arXiv:1508.00757v1 [cond-mat.supr-con] 4 Aug 2015

Campbell response in type Il superconductors under strong pinning conditions
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Measuring the ac magnetic response of a type II superconductor provides valuable information
on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a
microscopic expression for the Campbell length Ac, the penetration depth of the ac signal. We show
that A\c is determined by the jump in the pinning force, in contrast to the critical current j. which
involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ
for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the
latter situation. We compare our findings with new experimental data and show the potential of
this technique in providing information on the material’s pinscape.

PACS numbers: 74.25.N-, 74.25.0p, 74.25.Wx, 74.25.Ha

Technologically useful superconductors are of second
type and acquire their desired transport and magnetic
properties through vortex pinning, i.e., vortices [1] get
immobilized by material defects. The characterization
of the pinning landscape (or pinscape) is of great im-
portance but presents quite a formidable task. Mea-
surements of dc transport properties, either dynamically
through the current—voltage characteristic [2] or stati-
cally through magnetization [3], are standard techniques
used to gain information on the pinscape. Similarly, the
ac magnetic response of superconducting samples [4] pro-
vides insight into the shape of pinning potentials. Unfor-
tunately, the relation between the measured penetration
depth of the ac signal, the so-called Campbell length Ao,
and the parameters of the pinscape is only known on a
phenomenological level. In this letter, we present a mi-
croscopic derivation of the Campbell length within the
framework of strong pinning theory, thereby providing
access to microscopic parameters of pinning defects and
substantially enlarging the scope of applications of this
measurement technique.

Probing superconductors via their ac magnetic re-
sponse goes back to the 60-ies and culminated in Camp-
bell’s work [4] which provided the first consistent expla-
nation of the penetration phenomenon (see Refs. [5] for
further developments): for small ac magnetic-field ampli-
tudes h,. and frequencies w, vortices oscillate reversibly
within their pinning potentials (described as harmonic
wells a2?/2), with the external signal h,. penetrating
the sample on a distance Ao < B/y/« of order microme-
ters. Later work by Lowell [6] and Campbell [7] provided
a more quantitative but still phenomenological under-
standing within a model pinscape. Here, we make use
of the strong pinning scenario allowing us to perform a
quantitative and microscopic analysis of the ac magnetic
response. In particular, we find the dependence of the
Campbell penetration depth A¢ on the vortex state, e.g.,
the critical (Bean [3]) state with a linear vortex density
gradient supporting the critical current density j. or a

field-cooled state with a constant induction B, and pre-
dict the occurrence of new hysteretic effects. The com-
parison with recent experiments [8] confirms our predic-
tions.

We consider a geometry with the superconductor oc-
cupying the half-space X > 0, the magnetic induction
B(X,t) = Bp+0B(X,t) directed along Z, and the screen-
ing current j flowing along Y (capital and lower case let-
ters distinguish between macroscopic and microscopic co-
ordinates). The equation of motion for the macroscopic
vortex displacement U (X, t) reads

natU:FL<jaU)+Fpin(X7U)a (1)

with the Lorentz force Fj balanced by dissipative and
pinning forces (n denotes the viscosity [9]). The displace-
ment U(X,t) relates to the induction via dB(X,t) =
—By0xU(X,t) and is driven at the surface X = 0 by
the small external field h,. < By, dB(0,t) = hace L.
The Lorentz force Fy, = (jo +07)B/c involves an ac com-
ponent §j = —cOxdB/4m and writing the pinning force
Foin = Fo+ 0 Fpin, with Fy the force density in the initial
vortex state balancing the de Lorentz force joBy/c, we
obtain the dynamical equation

noU — (B3 /AT)02U — §Fpin(U) = 0. (2)

Following [4], one assumes small oscillations of the vor-
tices near the potential minima. This motivates the phe-
nomenological Ansatz §F;,(U) = —aU for the pinning
force density. Solving (2) for the displacement field,

U(X,t) = Ao(hge/By)e™X/rceiwt (3)
with A\ (w) = BE/4n(a — iwn), (4)

results in the Campbell length A\c = Ao(w = 0) =
(B2 /4ma)'/? at low frequencies.

Here, our goal is to derive an expression for d F;, start-
ing from a microscopic perspective. This can be done
within the framework of strong pinning theory which goes
back to work of Labusch [10] and Larkin and Ovchinnikov



[11], with recent further studies on the critical currents
in strong and weak pinning scenaria [12], numerical sim-
ulations of vortex motion [13], and the current—voltage
characteristic [14]; note that the qualitative framework
of weak collective pinning theory [11] is not sufficient to
develop a quantitative understanding of Ac.

