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The objective of this project is to develop critical technologies required for cost-effective 
production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-
electrodes. 

In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations 
utilize triple junction a-Si thin film solar cells as the core element to fabricate 
photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material 
for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It 
has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V  and has an 
operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias 
voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge 
thin films on a conducting stainless steel substrate which can serve as an electrode. When we 
immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage 
is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight 
structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter 
electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up 
to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be 
produced at a very low cost.  

However, the a-Si thin film solar cell is not sufficiently stable in the electrolyte which is 
usually acidic or basic. Without proper protection, it would be corroded by the electrolyte, 
especially under working conditions. In order to develop a PEC system with the triple junction a-Si 
solar cells as electrodes, we need to develop a coating which can be applied onto the solar cell 
surface, and which has the following features: 1) Transparent, so that the light can pass through the 
coating and reach the solar cells, 2) Conducting, so that the voltage generated by the solar cell 
under sun light can be applied to the electrolyte-electrode interface to split water, generating 
hydrogen and oxygen, 3) Corrosion Resistant, so that it can protect the solar cell surface not being 
corroded in the electrolyte, and 4) can be deposited onto the solar cell surface at 200-250oC or 
lower, since the solar cell would be damaged if the temperature is higher than 250oC. In addition, it 
would be very helpful that it can also act as an efficient oxygen evolution catalyst (OER).  

After several years of research with many different kinds of material, we have developed 
promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out 
extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC 
electrode from production-grade a-Si solar cells; we have designed and tested various PEC module 
cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen 
conversion efficiency (STH) about 5.7% and a running time about 480 hrs, which are very 
promising results; we have also completed a techno-economic analysis of our PEC system, which 
indicates that a projected hydrogen generation cost of $2/gge is achievable with a 50 Ton-per-day 
(TPD) scale under certain conditions.  

Renewable hydrogen generation from sunlight and water is very important for our 
economy. It helps reduce our dependence on fossil fuels; it reduces emission and global warming; 
it improves our quality of life by reducing emission from vehicle. Cost effective production of 
hydrogen from sunlight make it economically feasible for large scale use. Low-cost hydrogen 
generation is essential for zero-emission fuel cell vehicles to become a reality. 

  

1. Executive Summary 
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We have accomplished the following goals and objectives of this project.  

1) We have carried out extensive research on TCCR material and developed high quality 
TCCR materials, for example, Co3O4, with extended stability up to 1,000 hours; it can be 
deposited at 250 °C or lower; at 70nm, it has a transparency ≥ 90%, and a voltage drop 
0.15V across the TCCR layer for the TCCR/PV-cell stack under typical PEC device 
operating conditions.   

2) We have carried out extensive research on the hydrogen generation and oxygen generation 
catalyst materials and developed highly promising catalyst material.  

3) We have developed procedures for the fabrication of PEC cells from production-grade a-Si 
triple junction solar cells. We were able to achieve an initial direct Solar-to-Hydrogen 
(STH) conversion efficiency of 5.7%, which is, to the best of our knowledge, the highest 
ever achieved for direct STH efficient for PEC system made using low cost thin film 
materials without electrical bias.  

4) We have successfully transferred the sputtering method to coat Co3O4 on solar cells from 
lab to a proto-type 2 MW roll-to-roll production machine and were able to make PEC 
electrode on a 91cm wide web.  

5) We have designed various types of immersion-type PEC modules, with electrode size vary 
from 2”x2” to 4”x4”; and carried out extensive outdoor testing. 

6) Using Department of Energy (DOE)’s H2A model, we have performed preliminary techno-
economic analysis of the immersion-type PEC system based on the concept design. The 
result indicates that with 50 TPD production scale, generation cost of $2/gge is achievable.  

7) During the course of this project, four PCT patent applications and two provisional patent 
applications have been filed.  

8) We have worked with many outside industry and university labs, contributed triple-
junction solar cells for the collaborative PEC research, and provided technical support to 
facilitate the progress of the overall PEC field. 

9) We have studied immersion type PEC cells in which one of the voltage-generating 
junctions is a semiconductor-electrolyte rectifying junction, which is deposited on two 
semiconductor junctions to produce sufficient voltage for water splitting.  

10) We have studied substrate-type PEC cells in which only the SS substrate was in direct 
contact with electrolyte.  

 

  

2. Comparison of the Actual Accomplishments with the Goals and Objectives of the Project 
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  In the second approach, shown in Figure 2, we used a hybrid structure in which two tf-Si 
based junctions (middle and bottom junctions of the present triple-junction tf-Si cell) provide a 
voltage bias (around 1.1V), and a third junction (the top junction) is a rectifying junction between 
a photo-active semiconductor and the electrolyte. 

  We also studied and developed substrate-type PEC devices in which only one surface of 
the PEC cell (the back surface) is in direct contact with the electrolyte and the voltage from the 
front contact is brought to the back via conducting wires.  

 

 Five technical tasks were performed in this project toward the objectives:  

Task 1: Transparent, conducting and corrosion resistant coating for triple-junction tf-Si based 
photoelectrode.  

Task 2: Hybrid multi-junction PEC electrode having semiconductor-electrolyte junction.  

Task 3: Understanding and characterization of photoelectrochemistry.  

Task 4: Fabrication of low-cost, durable and efficient immersion-type PEC cells and systems.  

Task 5: Fabrication of substrate-type PEC panels. 
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4.1. Development of TCCR material 
In order for the TCCR layer to work 

properly for the immersion type PEC cells, it 
has to meet the following conditions: 1) It has to be corrosion resistant in electrolyte in order to 
protect the a-Si in the PEC cell assembly to ensure reliable performance for thousands of hours;  2) 
It can be deposited on top of the a-Si device at temperatures of 250°C or lower in order to avoid 
any damage of a-Si layer during TCCR deposition; 3) It  has to provide transparency of 90% or 
greater so that most of the light can reach the solar cell; and 4) it has to provide sufficient lateral 
electrical conductivity for efficient electrolysis of water into hydrogen and oxygen.  

Our lab-scale studies covered a variety of oxide materials with the potential of meeting these 
requirements, including: a) cobolt oxide (Co3O4), b) fluorine-doped tin oxide, c) In2O3-Fe2O3, 4) 
In2O3-InFe2O4. These materials were deposited in our lab using rf-sputtering.  

In a short summary, extensive experiments in our laboratory show that: a) cobolt oxide 
(Co3O4) coatings, when optimized, gives excellent current density and stability; good transparency 
except in the UV region; and can be made at below 300oC; b) fluorine-doped tin oxide coating did 
not show good stability in the electrolyte;  c) In2O3-Fe2O3 coating gives short-term stability, 
excellent conductivity, but its transmission needs improvement; 4) In2O3-InFe2O4 is quite stable 
under initial trials, shows excellent conductivity, but its transmission needs improvement.  Out of 
all these materials studied, Co3O4 seems to be the most promising material. Co3O4 has a low band 
gap of 1.52 eV, it absorbs significant visible light unless the film thickness is kept low. For use as 
the oxygen evolution catalyst layer, alloying of Co3O4 with NiO seems to provide higher current 
densities without increasing unwanted absorption. Using Co3O4 based TCCR materials requires 
fabricating thin, uniform and void-free Co3O4 layer. It is observed that the light-enhancing texture 
of the back-reflector layer in the a-Si device affects the surface roughness which consequently 
affects the growth conditions of oxide layer on top. High degree of light-enhancing texture in the 
a-Si device surface could lead to the formation of voids and defects in the TCCR layer. Therefore, 
careful optimization is needed in the formation of back reflector and the growth of Co3O4 layer so 
that uniform and void-free Co3O4 films can be prepared using rf sputtering on textured a-Si device 
surface.  

For the deposition of Co3O4 films, we use a 2” cobalt oxide target purchased from Kurt J. 
Lesker Company for TCCR layer deposition. Table 1 summarizes the experimental conditions 
used for small-area Co3O4 sputter deposition. 

Table 1:  Co3O4 sputtering conditions 

Run 
RF power  

(kW) 

sputtering pressure 
(mTorr) 

Ar flow  

(sccm) 

sputtering time  

(min) 

ST986 0.1 8 8 60 

ST987 0.1 8 8 30 

ST988 0.1 8 8 10 

ST990 0.1 8 8 12.5 

 

4. Summary of Project and Technical Research Activities 

4.1.1 Small-Area Deposition of TCCR Layer 
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Figure 10: XRD measurements for Sample ST 988 at 0, 500, and 1000 hrs of biasing in the electrolyte; 

 

SEM Measurements: 

Scanning Electron Microscopy (SEM) imaging reveals how the grain structure of the 
Co3O4 layer changes due to biasing in electrolyte. As shown in Figure 10, SEM images of the 
Co3O4 layer for Sample ST988 were recorded using a Hitachi S-4800, before and after being put 
under a voltage (biasing) in electrolyte for 1000 hrs. EDS measurements taken for ST988 after 
biasing in the electrolyte for 1000 hrs, (shown in Fig. 11) proves the existence of Co3O4 layer 
deposited onto the fluorine doped tin oxide FTO (F:SnO2). Even after stressing the sample in the 
electrolyte under bias for 1000 hrs, peaks measured from Sn, Co and O are found. 

