (Tester, J., 

1978). 

Most of the inputs for the model, such as temperature and flow rates data are directly from the 

project report. The volume of the reservoir is estimated from the project plan view and geology 

description. The input parameters are summarized in Table 4.1. The results of the model match 

very well with reality, as shown in Figure 4.6. There are some sudden turns in the series of dots 

because of the changing of injection rate during the operation. Except for these sudden turns, the 

thermal drawdown of the reservoir predicted by the 0-D model matches the measurements. 

Table 4.1 the Parameters Used in the 0-D Model 

X (m) Y (m) Z(m) Tw (C°) Tr0 (°C) Q (L/s) 

100 40 80 83 178 20 

Q0 (W/m2) ρW (kg/m3) ρr (kg/m3) CPW (J/kgC°) CPR (J/kgC°)  

0.06 1000 2700 4200 780  
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Figure 4.6 Thermal Drawdown of Fenton Hill Geothermal Reservoir 

The 0-D model is a very simple lumped thermal capacitance model. The assumptions limit the 

application of the model, making it applicable for some simple geometries. In a real project, the 

temperature distribution cannot be uniform in the rock; no bounded volume is defined for a 

reservoir in reality, and also water leakage may not be negligible. The fracture networks will also 

add complexity to the thermal drawdown. The reason why the thermal drawdown curve matches 

the measurement is that the circulation test was done on a small scale and the flow paths and layout 

of the wells were relatively simple. 

Due to the low heat conductivity of the rock, the non-uniform rock temperature profile will make 

the actual thermal drawdown of the geothermal reservoir different from the model proposed above. 

A new model taking into account the rock temperature distribution is needed for a more advanced 

analysis on the thermal drawdown of the reservoir. 

4.5. 1-D Solution and Results 

The 1-D solution is the solution that takes only the transverse heat conduction in the rock into 

consideration. This simplification is valid because the temperature gradient in the transverse 

direction is much greater than that in the longitudinal direction. There exist a number of solution 

efforts in this 1-D solution category. Bödvarsson and Tsang, (1982) provided a solution for a set 

of parallel fractures in radial coordinates. Because of the symmetry of the system, the longitudinal 



90 
 

dimension z is finite, i.e. 0 ≤ 𝑧 ≤ 𝐷. Gringarten et al., (1975) provided a solution for a set of 

parallel fractures in planar coordinates. This solution is based on the assumption of a constant 

temperature gradient because the fractures are assumed to be vertical. Similarly, the longitudinal 

dimension is finite. Cheng et al., (2001), provided a solution for a single fracture in an infinite rock 

mass, i.e. 0 ≤ 𝑧 ≤ +∞.  

In what follows, the 1-D solution for a set of parallel horizontal fractures in planar X-Z coordinates 

is presented. Because the fractures are horizontal, the temperature of the rock is uniform initially. 

The same coordinate system as in Figure 4.2 is used. Since the solution is 1-D, the heat transfer in 

the transverse direction is considered in the rock. In the fluid, because of the small opening of the 

fracture, the fluid velocity and temperature is assumed to be constant in the transverse direction. 

Equation 4.1 and 4.2 is then simplified as: 

 δ
𝜕𝑇𝑓

𝜕𝑡
+ 𝑞𝑣𝑜𝑙

𝜕𝑇𝑓

𝜕𝑥
− 2𝛼𝑟𝑇

𝜕𝑇𝑟

𝜕𝑧
|
𝑧=0

= 0, (−
𝛿

2
≤ 𝑧 ≤ 0, 𝑥 ≥ 0) (4.12) 

 

 
𝜕𝑇𝑟

𝜕𝑡
= 𝛼𝑟𝑇

𝜕2𝑇𝑟

𝜕𝑧2
, (−0 ≤ 𝑧 ≤ 𝐷, 𝑥 ≥ 0)  (4.13) 

 

where， 

 Tf, temperature of the fluid, is only a function of x and t, because it is integrated in the Z 

direction, i.e. Tf=Tf(x,t). 

