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Foam Behavior in Fire Environments

 Polymer foams provide 
thermal, mechanical, & 
electrical  isolation in 
engineered systems

 In a fire foam decomposes 
and loses effectiveness as 
insulator

 Modeling techniques also 
applicable to other 
problems like ablation, 
carbon composite fires, 
etc.
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Foam in a Can (FIC) Geometry
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X-ray Video Captures Foam 
Decomposition Front
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X-ray X-ray Frame Difference

Upright 160 kg/m3 TDI polyurethane foam
Heated at 150C/minute

Heated Surface

Experimental data courtesy of Ken Erickson



Orientation and Front Regression Important 
for Pressure and Temperature Response
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Experimental data courtesy of Ken Erickson



Model Domain Split Into 3 Regions
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Modeled Physics
 Gas Region

 Continuity

 Momentum

 Species

 Energy

 Enclosure radiation

 Can Region

 Energy
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 Foam Region

 Gas Phase

 Darcy Mass Balance

 Species

 Energy

 Solid Phase

 Energy

 Mass balance

 Species

Can

Foam
Gas

• All solved using SIERRA Multiphysics Module 
– Aria, implicit finite element code.

• Gas region uses control volume finite element 
method (CVFEM), remainder is Galerkin
FEM.



Interface Motion
 Conformal Decomposition Finite Element 

Method (CDFEM)1

 No changes to element assembly needed!

 Supports different physics on either side of 
interface.

 Convert Foam -> Gas as it decomposes

 Interface tracks 99% mass fraction isosurface of 
decomposition product
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A note on prolongation

 At each time step newly created nodes and nodes that have 
moved or changed phase prolong their field values from the 
nearest interface location at the last time step.

 Time derivatives are adjusted appropriately using an ALE 
approach.1
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How can we solve this robustly and 
efficiently?

1. Fully monolithic Newton iteration

 Excellent nonlinear convergence… if linear solves are 
successful

 Poor scalability

2. Segregated solution scheme

 How to split up equations?

 Smaller matrices with fewer off-diagonal terms

 Nonlinear convergence more challenging – Lots of trial + 
error to find usable set of equation systems
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Segregated Solution Scheme

 Interface moves at the start of each time step

5 equation systems:

1. Solid Phase Mass Balance and Species

2. Continuity, Momentum, Darcy Mass Balance

3. Energy, Gas Phase Energy, Solid Phase Energy, Enclosure 
Radiation

4. Energy

5. Species, Gas Phase Species

 Loop until all equation system residuals < tolerance
 Run 1-3 Newton iterations per equation system in each outer 

iteration.

 Essential to use same gas density from solution of 2 in 
solution of 3, 5. 12
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Model Captures Pressure Difference
Between Upright and Inverted
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Adaptivity Improves Interface 
Decomposition
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Adaptivity Improves Interface 
Decomposition
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Conclusions and Future Work

 CDFEM is attractive for interface capturing in 
multiphysics simulations

 Different equations/fields on either side of 
interface

 Standard element and boundary condition 
assembly everywhere

 3D

 Adaptivity robustness

 Incorporating liquefaction and flow of foam.
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Modeling Heat Transfer to Components and 
Pressurization in Dynamic Geometries



FIC Experimental Setup
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Experiments Repeated in Different
Orientations
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Coupled Heat Transfer Between 
Foam and Can
 Foam-Can Interface

 Heat transfer between can and 
both solid and gas phases
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Coupled Heat Transfer Between 
Gas and Can

 Gas-Can Interface

 Heat transfer between gas and 
can
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Coupled Flow Between Foam and 
Gas

 Foam-Gas Interface

 Coupled gas flow, species 
transport, and energy transport
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X-ray Video Captures Foam 
Decomposition Front
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X-ray X-ray Frame Difference

Inverted 160 kg/m3 TDI polyurethane foam
Heated at 150C/minute

Heated Surface



Decomposition Front Motion 
Controls Radiative Heat Transport
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