

**Project Title**

***Deoxydehydration, Deoxygenation and Reductive Coupling of Renewable Alcohols Catalyzed by Oxo-Metal Complexes***

**Applicant/Institution**

The Board of Regents of the University of Oklahoma  
Office of Research Services  
201 Stephenson Parkway, Suite 3100  
Norman, OK 73019-2115

**Principal Investigator:** Kenneth M. Nicholas

Department of Chemistry and Biochemistry  
101 Stephenson Pkwy, University of Oklahoma  
Norman, OK 73019-9705

**Telephone Number:** 405-325-3696  
**Email:** [knicholas@ou.edu](mailto:knicholas@ou.edu)

**Administrative POC**

Susan Cates, Sponsored Programs Coordinator  
Office of Research Services  
(405) 325-4450; [gradora4@ou.edu](mailto:gradora4@ou.edu)

**DOE/Office of Science Program Office**  
DE-FOA-0001414  
Catalysis Science and Chemical Transformations

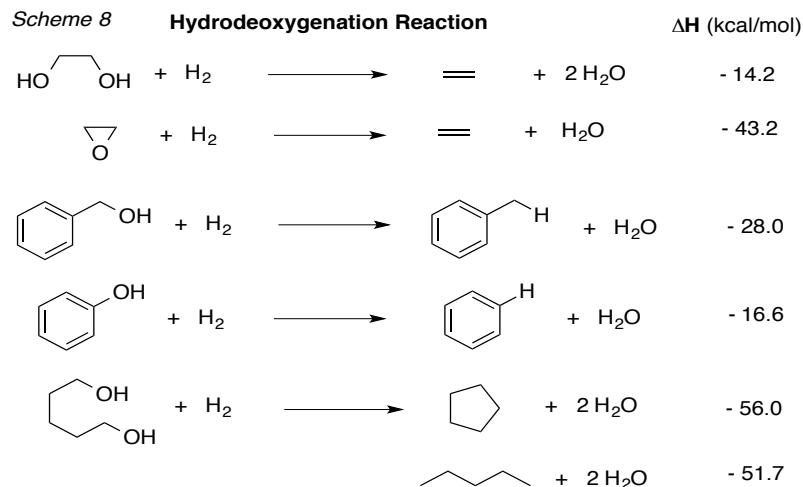
**DOE/Office of Science Technical Program Manager Contact**  
Dr. Raul Miranda, Chemical Sciences, Geosciences, and Biosciences Division  
Office of Basic Energy Sciences SC-22.1/Germantown Building,  
U.S. Department of Energy  
1000 Independence Avenue, SW, Washington, D.C. 20585-1290;  
email: [Raul.Miranda@science.doe.gov](mailto:Raul.Miranda@science.doe.gov); phone: (301) 903-8014

## ***Catalytic Deoxydehydration of Carbohydrates and Polyols to Chemicals and Fuels***

**Kenneth M. Nicholas, PI**  
**University of Oklahoma**

### **ABSTRACT**

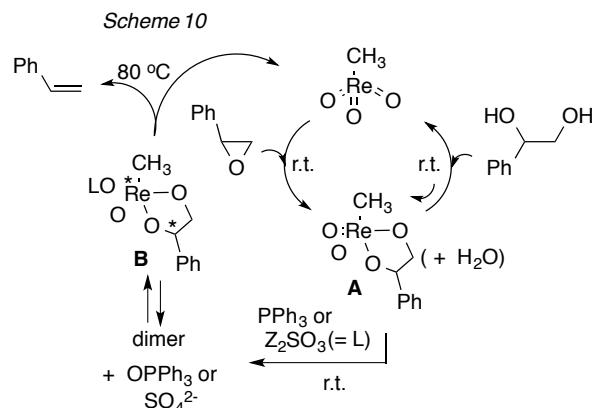
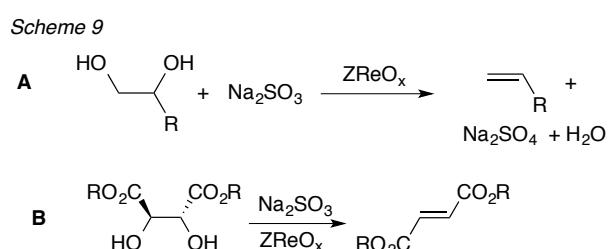
As the world's fossil fuel resources are being depleted and their costs increase, there is an urgent need to discover and develop new processes for the conversion of renewable, biomass resources into fuels and chemical feedstocks. Research and development in this area have been given high priority by both governmental agencies and industry. To increase the energy content and decrease the boiling points of biomass-derived carbohydrates and polyols to the useful liquid range it is necessary to chemically remove water (dehydrate) and, preferably, oxygen (deoxygenate/reduce). The poly-hydroxylic nature of carbohydrates is attractive for their use as functionalized chemical building blocks, but it presents a daunting challenge for their *selective* conversion to single product chemicals or fuels.


