
1	
  

DoE	
  Award	
  #:	
  DE-­‐FC02-­‐12ER26099/DE-­‐SC0008596	
  
Award	
  Institution:	
  University	
  of	
  Houston	
  
	
  
eXascale	
  PRogramming	
  Environment	
  and	
  System	
  Software	
  (XPRESS)	
  

PI:	
  Barbara	
  Chapman,	
  University	
  of	
  Houston	
  
Co-­‐PI:	
  Edgar	
  Gabriel,	
  University	
  of	
  Houston	
  

	
  
Final	
  Report	
  

	
  
Date:	
  November	
  30,	
  2015	
  

1	
  Synopsis	
  
	
  
Exascale	
   systems,	
   with	
   a	
   thousand	
   times	
   the	
   compute	
   capacity	
   of	
   today’s	
   leading	
  
edge	
   petascale	
   computers,	
   are	
   expected	
   to	
   emerge	
   during	
   the	
   next	
   decade.	
   Their	
  
software	
  systems	
  will	
  need	
   to	
   facilitate	
   the	
  exploitation	
  of	
  exceptional	
  amounts	
  of	
  
concurrency	
   in	
   applications,	
   and	
   ensure	
   that	
   jobs	
   continue	
   to	
   run	
   despite	
   the	
  
occurrence	
   of	
   system	
   failures	
   and	
   other	
   kinds	
   of	
   hard	
   and	
   soft	
   errors.	
   Adapting	
  
computations	
  at	
  runtime	
  to	
  cope	
  with	
  changes	
  in	
  the	
  execution	
  environment,	
  as	
  well	
  
as	
  to	
  improve	
  power	
  and	
  performance	
  characteristics,	
  is	
  likely	
  to	
  become	
  the	
  norm.	
  	
  
As	
  a	
  result,	
  considerable	
  innovation	
  is	
  required	
  to	
  develop	
  system	
  support	
  to	
  meet	
  
the	
  needs	
  of	
  future	
  computing	
  platforms.	
  
	
  	
  
The	
  XPRESS	
  project	
  aims	
  to	
  develop	
  and	
  prototype	
  a	
  revolutionary	
  software	
  system	
  
for	
   extreme-­‐scale	
   computing	
   for	
   both	
   exascale	
   and	
   strong-­‐scaled	
   problems.	
   	
   The	
  
XPRESS	
   collaborative	
   research	
   project	
   will	
   advance	
   the	
   state-­‐of-­‐the-­‐art	
   in	
   high	
  
performance	
  computing	
  and	
  enable	
  exascale	
  computing	
  for	
  current	
  and	
  future	
  DOE	
  
mission-­‐critical	
   applications	
   and	
   supporting	
   systems.	
   The	
   goals	
   of	
   the	
   XPRESS	
  
research	
   project	
   are	
   to:	
   A.	
   enable	
   exascale	
   performance	
   capability	
   for	
   DOE	
  
applications,	
  both	
  current	
  and	
  future,	
  B.	
  	
  develop	
  and	
  deliver	
  a	
  practical	
  computing	
  
system	
   software	
   X-­‐stack,	
   OpenX,	
   for	
   future	
   practical	
   DOE	
   exascale	
   computing	
  
systems,	
   and	
   C.	
   provide	
   programming	
   methods	
   and	
   environments	
   for	
   effective	
  
means	
  of	
  expressing	
  application	
  and	
  system	
  software	
  for	
  portable	
  exascale	
  system	
  
execution.	
  	
  	
  
	
  
The	
  role	
  of	
  the	
  University	
  of	
  Houston	
  in	
  XPRESS	
  has	
  been	
  to	
  define	
  a	
  migration	
  path	
  
for	
  porting	
  legacy	
  MPI	
  [1]	
  and	
  OpenMP	
  [2]	
  applications	
  to	
  an	
  XPI-­‐like	
  programming	
  
interface.	
  	
  Legacy	
  migration	
  is	
  critical	
  in	
  terms	
  of	
  supporting	
  the	
  current	
  code	
  base	
  
on	
  the	
  XPRESS	
  software	
  stack.	
  XPRESS,	
  as	
  far	
  as	
  we	
  know,	
  is	
  the	
  only	
  project	
  in	
  the	
  
XStack	
   program	
   that	
   identifies	
   this	
   component	
   as	
   one	
   of	
   its	
  main	
   goals.	
   Thus	
  we	
  
believe	
  the	
  outcome	
  of	
  our	
  work	
  and	
  the	
  experiences	
  we	
  have	
  gained	
  will	
  be	
  very	
  
important	
   to	
   other	
   projects,	
   as	
  well	
   as	
   to	
   other	
   efforts	
   related	
   to	
   exascale	
   system	
  
software.	
  During	
  this	
  process,	
  a	
  number	
  of	
  applications	
  have	
  been	
  implemented,	
  as	
  



2	
  

well	
  as	
  translation	
  layers	
  introduced	
  	
  to	
  support	
  legacy	
  applications,	
  to	
  drive	
  system	
  
development	
   and	
   quantitative	
   evaluation	
   of	
   the	
   XPRESS	
   system	
   implementation	
  
details	
   and	
   operational	
   efficiencies	
   and	
   scalabilities.	
   Our	
   results	
   show	
   that	
   such	
   a	
  
translation	
   is	
   feasible	
   and	
   that	
   legacy	
   applications	
   may	
   benefit	
   from	
   the	
   OpenX	
  
software	
  stack.	
  	
  

2	
  Project	
  Milestones	
  
The	
  major	
  project	
  milestones	
  for	
  this	
  3	
  year	
  project	
  are	
  as	
  follows:	
  
	
  
MIlestone	
  1:	
  Implementation of data-driven computation model in OpenMP. (Year 1, 
Q2)	
  
	
  
Milestone	
   2:	
   	
   Explored	
   programming	
   constructs	
   available	
   in	
   OpenMP	
   that	
   could	
  
effectively	
   target	
   the	
  HPX	
  runtime,	
  with	
  an	
  LU	
  decomposition	
  application.	
   (Year	
  2,	
  
Q2)	
  
	
  
Milestone	
  3:	
  Running	
  OpenMP	
  applications	
  on	
  HPX	
  with	
  hpxMP.	
  (Year	
  2,	
  Q4)	
  
	
  
Milestone	
  4:	
   Extending	
  OpenMP	
  support	
   to	
  multiple	
   compilers	
  with	
  OMPTX	
  with	
  
the	
  Intel	
  OpenMP	
  Runtime.	
  	
  (Year	
  3,	
  Q2)	
  
	
  
Milestone	
  5:	
  Running	
  MPI	
  and	
  HPX	
  applications	
  with	
  HPX-­‐RTE.	
  (Year	
  3,	
  Q4)	
  

3	
  Work	
  Completed	
  
One	
   of	
   the	
  major	
   goals	
   of	
   the	
   XPRESS	
   project	
   is	
   to	
  make	
   it	
   easier	
   to	
   leverage	
   the	
  
proposed	
   software	
   stack	
   within	
   an	
   exascale	
   environment	
   for	
   existing,	
   legacy	
  
applications.	
  These	
  applications,	
  predominantly	
  using	
  MPI	
  and	
  OpenMP	
  to	
  express	
  
parallelism,	
  must	
   continue	
   to	
  be	
   supported	
   in	
   such	
  an	
  environment.	
  For	
   the	
  work	
  
completed	
  within	
  the	
  XPRESS	
  project,	
   the	
  team	
  at	
  the	
  University	
  of	
  Houston	
  made	
  
significant	
  progress	
  in	
  enabling	
  MPI	
  and	
  OpenMP	
  codes	
  to	
  run	
  over	
  HPX.	
  	
