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What is atomtronics?
Similarities to optoelectronic engineering

Examples
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What is Atomtronics?
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Why Atomtronics?

Example: Optoelectronics
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Developmental stage of Atomtronics -- early infancy
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Basic atomtronic component
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Need engineering design tool to
transition BEC from laboratory to
devices
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Semiconductor laser diode
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 Pump, extraction and relaxation
* Nonequilibrium
 Dynamical range
— collisions (fast), operation (slow)

« Large parameter space for engineering
optimization

« Long-lived coherences
* Phonons



Gain (103%cm1)

Results possibly convertible for atomtronics use
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Results possibly convertible for atomtronics use
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Gain (10%cm)

Results possibly convertible for atomtronics use
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Gain (10%cm)

Results possibly convertible for atomtronics use

Treatment of collisions
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Gain (10%cm)

Results possibly convertible for atomtronics use
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Compute carrier correlations
2"d order perturbation theory
Markov approx.
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Results possibly convertible for atomtronics use
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Results possibly convertible for atomtronics use
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Extraction of difficult to measure parameters
in quantum-dot lasers for silicon photonics

Treatment of collisions

Using T,, T,

¢e==== Compute carrier correlations
2"d order perturbation theory

Markov approx.

Now: Non-perturbative treatment
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Semiconductor systems studied and developed

Microlasers

108 VCSELSs produced/year

p-n junction —» > 2 billion in use

Mirror stack =




Semiconductor systems studied and developed

Microlasers

p-n junction —»
Mirror stack =

Without many-body effects
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Semiconductor systems studied and developed

Microlasers
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Semiconductor systems studied and developed
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Semiconductor systems studied and developed

LED lights
Microlasers Coupled-cavity PIC
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UNITE TO LIGHT
The Problem: The Solution:

1.5 billion people
rely on kerosene Over 80,000 solar
for light lights distributed



Global Impact

80,000 lights have been distributed to over
64 countries on 4 continents.




Atomtronics circuit description
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Atomtronics circuit description

System Hamiltonian H = ZIP‘ + V()| + Zv(r,, r;)
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Atomtronics circuit description

Two-site Bose Hubbard Hamiltonian

H= Ze al a,+z.€?bjbi

+z gija ]+gﬂ bTai) <— Hopping

+ z (vih al_.al, aja; + vEE b bl bib;) <— Interatomic interactions



Atomtronics circuit description

Two-site Bose Hubbard Hamiltonian

H= Ze al a,+z.€?bjbi

+z gija ]+gﬂ bTai) <— Hopping

+ z (vih al_.al, aja; + vEE b bl bib;) <— Interatomic interactions

Populations and polarizations: (a i) <b+b> (a;rbﬂ

Single Correlated Correlated 3-particle
particles pairs clusters

N © 0 (s) © €
Cluster expansion: (N) = © -
pansion: (1) = oge *



Time evolution of atomic population spatial distribution

Josephson oscillations Self trapping

Increasing time

Position Position

Increasing average atomic population



Time evolution of atomic population spatial distribution

Josephson oscillations Self trapping
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Phase locking picture of system dynamics

Average left-well population : (ala;) = nf

Average right-well population : (bib;) = n?
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Atomtronics analog?

Laser gyroscope
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Atomtronics analog?

Laser gyroscope
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Anderson, Chow, Scully & Sanders, Opt. Lett. 5413 (1980)

Elimination of dead band with 4-mode gyro.
Is the same possible with atomic sensor?



Summary: Atomtronics
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Motivation: BEC from laboratory to devices

Atomtronics versus electronics:

« Commutator versus anticommutators — BEC versus exclusion principle
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Atomtronics versus electronics:

« Commutator versus anticommutators — BEC versus exclusion principle



Future atomtronics and optoelectronics

Tunnel-injection laser

Atom transistor

Wetting layer

Extended region

(source) QD (gate)

Source

Optical ca\'/ity (drain)

PQE talks: Gadi Eisenstadt & Hans-Peter Reithmaier
Record high modulation speeds



Future atomtronics and optoelectronics
Tunnel-injection laser

Atom transistor

_ Wetting layer
Extended region

(source) QD (gate)

Source ' . r .
Optical cavity (drain)
PQE talks: Gadi Eisenstadt & Hans-Peter Reithmaier
Record high modulation speeds
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