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Abstract

Dense granular flows are ubiquitous in both natural and industrial processes. They manifest
three different flow regimes, each exhibiting its own dependence on solids volume fraction,
shear rate, and particle-level properties. This research project sought to develop continuum
rheological models for dense granular flows that bridges multiple regimes of flow, implement
them in open-source platforms for gas-particle flows and perform test simulations.

The first phase of the research covered in this project involved implementation of a steady-
shear rheological model that bridges quasi-static, intermediate and inertial regimes of flow
into MFIX (Multiphase Flow with Interphase eXchanges - a general purpose computer code
developed at the National Energy Technology Laboratory). MFIX simulations of dense
granular flows in hourglass-shaped hopper were then performed as test examples. The second
phase focused on formulation of a modified kinetic theory for frictional particles that can
be used over a wider range of particle volume fractions and also apply for dynamic, multi-
dimensional flow conditions. To guide this work, simulations of simple shear flows of identical
mono-disperse spheres were also performed using the discrete element method. The third
phase of this project sought to develop and implement a more rigorous treatment of boundary
effects. Towards this end, simulations of simple shear flows of identical mono-disperse spheres
confined between parallel plates were performed and analyzed to formulate compact wall
boundary conditions that can be used for dense frictional flows at flat frictional boundaries.
The fourth phase explored the role of modest levels of cohesive interactions between particles
on the dense phase rheology. The final phase of this project focused on implementation and
testing of the modified kinetic theory in MFIX and running bin-discharge simulations as test
examples.
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1 EXECUTIVE SUMMARY

Dense granular flows, which occur in both natural and industrial processes, manifest several
different flow regimes. Depending on the local solids volume fraction φ and shear rate γ̇, one
can observe any of three distinct flow regimes when non-cohesive particles are subjected to
steady simple shear: (1) a quasi-static regime for φ exceeding the critical volume fraction φc
in which pressure p and shear stress τ are independent of shear rate; (2) an inertial regime
below φc in which p, τ ∼ γ̇2; and (3) an intermediate regime occurring in a narrow window of
volume fractions about φc in which p, τ ∼ γ̇n with 0.5 ≤ n ≤ 1. This report summarizes the
outcome of research aimed at developing continuum rheological models for dense granular
flows that bridges multiple regimes of flow, implementing them in open-source platforms for
gas-particle flows and performing test simulations.

The first phase of the research covered in this report involved implementation of a steady-
shear rheological model that bridges quasi-static, intermediate and inertial regimes of gran-
ular flow, developed in the PIs research group, into MFIX (Multiphase Flow with Interphase
eXchanges - a general purpose computer code developed at the National Energy Technology
Laboratory). MFIX simulations of dense granular flows in hourglass-shaped hopper were
then performed as test examples. It was found that the new rheological model implemented
predicted rat-holing in the upper chamber of the hourglass as well as the formation of a
sand-pile on the hour glass flow, both of which are consistent with experimental observa-
tions. In contrast, the standard kinetic theory predicted an unphysical bubble formation
above the orifice, which is unexpected for such a dense flow; it also failed to predict pile
formation.

The second phase of the research covered in this report dealt with formulation of a modified
kinetic theory for frictional particles that can be used over a wider range of particle volume
fractions and also apply for dynamic, multi-dimensional flow conditions. To guide this work,
simulations of simple shear flow of identical mono-disperse spheres were performed using
the discrete element method. Based on the simulation results, the modified kinetic theory
was formulated by systematically modifying a widely used standard kinetic theory model
for granular flows. Specifically, the modified kinetic theory recognizes that the particle
volume fraction at jamming conditions depend on particle-particle friction coefficient, and
incorporates a modified expression for the radial distribution function at contact that is
consistent with the dense phase flow simulations. In addition, it introduces the notion of an
effective restitution coefficient, which is a function of the usual normal restitution coefficient
and the interparticle friction coefficient. It also ensures that in the dense limit, the ratio
between shear stress and pressure reduces to an inertial-number model as has been recognized
in the literature.

The third phase of the research covered in this report probed the interaction of frictional
granular material and a flat frictional wall through simulations of simple shear flows of identi-
cal mono-disperse spheres confined between parallel plates. The simulation results were used
to deduce compact wall boundary conditions. Specifically, a novel scaling based on granular
viscosity was used to collapse data of the surface slip velocity, which includes rotational
and translational velocity contributions; such a boundary condition would apply to contin-
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uum simulations of granular flows where one models local-average translational and angular
velocities of the particles. It was then followed by a separate relation for the rotational
velocity of particles at the boundary, so that one can deduce a boundary condition just for
the translational slip velocity at the boundary by combining the expressions for the surface
slip and rotational velocity; such a boundary condition would apply to continuum simula-
tions of granular flows where one evolves just the local-average translational velocity of the
particles. In both these instances, the continuum model seeks to resolve the steep velocity
variation in the boundary layer near the wall. In many practical applications, it is not ap-
pealing to have to resolve the boundary layer. With this in mind, a coarse-grained boundary
condition that subsumes the boundary layer contribution into the boundary condition was
formulated; this boundary condition applies for coarsely resolved flow simulation considering
only translational motion, which is typical of the vast majority of applications.

The fourth phase of the research covered in this report explored the role of modest levels
of cohesive interactions between particles on dense phase rheology through discrete element
method simulations in periodic domains. It was found that when cohesive forces are in-
cluded, all the three non-cohesive regimes, namely quasistatic, inertial, and intermediate
regimes, persist. However, the inertial regime is bifurcated into two regimes: (a) a new rate-
independent regime at lower scaled shear rates and (b) an inertial regime at higher scaled
shear rates. New rheological models are then proposed to account for these changes due to
cohesion.

The final phase of the research covered in this report focused on implementation and testing of
the modified kinetic theory in MFIX as well as the open-source software OpenFOAM. Gravity
discharge of particles from a bin was used as a test problem to assess the performance of the
model and the codes. It was found that the modified kinetic theory predicted a discharge
rate very close to the experimental value, while the standard kinetic theory predicted a
much larger discharge rate. Thus, it was demonstrated that the dense granular rheology
modifications introduced by the modified kinetic theory contribute to substantially lowering
the discharge rate and bringing it in line with experimental data.



Final Report DE-FE0006932 6

2 CONTEXT OF THE RESEARCH PROJECT

Dense granular flows are ubiquitous in both natural and industrial processes. They manifest
three different flow regimes – commonly referred to as the quasi-static, inertial, and inter-
mediate regimes – each of which exhibits its own dependences on solids volume fraction,
shear rate, and particle-level properties. The differences in these regimes can be attributed
to microscale phenomena, with quasi-static flows being dominated by enduring, frictional
contacts between grains, inertial flows by grain collisions, and intermediate flows by a com-
bination of the two. Existing constitutive models for the stress tend to focus on one or two
regimes at a time. The PI’s research group recently presented a rheological model for dense
granular flows which captures stresses in all three regimes under steady shear conditions and
the transitions between them. This proposal is aimed at: (1) implementation of this steady
shear rheological model in MFIX (Multiphase Flow with Interphase eXchanges – a general
purpose computer code developed at the National Energy Technology Laboratory) followed
by validation against experimental and Discrete Element Method (DEM) simulation data
for flows in hoppers, bins, chutes and dense fluidized beds, and (2) further development of
the rheological model to allow for dynamic evolution of the stresses.

3 PROJECT OVERVIEW

The overall aim of the proposed project is to implement and validate a new granular stress
model in MFIX while continuing to improve the model to capture more complex flow be-
havior. The proposed work consists of the following major goals.

Goal #1: Refine the steady-shear continuum rheological model for dense granular flows
developed recently by the PI’s group, and implement it into MFIX. Perform MFIX
simulations of dense granular flows in hoppers and chutes, using this rheological model
and no-slip and partial slip boundary conditions already available in MFIX. Examine
the role of modest levels of cohesion on the steady-shear rheology.

Goal #2: Formulate a modified kinetic theory for frictional particles that can be used over a
wider range of particle volume fractions and also apply for dynamic, multi-dimensional
flow conditions. Implement this model in MFIX and assess the consequence of model
refinement on flow characteristics in the test problems mentioned in Goal #1.

Goal #3: Develop improved wall boundary conditions for the particle phase that can be
used for dense frictional flows at flat frictional boundaries and implement them in
MFIX. Examine the effect of refined boundary conditions on flow characteristics in the
test problems mentioned in Goal #1.

To achieve these goals, a combination of discrete particle simulations for model refinement
and continuum simulations for testing proper implementation of the model in MFIX will be
performed. The project is broken into five phases, as listed below:

The first phase calls for refinement of a steady-shear continuum rheological model for
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dense granular flows developed recently by the research group, and its implementation into
MFIX. MFIX simulations of dense granular flows in hourglass-shaped hoppers and chutes
will then be performed as tests. These first-phase simulations would employ options for wall
boundary conditions that already exist in MFIX.

The second phase would focus on formulation of a modified kinetic theory for frictional
particles that can be used over a wider range of particle volume fractions and also apply for
dynamic, multi-dimensional flow conditions. Towards this end, simulations of simple shear
flows of identical mono-disperse spheres confined in periodically repeating domains would
be performed using the discrete element method (DEM) implemented in the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) developed by Sandia National
Laboratories. Appropriate modifications to the standard kinetic theory of granular materials
that would capture the simulations results over the entire range of particle volume fractions
and friction coefficients would be identified.

The third phase of this project aims to develop and implement a more rigorous treat-
ment of boundary effects. Towards this end, simulations of simple shear flows of identical
mono-disperse spheres confined between parallel plates would be performed and analyzed to
formulate compact wall boundary conditions that can be used for dense frictional flows at
flat frictional boundaries.

The fourth phase would explore the role of modest levels of cohesive interactions between
particles on the dense phase rheology. This was motivated by the fact that many particles
used in energy-related industries do manifest varying levels of cohesive interactions. Based
on results of DEM simulations including such interaction that would be conducted in this
phase, the steady-shear continuum rheological model for dense granular flows developed in
the first phase of this study would be generalized to account for cohesion.

The final phase of this project calls for implementation and testing of the modified kinetic
theory and the newly developed wall boundary conditions in MFIX.

The overall project has been broken down into the set of tasks summarized below.

Task 1. Project Management and Planning

1.1. Develop and maintain a comprehensive Project Management Plan that clearly
identifies the organizational structure, roles and responsibilities of the project
team members, technical scope, budget, schedule baselines, key milestones and
decision points, cost and schedule control, and project risk management.

1.2. Monitor progress on the Project Management Plan with respect to technical
progress on each task, achievement of milestones and deliverables, Gantt chart
schedule progress and financial comparisons to the budget.

1.3. Provide reports according to the “Federal Assistance Reporting Checklist”.

Task 2. Refinement of steady-shear rheological model for dense granular flows and its im-
plementation in MFIX

2.1. Perform DEM simulations of simple shear flows in periodic domains to gather
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data at additional shear rates, volume fractions and friction coefficients to refine
the steady-shear rheological model.

2.2. Implement this steady-shear rheological stress model in MFIX.

2.3. Test the implementation through MFIX simulations of hopper and chute flows.

Task 3. Development of modified kinetic theory model that is applicable over a wider range
of particle volume fractions and its implementation in MFIX

3.1. Perform DEM simulations in periodic domains to gather data on stress over a
wide range of volume fractions, friction coefficients and shear rates.

3.2. Formulate a modified kinetic theory to capture the rheological results obtained
from the DEM simulations.

3.3. Implement this modified kinetic theory in MFIX.

3.4. Check the MFIX implementation through test simulations mentioned in subtask
2.3.

Task 4. Development of new wall boundary conditions for dense granular flows

4.1. Perform DEM simulations of bounded simple shear flows for an array of volume
fractions, shear rates, and friction coefficients. Collect data on pressure, shear
stress, actual and apparent slip velocities at the walls, particle volume fraction in
the core region and the shear rate in the core region.

4.2. Develop expressions for boundary conditions in terms of volume fraction, shear
rate, and particle properties.

4.3. Implement the new boundary conditions into MFIX.

4.4. Check the MFIX implementation through test simulations mentioned in subtask
2.3.

Task 5. Refinement of steady-shear rheological model for dense granular flows to include
cohesion

5.1. Perform DEM simulations of simple shear flows of slightly cohesive particles in
periodic domains to gather data at additional shear rates, volume fractions and
friction coefficients and use the results to develop the steady-shear rheological
model.

5.2. Implement this steady-shear rheological stress model in MFIX.
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4 PROJECT MILESTONES AND STATUS

The eleven milestones for the proposed project are listed in the Table below.
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Milestone Description Completion Revised
# Date Date

1
Submission of the updated Project Management Plan
Status: Milestone achieved in a timely manner

10/31/11

2

Complete implementation of the steady shear rheological
model in MFIX; carry out at least 2 MFIX simulations of
hopper flows; complete at least 2 simulations of chute flows.
Status: Milestone achieved in a timely manner

6/30/12

3

Complete at least 50 DEM simulations of shear flows of fric-
tional particles in periodic domains to help develop a multi-
dimensional modified kinetic theory of granular materials
that is applicable over a wider range of conditions.
Status: Milestone achieved in a timely manner

12/31/12

4

Propose a modified kinetic theory that applies for frictional
particles undergoing time-dependent, multi-dimensional
flows.
Status: Milestone achieved in a timely manner

3/31/13

5

Complete at least 50 DEM simulations of wall-bounded
shear flows of dense assemblies spanning the quasi-static and
intermediate regimes.
Status: Milestone achieved in a timely manner

6/30/13

6
Propose new boundary conditions at flat frictional bound-
aries to be employed in continuum model simulations.
Status: Milestone achieved in a timely manner

9/30/13

7

Complete at least 50 DEM simulations of shear flows of co-
hesive, frictional particles in periodic domains and refine the
steady-shear rheological model.
Status: Milestone achieved in a timely manner

12/31/13

8

Complete MFIX implementation of modified kinetic theory
mentioned in Milestone #4 and run at least 2 MFIX simu-
lations of hopper or bin flows.
Status: Milestone achieved in a timely manner

3/31/14 11/30/14

9

Complete MFIX implementation of the improved boundary
conditions mentioned in Milestone #6 and run at least 2
MFIX simulations of hopper or bin flows in conjunction with
the simpler steady shear rheological model of Milestone #2.
Status: Milestone not achieved

6/30/14 4/30/15

10

Using the final model developed in this study – modified
kinetic theory of Milestone #4 and wall boundary condition
of Milestone #6, complete at least 2 MFIX simulations of
hopper or bin flows, and at least 2 simulations of chute flows.
Status: Milestone not achieved

8/31/14 7/31/15

11
Complete Final Report
Status: Milestone achieved in a timely manner

9/30/14 9/30/15



Final Report DE-FE0006932 11

5 TECHNICAL ACCOMPLISHMENTS

5.1 Accomplishment in Task 2

The first goal of this project was to conduct a series of steady state dense granular shear flow
simulations in periodic domains and identify the dependence of pressure, stress ratio (defined
as the ratio between the shear stress and pressure) in various regimes of flow. We then set out
to formulate models to capture these rheological parameters in various regimes for various
particle-particle friction coefficients, and bridge them into a model that can be used to bridge
across all the regimes. The details of this work can be referred to the publication in Physics
Review E [1], which is attached at Appendix A here.

z/d

y/dp
v/gd

(a)

z/d

y/dp
v/gd

(b)

Figure 1: Velocity profiles for MFIX chute flow simulations using the steady-state rheological
model with (a) no-slip and (b) partial-slip boundary conditions.

This steady-state model was implemented in MFIX and simulations of flow down an inclined
plane with sidewalls were carried out. Figure 1(a) shows the velocity profile from a test
simulation using the new rheological model paired with no-slip boundary conditions. The
model predicts two salient features:

a) A stagnant layer is observed near the chute’s bottom wall, which is consistent with
experimental results of Jop et al. [2, 3].

b) The simulation also predicted and a concave velocity profile with spikes near the two
sidewalls, which is not observed in experiments of Jop et al. [2, 3]. The occurrence of these
velocity spikes is easily explained. No-slip boundary conditions result in large shear rates
near the wall, which dilate the granular material and reduce the viscosity in this region,
allowing for increased velocities.

However, when a partial-slip condition is used at the wall, the velocity spikes disappear as
a result of decreased wall shear, and the convex profile observed in experiments is restored,
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as illustrated in Figure 1(b). This behavior underscores the importance of investigating
boundary conditions.

We also tested our steady shear rheological model [1] on the problem of flow in an hourglass,
a commonly modeled type of hopper, using MFIX. In Figure 2, we present a comparison
of predictions from the new model and MFIX’s default model, a blending of the kinetic
theory of Lun et al. [4] and an ad-hoc dense-regime stress. In both cases, the gas phase was
considered, and no-slip boundary conditions were used for the solids. Beginning from an
initial plug state with solids volume fraction of 0.586 (just below the critical volume fraction
at which jamming occurs, which is 0.587 for an inter-particle friction coefficient of 0.5 [1]),
the flow is observed to evolve differently using the two models. Notably, the new rheological
model predicts rat-holing (i.e. persistent core flow) in the upper chamber of the hourglass
as well as the formation of a sand-pile on the hourglass floor, both of which are consistent
with experimental observations [5]. In contrast, the kinetic theory model predicts an unusual
bubble formation above the orifice that one would not expect for such a dense flow and also
fails to predict pile formation.

Simulations of the above kind using the steady state model based on steady shear rheology
applicable only for dense regime were not pursued further as this model becomes less and less
accurate as the volume fraction decreases. Instead, the focus shifted to research generalizing
this model in the form of modified kinetic theory, which is task 3 in the project.

Milestone #2: Complete implementation of the steady shear rheological model in MFIX;
carry out at least 2 MFIX simulations of hopper flows; complete at least 2 simulations of
chute flows.

This milestone is associated with the task specified in this subsection. This milestone was
completed, as illustrated above.