 Tr, temperature of the rock, is a function of x, z and t, although the heat conduction in the 

x direction is not considered, i.e Tr=Tr(x, z, t).  

qvol is the flow rate in the fracture. Because of the assumption of uniform velocity and 

temperature of the fluid in the transverse direction, the velocity and temperature are integrated in 

that direction. After integration, velocity becomes flow rate and temperature becomes bulk 

temperature, which is the average of the temperature in the transverse direction.  

Equation 4.12 and 4.13 are subject to the initial condition: 

  𝑇𝑓(𝑥, 𝑧, 0) = 𝑇𝑟(𝑥, 𝑧, 0) = 𝑇0 (4.14) 

 

Equation 4.12 is subject to boundary conditions that the fluid temperature at x=0 is the injected 

fluid temperature Ti, as expressed in Equation 4.15: 
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  𝑇𝑓(0, 𝑡) = 𝑇𝑖 (4.15) 

 

Equation 4.12 is subject to boundary condition that there is no heat flux at the boundary of the 

section because of the symmetry in the rock, as expressed in Equation 4.17: 

 
𝜕𝑇𝑟

𝜕𝑧
|
𝑧=𝐷

= 0 (4.16) 

 

At the fluid-rock interface z=0, both the temperature is continuous, which is Cauchy type I 

boundary condition: 

 𝑇𝑟|𝑧=0 = 𝑇𝑓|𝑧=0
 (4.17) 

 

To make the solution process easier, the dimensionless forms are used. The dimensionless 

parameters are defined as the follows: 

 𝜁 =
𝛼𝑟𝑇𝛿

𝑞𝐷2
𝑥 (4.18) 

 

 𝜂 =
𝑧

𝐷
 (4.19) 

 

 𝜏 =
𝛼𝑟𝑇𝑡

𝐷2
 (4.20) 

 

 𝑇𝐷 =
𝑇 − 𝑇0

𝑇𝑖 − 𝑇0
 (4.21) 

 

 𝜃 =
𝜌𝑓𝐶𝑝𝑓𝛿

𝜌𝑟𝐶𝑝𝑟𝐷
 (4.22) 

 

Equation 4.12 and 4.13 is then simplified as: 

 
𝜕𝑇𝐷𝑓

𝜕𝜏
+

𝜕𝑇𝐷𝑓

𝜕𝜁
−

2

𝜃

𝜕𝑇𝐷𝑟

𝜕𝜂
|
𝜂=0

= 0 (4.23) 

 

 
𝜕𝑇𝐷𝑟

𝜕𝜏
=

𝜕2𝑇𝐷𝑟

𝜕𝜂2
 (4.24) 
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Initial and boundary conditions is also simplified as: 

  𝑇𝐷𝑓(𝜁, 0) = 𝑇𝐷𝑟(𝜁, 𝜂, 0) = 0 (4.25) 

 

 𝑇𝐷𝑓(0, 𝜏) = 1 (4.26) 

 

 𝑇𝐷𝑓(𝜁, 𝜏) = 𝑇𝐷𝑟(𝜁, 0, 𝜏) (4.27) 

 

 
𝜕𝑇𝐷𝑟

𝜕𝜂
|
𝜂=1

= 0 (4.28) 

 

Laplace transform is performed on the dimensionless time τ, i.e. τ in the Laplace domain is p. The 

temperature of the fluid and rock, Tf and Tr, in the Laplace domain are: u and v. 

 𝑢 = ∫ 𝑒−𝑝𝜏𝑇𝐷𝑓(𝜁, 𝜏)𝑑𝜏
∞

0

 (4.29) 

 

 𝑣 = ∫ 𝑒−𝑝𝜏𝑇𝐷𝑟(𝜁, 𝜏)𝑑𝜏
∞

0

 (4.30) 

  

Then, Equation 4.23 and 4.24 in the Laplace domain will be: 

 
𝜕2𝑣

𝜕𝜂2
= 𝑝𝑣 (4.31) 

 

 𝑝𝑢 +
𝜕𝑢

𝜕𝜁
−

2

𝜃

𝜕𝑣

𝜕𝜂
|
𝜂=0

= 0 (4.32) 

 

Because the initial condition is already included in Equation 4.31 and 4.32, only the following 

boundary conditions are remained. 

