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Foam Behavior in Fire Environments (@)

= Polymer foams provide
thermal, mechanical, &
electrical isolationin
engineered systems

= |n afire foam decomposes
and loses effectiveness as
insulator

= Modeling techniques also
applicable to other
problems like ablation,
carbon composite fires,
etc.




Foam in a Can (FIC) Geometry ) .
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X-ray Video Captures Foam ) .
Decomposition Front
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Experimental data courtesy of Ken Erickson



Orientation and Front Regression Important (i)
for Pressure and Temperature Response
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Model Domain Split Into 3 Regions [@JEz.

Can Region

Moving
Interface Foam Region

Gas Region




Modeled Physics ) &,

= @Gas Region = Foam Region
= Continuity = Gas Phase
: Momentum} —> = Darcy Mass Balance
= Species < >® Species
= Energy < >* Energy

= Enclosure radia

= Solid Phase
= CanR i%n

—>J " Energy

C—

" Energy = Mass balance

= Species

» All solved using SIERRA Multiphysics Module
— Aria, implicit finite element code.
» (Gas region uses control volume finite element

method (CVFEM), remainder is Galerkin
FEM. 8
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Interface Motion

= Conformal Decomposition Finite Element
Method (CDFEM)!

7
"= No changes to element assembly needed!
= Supports different physics on either side of

interface.

= Convert Foam -> Gas as it decomposes

= |nterface tracks 99% mass fraction isosurface of
decomposition product




A note on prolongation ) .

tn+1

—

t,
tn+1

= At each time step newly created nodes and nodes that have

moved or changed phase prolong their field values from the
nearest interface location at the last time step.

= Time derivatives are adjusted appropriately using an ALE
approach.?
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How can we solve this robustly and @&,
efficiently?

1. Fully monolithic Newton iteration

= Excellent nonlinear convergence... if linear solves are
successful

=  Poor scalability

2. Segregated solution scheme
= How to split up equations?
=  Smaller matrices with fewer off-diagonal terms

= Nonlinear convergence more challenging — Lots of trial +
error to find usable set of equation systems
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Segregated Solution Scheme )

= |nterface moves at the start of each time step
5 equation systems:
1. Solid Phase Mass Balance and Species

2. Continuity, Momentum, Darcy Mass Balance

3. Energy, Gas Phase Energy, Solid Phase Energy, Enclosure
Radiation

Energy
5. Species, Gas Phase Species
= Loop until all equation system residuals < tolerance

= Run 1-3 Newton iterations per equation system in each outer
iteration.

= Essential to use same gas density from solution of 2 in
solution of 3, 5. 1




Model Captures Pressure Difference @,
Between Upright and Inverted
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Adaptivity Improves Interface

Decomposition
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Adaptivity Improves Interface ) 5,
Decomposition
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Conclusions and Future Work ) s,

= CDFEM is attractive for interface capturing in
multiphysics simulations

= Different equations/fields on either side of
interface

= Standard element and boundary condition
assembly everywhere

= 3D
= Adaptivity robustness
" |ncorporating liquefaction and flow of foam.
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Modeling Heat Transfer to Components and ) e
Pressurization in Dynamic Geometries

Heat
Flux

National _
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FIC Experimental Setup ) .




Experiments Repeated in Different @i,
Orientations
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Coupled Heat Transfer Between ) .
Foam and Can

= Foam-Can Interface

= Heat transfer between can and
both solid and gas phases




Coupled Heat Transfer Between ) .
Gas and Can

= Gas-Can Interface

" Heat transfer between gas and
can

Can

A —_ A

q_)can ' TV —({gas " T
=+ a(Tcan - Tgas)
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Coupled Flow Between Foam and @i
Gas

= Foam-Gas Interface

" Coupled gas flow, species
transport, and energy transport




X-ray Video Captures Foam ()
Decomposition Front

X ~ < * By o - s _‘-' 2
3 2 4 ; PR SOt A e . E%
A7) Bk 2 455 d o ar B Pig Ty R g3
“ 3 e R 5 SRR o . %
e B i) : : Y : e
B A 3 4 5 3 ¥ ; L - & 5 ’

B i ? 4 . i : At A : 3

: ¥ Ay Aeiok e TS e R G i

Inverted 160 kg/m? TDI polyurethane foam
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Decomposition Front Motion

Controls Radiative Heat Transp
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