The *long term, practical objective* of this project is to develop catalytic processes for the *deoxydehydration* (DODH) of biomass-derived carbohydrates and polyols to produce unsaturated alcohols and hydrocarbons of value as chemical feedstocks and fuels; DODH: *polyol + reductant --(LMO<sub>x</sub> catalyst)--> unsaturate + oxidized reductant + H<sub>2</sub>O*. Limited prior studies have established the viability of the DODH process with expensive phosphine reductants and rhenium-catalysts. Initial studies in the PI's laboratory have now demonstrated: 1) the moderately efficient conversion of glycols to olefins by the economical *sulfite salts* is catalyzed by MeReO<sub>3</sub> and Z<sup>+</sup>ReO<sub>4</sub><sup>-</sup>; 2) effective phosphine-based catalytic DODH of representative glycols to olefins by *cheap* LM<sub>2</sub>O<sub>2</sub> complexes; and 3) computational studies (with K. Houk, UCLA) have identified several Mo-, W-, and V-oxo complexes that are likely to catalyze glycol DODH.

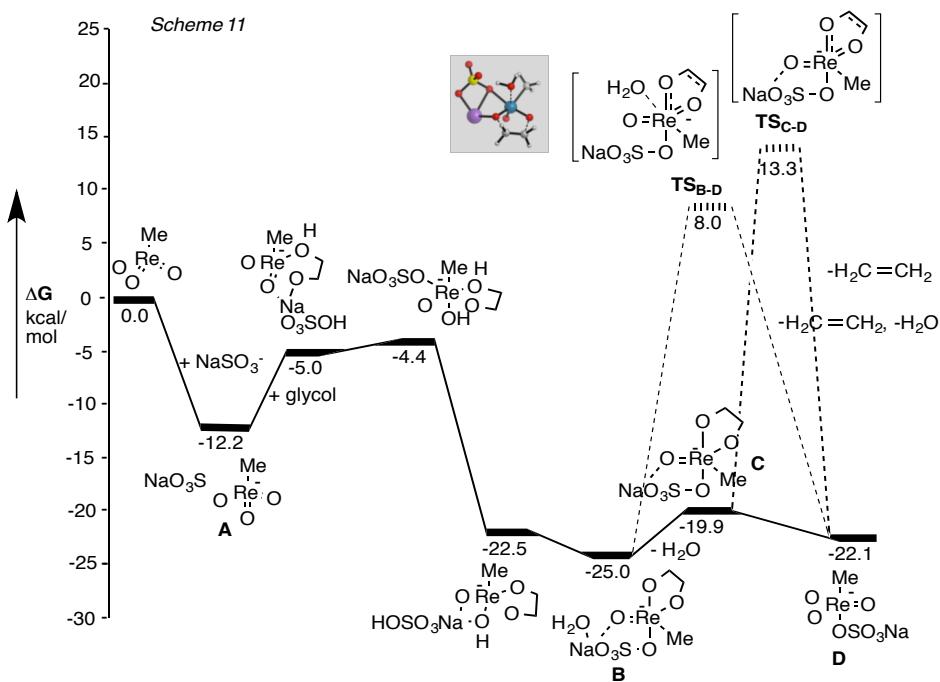
Seeking practically useful DODH reactions of complex polyols and new understanding of the reactivity of polyoxo-metal species with biomass-oxygenates we will employ a two-pronged approach: 1) investigate experimentally the reactivity, both stoichiometric and catalytic, of polyoxo-complexes and practical reductants with representative polyols to establish structure/reactivity relationships and reaction mechanisms; and b) carry out parallel computational studies of these reactions and their mechanisms- both analytical and predictive. Our prioritized action plan is: (1) to optimize the catalytic efficiency, assess the substrate scope/selectivity, and address key mechanistic aspects of *Re-catalyzed, sulfite-driven DODH reactions*; (2) use the findings from (1), together with computational predictions, to discover new, effective *non-precious metal catalysts for sulfite-driven DODH reactions*; and 3) to initiate exploratory studies of CO- and H<sub>2</sub>-driven DODH.

Successful execution of this research project will: 1) provide practical chemical processes for the conversion of biomass into useful chemicals and fuels; 2) bring fundamental new understanding of chemical reactions involving metal-oxo catalysts; and 3) provide educational and technical training of future energy scientists.