5.2 Accomplishment in Task 3

A large number of steady shear simulations of particles in periodic domains were carried
out over a wide range of particle volume fractions covering both the dilute and dense flow
regimes. Such simulations were carried out for several different values of particle-particle
friction coefficient (µ) and coefficient of restitution (e). For each case, the system was sheared
at various shear rates, and the corresponding average granular temperature, pressure, and
shear stress ratio (ratio between shear stress and pressure) were extracted. Lee-Edwards
boundary condition [6] was employed to achieve a linear velocity profile. Sample simulation
results on steady-state granular temperature, pressure, and shear stress ratio are shown in
Figure 3. The particle-particle friction coefficient of 0.5 is used in the simulations shown
in this figure. The lines represent the model predictions from the modified kinetic theory
developed in this project (MKT) [7]. Simulation results on other µ values can be referred to
the attached paper in Appendix B.

MKT was developed based on the simulation results mentioned above. A complete descrip-
tion of MKT can be found in Table 1 of the attached paper in Appendix B. Briefly, the begins
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(a) (b) (c)

(d) (e)

Figure 2: Snapshots of solids fraction from granular flow in an hourglass. Beginning from an
initial state (a), a comparison is made between the predictions of the steady-state rheological
model (b-c) and MFIX’s default model (d-e). The new model predicts ratholing (core flow)
in the upper chamber and pile formation on the hourglass floor, both in agreement with
experimental observation. The default model produces anomalous bubbles above the orifice
and an even layer on the floor.
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Figure 3: Comparison of the simulation results on (a) granular temperature (b) pressure (3)
shear stress ratio with the proposed modified kinetic theory model. Particle-particle friction
coefficient µ = 0.5 is used.

with an existing kinetic-theory model for frictionless particles in dilute systems in order to
extend it to handle frictional particles in both dilute and dense regimes. The approach to
modifying the kinetic theory equations drew from the following strategies and is summarized
as follows:

1. The temperature was captured by introducing a multiplicative correction factor δΓ

to the energy dissipation term. This factor contains a dependence on an effective
restitution coefficient eeff = eeff(e, µ) and would also diverge at jamming conditions,
which depend on the magnitude of the friction coefficient.

2. The pressure was captured using a new expression for the radial distribution function
at contact g0 that would diverge at jamming conditions.

3. The shear stress was scaled by pressure and written as shear stress ratio η ≡ τ/p. The
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(a)

100 cm 

3 cm 1cm 

(b)

Figure 4: (a) Experimental setup of the system [10]. (b) The front view of the system. The
width (not shown) of the system is 4 cm.

behavior of η was then captured with a second multiplicative factor δτ to the shear
stress expression. This factor would force η to obey an inertial-number model [1, 8, 9, 2]
in the dense regime, in particular requiring it to approach a yield stress ratio ηs at
jamming conditions.

The MKT represents a simple and fruitful model to account for dynamic flow behavior.
It falls in the category of an algebraic granular energy equation, as a dynamic evolution
equation for the granular temperature is not solved.

The MKT has been successfully implemented both in OpenFOAM and in MFIX. It can be
used to perform Euler-Euler simulations of gas-solid flows. Gravity discharge of particles
from a bin, which has been experimentally investigated in the literature [10], is used as the
test problem to assess the performance of the model and the codes. The experimental setup
is described in Figure 4(a). Figure 4(b) is the diagram of the front view, which illustrates the
dimensions. Particles are allowed to discharge from a 4 cm× 4 cm× 100 cm bin, through a
4 cm×1 cm orifice located at the bottom on one side of the bin. No-slip boundary condition
is applied at the sidewalls for solid phase. No-slip boundary condition is also applied for gas
phase. Table 1 lists the values of the model parameters used the example discussed below.
Initially, particles are filled to a height of 50 cm in the bin at a solid volume fraction of 0.58.
Simulations were done with different grid resolutions, but only a single example is presented
here, where the grid size is 2.5 mm.



Final Report DE-FE0006932 16

Table 1: Material properties.
Property Value Units

Particle diameter, dp 0.875 mm
Particle friction coefficient, µ 0.3 –

Particle restitution coefficient, ep 0.8 –
Particle density, ρs 2500 kg m−3

Gas viscosity, µg 1.78 × 10−5 kg m−1 s−1

Gas density, ρg 1.224 kg m−3

As shown in Figure 5, the discharge rate predicted using MKT implemented in OpenFOAM
quickly reaches a nearly steady value, which is consistent with experiments [10]. Steady-state
discharge rate is also observed using MKT implemented in MFIX. As shown in Table 2, MKT
implemented in OpenFOAM predicts a discharge rate very close to the experimental value;
in contrast, the Standard Kinetic Theory (SKT), which does not consider the corrections
needed for dense granular flows as well as the role of frictional contact, predicts a much
larger discharge rate. (See Table 2 under Standard Kinetic Theory. In both the MKT and
SKT simulations, we employed the same radial distribution function model to ensure that
the same jamming condition is used in both simulations.) Thus, the dense granular rheology
modifications introduced by the MKT contribute to dramatically lowering the discharge
rate and bringing it in line with experimental data. MKT implementation in MFIX yields
a value that is somewhat different from that obtained using OpenFOAM implementation.
The reason for this difference is still not understood and will be probed in the future. In any
case, when compared to the difference between standard and modified kinetic theories, the
difference seen between MKT implementation in OpenFOAM and MFIX is small.

Table 2: Discharge rates from experiments [10] and simulations using various models in
OpenFOAM and MFIX

Discharge rate (g/s)
Experimental data [10] 165

OpenFOAM MFIX
MKT [7] 166 120

SKT with g0 expression of Chialvo et al. [7] 364 312

Milestone #3: Complete at least 50 DEM simulations of shear flows of frictional particles
in periodic domains to help develop a multi-dimensional modified kinetic theory of granular
materials that is applicable over a wider range of conditions.

Milestone #4: Propose a modified kinetic theory that applies for frictional particles under-
going time-dependent, multi-dimensional flows.

Milestone #8: Complete MFIX implementation of modified kinetic theory mentioned in Mile-
stone #4 and run at least 2 MFIX simulations of hopper or bin flows.

These milestones are associated with the tasks mentioned above. They have all been com-
pleted and the milestones have been achieved.
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Figure 5: (a) Mass of the particles in the bed versus time. (b) Discharge rate of particles
versus time. The data are obtained using MKT [1] in OpenFOAM. Similar curves are
obtained using MKT [1] in MFIX.

5.3 Accomplishment in Task 4

In order to probe boundary conditions (BC) that are suitable for dense granular flows, a
number of simulations of shear flow of assemblies confined between flat, frictional walls have
been performed to develop effective boundary conditions.

As described in previous works [11, 12], wall-bounded shear flows exhibit two regions of
flow: 1) a central or core region characterized by spatially-invariant, local rheology and 2) a
boundary region within about 10d of each wall featuring strong gradients in shear rate γ̇ and
volume fraction φ due to non-local conduction of granular energy. Indeed we observed these
regions in our simulations, as demonstrated in Figure 6, where exponential tails towards
the walls are clearly visible for the shear rate, volume fraction, and granular temperature.
The measured pressure p and shear stress ratio η are found to obey local, inertial-number
rheological behavior [1, 9] in the core region, as shown in Figure 7. This local behavior in
the core supports the notion that a BC model that absorbs the near-wall behavior can be
successfully coupled with a simple, local rheological model without the need for inclusion of
further complexity to the rheology.
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Figure 6: Profiles of (a) velocity, (b) shear rate, (c) volume fraction, and (d) granular tem-
perature vs. position between wall boundaries for Hookean contact. The interparticle friction
coefficient and wall-particle friction µ = µw = 0.5 and φ̄ = 0.55. Quantities are scaled by wall
velocity Uwall and gap width H. A core region with spatially invariant rheological properties
is observed to lie between boundary layers of thickness ∼10d at each wall. Exponential tails
are observed in the boundary layers. Analogous results were obtained for Hertzian contact
model as well (not shown).
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Figure 7: Comparison of core data for scaled pressure and shear stress ratio with predic-
tions of the local rheological model of Chialvo et al. [1](Eqs. (7)-(10)) and Gu et al. [13]
(Eqs. (6),(20)-(22)). (a) scaled pressure for Hookean contact versus the rheological model
of Chialvo et al. [1], (b) scaled pressure for Hertzian contact versus the rheological model
of Gu et al. [13], (c) shear stress ratio for Hookean contact versus the rheological model of
Chialvo et al. [1], (d) shear stress ratio for Hertzian contact versus the rheological model of
Gu et al. [13]. Reasonably good agreement confirms the locality of the rheological behavior
in the core.

Based on these wall-bounded simple-shear simulations, we introduced a novel scaling based
on granular viscosity and used it to collapse data of the ‘surface’ slip velocity, which includes
rotational and boundary-layer velocity contributions, and proposed an empirical model for
use in finely-resolved flow problems considering both translational and angular velocity fields.
We then separately constituted the rotational contribution to produce a slip velocity model
for use in finely-resolved, translation-only flow problems. Finally, we coarse-grained the
model by subsuming the boundary-layer contribution into the boundary condition, in analogy
to the wall functions used in turbulence modeling, to produce a constitutive expression for
use in coarsely-resolved flows considering only translational motion — i.e. the vast majority
of applications. The final versions of the model that can handle general flow problems are
included in Eqns. (32–40) of the draft manuscript attached here as Appendix C.
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Converting these results into an implementable boundary condition model is still proving to
be a challenge. So, implementation of this boundary condition into OpenFOAM and MFIX
could not be completed during this project; but work along this line will continue. Milestones
9 and 10 are therefore incomplete.

Milestone #5: Complete at least 50 DEM simulations of wall-bounded shear flows of dense
assemblies spanning the quasi-static and intermediate regimes.

Milestone #6: Propose new boundary conditions at flat frictional boundaries to be employed
in continuum model simulations.

Milestone #9: Complete MFIX implementation of the improved boundary conditions men-
tioned in Milestone #6 and run at least 2 MFIX simulations of hopper or bin flows in
conjunction with the simpler steady shear rheological model of Milestone #2.

Milestone #10: Using the final model developed in this study – modified kinetic theory of
Milestone #4 and wall boundary condition of Milestone #6, complete at least 2 MFIX sim-
ulations of hopper or bin flows, and at least 2 simulations of chute flows.

These milestones are associated with the tasks mentioned above. Tasks 4.1 and 4.2 have
been completed. Milestones 5 and 6 are achieved. Tasks 4.3 and 4.4 are not completed, and
Milestones 9 and 10 unachieved.

5.4 Accomplishment in Task 5

Simulations of granular shear flow were performed in periodic domains allowing for cohesive
interaction between particles. They were performed for various shear rates, volume frac-
tions, friction coefficients, and modified Bond numbers. As gravity is not included in the
simulations, a modified Bond number Bo∗ is defined as the ratio between the maximum
net cohesive force experienced by a particle to a characteristic contact force, kd, where k is
particle stiffness. Figure 8(a) plots the scaled pressure pd/k against the scaled shear rate
ˆ̇γ = γ̇d/

√
k/(ρsd) for non-cohesive particles with particle friction coefficient µ = 0.1. Three

regimes are present [14, 1, 15, 16]: quasistatic at low shear rates and high volume fractions,
inertial at low shear rates and low volume fractions, and intermediate at high shear rates
and all volume fractions. The quasistatic and inertial regimes are separated by a critical
volume fraction φc which is a function of µ. When cohesive forces are included, however, it
is found that this regime map is modified, as shown in Figures 8(b) and (c), where Bo∗ is
5 × 10−6 and 5 × 10−5 respectively. Some aspects remain unchanged: all three non-cohesive
regimes persist with no change in φc(µ), and the quasistatic and intermediate pressure val-
ues show no appreciable changes. However, the inertial regime is now bifurcated into two
regimes occurring at different scaled shear rates: at higher ˆ̇γ the flow remains inertial (i.e.
exhibiting Bagnold scaling), while at lower ˆ̇γ the flow becomes rate-independent. We term
this latter, new regime the cohesive regime. As Bo∗ increases, this cohesive regime expands
to encompass a larger domain of ˆ̇γ, as illustrated in Figures 8(b) and (c).

In Figures 8, we present the results only from simulations in which the velocity profile
in the statistical steady state is found to be linear indicating homogeneous shear. There
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Figure 8: Scaled pressure versus scaled shear rate for (a) non-cohesive particles, (b) cohesive
particles with Bo∗ = 5 × 10−6, (c) cohesive particles with Bo∗ = 5 × 10−5. In all cases,
Hookean contact and van der Waals force model are used, and interparticle friction coefficient
µ = 0.1. Symbols denote simulation results, while lines denote model predictions from
Eqns. (7–12) of the attached paper in Appendix D.
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is a conspicuous absence of simulation results in Figures 8(b) and (c) at the lower volume
fractions and shear rates in the region representing transition from cohesive regime to inertial
regime. In this region, the velocity profiles are found to be inhomogeneous. These cases are
not included in the analysis of the homogeneously sheared state presented here.

Blended stress models similar to the non-cohesive system [1] have been proposed for the
cohesive granular flows. The model predictions using these models are denoted by lines in
Figure 8, which describe the data well. The pressure and shear stress ratio models for the
cohesive granular flows can be found in Eqns. (7–12) and Eqns. (13–15) (19) in the attached
paper in Appendix D, respectively.

Milestone #7: Complete at least 50 DEM simulations of shear flows of cohesive, frictional
particles in periodic domains and refine the steady-shear rheological model.

This milestone is associated with the task specified in this subsection. This milestone was
completed, as illustrated above.

6 PROBLEMS ENCOUNTERED

Implementation of the model in MFIX led to unexpected challenges. Only recently did we
manage to resolve this challenge, with much help from Dr. Tingwen Li of National Energy
Technology Laboratory, Morgantown. In view of this challenge, we set out to implement the
model in OpenFOAM, which we could complete quite readily.

While our DEM simulations have led to good insights on the flow behavior in the boundary
layer close to the wall, we have still not succeeded in reducing the highly non-linear corre-
lations we came up with into usable boundary conditions. As a result, the project failed to
complete the boundary condition implementation in MFIX or OpenFOAM.
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Please see the next page for the manuscript “Bridging the rheology of granular flows in three
regimes,” which was published in Physical Review E.
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We investigate the rheology of granular materials via molecular dynamics simulations of homogeneous, simple
shear flows of soft, frictional, noncohesive spheres. In agreement with previous results for frictionless particles,
we observe three flow regimes existing in different domains of particle volume fraction and shear rate, with all
stress data collapsing upon scaling by powers of the distance to the jamming point. Though this jamming point
is a function of the interparticle friction coefficient, the relation between pressure and strain rate at this point is
found to be independent of friction. We also propose a rheological model that blends the asymptotic relations in
each regime to obtain a general description for these flows. Finally, we show that departure from inertial number
scalings is a direct result of particle softness, with a dimensionless shear rate characterizing the transition.

DOI: 10.1103/PhysRevE.85.021305 PACS number(s): 45.70.−n, 47.57.Gc, 64.60.F−, 64.70.ps

I. INTRODUCTION

Flows of granular matter occur in numerous geophysical
and industrial processes and, as such, have garnered the
attention of researchers for many years. Early efforts to
describe these flows focused on either dilute flows (where
kinetic theories [1–4] apply and which belong to the inertial
regime) or very dense, slow flows (or quasistatic flows, for
which plasticity models [5,6] can be used). However, attention
has turned recently to the interface between these two regimes
in the context of a jamming transition, proposed to occur in
granular and other soft matter [7]. Of particular interest are
several works that find a critical rheology around this transition
in flows of frictionless, soft spheres [8–12] and disks [13,14].
Furthermore, they find scalings for the mean normal and shear
stresses with respect to volume fraction that apply over a wide
range of volume fractions and shear rates. Granular materials,
though, are typically considered stiff, frictional materials, and
to date there has been little work on identifying a critical
rheology [15,16] for such matter despite significant progress
in understanding their static jamming behavior [17–20]. In this
paper, we investigate the rheology of frictional granular matter
about the jamming transition and discuss the construction of
a rheological model for flows in the quasistatic, inertial, and
intermediate (i.e., critical) regimes.

II. SIMULATION METHODS

We perform computer simulations using a package of the
discrete element method (DEM) [21] implemented in the
molecular dynamics package LAMMPS [22]. In DEM, particles
interact only via repulsive, finite-range contact forces. We
employ a spring-dashpot model, for which the normal and
tangential forces on a spherical particle i resulting from the
contact of two identical spheres i and j are

Fn
ij = f (δ/d)

[
knδij nij − γnmeffvn

ij

]
, (1)

Ft
ij = f (δ/d)

[−ktut
ij − γtmeffvt

ij

]
, (2)

for overlap distance δij , particle diameter d , spring stiffness
constants kn and kt , viscous damping constants γn and γt ,
effective mass meff = mimj/(mi + mj ) for particle masses

mi and mj , relative particle velocity components vn
ij and vt

ij ,
and elastic shear displacement ut

ij . A linear spring-dashpot
(LSD) model is chosen by setting the function f (x) = 1,
while a Hertzian model is set by f (x) = √

x; the LSD
model will be used throughout this paper except where noted
explicitly. By Newton’s third law, particle j experiences the
force Fji = −Fij . Particle sliding occurs when the Coulomb
criterion |Ft

ij | < μ|Fn
ij | is not satisfied for particle friction

coefficient μ. Additionally, after setting kt/kn = 2/7 and
γt = 0, we set γn such that the restitution coefficient e =
exp(−γnπ/

√
4kn/meff − γ 2

n ) = 0.7 in the LSD case.
Using the above contact model, assemblies of about 2000

particles in a periodic box are subjected to homogeneous
steady simple shear at a shear rate γ̇ via the Lees-Edwards
boundary condition [23]. The box size, and hence the solids
volume fraction φ, are kept constant for each simulation. The
macroscopic stress tensor is calculated as

σ = 1

V

∑
i

⎡
⎣∑

j �=i

1

2
rij Fij + mi(v′

i)(v
′
i)

⎤
⎦ , (3)

where V is the box volume, rij is the center-to-center contact
vector from particle j to particle i, and v′

i is the particle
velocity relative to its mean streaming velocity; from this re-
sult, an ensemble-averaged pressure p = (σxx + σyy + σzz)/3
and shear stress τ = σxz can be extracted. All macroscopic
quantities will be presented in dimensionless form, scaled by
some combination of the particle diameter d, stiffness k = kn,
and solid density ρs . Since particles are assumed to overlap
without deformation, we ensure that the average overlap is
small (i.e., δ/d ≈ pd/k � 0.07).

