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• Cold atoms doing jobs of charge carriers 

and photons 

• 𝝀𝒅𝒆𝑩𝒓𝒐𝒈𝒍𝒊𝒆
𝑨𝒕𝒐𝒎  << 𝝀𝑷𝒉𝒐𝒕𝒐𝒏 

      << 𝝀𝒅𝒆𝑩𝒓𝒐𝒈𝒍𝒊𝒆
𝑬𝒍𝒆𝒄𝒕𝒓𝒐𝒏,𝒉𝒐𝒍𝒆 

• Significantly reduced footprint and 

increased precision -- beyond present 

fundamental limit 

Why Atomtronics? 
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Developmental stage of Atomtronics -- early infancy 
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Quantum computers, 

sensors, … 

Present status 
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Need engineering design tool to 

transition BEC from laboratory to 

devices 
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Semiconductor laser diode 

• Pump, extraction and relaxation 

• Nonequilibrium  

• Dynamical range 

    – collisions (fast), operation (slow) 

• Large parameter space for engineering 

optimization 

• Long-lived coherences 

• Phonons 
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Results possibly convertible for atomtronics use 
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Treatment of collisions 
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          Memory effects 

Extraction of difficult to measure parameters 

in quantum-dot lasers for silicon photonics 
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The Problem: The Solution: 

1.5 billion people 

rely on kerosene 

for light 

Over 80,000 solar 

lights distributed 



Global Impact 

80,000 lights have been distributed to over 

64 countries on 4 continents.  
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Atomtronics circuit description 
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Two-site Bose Hubbard Hamiltonian 

Interatomic interactions 

Atomtronics circuit description 

Heisenberg Picture 
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Time evolution of atomic population spatial distribution 

Josephson oscillations Self trapping 
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Atomtronics analog? 
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Atomtronics analog? 

4-mode (expt) 
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Is the same possible with atomic sensor? 
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Future atomtronics and optoelectronics 

PQE talks: Gadi Eisenstadt & Hans-Peter Reithmaier 

Record high modulation speeds 
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