## II. Project Results



**A. Thermodynamics of Alcohol Deoxygenation Reactions.** The PI has conceived and estimated the energetics of several potential deoxygenation reactions for diols, alcohols and phenols (Scheme 8). The calculated  $\Delta H_{rxn}$  values (from NIST  $\Delta H_f^0$  data)<sup>1</sup> for all of these transformations are strongly exothermic. Note that CO and sulfite reductions are thermodynamically comparable, ca. 2-5 kcal less exothermic. A growing component of our research program is the computational modeling of metal-promoted reactions,<sup>2</sup> including those of oxo-metal complexes.<sup>3</sup> Our initial DFT modeling of possible intermediates and transition states for these transformations have found energetically viable pathways for experimental validation and discovery (*vide infra*).



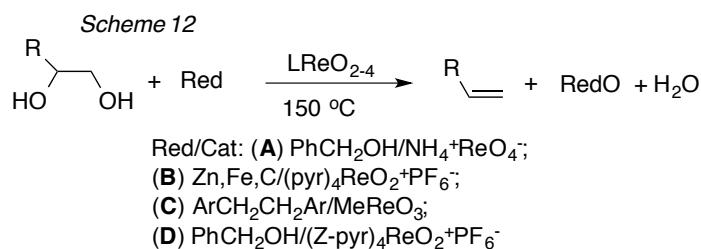

### B. Oxo-Metal Catalyzed Deoxygenation (DODH)

Most of the relevant preliminary work for this project proposal comes from our recent studies of the *oxo-metal promoted DODH* reaction, summarized below. The PI and GRA C. Boucher-Jacobs have co-authored a comprehensive review of DODH chemistry in *Topics in Current Chemistry*.<sup>4</sup>

**B1. DODH by Sulfite-ReO<sub>x</sub>.** MeReO<sub>3</sub> (MTO) and perrhenate salts catalyze the deoxygenation of glycols and the deoxygenation of epoxides by cheap, benign *sulfite* salts, producing olefins regiospecifically (no C=C isomers, Scheme 9A).<sup>5</sup> The DODH reactions of 1,2-cyclohexanediol and (+)-diethyl tartrate occur with high *syn*-elimination selectivity (Scheme 9B). Stoichiometric reaction studies with spectroscopic monitoring revealed (Scheme 10): a) glycol condensation with MeReO<sub>3</sub> to form MeRe<sup>vii</sup>O<sub>2</sub>(glycolate) (**A**,  $K_f$  ca. 0.2) and O-transfer reduction of **A** by sulfite or PPh<sub>3</sub> to give [MeRe<sup>v</sup>O(glycolate)]<sub>1,2</sub> (**B**) both occur at 20 °C; and b) retrocyclization of the reduced Re-glycolates **B** to form olefin (and regenerate MeReO<sub>3</sub>) commences at  $T \geq 80$  °C, showing *alkene extrusion to be the TL step* in this system.



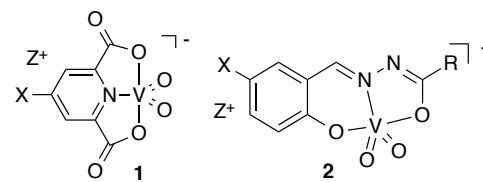
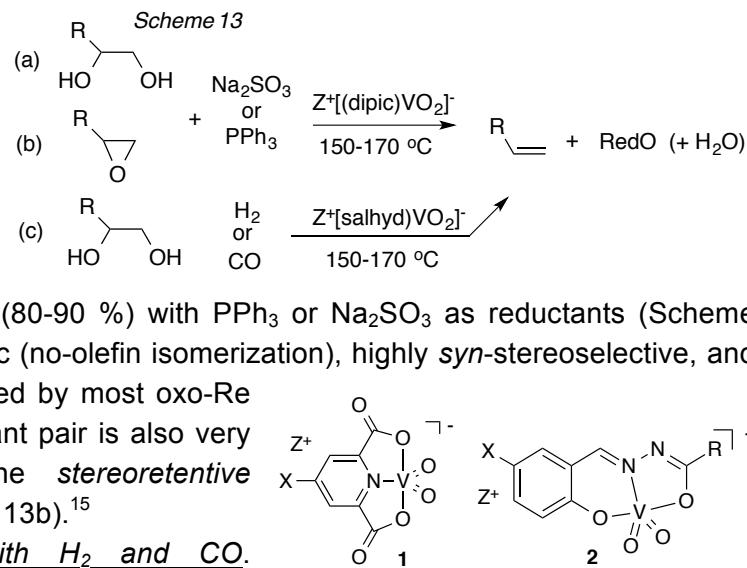
Our DFT computational study of the  $\text{MeReO}_3$ -catalyzed DODH of glycols by sulfite salts evaluated the potential intermediates and transition states and found the lowest energy catalytic pathway involves (Scheme 11):  $\text{NaSO}_3^-$  attack on  $\text{O}=\text{Re}$  of  $\text{MeReO}_3$  to give  $\text{MeRe}^\text{v}\text{O}_2(\text{OSO}_3\text{Na})^-$  (**A**); glycol condensation with **A** in a series of H-transfer steps to form  $\text{MeRe}^\text{v}\text{O}(\text{glycolate})(\text{O}^\text{SO}_3\text{Na})(\text{H}_2\text{O})^-$  (**B**); concerted fragmentation of **B** to the olefin and  $\text{MeReO}_3(\text{OSO}_3\text{Na})^-$  (**D**); and dissociation of  $\text{NaSO}_4^-$  from **D** to regenerate  $\text{MeReO}_3$ .<sup>6</sup> Fragmentation of the  $\text{Re}^\text{v}$ -glycolate **B** is calculated to be turnover-limiting ( $\Delta G_{\text{act}} = 33 \text{ kcal}$ ), confirming our experimental results.