  

3.1	
  Data-­‐driven	
  Tasking	
  Model	
  in	
  OpenMP	
  
During	
   the	
   first	
   year	
   of	
   the	
   XPRESS	
   project,	
   we	
   implemented	
   a	
   data-­‐driven	
  
computation	
  model	
  in	
  OpenMP	
  that	
  is	
  similar	
  to	
  the	
  HPX	
  future	
  feature	
  to	
  support	
  
data-­‐flow	
  computation	
  and	
  the	
  task	
  dependency	
  feature	
  incorporated	
  into	
  OpenMP	
  
4.0.	
   In	
   Figure	
   1,	
   we	
   use	
   an	
   LU	
   decomposition	
   example	
   to	
   illustrate	
   the	
   potential	
  
performance	
   benefit	
   of	
   data-­‐driven	
   concurrent	
   tasks	
   in	
   OpenMP.	
   Our	
   task	
  
extensions	
  do	
  not	
  require	
  the	
  static	
  construction	
  of	
  a	
  task	
  graph,	
  nor	
  do	
  they	
  require	
  
the	
   specification	
   of	
   task	
   dependences	
   via	
   the	
   variables	
   that	
   are	
   read	
   in	
   from	
  
previous	
   tasks	
   (or	
   passed	
   to	
   others),	
   but	
   rather	
   permit	
   the	
   expression	
   of	
  
dependences	
   via	
   the	
   use	
   of	
   parametrized	
   expressions	
   that	
   characterize	
   each	
   task.	
  



3	
  

This	
   feature	
   was	
   implemented	
   in	
   the	
   OpenUH	
   compiler.	
   The	
   “OpenUH	
   with	
   ext”	
  
entries	
  in	
  the	
  Figure	
  1	
  graphs	
  show	
  the	
  performance	
  improvement	
  that	
  is	
  achieved	
  
by	
   this	
   	
   code	
  version	
   	
   over	
   the	
   standard	
  OpenMP	
   task	
  dependence	
   construct.	
  The	
  
figure	
   shows	
   that	
   this	
   approach	
   to	
   specifying	
   dependences	
   among	
   tasks	
   also	
  
considerably	
   outperforms	
   other	
   well-­‐known	
   data-­‐flow	
   runtime	
   systems	
   such	
   as	
  
QUARK	
   [14]	
   and	
   OmpSs	
   [15]	
   by	
   a	
   large	
   margin	
   for	
   LU	
   and	
   Smith-­‐waterman	
  
benchmark	
  examples.	
   	
   Such	
  an	
  approach	
  could	
   significantly	
  enhance	
   the	
  ability	
  of	
  
application	
  codes	
  (partially)	
  based	
  on	
  OpenMP	
  to	
  exploit	
  the	
  OpenX	
  software	
  stack	
  
or	
  similar	
  execution	
  environments.	
  
	
  	
  
	
  

	
  
Figure	
  1:	
  Data-­‐driven	
  OpenMP	
  task	
  extension	
  for	
  LU	
  decomposition	
  

3.2	
  hpxMP	
  
The	
  main	
  thrust	
  of	
  our	
  effort	
  was	
  to	
  directly	
  translate	
  the	
  full	
  feature	
  set	
  of	
  OpenMP	
  
to	
   the	
   project’s	
   software	
   environment	
   so	
   that	
   existing	
   application	
   code	
   could	
   run	
  
unmodified	
   (so	
   far	
   as	
  possible)	
   in	
  OpenX.	
  Our	
   initial	
   approach	
  utilized	
  our	
   robust	
  
OpenUH	
   compiler	
   that	
   is	
   able	
   to	
   translate	
   OpenMP	
   code	
  with	
   Fortran,	
   C	
   and	
   C++	
  
code.	
   Like	
   other	
  OpenMP	
   compilers,	
   OpenUH	
   employs	
   a	
   custom	
  OpenMP	
   runtime	
  
library	
  to	
  ensure	
  efficiency	
  of	
  the	
  translation	
  process.	
  	
  
	
  



4	
  

We	
   developed	
   a	
   strategy	
   for	
   transparently	
   running	
   code	
   written	
   using	
   the	
   full	
  
feature	
  set	
  of	
  OpenMP	
  on	
  HPX.	
  Compilers	
  translate	
  OpenMP	
  code	
  to	
  object	
  code	
  that	
  
makes	
  extensive	
  use	
  of	
  the	
  specific	
  compiler’s	
  OpenMP	
  runtime	
  library	
  routines	
  to	
  
create	
  and	
  manage	
  threads,	
  to	
  assign	
  work	
  to	
  them	
  and	
  to	
  perform	
  synchronization	
  
operations.	
   We	
   chose	
   to	
   accomplish	
   the	
   translation	
   by	
   modifying	
   the	
   OpenUH	
  
runtime	
   library,	
   thereby	
  avoiding	
  any	
  need	
   to	
  make	
   changes	
   to	
   the	
   application	
  or	
  
the	
   compilation	
   process.	
   Note	
   that	
   this	
   approach	
   thus	
   requires	
   absolutely	
   no	
  
compiler	
   or	
   source	
   code	
   changes	
   for	
   legacy	
   OpenMP	
   applications,	
   or	
   even	
  
recompilation.	
  
	
  
During	
   the	
   second	
   project	
   year,	
  
we	
   developed	
   and	
   evaluated	
   a	
  
prototype	
   of	
   an	
   alternative	
  
implementation	
   of	
   our	
   OpenMP	
  
runtime	
   library,	
   named	
   hpxMP,	
  
that	
   is	
   based	
   on	
   the	
   HPX-­‐3	
  
runtime	
   system	
   from	
   our	
  
partners	
  at	
  LSU.	
  In	
  this	
  runtime,	
  
HPX	
   threads	
   are	
   used	
   to	
   create	
  
the	
   implicit	
   tasks	
   in	
   the	
   fork	
   at	
  
the	
  beginning	
  of	
  parallel	
  regions,	
  
and	
   the	
   barrier	
   local	
   control	
  
object	
  (LCO)	
  provided	
  by	
  HPX	
  is	
  used	
  to	
  perform	
  barrier	
  synchronizations.	
  OpenMP	
  
explicit	
  tasks	
  are	
  implemented	
  using	
  HPX	
  user-­‐level	
  threads,	
  and	
  a	
  counter	
  local	
  to	
  
each	
  task	
  is	
  used	
  to	
  synchronize	
  between	
  tasks.	
  	
  
	
  
OpenMP	
  distinguishes	
   between	
   tied	
   and	
  untied	
   tasks,	
  where	
   a	
   tied	
   task	
  must	
   run	
  
only	
   on	
   the	
   thread	
   it	
   starts	
   execution	
   on	
   and	
   an	
   untied	
   task	
   may	
   freely	
   migrate	
  
between	
   threads	
   at	
   designated	
   task-­‐switching	
   points.	
   	
   HPX	
   does	
   not	
   provide	
   any	
  
means	
  to	
  control	
  on	
  which	
  thread	
  (corresponding	
  to	
  an	
  HPX	
  worker)	
  a	
  task	
  (or	
  HPX	
  
user-­‐level	
  thread)	
  executes.	
  Consequently,	
  all	
  OpenMP	
  explicit	
  tasks	
  in	
  our	
  present	
  
implementation	
   have	
   the	
   semantics	
   of	
   an	
   untied	
   task.	
   Implicit	
   tasks	
   are	
   also	
  
implemented	
  as	
  HPX	
  user-­‐level	
  threads.	
  	