 𝑢(0, 𝑝) = 1/𝑝 (4.33) 

 

 𝑢(𝜁, 𝑝) = 𝑣(𝜁, 0, 𝑝) (4.34) 
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𝜕𝑣

𝜕𝜂
|
𝜂=1

= 0 (4.35) 

 

Partial differential equations 4.31 and 4.32 can be solved in the Laplace domain: 

 𝑢 =
1

𝑝
𝑒𝑥𝑝 [−(𝑝 +

2

𝜃
√𝑝𝑡𝑎𝑛ℎ√𝑝) 𝜁] (4.36) 

 

 𝑣 = 𝑢[𝑐𝑜𝑠ℎ(√𝑝𝜂) − 𝑡𝑎𝑛ℎ√𝑝sinh (√𝑝𝜂)] (4.37) 

 

Performing inverse Laplace transform is difficult for Equation 4.36 and 4.27, so numerical Laplace 

inversion is used. This numerical approximation of the inverse Laplace transform is based on the 

paper written by Valsa and Brancik, (1998). The method is written into a MATLAB code, with 

the copyright from Juraj Valsa. Figure 4.7 is an example of the result of the 1-D solution. 

In this example, the spacing between two fractures is 2D=20m, the length of the fracture is L=50m. 

The aperture of the fracture is δ=5mm. The velocity of the water in the fracture is 0.2m/s. The 

initial rock temperature is 80 °C, and the injection temperature is 20 °C. As shown in Figure 4.7, 

the temperature of the fluid at outlet decreases with time after a short period when the temperature 

of the fluid is the same as that of the rock.  
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Figure 4.7 An Example of the 1-D Solution 

Figure 4.8 to 4.10 present a parametric study on this 1-D solution. The set of parameters used in 

Figure 4.7 are used as a basis, which is plotted using the thick red curve, then one parameter is 

varied at a time. Some useful conclusions can be drawn from this parametric study. 
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Figure 4.8 Temperature Drawdown with Different Fracture Spacings (D) 

 

Figure 4.9 Temperature Drawdown with Different Apertures (δ) 
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Figure 4.10 Temperature Drawdown with Different Velocity (U) 

Figure 4.8 shows that when the fracture spacing is small, the fluid temperature at the outlet draws 

down more quickly than the cases when the fracture spacing is large. When the spacing is large 

enough, the temperature drawdown curves overlap with each other, as the curves with D=2m and 

D=10m do. This happens because when the cold front migrates in the Z direction, before it hits the 

boundary Z=D, the heat transferred to the fluid will not change; this is why when D is large enough, 

the thermal drawdown curves of different fracture spacings are the same.  

Figure 4.9 shows that when the aperture of the fracture increases, the fluid temperature at the outlet 

draws down more quickly. This make sense because the greater aperture conveys more fluid, which 

helps the heat extraction. When more heat is extracted, the temperature of the rock draws down 

more quickly, thus the fluid temperature at the outlet draws down more quickly. 

Figure 4.10 shows that when the fluid velocity increases, the fluid temperature at the outlet draws 

down more quickly. This make sense because the higher fluid velocity will convey more fluid, 

which help the heat extraction. When more heat is extracted, the temperature of the rock draws 

down more quickly, thus the fluid temperature at the outlet draws down more quickly. 
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The 1-D solution presented above is a simplified case of the Equation 4.1 and 4.2. It neglects the 

velocity profile and heat conduction in the fluid and longitudinal heat conduction in the rock. 

However, it provides a useful insight into the temperature reaction of the fluid and rock after cold 

water is injected. It is also very useful in determining the sensitivity to the factors associated with 

the geothermal reservoir. To obtain more accurate results, more complicated analytical or semi-

analytical methods have to be used.  
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5. Comparison between the Numerical and Analytical 

Approaches 

5.1. A Simply Configured Heat Transfer Problem 

In section 4.5, the 1-D solution has provided a very useful insight into the temperature reaction of 

the fluid and rock after cold water is injected. However, it is necessary to find out if the 

assumptions used in the 1-D solution are valid and how these assumptions affect the results. A 

finite element simulation is run on a heat transfer problem with simple geometry to provide a 

reference to compare with the 1-D solution. The simple configuration is shown in Figure 5.1. 