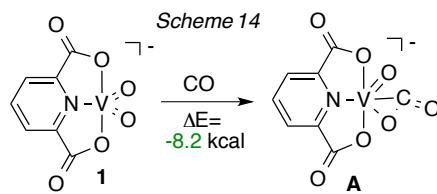

### B2. Advantageous reductants for Re-catalyzed DODH.

a) Benzyl Alcohol- $\text{NH}_4\text{ReO}_4$ . GRA C. Boucher-Jacobs discovered that  $\text{NH}_4\text{ReO}_4$ /benzyl alcohol is an effective catalyst/reagent pair for the efficient DODH of glycols and some polyols (Scheme 12A).<sup>7</sup> The ambient insolubility of  $\text{NH}_4\text{ReO}_4$  enables efficient recovery and recycle of the catalyst, while reversible adduct formation by  $\text{HSO}_3^-$  with co-product benzaldehyde facilitates its convenient separation/recovery from the alkene.

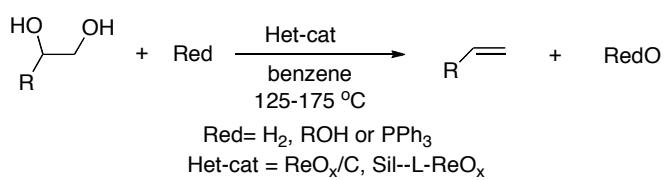
b) Elemental reductants. GRA J.M. McClain discovered that a number of inexpensive elemental reductants, namely Zn, Fe, Mn and C, are effective for the efficient DODH of glycols catalyzed by  $\text{NH}_4\text{ReO}_4$  or  $(\text{Pyr})_4\text{ReO}_2^+\text{PF}_6^-$  (Scheme 12B);<sup>8</sup> the insoluble/gaseous co-products are easily separated/recycled. The reduction of oxo-metal species by elemental reagents is little known or understood.<sup>9</sup>



c) Hydroaromatics. GRA C. Boucher-Jacobs found that hydroaromatics, especially indoline, are effective H-transfer reducing agents in the DODH of glycols catalyzed by  $\text{NH}_4\text{ReO}_4$  and  $\text{MeReO}_3$  (Scheme 12C).<sup>10</sup> Indoline reduces  $\text{MeReO}_3$  to  $\text{MeReO}_2$  via an isolable adduct,  $\text{MeReO}_3$ (indoline), a likely intermediate in the catalytic DODH process. This dehydrogenation




by  $\text{MeReO}_3$  mimics the industrially important, but mechanistically little understood, dehydrogenation of alkanes by supported  $\text{V}_2\text{O}_5$ .<sup>11</sup>

**B3. Ligated Re-DODH catalysts for structure/activity correlation and mechanistic probing:  $\text{LReO}_x^+$ .** The value of easily varied *ligated*- $\text{ReO}_x$  compounds to the development of more active and selective catalysts and for catalyst-based structure/activity correlations prompted GRA M. McClain to investigate  $[\text{trans}-(4\text{-Z-Pyr})_4\text{Re}^{\text{V}}\text{O}_2]\text{PF}_6$ <sup>12</sup> in benzyl alcohol-driven DODH of representative glycols. The parent complex effectively catalyzes the glycol to olefin reaction in good yield (Scheme 12D, 130-150°C; 1-10 mol% **1**) with  $\text{BnOH}$  reductant.<sup>13</sup> Importantly, mechanistic studies of these reactions revealed: 1) a novel rate law of  $\text{rate} = k[\text{cat}]^2[\text{diol}]^{0.5}[\text{BnOH}]^{0.5}$ ; 2) an appreciable rate dependence on substituted 4-Z-Pyr ligands; and 3) the intervention of characterization Re-glycolate intermediates. Together these results suggest that oxidative elimination of olefin and a bimetallic H-transfer reduction step both contribute to the catalyst turnover rate.