  	
  
	
  
In	
   hpxMP,	
   	
   we	
   ensure	
   that	
   each	
   implicit	
   task	
   generated	
   by	
   a	
   parallel	
   region	
   is	
  
assigned	
  a	
  unique	
  thread	
  number	
  irrespective	
  of	
  the	
  HPX	
  worker	
  (implemented	
  as	
  
an	
   OS	
   thread)	
   that	
   it	
   actually	
   executes	
   on.	
   In	
   effect,	
   an	
   OpenMP	
   thread	
   number	
  
corresponds	
  not	
  to	
  the	
  executing	
  HPX	
  worker,	
  but	
  rather	
  the	
  thread	
  number	
  of	
   its	
  
generating	
  task	
  and,	
  in	
  turn,	
  all	
  ancestor	
  tasks	
  up	
  to	
  the	
  starting	
  implicit	
  task.	
  As	
  a	
  
result,	
  in	
  most	
  applications	
  the	
  tasks	
  will	
  all	
  report	
  that	
  they	
  are	
  executing	
  on	
  thread	
  
0,	
  meaning	
   that	
  multiple	
   simultaneously	
   executing	
   tasks	
  have	
   the	
   same	
   thread	
   id.	
  
The	
  code	
  will	
  not	
  be	
  able	
  to	
  correctly	
  make	
  use	
  of	
  thread	
  local	
  storage.	
  
	
  
Our	
   results	
   showed	
   very	
   promising	
   performance	
   of	
   the	
   hpxMP	
   runtime	
   library	
  
when	
   compared	
   with	
   a	
   conventional	
   OpenMP	
   runtime	
   system,	
   using	
   both	
  
microbenchmarks	
  and	
  applications	
  provided	
  by	
  LBNL	
  partners.	
  	
  

Figure	
  2:	
  HPX	
  integrated	
  within	
  OpenUH	
  OpenMP	
  	
  runtime	
  



5	
  

	
  

	
  
Figure	
  3:	
  EPCC	
  Microbenchmarks;	
  <1	
  means	
  improvement	
  over	
  original	
  OpenMP	
  runtime	
  

	
  
Figures	
   2	
   and	
   3	
   shows	
   the	
   hpxMP	
   architecture	
   and	
   the	
   early	
   results	
   using	
   the	
  
OpenUH	
  compiler.	
  Figure	
  2	
  shows	
  the	
  different	
  compiler	
  runtime	
  elements:	
  one	
   is	
  
the	
   compiler’s	
   original	
   Pthreads-­‐based	
   runtime	
   (libopenmp),	
   and	
   the	
   other	
   is	
   the	
  
hpxMP	
  runtime	
   implemented	
  within	
   this	
  project	
  using	
  HPX.	
  Figure	
  3	
  shows	
   initial	
  
results	
  comparing	
  the	
  overheads	
  measured	
  for	
  a	
  variety	
  of	
  OpenMP	
  constructs.	
  This	
  
evaluation	
   made	
   use	
   of	
   the	
   EPCC	
   syncbench	
   [12]	
   and	
   taskbench	
   [13]	
  
microbenchmarks.	
   As	
   can	
   be	
   seen	
   the	
   results	
   were	
  mixed,	
   where	
   hpxMP	
   yielded	
  
improvements	
   in	
   9	
   tests,	
   resulted	
   in	
   performance	
  degradation	
   in	
   9	
   tests,	
   and	
  had	
  
virtually	
  the	
  same	
  performance	
  in	
  1	
  test.	
  	
  
	
  
	
  

	
  
Figure	
  4:	
  Preliminary	
  performance	
  results	
  for	
  Paricle-­‐In-­‐Cell	
  (PIC)	
  application	
  from	
  LBNL	
  

	
  



6	
  

3.3	
  OMPTX	
  
Our	
   initial	
   approach	
   to	
   supporting	
   OpenMP	
   codes	
   on	
   exascale	
   platforms	
   via	
   HPX	
  
aimed	
   to	
   maximize	
   transparency	
   for	
   the	
   application	
   developer	
   by	
   avoiding	
   any	
  
change	
   to	
   the	
   source	
   code	
   or	
   to	
   the	
   compiler.	
   	
   However,	
   the	
   hpxMP	
   runtime,	
   as	
  
described	
  above,	
   is	
  custom	
  software	
  that	
  can	
  only	
  be	
  used	
  in	
  conjunction	
  with	
  the	
  
OpenUH	
   OpenMP	
   compiler.	
   	
   This	
   reduces	
   the	
   opportunities	
   for	
   experimentation	
  
with	
   OpenMP	
   over	
   HPX	
   on	
   platforms	
   where	
   OpenUH	
   is	
   not	
   installed.	
   Moreover,	
  
OpenUH	
  does	
  not	
  support	
  certain	
  recent	
  C++	
  and	
  Fortran	
  language	
  features.	
  	
  In	
  the	
  
meantime,	
   Intel	
   has	
   open-­‐sourced	
   their	
   OpenMP	
   runtime,	
   which	
   was	
   originally	
  
derived	
  from	
  the	
  KAI	
  runtime	
  and	
  is	
  of	
  high	
  quality.	
  	
  This	
  runtime	
  library	
  has	
  since	
  
been	
   adopted	
   in	
   a	
   number	
   of	
   existing	
   compilers,	
   including	
   compilers	
   from	
   GNU,	
  
PathScale,	
  and	
  Clang,	
  and	
  support	
  within	
  OpenUH	
  is	
  underway.	
  	
  
	
  
To	
   overcome	
   this,	
   and	
   to	
   enable	
   a	
   broad	
   array	
   of	
   opportunities	
   for	
   evaluation,	
   in	
  
year	
   3	
   of	
   the	
   project	
   we	
   developed	
   OMPTX,	
   an	
   OpenMP	
   runtime	
   based	
   on	
   HPX	
  
which	
   shares	
   the	
   same	
   ABI	
   as	
   the	
   newly	
   open-­‐sourced	
   Intel	
   OpenMP	
   runtime	
  
library.	
   The	
   ability	
   to	
   use	
  OMPTX	
   as	
   a	
   drop-­‐in	
   replacement	
   for	
   the	
   Intel	
   OpenMP	
  
runtime	
  significantly	
  enhances	
  the	
  opportunities	
  for	
  experimentation	
  using	
  not	
  only	
  
benchmarks,	
  but	
  full	
  applications.	
  
	
  

	
  
Figure	
  5:	
  HPX-­‐integrated	
  OpenMP	
  software	
  stack	
  for	
  compilers	
  compatible	
  with	
  Intel	
  OpenMP	
  runtime	
  

	
  
For	
   OMPTX	
  we	
   have	
   developed	
   an	
   alternate	
   implementation	
   strategy	
   focused	
   on	
  
achieving	
  full	
  conformance.	
   	
  The	
  HPX	
  thread	
  API	
  is	
  used	
  to	
  place	
  the	
  implicit	
  tasks	
  
on	
  each	
  thread,	
  and	
  a	
  static	
  scheduler	
  is	
  used	
  to	
  keep	
  those	
  tasks	
  in	
  place.	
  Through	
  
the	
  use	
  of	
  the	
  executors	
  [11]	
  feature	
  available	
  in	
  HPX-­‐3,	
  tasks	
  are	
  executed	
  using	
  a	
  
work	
  stealing	
  scheduler,	
  providing	
  a	
  view	
  of	
  thread	
  local	
  storage	
  that	
  is	
  consistent	
  
with	
  the	
  HPX	
  thread	
  worker	
  ID	
  used	
  in	
  the	
  parallel	
  region	
  tasks.	
  The	
  key	
  difference	
  
is	
  that	
  tasks	
  would	
  behave	
  as	
  the	
  programmer	
  expects,	
  with	
  no	
  more	
  than	
  one	
  task	
  
executing	
  on	
  a	
  thread	
  simultaneously,	
  and	
  providing	
  a	
  view	
  of	
  thread	
  local	
  storage	
  
from	
  tasks	
  that	
  is	
  consistent	
  with	
  the	
  view	
  from	
  its	
  executing	
  thread.	
  
