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Introduction

Template generation via data mining is an analytical process in which large amounts of
data are analyzed against a known true positive data set to determine a variance to define or
differentiate them from the rest of the data. This project arose from a necessity for optimization
of a time-consuming process previously done by analysts. This particular template was being
used for searches regarding large overhead images analyzed through a Geospatial-Temporal
Semantic Graph (GTSG) format. The information for the GTSG is stored in a SQLite database;
therefore, it can be queried using structured query language (SQL). The data mining utility used
was the Waikato Environment for Knowledge Analysis (WEKA), an open source data mining
utility that allows researchers “easy access to state-of-the-art techniques in machine learning”
(Hall, Frank, Holmes, Pfahringer, Reutemann, & Witten, 2009). Through documentation
provided by WEKA, SQL.ite databases were accessible and manipulable through WEKA,
creating an opportunity to query and analyze directly from the GTSG. This project was inspired
by and built off of prior research detailed by Brost et al. (2014) and was used to expand upon
their research to increase the overall accuracy and efficiency of the template generation process,
and uses this basis as a fundamental element on which the project was designed to improve.

Procedure
e The environment consisted of the two main parts: WEKA, a data mining utility, and
GeoSearch, the program that outputted the data to be examined.
e A search used previously as detailed by Stracuzzi et al. (2015) involved finding high
schools in Anne Arundel County.

o This example served as a proof of concept for the idea that data mining was a
viable method to generate templates for searches, and that it would inherently be
more accurate and find more correlations when compared to human analysts.

o Previously, this search had been used as a test for the search function and had
been used to build quality score matches (Stracuzzi, Brost, Phillips, Robinson,
Wilson, and Woodbridge, 2015), so it had an analyst's interpretation of the
template already in place. This template had been established to the best accuracy
they could determine which showed identification accuracy capable of limiting
the 1.2 million nodes down to a discrete 67 potential results. Due to the existence
of a template already in place, this gave way for possible practical improvements.

o The data collection and template generation process can be broken down into seven
discrete steps:

o First, an established baseline of land cover types would be applied to each sub-
search in the process, in the high school search, a football field would be an
example of a sub-search, and this is classified as a grass field type.



Second, this baseline would run GeoSearch on the aforementioned data set, as
detailed by Brost et al. (2014), resulting with the StoredGraph that contained
various types of land covers and land cover data to be analyzed later — at this
point it is important to note that no criterion have been applied to any empirical
properties, simply a search by land type.
Then the user would use Quantum GIS (QGIS), software that allows the
visualization of the generated SearchGraph, to analyze and find the true positive
subsets for each true positive; meaning that for one high school, the user would
have to find all the corresponding sub-features.
With all of these noted, the user would then input that information into a few
different SQL queries, and then run the resultant data through WEKA.
= This imputed data will have variant values, but the essential goal of
WEKA is to define a variance for what can be considered a true positive
while minimizing false positives.
=  WEKA is a GUI for various data mining algorithms, including supervised
and unsupervised. This allows for the user to access powerful algorithms
easily through WEKAs built in SQLite compatibility.
Once in WEKA, the user could run the data through C4.5, and if it showed
inconclusive results, and the ratio of the true positives to false positives is
relatively small, then the user could apply a spread subsample and test again to
lessen the ratio of the data.
= C4.5 works by defining what the target variable is, in this case it would be
true positive, then builds a decision tree to classify the target variable
based on the other information provided.
They would do this for each empirical property to discover true positive
indicators.
Once all empirical data points were finished, the user would compile these into
the original GeoSearch format, and re-run to ensure the accuracy and conclude the
results.

Data mining plays a key role in search template generation for the analysis of large
overhead image sets, particularly that of ontological storage, or geospatial-temporal semantic
graph (GTSG). It provides an efficient method for determining the median of accuracy and
consistency for template generation, one of which human analysts are required to provide
substantial time and effort to create comparable results. The implementation of template
generation is mostly autonomous and fairly straightforward when compared to current
techniques. These templates are used in feature analysis of height and landform fused data, and
allow the easy construction and analysis of any desired query. This process of template



generation has useful implications in a wide variety of fields, and can transform correlations of
random data into insightful and useful information.

Hypothesis

The function of data mining in the case of overhead imagery analysis resides in the
advanced search method, and specifically the function of composing templates that can be used
on a broad scale, not just for one particular query. This relevance and advantage are due to the
potential optimization available and definite efficiency benefits that will occur as a result.

Problem

The process of overhead imagery analysis is described as being a “key technology in
commercial and national security” (Brost, McLendon, Parekh, Rintoul, Strip, & Woodbridge,
2014). They detailed a process where they begin by pre-processing large amounts of information
through a primitive ontological storage, or geospatial-temporal semantic graph (GTSG). The
information held in the GTSG shows relevant ontology through nodes and edges. These nodes
show image preprocessing data (O'Neil-Dunne et al., 2013) and reveal things like composition
and properties, as in, whether it is a field or a building. This information is
classified and stored in the GTSG. The term properties, in this scope, can be defined as empirical
data: area, height, perimeter, color, eccentricity, etc., and these properties can be queried to
obtain relevant information regarding an analyst's request. The issue resides in this request, as
the parameters are often undefined and ambiguous. This project's goal is to create an automated
system that combats that inefficiency and is an improvement upon the existing manual method.