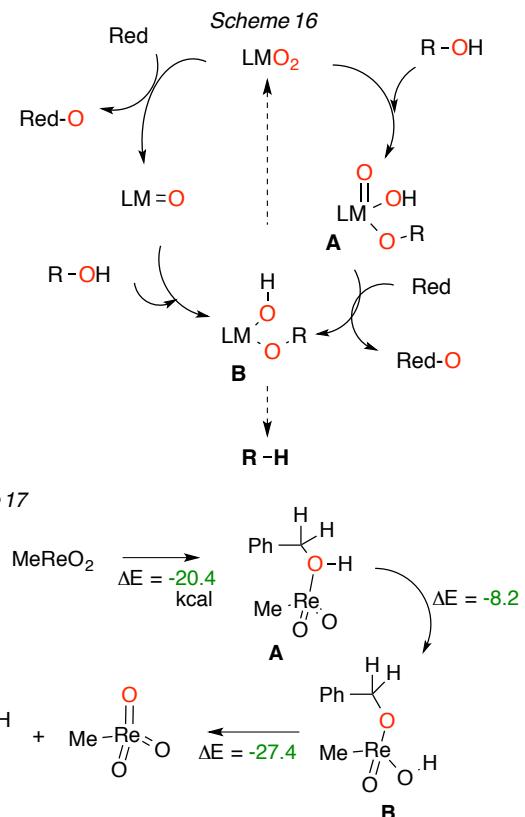

**B4. Earth-abundant oxo-vanadium catalysts for DODH and deoxygenation.** a) A survey of several metavanadate ( $\text{VO}_3^-$ ) and dioxo-vanadium complexes by GRA G. Chapman led to our discovery of the *first non-precious metal catalysts for DODH*.<sup>14</sup> Among these,  $\text{Bu}_4\text{N}[(\text{dipic})\text{VO}_2]$  (**1**, 5-10 mol%, 150°C; 8-48 h) most effectively catalyzes the DODH of glycols, giving moderate to excellent yields (80-90 %) with  $\text{PPh}_3$  or  $\text{Na}_2\text{SO}_3$  as reductants (Scheme 13a). The reactions are regiospecific (no-olefin isomerization), highly *syn*-stereoselective, and comparable in rate to those catalyzed by most oxo-Re catalysts. The same catalyst/reductant pair is also very effective (70-95% yields) for the *stereoretentive* deoxygenation of epoxides (Scheme 13b).<sup>15</sup>



b) ***V-Catalyzed DODH with  $\text{H}_2$  and  $\text{CO}$ .*** Importantly, PDF V. Gopaladasu recently found that Schiff base-derived **2** ( $\text{R}=2\text{-thiophene}$ ) catalyzes the efficient glycol DODH (70-95%) *by the most practical reductants,  $\text{H}_2$  and  $\text{CO}$*  (Scheme 13c),<sup>16</sup> providing the first examples of oxo-V-catalyzed hydrogenations and of CO-driven DODH reactions. The low cost of these V-compounds<sup>17</sup> and their amenability to ligand-based electronic tuning are important features. Additionally, complex **2** exhibits novel reactivity towards CO, forming an unidentified green, paramagnetic product *under ambient conditions* (1 atm CO) that is under investigation. Initial DFT computations on the interaction of CO with  $(\text{dipic})\text{VO}_2^-$  (**1**, either at V or at V=O) suggest the viable formation of a novel  $\eta^2\text{-CO}_2$ -complex **A** via CO oxidation (Scheme 14).<sup>18</sup>