	
  



7	
  

We	
   have	
   also	
   explored	
   how	
   features	
   that	
  were	
   introduced	
   to	
  OpenMP	
  during	
   the	
  
timeframe	
  of	
   this	
  project,	
   in	
   version	
  4.0,	
   including	
   task	
  dependencies,	
   support	
   for	
  
offloading	
   work	
   and	
   data	
   to	
   accelerators,	
   and	
   thread	
   affinity,	
   may	
   be	
   supported	
  
using	
  the	
  HPX	
  runtime.	
  We	
  have	
  utilized	
  the	
  data-­‐flow	
  facilities	
  provided	
  by	
  HPX	
  to	
  
implement	
   the	
  new	
  depends	
   clause	
   for	
   specifying	
  dependencies	
  between	
  OpenMP	
  
tasks	
   in	
  OMPTX.	
  This	
   feature	
  extends	
   the	
  ability	
  of	
  OpenMP	
  to	
  express	
   task-­‐based	
  
computations	
   and	
   its	
   provision	
   in	
   the	
   XPRESS	
   framework	
   will	
   enable	
   early	
  
experimentation	
  with	
  OpenMP	
   support	
   for	
   this	
   programming	
   style.	
   It	
   should	
   also	
  
result	
  in	
  better	
  performance,	
  as	
  it	
  enables	
  OpenMP	
  codes	
  to	
  directly	
  exploit	
  more	
  of	
  
the	
  functionality	
  provided	
  by	
  HPX.	
  	
  
	
  
The	
   constructs	
   in	
   OpenMP	
  map	
   to	
   HPX	
  with	
   varying	
   degrees	
   of	
   difficulty.	
   	
  When	
  
forking	
   threads	
   for	
   a	
   parallel	
   region,	
   pinning	
   each	
   implicit	
   task	
   to	
   an	
   OS	
   thread	
  
becomes	
  difficult,	
  and	
  requires	
  the	
  use	
  of	
  the	
  HPX	
  threading	
  API,	
  a	
  static	
  scheduler,	
  
and	
   the	
   use	
   of	
   executors	
   with	
   workstealing	
   schedulers	
   for	
   explicit	
   tasks.	
   As	
  
mentioned	
  in	
  Section	
  3.2,	
  while	
  untied	
  tasks	
  map	
  to	
  HPX	
  threads	
  directly,	
  some	
  of	
  	
  
the	
  scheduling	
  restrictions	
   imposed	
  on	
  tied	
   tasks	
  within	
   the	
  OpenMP	
  specification	
  
require	
  modification	
   to	
   the	
   internals	
   of	
   the	
  HPX	
   runtime.	
   	
   OpenMP	
   (as	
   of	
   version	
  
4.0)	
  uses	
  the	
  names	
  of	
  variables	
  to	
  specify	
  data	
  dependencies	
  between	
  tasks,	
  which	
  
requires	
  that	
  the	
  runtime	
  store	
  a	
  mapping	
  of	
  these	
  variables	
  to	
  tasks.	
  However,	
  	
  HPX	
  
uses	
  a	
  future-­‐based	
  mechanism	
  to	
  specify	
  dependencies	
  between	
  task	
  (or	
  HPX	
  user-­‐
level	
  threads).	
  Hence,	
   in	
  OMPTX	
  we	
  maintain	
  a	
  mapping	
  of	
  variables	
  to	
  futures	
  for	
  
handling	
   task	
   dependencies.	
   The	
   taskgroup	
   construct	
   maps	
   closely	
   with	
   the	
  
executors	
  feature	
  provided	
  in	
  HPX-­‐3,	
  making	
  their	
  integration	
  within	
  the	
  executor-­‐
based	
   framework	
   used	
   for	
   implementing	
   tasks	
   seamless.	
   	
   Finally,	
   the	
   sparse	
  
documentation	
  for	
  certain	
  constructs	
  in	
  the	
  Intel	
  runtime	
  make	
  it	
  difficult	
  to	
  manage	
  
subtle	
   differences	
   in	
   behavior	
   between	
   the	
   Pthreads-­‐based	
   OpenMP	
   runtime	
   and	
  
the	
   OMPTX	
   runtime.	
   Specifically,	
   this	
   pertains	
   to	
   the	
   correct	
   and	
   consistent	
  
management	
   of	
   threadprivate	
   data,	
   as	
   well	
   as	
   variables	
   that	
   are	
   private	
   or	
  
firstprivate	
  in	
  parallel	
  regions.	
  
	
  

3.4	
  MPI	
  and	
  HPX	
  
As	
   with	
   OpenMP,	
   our	
   approach	
   to	
   enabling	
   MPI	
   applications	
   to	
   run	
   in	
   an	
   HPX	
  
environment	
   also	
   aimed	
   to	
   provide	
   a	
   translation	
   that	
   is	
   transparent	
   for	
   the	
  
application	
   developer.	
  We	
   have	
   also	
  made	
   significant	
   progress	
   in	
   our	
   support	
   for	
  
MPI	
   legacy	
  codes,	
  by	
  utilizing	
  HPX	
  as	
   the	
  runtime	
   library	
   for	
  Open	
  MPI	
  [5],	
  one	
  of	
  
the	
  major	
  and	
  widely	
  deployed	
  implementations	
  of	
  MPI.	
  At	
  this	
  point,	
  Open	
  MPI	
  is	
  
able	
   to	
  use	
   the	
  HPX	
  runtime	
  environment	
   for	
  startup	
  and	
  communication	
   through	
  
the	
  TCP/IP	
  transport	
  module,	
  although	
  some	
  details	
  with	
  respect	
  to	
  the	
  integration	
  
of	
  memory	
  allocators	
  and	
  the	
  internal	
  utilization	
  of	
  threads	
  in	
  Open	
  MPI	
  remain	
  to	
  
be	
  addressed	
  as	
  future	
  work.	
  	
  
	
  
As	
  part	
  of	
  the	
  research	
  	
  performed	
  in	
  the	
  project,	
  a	
  runtime	
  component	
  of	
  Open	
  MPI	
  
has	
   been	
   successfully	
   developed	
   and	
   deployed	
   that	
   is	
   based	
   on	
   HPX-­‐3,	
   which	
  



8	
  

removes	
  the	
  necessity	
  for	
  using	
  the	
  current	
  runtime	
  component	
  (orte)	
  of	
  Open	
  MPI.	
  
The	
  key	
  technical	
  contribution	
  is	
  a	
  database	
  (db)	
  component	
  based	
  on	
  HPX,	
  which	
  
allows	
   the	
   fetching	
   of	
   key-­‐value	
   pairs	
   from	
   remote	
   memory	
   locations	
   by	
   each	
  
individual	
   process.	
   	
   An	
   application	
   using	
   the	
   HPX-­‐RTE	
   component	
   represents	
  
simultaneously	
   an	
   MPI	
   as	
   well	
   as	
   an	
   HPX	
   application,	
   allowing	
   for	
   a	
   gradual	
  
transition	
  from	
  MPI	
  constructs	
  to	
  ParalleX	
  [7].	
  