III. FLOW REGIMES

We performed a series of simple shear simulations over a
range of shear rates and volume fractions reaching into all
three flow regimes and for several particle friction coefficients
between 0 and 1. Figure 1 shows the scaled pressure pd/k

versus the scaled shear rate ˆ̇γ = γ̇ d/
√

k/(ρsd) at various
volume fractions for (a) μ = 0.5 and (b) μ = 0.1. At low
shear rates, there is an observed separatrix occurring at a
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FIG. 1. Dimensionless pressure vs dimensionless shear rate for various volume fractions with (a) μ = 0.5 and (b) μ = 0.1. In both cases,
three flow regimes are observed, each with the scalings p ∼ γ̇ m: a quasistatic regime with m = 0, an inertial regime with m = 2, and an
intermediate regime with m ≈ 1/2. At low ˆ̇γ , a critical volume fraction φc separates the quasistatic and inertial regimes; values of φc(μ) are
given in Table I.

critical volume fraction φc, which we identify as the jamming
point; stresses scale quadratically with shear rate below φc

but show no rate dependence above it. These two bands
correspond to the inertial and quasistatic regimes, respectively.
As shear rate increases, the quasistatic and inertial isochores
approach a shared asymptote characteristic of the critical point
in which dependence on the volume fraction vanishes; this
region corresponds to the intermediate regime. Interestingly,
the intermediate asymptote appears to be independent of the
friction coefficient, in contrast to results at lower shear rates
and despite the fact that φc = φc(μ). Values of φc for different
cases of μ are presented in Table I. It should be noted that these
critical values inferred from dynamical behavior of sheared
systems are unique for each case of μ and hence may differ
from the jamming points of static packings, which are not
unique and depend on the compactivity [18].

A better understanding of the regime transitions can be
gained by constructing a regime map, or “phase diagram,”
from the slopes of the curves in Fig. 1. Such a map is shown
in Fig. 2. The intermediate regime is observed to lie in a
window centered around φ = φc, and the width of this window
is dependent on the value of the dimensionless shear rate. This
feature has important implications for the modeling of dense
granular flows. The large stiffness of granular materials such
as sand or glass beads has been used to justify the modeling
of granular particles as (infinitely) hard spheres. For such
particles, dimensional analysis requires the traditional Bagnold
scaling of the stresses (i.e., p,τ ∼ γ̇ 2), thereby rendering the
intermediate and quasistatic regimes impossible. This picture
is consistent with the vanishing of the intermediate regime
observed in Fig. 2 as k → ∞. However, real granular materials

TABLE I. Estimates of the critical volume fraction φc for different
cases of the interparticle friction coefficient. The value of φc for the
frictionless case agrees with the experimentally determined result of
Nordstrom [10].

μ 0.0 0.1 0.3 0.5 1.0
φc 0.636 0.613 0.596 0.587 0.581

do nevertheless have a finite stiffness. Therefore, in the context
of building a general rheological model for granular flows, it
is preferable to choose a framework that includes all three
regimes.

Another important observation from Fig. 2 is the smooth-
ness of the transitions between the regimes. This feature
suggests that purely quasistatic, inertial, or intermediate flow is
achieved only in certain limits. As ˆ̇γ → 0, we see quasistatic
flow for φ > φc, inertial flow for φ < φc, and intermediate
flow at φ = φc. We also see intermediate flow as ˆ̇γ → ∞
for all volume fractions over the wide range examined in this
study. The smooth transitions also suggest that the rheology at
a particular (γ̇ ,φ) is a composite of contributions from low- ˆ̇γ
and high- ˆ̇γ behaviors, and this notion will play a large role in
our construction of a rheological model.

IV. CRITICAL VOLUME FRACTION φc

Because φc plays such an important role in governing the
rheology in each of the three flow regimes, accurate estimation
of its value for each case of μ is required for the construction
of a valid rheological model. However, this task is made

γ̇d/ k/(ρsd)

φ

/ /( )

φ

Intermediate

Inertial

Quasistatic

FIG. 2. Regime map for μ = 0.5, with volume fraction vs
dimensionless shear rate. The intermediate regime occurs only at
φc in the limit ˆ̇γ → 0 but emerges from this point to encompass all
volume fractions as ˆ̇γ → ∞.
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FIG. 3. Characteristics of the critical point for μ = 0.5 and ˆ̇γ = 3.2 × 10−5. (a) Pressure fluctuations in time are observed to become larger
near the critical point. (b) The standard deviation of pressure, scaled by the mean pressure, exhibits a spike at φc. [(c), (d)] The coordination
number fluctuations are similar to those of the pressure in terms of both dynamics and φ dependence.

difficult by fluctuations of our measurements in time t . We
observe a propensity for assemblies near φc to form and
break force chains intermittently during the shearing process,
resulting in stress fluctuations of several orders of magnitude
as seen in Fig. 3(a). Though fluctuations occur at all volume
fractions, their size relative to the mean is markedly large
near the critical point. In Fig. 3(b) the standard deviation
σp ≡

√
〈p2(t)〉 − 〈p(t)〉2 of the pressure, when scaled by the

time-averaged pressure p, exhibits a spike centered slightly
under φc. This phenomenon increases the potential error in the
time-averaged stress values near the critical point, thereby lim-
iting the precision of our φc estimates to within about ±0.001.

Additionally, though φc is certainly an important quantity, it
is not necessarily the only or even the most influential param-
eter describing the jamming transition. The fact that stress can
vary significantly at a constant volume fraction indicates that,
while φ is a useful predictor of time-averaged stresses, other
state variables may be more suitable for predicting instan-
taneous stresses. This quality has been observed previously
with the coordination number Z(t), for example, which was
shown to exhibit a one-to-one correspondence with p(t) in the
quasistatic regime [24]. Indeed, we observe that p(t) and Z(t)

exhibit the same qualitative evolution in time [Fig. 3(c)] and
a similar φ dependence in their fluctuations [Fig. 3(d)]. Here
we define Z(t) ≡ 2Nc(t)/N for Nc contacts occurring in the
N -particle assembly. The p(t)-Z(t) relationship suggests that
the critical point is better defined by some critical coordination
number Zc. However, because our goal is the construction of
a steady-state rheological model, it is convenient to ignore all
dynamics and assume that Zc and φc correspond to the same
conditions. We therefore proceed with φc as the definition of
the critical point for our model.

In addition to being a function of μ, the critical point has
also been proposed to change with the restitution coefficient
e [25], and such a φc(e) has been used in a kinetic theory
for frictional particles [26]. However, our DEM results do
not support this conclusion, especially for frictional particles.
As seen in Figs. 4(a) and 4(b) for μ = 0.5 and μ = 0.1,
the spike in the pressure fluctuations occurs at the same
volume fraction for a given μ regardless of the value of e,
suggesting that φc = φc(μ) only. Even for the frictionless case
[Fig. 4(c)], where fluctuations tend to occur over a wider
range of volume fractions, there is no clear trend in the peak
toward lower φ. One possible reason for the discrepancy is
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FIG. 4. Effect of changing the restitution coefficient on the pressure fluctuations for ˆ̇γ = 3.2 × 10−5. Dotted lines demarcate the critical
point φc. For (a) μ = 0.5 and (b) μ = 0.1, the location of the spike in pressure fluctuations is independent of e. (c) Even for the frictionless
case, there is little evidence to suggest φc = φc(e).

the methods used for determining φc. Because hard-sphere
codes, used in Ref. [25], prohibit particle overlaps, they are
unable to simulate sheared particle systems near or above
φc [27]. This shortcoming limits the performable simulations
to one side of φc, thus requiring the critical point to be
estimated via extrapolation. Furthermore, while hard-sphere
methods treat collisions as binary interactions, entrance into
the quasistatic regime coincides with the development of
multibody interactions that persist even in the hard-sphere
limit [28]. This conflict may render even-driven algorithms
less accurate at resolving collisions upon approaching φc and
perhaps result in an erroneous estimation of the value of φc.
Soft-sphere DEM, on the other hand, enables us to resolve
multibody contacts and simulate shear flows at any volume
fraction on either side of φc, thereby allowing us to interpolate
the value of φc. For these reasons, we expect the latter approach
to provide more accurate φc estimates.

V. PRESSURE SCALINGS AND REGIME BLENDING

It has been demonstrated in experimental [10] and com-
putational [8,9,13] studies of frictionless particles that stress

data will collapse onto two curves (one above φc and one
below) upon scaling the stresses and shear rate by powers
of |φ − φc|, the distance to jamming. This idea is consistent
with several models of the radial distribution function, used
in kinetic theories for the inertial regime, that diverge at close
packing [29–31]. Such a collapse can be achieved for frictional
particles as well, as shown in Fig. 5, with

p∗ = p/|φ − φc|a, γ̇ ∗
p = γ̇ /|φ − φc|b, (4)

and constitutive exponents a and b. This result for frictional
disks was also found independently in Ref. [16]. From the
collapse it is clear that an asymptotic power-law relationship
between stress and shear rate exists for each flow regime j ,
and we can write the form of each asymptote as

pj

|φ − φc|a ∼
[

γ̇

|φ − φc|b
]mj

, (5)

where mQS = 0, minert = 2, and mint = m∗. The exponents
a and b can be fitted from the DEM data, but the values
are sensitive to the choice of φc used [9] and hence should
be chosen with care. Our inertial regime data suggest that
pinert ∼ |φ − φc|−2, which is consistent with previous results
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FIG. 5. Collapse of pressure vs shear rate curves from Fig. 1 for (a) μ = 0.5 and (b) μ = 0.1. In both cases, the pressure is scaled
as p∗ = p/|φ − φc|2/3 and the shear rate as γ̇ ∗ = γ̇ /|φ − φc|4/3. A simple blending function (solid lines) captures regime asymptotes and
transitions.
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[32]; quasistatic regime data reveal that pQS ∼ |φ − φc|2/3;
and, as noted earlier, pint ∼ |φ − φc|0. These trends lead
us to set a = 2/3, b = 4/3, and m∗ = 1/2. The m∗ value
is consistent with our fits of the intermediate asymptote
(Table I) and with experimental results [10–12], and it is
similar to other values proposed for frictionless particles
using the linear spring-dashpot model [8,9]. The value of
a used in Ref. [24] (a = 1), though different, still yields
a decent collapse. However, in that work, φc is determined
by extrapolation from the quasistatic regime, while here we
interpolate it from quasistatic and inertial regime data and
furthermore verify it with stress fluctuation data, as described
in Sec. IV; hence we believe our current φc values and the
resulting a value to be more accurate. We also point out that
the above scaling exponents depend on the contact model
used [8,33]. Based on a small set of simple shear simulations
with a Hertzian contact model, we observe the values of a ≈ 1
and m∗ ≈ 3/4 to be larger than in the LSD case by a factor
of 3/2, which is consistent with previous results for static,
jammed systems [17]. The value of b, however, remains the
same for both contact models; note that in both cases a = bm∗
in order to satisfy the functional forms implied by the collapse.
The resulting collapse for the Hertzian particles is shown in
Fig. 6.

Though the individual regime limits can be described using
Eq. (5), the transitions between them have yet to be modeled.
To this end, we employ a blending function B of the form

B(y1,y2) = (
yw

1 + yw
2

)1/w
, (6)

with w > 0 yielding an additive blend for the quasistatic-
to-intermediate transition and w < 0 providing a harmonic
blend for the inertial-to-intermediate transition. Figure 5
demonstrates the use of Eq. (6) with the asymptotic forms
of Eq. (5) and w = ±1.

The blended model is able to capture the pressure behavior
continuously in shear rate for all three regime limits as well
as the transitions; moreover, it does so without defining the
stresses in piecewise fashion over arbitrary shear rate domains.
Notably, it also predicts the narrowing intermediate window
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FIG. 6. Collapse of pressure vs shear rate curves for Hertzian
particles with μ = 0.5. The volume fractions (and legend) are the
same as from Fig. 1(a). Here, p∗ = p/|φ − φc|1, γ̇ ∗ = γ̇ /|φ − φc|4/3,
and m∗ ≈ 3/4. Regime asymptotes and transitions are captured by
the same blending function (solid lines) as in the Hookean case.

TABLE II. Values of model constants.

μ-Dependent parameters
μ 0.0 0.1 0.3 0.5 1.0

ηs 0.105 0.268 0.357 0.382 0.405
αQS 0.095 0.083 0.14 0.20 0.25

μ-Independent parameters
αinert αint I0 α1 β1 ˆ̇γ0 α2 β2

0.021 0.099 0.32 0.37 1.5 0.1 0.2 1.0

around φ = φc in the limit of zero shear rate, as the quasistatic
and inertial contributions to the stress become small near the
jamming point. The general form of the pressure model based
on the Hookean-case results can hence be written as

p =
{

pQS + pint for φ � φc(
p−1

inert + p−1
int

)−1
for φ < φc,

(7)

with the individual regime contributions defined as

pQSd/k = αQS|φ − φc|2/3, (8)

pintd/k = αint ˆ̇γ 1/2, (9)

pinertd/k = αinert ˆ̇γ 2

|φ − φc|2 . (10)

The pressure at φ = φc can be calculated using either blend,
since Eqs. (8) and (10) yield pQS(φ = φc) = 0 and pinert(φ =
φc) = ∞, which both yield p = pint upon substitution into
Eq. (7); this case is included with the quasistatic blending
solely for the sake of simplicity. The constitutive parameter
αQS is a function of μ, while αinert and αint are fairly μ

independent. These and other model constants are given in
Table II.

There are a few features of Eqs. (7)–(10) that are worth
noting. First, for systems above the critical volume fraction, the
blending function yields a model of Herschel-Bulkley form,
which has been shown previously to capture the shear stress
of soft-sphere systems [10–12]. Additionally, the individual
regime contributions are consistent with some known scalings.
For example, the quasistatic pressure is proportional to the
particle stiffness [24], while pinert = αinertρs(γ̇ d)2/|φ − φc|2
rightly exhibits no dependence on k [1–4]. Finally, the viability
of the φ scaling in Eq. (10) for all μ values suggests that the
φc = φc(μ) formulation could be a simple but effective step in
improving current kinetic theory models.

VI. DIMENSIONLESS GROUPS AND STRESS
RATIO MODEL

It is possible to construct an analogous model for the shear
stress as for the pressure, as previous works have shown τ to
exhibit similar scalings with respect to the distance to jamming
[8,9,14]. However, because τ and p both vary over several
orders of magnitude, fitting them directly can result in poor
predictions of their ratio, i.e., the shear stress ratio η ≡ τ/p,
which varies over a much narrower range. For this reason, we
choose to construct a model for η and then express the shear
stress as τ = ηp.
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FIG. 7. Behavior of the shear stress ratio with respect to inertial number. (a) Significant scatter is observed when data from all three
regimes are included. Data are shown for μ = 0.5 [see legend in Fig. 1(a)]. Inset: A good collapse is achieved, however, for cases in which
ˆ̇γ � 3.2 × 10−5. These cases correspond essentially to the quasistatic (I � 10−2) and inertial regimes (I � 10−2) and are also indicated with
a best-fit line Eq. (11) in the main figure. Intermediate regime data lie below this line. (b) The increase in the stress ratio from the yield stress
ratio for these small- ˆ̇γ cases collapses for μ � 0.1. Equation (11) captures these data well (solid line), as does the model of da Cruz et al. [32]
for I � 0.3 (dashed line).

Some recent, successful rheological models for dense
granular flows employ a dimensionless parameter called the
inertial number as the basis for achieving stress collapses over
a range of volume fractions and shear rates [32,34,35]. This
inertial number I ≡ γ̇ d/

√
p/ρs is a ratio of the time scales of

shear deformation and particle rearrangement, and the physics
of granular flows of hard particles is said to be determined by
the competition of these two mechanisms. When the particles
have a finite stiffness, however, the binary collision time is
nonzero and therefore presents yet another important time
scale. With this point in mind, we note that the dimensionless
shear rate ˆ̇γ identified earlier is in fact the ratio of the binary
collision time to the macroscopic deformation time [15], and
we show here that it can be used along with the inertial number
to characterize soft particle rheology.

In Fig. 7 we plot the stress ratio versus the inertial number
for μ = 0.5. For the densest systems, i.e., for low I , η exhibits
a constant-value asymptote that we identify as the yield stress
ratio ηs = ηs(μ); values of ηs for different cases of μ are
presented in Table II. As I increases, η then also increases.
These same observations were made in previous studies of
particles in the infinitely hard limit [32,34,35]. However, unlike
in these works, we also observe significant scatter as I becomes
larger, which we will now show to be a consequence of the
particle softness.

Because the inertial number models are designed for
hard particles, we first limit our analysis to cases in which
particle softness has little effect, i.e., for small ˆ̇γ . Indeed,
quasistatic and inertial regime data of η versus I from our DEM
simulations collapse onto a single curve, with the quasistatic
regime occurring for I � 10−2 and inertial regimes occurring
for I � 10−2. This collapse is seen in the inset of Fig. 7(a) for
μ = 0.5. We model this curve as

ηhard(I ) = ηs(μ) + α1

(I0/I )β1 + 1
, (11)

where I0, α1, and β1 are parameters dictating the transition
from quasistatic to inertial flow. This form is similar to that

of Jop et al. [35]. Interestingly, the increase of η from ηs is
nearly identical for all cases of μ � 0.1 [Fig. 7(b)]. Since
the interparticle friction coefficient for most real granular
materials falls in this range, we conveniently take one set
of constitutive parameter values as suitable averages for our
model; these values are presented in Table II.