 

While relatively more detailed description of a variety of measurements, including J-V 
characteristics, AFM, XRD, SEM and EDS measurements, taken before and after 1000 hours bias, 
is provided above for only one sample (ST988), these measurements were carried out for a large 
number of samples for different groups of materials under this research. These studies show that 
Co3O4 materials has most desirable characteristics for use as TCCR layer among the group of 
materials studied.   
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We have carried out numerous studies on lab-scale equipment to investigate potential TCCR 
materials for immersion-type triple-junction a-Si PEC cells. These studies have shown many 
promising results as we described above. However, there are some restrictions for small scale 
experiment, for example, the edge effect for sputtering may affect the uniformity of the TCCR 
coating; and the small samples obtained from the lab scale deposition machine prevents us from 
making commercial size PEC cells. Based on the extensive lab results and the availability of a 
large scale roll-to-roll machine at Xunlight Corporation, which was formed initially as a wholly 
owned subsidiary of MWOE, we have worked on the fabrication of TCCR coating on large area a-
Si electrodes. The prototype 2MW roll-to-roll machine has the capability of both PECVD coating 
and RF sputtering integrated in the same roll-to-roll machine,  and is perfect for this purpose. With 
this machine, we can make PEC electrodes which are 3 ft wide and thousands of feet long. This 
system simulates processing conditions which are comparable to a manufacturing environment. 
The system allows depositing of back-reflector, semiconductor and TCCR layers continuously and 
without the need for breaking the vacuum. For TCCR layer optimization, parameters such as line-
speed, layer thickness, sputtering power and O2 gas flow are tested and optimized. We have used a 
6 inch x 42" linear Co3O4 sputtering target (99%) for the fabrication of the TCCR layer. The film 
thickness is controlled by the rf power, process gas, pressure and the process line speed. for 
example, at a a line speed of 6"/min, every spot of the substrate would take 1 min to travels 
through the 6" linear target so the total deposition time is 1 min at this line speed.  

  Figure 12 below provides a view into the opened pay-out chamber of the 2MW machine 
after carrying out the experiment: the 36” wide stainless steel web is coated with back reflector, 
semiconductor solar cells and Co3O4 layers.  

  Dektak (thickness) measurements show that Co3O4 layers obtained under these 
experimental conditions have a thickness in a range between 200 nm - 275 nm. Figure 13 shows 
that the Co3O4 layer thickness decreases with increasing argon/oxygen flow during sputtering. 
These data is used for an optimization experiment targeting the required TCCR layer thickness of 
~ 30-70 nm. Increasing the line speed and lowering the sputtering power significantly decreases 
the Co3O4 layer thickness. The argon/oxygen flow speed used during sputtering has a noticeable 
effect on the expected film thickness as well, as shown in Figure 13.  

  The transparency of TCCR films was measured using Co3O4 layer sputtered onto glass 
slides: the glass slides were attached to the web and were moved through Co3O4 sputtering station 
using the roll-to-roll transport system.  

  With the thicknesses of the Co3O4 layers in the 200 to 275 nm region, the transparency is 
quite low in the wavelength range between 300 nm - 900 nm (see Fig. 14). However, with reduced 
Co3O4 thickness, the transparency will increase.  

  

4.1.2 Large-area Deposition of TCCR layer 
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Figure 15: Transmission vs. wavelength for Co3O4 coatings with different thickness: a) 275 nm, b) 200 nm 
 

 Next, the optimization work was focused on obtaining thinner Co3O4 layer in order to increase 
the transparency of the TCCR material. Table 3 summarizes the experimental conditions used for 
Co3O4 sputtering. 

Table 3: Co3O4 sputtering conditions 

Run, exp. # material 
pulsed DC 

power 
sputtering 
pressure 

Ar/Ar-O2 flow 
line 

speed 

Run 2, exp. 5 Co3O4 3 kW 6.5 mTorr 
80 sccm / 60 

sccm 
1 " / min 

Run 2, exp. 6 Co3O4 3 kW 6.5 mTorr 
60 sccm / 80 

sccm 
1 " / min 

Run 2, exp. 7 Co3O4 3 kW 6.5 mTorr 
40 sccm / 100 

sccm 
1 " / min 

Run 2, exp. 8 Co3O4 3 kW 6.5 mTorr 
20 sccm / 120 

sccm 
1 " / min 

Run 3, exp. 9 Co3O4 3 kW 6.5 mTorr 
40 sccm / 100 

sccm 
6 " / min 

Run 3, exp. 10 Co3O4 3 kW 6.5 mTorr 
20 sccm / 120 

sccm 
6 " / min 

Run 3, exp. 11 Co3O4 3 kW 6.5 mTorr 
10 sccm / 130 

sccm 
6 " / min 

Run 3, exp. 12 Co3O4 3 kW 6.5 mTorr 
0 sccm / 120 

sccm 
6 " / min 

Run 4, exp. 13 Co3O4 1.5 kW 6.5 mTorr 
40 sccm / 100 

sccm 
6 " / min 

b) 

a) 
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Run 4, exp. 14 Co3O4 1.5 kW 6.5 mTorr 
20 sccm / 120 

sccm 
6 " / min 

Run 4, exp. 15 Co3O4 1.5 kW 6.5 mTorr 
10 sccm / 130 

sccm 
6 " / min 

Run 4, exp. 16 Co3O4 1.5 kW 6.5 mTorr 
0 sccm / 140 

sccm 
6 " / min 

 

 

 Run 2 uses 3kW as sputtering power and 1”/min as line speed; and we experimented with 
increased argon/oxygen level in the sputtering gas. Run 3 uses a faster line speed than that used for 
Run 2; the argon/oxygen flow was increased. For Run 4 the sputtering power was reduced and the 
line speed was kept at the high setting of 6 “/min. This run uses settings for the sputtering gas flow 
comparable to Run 3. The Co3O4 film thickness was determined by using Dektak3 ST Surface 
Profiler (Veeco Instruments Inc); the results from Dektak measurements for samples from Run 2 - 
Run 4 are summarized in Table 4 and displayed in Fig. 15. The 80 sccm / 60 sccm for Ar/Ar-
O2(20%) flow means there is a flow of 80 sccm of pure Ar gas and 60 sccm of a mixture of Ar/O2 
gas with 20% O2 in the mixture flowing into the deposition chamber. The total flow is maintained 
at 140 sccm.  

 

Table 4: Co3O4 layer thickness; 

sample # sputtering power Ar-ArO2(20%) flow d / nm 

E5 3KW 80 sccm / 60 sccm 281 

E6 3KW 60 sccm / 80 sccm *) 

E7 3KW 40 sccm / 100 sccm 272 

E8 3KW 20 sccm / 120 sccm 258 

E9 3KW 40 sccm / 100 sccm 120 

E10 3KW 20 sccm / 120 sccm 135 

E11 3KW 10 sccm / 130 sccm 148 

E12 3KW 0 sccm / 120 sccm 129 

E13 1.5KW 40 sccm / 100 sccm 129 

E14 1.5KW 20 sccm / 120 sccm 121 

E15 1.5KW 10 sccm / 130 sccm 140 

E16 1.5KW 0 sccm / 140 sccm 151 

  *) sample not measurable; 
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 Co3O4 layer were sputtered onto borosilicate glass slides for thickness and transmission 
measurements. The Co3O4 film thickness was determined by using Dektak® ST Surface Profiler; 
the data from Run 5 are summarized in Table 6 and displayed in Fig. 17. For comparison, the data 
obtained previously for Run 4 are displayed in the same graph.  

 The data show that lowering the sputtering power from 1.5kW to 0.8kW reduced the Co3O4 
thickness from 121-151 nm to 68-82 nm; the thickness values obtained for Run 5 are closer to the 
thickness demonstrated on small-area samples reported in the earlier section.. 