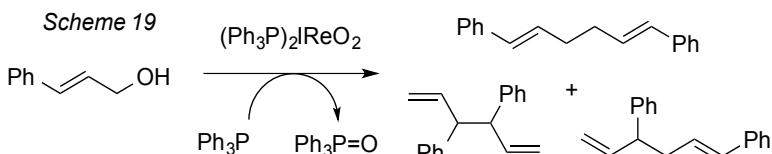
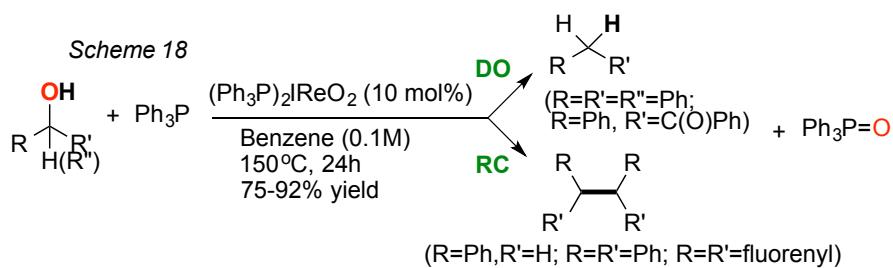
**B.5. Heterogeneous Catalysts for Deoxydehydration.** In a concluding NSF-supported collaboration with Dr. F. Jentoft (O.U./U.Mass. Chem-Eng) we have sought *solid-supported catalysts* for DODH. The first heterogeneous catalyst for the DODH of glycols was produced by treatment of activated carbon with  $\text{NH}_4\text{ReO}_4$  (Scheme 15).<sup>19</sup> This  $\text{ReO}_x\text{-C}$  material catalyzes the  $H_2$ -driven DODH of glycols to their respective olefins in moderate to excellent yield with complete chemo- (no alkane), regio- and *syn*-stereoselectivity; other effective reductants include 2°-alcohols and tetralin. Filtration/recycle experiments show no appreciable *post*-reaction Re-leaching at 20 °C (allowing repeated catalyst use), but some leaching at operating reaction temperatures, suggestive of a combination and homo- and heterogeneous catalysis. Recent efforts by PDFs R. Gangadhara and V. Gopaladasu at O.U. have produced new supported DODH catalysts that show high catalytic activity and good recyclability with modest leaching: a silica-tethered (catecholate) $\text{Re}^{\text{V}}\text{O}_2\text{Cl}$  material and its homogeneous analog<sup>20</sup> and a layered phosphate-supported  $(\text{Pyr})_4\text{ReO}_2^+$ .<sup>21</sup>




### C. Oxo-Metal Catalyzed Deoxygenation and Reductive Coupling of Mono-alcohols.

**C1. Mechanistic concept and computational support.** We envisioned that the deoxygenation of alcohols could proceed by the pathways in Scheme 16. In the right branch the oxidized oxo-metal species  $\text{LMO}_2$  adds the alcohol to form a hydroxo-alkoxo species **A**; **A** is subsequently converted to the reduced hydroxo-alkoxo species **B**, which undergoes oxidative elimination (OE) to the alkane and reforms the original oxo-metal species. In the left branch, the order of the first two steps is reversed.

In a preliminary DFT computational study of the reaction of  $\text{MeRe}^{\text{V}}\text{O}_2$  (from O-transfer reduction of  $\text{MeReO}_3$ )<sup>22</sup> with  $\text{PhCH}_2\text{OH}$  (Scheme 17), we found an energetically downhill pathway for DO via: 1) association of the alcohol with MDO (**A**); 2) tautomerization of **A** to a Re-hydroxo/alkoxo species **B**; and 3) oxidative elimination (OE) from **B** to form toluene and regenerate  $\text{MeReO}_3$ .<sup>64</sup> The transition states have not yet been located, but we do not foresee any excessive barriers and each of these steps has precedent in the experimentally and computationally derived  $\text{MeReO}_3$ -catalyzed DODH reaction pathway.



**C2. Experimental demonstration of oxo-metal catalyzed deoxygenation and novel reductive dimerization of mono-ols.** Experiments conducted during the past six months have



confirmed our predictive computational results.

We found that several activated alcohols (benzylic, allylic,  $\alpha$ -keto) undergo *deoxygenation* (DO) or novel *reductive coupling* (RC) in a  $\text{PPh}_3$ -

