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Measuring the ac magnetic response of a type II superconductor provides valuable information
on the pinning landscape (pinscape) of the material. We use strong pinning theory to derive a
microscopic expression for the Campbell length λC, the penetration depth of the ac signal. We show
that λC is determined by the jump in the pinning force, in contrast to the critical current jc which
involves the jump in pinning energy. We demonstrate that the Campbell lengths generically differ
for zero-field-cooled and field-cooled samples and predict that hysteretic behavior can appear in the
latter situation. We compare our findings with new experimental data and show the potential of
this technique in providing information on the material’s pinscape.

PACS numbers: 74.25.N-, 74.25.Op, 74.25.Wx, 74.25.Ha

Technologically useful superconductors are of second
type and acquire their desired transport and magnetic
properties through vortex pinning, i.e., vortices [1] get
immobilized by material defects. The characterization
of the pinning landscape (or pinscape) is of great im-
portance but presents quite a formidable task. Mea-
surements of dc transport properties, either dynamically
through the current–voltage characteristic [2] or stati-
cally through magnetization [3], are standard techniques
used to gain information on the pinscape. Similarly, the
ac magnetic response of superconducting samples [4] pro-
vides insight into the shape of pinning potentials. Unfor-
tunately, the relation between the measured penetration
depth of the ac signal, the so-called Campbell length λC,
and the parameters of the pinscape is only known on a
phenomenological level. In this letter, we present a mi-
croscopic derivation of the Campbell length within the
framework of strong pinning theory, thereby providing
access to microscopic parameters of pinning defects and
substantially enlarging the scope of applications of this
measurement technique.

Probing superconductors via their ac magnetic re-
sponse goes back to the 60-ies and culminated in Camp-
bell’s work [4] which provided the first consistent expla-
nation of the penetration phenomenon (see Refs. [5] for
further developments): for small ac magnetic-field ampli-
tudes hac and frequencies ω, vortices oscillate reversibly
within their pinning potentials (described as harmonic
wells αx2/2), with the external signal hac penetrating
the sample on a distance λC ∝ B/

√
α of order microme-

ters. Later work by Lowell [6] and Campbell [7] provided
a more quantitative but still phenomenological under-
standing within a model pinscape. Here, we make use
of the strong pinning scenario allowing us to perform a
quantitative and microscopic analysis of the ac magnetic
response. In particular, we find the dependence of the
Campbell penetration depth λC on the vortex state, e.g.,
the critical (Bean [3]) state with a linear vortex density
gradient supporting the critical current density jc or a

field-cooled state with a constant induction B, and pre-
dict the occurrence of new hysteretic effects. The com-
parison with recent experiments [8] confirms our predic-
tions.

We consider a geometry with the superconductor oc-
cupying the half-space X > 0, the magnetic induction
B(X, t) = B0+δB(X, t) directed along Z, and the screen-
ing current j flowing along Y (capital and lower case let-
ters distinguish between macroscopic and microscopic co-
ordinates). The equation of motion for the macroscopic
vortex displacement U(X, t) reads

η∂tU = FL(j, U) + Fpin(X,U), (1)

with the Lorentz force FL balanced by dissipative and
pinning forces (η denotes the viscosity [9]). The displace-
ment U(X, t) relates to the induction via δB(X, t) =
−B0 ∂XU(X, t) and is driven at the surface X = 0 by
the small external field hac � B0, δB(0, t) = hace

−iωt.
The Lorentz force FL = (j0 + δj)B/c involves an ac com-
ponent δj = −c∂XδB/4π and writing the pinning force
Fpin = F0 + δFpin, with F0 the force density in the initial
vortex state balancing the dc Lorentz force j0B0/c, we
obtain the dynamical equation

η∂tU − (B2
0/4π)∂2XU − δFpin(U) = 0. (2)

Following [4], one assumes small oscillations of the vor-
tices near the potential minima. This motivates the phe-
nomenological Ansatz δFpin(U) = −αU for the pinning
force density. Solving (2) for the displacement field,