 

Table 6: Co3O4 layer thickness 

sample # sputtering power Ar/Ar-O2 flow d / nm 

E17 0.8kW 40 sccm / 100 sccm 68 

E18 0.8kW 20 sccm / 120 sccm 72 

E19 0.8kW 10 sccm / 130 sccm 82 

E20 0.8kW 0 sccm / 140 sccm 78 
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Figure 18: Co3O4 layer thickness for samples from Run 4 and Run 5 vs. Argon/Oxygen flow; 

 
 Fig. 18 compares the transmission data of Co3O4 layer obtained from Run 4 with the data 
obtained from samples from Run 5. The data suggest that the transparency of the Co3O4 layer is 
significantly improved for samples obtained in Run 5 compared to samples from Run 4. The 
transparency of the TCCR is >90% in a wavelength range of 300-900nm; these results indicate that 
the TCCR transparency is acceptable. Noteworthy is, that the transmission of the Co3O4 layer does 
not change with the oxygen flow in the sputtering gas; this is observed so far for samples from all 
runs. We therefore have used the condition in Run 5 as our default condition for making Co3O4 
TCCR layers.  
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4.2. Development of Hydrogen Generation Catalyst – Porous Nickel 
 

Effort under this task is to develop various hydrogen generation catalysts in order to improve 
the Solar to hydrogen conversion efficiency. We have studied several material for this purpose, 
such as Platinum, Ruthium, Nickel and so on. Platinium and Ruthium give very good results, but 
they are precious metal, therefore the cost is quite high. Nickel is a much inexpensive alternative if 
we can improve its performance. We made significant research effort to develop porous nickel as a 
hydrogen generation catalyst. Below are some of the detailed results.  

We carried out many experiments optimizing the conditions for making electro-plated Ni 
coating. The goal is to be able to apply it to the back side of our PEC electrode and to achieve high 
solar to hydrogen (STH) efficiency and durability.  

We make the porous Ni coating on stainless steel substrates. First, we clean and roughen the 
substrate so that the coating can have a strong adhesion to the substrate surface. Then we put the 
substrate in a Ni/Zn solution to electro-plate Ni/Zn mixtures on the surface. Then we put it in KOH 
solution to leach out Zn to create a porous structure. The following are the detailed procedures to 
make porous Ni coating:  

1) Preparation of Ni electrolyte 

2) Etching of the stainless steel substrate  

3) Electro-deposition of Ni and Ni/Zn on the substrate 

4) Leaching in KOH solution 

5) Testing the porous Nickel electrodes 

 

Step 1: Preparation of the Ni electrolyte 

Ni electrolyte is prepared using the following chemicals. The chemicals are mixed in a 
conical flask with water and stirred for approximately an hour. 

Chemicals:           Composition 

NiSO4 
. 6H2O (Nickel Sulphate Hexahydrate)   330g/l 

NiCl2 
. 6H2O (Nickel Chloride Hexahydrate)   45g/l 

H3BO3 (Boric Acid)   37g/l 

 

Step 2: Etching the stainless steel substrate 

The 4”×4”stainless steel substrate is cleaned in an ultrasonic bath for 30 min and then 
cleaned with acetone to remove any surface impurities. It is then put into an electrolytic cell and is 
chemically etched with 50% HCl solution for 10 min. The purpose of this step is to roughen the 
substrate surface in order to increase the adhesion of Ni coating to it. After that, the electrode is 
cleaned with DI water thoroughly to remove any trace of HCl.  

 

Step 3: Electro-plating of the Ni and Ni/Zn  
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We made some solar cell without the ITO layer, but coated directly with Co3O4 layer. When 
we tried to carry out the shunt passivation on these samples, it was not successful -- Co3O4 simply 
does not respond to the light-assisted shunt passivation process as ITO does. The resulting LLVOC 
for these samples turned out to be very low because the existing shunt could not be isolated. We 
have also tried to start with the ITO coated solar cell but skip the shunt passivation process, and 
apply the Co3O4 layer. The resulting photo-electrodes also gave  very low LLVOC values. These 
two experiments indicated that an ITO coating and the shunt passivation process for the solar cells 
are essential for isolating the shunt and achieve a reasonable voltage for water splitting.  

The next set of experiments we carried out is to determine relationship between the thickness 
of the ITO layer and the photo-electrode performance. 

Amorphous-Si triple junction solar cells were coated with different ITO thicknesses ranging 
from 0nm - 70nm. Material that had an ITO top layer was then passivated using light-assisted 
shunt passivation process. These samples were then coated with Co3O4 using the deposition 
conditions that we have optimized previously (see Section 4.1.2). From each sample set, 4 small-
area (1.5”x1.5”) PEC electrodes were fabricated and low-light VOC (LLVOC) measurements (4 
readings per sample) were taken. The individual data are shown in Fig. 26 and, Table 8 
summarizes the average, stand deviation (stddev.) and median values for this experiment. The 
LLVOC measurements suggest that there is no strong correlation between LLVOC and ITO 
thickness when comparing the data for PEC electrodes with different ITO thickness. However, the 
sample with 70nm ITO layer shows the most consistent LLVOC measurement. The samples which 
do not comprise an ITO layer show very low LLVOC values. These samples are not shunt 
passivated as Co3O4 does not respond to the light-assisted shunt passivation process as the ITO 
layer does. From these series of experiments, it can be concluded that at least a thin layer of ITO, 
which can be as thin as 10 nm, underneath the Co3O4 TCCR coating, is required and the shunt 
passivation process is essential for the good performance of the PEC electrodes. The samples with 
70 nm thickness ITO gave most consistent voltage results. Therefore we have decided to use this 
condition for our PEC electrode fabrication.   

Table 8: LLVOC vs. ITO thickness for Co3O4 coated PEC electrodes; 

ITO thickness Co3O4 
Average
voltage stddev median 

0 yes 0.24 0.10 0.24 

10 yes 1.39 0.45 1.66 

20 yes 1.08 0.52 1.13 

20 yes 1.73 0.03 1.74 

30 yes 1.74 0.04 1.75 

45 yes 1.03 0.71 1.25 

60 yes 0.54 0.73 0.15 

70 yes 1.71 0.05 1.73 
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Figure 27: LLVOC measurements for PEC electrodes with different ITO thickness 

 

 Fig. 27 compares the LLVOC voltage of PEC electrodes with and without Co3O4 TCCR 
coating; these samples comprise a ~70 nm thick ITO layer. The data suggest an average low-light 
voltage loss of about 0.12V due to the presence of the Co3O4 TCCR layer (see Table 9), which is 
in the acceptable range.  

Table 9: LLVOC for PEC electrodes with and without Co3O4 TCCR (all samples 
have an ITO layer of ~70nm) 

ITO thickness Co3O4 
Average 
Voltage stddev median 

70 no 1.83 0.03 1.84 

70 yes 1.71 0.05 1.73 
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Figure 28: LLVOC for PEC electrodes with and without Co3O4 TCCR coating, both have an ITO 
layer of ~70nm; 



 
4.4. F

s
 

In
character

1
in the 2M
positive a
necessary
cell to re
was rinse
have bee
the solar 
heated in
for a PEC
cell woul

 

 

 

edge is
 
edge is

Fabrication
ystem: 

n this sectio
rize the PEC

1”×17” stan
MW roll-to-r
and negative
y to isolate t
emove the IT
ed thorough

en edge isola
cell from be

n an oven at 
C cell after e
ld show room

Figure 

Fig

solation 

solation 

n and chara

on, we will
C electrodes w

ndard size so
roll machine
e sides of th
the two sides
TO layers, a
hly afterward
ated. A clear
eing corrode
150°C for 3

edge isolatio
m light Voc o

29: Various 

gure 30: 1.5”x

P

acterizatio

l discuss ex
with TCCR 

lar cells wer
e. It was the
he solar cells
s of the elect

and the cell w
ds with D.I.
r coat is app
d by electro

30 min to cu
on. Normally
of ~1.4V and

PEC cells for

x1.5” PEC ele

age 35 of 81

n PEC elec

xtensive effo
layer for imm

re shunt pass
en cut into 1
s may be sho
trodes.  Pho
was then pla
 water. Fig.

plied to all e
lyte, as show

ure the clear 
y, a good PE
d AM1.5 Voc

r which edge 

ectrode (front

ctrodes for

orts we hav
mersion type

sivated and c
”×1” pieces
orted at the 
sphoric acid
aced in a fur
. 28 shows 
dges of the 

wn in Fig. 29
coating. Fig

EC cell made
c of ~2.1 to 2

isolation have

t) with clear c

 

D
Midwest

r immersio

ve carried o
e PEC system

coated with C
s. Very often
edge, an ed

d was applied
rnace at 130
several PEC
samples to p

9. Then the s
g. 30 shows 
e from a-Si t
2.2 V.  

e been perfor

coat edge seal

PEC 
 
PEC 

clear 
 

clear 

DE-FG36-05G
t Optoelectroni

on type PE

out to prepa
m.  