Data

The high school search-specific data being analyzed can broke down into six key
elements: classroom building, parking lot, football field, tennis court, baseball field, and their
relativity to each other. To get a visual representation for how these elements play a role in the
determination of search results, see Figure 1. The data that each of these elements provided to
the template are called the determinant criteria and were based on the land cover region labels
that were assigned to the aforementioned image preprocessing data (O'Neil-Dunne et al., 2013);
these include buildings, trees, grass/shrub, dirt, water, road, and other paved areas (Brost et al.,
2014). These region nodes and distance edges represent the node’s type or its composition in
relativity to the proposed question. To give some quantitative information about this dataset to
provide context, the Anne Arundel County set had generated a GTSG database with over 1.2
million node elements (Brost et al., 2014), all containing empirical property information for
analysis, which correlates to a land area of just over 600 square miles.

The data was visualized and cross-referenced with Anne Arundel public school database
to determine the results true location for back checking purposes. Figure 2 gives a school
configured in a hub-spoke configuration, giving in to how the relativity factor plays into the
determination for criteria.



Figure 1. An example of outputs seen in the program Quantum GIS (QGIS), an open-source
program that gives visualizations to the results of a specific GeoSearch query (Brost et al. 2014).
This image shows a high school, middle school, and an elementary school, all side by side.
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Figure 2. This image gives a visualization of the hub-spoke relationship that these share, and
what exactly “distance edge” means. This is a high school building, showing spokes to parking
lots, tennis courts, and a baseball field.



Parking Lot
Other Paved
800 m< s As 15000 m

Football Field

Grass/Sheub
JE\ 700 m 5 A 5 10300 m

Om s Dwstance < 80
210 s Eccentricnty 1 2.60
430 m s Perimeter s 800 m
W0 m s Distance s 125 m 40 « Major Axas < 50
{Optional)
HUB -
" Tennis Court

Classroom . 18 m s Dsstarnce s 80 m Other Paved

Building . 1000 m* 5 A3 5,500 m

Budding 1.00 s Eccentricity 5 400

5000 m‘ 5 A s 35000 m/ 100 m 3 Persmeter & €00 m

300 m < Penmeter IOmMmsWidths 37 m o
03 Eccentricity 5 2.5 10m s Distance s 200 m SO m 1 Width s 65m

(Optional)

Baseball Field
Dert

N
‘ 500m‘ 1 A1250m

1.00 s Eccentricity 5 1.30
7 < Major Axis < 16

or

700m2s As 1.200m2
1.75 1 Eccentricity 5 2.50
7 < Major Axis « 16

Optional

Figure 3. In this image, the final criteria of the template are shown. This gives a visual
representation to the limits imposed by the generated criteria, and how specific the correlations
can be made to be.

Important note: In this image, the values are rounded for the sake of presentation, and for the
discretion of exact values.

Results

Looking into the previous results of the template created by a human analyst, one would
see 67 potential “true positive” candidates. It is known, however, that there are only 12 true
positives, leading to an 83.08% false positive rate - not so good. Compare this to the
procedurally generated template, which resulted in 27 possible high schools. Both sets of data
retained the original 12 true positives, the points of information which generated the template,
but also constituted a 72.73% reduction in false positives. Even though there was only a
difference of 40 results, that itself is an improvement in precision of 59.70%. Due to this process,
however, an analyst would now only have to sift through two-fifths of the data that they would
have originally had to by using a machine learning based template to find possible queries. This
process assumes that if the template were applied to another instance of a GTSG, the pre-
generated template held the same ratio of true positives to false positives. An improvement of
this magnitude would mean that the criteria were tightened to ensure that it would still be able to
account for the variance within the true positive set, but also eliminating extraneous and
irrelevant data to the search, essentially providing optimization at no expense.



Conclusion

To reiterate, the goal of the template generation, was to minimize the false negative and
positive results, while at the same time, retain and discover true positives in the set. Because the
foundation for the template was built of off user-inputted true positives, the template built a
variance in the 12 data points provided and determined 15 other buildings that met the criteria.
Of the results, 13 of the 15 false positives were in some form or another, a type of (private
school, high school, middle school, or elementary schools). Of the other non-school results, they
fit very well within the bounds of the template and were just coincidental due to the structure of
building, being large, and various parking lots scattered around the main building. But re-
analyzing the ratio of
schools found, it can be seen that there are 25 schools found to the total 27 results, which is more
than coincidental. Upon further examination, and it was revealed that many schools look oddly
identical from a purely overhead, quantitative perspective.

Future Directions

Even though this system proved to be successful in accomplishing the task at hand, a
wide variety of improvements still need to be addressed. For example, a system in which certain
sub-searches could hold higher value over others, a weighting system ideally, needs to be
implemented into the process to allow the user to specify the importance of certain sub-searches
over others, and allow some sub-features to be optional.

The described process was tested on a relatively small scale, controlled environment —
small scale referring to one county as opposed to a country or even a continent. There becomes
an evident issue in solving this because the computational power required to process that amount
of data would be immense; that is not to say that this is impossible, rather a challenging feat.
However, the results on this scale prove that this method is a reasonable substitution for the
current implementation of template generation and proves to be more accurate, more consistent,
and more efficient.

Even though data mining proved to be adequate in accomplishing the task at hand, this
method of interpretation may be ineffective when compared to other machine learning methods
such as neural networks. This specific type of machine learning has proven to be more effective
in interpreting unknown data and determining a learned value from that data, in this case, the
intended search query.
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