driven,  $(\text{PPh}_3)_2\text{ReO}_2$ -catalyzed reaction (75-90 %; Scheme 18).<sup>23</sup> The reactions exhibit extraordinary *substrate-dependent selectivity*, being highly selective for DO with  $\text{Ph}_3\text{COH}$  and  $\text{PhCH}(\text{OH})\text{C}(\text{O})\text{Ph}$ , but RC dominates for  $\text{Ph}_2\text{CHOH}$ , (fluorenyl)<sub>2</sub>CHOH and  $\text{PhCH}=\text{CHCH}_2\text{OH}$ ;  $\text{PhCH}_2\text{OH}$  affords a combination of DO + RC products. The cinnamyl alcohol reacts to give a non-statistical regiosomeric mixture of dienes (Scheme 19). Remarkably, just recently we have found that *cheap* (*Salhyd*) $\text{VO}_2^-$  complex **2** also catalyzes efficient RC of  $\text{Ph}_2\text{CHOH}$  by the practical reductant CO (160 °C, 10 atm)!<sup>62</sup> Although there are a few reports of *stoichiometric* deoxygenation and reductive coupling of alcohols by reduced metal reagents ( $\text{Ti}^{iii}$ ,  $\text{La}^{ii}$ ,  $\text{Nb}^{iii}$ ),<sup>24</sup> the above are rare examples of homogeneous *metal-catalyzed* reductions of alcohols.



*D. D.O.E. Supported Publications:* 8 journal publications + 1 review article + 4 papers were submitted or are in preparation for the 4 yr grant period; indicated in the bibliography by \*<sup>\*\*</sup>.

*E. References and Notes.* (\*= DOE-supported publication; \*\*=DOE supported paper submitted or in preparation)

1. Data from the NIST Chemistry website; <http://webbook.nist.gov/chemistry/>
2. Tran, A. T.; Liu, P.; Houk, K. N.; Nicholas, Kenneth M. Regioselectivity in the Cu(I)-Catalyzed [4 + 2]-Cycloaddition of 2-Nitrosopyridine with Unsymmetrical Dienes, *J. Org. Chem.* (2014), 79, 5617-5626. Barman, D. N.; Liu, P.; Houk, K. N.; Nicholas, K. M. On the Mechanism of Ligand-Assisted, Copper-Catalyzed Benzylic Amination by Chloramine-T, *Organometallics* (2010), 29(15), 3404-3412. Penoni, A.; Palmisano, G.; Zhao, Y.-L.; Houk, K.N.; Volkman, J.; Nicholas, K. M. On the Mechanism of Nitrosoarene-Alkyne Cycloaddition, *J. Am. Chem. Soc.* (2009), 131, 653-661.
- \*3. Liu, P.; Nicholas, K. M. Mechanism of sulfite-driven,  $\text{MeReO}_3$ -catalyzed deoxydehydration of glycols, *Organometallics* (2013), 32, 1821-1831.
- \*4. C. Boucher-Jacobs and K. M. Nicholas, "Deoxydehydration for the Conversion of Biomass Polyols to Olefins", in *Selective Catalytic Conversion of Biomass to Chemicals*, Topics in Current Chemistry, K.M. Nicholas, ed. Springer publ. 2014.
- \* 5 . a) S. Vukuturi, G. Chapman, I. Ahmad, K. M. Nicholas, Rhenium-Catalyzed Deoxydehydration of Glycols by Sulfite, *Inorg. Chem.* (2010), 49, 4744 –4746; \*b) I. Ahmad, G. Chapman, K. M. Nicholas, Sulfite-Driven, Oxorhenium-Catalyzed Deoxydehydration of Glycols, *Organometallics* (2011), 30, 2810 – 2818.

---

6. P. Liu, K. M. Nicholas, Mechanism of Sulfite-Driven,  $\text{MeReO}_3$ -Catalyzed Deoxydehydration of Glycols, *Organometallics* (2013), 1821-1831.

\*7. C. Boucher-Jacobs and K. M. Nicholas, Catalytic Deoxydehydration of Glycols with Alcohol Reductants, *ChemSusChem*, 2013, 6, 597–599.

\*8. J. M. McClain and K. M. Nicholas, Elemental Reductants for the Deoxydehydration of Glycols, *ACS Catalysis* 2014, 4, 2109-2112.

9. a) Srikantan, B. S. Nascent hydrogen. I. Reduction of potassium permanganate by nascent hydrogen from sulfuric acid and metals: zinc and cadmium, *Journal of the Indian Chemical Society* (1951), 28, 69-71. b) Ramat, A. Reduction by activated charcoal of inorganic reducing agents in solution. *Bulletin de la Societe Chimique de France* (1940), 7, 227-9. c) Wassermann, A. Interface potential and reactions at surfaces. I. Reduction of permanganate by charcoal *Z. physik. Chem.* (1930), 149(Abt. A), 223-39. d) The action of liquid amalgams on perrhenates, Lazarev, A. I. *Zhurnal Neorganicheskoi Khimii* (1956), 1, 385-91. e) Tomicek, O.; Tomicek, Reduction of perrhenates, F. *Coll. Czech. Chem. Comm.* (1939), 11, 626-38.