The form of ηhard presented in Eq. (11) is not the only viable
option. Another possibility is a simple power law, which can
be written as ηhard(I ) = ηs + α′

1I
β ′

1 . This form has been used
previously by da Cruz and co-workers [32] with β ′

1 = 1. A
comparison between this form, with β ′

1 = 1 and α′
1 = 0.6, and

the one in Eq. (11) is shown in Fig. 7(b). The two models agree
closely for all values of I � 0.3, with a departure occurring for
larger I . However, with the inertial number models, we need
to be concerned only with volume fractions greater than the
freezing transition φf = 0.49 [29], where traditional kinetic
theories fail [26,36]. At φf , the kinetic theory of Garzó and
Dufty [1] predicts I = 0.83, which is consistent with our
DEM results and beyond which we can ignore disparities in
the ηhard predictions between the two models. Hence, though
we continue with Eq. (11), we view both forms as being
acceptable.

Though Eq. (11) captures low- ˆ̇γ behavior well, inclusion
of higher- ˆ̇γ cases reveals a noticeable departure from the
ηhard(I ) curve, as seen in Fig. 7. Specifically, for a given
value of I , the value of η from an intermediate-regime
flow is consistently lower than that given by Eq. (11). This
deviation is a consequence of particle softness and, in the
context of our regime blending, grows in magnitude with the
intermediate-regime contribution to the pressure. Figure 8(a)
shows the connection between the magnitude of this departure
ηsoft ≡ ηhard − η and ˆ̇γ . This softness effect, similarly to ηhard,
can be modeled as

ηsoft( ˆ̇γ ) = α2

( ˆ̇γ0/ ˆ̇γ )β2 + 1
, (12)

where ˆ̇γ0 = 0.1, α2 = 0.2, and β2 = 1 are constants de-
scribing the transition to intermediate flow. Finally, we can
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FIG. 8. Shear stress ratio contribution from ˆ̇γ for all values of ˆ̇γ and μ � 0.1. (a) The softness-induced departure ηsoft of the stress ratio
from its hard-particle limit is essentially a function of only ˆ̇γ . (b) The correction for particle softness yields a collapse of the data in all three
regimes.

write

η(I, ˆ̇γ ) = ηhard(I ) − ηsoft( ˆ̇γ ), (13)

and, by plotting η∗ ≡ η − ηs + ηsoft vs I as in Fig. 8(b), we
arrive at a collapse of the stress ratio data from all three
regimes.

VII. GENERALIZED CONTINUUM MODEL

Our rheological model therefore consists of Eqs. (7)–(10)
for the pressure and Eqs. (11)–(13) for the shear stress ratio.
Though the collapses can generally be improved by allowing
the fitting parameters to be functions of μ rather than constants,
the fits are nevertheless fairly good and hence justify the use
of simpler forms.

While this model was developed for simple shear flows, it
can be recast to handle general deformation types as done in
Ref. [24]. First, we note that the strain rate tensor for simple
shear flows is D = 1

2 γ̇ (exez + ezex), where ei are the unit
vectors in the i direction. This expression can be rearranged to
yield

γ̇ = 2|D|, (14)

where |D| =
√

1
2 DT : D is the modulus of D, and D is taken

to correspond to general deformation types. Finally, we write
the stress tensor as

σ = p (I − ηŜ), (15)

where p and η are given by our model, I is the identity
tensor, and Ŝ = S/|D| with S = D − 1

3 tr(D). Equations (14)
and (15) allow our rheological model to handle flows in
more complex geometries as are commonly found in real flow
scenarios.

VIII. SUMMARY

We have investigated shear flows of dense frictional
granular materials in all three flow regimes in order to gain
a better understanding of the scalings within each regime and
the transitions between them. We find scaling relations for the
pressure with respect to both shear rate and the distance to
the jamming point and, for the intermediate regime, observe
identical power-law behavior for particles with different fric-
tion coefficients. Furthermore, we propose a simple blending
function for patching each regime’s asymptotic form in order
to predict pressure in between regimes. Finally, we decompose
the shear stress ratio into contributions from two dimensionless
shear rates, enabling us to quantify the effect of particle
softness. These findings establish a framework for a global
model for steady-state simple shear flows of dense granular
matter.
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Continuum modeling of granular and gas-solid flows generally involves the use of
a kinetic-theory (KT) model for the particulate phase, and the most widely used
KT models have been derived for dilute flows of smooth, frictionless spheres. In
reality, however, granular particles are frictional and can achieve dense packing, and
these features must be taken into account to improve rheological predictions in these
flow scenarios. Existing approaches in the literature for producing closed-form KT-
based models employ empirical modifications to adapt the original models for use
in dense and frictional systems. In this article, we investigate the capacity for such
modifications to improve the rheological predictions of the Garzó–Dufty (GD) KT
model [V. Garzó and J. W. Dufty, “Dense fluid transport for inelastic hard spheres,”
Phys. Rev. E 59, 5895–5911 (1999)]. On the basis of molecular dynamics simulations
of homogeneous, simple shear flows of soft, frictional spheres, we propose a new
expression for the radial distribution function at contact as well as modifications
to the GD expressions for shear stress and energy dissipation rate. These changes
account for dense-regime scalings observed in inertial-number models as well as the
effects of interparticle friction while preserving the dynamic nature of the KT model.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812804]

I. INTRODUCTION

Granular rheology has been a commonly studied topic for many years owing in part to the
diversity of behavior that granular flows exhibit. Depending on the local solids volume fraction φ

and shear rate γ̇ , one can observe any of three distinct flow regimes:1–3 (1) a quasi-static regime for
φ exceeding the critical volume fraction φc in which pressure p and shear stress τ are independent
of shear rate; (2) an inertial regime below φc in which p, τ ∼ γ̇ 2; and (3) an intermediate regime
occurring in a narrow window of volume fractions about φc in which p, τ ∼ γ̇ n with 0.5 � n � 1. As
particle stiffness k → ∞, only the inertial regime can be observed, and, because granular particles
are generally extremely hard, a large subset of granular flows belong to the inertial regime.

Stresses in the inertial regime are typically modeled using the kinetic theory (KT) of granular
gases,4–7 a class of dynamic models capable of predicting a variety of clustering behaviors.8, 9

Development of these models involves following what we call the KT approach or KT analysis, which
is the general process of evaluating the transport coefficients by moment analysis of the Boltzmann
equation while making simplifying assumptions regarding the collision integral. These assumptions,
which include the two-particle interaction model and the nature of the velocity distributions, will
affect not only the regimes of validity for any resulting relations but also their attainability in
closed form, as oftentimes the collision integral can only be evaluated numerically. The earliest and
most widely used KT models have been derived for dilute flows of inelastic, smooth, frictionless
spheres,4–7 though there also exist more sophisticated models that account for particle roughness
by including tangential restitution and rotational degrees of freedom.10, 11 We refer collectively to
these two types of models, which consist of closed-form constitutive expressions, as traditional KT
models.
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Though all flows in the inertial regime are amenable to KT analysis, this regime in itself contains
two ranges of volume fractions exhibiting somewhat different behavior. The first is the dilute inertial
regime and encompasses volume fractions between zero and φf ≈ 0.49. In this range, traditional
KT models exhibit generally good agreement with discrete particle simulations. On the other hand,
for volume fractions between φf and φc, which constitute the dense inertial regime, KT models
are less successful, with discrepancies resulting from a few assumptions made in their derivation.
For example, one typically assumes “molecular chaos,” i.e., that the collisions of a particle with its
neighbors are uncorrelated, allowing one to express the two-particle velocity distribution function as
the product of the single-particle distribution functions (which are Gaussian). In dense flows, though,
a particle will interact many times with the same neighbors12, 13 as steric effects become predominant,
thereby resulting in a non-Gaussian distribution of normal relative velocities.14 Additionally, these
models assume a small Péclet number Pe ≡ γ̇ d/

√
T , which represents the extent of departure

from the equilibrium, isotropic state of an assembly of particles of diameter d and with a granular
temperature T. If Pe � 1, thermal forces predominate and preserve a nearly isotropic structure
within the assembly. However, shear flows are distinctly nonequilibrium, as demonstrated by the
emergence of prominent structural features including force chains15 and anisotropy of the fabric of
contacts,16–18 which would not survive in a thermal system. This phenomenon arises in part because
collisions between granular particles are dissipative, characterized by a restitution coefficient e often
not near unity that serves to increase Pe by decreasing T. It is hence understandable that traditional
KT models are unable to predict some features of the dense inertial regime, including the increase
in T near the critical volume fraction19 and the saturation of the shear stress ratio η ≡ τ /p to its
correct close-packing limit20 ηs. Recent inertial-number models do predict the yield stress1, 21, 22 but
do not apply to dilute flows; they also do not account for important nonlocal effects23 that KT can
capture via conduction of pseudothermal energy. There is a need, therefore, for a rheological model
that bridges the dense and dilute behaviors within the KT framework.

In addition to their dense-regime limitations, traditional KT models are derived assuming
collisions of frictionless particles only and hence are unequipped to handle any dependence on the
interparticle friction coefficient μ. In reality, however, granular materials are frictional, and the value
of μ has been shown to have a significant effect on stresses at least in the quasistatic regime,18 where
increasing μ generally increases the stress because of larger tangential interparticle forces arising
from enduring contacts. Attempts to quantify the friction effect in the inertial regime, though, have
been somewhat more limited. Many KT works have considered tangential restitution,10, 11, 14, 24, 25

which similarly describes roughness but is nevertheless microscopically different from friction. A
KT model that explicitly and accurately accounts for dependence on μ is currently lacking.

One important quantity in which friction, shearing, and large packing density all play an
important role is the radial distribution function at contact g0(φ). Most expressions for g0, in
agreement with g0 data extrapolated directly from equilibrium hard-sphere simulations,26 predict
its divergence at close packing,26–28 i.e., g0 ∼ (φc − φ)m for some constant m < 0. However, shear
simulations of discrete-particle assemblies suggest that these expressions significantly underpredict
g0 for systems far from equilibrium and featuring strong contact anisotropy.19, 29 Additionally, these
expressions tend to neglect the dependence of the critical volume fraction on the friction coefficient,
which has been observed both in static systems30 and sheared systems.1 Since φc(μ) determines
the point at which the pressure diverges, any extension of KT to the dense regime must take this
dependence into account.

Given the need for a KT model that spans dense and dilute regimes while accounting for
anisotropy and interparticle friction, it is natural to attempt to revisit the KT approach without
making the aforementioned inappropriate assumptions. Doing so would, in theory, yield a model
applicable to a wide array of flows and particle types without the need for empirical fitting of
rheological data. However, two major problems arise in this endeavor. First, at the present time
it does not appear possible to deduce closed-form expressions for the transport coefficients in the
dense regime when employing the non-Gaussian relative velocity distribution function.14 Because
the rheological behavior of the material would need to be evaluated numerically for every given set
of particle parameters, it is impractical to implement such a model into a continuum-model solver
for application to large-scale flow problems. Second, this approach still does not avoid the need for
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empiricism, as the dense-regime relative velocity distribution function14 and the radial distribution
function at contact cannot yet be predicted a priori. Hence, it appears that the most promising path
toward a comprehensive rheological model in the near term lies in empirical modification of existing
closed-form KT models.

Indeed, such KT modifications have been proposed numerous times in the recent literature.31–34

Of particular interest are the changes proposed by Jenkins and co-workers31, 33 for extending the
commonly used theory of Garzó and Dufty4 (GD), which is originally derived for flows of frictionless,
moderately dissipative spheres in the dilute regime. The first modification calls for introduction of a
length scale L, which the authors call a “chain length,” into the expression for the energy dissipation
rate.31 This length scale is said to represent the typical length of force chains that form in dense
granular flows and that grow large upon approaching φc. While the existence of a large or diverging
length scale in such flows is a topic of debate,2, 25, 35, 36 the use of such a functional form is nevertheless
successful in qualitatively describing the dense-regime increase in temperature and decrease in shear
stress ratio. The second modification is the replacement of the normal restitution coefficient with an
“effective” restitution coefficient eeff(μ, e) < e that accounts for the increased dissipation resulting
from interparticle friction.33 This substitution has been shown to improve stress predictions for dilute
flows of slightly frictional particles. Modifications such as these are not only successful in improving
the predictions of traditional KT models but moreover are convenient to constitute based on stress
and temperature data from granular flow experiments and simulations.

In the present work, we assess the capacity for these two modifications to yield accurate model
expressions by comparing their steady-state predictions for pressure, shear stress, and temperature
with data obtained from discrete element method37 (DEM) simulations of sheared particle assem-
blies; and, when these approaches prove insufficient, we propose additional corrections to bring the
GD model predictions into closer agreement with those of the DEM simulations.

In Secs. II–IV, we present the original (GD) KT model, an explanation of our simulation
methodology, and a validation of our simulations for the case of frictionless particles below φf. We
then demonstrate the stark disagreement between the GD model predictions and our DEM results
above φf and for frictional particles at all volume fractions. Finally, we outline the steps taken to
constitute various model quantities used in our modified KT expressions based on our DEM results.

II. GARZÓ–DUFTY KT MODEL

As aforementioned, the kinetic theory of choice for the modifications will be that of Garzó
and Dufty,4 which is designed for smooth, frictionless, moderately inelastic particles in the dilute
regime. According to this model, for simple shear flows one can write the pressure p as

p = ρs H (φ, e)T , (1)

the shear stress τ as

τ = ρsdγ̇ J (φ, e)
√

T , (2)

and the energy dissipation rate � as

� = ρs

d
K (φ, e)T 3/2. (3)

Here, ρs is the solid material density, and the definitions of the dimensionless expressions H, J, and
K and their components are

H (φ, e) = φ[1 + 2(1 + e)φg0], (4)

J (φ, e) = 5
√

π

96
η∗, (5)

K (φ, e) = 12√
π

φ2g0(1 − e2), (6)

η∗ = η∗
k + η∗

c + η∗
b, (7)
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η∗
k = 1 − 2

5 (1 + e)(1 − 3e)φg0

[1 − 1
4 (1 − e)2 − 5

24 (1 − e2)]g0
, (8)

η∗
c = 4

5
(1 + e)φg0η

∗
k , (9)

and

η∗
b = 384

25π
(1 + e)φ2g0. (10)

The quantities η∗
k , η∗

c , and η∗
b are the scaled kinetic, collisional, and bulk viscosity contributions,

respectively. As per Jenkins and Berzi,31 we have neglected here the very small contribution of
all terms proportional to a quantity that Garzó and Dufty4 denote as c*(e). The radial distribution
function at contact g0(φ) has been modeled in numerous ways,26–28, 32, 38 but two formulations in
particular have been validated by simulation data of frictionless hard spheres at equilibrium. The
first of these is the Carnahan–Starling expression,38

gCS
0 = 1 − φ/2

(1 − φ)3
, (11)

which is valid for systems below φf. The second is a modification to gCS
0 proposed by Torquato26

for denser systems. Written as

gTorquato
0 =

{
gCS

0 (φ) for φ ≤ φ f

gCS
0 (φ f )φc−φ f

φc−φ
for φ > φ f

, (12)

it differs from the Carnahan–Starling result only above φf, specifically by diverging at φc. Because
of its agreement with simulation data and its use in a recent KT work,31 we will initially use
Torquato’s26 g0 formulation in Sec. IV together with the GD equations for comparison with DEM
results.

For steady-state simple shear flows, we can write the granular energy balance as

� − Jvis = 0, (13)

where

Jvis = γ̇ τ (14)

is the viscous energy production rate. With this condition and Eqs. (2) and (3), we can solve for the
GD steady-state temperature expression

T GD
SS =

(
J

K

)
(γ̇ d)2. (15)

This result then allows us to obtain the steady-state GD pressure

pGD
SS =

(
J H

K

)
ρs(γ̇ d)2 (16)

and shear stress

τGD
SS =

√
J 3

K
ρs(γ̇ d)2. (17)

Finally, the shear stress ratio η is found from Eqs. (1) and (2) to be

ηGD
SS =

√
J K

H
. (18)

We emphasize that these four expressions are valid only for simple shear flows that have reached
steady state.
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III. SIMULATION METHODS

We use a package of the discrete element method37 found in the molecular dynamics package
LAMMPS39 in order to simulate simple shear flows of discrete, uniform, spherical particles. These
particles interact via a linear spring-dashpot (LSD) model, which gives the normal and tangential
forces on a particle i caused by contact with a particle j as

Fn
i j = knδi j ni j − γnmeffvn

i j , (19)

Ft
i j = −kt ut

i j − γt meffvt
i j , (20)

for overlap distance δij, particle diameter d, spring stiffness constants kn and kt, viscous damping
constants γ n and γ t, effective mass meff = mi m j/(mi + m j ) for particle masses mi and mj, relative
particle velocity components vn

i j and vt
i j , and elastic shear displacement ut

i j . We choose to set kt/kn

= 2/7 and γ t = 0 as done in some previous works1, 40 and by doing so can set γ n in order to produce

the desired restitution coefficient according to the expression e = exp
(
−γnπ/

√
4kn/meff − γ 2

n

)
.

While experiments have revealed a dependence of the restitution coefficient on the particle impact
velocity,41 a behavior captured by some nonlinear spring-dashpot models,42 kinetic theory models
assume a constant e as produced by the LSD model. Hence, for ease of comparison we neglect more
complex, nonlinear behavior.

Samples are prepared by placing 2000 particles on a simple cubic lattice in a periodic box,
assigning random, normally distributed initial velocities to the particles, and allowing the assembly
to evolve in order to lose any memory of the initial configuration. The assembly then undergoes a
simple shear deformation with shear rate γ̇ imposed via the Lees-Edwards boundary condition,43

which allows for the system to remain homogeneous during the shearing process. The shearing
motion proceeds until the system reaches a steady state and remains there for sufficient time to
collect proper statistics as determined by the saturation of the time-averaged stresses. From the
particle interaction forces and the constant box volume V , we can calculate the macroscopic stress
tensor as

σ = 1

V

∑
i

⎡
⎣∑

j �=i

1

2
ri j Fi j + mi (v′

i )(v
′
i )

⎤
⎦ , (21)

where ri j is the contact vector from the center of particle j to the center of particle i, and v′
i is

the particle fluctuating velocity (i.e., its velocity relative to its mean streaming velocity). From this
tensor, we can calculate the ensemble-averaged pressure p = (σ xx + σ yy + σ zz)/3 and shear stress
τ = σ xz. Because we limit the focus of our study to inertial regime flows, i.e., flows with φ <

φc and ˆ̇γ ≡ γ̇ d/
√

k/ρsd � 10−3 [Ref. 1], it is appropriate to scale our stress data by the quantity
ρs(γ̇ d)2, where ρs is the solid material density and d is the particle diameter; similarly, we scale
the temperature data by (γ̇ d)2. We also have confirmed this Bagnold scaling by running a small
set of simulations with varying values of k and observing no substantial changes in the predicted
temperature or stresses.