Co3O4 TCCR
n, after cutti

dge isolation 
d to the edge
0ºC for 30 m
C electrodes
protect the e
samples are u
a typical I-V
triple junctio

 
rmed; 

l; 

electrode 

electrode 

coat 

coat 

GO15028 
ics, LLC 

C 

are and 

R layer 
ing, the 
step is 

e of the 
min and 
 which 
edge of 
usually 

V curve 
on solar 



F
ph

 

A
placed in
that we m
coating c
back sid
electropl
been disc

a. F

Figure 32
front and 
 

Solar to h

T
Pyrex co
groove o
graduated
off the fr
PEC elec
photodio

Figure 31:  I-V
hotocurrent (u

After the PE
n the electrol
may need to
come into pl
de of the PE
ated nickel m
cussed earlie

ront of the e

2: Photograph
b) with porou

hydrogen co

The PEC ele
ontainer mod
on one side i
d cylinder is
ront and the 
ctrode samp
de. 

V data for a P
under AM1.5

C electrodes
lyte with a p
o also apply 
ay. We wou

EC electrod
molybdenum
er in Section 

electrode  

hs showing PE
us Ni catalyst

onversion eff

ctrodes were
dified with 
is used to pl
s placed dire
back of the 

ple with AM

‐6

‐4

‐2

0

2

4

6

‐0.1

J s
c
(m

A
/c
m

2
)

P

PEC cell after 
5). 

s are prepar
pH about 9. I

some hydro
uld use silver
e, as shown

m material an
4.2. 

   b. Ba

EC electrodes
t on the back

ficiency for i

e tested in t
a quartz win
lace the cell
ectly over th
electrode. A

M1.5 radiati

0.4

Jp

Jd

age 36 of 81

edge isolatio

red as descri
Initially, the 
ogen generat
r epoxy to a
n in Fig. 31
nd the optim

  

ack of the ele

s after edge is

immersion-t

the set-up sh
ndow attach
s into an ali

he top of the
A 150W Spe
ion (100 mW

0.9 1.4

Voltage (V)

on: Voc=2.295

ibed in prev
STH conver

tion catalyst
attach a poro
1. The deta

mized condit

ectrode w. N

solation, a) wi

type PEC cel

hown in Fig
hed to the s
ignment with
 PEC electro

ectra Physics
W/cm2) whi

1.9 2

D
Midwest

 
 V; Jd: dark c

vious paragr
rsion was qu
t. That is wh

ous Ni coated
ailed procedu
tion for poro

Ni catalyst 

ith clear coat 

ll: 

g. 32. This s
ide. A Teflo
h the quartz 
ode to collec
s lamp is use
ich was cal

2.4

DE-FG36-05G
t Optoelectroni

current; Jp: 

raph, they ar
uite low, ind
here the por
d Ni sheet o
ures for pre

ous Ni platin

treatment in 

set-up consis
on cylinder 
window; a 

ct all gas pro
ed to illumin
ibrated usin

GO15028 
ics, LLC 

re then 
dicating 
rous Ni 
onto the 
eparing 
ng have 

 

the 

sts of a 
with a 
50 mL 
oduced 

nate the 
ng a Si 



Fi
 

G
summariz
66% of t
solar-to-h
shown in

S

   

where Pto

represent

Figure 34
electrode.

 

igure 33: The

Gas generati
zes the volu
the total vol
hydrogen (S

n Table 10. T

STH = (mol o

            (Ptot

otal is 100 m
tation of thes

4: Volume of 
 

2.9%

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0.0

H
2
 v
o
lm

e
 (
m
l)

e experimenta

ion was ob
ume of hydr
lume assum

STH) efficien
The STH effi

of H2/sec) × 

tal mW/cm2) 

mW/cm2 and 
se results. 

hydrogen pro

2.1%

1

20.0 40.0

P

al set-up for m

bserved on 
ogen collect

ming 2:1 ratio
ncy based on

ficiency is ca

(237 kJ/mol

× (Area of C

the area of t

oduced and S

1.8%

1.6%

60.0 80.0

Testing Ti

age 37 of 81

measuring the

the electro
ted over tim
o for hydrog
n the volum

alculated usin

l [ΔG for H2]

Cell cm2) 

the electrod

TH efficiency

1.4%
1.2

0 100.0 120

ime (hour)

H2 VO

STH(%

 
e STH efficien

ode under 
me. These vo

gen to oxyg
me of hydrog

ng the follow

])  (

e is 2.696 cm

y over time fo

2%1.1%

0.0 140.0 16

LUME(ml)

%)

D
Midwest

ncy of the PE

light illumi
olumes were
gen generati
en generated
wing equatio

1) 

m2.  Fig. 33

or an immersi

0.9%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

60.0

ST
H
(%

)

DE-FG36-05G
t Optoelectroni

C electrodes;

ination. Tab
e derived by 
on. The calc
d for this sy
on: 

 shows a gra

 
ion type PEC

GO15028 
ics, LLC 

 

ble 10 
taking 

culated 
stem is 

aphical 

 



DE-FG36-05GO15028 
Midwest Optoelectronics, LLC 

Page 38 of 81 

As shown in Table 10, we were able to achieve the initial Solar to hydrogen conversion 
efficiency of 3.1%. The electrolyte is a water solution with KOH and Boric acid at a PH about 9. 
This PEC electrode was able to run continuously for over 160 hours until the hydrogen generation 
speed slowed down to very low level. When we examined the electrode after the 160 hour run, the 
solar cell seems to be in good condition which indicates that corrosion resistant property of the 
PEC is appropriate in the electrolyte that we have used.  

Table 10:  Volume of hydrogen gas generated and average STH efficiency of an 
immersion type PEC cell; 

TIME 
(hrs) 

H2 
VOLUME 

(ml) 

STH 
(%) 

TIME
(hrs) 

H2 
VOLUME

(ml) 

STH 
(ml) 

1.0 1.41 3.1% 29.0 26.80 2.0% 

1.5 2.01 2.9% 30.0 27.47 2.0% 

2.0 2.61 2.8% 31.2 28.41 2.0% 

3.0 3.82 2.8% 50.0 42.21 1.8% 

4.0 5.03 2.7% 52.0 42.75 1.8% 

5.0 6.23 2.7% 70.8 51.72 1.6% 

6.0 7.37 2.7% 79.3 55.28 1.5% 

7.0 8.51 2.6% 97.3 61.31 1.4% 

9.0 10.72 2.6% 104.0 62.65 1.3% 

22.5 21.78 2.1% 120.0 64.92 1.2% 

26.0 24.72 2.1% 129.3 65.66 1.1% 

28.0 26.06 2.0% 168.0 66.20 0.9% 

   

 

Testing of PEC electrodes in immersion-type modules outdoors: 

Several PEC electrodes with an active area of 1.5”x1.5” were tested using the prototype 
PEC modules. The edges of the PEC electrode sample are typically insulated using a clear coat in 
order to prevent shorting of the device.  

The H2-evolution catalyst is attached to the backside of the PEC electrode. For the 
experiments presented here, we used electroplated Pt deposited onto stainless steel or porous-Ni as 
catalyst materials (see Fig. 34). The PEC electrodes are inserted into a sample holder with double 
O-ring edge seal (see Fig. 35 below) and, the sample insert is placed into the PEC module case. 
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STH efficiency and worst durability, which indicates that a HER catalyst, although on the backside 
of photo-electrode,  is essential.  

Table 12: Comparison of different hydrogen generation catalyst: 

HER catalyst Initial STH efficiency  Operating hours w. STH efficiency >1% 

Plated Platinum 5.6% 42 hrs 

Plated Ruthenium 5.7% 37 hrs 

Plated smooth Nickel 1.5% 80 hrs 

Plated porous Nickel 4.1% 170 hrs 

Sintered Nickel 3.1% 480 hrs 

No HER catalyst 1.2% 8 hrs 

 

Although the highest STH efficiency values were obtained using Platinum and Ruthenium 
as HER catalyst materials, the PEC system using Nickel as HER catalysts demonstrate much better 
durability (480hours). Figure 42a shows STH efficiency versus operation time for PEC electrodes 
with different HER catalyst materials. 

 

Figure 42a: STH efficiency versus operation time for PEC electrodes with different HER catalyst 
materials. 
 