U(X, t) = λC(hac/B0)e−X/λCe−iωt (3)

with λ2C(ω) = B2
0/4π(α− iωη), (4)

results in the Campbell length λC = λC(ω = 0) =
(B2

0/4πα)1/2 at low frequencies.
Here, our goal is to derive an expression for δFpin start-

ing from a microscopic perspective. This can be done
within the framework of strong pinning theory which goes
back to work of Labusch [10] and Larkin and Ovchinnikov
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[11], with recent further studies on the critical currents
in strong and weak pinning scenaria [12], numerical sim-
ulations of vortex motion [13], and the current–voltage
characteristic [14]; note that the qualitative framework
of weak collective pinning theory [11] is not sufficient to
develop a quantitative understanding of λC.

Consider a representative vortex within the flux-lattice
driven along x on a trajectory described through the
asymptotic coordinate r∞ = (x, b) at large |z|; the dis-
tance b along y is the impact parameter with respect to a
defect at the origin. Within the strong pinning context,
defects act individually, generating a pinning potential
ep(r, z). Considering a trajectory with maximal pinning,
i.e., b = 0 and including the deformation energy of the
vortex, its total energy as a function of x takes the form
(we assume a point-like defect with ep(x, z) = ep(x)δ(z)
[12])

epin(x) =
1

2
C̄u(x)2 + ep[x+ u(x)], (5)

with u(x) the microscopic displacement field in the plane
z = 0, see Fig. 1, and C̄ the effective elasticity of the
vortex embedded within the lattice,

C̄−1 =
1

2

∫
d3k

(2π)3
1

c66(k2x + k2y) + c44(k)k2z
. (6)

Here, c66 and c44(k) denote shear and dispersive tilt
moduli and proper integration in (6) provides the result
C̄ ∼ (a20/λ)

√
c66c44(0) with a−20 = B0/Φ0 the vortex

density (Φ0 = hc/2e is the flux unit and λ the London
penetration depth). Minimization of (5) with respect to
u (at fixed x) generates the self-consistency condition

C̄u(x) = fp[x+ u(x)] (7)

for the displacement field u(x), where fp(x) = −e′p(x) is
the bare force profile of the pinning defect, the prime de-
noting derivative with respect to x. The maximal slope
in f ′p (realized at xm) defines the regime of strong pinning

[10]: for κ ≡ [f ′p(xm)]/C̄ > 1, the condition (7) gener-
ates two stable solutions for the displacement field u(x),
a pinned and an unpinned branch, see Fig. 1. The condi-
tion κ = 1 is the famous Labusch criterion [10] separating
strong pins with κ > 1 from weak pins when κ < 1.

Assuming a homogeneous random distribution of de-
fects with small density np, the macroscopic pinning force
density Fpin derives from averaging the pinning forces
fp[x+uo(x)] over all positions |x| < a0/2 within a lattice
period, with uo denoting the branch that is occupied with
vortices. This occupation depends on the state prepara-
tion, e.g., for a Bean state with vortices driven along x,
the occupation of the pinned branch extends over the
interval [−x−, x+], see Fig. 1, such as to produce the
maximal force Fpin = Fc,

Fc = np〈fpin〉 = np
t⊥
a0

∫
a0

dx

a0
fpin(x)|o, (8)

pinned

u
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FIG. 1. Pinning energy epin and force fpin in a strong pin-
ning situation for a Lorentzian potential. The bistable solu-
tions near the defect describe pinned and unpinned branches.
Thick lines (blue) mark occupied branches in the Bean state,
dotted lines are unstable solutions, dashed lines are the jumps
making up for ∆epin and ∆fpin. Left: strong pinning situa-
tion for a representative vortex. The microscopic displace-
ment u(x) = fpin(x)/C̄ has the same shape as fpin(x). Right:
change in branch occupation when the vortex system moves
by U .

where fpin(x) ≡ fp[x + u(x)] and |o refers to the occu-
pied branch uo(x) (we assume maximal pinning for all
trajectories with 2|b| < t⊥ ' ξ, ξ the coherence length).
Making use of the relation fpin(x) = −depin(x)/dx, we
arrive at a simple expression for the critical current den-
sity jc = (c/B)Fc,

jc =
c

B
np
t⊥
a20

∫
a0

dx [−depin(x)/dx|o] =
cnpt⊥

Φ0
∆epin, (9)

where ∆epin is the sum of jumps at−x− and x+ in epin(x)
where the occupation changes between unoccupied and
occupied branches [10, 11], see Fig. 1.