	
  
The	
   HPX-­‐RTE	
   component	
   has	
   been	
   successfully	
   deployed	
   on	
   InfiniBand	
   and	
  
TCP/Ethernet	
   clusters	
   in	
   smaller	
   configurations	
   (up	
   to	
   16	
   processes)	
   for	
   various	
  
benchmarks,	
  including	
  a	
  CFD	
  kernel	
  and	
  an	
  image	
  processing	
  kernel.	
  The	
  HPX-­‐RTE	
  
runtime	
   shows	
   some	
   performance	
   improvements	
   compared	
   to	
   the	
   original	
   ORTE	
  
component,	
   although	
   a	
   comparison	
   to	
   the	
   direct-­‐launch	
  mechanism	
   of	
   Open	
   MPI	
  
(which	
  has	
  lower	
  startup	
  costs)	
  is	
  still	
  to	
  be	
  done.	
  

3.5	
  Benchmarks	
  and	
  Evaluation	
  
We	
  have	
  installed	
  OMPTX	
  on	
  NERSC’s	
  Edison	
  and	
  LSU’s	
  Hermione	
  cluster	
  for	
  the	
  
purpose	
   of	
   evaluating	
   its	
   performance.	
   In	
   Figure	
   6,	
   we	
   show	
   the	
   potential	
  
performance	
   gains	
   when	
   using	
   task	
   dependencies.	
   We	
   used	
   the	
   EPCC	
   OpenMP	
  
microbenchmarks	
   to	
   measure	
   the	
   overhead	
   of	
   individual	
   OpenMP	
   constructs	
  
implemented	
  via	
  a	
  translation	
  to	
  the	
  OMPTX	
  runtime	
  system,	
  as	
  shown	
  in	
  Figure	
  7.	
  
We	
   experimented	
  with	
  OpenMP	
  versions	
   of	
   both	
   of	
   the	
  mini-­‐apps	
   that	
   have	
   been	
  
ported	
   to	
   HPX,	
   miniGhost	
   [8]	
   and	
   HPCG	
   [9].	
   Of	
   particular	
   interest	
   was	
   the	
  
performance	
   of	
   OpenMP’s	
   tasking	
   constructs	
   when	
   executing	
   over	
   HPX,	
   and	
   we	
  
evaluated	
  this	
  using	
  the	
  Barcelona	
  OpenMP	
  Tasks	
  Suite	
  (BOTS)	
  [10].	
  

	
  Figure	
  6:	
  Performance	
  for	
  LU	
  decomposition	
  benchmark	
  



9	
  

	
  
Figure	
  7:	
  Performance	
  for	
  EPCC	
  microbenchmarks	
  

3.6	
  Other	
  Activities	
  
UH	
   has	
   been	
   actively	
   involved	
   in	
   the	
   OpenMP	
   and	
   OpenACC	
   [3]	
   standardization	
  
organizations.	
   PI	
   Chapman	
   and	
   her	
   team	
   have	
   participated	
   in	
   several	
   OpenMP	
  
language	
   subcommittees	
   and	
   also	
   took	
   part	
   in	
   the	
   design,	
   implementation	
   and	
  
evaluation	
   of	
   the	
  OpenACC	
  programming	
   interface.	
  Dr.	
   Yonghong	
  Yan,	
   a	
   Research	
  
Assistant	
  Professor	
  supported	
  by	
  this	
  project,	
  has	
  extensively	
  engaged	
  in	
  the	
  work	
  
of	
   the	
   OpenMP	
   Architecture	
   Review	
   Board	
   (ARB)	
   and	
   chairs	
   its	
   Interoperability	
  
Language	
  Subcommittee.	
  Co-­‐PI	
  Edgar	
  Gabriel	
   is	
   the	
   lead	
  of	
   the	
  UH	
  OpenMPI	
  team;	
  
he	
   has	
   been	
   working	
   extensively	
   with	
   other	
   OpenMPI	
   members	
   to	
   support	
   the	
  
standardization	
   of	
  MPI	
   features	
   and	
   their	
   implementation	
   in	
  Open	
  MPI.	
   Via	
   these	
  
interactions,	
  the	
  results	
  of	
  this	
  project	
  have	
  been	
  available	
  to	
  a	
  broader	
  community	
  
of	
   implementers	
   of	
   these	
   de	
   facto	
   standards.	
   The	
   continued	
   engagement	
  with	
   the	
  
standards	
   communities	
   is	
   helping	
   us	
   to	
   disseminate	
   information	
   and	
   gather	
  
feedback	
   on	
   the	
   XPRESS	
   software	
   stack	
   and	
   ParalleX	
   execution	
  model.	
  Moreover,	
  
potential	
  enhancements	
   to	
  OpenMP	
  that	
  would	
  enable	
  OpenMP	
  programs	
  to	
  more	
  
fully	
   benefit	
   from	
   HPX	
   are	
   the	
   basis	
   of	
   a	
   new	
   proposal	
   to	
   the	
   OpenMP	
   language	
  
committee.	
  	
  

4	
  Software	
  Products	
  

4.1	
  HPX-­‐RTE	
  
Gabriel’s	
   team	
   is	
   a	
   long-­‐time	
   contributor	
   to	
   the	
   Open	
   MPI	
   software	
   project.	
   For	
  
XPRESS,	
   they	
   have	
   added	
   support	
   for	
   HPX-­‐RTE,	
   an	
   HPX-­‐based	
   runtime	
   layer	
   for	
  
Open	
   MPI.	
   It	
   uses	
   the	
   HPX	
   runtime	
   environment	
   for	
   startup	
   and	
   communication	
  
through	
   either	
   the	
   TCP/IP	
   or	
   InfiniBand	
   network	
   transport	
  module.	
   Open	
  MPI	
   is	
  
also	
  able	
  to	
  use	
  the	
  native	
  SLURM	
  startup	
  through	
  HPX.	
  



10	
  

4.2	
  OMPTX	
  
Within	
   this	
   project,	
   Chapman's	
   research	
   team	
   has	
   developed	
  OMPTX,	
   an	
  OpenMP	
  
runtime	
  based	
  on	
  HPX	
  which	
  shares	
  the	
  same	
  ABI	
  as	
  the	
  newly	
  open-­‐sourced	
  Intel	
  
OpenMP	
  runtime.	
  This	
  runtime	
  	
  has	
  been	
  adopted	
  in	
  existing	
  compilers	
  from	
  Intel,	
  
GNU,	
   PathScale,	
   and	
   Clang	
   [5],	
   and	
   support	
   within	
   OpenUH	
   [4]	
   is	
   underway.	
   The	
  
ability	
   to	
   use	
   OMPTX	
   as	
   a	
   drop-­‐in	
   replacement	
   for	
   the	
   Intel	
   OpenMP	
   runtime	
  
facilitates	
   experimentation	
   in	
   running	
   OpenMP	
   programs	
   with	
   HPX.	
   The	
   Intel	
  
OpenMP	
   Runtime	
   interface	
   and	
   a	
   number	
   of	
   the	
   compilers	
   which	
   use	
   it	
   support	
  
OpenMP	
   4.0,	
   allowing	
   us	
   to	
   experiment	
   with	
   implementation	
   of	
   recent	
   OpenMP	
  
features	
  within	
  the	
  proposed	
  software	
  infrastructure.	
  