 

Figure 5.1 Finite Element Model 

The finite element method has been proved reliable in modeling the physical process of the nature 

and has been widely used in the industry. To make sure that the results are reliable and accurate, 

very fine mesh needs to be applied on the domain, which in turn limits the length of time steps. In 

this case, the aperture of the fracture is 0.005m. Because of the symmetry of the system, half of 

the fracture is simulated. To capture the parabolic fluid velocity profile discussed in Section 2.2.2, 

the fracture is divided into 100 subdivisions in the X direction and 8 subdivisions in the Z direction. 

The rock is divided into 100 subdivisions in the X direction and 16 subdivisions in the Z direction. 

To make sure the result is stable, 0.1-second time steps are used to calculate the temperature change 

in 500s.  Table 5.1 summarizes the input parameters for the finite element simulations. Material 

properties are chosen from typical values and remain constant during the simulation.  
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Table 5.1 Input Parameters for the Finite Element Simulation 

T0 (°C) Tf (°C) 
kR(W/m/°C) 

(granite) 

kf(W/m/°C) 

(water) 

ρR (kg/m3) 

(granite) 
ρf (kg/m3) 

80 20 3 0.58 2700 1000 

CpR (granite) 

(J/kg/°C) 
Cpf (J/kg/°C) μ (Pa∙s) L (m) D (m) δ (m) 

790 4186 0.001 1 0.2 0.005 

 

The 1-D solution does not consider the fluid velocity profile, neither does it consider the 

temperature profile in the transverse (Z) direction. The finite element simulations provide cases 

with uniform velocity profile and parabolic velocity profile as reference to show how the velocity 

and temperature profiles in the transverse direction matter. The same bulk velocity 0.02m/s is used 

in both cases and this bulk velocity (as defined in Section 2.2.2) is consistent with that used in the 

1-D solution so that the results can be comparable. 

The finite element simulation is able to provide the temperature and velocity of every node at the 

end of each time step. An example of the simulation result is shown in Figure 5.2. The temperature 

profile in the rock at t=100s shows that the temperature gradient in the Z direction is much greater 

than that in the X direction. This result indicates the validity of the assumption that the heat 

conduction in the longitudinal direction is negligible. 

 

Figure 5.2 Temperature Profile of the Rock and Fluid 

5.2. Comparison of the Results 

In a geothermal project, the temperature of the fluid in the production well is a very important 

factor in determining the design life, and operation scheme. So in this comparison, the main interest 

is in the change of temperature of the fluid at the outlet of the fracture.  
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The finite element results can provide us the temperature and velocity of every node at the end of 

each time step. To compare with the results of the analytical solutions, bulk velocity and 

temperature at the outlet should be used. As discussed in Section 2.2.2, the bulk velocity is defined 

as: 

 𝑢𝑥̅̅ ̅ =

∫ 𝑢𝑥𝑑𝑧
0

−
𝛿
2

∫ 𝑑𝑧
0

−
𝛿
2

 (5.1) 

 

The bulk temperature, as defined in Equation 5.2, reflects the energy conveyed by the fluid. 

 𝑇𝑓 =

∫ 𝑢𝑥𝑇𝑓𝑑𝑧
0

−
𝛿
2

∫ 𝑢𝑥𝑑𝑧
0

−
𝛿
2

 (5.2) 

 

The 1-D solution is based on the assumption of uniform velocity and temperature in the transverse 

direction of the fracture. In reality, the fluid velocity profile is parabolic if it is laminar flow. 

Turbulent flow velocity is more uniform in the transverse direction, but not strictly uniform. The 

temperature profile in the transverse direction is also not strictly uniform even though the fracture 

aperture is very small. In the following comparison, the results of the 1-D solution, the finite 

element simulation with a parabolic velocity profile and the finite element simulation with a 

uniform velocity profile are compared. 

Figure 5.3 shows the fluid velocity profile in the Z direction in the fracture. The result of the Cubic 

Law is also plotted as a reference showing that finite element simulation is able to simulate the 

velocity profile of laminar flow.  
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Figure 5.3 Velocity Profile in the Z Direction 

Figure 5.4 shows the temperature profile of the fluid at the outlet when t=500s. This figure 

indicates that when the fluid laminar, a higher temperature gradient is expected in the fluid in the 

transverse direction.  