Equipped with this microscopic understanding of
pinned vortex matter in the Bean state, we return to the
problem of ac magnetic response. Within strong pinning,
we can follow the changes in the occupation of pinned
and unpinned branches as vortices are driven by the ac-
magnetic field and calculate the time dependent and in-
homogeneous change in the pinning force δFpin[U(x, t)].
A macroscopic shift U > 0 pushes vortices in the direc-
tion of the Lorentz force; vortices at −x− and x+ jump to
pinned and unpinned branches, respectively, leaving the
branch occupation unchanged, hence δFpin(U > 0) = 0.
Otherwise, a negative displacement U < 0 shifts the
boundaries between occupied and unoccupied states to
the left, see Fig. 1. This results in a change of the macro-
scopic restoring force

δFpin(U <0) = np
t⊥
a20

∫
a0

dx[fpin(x)|o,U−fpin(x)|o,0], (10)

where the index |o,U refers to the occupation where vor-
tices have been shifted by U . Expanding the integrand
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for small U , we arrive at the expression

δFpin(U < 0) = np
t⊥
a20

∫
a0

dx dfpin(x)/dx
∣∣
o
U, (11)

resulting in the strong pinning result for δFpin,

δFpin(U) ≈ −np(t⊥/a20)∆fpin Θ(−U)U, (12)

with ∆fpin the sum of jumps in the function fpin.
Inserting this result into Eq. (2) generates a complex

vortex dynamics as flux enters the sample in a sequence
of diffusive pulses until the field is raised to B0 + hac,
see [15] for a detailed description of this initialization
process. After saturating the sample at this higher field
level, the displacement U(X, t) assumes the form

U(X, t) = U0(X)− λC(hac/B0)e−X/λC [1− e−iωt], (13)

with U0(X) = (hac/B0)(L − X) generating the shift
in field B0 → B0(1 − ∂XU0) = B0 + hac and L the
penetration depth of the Bean profile [16]. The sec-
ond term accounts for the penetration of the external
field with respect to the new Bean state, δB(X, t) =
hace

−X/λC(1− e−iωt). The Campbell penetration depth
can be expressed by the microscopic parameters, the av-
erage curvature d 2epin(x)/dx2, of the pinscape,

B2
0

4πλ2C
=−npt⊥

a20

∫
a0

dx d 2epin(x)/dx2
∣∣
o
=
npt⊥
a20

∆fpin. (14)

Making use of the estimates ∆fpin ∼ fp, t⊥ ∼ ξ, and
κ ∼ fp/ξC̄, we find that λ2C ∼ λ2/(κnpa0ξ

2) > λ2 with
κnpa0ξ

2 � 1 the small parameter defining the three-
dimensional strong pinning regime [12]. Comparing the
results for jc and λ−2C , Eqs. (9) and (14), we observe
that these two quantities address different properties of
the pinscape, the jumps in pinning energy and force, re-
spectively. As a consequence, the simple scaling jc ∼
cαξ/B ∼ (c/4π)ξB/λ2C previously conjectured on the ba-
sis of the phenomenological result (4) turns out incorrect
and has to be replaced by jc ∼ (c/4π)κξB/λ2C ∝ [∆fpin]2.
Hence, care must be taken when translating measured
data on λC into predictions for jc [8].