 	
  

4.3 Technologies or Techniques	
  
4.3.1 OpenACC	
  
The	
   University	
   of	
   Houston	
   team	
   has	
   participated	
   in	
   the	
   on-­‐going	
   specification	
   of	
  
directive	
  features	
  for	
  high-­‐level,	
  portable	
  development	
  of	
  accelerator	
  code	
  and	
  has	
  
developed	
  an	
  OpenACC	
  compiler	
   implementation	
  within	
  OpenUH	
  as	
  well	
   as	
   a	
   test	
  
suite.	
  The	
  former	
  was	
   initially	
  designed	
  to	
  target	
  Nvidia	
  GPGPU	
  platforms	
  that	
  are	
  
the	
  most-­‐configured	
  accelerator	
   in	
   current	
   large-­‐scale	
  platforms.	
  Recent	
  work	
  has	
  
extended	
  the	
  implementation	
  to	
  also	
  target	
  AMD’s	
  APU	
  devices.	
  The	
  implementation	
  
enables	
   experimentation	
  with	
   the	
   translation	
  of	
   additional	
  directive	
   features.	
  This	
  
work	
   is	
   moreover	
   in	
   the	
   early	
   stages	
   of	
   being	
   adapted	
   to	
   the	
   syntax	
   adopted	
   by	
  
OpenMP	
   for	
   accelerators	
   in	
   order	
   to	
   enable	
   implementation	
   of	
   the	
   features	
  
contained	
  in	
  OpenMP	
  version	
  4.5.	
  Our	
  implementation	
  supports	
  most	
  of	
  the	
  features	
  
described	
   in	
  OpenACC	
  2.0	
   for	
  C/C++	
  and	
  Fortran.	
  We	
  evaluated	
  various	
  strategies	
  
for	
  mapping	
  parallelizable	
  loops	
  to	
  gang-­‐,	
  worker-­‐,	
  and	
  vector-­‐level	
  parallelism,	
  for	
  
implementing	
   reductions,	
   and	
   for	
   reducing	
   synchronization	
   costs	
   in	
   the	
   GPU	
  
through	
   redundant	
   execution.	
   We	
   have	
   also	
   developed	
   several	
   OpenACC	
  
benchmarks	
   to	
   evaluate	
   our	
   implementation	
   as	
   well	
   as	
   other	
   OpenACC	
  
implementations.	
  

5	
  Conclusion	
  
In	
   this	
   report	
   we	
   have	
   described	
   our	
   approach	
   and	
   implementation	
   of	
   legacy	
  
applications	
  on	
  HPX.	
  Support	
  for	
  MPI	
  has	
  been	
  provided	
  through	
  HPX-­‐RTE	
  enabling	
  
side	
   by	
   side	
   HPX	
   and	
   MPI	
   communication.	
   OpenMP	
   support	
   has	
   been	
   provided	
  
through	
   the	
   OMPTX	
   implementation	
   of	
   the	
   Intel	
   OpenMP	
   runtime,	
   effectively	
  
mapping	
  OpenMP	
  tasks	
  to	
  HPX	
  threads	
  .	
  
	
  
The	
   mapping	
   of	
   fork-­‐join	
   and	
   work	
   sharing	
   clauses	
   is	
   straightforward,	
   and	
   in	
   a	
  
runtime	
  approach,	
  there	
  is	
  little	
  to	
  be	
  done	
  with	
  respect	
  to	
  optimization.	
  However,	
  



11	
  

the	
  OpenMP	
   and	
  HPX	
   task	
  APIs	
   are	
   subtly	
   different,	
   and	
   these	
   differences	
   have	
   a	
  
strong	
  influence	
  on	
  certain	
  aspects	
  of	
  the	
  runtime	
  implementation.	
  
	
  
OpenMP	
   constructs	
   are	
   inherently	
   bound	
   to	
   the	
   nested	
   scopes	
   that	
   OpenMP	
  
supports	
   and	
  uses.	
   In	
   the	
   implementation,	
   it	
   fits	
   very	
   closely	
  with	
   calling	
   the	
   task	
  
functions	
   on	
   the	
   same	
   stack	
   frame	
   for	
   each	
   thread.	
   Tied	
   tasks	
   go	
   even	
   further	
   to	
  
make	
   task	
   execution	
   more	
   closely	
   resemble	
   the	
   functions	
   called	
   in	
   a	
   serial	
  
application.	
  	
  Similarly,	
  the	
  relationship	
  between	
  OpenMP	
  task	
  dependencies,	
  and	
  the	
  
tasks	
  they	
  constrain,	
  maps	
  directly	
  to	
  a	
  hash	
  table.	
  	
  
	
  
HPX	
  does	
  not	
  align	
  to	
  the	
  same	
  shared	
  stack	
  frame	
  usage	
  as	
  OpenMP	
  and	
  requires	
  
dynamic	
   stack	
   frames	
  due	
   to	
   the	
  of	
   the	
   flexibility	
  of	
   the	
  dependencies	
   that	
   can	
  be	
  
specified	
   using	
   futures.	
   This	
   dynamic	
   allocation	
   of	
   stack	
   frames	
   has	
   an	
   overhead	
  
when	
   creating	
   HPX	
   threads	
   that	
   is	
   unavoidable	
   in	
   the	
   implementation.	
   The	
  
application	
  needs	
  to	
  avoid	
  the	
  overhead	
  by	
  simply	
  not	
  suspending	
  large	
  numbers	
  of	
  
tasks	
  using	
  synchronization	
  like	
  locks	
  and	
  waits,	
  which	
  is	
  very	
  common	
  in	
  OpenMP.	
  	
  
	
  
In	
  order	
  to	
  realize	
  the	
  performance	
  potential	
  of	
  the	
  HPX	
  runtime,	
  applications	
  need	
  
to	
   be	
   written	
   to	
   exploit	
   task	
   dependencies.	
   The	
   algorithmic	
   shift	
   to	
   task	
  
dependencies	
  is	
  by	
  far	
  the	
  largest	
  hurdle	
  with	
  the	
  largest	
  benefit,	
  given	
  the	
  scope	
  of	
  
shared	
  memory	
  applications.	
  The	
  performance	
  benefits	
   of	
  HPX	
  over	
  OpenMP	
   task	
  
dependencies	
   was	
   not	
   observed	
   for	
   small	
   problems;	
   larger	
   applications	
   that	
   can	
  
take	
   advantage	
   of	
   the	
   more	
   robust	
   interface	
   that	
   HPX	
   provides	
   are	
   needed	
   to	
  
demonstrate	
  the	
  potential	
  performance	
  benefits.	
  	
  The	
  recent	
  availability	
  of	
  HPX-­‐RTE	
  
facilitates	
  running	
  large	
  legacy	
  applications	
  on	
  HPX	
  through	
  our	
  support	
  layers.	
  

6	
  On-­‐going	
  and	
  Future	
  Work	
  
Future work that builds on top of these efforts will focus on identifying extensions for 
MPI and OpenMP based on the experiences gained during our porting activities. We will 
propose extensions to MPI in order to enable a more asynchronous, task-driven execution 
model which can benefit directly from the ParalleX execution model provided by HPX. 
For OpenMP, we will explore new means to enhance the expression of computations for 
data-flow execution that go beyond the additions in OpenMP 4.0 and 4.5. For example, 
our experiences with HPX-3 show how parallelization of some recursive algorithms can 
benefit from tasks returning futures and from operations for waiting on the completion of 
specified futures. Providing a means to express this in OpenMP might ease the burden of 
transitioning large legacy applications written using OpenMP to a programming interface 
such as XPI.	
  