 

Figure 5.4 Fluid Temperature Profile in the Fracture 
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Figure 5.5 is the temperature drawdown curve of the fluid at the fracture outlet.  

 

Figure 5.5 Fluid Temperature at the Outlet 

The influence of the velocity profile can be seen by comparing the two finite element results. The 

finite element result with a uniform velocity profile shows higher heat transfer efficiency than the 

one with a parabolic velocity profile. This happens because the velocity profile determines the 

rock-fluid contact condition. When the velocity is uniform, the injected cold fluid will have more 

chance to interact with the rock and get heated up. However, for the case of the fluid with a 

parabolic velocity profile, the heated fluid near the rock flows slower than the fluid near the center, 

which is cooler. When hot fluid flows slower and cool fluid flows faster, the bulk temperature 

tends to be lower.  

The influence of the temperature profile can be seen by comparing the 1-D solution with the finite 

element result with the uniform fluid velocity.  As shown in Figure 5.5, the 1-D solution results in 

higher fluid temperature than the one with the uniform velocity profile. When the fluid temperature 

profile is uniform, the temperature of the fluid will become the boundary condition of the rock, as 

expressed in Equation 4.17. The heat conduction in the fluid is not accounted for, thus the system 

will show a higher heat transfer efficiency. 
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6. Conclusions 

6.1. Summary and Main Findings 

The purpose of this research is to develop a model, which predicts the temperature profile of both 

the water and the rock, so that better decisions can be made regarding the geothermal system. To 

achieve this purpose, both numerical and analytical approaches are used.  

A literature review briefly describes the fundamental physical laws and models that are used in 

modeling the heat transfer process between the fluid and the fractured rocks. Numerical and 

analytical models are reviewed to provide a general sense of the current state of the art. 

In the numerical approach, a stochastic discrete fracture network model, GEOFRAC, is used to 

generate a fracture network. GEOFRAC-FLOW, is then used to calculate the flow path in the 

fracture network and flow rate in each fracture. On the basis of the two models, a heat transfer 

model, GEOFRAC-THERMAL, is developed. Parametric studies with the three models show the 

sensitivity of the three models to the input parameters. A case study with the three models on the 

Fenton Hill project demonstrates the capability of the three models in modeling the heat and mass 

transfer in the initial operation of the geothermal reservoir. 

In the analytical approach, a conceptual geothermal reservoir model is introduced. The heat 

transfer process in the fluid and the fractured rock is formulated based on energy conservation. 

Based on the assumption of uniform rock temperature, the 0-D solution is obtained. Useful 

conclusions are drawn based on the parametric study with the 0-D solution. A case study with the 

0-D solution on the Fenton Hill project is conducted. The case study shows a very good match 

between the measured temperature drawdown and the predicted temperature drawdown for long-

term operation. Based on the assumption of heat conduction only in the transverse direction of the 

rock, the 1-D solution is obtained. The 1-D solution shows an even more realistic prediction of the 

fluid temperature by showing a constant temperature at the beginning of injection. Parametric 

studies are conducted with the 1-D solution and useful conclusions are obtained. 

To study the accuracy of the 1-D solution, a finite element analysis is conducted to provide a 

reference to compare with. The comparison of the temperature profiles at the outlet shows that the 

temperature gradient in the transverse direction in the fracture is not negligible. The comparison 

of the temperature-time curves at the outlet shows that the velocity profile and temperature profile 
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in the transverse direction will influence the calculation of temperature at the fracture outlet. These 

comparisons not only provide an insight into the accuracy of the analytical solutions, but also 

indicate the limitations of the current research and possible directions for the future work. 

6.2. Limitations and Future Work 

The modeling of heat transfer between fluid and fractured rocks is a complicated problem because 

of the physical processes involved and the complex geometry of the fractures. Both a numerical 

approach and an analytical approach were used. In the numerical approach, only heat convection 

is considered because of the assumption of constant rock temperature. However, the complex 

geometry of the fractures is well captured using the stochastic fracture network model, GEOFRAC. 

In the analytical approach, both heat conduction and convection are considered in the system. 