Next, we turn to the field-cooled state with j0 = 0 and
F0 = 0. Following (14), the determination of the jumps
in the, now symmetric, occupation of fpin is the central
task in the calculation of λC. Assuming defects in the
form of metallic or insulating inclusions, one can show
[15] that pinning turns on smoothly upon crossing the
Hc2(T ) line. Hence, the vortex system changes from weak
to strong pinning upon decreasing the temperature T be-
low the Labusch temperature TL defined through κ(TL) =
f ′p(xm)/C̄|TL = 1. At TL, the pinning force fpin(x) devel-
ops an infinite slope at x0L, [dfpin/dx|x0L ]TL =∞. Lower-
ing the temperature below TL, the function fpin(x) devel-
ops two branches, pinned and unpinned ones, which start
and end at the boundaries ±x+ and ±x− close to ±x0L.

x0L

fpin

(a) (b)

(c)

x+ a0/2

x+x+

x−

x− xfar

xclose

ZFC FC

Trev TL Trev TL

a0 a0

0 0

x− x+x0L x0L x− x+

x0L

fpin

FIG. 2. Evolution of the pinning force fpin crossing over from
weak to strong pinning. The jump in the occupation between
pinned and unpinned branches first appears at x0L and re-
mains there if the branch edges at x± move away in opposite
directions with decreasing temperature, x− < x0L < x+, see
(a). If x0L < x− < x+, see (b), the jump is pinned to x− and
hysteretic effects show up upon thermal cycling. (c) Pinscape
fpin(x) at high magnetic fields involving only pinned and un-
stable branches. The relevant jumps are located at x+ for the
zero-field-cooled sample (left) and at a0/2 for the field-cooled
situation (right).

In order to decide upon the branch occupation below TL,
we have to determine the relative arrangement of the po-
sitions x0L and x±. We distinguish three cases, of which
(a) is the simplest one, see Fig. 2(a), with x± moving
away from x0L in different directions. In this case, the
branch occupation jumps between pinned and unpinned
at ±x0L and a small ac field produces a small reoccu-
pation around these points; the relevant jumps in fpin
thus appear at ±x0L, with ∆fpin = 2∆fpin|x0L entering
the expression for the field-cooled Campbell length (14).
Case (b) shown in Fig. 2(b) describes the situation where
both branches grow beyond x0L with decreasing temper-
ature, x0L < x− < x+. Then, vortices between x0L and
x− jump to the pinned branch and the relevant jump in
the occupation is pinned to x−. Accordingly, the jump in
the pinning force entering λC is given by 2∆fpin|x− . Fi-
nally, case (b’) involves a shrinking of the branches with
respect to x0L, i.e., x− < x+ < x0L, and the jump in
occupation is pinned to x+, ∆fpin = 2∆fpin|x+

. As a
result, the Campbell length λC may differ for the zero-
field-cooled (Bean type) and field-cooled vortex states in
various respects, depending on the case at hand.

Quantitative analytic results can be obtained at tem-
peratures below but close to TL where κ & 1. Expanding
the bare pinning force fp(x) around xm (where f ′′p van-
ishes), fp(x) ≈ fp(xm) + f ′p|xm

(x − xm) − γ(x − xm)3/3



4

with 2γ = −f ′′′p |xm
> 0, we obtain the result

x± = x0 ±
2

3

√
C̄

γ
(κ− 1)3/2, (15)

with x0 = xm−fp(xm)/C̄ > xm the generalization of x0L
to temperatures below TL, x0(TL) = x0L. The jumps at
±x± then are equal and smaller than the jumps at ±x0L.
For case (a), this results in different (by ≈ 7%) Campbell
lengths λC|FC < λC|ZFC, while for the cases (b) and (b’)
the two lengths are equal. For large κ � 1, the three
jumps are all different, resulting in different Campbell
lengths with λC|FC+ < λC|ZFC < λC|FC− , where ± refer to
the scenaria involving the large and small jumps at x±.

Which of the above scenaria is realized in a specific
case depends on the temperature dependence of elastic
and pinning forces. Close to TL, the behavior of x± is
dominated by x0 ∼ x0L +aτL with τL = 1−T/TL and the
sign of the prefactor a deciding upon which case (b) or
(b’) is realized. On the other hand, for larger τL the sec-

ond term in (15), ∝ (κ−1)3/2 ∝ τ3/2L , becomes dominant
and case (a) is realized.