Sintered nickel as HER catalyst  

When we used sintered Ni as the HER catalyst, we noticed a color change in the electrolyte 
which could be related to the migration of metallic materials of the sintered nickel from the 
counter electrode to the working electrode. Therefore, we performed a pre-treatment of the 
sintered nickel with it as cathode and a stainless steel sheet as anode in a KOH solution. A voltage 
of about 3V was applied between the nickel and stainless steel sheet, and the pretreatment lasted 
about 20 hours. The setup for the pretreatment is shown in Figure 43.  
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Figure 56: CV-measurement for etched stainless steel performed in KNO3 (red) and KOH/H3BO3 (blue); 
 
 

 The data indicate that plated Pt shows comparable catalytic performance in KNO3 and 
in KOH/H3BO3. For sintered Ni, plated Ni (NH4Cl precursor) and etched stainless steel the 
hydrogen evolution occurs in KNO3 at lower voltages than in KOH/H3BO3 suggesting that these 
materials should perform better as hydrogen evolution catalysts in KNO3. On the other hand, 
plated Ni (ZnCl2 precursor) should be a superior hydrogen catalyst in KOH/H3BO3 than in KNO3.  

 Fig. 56 compares the CV readings for hydrogen evolution catalyst materials measured 
in KNO3 suggesting superior performance for plated Pt compared to all other materials 
investigated. Stainless steel is an inferior hydrogen evolution catalyst in this study, as expected. 
Noteworthy is that all Ni electrode samples show comparable catalytic performances which are 
inferior compared to plated Pt but superior compared to etched stainless steel.  

 
Figure 57: CV-measurements in KNO3: left: plated Pt (red), plated Ni (NH4Cl precursor) (blue), 
stainless steel (green); right: plated Ni (ZnCl2 precursor) (red), plated Ni (NH4Cl precursor) (blue), sintered 
Ni (green); 
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Figure 58: CV-measurements in KOH/H3BO3: plated Pt (purple), plated Ni (NH4Cl precursor) (blue), 
plated Ni (ZnCl2 precursor) (red), sintered Ni (green) and stainless steel (black);  
 

 Fig.57 compares CV-measurements for all catalysts studied regarding their 
performance in KOH/H3BO3. Again, plated Pt shows superior catalytic performance compared to 
all other materials investigated and, etched stainless steel behaves as an inferior catalyst. However, 
sintered Ni shows a similar performance compared to etched stainless steel. Plated Ni (NH4Cl) and 
plated Ni (ZnCl2) show small differences in performance suggesting a superior catalytic activity 
for plated Ni (NH4Cl). 

 

 

4.6. Cyclic-voltametric study of TCCR layer as oxygen evolution catalysts 
 TCCR layer deposited as a top layer at the “sunny” side of PEC electrodes are acting as 
oxygen evolution catalysts. These materials need to be corrosion resistant in electrolytes used for 
operating PEC systems. CV measurements allow investigating materials regarding their catalytic 
properties for oxygen evolution and, these measurements are supporting the evaluation of the 
expected long-term performance of materials in different electrolytes. 

 Electrodes were fabricated using a-Si solar cell material where the top layer is ITO and 
from a-Si material which has a Co3O4 coating deposited onto the ITO layer (see Fig.58). The edges 
of the samples are embedded in a non-conducting epoxy preventing electrolyte exposure during 
measurement. 

 

 

 

 

 

 

 

Figure 59: Electrodes made from a-Si solar cell material: electrodes where top layer is ITO (left) and 
electrode where Co3O4 is deposited onto ITO (right); 
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 CV measurements were conducted using these electrodes in KNO3 solution and in 
KOH/H3BO3. The measurements are compared to data obtained from electrodes made from ITO 
coated glass samples (TEC15). Fig. 59-Fig. 60 show the CV measurements for all electrodes 
obtained for ten cycles for each measurement in both electrolytes.  

The CV measurements shown in Fig.59 suggest that ITO on a-Si and Co3O4 deposited onto 
ITO on a-Si are generating oxygen in KOH/H3BO3 at a much lower voltage than in KNO3. This 
suggests that these catalysts perform much better in a borate electrolyte than in a KNO3 solution. 
For each CV-measurement ten cycles were run. The difference between each cycle compared to 
the initial cycle and the overall shift of the CV data is used as an indicator for corrosion stability of 
the materials when operating in a particular electrolyte. The data indicate that ITO on a-Si might 
be affected by corrosion when operating as oxygen evolution catalyst in KOH/H3BO3: the CV data 
shift significantly for each run. A minor shift in the data is observed when the electrode is run in 
KNO3. On the other hand, Co3O4 deposited onto ITO on a-Si seems to exhibit superior corrosion 
stability in KOH/H3BO3 compared to ITO on a-Si. Again, a small shift is observed when this 
electrode is run in KNO3. 

Fig.60 shows the CV measurements obtained for ITO deposited onto glass (TEC15). The 
oxygen evolution seems to occur at comparable voltages when operating these electrodes in KNO3 
or KOH/H3BO3. However, a significant shift in CV data is observed for each cycle measured: this 
indicates that ITO on glass is severely affected by corrosion when run in a borate electrolyte and, 
non-negligible corrosion is observed in KNO3.  

 

 

 

 

 

 

 

 

 

 

Figure 60: CV-measurement for a-Si with ITO top layer (left) and a-Si with Co3O4 deposited onto 
ITO (right) performed in KNO3 (red) and KOH/H3BO3 (blue); 
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4.7. A Novel Design for Immersion Type PEC Cells  
 

Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective 
Photoelectrochemistry (PEC) system which uses sun light to split water and generate hydrogen. It 
has the following key features:  

• It has an open circuit voltage (Voc ) of ~ 2.3V  and has an operating voltage around 1.6V. 
This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect 
more than one solar cell.  

• It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel 
substrate which can serve as an electrode. When we immerse the triple junction solar cells 
in the electrolyte and illuminate it under sunlight, the voltage is large enough to split the 
water, generating oxygen at the Si solar cell side and hydrogen at the back, which is 
stainless steel side. There is no need to use a counter electrode or make any wire 
connection.  

• It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 
25MW line roll- to-roll production machine, therefore it can be produced at an extremely 
low cost. 

However, the a-Si thin film solar cell is not very stable in the electrolyte which is usually 
acidic or basic. It would be corroded by the electrolyte, especially under working conditions. In 
order to develop a PEC system with the triple junction a-Si solar cells, we need to develop a 
coating which can be applied onto the solar cell surface, and which has the following features: 1) 
Transparent, so that the light can pass through the coating and reach the solar cells, 2) Conducting, 
so that the voltage generated by the solar cell under sun light can be applied to the electrolyte-
electrode interface and generate oxygen, 3) Corrosion Resistant, so that it can protect the solar cell 
surface, not being corroded in the electrolyte, and 4) can be deposited onto the solar cell surface at 
200oC or lower, since the solar cell would be damaged if the temperature is higher than 200oC. In 
addition, it would be very helpful that it can also acts as an oxygen evolution catalyst (OER).  

After many years of research with many different kinds of material, we have developed a 
very promising TCCR coating material, which is the sputtered Co3O4 material. At 70nm thickness 
or lower, it has a transparency of 95% or better. It can be sputtered at lower than 200oC. It also acts 
as a good oxygen catalyst. We have made PEC electrode using the triple junction a-Si solar cells, 
with Co3O4 coating at the Si side, and hydrogen generation catalyst attached at the stainless side. 
In the KOH/H3BO3 electrolyte, we were able to obtain a solar to hydrogen conversion efficiency 
(STH) about 5.7% and a running time about 480 hrs, which are very promising results.  

However, what we have observed is that with time, the STH efficiency would decrease and 
eventually, after about 480 hours, the electrode surface would suffer severe corrosion and the 
system would stop working. It seems that the Co3O4 coating does have some protection effects, 
however, at ~70nm, the surface coverage might be sparse and it can still be corroded away with 
time. We could increase its thickness to increase the corrosion protection effect. However, the 
transparency would suffer and thus the solar energy would be under-utilized and STH would 
decrease.  

We have come up with a novel design which would address this problem and which would 
lead to a PEC electrode which can generate hydrogen effectively and have a good durability.  
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In this brand new design, we would separate the solar cell surface into two types of regions, 
Region 1 and Region II. For Region I, we would coat the surface with some corrosion-resistant 
transparent protective layer (“CRTP Layer”), which does not need to be electrically conducting. 
There are many materials we can use, for example, clear coat, SiO2 coating, etc. For region II, we 
would coat the surface with corrosion-resistant conducting catalytic layer (“CRCC Layer”), such 
as Co3O4 material. In this design, Region II does not need to be transparent, it only needs to have 
good electrical conductivity and acts as good oxygen generating site. Since there is no need to be 
transparent, we can make much thicker Co3O4 coating, not being limited by the 70nm thickness. 
Effectively, Region I will act as solar energy absorbing and electrical voltage generating sites, and 
Region II will act as oxygen generating site with Co3O4 as the oxygen generating catalyst.  