Consider a representative vortex within the flux-lattice
driven along x on a trajectory described through the
asymptotic coordinate ro, = (z,b) at large |z|; the dis-
tance b along y is the impact parameter with respect to a
defect at the origin. Within the strong pinning context,
defects act individually, generating a pinning potential
ep(r, z). Considering a trajectory with maximal pinning,
i.e., b = 0 and including the deformation energy of the
vortex, its total energy as a function of x takes the form
(we assume a point-like defect with ep(z, z) = ep(x)d(2)

[12])
() = 5Ou(e)” + eyl + u(a)], (5)

with u(z) the microscopic displacement field in the plane
z = 0, see Fig. 1, and C the effective elasticity of the
vortex embedded within the lattice,

~ 1 A3k 1
= 7/ 3 2 2 2" (6)
2 (27T) C66 (km + ky) + C44(k)kz

Here, cgs and cyq(k) denote shear and dispersive tilt
moduli and proper integration in (6) provides the result
C ~ (aZ/\)\/co6caa(0) with ag? = By/®q the vortex
density (®9 = hc/2e is the flux unit and A the London
penetration depth). Minimization of (5) with respect to
u (at fixed x) generates the self-consistency condition

Cu(x) = fylz + u(z)] (7)

for the displacement field u(x), where f,(z) = —e; () is
the bare force profile of the pinning defect, the prime de-
noting derivative with respect to x. The maximal slope
in f, (realized at x.,) defines the regime of strong pinning
[10]: for & = [fy(2m)]/C > 1, the condition (7) gener-
ates two stable solutions for the displacement field u(z),
a pinned and an unpinned branch, see Fig. 1. The condi-
tion x = 1 is the famous Labusch criterion [10] separating
strong pins with K > 1 from weak pins when x < 1.
Assuming a homogeneous random distribution of de-
fects with small density n,, the macroscopic pinning force
density Fpi, derives from averaging the pinning forces
fplz+uo(x)] over all positions |z| < ag/2 within a lattice
period, with u, denoting the branch that is occupied with
vortices. This occupation depends on the state prepara-
tion, e.g., for a Bean state with vortices driven along =,
the occupation of the pinned branch extends over the
interval [—x_,x], see Fig. 1, such as to produce the
maximal force Fiin = Fg,
Fe=nplfom) =mis [ S fnlalles (8)
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FIG. 1. Pinning energy epin and force fpin in a strong pin-
ning situation for a Lorentzian potential. The bistable solu-
tions near the defect describe pinned and unpinned branches.
Thick lines (blue) mark occupied branches in the Bean state,
dotted lines are unstable solutions, dashed lines are the jumps
making up for Aepin and A fpin. Left: strong pinning situa-
tion for a representative vortex. The microscopic displace-
ment w(z) = fpin(7)/C has the same shape as fpin(z). Right:
change in branch occupation when the vortex system moves
by U.

where foin(z) = fp[r + u(z)] and |, refers to the occu-
pied branch wu,(x) (we assume maximal pinning for all
trajectories with 2|b| < ¢, ~ &, € the coherence length).
Making use of the relation fpin(z) = —depin(z)/dz, we
arrive at a simple expression for the critical current den-
sity je = (C/B)Fm

) c to
o= gy [do[—deyin(o)/dal,) = T

0 ag

where Aepiy is the sum of jumps at —z_ and o4 in epin(x)
where the occupation changes between unoccupied and
occupied branches [10, 11], see Fig. 1.

Equipped with this microscopic understanding of
pinned vortex matter in the Bean state, we return to the
problem of ac magnetic response. Within strong pinning,
we can follow the changes in the occupation of pinned
and unpinned branches as vortices are driven by the ac-
magnetic field and calculate the time dependent and in-
homogeneous change in the pinning force 6 Fpin[U(z,t)].
A macroscopic shift U > 0 pushes vortices in the direc-
tion of the Lorentz force; vortices at —x_ and z jump to
pinned and unpinned branches, respectively, leaving the
branch occupation unchanged, hence 6 Fpi, (U > 0) = 0.
Otherwise, a negative displacement U < 0 shifts the
boundaries between occupied and unoccupied states to
the left, see Fig. 1. This results in a change of the macro-
scopic restoring force

t
O Fpin(U <0) = = [ dalfoin(@)lo. = foin(@)lo.o], (10)
0Jap

where the index |, i refers to the occupation where vor-
tices have been shifted by U. Expanding the integrand



for small U, we arrive at the expression
t
§Fpin(U < 0) = npa% /dz dfpin(@)/d| U, (11)
0 Jao

resulting in the strong pinning result for 0 Fpin,
§Fpin(U) ~ —ny(ti [ad) A foin O(-U)U,  (12)

with A fpin the sum of jumps in the function fpin.