	
  
We	
   are	
   studying	
   the	
   interactions	
   between	
   legacy	
   applications	
   and	
   the	
   proposed	
  
software	
   stack	
   and	
   how	
   to	
   facilitate	
   the	
   migration	
   of	
   codes	
   using	
   existing	
  
programming	
  models	
  to	
  an	
  XPI-­‐like	
  programming	
  interface.	
  This	
  entails:	
  exploring	
  
how	
   legacy	
   codes	
   can	
   benefit	
   from	
   the	
   introspection	
   capabilities	
   provided	
  within	
  
the	
   project’s	
   software	
   stack,	
   developing	
   translation	
   strategies	
   for	
   recently	
  



12	
  

introduced	
   and	
   anticipated	
   OpenMP	
   constructs,	
   and	
   dealing	
   with	
   interoperability	
  
challenges	
  that	
  arise	
  when	
  application	
  codes	
  are	
  developed	
  that	
  use	
  a	
  mixture	
  of	
  old	
  
and	
   new	
   programming	
   interfaces.	
   A	
   key	
   output	
   of	
   this	
   investigation	
   would	
   be	
  
proposals	
  for	
  extensions	
  to	
  legacy	
  programming	
  interfaces	
  which	
  would	
  allow	
  them	
  
to	
   more	
   fully	
   leverage	
   the	
   capabilities	
   of	
   future	
   exascale	
   system	
   software.	
  
Additionally,	
   we	
   are	
   working	
   on	
   identifying	
   additional	
   features	
   that	
   would	
   be	
  
needed	
   in	
   HPX	
   to	
   support	
   the	
   requirements	
   of	
   existing,	
   legacy	
   programming	
  
interfaces.	
  
	
  
We	
  will	
  evaluate	
  the	
  efficacy	
  of	
  such	
  approaches	
  compared	
  to	
  our	
  current	
  strategy	
  
of	
  retaining	
  the	
  same	
  compiled	
  code	
  but	
  replacing	
  a	
  standard	
  OpenMP	
  runtime	
  by	
  
OMPTX.	
  We	
  will	
  also	
  formulate	
  a	
  porting	
  strategy	
  for	
  incrementally	
  migrating	
  legacy	
  
applications	
  to	
  a	
  restructured	
  code	
  base	
  using	
  newer	
  interfaces	
  (e.g.	
  XPI	
  or	
  HPX-­‐3)	
  
which	
  can	
  directly	
  map	
  to	
  the	
  ParalleX	
  execution	
  model.	
  Future	
  work	
  will	
  require	
  a	
  
collaboration	
  with	
  application	
  partners	
  in	
  the	
  XPRESS	
  project	
  to	
  select	
  applications	
  
to	
   demonstrate	
   this	
   approach.	
   We	
   intend	
   to	
   document	
   our	
   porting	
   efforts	
   for	
   a	
  
range	
   of	
   existing	
   legacy	
   codes,	
   to	
   serve	
   as	
   examples	
   for	
   how	
   codes	
   may	
   be	
  
transitioned	
  to	
  the	
  new	
  software	
  stack.	
  During	
  the	
  course	
  of	
  this	
  work,	
  we	
  will	
  also	
  
identify	
   potential	
   interoperability	
   issues,	
   such	
   as	
   resource	
   contention	
   among	
  
different	
  runtime	
  components,	
  that	
  may	
  arise	
  when	
  mixing	
  MPI	
  and	
  OpenMP	
  codes	
  
with	
  newer	
  interfaces.	
  

7	
  Publications	
  
1. Priyanka	
  Ghosh,	
  Yonghong	
  Yan,	
  and	
  Barbara	
  Chapman.	
  Support	
  For	
  

Dependency	
  Driven	
  Executions	
  Among	
  OpenMP	
  Tasks.	
  In	
  2nd	
  Workshop	
  on	
  
Data-­‐Flow	
  Execution	
  Models	
  for	
  Extreme	
  Scale	
  Computing	
  (DFM	
  2012)	
  in	
  
conjunction	
  with	
  PACT	
  2012.	
  

2. Priyanka	
  Ghosh,	
  Yonghong	
  Yan,	
  Deepak	
  Eachempati,	
  and	
  Barbara	
  Chapman.	
  
"A	
  Prototype	
  Implementation	
  of	
  OpenMP	
  Task	
  Dependency	
  Support."	
  In	
  
OpenMP	
  in	
  the	
  Era	
  of	
  Low	
  Power	
  Devices	
  and	
  Accelerators,	
  pp.	
  128-­‐140.	
  
Springer	
  Berlin	
  Heidelberg,	
  2013.	
  	
  	
  

3. Liao,	
  Chunhua,	
  Yonghong	
  Yan,	
  Bronis	
  R.	
  de	
  Supinski,	
  Daniel	
  J.	
  Quinlan,	
  and	
  
Barbara	
  Chapman.	
  "Early	
  experiences	
  with	
  the	
  OpenMP	
  accelerator	
  model."	
  
In	
  OpenMP	
  in	
  the	
  Era	
  of	
  Low	
  Power	
  Devices	
  and	
  Accelerators,	
  pp.	
  84-­‐98.	
  
Springer	
  Berlin	
  Heidelberg,	
  2013.	
  

4. Xiaonan	
  Tian,	
  Rengan	
  Xu,	
  Yonghong	
  Yan,	
  Zhifeng	
  Yun,	
  Sunita	
  
Chandrasekaran,	
  and	
  Barbara	
  Chapman,	
  Compiling	
  a	
  High-­‐level	
  Directive-­‐
Based	
  Programming	
  Model	
  for	
  GPGPUs	
  26th	
  International	
  Workshop	
  on	
  
Languages	
  and	
  Compilers	
  for	
  Parallel	
  Computing	
  (LCPC2013),	
  San	
  
September	
  2013.	
  

5. Munara	
  Tolubaeva,	
  Yonghong	
  Yan,	
  and	
  Barbara	
  Chapman,	
  Compile	
  Time	
  
Modeling	
  of	
  Off-­‐Chip	
  Memory	
  Bandwidth	
  for	
  Parallel	
  Loops	
  26th	
  
International	
  Workshop	
  on	
  Languages	
  and	
  Compilers	
  for	
  Parallel	
  Computing	
  
(LCPC2013),	
  September	
  2013.	
  



13	
  

6. Qawasmeh,	
  Ahmad,	
  Abid	
  M.	
  Malik,	
  and	
  Barbara	
  M.	
  Chapman.	
  "OpenMP	
  Task	
  
Scheduling	
  Analysis	
  via	
  OpenMP	
  Runtime	
  API	
  and	
  Tool	
  Visualization."	
  In	
  
Parallel	
  &	
  Distributed	
  Processing	
  Symposium	
  Workshops	
  (IPDPSW),	
  2014	
  
IEEE	
  International,	
  pp.	
  1049-­‐1058.	
  IEEE,	
  2014.	
  

7. Rengan	
  Xu,	
  Maxime	
  Hugues,	
  Henri	
  Calandra,	
  Sunita	
  Chandrasekaran,	
  and	
  
Barbara	
  Chapman.	
  "Accelerating	
  Kirchhoff	
  migration	
  on	
  GPU	
  using	
  
directives."	
  In	
  Proceedings	
  of	
  the	
  First	
  Workshop	
  on	
  Accelerator	
  
Programming	
  using	
  Directives,	
  pp.	
  37-­‐46.	
  IEEE	
  Press,	
  2014.	
  

8. Anilkumar	
  Nandamuri,	
  Abid	
  M.	
  Malik,	
  Ahmad	
  Qawasmeh,	
  and	
  Barbara	
  M.	
  
Chapman.	
  2014.	
  Power	
  and	
  energy	
  footprint	
  of	
  openMP	
  programs	
  using	
  
OpenMP	
  runtime	
  API.	
  In	
  Proceedings	
  of	
  the	
  2nd	
  International	
  Workshop	
  on	
  
Energy	
  Efficient	
  Supercomputing	
  (E2SC	
  '14).	
  IEEE	
  Press,	
  Piscataway,	
  NJ,	
  USA,	
  
79-­‐88.	
  	