IV. RESULTS

A. Comparison of KT with DEM of frictionless particles

If the kinetic theory is to be extended to frictional and dense flows based on DEM data, we
must demonstrate first that the continuum and discrete models make similar stress and temperature
predictions for frictionless particle flows at low-to-moderate volume fractions. Such a comparison
is shown in Fig. 1, with scaled pressure, shear stress ratio, and scaled temperature plotted versus
volume fraction.

Indeed, as expected, the predictions of the two models display good agreement up to φ ≈ φf. For
higher volume fractions, however, there appear three salient discrepancies: (1) the scaling of p with
respect to φ, (2) the close-packed limit of the shear stress ratio, and (3) the scaling of T with respect
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FIG. 1. Results from DEM simulations of steady state simple shear flows of frictionless particles. (a) Scaled pressure,
(b) shear stress ratio, and (c) scaled temperature are plotted versus volume fraction for various cases of the restitution
coefficient e. The predictions of GD kinetic theory with Torquato’s26 radial distribution function and φc = 0.636 are shown
with solid lines. GD and DEM are in good agreement for volume fractions of φ � φf = 0.49 but depart above this point.

to φ. Of course, the original kinetic theory cannot be expected, as explained earlier, to capture dense
flow behavior. However, the good agreement at the low volume fractions for which the original GD
model was designed validates our use of DEM for model construction.

B. Comparison of KT with DEM of frictional particles

When the particles are made frictional, on the other hand, the DEM data depart markedly
from the GD predictions, as seen in Fig. 2 for μ = 0.5. In addition to its aforementioned dense-
regime shortcomings, the GD model now substantially overpredicts the pressure and temperature for
φ � φf while also underpredicting the shear stress ratio. This behavior is unsurprising, as the GD
model is not designed for such systems, and is explained by the additional source of dissipation
of pseudothermal energy provided by interparticle friction during collisions between particles.33

Additionally, the assumption that the critical volume fraction φc is independent of μ leads the model
to predict incorrectly the location of the dense-limit pressure divergence. As expected based on its
derivation, the GD model is unequipped to handle either friction or dense packing, and adaptations
must be made to extend its applicability to these conditions.

Based on the discrepancies observed between the GD and DEM predictions and on previous
approaches to constitutive model refinement, our strategy for modifying the kinetic theory equations
will be as follows:

1. The energy dissipation � (Eq. (3)) will be modified to include (1) an effective restitution
coefficient33 eeff = eeff(e, μ) in the K term to capture μ-functionality and (2) a multiplicative
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FIG. 2. Results from DEM simulations of steady state simple shear flows of frictional particles with μ = 0.5. (a) Scaled
pressure, (b) shear stress ratio, and (c) scaled temperature are plotted versus volume fraction for various cases of the restitution
coefficient e. The predictions of GD kinetic theory with Torquato’s26 radial distribution function and φc = 0.636 are shown
with solid lines. GD and DEM are in very poor agreement, even for the dilute regime.

correction factor δ� related to the chain length31 to capture dense-regime trends with respect
to φ.

2. A new expression will be proposed for the radial distribution function at contact g0 that will
diverge at close packing in a manner concordant with our DEM data and that is specifically
for use in nonequilibrium systems.

3. The shear stress τ will be decomposed into a yield stress and an inertial stress, the latter of
which will be similar to Eq. (2) except augmented with a multiplicative correction factor δτ

(analogous to the adjustable parameter that appears in the τ expression of some previous kinetic
theories7, 8, 44). This factor will transition from a dilute-regime limit of δdil

τ that accounts for μ-
functionality at low φ to a dense-regime limit δdense

τ that will force η to obey an inertial-number
model1, 20–22 for φ � φf.

The correction factors will be applied to the dynamic GD equations and, as a result, will change
the steady-shear GD predictions produced by imposing Eq. (13). The expressions chosen for these
corrections, therefore, will be motivated by the steady-state values of the temperature, pressure, and
shear stress calculated from our simple shear simulations.

C. Constituting the DEM results

1. DEM temperature

We will focus first on corrections to capture the DEM temperature. Because the behavior of
the temperature is qualitatively different in the dense and dilute regimes, we will analyze each
case separately. In the dilute regime, temperature is observed to drop upon increasing the friction
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FIG. 3. The dependence of the frictional part f(μ) (Eq. (23)) of the effective restitution coefficient eeff on the interparticle
friction coefficient μ. Our expression agrees with that of Jenkins and Zhang33 for small values of μ.

coefficient from zero, and following the approach of Jenkins and Zhang33 we seek to define an
effective restitution coefficient that describes the total energy loss due to inelasticity and friction
during an interparticle collision. To do so, we rewrite Eq. (15) by replacing e in the K term of the
denominator with eeff = eeff(e, μ). The value of the effective restitution coefficient is then chosen
to reproduce the temperature found in dilute-regime DEM simulations. Based on the DEM data, we
find the expression

eeff = e − f (μ) (22)

with

f (μ) = 3

2
μ exp(−3μ) (23)

to provide a good fit. A comparison is made in Fig. 3 between this form and that derived by Jenkins
and Zhang33 for small values of μ. (We note that their expression for f has a very small dependence
on e, which we have neglected.) For μ � 0.2, the two expressions show good agreement but begin to
depart thereafter. In particular, following our data, our expression for f(μ) decreases for larger values
of the friction coefficient, seeming to predict lower dissipation for more frictional particles. This
nonmonotonic dependence is consistent with the previous finding that the translational temperature
reaches the same steady-state values for the zero- and infinite-friction cases.34 We thus can write

T dil
DEM =

(
J

K ′

)
(γ̇ d)2 (24)

with

K ′(φ, e, μ) = 12√
π

φ2g0(1 − e2
eff) (25)

= K (φ, e)

(
1 − e2

eff

1 − e2

)
. (26)

For volume fractions above φ ≈ φf, an additional correction is needed to capture the increase
in temperature with φ [Ref. 19], as the original GD model predicts a monotonically decreasing
temperature. Plotting the dimensionless temperature versus the distance to the critical volume
fraction φc − φ, as in Fig. 4, we observe that

T dense
DEM = α1(γ̇ d)2

(φc − φ)1/2
, (27)
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FIG. 4. Dense-regime temperature from DEM simulations. Symbols are the same as in Figs. 1 and 2. Scaled temperature
versus volume fraction is shown for μ = 0.5. A power law of slope −1/2 is observed (solid line) close to φc, and the transition
from dilute to dense behavior occurs for lower φ as e decreases. The power-law fit is reasonably good for all cases of μ.

a power law that is robust to changes in e and μ. The transition in temperature between the dilute
and dense regimes can be captured conveniently by

TDEM = max(T dil
DEM, T dense

DEM ) (28)

or equivalently

TDEM = M(φ, e, μ)(γ̇ d)2 (29)

with

M(φ, e, μ) = max

(
J

K ′ ,
α1

[φc − φ]1/2

)
. (30)

This form succeeds in capturing the sharp transition between the two behaviors as well as the loss
of e-dependence observed in the close-packing limit, as seen in the comparison of Eq. (29) with the
DEM temperature in Fig. 5. Moreover, it succeeds in reproducing the e-dependence of the volume
fraction at which the dilute-to-dense crossover occurs without needing to specify this point explicitly.
There is some minor quantitative disagreement in very dilute cases (φ � 0.2), but we will neglect
them here and reserve this topic for Sec. V.
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FIG. 5. Comparison of the new steady-state temperature model with DEM results. Scaled temperature versus volume fraction
is shown for (a) μ = 0.1 and (b) μ = 0.5. The agreement observed here between the KT and DEM predictions is substantially
better than in Fig. 2. Symbols are the same as in Figs. 1 and 2.
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regime with e = 0.9. (a) The clear power-law dependence with slope −3/2 (solid line) suggests that g0 ∼ (φc − φ)−3/2 in the
dense regime, in disagreement with Torquato’s26 equilibrium results. (b) Varying the friction coefficient μ has no effect on
this quantity in the dilute regime, indicating that e need not be replaced with eeff in the pressure equation (Eq. (1)). Similar
results are obtained for other cases of μ and e.

2. DEM pressure

With the temperature now described accurately, we turn our attention to the pressure, which de-
pends primarily on T and the contact value g0(φ) of the radial distribution function. As demonstrated
in Fig. 2(a), the scaling of the pressure with respect to volume fraction in the dense regime observed
using DEM is in disagreement with the GD model when Torquato’s26 g0 expression for frictionless
spheres at equilibrium is used. Moreover, substitution of the temperature given by Eq. (29) into
Eq. (1) is insufficient to resolve the disparity. In fact, based on literature results1, 21 showing that
p ∼ (φc − φ)−2 and our finding here that T ∼ (φc − φ)−1/2 in the dense regime, we would expect to
see g0 ∼ (φc − φ)−3/2. By plotting DEM results for p/ρsφT, which goes as g0 in the dense regime,
versus φc − φ as in Fig. 6(a), we indeed observe this power law quite clearly. The −3/2 power also
lies in the range of exponent values measured for the collision frequency (which is proportional to
g0) in sheared hard-sphere systems.25 Hence, we propose to represent g0 as

g0 = gCS
0 + α2φ

2

[φc(μ) − φ]3/2
(31)

with α2 = 0.58 for all e and μ. Note that we allow φc to vary with μ as per Chialvo et al.1 A comparison
of this form with those of Torquato26 and Carnahan–Starling38 is given in Fig. 7. The larger exponent
in our proposed model for sheared systems (−3/2) compared with that of Torquato’s26 model for
equilibrium systems (−1) results in a stronger divergence at close packing. This phenomenon can
be explained physically by recalling that sheared systems exhibit strong orientational anisotropy
of collisions. In a sheared assembly, a reference particle will experience collisions concentrated
preferentially along the compression axis of shear, while in isotropic systems these collisions are
distributed uniformly in all directions. This crowding of collisions into a smaller spatial window in
the sheared case results in a higher effective contact value of the radial distribution function for a
given packing fraction.

Using the proposed g0 model along with our DEM temperature in the GD pressure equation, we
are able to improve the kinetic-theory predictions of the pressure for the entire range of φ and for all
e and μ investigated (Fig. 8). As mentioned above for the temperature, there is some disagreement
for φ � 0.2 , though the μ-independence of p/ρsφT indicates that improved prediction of T in this
range would mitigate or eliminate this error.

Because the collisional contribution to the pressure contains a factor of (1 + e), one could ask
whether the effective restitution coefficient should appear here as well. To address this question, we
examine the behavior of p/ρsφT from dilute-regime DEM simulations as the friction coefficient is
varied. According to the GD model p/ρsφT = 1 + 2(1 + e)φg0, so replacement of e here with eeff is
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FIG. 7. Comparison of the g0 expression proposed in Eq. (31) with those of Torquato26 (Eq. (12)) and Carnahan–Starling38

(Eq. (11)). The proposed and Torquato expressions are plotted for both μ = 0.0 and μ = 0.5, with φc depending on μ. Both
of these models approach the Carnahan–Starling model in the dilute regime, while their dense-regime behaviors differ in
their scaling with respect to (φc − φ).

justified only if a μ-dependence is observed. As seen in Fig. 6(b), no such dependence is observed
in the simulations, and hence we maintain the original form.

3. DEM shear stress ratio

Finally, we must attempt to capture the DEM shear stress, which, since we have now described
the pressure, can be achieved by simply modeling the shear stress ratio η. Before investigating any
further corrections, however, we first test whether the modifications done so far are sufficient to
capture the DEM trends. In Fig. 9, we compare the DEM η values with the predictions of the original
GD model (Eqs. (1) and (2)) augmented only with eeff from Eq. (22), a chain length correction that
reproduces the temperature as per Eq. (30), and the new g0 expression from Eq. (31). This set of
corrections would involve setting δτ = 1 and is analogous to the model of Jenkins and Berzi.31 As
seen in the figure, there is somewhat of an improvement in that this modified GD model now predicts
an increase in η due to friction in the dilute regime and a decrease in η as φ approaches φc. However,
this model continues to underpredict the effects of friction and still fails to produce a yield stress
ratio at close packing. Hence, a further shear stress correction is necessary to reproduce the DEM η

results quantitatively.
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FIG. 8. Comparison of the new steady-state pressure model with DEM results. Scaled pressure versus volume fraction is
shown for (a) μ = 0.1 and (b) μ = 0.5. The agreement observed here between the KT and DEM predictions is substantially
better than in Fig. 2. Symbols are the same as in Figs. 1 and 2.
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FIG. 9. Comparison of the DEM shear stress ratio values with the GD model modified to include only eeff and the new
g0 expression (i.e., δτ = 1 as per Jenkins and Berzi31). The agreement observed here between the modified GD and DEM
predictions is somewhat better than in Fig. 2, though the effect of friction is underestimated and a finite yield stress ratio is
still not predicted. Results are shown for μ = 0.5, though these trends are observed for all μ. Symbols are the same as in
Figs. 1 and 2.

The proposed η model must not only predict the dilute- and dense-regime behaviors in the
respective limits of φ → 0 and φ → φc but must also capture the transition between the two. In
the case of pressure and temperature, the dilute-to-dense transitions involve changes of orders of
magnitude, facilitating the bridging effort by allowing simple additive or switch models. However,
the shear stress ratio varies over a much smaller range – always within the same order of magnitude
– and the subtler transition will require a different bridging form.

In the dilute regime, we define ψ(μ, e, φ) ≡ η(μ, e, φ)/η(μ = 0, e, φ) in order to quantify the
departure of the shear stress ratio from the frictionless case. We then estimate a φ-averaged value
of ψ for each case of μ and e, with weighting given more heavily to volume fractions between
approximately between 0.2 and 0.4. The expression

ψ(μ, e) = 1 + 3

10
(1 − e2)−2/3[1 − exp(−8μ)] (32)

is found to provide a reasonably good fit while also satisfying some physical criteria, including the
diminished influence of friction for more inelastic particles and the requirement that ψ → 1 as μ → 0.
The exponential μ-dependence here is similar in form to that proposed for constitutive coefficients
in a recent quasi-static model;18 it also agrees with our observations that the effect of μ on η is
monotonic, unlike for T, and saturates quickly as μ exceeds about 0.3. The dilute shear stress ratio
is then written as

ηdilute
DEM = ηGD

SS ψ. (33)

In the dense regime, existing models for the shear stress ratio tend to take the form η = η(I),
where

I ≡ γ̇ d√
p/ρs

(34)

is the inertial number and can be interpreted as a ratio of the time scales of macroscopic shear
deformation to microscopic particle rearrangement. Though this quantity has been shown to dictate
granular rheology in the dense regime,1, 20–22 it is not particularly useful in characterizing dilute-
regime behavior, in part because I is not monotonic in φ over the entire range of volume fractions.45

Specifically, when evaluated using the steady-shear pressure, I approaches zero in both the dense
and dilute limits, achieving a maximum around φ ≈ 0.2. For this reason, we modify slightly the
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definition of the inertial number to

I ′ ≡ γ̇ d

φ
√

p/ρs
= I/φ (35)

in order to provide a monotonic I ′(φ) dependence. With I ′ → 0 representing the dense limit and I ′

→ ∞ representing the dilute limit, we now can model the transition from dense to dilute behavior
using a function of I ′.

Conveniently, the original GD expression for the shear stress ratio can be expressed in terms of
this inertial number. By combining Eqs. (1) and (2), we obtain

ηGD = βGD(φ)I ′ (36)

with βGD(φ) ≡ φ J/
√

H . Similarly, our DEM η from Eq. (33) along with the DEM temperature
from Eq. (29) yields

ηdilute
DEM = β(φ)I ′ (37)

with

β(φ) ≡ φψ J

√
K

K ′ H
. (38)

These expressions look similar in form to the dense-regime inertial-number model proposed by
da Cruz et al.,21 which reads as

ηda Cruz = ηs + α I , (39)

except that the latter contains a constant yield stress ratio ηs added to the linear term. To obtain a
comprehensive expression for η, we therefore can proceed with a linear dependence on the inertial
number and simply allow its prefactor to transition between dense and dilute expressions. We propose
to achieve this transition using a blending function

B(α, β) = α + (β − α)χ (I ′) (40)

defined in terms of a quantity χ (I ′) that transitions from zero to unity according to

χ (I ′) = 1

(I0/I ′)1.5 + 1
. (41)

The forms of B and χ are motivated by the η(I) models of Jop et al.22 and Chialvo et al.,1 though
the 1.5-power from the latter is chosen because a power greater than unity is needed to achieve a
complete α-to-β transition. We then propose to write the shear stress ratio as

ηDEM = ηs(μ)χs + B(α, β)I ′, (42)

with

χs = 1 − χ (43)

so that, as volume fraction decreases, the contributions of ηs and α disappear commensurately. A
comparison between this steady-state η model and the DEM results is shown in Fig. 10. As with
the temperature and pressure, the fit for η is best for φ � 0.2. Additionally, though we find a small
dependence of α on μ near μ = 0, α is nearly constant with respect to μ for μ � 0.1; since most
practical systems feature particles with friction coefficients in this range, we hence will assume α to
be constant as in Ref. 1.