\*10. Boucher-Jacobs, C.; Nicholas, K. M. Oxo-rhenium-catalyzed deoxydehydration of polyols with hydroaromatic reductants, *Organometallics* 2015, 34, 1985-1990.

11. Wang, C.; Chen, J.-G.; Xing, T.; Liu, Z.-T.; Liu, Z.-W.; Jiang, J.; Lu, J., Vanadium Oxide Supported on Titanosilicates for the Oxidative Dehydrogenation of n-Butane, *Industrial & Engineering Chemistry Research* (2015), 54(14), 3602-3610. Al-Ghamdi, S. A.; de Lasa, H. I. Dehydrogenation over  $\text{VOx}/\gamma\text{-Al}_2\text{O}_3$  catalyst, *Fuel* (2014), 128, 120-140. Qiao, A.; Kalevaru, V. N.; Radnik, J.; Srihari Kumar, A.; Lingaiah, N.; Sai Prasad, P. S.; Martin, A. dehydrogenation of ethane to ethylene over  $\text{V}_2\text{O}_5/\text{Nb}_2\text{O}_5$  catalysts, *Catalysis Communications* (2013), 30, 45-50. M. Karki, H. C. Araujo, J. Magolan, Dehydroaromatization with  $\text{V}_2\text{O}_5$ , *SYNLETT*, 2013, 24, 1675–1678.

12. Thorp, H. H.; Kumar, C. V.; Turro, N. J.; Gray, H. B. *J. Am. Chem. Soc.* (1989), 111, 4364-8. J. C. Brewer and H. B. Gray, Efficient Syntheses of Dioxorhenium(V) Complexes, *Inorg. Chem.* 1989, 28, 3334-3336.

\*\*13. J. M. McClain, Ph. D. dissertation, 1/2015; J. M. McClain and K.M. Nicholas, manuscript in preparation 10/2015.

\*14. Chapman, G., Jr.; Nicholas, K. M. Vanadium-catalyzed deoxydehydration of glycols, *Chemical Communications* (2013), 49, 8199-8201.

\*\*15. G. Chapman, Jr. and K. M. Nicholas, subm. for publication, 2015.

\*\*16. V. Gopaladasu and K. M. Nicholas, manuscript in preparation, Nov. 2015.

17. The relative cost of V, Mo, Re compounds closely correlates with the abundance of the elements. Vanadium's abundance in the earth's crust is 120 parts per million by weight vs. Molybdenum's 1.2 parts per million vs. Rhenium's 0.007 parts per million. Emsley, John (2001) in *Nature's Building Blocks: An A-Z Guide to the Elements*. Oxford, UK: Oxford University Press.

18. K. M. Nicholas, DFT-B3LYP-LANL2DZ, unpublished results, 7/2015.

19. Denning, A.L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. Deoxydehydration of Glycols Catalyzed by Carbon-Supported Perrhenate, *ChemCatChem* (2013), 5, 3567-3570.

20. R. Gangahhara, V. Gopaladasu and K.M. Nicholas, manuscript in preparation, Dec. 2015.

21. R. Gangahhara and K.M. Nicholas, unpublished results, 2014.

22. J. H. Espenson and D. T. Y. Yiu, Kinetics and Mechanisms of Reactions of Methyldioxorhenium(V) in Aqueous Solutions: Dimer Formation and Oxygen-Atom Abstraction Reactions, *Inorg. Chem.* 2000, 39, 4113-4118.

\*\*23. G. Kasner, C. Boucher-Jacobs, J.M. McClain and K.M. Nicholas, Oxo-Rhenium Catalyzed Deoxygenation and Reductive Coupling of Alcohols, manuscript submitted, Jan. 2016.

---

24. H. R. Dieguez, A. Lopez, V. Domingo, J. F. Arteaga, J. A. Dobado, M. M. Herrador, Jose F. Q. del Moral, and A. F. Barrero, Weakening C-O Bonds: Ti(III), a New Reagent for Alcohol Deoxygenation and Carbonyl Coupling Olefination, *J. Am. Chem. Soc.* 2010, **132**, 254–259. T. Nishino, Y. Nishiyama, and N. Sonoda, Deoxygenative Dimerization of Benzylic and Allylic Alcohols, and Their Ethers and Esters Using Lanthanum Metal and Chlorotrimethylsilane in the Presence of a Catalytic Amount of Iodine and Copper(I) Iodide, *Bull. Chem. Soc. Jpn.* 76, 635–641 (2003). M. Sato and K. Oshima, *Chem. Lett.* 1982, 157.