As shown in Figure 62 below, the front surface facing light is covered in some areas with 
corrosion-resistant transparent protective layer (“CRTP Layer”, or “Region 1”) and in some other 
areas with corrosion-resistant conducting catalytic layer (“CRCC Layer”, or “Region 2”) for the 
evolution of oxygen. A transparent conductor layer adjacent to the front surface (right below it) 
helps to transport photo-generated holes from the CRTP area to the CRCC area at the front 
surface. The back surface of the photo-electrode is covered with a corrosion-resistant conducting 
catalytic(CRCC) layer for the evolution of hydrogen. The photovoltaic stack, under light through 
the CRTP layer, generates sufficient voltage to drive water electrolysis at the CRCC layers at the 
front and back surfaces. An example of such photovoltaic stack is a stainless steel (SS)/metal 
reflector/TCO/a-Si n-layer/a-SiGe i-layer/a-Si or nc-Si p-layer/ a-Si n-layer/a-SiGe i-layer/a-Si or 
nc-Si p-layer/ a-Si n-layer/a-Si i-layer/a-Si or nc-Si p-layer/ITO.  Such stack allows oxygen 
generated at the CRCC layer near the front surface and hydrogen near the CRCC layer at the back 
surface. In order to have efficiency water splitting, it is desirable that a greater area of the front 
surface is covered with CRTP material and a small area of the front surface is covered with CRCC 
material. (Figure 62 and Figure 63 below). 

 
Figure 63: The schematic of the photo-electrochemical(PEC) electrode with the novel design of alternating 
CRCC and CRTP coating. 
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second set of approach, we tried to use Co3O4 as the CRCC layer and use clear coat or sputtering 
SiO2 as the CRTP layer.  

 

Development of a Pt/Ni plated layer as CRCC 

We investigated coating of Pt electrode as CRCC layer on top of Co3O4 coated a-Si triple-
junction solar cell as OER catalyst, using H2PtCl6 as electrolyte (pH ~ 1) and with a Pt-mesh as the 
counter electrode. It is found that corrosion of Co3O4 starts after 90 seconds of electro-deposition. 
Similar plating process on the stainless steel back side as the HER catalyst was successful. When 
pH level was increased to ~ 6, minimal corrosion would occur. We explored the plating of Pt onto 
Co3O4 coated a-Si with varying plating current densities and varying plating times. A typical 
plating condition used is 8 mA/cm2 for 60 sec. In order to form Pt coating in certain areas for 
CRCC and expose certain other areas for the application of CRTP, Kapton tapes are applied to 
areas to prevent Pt plating. A clear coating used in automotive industry is used to create the CRTP 
region. Certain overlap of CRCC and CRTP areas are designed into the process to avoid undercut 
corrosion. The effort in generating CRCC/CRTP structure using plated Pt is challenged with 
device shunting issues as the plating process corrodes the TCO layer and the a-Si device. We then 
explored the use of a plated Ni as a buffer layer prior to the plating of Pt layer. We investigated 
plating of Ni films on Co3O4 coated a-Si device using NiSO4/NiCl2 electrolyte with a pH-value of 
~3. A typical plating conditions used is 20mA/cm2 current and with 30 -180 sec. Again, Kapton 
tapes are used to pre-define areas for plating so that clear coat can be applied to create CRTP 
regions. So the device structure in the CRCC region is SS/a-Si triple cell/ITO/ Co3O4/Ni/Pt. Many 
sets of PEC electrodes with such a structure were fabricated and studied. The results show that 
Pt/Ni coated device is more stable than Pt coated device, with an initial STH efficiency of 3.7%. 
The performance drops down to 50% value after approximately 5 hours of operation. It is 
interesting to notice that after the sample is kept overnight in dark, the STH efficiency is recovered 
almost back to its initial value (See Figure 65). This repeats for five consecutive days. The 
mechanism for the degradation of STH efficiency under light and the recovery of efficiency in 
dark needs to be further understood.  

 

 

 

 

 

 

 

 

 

 

 

Figure 66: STH efficiency (%) as a function of PEC hydrogen production time (in hours) for a CRCC 
(electroplated Ni/Pt) / CRTP (ClearCoat) device, showing the recovery of its degradation when the sample 
is placed in dark.  
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Development of Co3O4 as the CRCC layer 

As electroplating an OER catalyst layer exposes the semiconductor under corrosive 
environment, a vacuum coating process is used to deposit CRCC layer using sputter deposition. In 
this approach, we explored the use of a thick Co3O4 layer as the OER catalyst. Such a thick Co3O4 
is deposited on top of a thin Co3O4 layer. A thick Co3O4 layer is acceptable even though its 
transparency is not high, since only partial area of the device front surface is covered with the thick 
Co3O4 layer. An automotive clear coat, with a thickness of around 0.5 mm, is used as the CRTP 
layer. A Kapton tape is used to define the areas for clear coat coverage. Alternatively, a sputter 
deposited SiO2 layer is used as the CRTP layer. Certain overlap of CRCC and CRTP areas are 
designed into the process to avoid undercut corrosion.  

Specifically, we deposited Co3O4 layers with a thickness in the range of 500nm and 1500 
nm as the CRCC layer, over the 70nm Co3O4 coating that covers all areas, using magnetron sputter 
deposition with a power density of around 100W over a 3” round sputter target. Various devices 
with such a Co3O4 (CRCC) and Clear Coat (CRTP) combination were fabricated. Initial results 
show an initial STH efficiency of 3.5% and the performance degraded down to its 50% value after 
55 hours. Studies of the degraded samples showing a change of color in the Clear Coat CRTP 
layer, suggesting the lifetime of the Co3O4 layer may be much longer.  

In order to have a stable CRTP layer, we used magnetron sputtering process to deposit SiO2 
layer. This is done for both CRCC layers made using electroplated Ni/Pt layers and sputter 
deposited Co3O4 layer. For CRCC (Ni/Pt)/CRTP(SiO2) combination, the initial STH efficiency is 
around 3.5%, and the STH efficiency drops to 50% in around 12 hours, representing an 
improvement from CRCC (Ni/Pt)/CRTP(ClearCoat). It is also observed that the STH efficiency 
get recovered to 90% of its initial value after the sample is kept in dark overnight.  

A device structure with CRCC (Sputtered-Co3O4)/CRTP (Sputtered-SiO2) was also 
explored. Two approaches were studied: (1) first SiO2, then Co3O4 (the “SiO2/Co3O4” device); and 
(2) first Co3O4, then SiO2 (the “Co3O4/SiO2” device). Kapton tapes were used to mask out the area 
during sputtering so that the deposition does not occur in the unwanted areas. The Kapton tapes are 
applied in such a way to allow certain overlap of Co3O4 and SiO2 layers to avoid undercut 
corrosion. The Co3O4/SiO2 device shows less durability, with the device fails after around 30 hours 
of PEC operation. The SiO2/Co3O4 device shows an interesting increase in STH efficiency during 
the first 250 hours of run time, followed with a drop after 300 hours (Fig. 66). Further studies are 
needed to understand these observations.  
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Figure 67: STH efficiency (%) as a function of PEC hydrogen production time (in hours) for a CRTP 
(SiO2) / CRCC (Co3O4), showing an increase in STH efficiency during the first 200 hours of operation.  
 

Use of TiO2 as CRTP layer 

We have previously investigated TiO2 as TCCR material. However, the conductivity of TiO2 
limits the performance of PEC device. In this study, TiO2 is used as CRTP layer, where the 
conductivity is not a requirement due to the unique CRCC/CRTP design. After various base line 
depositions on various substrates and various deposition conditions, device with CRCC (Sputtered-
Co3O4) / CRTP (Sputtered-TiO2) is fabricated. The device has shown improved stability, with 
performance at 50% level at ~ 40 hours and with> 1% STH even after 100 hours. 

 

4.8. Substrate type Photoelectrochemical(PEC ) modules 
 

The objective of this task is to develop a substrate-type photo-electrochemical cell for 
hydrogen generation. In such a PEC cell, a triple-junction amorphous silicon photo-electrode 
deposited on a conducting substrate is integrated into a PEC cell in which the hydrogen and 
oxygen compartments are both behind the photo-electrode and are separated by a membrane. 
Areas of research activities include: Development of improved encapsulation materials and 
process, Optimization of grid configuration and installation process, Investigation of effect of 
various cell dimensions in the oxidation and reduction compartments, Design of improved 
membrane holder to prevent hydrogen and oxygen from intermixing, and study of various 
electrolyte inlet and gas/electrolyte outlet configurations.  