D. Modified dynamic equations

Having now captured the steady-shear DEM results of T, p, and η, we can now use these updated
expressions to define correction factors to the dynamic GD equations. First, the pressure equation
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FIG. 10. Comparison of the new steady-state shear stress ratio model with DEM results. Shear stress ratio versus volume
fraction is shown for (a) μ = 0.1 and (b) μ = 0.5. The agreement observed here between the KT and DEM predictions is
substantially better than in Fig. 2. Symbols are the same as in Figs. 1 and 2.

remains unchanged from Eq. (1) except that g0 is given by Eq. (31). Next, we write the new shear
stress expression as the sum of a yield stress and an inertial stress, i.e.,

τ = τs + τinertial (44)

with

τs = ηsχs p (45)

and

τinertial = B(α, β)I ′ p. (46)

We also stipulate that only the inertial part τ inertial will contribute to the viscous energy production
rate – that is,

Jvis = τinertialγ̇ . (47)

This decomposition, though not necessary to predict a minimum flow angle in KT-type models,24 is
advantageous because it reproduces the observed dense-regime η behavior while also leaving open
the possibility for ηs to be a function of microstructural variables (e.g., coordination number and
fabric tensor18) that become rheologically important in close-packed systems and that could evolve
independently of the KT equations; it also maintains the linear term in I ′ that naturally arises from
the original GD model. As aforementioned, we can write τ inertial alternatively as the GD expression
for τ modified with a correction factor, i.e.,

τinertial = τGDδτ (48)

with τGD given by Eq. (2) and

δτ = α

β
+

[
1 − α

β

]
χ . (49)

Finally, the new energy dissipation rate expression is written as

� = ρs

d
K ′(φ, e, μ)T 3/2δ� . (50)

By solving the steady-state condition in Eq. (13) and requiring T = TDEM from Eq. (29) and
τ /p = ηDEM from Eq. (42), we can easily define the correction factor

δ� =
(

β
√

H

K ′M

)
δτ . (51)
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TABLE I. Summary of model equations.

Primary equations
Pressure: p = ρsHT

Shear stress: τ = τ s + τ inertial

τ s = ηsχ sp

τinertial = β I ′ p δτ

Energy dissipation rate: � = ρs
d K ′T 3/2δ�

Viscous energy production rate: Jvis = τinertialγ̇

Secondary equations

δτ = α
β

+
[
1 − α

β

]
χ gCS

0 = 1−φ/2
(1−φ)3

δ� =
(

β
√

H
K ′ M

)
δτ g0 = gCS

0 + α2φ2

[φc (μ)−φ]3/2

β = φψ J
√

K
K ′ H eeff = e − f(μ)

H(φ, e) = φ[1 + 2(1 + e)φg0] f (μ) = 3
2 μ exp(−3μ)

J (φ, e) = 5
√

π

96 η∗ ψ = 1 + 3
10 (1 − e2)−2/3[1 − exp(−8μ)]

K (φ, e) = 12√
π

φ2g0(1 − e2) I ′ = γ̇ d
φ
√

p/ρs

η∗ = η∗
k + η∗

c + η∗
b χ = 1

(I0/I ′)1.5+1

η∗
k = 1− 2

5 (1+e)(1−3e)φg0

[1− 1
4 (1−e)2− 5

24 (1−e2)]g0
χ s = 1 − χ

η∗
c = 4

5 (1 + e)φg0η
∗
k K ′(φ, e, μ) = K (φ, e)

(
1−e2

eff
1−e2

)
η∗

b = 384
25π

(1 + e)φ2g0 M(φ, e, μ) = max
(

J
K ′ ,

α1
[φc−φ]1/2

)

We note that for frictionless particles in the dilute regime the original GD expressions are recovered.
Additionally, the correction factor δ� is related to the chain length L of Jenkins and Berzi,31 with
L/d = δ−1

� . This chain length is equal to the particle diameter in the dilute limit and grows rapidly
as φ → φc. It also produces T ∼ g1/3

0 under steady shear, a result similar to Jenkins and Berzi’s31

prediction that T ∼ g2/9
0 .

It is important to mention that we have not addressed the need for corrections to the pseu-
dothermal energy conductivity λ to account for interparticle friction and dense packing. Because
our simulation approach produces homogeneous shear with no temperature gradients, it cannot be
used to measure conductivity. Hence, we are unable to assess the original model or recommend any
new corrections. However, we briefly mention two simple options. First, Jenkins and Berzi31 left the
original GD expression for λ unchanged, which is tantamount to setting λ = λGDδλ with δλ = 1. The
other option is to assume, based on the fact that the transport coefficients exhibit similar trends with
respect to volume fraction, that δλ = δτ . Though we cannot address this issue in the present study,
we offer these two options and reserve their assessment for future work.

The complete model consists of the equations listed in Table I along with the constant parameters
in Table II. As in the original GD model, all quantities are given as explicit functions of local system
parameters (namely, volume fraction and shear rate) and particle-level properties (namely, material
density, diameter, restitution coefficient, and friction coefficient).

TABLE II. Values of model constants. Values of the critical volume fraction φc and the yield stress ratio ηs are taken from
Ref. 1.

μ-dependent parameters
μ 0.0 0.1 0.3 0.5 1.0

φc 0.636 0.613 0.596 0.587 0.581
ηs 0.105 0.268 0.357 0.382 0.405

μ-independent parameters
I0 α α1 α2

0.2 0.36 0.06 0.58
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V. DISCUSSION

When applied to steady simple shear flows, the above dynamic model reproduces the tempera-
ture, pressure, and shear stress ratio results presented earlier in Figs. 5, 8, and 10 that the original
GD theory is unable to predict. Moreover, the basic forms of the corrections used to achieve the im-
proved performance all have precedent in the literature, as previous authors have proposed effective
restitution coefficients to capture the effects of friction,31, 33 adjustable prefactors in the shear stress
equation,7, 8, 44 a characteristic chain length in the energy dissipation equation,31 and expressions for
the radial distribution function at contact that are based on simulation data.26, 29 Our work here builds
upon these approaches and provides closures for the corrections in terms of local flow variables and
particle properties.

An important finding of the present work is that corrections to the energy dissipation rate
expression, such as those proposed by Jenkins and co-workers,31, 33 are insufficient on their own
for extending traditional KT models to describe frictional and dense systems. Some aspects of the
predictions are improved: the “chain length” correction reproduces an increase in temperature and a
decrease in the shear stress ratio in the dense regime, and the effective restitution coefficient captures
a decrease in temperature and pressure in the dilute regime as interparticle friction is increased.
However, even when one constitutes these corrections based on DEM data, disparities between KT
and DEM temperature and stresses remain. Hence, we choose to supplement the “chain length”
and effective restitution coefficient with a modified radial distribution function at contact (to capture
pressure), a correction factor to the shear stress, and decomposition of the shear stress into inertial and
yield components. Though there are certainly other approaches one can take, they will necessarily
involve modifications in the pressure and shear stress expressions. This point is consistent with the
finding of Kumaran14, 25 that dense packing and particle roughness result in changes in the collision
frequency and velocity distribution functions of a granular medium; in the full KT approach, the
model expressions for energy dissipation rate, pressure, and shear stress are all derived from collision
integrals involving the velocity distribution functions, so any change in the latter will necessarily
produce changes in all of the former, not just the dissipation rate.

The proposed model has some key advantages over existing rheological models for granular
materials. The first is its handling of the effects of friction. By acknowledging the decrease in φc

upon increasing friction, the new model correctly predicts a corresponding increase in pressure in the
dense regime. Previous kinetic theories accounting for friction neglect this effect and hence predict
a decrease in pressure at all volume fractions resulting from increased dissipation and decreased
temperature.31, 33 Second, while kinetic theory has long been used for modeling dilute flows, and
while inertial-number models have proven successful for many dense flows, only very recently have
the two been bridged to handle systems with wide variations in packing.46 Although this model did not
account for interparticle friction or for dense-regime e-dependence, the good agreement between its
predictions and experimental results for a number of flow problems is quite promising and motivates
the more general bridging performed here. Finally, the recasting of the inertial-number description
into a kinetic theory framework (1) makes the model compatible with boundary conditions involving
granular temperature that are more sophisticated than the simple no-slip condition and (2) enables the
model to account for nonlocal effects via the conduction of pseudothermal energy. Inertial-number
models are typically coupled with the no-slip wall conditions whose validity may be questionable
depending on system and particle properties (an issue we aim to address in a later work), while KT
models afford the option of wall slip conditions connected to fluctuating energy and the inelasticity
of particle-wall collisions.44, 47 This fluctuating energy, furthermore, can vary spatially and produce
nonlocal rheological effects, which recent work has shown to be of substantial importance even in
the dense systems for which inertial-number models were designed.23 While the “fluidity” approach
in Ref. 23 (and also Ref. 48) is currently limited to the dense regime, the extended KT scheme
presented here offers a way to account for nonlocality over the full range of volume fractions below
jamming.

On the other hand, the proposed model does exhibit several weaknesses resulting in part from
the approach taken in its development. Among the most salient of these is the overprediction of
granular temperature in the very dilute regime (φ � 0.2). Had we allowed the effective restitution
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coefficient to vary with volume fraction, we would have been able to capture the temperature more
closely in this region. However, because the φ-dependence is neither simple nor consistent across
all cases of e and μ, we choose to define eeff(e, μ) as a constant, with higher importance placed on
capturing cases where φ � 0.2. This definition is also more satisfying since eeff is conceptually a
particle property rather than an ensemble one. The disparity in very dilute cases, rather than arising
from a poorly constituted eeff, is more likely the result of neglecting rotational degrees of freedom.
The GD model is derived for smooth, frictionless particles and hence does not track rotational
kinetic energy. In this context, conversion of translational energy to rotational energy is treated as
an additional mode of translational energy dissipation, and so the parameter eeff must encapsulate
both real energy dissipation and loss to rotation. The extent of to which one mode predominates
over the other may vary with volume fraction and therefore invalidate the assumption of a constant
effective restitution coefficient. This problem is mitigated, though, by the fact that flow problems of
practical interest manifesting such dilute regions tend to be heavily fluidized; hence, flow behavior
in these regions is dictated primarily by the fluid-particle drag law, rendering any error in the
solids-phase stress model rather inconsequential. Dense-phase predictions of the solids-phase stress,
therefore, are most important to capture, and the corrections outlined in this work are weighted
accordingly.

Another weakness of the present model is its reliance on empiricism, particularly in the correc-
tions for the shear stress. Some of this need can likely be alleviated by considering rotational degrees
of freedom, as the GD model and our modified version of it do not account for the dependence of the
shear stress on the rotational temperature. It is possible, therefore, to start not with the GD model as
the basis for modifications to account for friction and dense packing but rather with another existing
KT model that considers particle rotation.10, 11 The effects of friction can be included in such models
by defining not only an effective normal restitution coefficient as done here but also an effective
tangential restitution coefficient, which has been employed previously with some success.34 The
inclusion of dense-regime effects can then be pursued as per the present work by defining a “chain
length” correction and a new g0 expression. Even these tasks are encumbered by the empirical
approach, as there is little agreement in the literature in regard to the precise dense-regime scalings
for the stresses and temperature with respect to φc − φ [Ref. 49]. Our findings that T ∼ (φc − φ)−1/2,
g0 ∼ (φc − φ)−3/2, and p ∼ (φc − φ)−2 in the dense regime are simply our best estimates based on
our DEM data, and more work needs to be done to determine the reason for the variety of exponents
proposed in the literature. Finally, the determination of φc itself must be done empirically and as
such has produced varying results. In particular, among recent works considering “rough”-particle
shear flows, one finds that φc is independent of the normal restitution coefficient and is purely a
function of μ [Ref. 1] while others show φc to vary with both normal and tangential restitution
coefficients.25, 50 These works agree in their finding that roughness, whether measured by friction or
tangential restitution, decrease φc from its value in the smooth, frictionless case (φc ≈ 0.64), but the
contrary results regarding the influence of the normal restitution coefficient are hitherto unexplained
and merit further study. The DEM data in the present work support the idea that φc(μ), and since
these data form the basis for our empirical modifications to the GD model we move forward with
such a form.

Related to the jamming point φc is the rise of the particle stiffness k as a rheologically important
parameter. The KT approach assumes that particle collisions are instantaneous and hence that
particles are infinitely hard (i.e., k → ∞). For this reason, in the present work we have made certain
to consider only cases in which Bagnold scaling holds and hence the finite stiffness plays no role —
that is, cases in the inertial regime. A truly complete rheological model, however, would be capable
of describing both infinitely and finitely stiff particles and hence would span the inertial, quasistatic,
and intermediate regimes. Much work has been done recently to elucidate differences between hard-
and soft-particle rheology50, 51 and to quantify the rheology of soft particles in elastic and inertial
regimes.1–3, 49, 51–55 One recent work1 proposes a way to bridge the rheology of the inertial regime
with the two elastic regimes by smoothly incorporating stiffness dependence to an extent governed
by the dimensionless parameter ˆ̇γ ≡ γ̇ d/

√
k/ρsd . Such an approach can be applied regardless of

the choice of inertial-regime model, including the one described here, and could conceivably be
coupled with more complex plasticity or hypoplasticity models for quasistatic flows.
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A final drawback of the current approach is that the modifications made to the GD model, while
appealing to micro- or mesoscopic concepts, are all rheological (i.e., macroscopic) in nature. In
deriving KT models, one generally begins by describing the details of a single collision and the
velocity distribution of a pair of particles — that is, model construction begins at the microscale and
builds upwards. The approach taken here, though, makes measurements at the macroscopic level and
uses them to constitute parameters that have a physical interpretation at smaller scales. The chain
length correction, for example, can be interpreted as a mesoscopic length of a typical granular chain31

or microscopically as the result of dense-regime velocity correlations.25 The effective restitution
coefficient is a microscopic metric of dissipation during the collision of two particles.33 The radial
distribution function at contact g0 is already microscopic in nature, and our modification to it accounts
in a phenomenological way for anisotropy of particle collisions (which is also a microscale effect).
The correction to the shear stress, on the other hand, is mostly rheological, though the inertial number
that appears therein can be interpreted as a ratio of time scales of macroscopic shear and microscopic
particle rearrangement.21 In some regard, however, the connection between our proposed values for
the micro-/mesoscale quantities and their physically measurable counterparts is one of analogy more
so than equality.

An alternative approach to the present one is, of course, to perform a rigorous KT derivation that
includes provisions for friction and dense packing. The problem with this approach, as discussed in
the Introduction, is the difficulty in obtaining a closed-form model. A collision integral involving
a tangential impulse proportional to the normal one (via μ) appears to require numerical solution,
as does the integral for the non-Gaussian relative velocity distribution function that arises in dense
flows14 — and even this distribution function is determined empirically. For the time being, the
most promising approach toward developing a comprehensive rheological model appears to be
modification of existing KT models for dilute flows of frictionless particles.

VI. SUMMARY

We investigate the influence of dense packing and interparticle friction on granular rheology
in the inertial regime. From DEM simulations of homogeneous simple shear flows, we observe
good agreement with the KT of GD4 in regard to predictions of pressure, shear stress ratio, and
temperature in the case of frictionless particles below φf ≈ 0.49; however, for denser systems or
for frictional particles, there is a substantial discrepancy between the simulation and GD results.
Based on previous strategies in the literature for modifying the kinetic theory, we propose simple
corrections to the GD model to bring its predictions closer to those of our DEM simulations. These
corrections include an effective restitution coefficient to capture the increased dissipation resulting
from friction,33 a chain length correction to the energy dissipation rate,31 a new expression for the
radial distribution function at contact, and a correction factor to the shear stress equation to reflect
the influence of friction in the dilute regime as well as to reproduce inertial-number scalings in the
dense regime.1, 20–22 These new terms are then constituted in terms of particle-level properties and
system parameters from our DEM simulations to produce a more complete rheological model. This
model may then be implemented in continuum-model simulations to investigate large-scale flows of
frictional particles over a wide range of volume fractions such as those found in numerous important
flow problems including chutes, hoppers, and fluidized beds.
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Abstract

Continuum modeling of granular materials in most practical applications requires specification

of boundary conditions at the walls of the system geometry. Unlike with molecular fluids, which

under most circumstances obey no-slip behavior, granular materials exhibit complex and varied

slip behavior depending on flow-field conditions and particle-particle and particle-wall interaction

properties. The nature of these dependencies becomes more challenging to investigate from a

theoretical perspective in dense flows, which are less amenable to the traditional kinetic-theory

approach and therefore require more empirical modeling strategies. Additionally, practical con-

tinuum modeling applications tend not to consider particle rotation or resolve near-wall boundary

layer formation of the particulate phase, tasks which can add undesired model complexity and

computational expense to the problem. In this work, we expand upon previous simulation studies

of wall-bounded granular flows by investigating slip behavior in simple-shear simulations of soft,

frictional spheres over a range of volume fractions and friction coefficients. We introduce a novel

scaling based on granular viscosity and use it to collapse data of the ‘surface’ slip velocity, which

includes rotational and boundary-layer velocity contributions, and propose an empirical model for

use in finely-resolved flow problems considering both translational and angular velocity fields. We

then separately constitute the rotational contribution to produce a slip velocity model for use in

finely-resolved, translation-only flow problems. Finally, we coarse-grain the model by subsuming

the boundary-layer contribution into the boundary condition, in analogy to the wall functions

used in turbulence modeling, to produce a constitutive expression for use in coarsely-resolved flows

considering only translational motion — i.e. the vast majority of applications.

PACS numbers: 45.70.-n, 47.57.Gc, 64.60.F-, 64.70.ps, 83.10.Gr, 83.80.Fg
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I. INTRODUCTION

Flows of granular material are found in many industrial and natural processes, and at-

tempts to model these flows often rely on continuum approaches. The development of

rheological models for granular materials has progressed substantially over the past three

decades. For dilute flows, numerous kinetic-theory models have been developed [1–6]; for

dense flows, inertial-number models have proven successful [7–9]; and recently methods to

bridge dense and dilute behavior have been proposed [10, 11]. However, application of these

rheological models to practical flow problems requires the specification of boundary condi-

tions (BCs) at the system walls, and similarly advanced development of robust BC models

to predict wall slip behavior remains an open challenge.