However, the geometry of the fracture system is significantly simplified to a series of equally-

spaced parallel fractures.  

For the numerical approach using GEOFRAC, heat conduction in the rock needs to be considered 

so that the temperature calculation can be more realistic. Also, with the temperature profile of the 

rock solved, more mechanisms can be coupled, such as the thermal contraction of the rock and the 

fracture propagation due to the contraction of the rock. Based on these couplings, a more realistic 

and powerful model can be developed to represent the complex physical process during the 

operation of a geothermal system. 

For the analytical approach using the conceptual geothermal reservoir model, the velocity profile 

in the transverse direction in the fracture should be considered, as analyzed in Section 5.2. The 

heat conduction in the longitudinal direction both in the rock and in the fractures may also be of 

importance. A full dimensional analysis is needed to evaluate the importance of these factors. 

Solutions for more complicated fracture networks are other possible directions of future work. 
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Nomenclature 

Symbol Units Description 

A m2 Area 

B W/(K·m2) Stefan-Boltzmann constant, 5.67×10-8 

Cp J/(kg·°C) Specific heat capacity 

Dh m Hydraulic Diameter 

EA m2 Expected area of fractures 

F  Configuration Factor 

f  Reduction factor 

g m2/s Gravitational constant, 9.81 

hT W/(°C·m2) Heat convection conefficient 

h m Hydraulic head 

K m/s Hydraulic conductivity 

ki W/(°C·m) Thermal conductivity in the i direction 

L m Fracture length 

mu or P32 m-1 Fracture intensity 

Nu  The Nusselt number 

Pr  The Prandtl number 

P m perimeter 

p Pa pressure 

Q m3/s Volumetric flow rate 

q0 or Qo W/m3 Internal energy generation 

qhi W/m2 Heat flux in the i direction 

qm kg/(s·m2) Mass flux 

qvol m3/s Volumetric flow rate 

Re  The Reynolds number 

r m Radial coordinate 
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T °C Temperature 

U m/s Bulk velocity 

ui m/s Velocity in the i direction 

w m Fracture width 

x, y, z m Cartesian coordinates 

zel m Elevation head 

α m2/s Thermal diffusivity 

γ kN/m3 Unit weight 

δ or fvalue m Fracture aperture 

ε m Fracture surface roughness 

κ m2 Permeability 

ϕ  porosity 

ρ kg/m3 Density 

µ Pa·s Dynamic viscosity 

φ ° Fracture pole plunge 

ω ° Fracture pole trend 
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Appendix A 

Table A01 shows how the orientation distributions look like when projected on a hemisphere. 

Table A01 Orientation Distributions 

Fisher k=1 

 

 
Fisher k=40 

 

 
Bivariate Fisher k=[1 40] 
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Appendix B 

Table B01 shows how the orientation distributions look like when projected on a hemisphere. 

Table B01 Mean Orientations 

(π/2, π/2) (π/4, π/2) 

  
(0, π/2) (0, π/4) 

  
(0, 0) (π/4, π/4) 
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Appendix C 

Sample Size Analysis 

GEOFRAC is a stochastic model that uses several stochastic processes to model the fracture and 

flow in the rock. When a parametric study is conducted, a reasonable number of results should be 

chosen to analyze the trend of the results.  

According to the law of large numbers, the average of the results obtained from a large number of 

trials should be close to the expected value, and will tend to become closer as more trials are 

performed. So, the number of results should be significant to be able to represent the entire 

population. However, a large sample size would be computationally costly. So, it is necessary to 

execute a minimal number of simulations such that the average of the simulation outputs can 

represent the expectation at reasonable confidence level within a confidence interval. This 

approach is applied to the study of all the parameters of interest in this report.  

Below is an example of simulation results with sample size 200. The results are produced using 

GEOFRAC with the parameters listed in Table C01. The flow rate of each simulation is plotted 

on the graph, shown in Figure C01. The stochastic model generated 200 randomly distributed 

points in the range of 0 to 10. 