Inserting this result into Eq. (2) generates a complex
vortex dynamics as flux enters the sample in a sequence
of diffusive pulses until the field is raised to Bg + hqae,
see [15] for a detailed description of this initialization
process. After saturating the sample at this higher field
level, the displacement U(X,t) assumes the form

U(X,t) = Up(X) = Ac(hac/Bo)e X/ 1 — e, (13)
with Up(X) = (hae/Bo)(L — X) generating the shift
in field By — Bo(l — 6XU0) = By + hac and L the
penetration depth of the Bean profile [16]. The sec-
ond term accounts for the penetration of the external
field with respect to the new Bean state, dB(X,t) =
hace=X/*¢ (1 — e=**). The Campbell penetration depth
can be expressed by the microscopic parameters, the av-
erage curvature d ey, (x)/dz?, of the pinscape,

B2 _npty n

_ 2 2| _

ao

t1
2(2) A fpin. (14)

Making use of the estimates Afpin ~ fp, t1 ~ &, and
K ~ fp/€C, we find that A2 ~ A\?/(knyao€?) > A2 with
knpapé? < 1 the small parameter defining the three-
dimensional strong pinning regime [12]. Comparing the
results for j. and A\;2, Egs. (9) and (14), we observe
that these two quantities address different properties of
the pinscape, the jumps in pinning energy and force, re-
spectively. As a consequence, the simple scaling j. ~
cal/B ~ (c/4m)¢B /A2 previously conjectured on the ba-
sis of the phenomenological result (4) turns out incorrect
and has to be replaced by j. ~ (c/4m)kEB/A2 o [A fpin]?.
Hence, care must be taken when translating measured
data on Aq into predictions for j. [8].

Next, we turn to the field-cooled state with jo = 0 and
Fy = 0. Following (14), the determination of the jumps
in the, now symmetric, occupation of fpi, is the central
task in the calculation of A-. Assuming defects in the
form of metallic or insulating inclusions, one can show
[15] that pinning turns on smoothly upon crossing the
H5(T) line. Hence, the vortex system changes from weak
to strong pinning upon decreasing the temperature T be-
low the Labusch temperature 7T}, defined through £(7},) =
fH(@m)/Clr, = 1. At T, the pinning force fyin(z) devel-
ops an infinite slope at zoy, [dfpin/dT|zop, ] 7, = 00. Lower-
ing the temperature below 17, the function fpin(z) devel-
ops two branches, pinned and unpinned ones, which start
and end at the boundaries +x; and £x_ close to *xq..
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FIG. 2. Evolution of the pinning force fpin crossing over from
weak to strong pinning. The jump in the occupation between
pinned and unpinned branches first appears at xor and re-
mains there if the branch edges at x+ move away in opposite
directions with decreasing temperature, z— < zor < x4, see
(a). If zor, < z— < x4, see (b), the jump is pinned to x— and
hysteretic effects show up upon thermal cycling. (¢) Pinscape
fpin(z) at high magnetic fields involving only pinned and un-
stable branches. The relevant jumps are located at z for the
zero-field-cooled sample (left) and at ag/2 for the field-cooled
situation (right).

In order to decide upon the branch occupation below T},
we have to determine the relative arrangement of the po-
sitions xg; and x4. We distinguish three cases, of which
(a) is the simplest one, see Fig. 2(a), with x1 moving
away from xzg; in different directions. In this case, the
branch occupation jumps between pinned and unpinned
at +xo, and a small ac field produces a small reoccu-
pation around these points; the relevant jumps in fpin
thus appear at £z, with Afpin = 2A fpin|s,, entering
the expression for the field-cooled Campbell length (14).
Case (b) shown in Fig. 2(b) describes the situation where
both branches grow beyond xq;, with decreasing temper-
ature, xg, < x— < x4. Then, vortices between z(, and
z_ jump to the pinned branch and the relevant jump in
the occupation is pinned to z_. Accordingly, the jump in
the pinning force entering A¢ is given by 2A fpin|, . Fi-
nally, case (b’) involves a shrinking of the branches with
respect to xg., i.e., - < x4 < g, and the jump in
occupation is pinned to x4, Afpin = 2Afpinls,. As a
result, the Campbell length A\ may differ for the zero-
field-cooled (Bean type) and field-cooled vortex states in
various respects, depending on the case at hand.