Most of the development of wall BCs for granular flows has been limited to dilute flows.

Models for this regime generally track the granular fluctuation energy in addition to veloc-

ity and volume fraction and hence require two BC equations: one for the shear stress and

one for the flux of fluctuation energy [12, 13]. Both equations contain explicit dependences

on the slip velocity as well as particle/wall properties such as the normal [12–17] and tan-

gential [14–17] restitution coefficients, the particle-wall friction coefficient [14–16], and the

(phenomenological) specularity coefficient [12]. These BC models are coupled with kinetic-

theory rheological models that relate stresses to fluctuation energy, which itself evolves

dynamically according to a balance equation containing a (nonlocal) flux term. In the dense

regime, however, traditional kinetic-theory rheological models are less successful because

different physics predominate under dense and dilute conditions, with dilute flows charac-

terized by uncorrelated binary collisions (often termed ‘molecular chaos’) while dense flows

exhibit correlations in relative velocity distributions [18]. Inertial-number models [7–9], in

which the stresses (and/or the shear stress ratio) are simple algebraic functions of particle

concentration and shear rate, have been shown to yield reasonably good predictions of veloc-

ity profiles in dense flow systems [8, 10]. It is natural to expect, therefore, that dilute-regime

BC models likewise would underperform when applied to dense flow problems and would

necessitate the development of new BC formulations specifically for dense flows.

Indeed, recent work by Artoni and coworkers [19, 20] has revealed details about slip

behavior in dense granular flows, on the basis of which the authors propose new BC expres-

sions. However, their investigations were limited to two-dimensional systems of polygonal
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particles with a limited range of particle concentrations, wall friction coefficients, and parti-

cle properties. Shojaaee et al. build upon this work by expanding the range of particle and

wall friction coefficients investigated but do not provide a constitutive model for the slip

velocity [21, 22]. These efforts thus motivate the first aim of this study, which is the devel-

opment of a wall BC model applicable to flows with a wide array of particle/wall friction

coefficients and solids concentrations within the dense regime.

Whether modeling dense or dilute flows, there remains another problem with specifying

wall BCs for continuum modeling of practical flow systems: resolution of the boundary layer

near the wall. Existing BC models relate the slip velocity to field variables evaluated at the

wall; these field variables can vary substantially over the thickness of the boundary layer,

which is generally ∼10d in thickness [23]. Hence, meaningful application of the BC requires

adequately resolving the flow in the boundary layer. The computational costs of this task,

though, are prohibitively high for most systems of practical interest (such as fluidized beds,

risers, and hoppers), whose length scale of O(1 m) is much larger than the particle diameter

of O(100 µm). Eliminating the need to resolve the near-wall region would result in substan-

tial savings in computational time. Additionally, in continuum simulations a boundary layer

is predicted only if nonlocal conduction terms are included in the rheological model. These

nonlocal terms can appear, for example, as a conduction term in the balance equation for

granular energy (e.g. [1, 2, 12]) or in equations for other attributes such as ‘fluidity’ [24] or an

order parameter related to the fraction of ‘fluidlike’ interparticle contacts [25, 26]. However,

such equations, by virtue of being partial differential equations, add substantial complexity

to the model that further increases computational time with respect to that required by a

simple, algebraic rheological model. The reason is that numerical solution of the additional

scalar field requires another iteration procedure to account for the field’s spatial gradients.

This burden does not exist with an algebraic formulation, a benefit that, in the case of

kinetic-theory modeling of granular flows, has motivated the use of local, algebraic versions

of the granular energy equation that remove gradient terms and simply equate production

and dissipation terms [27, 28]. Therefore, the development of a BC model that subsumes

the boundary layer and can be paired with a local rheological model is of practical interest,

and such is the second aim of this study.

4



II. SIMULATION METHODS

We employ the spring-dashpot model [29], for which the normal and tangential forces on

a spherical particle i resulting from the contact of two identical spheres i and j are

Fnij
= f(

δijd

4
)[knδijnij − γnmeffvnij

], (1)

Ftij = f(
δijd

4
)[−ktutij − γtmeffvtij ], (2)

where δij is the overlap distance, kn and kt are spring elastic constants, γn and γt are viscous

damping constants, meff = mimj/(mi + mj) is the effective mass of spheres with masses

mi and mj, vnij
and vtij are the normal and tangential components of relative particle

velocity, and utij is the elastic shear displacement. For Hookean contact, f(x) = 1, while

for Hertzian contact, f(x) =
√
x. The magnitude of tangential force is limited by a static

yield criterion, |Ftij | ≤ µ|Fnij
|, where µ is the particle friction coefficient. We set values

of kt/kn = 2/7 and γt = 0. For Hookean contact, γn is chosen such that the restitution

coefficient e = exp
(
−γnπ/

√
4kn/meff − γ2

n

)
= 0.7. For Hertzian contact, we employ the

same value for γn/
√
kn/meff . We likewise set a wall-particle friction coefficient µw, wall

stiffness kw = k, and wall restitution coefficient ew = e. We perform the discrete element

method (DEM) simulations using LAMMPS [30] for the linear spring-dashpot (Hookean)

model and LIGGGHTS [31] for the non-linear spring-dashpot (Hertzian) model.

σ =
1

V

∑

i

[∑

j 6=i

1

2
rijFij +mi(v

′
i)(v

′
i)

]
, (3)

where V is the box volume, rij is the center-to-center contact vector from particle j to particle

i, and v′i ≡ vi − 〈v〉(x) is the particle fluctuation velocity, i.e. the difference between its

instantaneous velocity vi and the time-averaged streaming velocity 〈v〉 at position x. The

mean streaming velocity is zero in the y- and z-directions but is not known in the x-direction

at runtime; it must be calculated in post-processing.

Two wall boundaries are placed at y = ±H/2, and the gap of height H between them is

filled with particles to achieve the desired ensemble-average volume fraction φ̄. Shear is then

induced by moving the top wall at a velocity +Uwall and the bottom wall at a velocity −Uwall

in the x-direction. Shearing proceeds for a dimensionless time of γ̇wallt = 1000 to ensure

that steady state has been reached; here, γ̇wall ≡ 2Uwall/H is the apparent shear rate, which

will differ from the actual local shear rate γ̇ because of wall slip. During the simulation,
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1000 snapshots of particle position, velocity, and stress are saved for post-processing. In

post-processing, we perform a volume-weighted binning to calculate the field variables; that

is, a particle whose volume crosses one or more bin boundaries will have its contribution to

the volume fraction, velocity, etc. distributed across the bins in proportion to the fraction

of its volume lying in each bin. Quantities reported as boundary values and denoted as (·)w
are, in fact, measured at a distance of d/2 away from the wall, as this is the closest point to

the wall that a particle center can reach; the best location for wall measurements, however,

is a small but still open question [32]. After performing the binning procedure on each

snapshot, the snapshots are then averaged together to yield time-averaged quantities. From

the stress data, we calculate a shear stress τ ≡ 1
2
(σxy + σyx) and an approximate pressure

p ≡ 1
2
(σyy+σzz). This pressure is approximate since it excludes the normal stress in the flow

direction, the data for which are unreliable because the (nonzero) true streaming velocity

at a given position will deviate from the mean value calculated for the bin containing this

position. However, since normal stress differences are typically of the order of 10% of the

mean normal stress for shear flows [33], we consider this approximation acceptable. We

can then define the shear stress ratio, also commonly called the bulk friction coefficient,

as η ≡ τ/p and the granular viscosity as ν ≡ τ/γ̇. All macroscopic quantities will be

presented in dimensionless form, scaled by some combination of the particle diameter d,

stiffness k = kn, and solid material density ρs.

III. RESULTS

A. Core and boundary regions

As described in previous works [21, 34], wall-bounded shear flows exhibit two regions of

flow: 1) a central or core region characterized by spatially-invariant, local rheology and 2) a

boundary region within about 10d of each wall featuring strong gradients in shear rate γ̇ and

volume fraction φ due to non-local conduction of granular energy. Indeed we observe these

regions in our simulations, as demonstrated in Figure 1, where exponential tails towards

the walls are clearly visible for the shear rate, volume fraction, and granular temperature.

The measured pressure p and shear stress ratio η are found to obey local, inertial-number

rheological behavior [7, 9] in the core region, as shown in Figure 2. This local behavior in
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FIG. 1. Profiles of (a) velocity, (b) shear rate, (c) volume fraction, and (d) granular temperature

vs. position between wall boundaries for Hookean contact. The interparticle friction coefficient

and wall-particle friction µ = µw = 0.5 and φ̄ = 0.55. Quantities are scaled by wall velocity Uwall

and gap width H. A core region with spatially invariant rheological properties is observed to lie

between boundary layers of thickness ∼10d at each wall. Exponential tails are observed in the

boundary layers. Analogous results were obtained for Hertzian contact model as well (not shown).

the core supports the notion that a BC model that absorbs the near-wall behavior can be

successfully coupled with a simple, local rheological model without the need for inclusion of

further complexity to the rheology.
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FIG. 2. Comparison of core data for scaled pressure and shear stress ratio with predictions of the

local rheological model of Chialvo et al. [9](Eqs. (7)-(10)) and Gu et al. [35] (Eqs. (6),(20)-(22)).

(a) scaled pressure for Hookean contact versus the rheological model of Chialvo et al. [9], (b)

scaled pressure for Hertzian contact versus the rheological model of Gu et al. [35], (c) shear stress

ratio for Hookean contact versus the rheological model of Chialvo et al. [9], (d) shear stress ratio

for Hertzian contact versus the rheological model of Gu et al. [35]. Reasonably good agreement

confirms the locality of the rheological behavior in the core.

For some combinations of parameters, we observe that the friction of the walls is insuf-

ficient to generate sustained shear in the particle assembly, a phenomenon that has also

been observed in a previous work using the contact dynamics method [22]. In an effort

to determine whether this non-shearing state is dependent on initial configuration, we per-

form low-µw simulations starting with a pre-sheared initial condition, i.e. one generated

from shearing with a sufficiently frictional wall. As seen in Figure 3a, such a simulation

begins with a volume fraction profile qualitatively similar to that in Figure 1c; however,
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as shearing progresses under the new, low-µw conditions, the particle layers closest to the

wall lose pseudothermal energy and begin to accumulate near the wall. This movement of

particles towards the wall results in a depletion of particles in the core, producing a profile

that is inverted with respect to the core-concentrated, fully sheared case. Additionally, the

cooling process is accompanied by ordering of the particles near the wall (Figure 1a) and by

a slow decrease in the observed shear rate over time (Figure 1b). Because our aim in this

study is to develop a BC model for amorphous granular media, we deem it more valuable

at present to focus our attention on the range of µw values that produces sustained shear.

Previous two-dimensional shear simulations suggest that the lower bound for this range is

µ∗w ≈ 0.25 [22]; our simulations in three dimensions suggest a different value of µ∗w ≈ 0.33.

While it is possible that this critical value of the particle-wall friction coefficient should vary

with particle and flow parameters, more cases of µw near µ∗w need to be simulated in order

to elucidate the dependences on these parameters. This task is outside the scope of the

present work and is reserved for follow-up studies.

B. Dimensionless slip velocities and BC model

In seeking a BC model, there are several different definitions of slip velocity that one can

consider. Specifically, these definitions differ in how the velocity of the granular medium

is described. The options described below are summarized in Table II. We note that, for

the sake of simplicity, all the velocities presented in this section are scalars and correspond

to the x-component of the velocity profile, vx(y), generated by the simple-shear geometry

described above; more specifically, the velocities are measured adjacent to the wall located

at y = +H/2 and are therefore positive. A generalization of our models to arbitrary flows

and geometries is provided in Subsection III D.

For a wall-shear flow the simplest definition of the slip velocity is the difference between

the velocity Uwall of the wall itself and the translational velocity vw of the particle layer

immediately adjacent to the wall – that is,

vslip ≡ Uwall − vw, (4)

This translational slip velocity has been commonly used in previous works, most notably in

the model of Johnson and Jackson [12] that is frequently used in gas-solid two-fluid model

9
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FIG. 3. Example case of shear localization when starting from a pre-sheared state for Hookean

contact. The interparticle friction coefficient and wall-particle friction µ = µw = 0.5 and φ̄ = 0.55.

(a) A plot of volume fraction versus position reveals migration over time of particles away from

the core and towards the walls, where they begin to show signs of ordering. (b) Velocity profiles at

different shear times indicate progressive cooling of the assembly towards an isotropic state, with

unsheared plugs growing over time at each wall.

simulations [36]. While this definition is straight-forward to use since all continuum models

track the translational velocity of the solids, it does not include any rotational motion of the
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particles at the wall. This exclusion is certainly significant, as a particle that rolls along a

wall without slipping will nevertheless have a nonzero translational slip velocity. In fact, the

best measure of true slip utilizes the velocity of the particles’ surface that is in contact with

the wall rather than the translational velocity of its center of mass. We define this surface

slip velocity as

vsurf
slip ≡ Uwall − vsurf

w , (5)

where the rotational velocity of the particles at the wall

vrot
w ≡ ωwd/2 (6)

is added to the particles’ translational velocity to yield the velocity of the particles’ surface

vsurf
w ≡ vw + vrot

w . (7)

Here, ωw is the angular velocity of the particles at the wall; for this flow geometry, only

the z-component has a nonzero time-averaged value, which is positive at both walls. This

surface slip velocity has been used recently in the works of Artoni et al. [19, 20] to describe

slip behavior. While this definition is a better descriptor of slip behavior, its use in con-

tinuum modeling requires the tracking of the rotational motion of the solids phase, a level

of complexity that is computationally more expensive and not commonly used. In both of

the above definitions, though, the major computational cost comes from the need to resolve

the boundary layer since both the translational and rotational velocities exhibit significant

gradients within ∼10d of the wall – see Figure 1a. Hence, while not microscopically descrip-

tive, it would be convenient to constitute a model for an ‘effective’ slip velocity based on a

particle velocity extrapolated from the linear core profile to the wall. This apparent solids

velocity vapp can be defined as

vapp
slip ≡ Uwall − vapp

w , (8)

where the apparent solids velocity is

vapp
w ≡ γ̇coreH/2, (9)

and the difference between the apparent and translational velocities – which we term the

boundary-layer velocity contribution – is

v′w ≡ vw − vapp
w . (10)
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TABLE I. Definitions of velocities and slip velocities, specified at the wall located at y = H/2.

Velocity Definition Meaning

Uwall Velocity of the wall

vw v(y = H/2) Translational velocity (of the solids) at the wall

vapp
w γ̇coreH/2 Translational velocity extrapolated to the wall

v′w vw − vapp
w Boundary-layer velocity contribution at the wall

vrot
w ω(y = H/2)d/2 Rotational velocity at the wall (in the direction of Uwall)

vsurf
w vw + vrot

w Velocity of the particle surfaces at the wall

vslip Uwall − vw Translational slip velocity

vsurf
slip Uwall − vsurf

w Surface slip velocity

vapp
slip Uwall − vapp

w Apparent slip velocity

−20 −10 0 10 20
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0.4

y/d

v
/
v

w
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vapp
w

�̇core

y/d

v(·)
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FIG. 4. Example velocity profile with the apparent wall velocity denoted.

These definitions are denoted on an example velocity profile in Figure 4. In this work, we

aim to constitute models useable at all levels of resolution and complexity, and hence we

investigate the amenability of all the slip velocities to scaling collapses.

Just as there are numerous slip velocities and velocity contributions, there are likewise

several different options for scaling the velocities. We generally define the dimensionless slip

velocity as

I
(·)
slip =

v
(·)
slip

vchar

(11)
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for some velocity scale vchar. Choices for vchar, which in general can be measured at the wall

or in the core, include:

1. Uwall, simply the wall velocity;

2. γ̇d, a shear-rate-based scale proposed by Artoni [20];

3.
√
p/ρs, a stress-based scale used by Artoni [19] and analogous to that in the inertial-

number definition [7, 9]; and

4. ν/ρsd (= τ/ρsγ̇d), a viscosity-based scale that seems not to have been considered in

the prior literature.

The first of these options, Uwall, is an awkward choice for general flow problems since a BC

with slip velocity scaled in this manner cannot be applied to a system with a stationary

wall. Nevertheless, it is a useful reference velocity in this bounded shear flow example, in

part because it is independent of particle and wall properties and the state of the particle

assembly. We hence employ this scaling in Figure 5 to show the effect of µ, µw, and φ on

surface slip velocity data. Here, an ordinate value of zero corresponds to a no-slip state

while a value of unity corresponds to a full-slip state. Unsurprisingly, we observe that slip

decreases as wall friction increases, with zero slip occurring as µw → ∞. There are also

less straightforward dependences on µ and φ (or, equivalently, the distance to the jamming

point φc − φ) that become clearer with the use of the other velocity scaling options.

Next we assess the ability of the suggested scalings of Artoni et al. [19, 20] to collapse the

surface slip velocity data for an array of values of µ, µw, and φ. In Figure 6a, the shear-rate-

based scaling is used, and the resulting dimensionless slip velocity is plotted versus η/µw

— the quantity suggested in Refs. [19, 20] as the determinant of slip behavior. As seen in

the figure, however, there is significant scatter for low values of η/µw, which correspond to

volume fractions closest to φc. Additionally, for any given combination of friction coefficients,

one can observe nonmonotonic behavior of the scaled slip velocity, which is in contrast to the

behavior of the model proposed in Ref. [20]. We do note that, for the purpose of this scaling,

Artoni et al. measure the shear rate at the wall, a task that is simple in their gravity-driven

chute-flow simulations because of the rather small spatial dependence of γ̇; in our shear-flow

simulations, however, the shear rate varies sharply near the wall, making extrapolation of

γ̇w difficult. By contrast, the shear rate is constant in the core region of the shear flow and
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FIG. 5. Surface slip velocities, scaled by wall velocity, vs. φc − φ for (a) µ = 0.5 and (b) µ = 1.0

for various µw. Slip is observed to increase with decreasing µw. Hookean contact is used.

thus is substantially easier to measure with confidence. We hence use γ̇core as the basis for

the scaling here while also noting that our use of estimated values of γ̇w does not improve

the ability of this scaling to collapse the data (results not shown).