Table C01 Parameters Used in the Example 

mu (m-1) EA(m2) m k rot fvalue (m) r X (m) Y (m) 

3 2 4 20 1 0.005 0.001 20 40 

Z (m) ΔP (Pa) μ (Pa∙s) kt (W/m∙K) ρ (kg/m3) Cp (J/kg∙K) Tr (C°) Tw (C°)  

20 500000 0.468×10-3 0.6546 983 4185 200 60  
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Figure C01 Qout of 200 Simulations 

As predicted by the law of large number the average of results is close to the expected value. As 

shown in Figure C02, the average of Qout trends to 5.87, i.e. 𝑄𝑜𝑢𝑡̅̅ ̅̅ ̅̅ ̅ =  5.87. 

Not only the average has this trend, the standard deviation of Qout also has this trend. As shown 

in Figure C03, the standard deviation trends to 1.70, i.e. 𝜎(𝑄𝑜𝑢𝑡)  = 1.70. 

 

Figure C02 Average of Qout as NO. Increases 
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Figure C03 Standard Deviation of Qout as NO. Increases 

Also, the frequency distribution is plotted to analyze the probability distribution of Qout. As 

shown in Figure C04, the distribution of Qout is similar to a Normal Distribution, whose 

expectation is located at the statistical mode. 
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Figure C04 Frequency Distribution of Qout 

According to central limit theorem for the sample average, for n large, 𝑄𝑜𝑢𝑡̅̅ ̅̅ ̅̅ ̅ is approximately 

normally distributed with expectation of Qout E (Qout) and standard deviation
𝜎(𝑄𝑜𝑢𝑡)

√𝑛
. 

Thus, the sample size with certain confidence level and confidence interval can be calculated by 

the following equation: 

𝑁 =
𝑑2 × 𝑆2

𝑡2
 

N: the sample size 

d: x at a certain confidence level in Normal distribution 

S: standard deviation of the sample 

t: confidence interval, usually use percentage of sample average 

In the example mentioned above, 𝜎(𝑄𝑜𝑢𝑡) is used to estimate the standard deviation S, i.e. 

S=1.70. For a standard normal distribution, 90% confidence level will result in d=1.65. If we use 

t=10%×𝑄𝑜𝑢𝑡̅̅ ̅̅ ̅̅ ̅=0.587 as confidence interval, the sample size can then be calculated below: 
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𝑁 =
𝑑2 × 𝑆2

𝑡2
=

1.652 × 1.72

0.5872
= 22.83 

With this sample size we can say that we are 90% confident that the true values of the simulation 

results fall within the confidence interval 10%×𝑄𝑜𝑢𝑡̅̅ ̅̅ ̅̅ ̅. So, in the parametric analysis of Qout with 

parameters listed in Table 8, we will basically use the average of 20 simulations to estimate the 

results. 

The above description provides a good example of how the sample size is determined. In the 

parametric studies, all the sample sizes should be determined in this way. The approach is 

summarized as follows: 

First, in a pilot set of 20 simulations for given parameters, we compute the observed sample 

mean 𝒄̅ and sample standard deviation s. 

Next, we use s as an approximation of the true standard deviation and use 𝒄̅ to calculate the 

confidence interval t by multiplying it by the percentage of tolerance (the example above uses 

10%). 

Finally, the sample size is calculated by: 𝑁 =
𝑑2×𝑆2

𝑡2
 

Table C02 summarizes the sample sizes for all the parametric studies conducted. All the sample 

sizes are calculated with 90% confidence level and 10%×𝒄̅ confidence interval. Then we are 90% 

confident that the true values of the simulation results fall within the confidence interval 10%×𝒄̅.  

Table C02 Summary of the Sample Sizes 

Parameter set  

(EA-P32-K-R-H) 
Variable Average 

Standard 

Deviation 

Sample 

Size 
Note 

2-3-1-0-0.005 Qout 16.73 9.08 80  

2-3-1-0-0.01 Qout 164.31 85.76 74  

2-3-1-1-0.005 Qout 5.16 2.05 43  

2-3-1-1-0.01 Qout 47.94 18.65 41  

2-3-40-0-0.01 Qout 29.22 12.70 51 With no flow path 

2-3-40-1-0.01 Qout 61.30 16.94 21  

2-3-40-0-0.005 Qout 5.70 5.56 259 With no flow path 

2-3-40-1-0.005 Qout 6.43 1.84 22  
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