Furthermore, hysteretic behavior of λC appears in
cases (b) and (b’) when first cooling and subsequently
reheating the sample (from Tmin). Indeed, when both
branches increase or decrease below x0L upon cooling,
the relevant jump appears at the branch edge xclose that
is closer to x0L. On reheating, the jump first remains
pinned to xclose(Tmin) until the other edge xfar further
away from x0L is hit, whereupon the jump follows the
position xfar(T ), see Fig. 2(b). Otherwise, in case (a) or
when xclose goes through an extremum, no hysteresis ap-
pears upon thermal cycling as long as the jump in fpin is
realized [17] away from the branch edges at ±x±.

Next, we briefly discuss the situation at high fields
when the pinned branch extends beyond the vortex sep-
aration a0, x+ > a0/2. Close to Hc2 , the bare pin-
ning force is well approximated by the lowest harmonic,
fp(x) ≈ f0 sin(2πx/a0); the competition with elastic
forces then produces the multi-valued function fpin(x)
shown in Fig. 2(c). In this situation, the branch edges
at ±x− have vanished and only the pinned branches be-
tween ±x+ survive. For the Bean state, the jump in force
(∆fpin|x+

) determining λC is located at x+. For the field-
cooled state, the (slightly larger) jump in force is located
at a0/2 instead, hence λC|FC . λC|ZFC; no hysteresis is
expected in this regime. Upon decreasing the field, ad-
ditional harmonics become relevant in the description of
fp(x) and its maximal slope at xm moves away from a0/2,
i.e., xm < a0/2. As x0L also decreases below a0/2 an un-
pinned branch starts developing and we cross over to the
low-field domain involving both the pinned and unpinned
branches. Note that neither of these regimes is small but
rather occupy similar size regions within the H-T phase
diagram.

λC [a.u.]

1 3
6

H = 0.3T H = 0.6Hc2

9

0 0.6

FC
ZFC

Tc = 2.7K
Hc2 = 0.49T

0
H = 0.04Hc2H = 0.02T

T [K]20
2.0

2.2

2.4

12

14

16 18

12

6
0

T/Tc

0.3

λC [µm]

1

FIG. 3. Experimental (left) and theoretical (right) traces of
the Campbell length λC(T ) for zero-field-cooled (blue) and
(hysteretic) field-cooled (red) states at low (main panels) and
high (inserted panels) magnetic fields.

In Fig. 3 we compare our main new findings, the de-
pendence of λC on the vortex state and the appearance of
hysteretic effects, with measurements on a single crystal
superconductor SrPd2Ge2 (isostructural to the Fe- and
Ni-pnictides) using a tunnel-diode oscillator technique,
see Fig. 4(a) of Ref. [8] (shown are magnified traces at
0.02 T and 0.3 T). A small ac excitation field hac ≈ 20
mOe is superimposed on the dc field ensuring linearity of
the response, see Ref. [18] for experimental details. The-
oretical results for the Campbell lengths are found by
solving Eq. (7) and extracting the relevant jumps ∆fpin,
assuming a pinning model based on insulating inclusions
[15] (we use standard Ginzburg-Landau scaling). All fea-
tures, the dependence of λC on the state preparation, the
appearance of hysteresis upon thermal cycling, as well
as the reversal from λC|ZFC < λC|FC− at low fields to
λC|FC < λC|ZFC at high fields, are visible in the experi-
ment and captured by the model; note that other pinning
models based on metallic inclusions or δTc-, δ`-pinning
[19] (` the mean free path) produce different behavior.

In conclusion, making use of strong pinning theory, we
have presented a microscopic and quantitative expression
for the Campbell length λC that captures specific proper-
ties of the pinscape. Our theory predicts the dependence
of λC on the vortex state (FC versus ZFC) and explains
the appearance of hysteretic effects, with results that are
in good agreement with experiments. With the new in-
formation at hand, the pinscape can be analyzed in much
more detail via deliberate state preparation ‘in between’
the field- and zero-field-cooled extremes.
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tional Suisse through the NCCR MaNEP. Research in
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#DE-AC02-07CH11358.
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