Under this task, we have:  

 Developed an encapsulation process for substrate-type cells in large area. Figures 67a 
shows the encapsulation system that MWOE designed, developed and constructed. These 
encapsulation systems may be used to fabricate substrate-type PEC panels of the sizes of 
2ft x 3ft for the mid-size laminator and 3ft x 8ft for the large-size laminator. Figure 67b 
shows some dummy solar panels (without semiconductor layers) encapsulated using these 
laminators.  

 Developed a grid configuration and installation process, in which a grid pattern was 
generated using a computer controlled inkjet nozzle mounted on an X-Y stage.  
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Our collaborator South Dakota State University (SDSU) performed optical modeling of the 
new PEC device design using Macleod Thin Film Optics. The transparent conducting layer 
underneath the CRTP layer is ITO, which is a standard material in thin film silicon solar cells. ITO 
has a refractive index about 2.2. Therefore, the CRTP layer would result in low reflectance (hence 
desirable higher absorption) if its refractive index n meets the condition n = (nITO * nair)

1/2  1.48. 
Silicon oxide films have a refractive index close to this value. Thus, the simulation used SiO2 as 
the CRTP layer in the novel design and the baseline was a single Co3O4 transparent CRCC coating 
(Fig. 69b). In both structures, the minimum reflectance was designed to be at 550 nm, 
corresponding to the highest photon flux in the solar spectrum. The simulated reflectance spectra 
are depicted in Fig. 70. The results show that the novel design can greatly reduce reflection loss; a 
detailed analysis indicates that the average reduction in reflectance is over 10%. Therefore, even if 
the CRCC film is not transparent and take up to 10% surface area, the optical absorption will not 
be lower than the conventional design with a single transparent CRCC layer. 

Analyzing the performance of a variety of TCCR coatings we tested previously, we noted 
that they exhibited similar degradation trend. This phenomenon implies that there might be a 
common mechanism. We suspect that the pinholes and/or grain boundaries in the sputtering 
deposited CRCC layer might be the root reason(s). A study we plan to conduct is to use Atomic 
Layer Deposition (ALD) to fabricate pinhole-free CRCC or TCCR layer. SDSU is establishing an 
ALD system that will be used to perform this research. Fig. 71 shows images of this ALD system 
currently under installation, to be used  to study the grain growth behavior of the ITO, CRCC, and 
CRTP films. 

 

 
Figure 70: (a) A novel PEC device design that includes separated CRCC and CRTP coatings. (b) A 
conventional PEC device with a single CRCC layer. 
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SDSU group performed comprehensive study on the electronic characteristics and the grain 
growth process of indium tin oxide (ITO) thin films using high resolution scanning probe 
techniques, namely electrostatic force microscopy (EFM) and Kelvin probe force microscopy 
(KPFM). The study focused on the effects of substrate temperature and sputtering gas mixture, two 
most critical parameters for transparent conductive oxide film growth. Two types of ITO films 
were compared, which were deposited using radio frequency magnetron sputtering in pure argon 
or 99% argon + 1% oxygen, respectively. 

Figure 72(a-m) shows the corresponding topographic and EFM images of ITO thin films 
deposited at different substrate temperatures and gas mixtures. At 0% oxygen the films deposited 
without any substrate heating showed smooth morphology having grain size ranging from 15-25 
nm with root mean square (rms) roughness 1.22 nm. With increase in the substrate temperature, 
both the grain size and rms roughness increased. The average grain size was 35 nm and 47 nm for 
150°C and 220°C substrate temperature, respectively. This was primarily due to grain growth 
promoted by higher temperature as a thermodynamically favored process. However, in the case of 
1% oxygen shown in Figure 72 (h-j) the grain growth mechanism observed was quite different. 
Films grown at room temperature with 1% O2 showed bigger grain size than the one grown in pure 
Ar. With increase in the growth temperature the grain size increased but saturated at above 150°C 
with the average grain size about 37 nm. This was most possibly due to the complete oxidation of 
the indium tin oxide and the passivated grain boundaries inhibited further growth of the grains. 
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Figure 73: Topography (a-c, h-j) and EFM (d-f, k-m) images of ITO thin films deposited at different 
concentrations of O2 and heating temperatures. (g) shows the zoomed in part of (f). The scale bar in each 
figure is 400 nm. 

 

The EFM images confirmed higher electrostatic force at the grain boundaries in all 
samples, while the samples prepared with 1% O2 exhibited still higher electrostatic force than the 
ones prepared in pure Ar. The grain boundaries were structural defects and hence acted as centers 
for charge accumulation under local electric field, in this case, when an electrically biased tip was 
brought closer to the sample. Such grain boundaries were electrically active and acted as potential 
barriers for charge transport. Hence when the biased tip probed over the grain boundary it 
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experienced higher coulombic force and therefore an increase in the amplitude of the tip was 
observed. In the case of films grown at 220°C without introducing oxygen, inactive grain 
boundaries were seen in Figure 72(g) shown in white circles. These inactive grain boundaries were 
structural defects but were not electrically active. This was an interesting behavior possibly due to 
the growth of smaller grains within a bigger grain, which was more thermodynamically relaxed 
and hence did not act as potential barrier. Such inactive grain boundaries were not observed in 
other films deposited at different conditions.  

Examine the EFM images shown in Figure 72, it was noted that the surface potential 
difference for the ITO film deposited at room temperature without oxygen was much smaller than 
the other samples. This raised the uncertainty that whether or not that potential difference 
represented grain and grain boundary. In order to further understand the micro-structural evolution 
of the ITO films grown with and without oxygen, KPFM measurement was performed based on 
the fact that the work function of the grain and grain boundary should be distinct. 

Figure 73(a-i) shows the topographic and corresponding KPFM images together with the 
topography and surface potential line profiles of the ITO thin films deposited in Ar. The room 
temperature film showed no specific contrast or topographic correlation, indicating highly 
amorphous nature, which was evidenced from the origin of the sharp peaks in the surface potential 
profile shown as the blue line in Figure 73(g). These peaks were higher and more frequent than the 
noise peaks associated with slower servo feedback in the KPFM mode. The above discussed 
results implied that the ITO film deposited at room temperature without oxygen was dominated by 
amorphous phase that has high density of surface states. When the growth temperature increased, a 
distinct correlation between the topography and the KPFM images could be seen. The grains 
showed a higher surface potential compared to the grain boundaries. In the case of the 150oC 
samples, the grain boundaries showed an average 25-30 meV surface-potential drop, while in the 
case of 220oC samples, the potential difference between the grain and grain boundaries reduced to 
10-15 meV. Increasing the substrate temperature thereby improved the electronic quality of the 
grains and grain boundaries. Also the electrically inactive grain boundaries mentioned in the EFM 
images for the 220oC sample were not seen in the KPFM images, either. 

Figure 74(a-i) shows the topographic and corresponding KPFM images together with line 
profiles of ITO thin films deposited with 1% oxygen. The ITO film grown with 1% oxygen at 
room temperature showed a specific topographic correlation unlike the room temperature grown 
film without oxygen gas. This correlation provided evidence of promoted crystallization with the 
inclusion of oxygen gas in sputtering at low temperatures. All the films showed ~20 meV surface-
potential difference between the grain and grain boundary. Relating the topographic and KPFM 
information it could be deduced that grain growth in ITO occurred through defective interfaces. 
Both indium oxide and tin oxide were n-type semiconductors due to the presence of oxygen 
vacancies. With the introduction of oxygen gas during sputtering these defects were considerably 
reduced leading to passivated grains. The passivated grains inhibited further grain growth even at 
elevated temperatures.  
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Figure 74: Topography (a-c) and KPFM (d-f) images of ITO thin films deposited with 0% O2. (g-i) show 
the coresspoding height and surface potential  line profiles in the topographic and KPFM images. The scale 
bar in each figure is 200 nm. 
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Figure 75: Topography (a-c) and KPFM (d-f) images of ITO thin films deposited with 1% O2. (g-i) show 
the corresponding height and surface potential line profiles in the topographic and KPFM images. The scale 
bar in each figure is 200 nm. 
 