  

9. Rengan	
  Xu,	
  Xiaonan	
  Tian,	
  Yonghong	
  Yan,	
  Sunita	
  Chandrasekaran,	
  and	
  
Barbara	
  Chapman,	
  Reduction	
  Operations	
  in	
  Parallel	
  Loops	
  for	
  GPGPUs,	
  2014	
  
International	
  Workshop	
  on	
  Programming	
  Models	
  and	
  Applications	
  for	
  
Multicores	
  and	
  Manycores	
  (PMAM	
  2014),	
  February,	
  2014,	
  Orlando,	
  Florida,	
  
USA.	
  

10. Munara	
  Tolubaeva,	
  Yonghong	
  Yan	
  and	
  Barbara	
  Chapman.	
  Predicting	
  Cache	
  
Contention	
  for	
  Multithread	
  Applications	
  at	
  Compile	
  Time,	
  16th	
  Workshop	
  on	
  
Advances	
  in	
  Parallel	
  and	
  Distributed	
  Computational	
  Models,	
  in	
  conjunction	
  
with	
  IPDPS	
  2014,	
  May	
  2014.	
  

	
  

8	
  References	
  
[1] Gropp,	
   William,	
   Ewing	
   Lusk,	
   and	
   Anthony	
   Skjellum.	
   Using	
   MPI:	
   portable	
  

parallel	
   programming	
  with	
   the	
  message-­‐passing	
   interface.	
   Vol.	
   1.	
  MIT	
  press,	
  
1999.	
  

[2] Chapman,	
   Barbara,	
   Gabriele	
   Jost,	
   and	
   Ruud	
   Van	
   Der	
   Pas.	
   Using	
   OpenMP:	
  
portable	
  shared	
  memory	
  parallel	
  programming.	
  Vol.	
  10.	
  MIT	
  press,	
  2008.	
  

[3] Hart,	
   Alistair.	
   "The	
   OpenACC	
   programming	
  model."	
  Cray	
   Exascale	
   Research	
  
Initiative	
  Europe,	
  Tech.	
  Rep	
  (2012).	
  

[4] Chapman,	
  Barbara,	
  Deepak	
  Eachempati,	
  and	
  Oscar	
  Hernandez.	
  "Experiences	
  
developing	
   the	
   openuh	
   compiler	
   and	
   runtime	
   infrastructure."International	
  
Journal	
  of	
  Parallel	
  Programming	
  41.6	
  (2013):	
  825-­‐854.	
  

[5] Lattner,	
  Chris.	
  "LLVM	
  and	
  Clang:	
  Next	
  generation	
  compiler	
  technology."	
  The	
  
BSD	
  Conference.	
  2008.	
  

[6] Gabriel,	
   Edgar,	
   et	
   al.	
   "Open	
   MPI:	
   Goals,	
   concept,	
   and	
   design	
   of	
   a	
   next	
  
generation	
   MPI	
   implementation."	
   Recent	
   Advances	
   in	
   Parallel	
   Virtual	
  
Machine	
   and	
   Message	
   Passing	
   Interface.	
   Springer	
   Berlin	
   Heidelberg,	
   2004.	
  
97-­‐104.	
  

[7] Kaiser,	
   Hartmut,	
   Maciej	
   Brodowicz,	
   and	
   Thomas	
   Sterling.	
   "Parallex	
   an	
  
advanced	
   parallel	
   execution	
   model	
   for	
   scaling-­‐impaired	
   applications."	
  



14	
  

Parallel	
  Processing	
  Workshops,	
  2009.	
   ICPPW'09.	
   International	
  Conference	
  on.	
  
IEEE,	
  2009.	
  

[8] Barrett,	
   Richard	
   F.,	
   Courtenay	
   T.	
   Vaughan,	
   and	
   Michael	
   A.	
   Heroux.	
  
"MiniGhost:	
   a	
   miniapp	
   for	
   exploring	
   boundary	
   exchange	
   strategies	
   using	
  
stencil	
   computations	
   in	
   scientific	
   parallel	
   computing."	
   Sandia	
   National	
  
Laboratories,	
  Tech.	
  Rep.	
  SAND	
  5294832	
  (2011).	
  

[9] Dongarra,	
   Jack,	
   and	
   Piotr	
   Luszczek.	
   "HPCG	
   technical	
   specification."	
   Sandia	
  
National	
  Laboratories,	
  Sandia	
  Report	
  SAND2013-­‐8752	
  (2013).	
  

[10] Duran,	
   Alejandro,	
   Xavier	
   Teruel,	
   Roger	
   Ferrer,	
   Xavier	
  Martorell,	
   and	
  
Eduard	
   Ayguade.	
   "Barcelona	
   openmp	
   tasks	
   suite:	
   A	
   set	
   of	
   benchmarks	
  
targeting	
   the	
   exploitation	
   of	
   task	
   parallelism	
   in	
   openmp."	
   In	
   Parallel	
  
Processing,	
   2009.	
   ICPP'09.	
   International	
   Conference	
   on,	
   pp.	
   124-­‐131.	
   IEEE,	
  
2009.	
  

[11] Hoberock,	
   Jared,	
   Michael	
   Garland,	
   and	
   Olivier	
   Girioux.	
   "Parallel	
  
Algorithms	
   Need	
   Executor	
   |	
   N4406."	
   JTC1/SC22/WG21	
   -­‐	
   The	
   C	
   Standards	
  
Committee	
   -­‐	
   ISOCPP.	
   April	
   10,	
   2015.	
   Accessed	
   November	
   25,	
   2015.	
  
http://www.open-­‐std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf.	
  

[12] Bull,	
   J.	
   Mark,	
   and	
   Darragh	
   O'Neill.	
   "A	
   microbenchmark	
   suite	
   for	
  
OpenMP	
   2.0."	
  ACM	
   SIGARCH	
   Computer	
   Architecture	
   News	
   29,	
   no.	
   5	
   (2001):	
  
41-­‐48.	
  

[13] Bull,	
   J.	
  Mark,	
   Fiona	
  Reid,	
   and	
  Nicola	
  McDonnell.	
   "A	
  microbenchmark	
  
suite	
  for	
  OpenMP	
  tasks."	
  In	
  OpenMP	
  in	
  a	
  Heterogeneous	
  World,	
  pp.	
  271-­‐274.	
  
Springer	
  Berlin	
  Heidelberg,	
  2012.	
  

[14] Yarkhan,	
   Asim,	
   Jakub	
   Kurzak,	
   and	
   Jack	
   Dongarra.	
   "QUARK	
   Users’	
  
Guide."Electrical	
   Engineering	
   and	
   Computer	
   Science,	
   Innovative	
   Computing	
  
Laboratory,	
  University	
  of	
  Tennessee	
  (2011).	
  

[15] Duran,	
  Alejandro,	
  Eduard	
  Ayguadé,	
  Rosa	
  M.	
  Badia,	
  Jesús	
  Labarta,	
  Luis	
  
Martinell,	
   Xavier	
   Martorell,	
   and	
   Judit	
   Planas.	
   "Ompss:	
   a	
   proposal	
   for	
  
programming	
   heterogeneous	
   multi-­‐core	
   architectures."	
   Parallel	
   Processing	
  
Letters	
  21,	
  no.	
  02	
  (2011):	
  173-­‐193.	
  

	
  