Quantitative analytic results can be obtained at tem-
peratures below but close to Ty where k 2 1. Expanding
the bare pinning force f,(x) around z,, (where f; van-

ishes), fy(2) = fp(xm) + fylo, (@ — 2m) = (@ — 2,)°/3



with 2y = —f/"|,,, > 0, we obtain the result

2 |C
xi:xoig,/;(n—l)m, (15)

with £g = T — fp(2)/C > 2, the generalization of gy,
to temperatures below Tt,, 29(7:.) = xor. The jumps at
+x4 then are equal and smaller than the jumps at +zq;.
For case (a), this results in different (by & 7%) Campbell
lengths Ac|re < Ac|zre, while for the cases (b) and (b’)
the two lengths are equal. For large x > 1, the three
jumps are all different, resulting in different Campbell
lengths with Ac|pct < Ac|zre < Ac|pe—, where £ refer to
the scenaria involving the large and small jumps at z4.

Which of the above scenaria is realized in a specific
case depends on the temperature dependence of elastic
and pinning forces. Close to T;, the behavior of x4 is
dominated by g ~ xo, + a7, with 7, = 1—T/T, and the
sign of the prefactor a deciding upon which case (b) or
(b’) is realized. On the other hand, for larger 7, the sec-
ond term in (15), o (k—1)3/? 72/% becomes dominant
and case (a) is realized.

Furthermore, hysteretic behavior of A, appears in
cases (b) and (b’) when first cooling and subsequently
reheating the sample (from T),;,). Indeed, when both
branches increase or decrease below zg, upon cooling,
the relevant jump appears at the branch edge xcjose that
is closer to xg,. On reheating, the jump first remains
pinned to Zciose(Tmin) until the other edge xf,, further
away from xg; is hit, whereupon the jump follows the
position xg,, (T), see Fig. 2(b). Otherwise, in case (a) or
when Z¢jose goes through an extremum, no hysteresis ap-
pears upon thermal cycling as long as the jump in fpiy is
realized [17] away from the branch edges at +z .

Next, we briefly discuss the situation at high fields
when the pinned branch extends beyond the vortex sep-
aration ag, x4 > ag/2. Close to H.,, the bare pin-
ning force is well approximated by the lowest harmonic,
folz) =~ fosin(2wz/ag); the competition with elastic
forces then produces the multi-valued function fpin(x)
shown in Fig. 2(c). In this situation, the branch edges
at £x_ have vanished and only the pinned branches be-
tween +x survive. For the Bean state, the jump in force
(A fpin|z, ) determining A is located at x.. For the field-
cooled state, the (slightly larger) jump in force is located
at ap/2 instead, hence Aglpc S Ac|zrc; no hysteresis is
expected in this regime. Upon decreasing the field, ad-
ditional harmonics become relevant in the description of
fp(x) and its maximal slope at x,,, moves away from ag/2,
ie., &y, < ag/2. As xzg, also decreases below ag/2 an un-
pinned branch starts developing and we cross over to the
low-field domain involving both the pinned and unpinned
branches. Note that neither of these regimes is small but
rather occupy similar size regions within the H-T phase
diagram.
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FIG. 3. Experimental (left) and theoretical (right) traces of
the Campbell length Ac(T) for zero-field-cooled (blue) and
(hysteretic) field-cooled (red) states at low (main panels) and
high (inserted panels) magnetic fields.

In Fig. 3 we compare our main new findings, the de-
pendence of A¢ on the vortex state and the appearance of
hysteretic effects, with measurements on a single crystal
superconductor SrPdsGes (isostructural to the Fe- and
Ni-pnictides) using a tunnel-diode oscillator technique,
see Fig. 4(a) of Ref. [8] (shown are magnified traces at
0.02 T and 0.3 T). A small ac excitation field h,. ~ 20
mOe is superimposed on the dc field ensuring linearity of
the response, see Ref. [18] for experimental details. The-
oretical results for the Campbell lengths are found by
solving Eq. (7) and extracting the relevant jumps A fpin,
assuming a pinning model based on insulating inclusions
[15] (we use standard Ginzburg-Landau scaling). All fea-
tures, the dependence of A\ on the state preparation, the
appearance of hysteresis upon thermal cycling, as well
as the reversal from Ac|zre < Aclpe- at low fields to
Aclre < Aclzre at high fields, are visible in the experi-
ment and captured by the model; note that other pinning
models based on metallic inclusions or §7,-, §¢-pinning
[19] (¢ the mean free path) produce different behavior.

In conclusion, making use of strong pinning theory, we
have presented a microscopic and quantitative expression
for the Campbell length A\¢ that captures specific proper-
ties of the pinscape. Our theory predicts the dependence
of A¢ on the vortex state (FC versus ZFC) and explains
the appearance of hysteretic effects, with results that are
in good agreement with experiments. With the new in-
formation at hand, the pinscape can be analyzed in much
more detail via deliberate state preparation ‘in between’
the field- and zero-field-cooled extremes.
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