Further the sheet resistance of the ITO films was measured using four point probe method 
and plotted versus the substrate temperature as shown in Figure 75. In both cases the sheet 
resistance of the films decreased with the increase in the substrate temperature. The films 
deposited in Ar showed lower sheet resistance (approximately 10 Ω/� for 200 nm thick films 
deposited at 220oC substrate temperature). The films deposited with 1% oxygen showed an order 
of magnitude higher sheet resistance. In particular, the room temperature deposited sample with 
1% oxygen had a sheet resistance in the order of kilo ohms per square and hence was not shown in 
Figure 75. This sample was expected to have higher carrier mobility than the sample deposited in 
pure Ar if only considering its crystallinity. Since the electric conductivity was proportional to the 
product of carrier mobility and carrier concentration, these results implied that oxygen greatly 
reduced the carrier concentration and/or created significant potential barrier at the grain 
boundaries. Both EFM and KPFM results indicated that the ITO films deposited in 1% oxygen at 
150°C and 220°C had similar grain size and surface potential; the decrease in the sheet resistance 
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at higher temperature was therefore mainly due to increased crystallinity that promotes carrier 
mobility.  

 
Figure 76: Variation of sheet resistance with substrate temperature. 

 

The optical transmittance spectra of the ITO films are shown in Figure 76. The films 
deposited in pure Ar showed significant blue shift of the transmittance at increased substrate 
temperature. On the other hand, the films deposited in 1% O2 exhibited little blue shift when the 
substrate temperature varied from 25°C to 150°C and further increase the substrate temperature to 
220°C did not enhance short wavelength transmittance. Recall the above mentioned EFM and 
KPFM results regarding the grain size of the ITO films deposited in Ar or 1% O2, one could 
conclude that the grain boundaries were responsible for scattering and absorbing the short 
wavelength light. 
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Figure 77: Transmittance spectra of ITO films at different substrate temperatures in (a) pure argon, and (b) 
99% argon and 1% oxygen gas environment. 
 

 Plasma treatment of transparent conducting oxide thin films 

Transparent conducting oxide (TCO) film on top of a-Si solar cell is critical to the PEC cell 
performance. To improve the conductivity of the TCO films, high-temperature deposition or 
annealing is generally required. However, this process temperature is limited by the a-Si cell; a 
low temperature favors the conservation of the solar cell performance. To address this dilemma, 
we conducted research on using low-temperature plasma to modulate the properties of TCO films. 
Our hypothesis is that hydrogen plasma can efficiently reduce TCO film and promote the carrier 
concentration and consequently the conductivity. We also assume that oxygen can eliminate 
defects and improve transmittance.  

Our study included the following steps.  

1) Prepare ZnO thin film using a solution process at different temperatures (200°C, 
300°C, 400°C, and 500°C). 

2) Perform H2 and O2 plasma treatment of the samples. 

3) Characterize the structure, optical, and electrical properties of the TCO films. 
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Fig. 77 below shows the transmittance spectra of ZnO films prepared at different 
temperatures. A noticeable change occurred after 300°C. Further increase the process temperature 
to over 400°C did not lead to changes in the transmittance.   

 

 
Figure 78: Optical transmittance of ZnO thin films prepared at different temperatures. 

 

Fig. 78 shows the XRD results of the ZnO films prepared at different temperatures. At 
temperatures below 300°C, the films were almost amorphous. The ZnO (002) peak at 34.320 
degree started to appear at 300°C, but is very weak. Once reaching 400°C, the peak became 
intensive, indicating good crystallinity. In an extreme case of 500°C, the (002) peak was very 
sharp.  
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Figure 80: Optical transmittance spectra of ZnO films prepared at different temperatures and treated with 
oxygen and hydrogen plasmas. (a) 200° (b) 300°C, (c) 400°C, and (d) 500°C. 
 

It is worth noting that the solution-based ZnO thin films required relatively high 
temperatures that would not be suitable for a-Si solar cells. However, this research provided clear 
guidance on the roles of different plasmas. It opens a potential research topic that combines a 
variety of plasma treatment to modulate the TCO film properties. Based on the same principle, the 
plasma treatment can be readily applied to other TCO films that can be prepared at low 
temperatures to enhance the conductivity without compromising the transmittance.  
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Time Magazine as one of the major innovations of the year.  The article in Science (29 September 
2011 issue) "Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-
Abundant Catalysts", describes the development of solar water-splitting cells comprising earth-
abundant elements that operate in near-neutral pH conditions, both with and without connecting 
wires. The MWOE/Xunlight made cells consist of a triple junction, amorphous silicon 
photovoltaic interfaced to hydrogen and oxygen evolving catalysts made at MIT and SunCatalytix 
from an alloy of earth-abundant metals and a cobalt|borate catalyst, respectively. The devices 
described herein carry out the solar-driven water-splitting reaction at efficiencies of 4.7% for a 
wired configuration and 2.5% for a wireless configuration when illuminated with 1 sun of AM 1.5 
simulated sunlight. Fuel-forming catalysts interfaced with light-harvesting semiconductors afford a 
pathway to direct solar-to-fuels conversion that captures many of the basic functional elements of a 
leaf.  A video of hydrogen production by MWOE/Xunlight produced PEC cell is shown in MIT 
web site:  http://video.mit.edu/watch/the-artificial-leaf-9750/. This video shows a MWOE PEC cell 
similar to those shown in Fig. 28 above.  

Under the "artificial leaf" collaboration, MWOE/Xunlight coated 12 active and functional 
layers of semiconductor, metal and TCOs, and MIT/SunCatalytix coated OER and HER catalysts 
layers. This work will not be possible without the major contribution made by MWOE/Xunlight 
under this DOE-funded program.  
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two years, at a cost of $6/m2 (i.e. 20% of the PEC electrode cost). 

We also assume a 10% solar-to-hydrogen conversion efficiency and 1825 hours of standard 
sunlight per year. Land costs are taken to be $500/acre, and 50% coverage is assumed due to the 
use of tilt structures. The plant is designed for 1 ton/day (1 TPD) and costs have been scaled to 50 
tons/day using a "learning factor" of 0.78 (supported by Williams et al 2007). Balance of system 
costs are based on Type 3 PEC example system in a report by Directed Technology with a 
projected reduction in installation costs due to modular design. 

 

Results: 

This calculation demonstrates that when scaled upthe 1 TPD system will be able to produce 
hydrogen at a cost of approximately $5/gge with an electrode lifetime of 2 years before 
refurbishment. As listed in Table 14, scaling the system by a factor of 50 using a 0.78 learning 
factor, to 50 TPD, is projected to reduce costs to under $2/gge, thus meeting DOE’s goal. 

Table 14: H2A Model Parameters and Results 

Parameter Year 3  (1TPD) Ultimate Case (50 TPD) 

Solar to Hydrogen 
Conversion Ratio 

10% 10% 

Plant Size 1 TPD 50 TPD 

PEC Electrode Cost $30.00/m2 $12.80/ m2 

PEC 
refurbishment/Catalyst 
Regeneration Cost 

$6.00/ m2 $2.56/ m2 

Catalyst Replacement 
Schedule 

2 years (expected) 2 years 

Balance of Plant Cost $2.8 million $1.2 million/1 TPD base 

Cost of Hydrogen $4.97/gge $1.95/gge 

 

 

Detailed analysis  

We have carried out some detailed calculation to study what are the major factors in 
determining the final hydrogen generation cost. Some more conservative scenarios were studies 
for a sensitivity analysis. For example, in one of the more conservative approaches, we set the 
following assumption: the cost of the PEC electrode with catalyst coating is increased to $40/m2; 
and the cost of the housing, electrical terminals, etc. is increased to approximately $12/m2; Land 
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the highest ever achieved for direct STH efficient for PEC system made using low cost 
thin film materials without electrical bias.  

 We have successfully transferred the sputtering method to coat Co3O4 on solar cells 
from lab to a proto-type 2 MW roll-to-roll production machine and were able to make 
PEC electrode on a 91cm wide web.  

 We have designed various types of immersion-type PEC modules, with electrode size 
vary from 2”x2” to 4”x4”; and carried out extensive outdoor testing. 

 Using Department of Energy (DOE)’s H2A model, we have performed preliminary 
techno-economic analysis of the immersion-type PEC system based on the concept 
design. The result indicates that with 50 TPD production scale, generation cost of 
$2/gge is achievable.  

 During the course of this project, four PCT patent applications and two provisional 
patent applications have been filed.  

 We have worked with many outside industry and university labs, contributed triple-
junction solar cells for the collaborative PEC research, and provided technical support 
to facilitate the progress of the overall PEC field. 

 We have studied immersion type PEC cells in which one of the voltage-generating 
junctions is a semiconductor-electrolyte rectifying junction, which is deposited on two 
semiconductor junctions to produce sufficient voltage for water splitting.  

 We have studied substrate-type PEC cells in which only the SS substrate was in direct 
contact with electrolyte.  

 