With the limitations of the γ̇-based scaling in mind, we then test the pressure-based

scaling of Ref. [19] in Figure 6b and find that, while it resolves the issue of nonmonotonicity,

it remains unable to collapse the various simulated cases in a satisfactory manner when

paired with the same abscissa. If plotted against η−ηs as in Figure 6c, however, the pressure
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scaling somewhat collapses the data for different cases of µ and φ onto separate curves for

each case of µw. There is also, though, a slight suggestion of a non-zero y-intercept in the

data, which we find difficult and ultimately undesirable to constitute— no combination of

η, ηs, µw, µ, φ, or φc in the ordinate or abscissa is found to remove this feature. For this

reason as well as some persisting scatter, it appears that there is room for improvement,

which we aim to address by changing the velocity scale.

Indeed, when the surface slip velocity is scaled using the viscosity-based scaling, i.e.

Isurf
slip ≡

vsurf
slip

νcore/ρsd
, (12)

the data similarly collapse to distinct curves for each case of µw, as seen in Figure 6d; the y-

intercept is also pushed towards zero. The additional step of collapsing these distinct curves

requires that the abscissa — chosen here as η − ηs — be augmented with a dependence on

the wall friction coefficient as is done in Figures 6a-b. With the abscissa written in the form

(η − ηs)/f(µw), we find that the function

f(µw) = µw + µ∗w − ηs (13)

produces the best collapse of the data, as demonstrated in Figure 7. The quantity µ∗w = 0.33,

as aforementioned, represents the critical wall friction coefficient below which the moving

walls are unable to overcome the internal friction of the granular layer and produce shear [22].

The robustness of this collapse is further tested for various cases of wall separation distance

H and wall velocity Uwall; these data, shown in Figure 8, reveal the insensitivity of the

collapse to system parameters. Finally, we generate an approximate fit to the collapsed

data of

Isurf
slip =

1.55x2/3

(1− x)5.25
(14)

with

x ≡ η − ηs
f(µw)

(15)

in order to produce a useable surface slip velocity model for finely-resolved simulations

tracking rotational particle motion. Although the expressions for the Hookean and Hertzian

contact models differ slightly, they both reveal that Isurf
slip Isurf

slip (x).
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FIG. 6. Scaled surface slip velocity versus scaled shear stress ratio using velocity scales based on

(a) core shear rate γ̇core, (b-c) pressure p, and (d) core viscosity νcore. In (a) and (b), the abscissa

is that used in Refs. [19, 20], and the slip data appear not to collapse as reported in those works.

In (c), a new abscissa is used that somewhat collapses the data for different cases of µ and φ onto

separate curves for each case of µw. However, there is a slight suggestion of a non-zero y-intercept

in the data, which is undesirable to constitute. In (d), this new abscissa is paired with a new

velocity scaling, which reduces the scatter of the previous scaling and pushes the y-intercept to

zero. The further collapsing of µw cases is performed in Figure 7.

The BC model in Eq. 14 can be applied to continuum modeling of shear flow problems

in which both translation and rotational velocity fields are solved with sufficient resolution

to capture the boundary layer. In such an application, it is clear that the values of vw and

ωw should be measured at the wall. The location for measurement of νcore, though, is to
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FIG. 7. Viscosity-scaled surface slip velocity versus scaled shear stress ratio. Panels (a) and (b)

are for Hookean and Hertzian contact models, respectively. The solid lines correspond to equation

14. The scalings produce a collapse of the data for different cases of µw, µ, and φ.

some extent a choice of the modeler; the only requirement is that it be measured outside

the boundary layer, i.e at least 10d away from the wall. This question is discussed in more

detail in Section III D.

C. Extension of BC model to problems with coarse resolution and/or considering

only translational motion

Though Eq. 14 can predict the surface slip velocity over a wide range of dense flow

scenarios, it will lose accuracy in continuum simulations that are coarsely resolved or that

do not track the angular velocity of the granular material – scenarios that constitute the

vast majority of practical granular and multiphase simulation efforts. Hence, we turn our

attention to extending the BC model for application to these cases.

The strategy employed here for this extension is to constitute the unknown quantities

representing rotational velocity and boundary-layer velocity contribution in terms of known,

core quantities. We begin by applying the same viscosity-based scaling used earlier to define

Irot ≡
vrot
w

νcore/ρsd
(16)

and

I ′ ≡ v′w
νcore/ρsd

. (17)
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FIG. 8. Viscosity-scaled surface slip velocity versus scaled shear stress ratio for various dimension-

less values of (a) wall spacing and (b) wall velocity with µ = µw = 0.5. The scaled wall velocity is

defined here as U∗wall ≡ Uwall/
√
k/ρsd. The collapse afforded by the slip velocity scaling is robust

to changes in these system parameters.

Next, we note that both vrot and v′ are essentially zero in the core but become significant in

the near-wall region [34], as seen in Figure 4 and Figure 1a. Indeed, their similar near-wall

gradients suggest the possibility of a simple relationship between the two, which is confirmed

by the plotting Irot versus I ′ in Figure 9a. Results are shown for Hookean contact model.
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Analogous results were obtained for Hertzian contact model as well (not shown). Here,

we observe an approximately linear relationship that is independent of the chosen velocity

scaling and whose slope depends primarily on µ. This µ dependence appears to be nearly

exponential in a manner similar to the variation of ηs with µ. We are hence able to collapse

the data from Figure 9a to a single curve, seen in Figure 9c for Hookean contact model, by

scaling the abscissa by the quantity ηs(µ)− ηs0, where ηs0 = ηs(µ = 0); values of ηs can be

obtained from simulation data [9] or calculated from the fitted function [33]

ηs = ηs0 + (ηs∞ − ηs0)g(µ), (18)

where ηs0 = 0.105, ηs∞ = ηs(µ =∞) = 0.405, and g(µ) is defined as

g(µ) = 1− exp(−6µ). (19)

We can then relate the scaled velocities by

Irot = mI ′ (20)

with

m =
(ηs∞ − ηs0)2

(ηs(µ)− ηs0)2
(21)

=
1

g2(µ)
. (22)

Figures 9b and 9d are analogous to Figures 9a and 9c, respectively, but are for Hertzian

contact model. The same expresion for g(µ) is used for both contact models. The Hertzian

model shows a greater scatter. Finally, we write the translational slip velocity in dimension-

less form as

Islip =
vslip

νcore/ρsd
, (23)

and constitute it as

Islip = Isurf
slip + Irot, (24)

with Isurf
slip given by Eq. 14 and Irot given by Eq. 20.

Functionally, Eq. 20 augments the Isurf
slip model in Eq. 14 to create a BC model applica-

ble to continuum-modeling problems without explicit solution of the angular velocity field,
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provided the apparent velocity of the particles at the wall is known. In a general flow

problem, the apparent velocity of the particles at the wall is not known, but in this simple

test problem, it is simply equal to γ̇coreH/2. As a result, we can write v′ = vw − γ̇coreH/2.

Equations 14, 20, 24 and 25 then allow estimation of vw. For a more complex flow problem,

the apparent velocity of the particles at the wall is not known and so an additional equation

should be formulated. For such cases, the near-wall angular velocity is algebraically re-

lated to the near-wall boundary-layer velocity contribution v′, which can be extracted from

the translational velocity field provided it is solved with sufficient resolution to capture the

∼10d-thick boundary layer. Specifically, we apply Eqs. 9-10 to obtain

v′ = vw − γ̇coreH/2, (25)

which is easily evaluated since the right-hand side contains known quantities. As aforemen-

tioned, for shear flows γ̇core can be measured at any chosen location in the core.

In a similar fashion, we constitute I ′ in order to eliminate the need for boundary layer

resolution. The boundary contribution to the translational velocity is again observed to

depend on the distance to the jamming point as well as particle and wall friction coefficients;

as with Isurf
slip , there is also a dependence on the restitution coefficient. These dependences are

seen in Figure 10a for Hookean contact model. By approximating the relationship between

I ′ and η − ηs as linear, we calculate a slope for each case and fit the slope data to the form

of

m′ = 23.4 (1− e2
eff) Arctan

[
6

(
µw
ηs
− 1

)]
. (26)

Here, eeff is the effective restitution coefficient [11], which empirically describes the collisional

loss of translational velocity resulting from inelasticity and friction as

eeff = e− 3

2
µ exp(−3µ). (27)

We then obtain (see Figure 9c)

I ′ = m′(η − ηs) (28)

Figures 9b and 9d illustrate that the same approach applies for the Hertzian contact model.

Armed with these simple correlations, one can write down the boundary conditions for the

simple 1-D flow problem as follows:

Iapp
slip ≡

vapp
slip

νcore/ρsd
, (29)
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FIG. 9. Scaled rotational velocity vs. scaled boundary-layer velocity contribution (a) without and

(b) with the prefactor m on the abscissa; m is defined in Eq. 22. A linear relationship between the

two exists for all cases considered, regardless of how the velocities are nondimensionalized.

when one can calculate the apparent slip velocity, defined as

Iapp
slip = Isurf

slip + Irot + I ′ (30)

= Islip + I ′. (31)

D. Generalized BC model

Though the model expressions presented above are developed on the basis of simple-shear

simulation results, they can be easily recast to handle general flow problems. To this end,

we begin by rewriting all the aforementioned velocities in vectorial form. The surface slip

21



0

2

4

6

8

0 0.05  0.1  0.15 0.2 0.25

I'
 ≡

  
υ

w' 
 / 

( 
ν

c
o

re
 / 

ρ
s
d

 )

η - ηs

(a)

!"

!#

!$

!%

!&

!'"

!'#

!'$

!'%

!" !"(") !"(' !"(') !"(# !"(#)

!"
!!
!!
"
#"!
!*
!+
!#

,
-
./
!*
!$

0
$
!1

%!2!%0

(b)

0

2

4

6

8

0 2 4 6 8

I'

m' ( η - ηs )

−4 −2 0 2 4 6 8 10 12
−1

0

1

2

3

4

5

6

7

−0.02 0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

φc − φcore

v
a
p
p

s
li

p
/
v

w
a
ll

µ = 1 .0

µ = 0 .5

µ = 0 .4

µ = 0 .3

µ = 0 .2

−0.02 0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

φc − φcore

v
a
p
p

s
li

p
/
v

w
a
ll

µ = 1 .0

µ = 0 .5

µ = 0 .4

µ = 0 .3

µ = 0 .2

µw
=

1.
0

µw
=

0.
7

µw
=

0.
5

µw
=

0.
4

(c)

 0

 2

 4

 6

 8

10

12

14

16

0 2 4 6 8 10 12 14 16

I'

m' ( ! - !s )

(d)

FIG. 10. Scaled boundary-layer velocity contribution vs. scaled shear stress ratio (a) without and

(b) with the prefactor m′ on the abscissa. The prefactor is defined in Eq. 26.

velocity can thus be written as

vsurf
slip ≡ Uwall − vsurf

w , (32)

with

vsurf
w ≡ vw + vrot

w (33)

and

vrot
w ≡

(
d

2

)
ωw × n. (34)

Here, n is the unit normal vector from the particle center to the wall. We then note that,

in the simple-shear example above, the scalar slip velocity is simply the magnitude of the

slip velocity vector — that is,

vsurf
slip ≡ |vsurf

slip |. (35)
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We can then continue to define Isurf
slip as in Eq. 12 and constitute it as in Eq. 14. In similar

fashion, we can write

vslip ≡ Uwall − vw, (36)

and

vslip ≡ |vslip|, (37)

define Islip as in Eq. 25 and constitute it with Eqs. 24, 20, and 28. Finally, we write

vapp
slip ≡ Uwall − vapp

w (38)

and

vapp
slip ≡ |vapp

slip |, (39)

with Iapp
slip defined in Eq. 29 and constituted in Eqs. 31, 20, and 28.

In addition to the velocities, we must also generalize the definition of the viscosity in

the core. This definition is trivial in the case of a shear flow since the rough location of

the core is known prior to solving for the flow fields and since the core features spatially-

invariant rheological properties. These features ensure that the BC model will be unaffected

by the choice of νcore so long as it is measured at a location that is beyond 10d of the walls.

However, the definition of a core viscosity becomes less clear in general flow scenarios, where

the viscosity (and shear rate and volume fraction) may vary with position throughout the

domain. One can reason, though, that the core viscosity succeeds in collapsing slip velocity

data in our shear flow simulations because of the proximity of the core to the wall; that

is, the core influences the wall behavior because the two regions are separated by only 10d.

This observation motivates us to recommend measuring the core viscosity at a distance of

10d from the wall, i.e.

νcore ≡ ν(x = xwall + (10d)n), (40)

where xwall is the local position of the wall. If the computational mesh is sufficiently coarse,

though, the first grid cell may lie further than 10d from the wall, so viscosity information

would be unavailable at the desired distance from the wall. In such a scenario, the viscosity

can instead be taken at the first interior grid cell. This position ensures measurement of

rheological information relevant to the slip behavior while still characterizing core (i.e. local)

rheology.
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FIG. 11. Inclined-plane geometry used in the example application of the BC model.

E. Example application of BC model

To clarify how to use the BC model, we apply it to the 1-dimensional problem of dense

granular flow down an inclined plane, the geometry for which is shown in Figure 11. Balance

equations on momentum yield expressions for the stress gradients; specifically,

dτ

dy
= −ρsφgsin(θ) (41)

and

dp

dy
= −ρsφgcos(θ), (42)

where y is the distance from the base, θ is the inclination angle, and g is the gravitational

acceleration. If we specify a simple, algebraic rheological model, e.g. an inertial-number

model [7, 9], p and τ become explicit functions of φ and γ̇, thereby converting Eqs. 41-42

to a system of two ordinary differential equations for the dependent variables φ and γ̇. The
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latter of these is, of course, tied to the velocity field via

dvx
dy

= γ̇. (43)

If the height H of the granular layer is large, it becomes computationally quicker to model

the boundary layer rather than resolve it; assuming this scenario, the velocity field near the

wall is in fact the apparent velocity. Hence, our boundary condition at the bottom wall is,

as per Eq. 31,

Iapp
slip = Isurf

slip + I ′ + Irot (44)

= Isurf
slip + (1 +m)I ′. (45)

Substituting Eqs. 14-15 and Eq. 28 into Eq. 45, we see that the right-hand side is a function

of η, which we rewrite as

Iapp
slip = F (η(y = 0)). (46)

Next, we substitute Eqs. 38-40 into Eq. 46 and, noting that Uwall = 0 for this problem, we

obtain

|vapp
w |

νcore/ρsd
= F (η(y = 0)). (47)

Since the boundary layer is not being resolved, vapp
w = vw as mentioned before; also, νcore =

ν(y = 0). Therefore, the final BC expression becomes

vx(y = 0) =
ν(y = 0)

ρsd
F (η(y = 0)). (48)

Expressions for η and ν in terms of φ and γ̇ are provided by the rheological model since

η ≡ τ/p and ν ≡ τ/γ̇. Once a boundary condition is placed at the free surface, such as the

zero-shear-stress condition

τ(y = H) = 0, (49)

the boundary value problem becomes fully specified and can be solved numerically.

IV. DISCUSSION

The constitutive equations presented in the previous section allow for the prediction of the

slip velocity in finely- or coarsely-resolved solution of continuum models that either include
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TABLE II. Summary of model equations.

Equation Description

Isurf
slip = η−ηs

µw+µ∗w−ηs Surface slip velocity

Islip = Isurf
slip + Irot Translational slip velocity

Iapp
slip = Islip + I ′ Apparent translational slip velocity

Irot = mI ′ Rotational velocity at the wall

I ′ = m′(η − ηs) Boundary-layer velocity contribution at the wall

or neglect the angular velocity field. The BC expressions contain explicit dependencies on

numerous important particle and wall parameters, including (1) microscopic parameters

such as the particle-particle friction coefficient µ, particle-wall friction coefficient µw, and

the particle restitution coefficient e, as well as (2) continuum parameters that depend on

the microscopic parameters such as the yield stress ratio ηs and the effective restitution

coefficient eeff . These aspects — flexibility and range of application — are the primary

strengths of the presented model.

Another notable feature of the model is the viscosity-based characteristic velocity vchar =

νcore/ρsd that is used to scale the slip velocities and velocity contributions. Previous BC

models have cast the slip velocity as being proportional to a characteristic shear velocity

γ̇d [20], a characteristic particle rearrangement velocity
√
p/ρs [19], or a characteristic fluc-

tuating velocity
√
T [12]. Each of these has its advantages and disadvantages. The quantity

γ̇d is a valid velocity scale for all flow problems but does not contain any explicit dependences

on volume fraction, which appear to be necessary to eliminate the nonmonotonicity of the

scaled slip velocity observed in Figure 6a; the φ-dependence must therefore be constituted

in the model prefactors — a task that is certainly possible but may be tedious for a large pa-

rameter space (i.e. φ, µ, e, etc.). The pressure-based scale introduces such a φ-dependence,

albeit in a way that is not conducive to a general collapse (as far as we could identify); this

scale is also not a useful velocity scale in quasistatic flows [20], where pressure becomes inde-

pendent of shear rate [9]. Finally, the temperature-based scaling, in a continuum-modeling

context, not only requires the solution of a balance equation for the fluctuation energy but

moreover requires that this energy balance model be representative of the physics of dense
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flows; most models for T are based on kinetic theory and have been designed for flows in

which φ . 0.5 (with some exceptions [11, 18, 37]). The viscosity-based scaling, therefore,

combines several of the benefits of the other scales but without their drawbacks.

On the other hand, the presented model has a number of weaknesses, perhaps the largest

of which is the heavy reliance on empiricism. Indeed, not only the fitting constants but

even the functional forms of some of the model equations may appear difficult to justify

from a purely microscopic, physical basis. To some extent, this empiricism is a product of

the large parameter space considered in this work; the range of φ, µ, µw, and e studied

in our simulations requires substantial effort to find common functional dependences. The

kinetic-theory framework has proven useful in past investigations of rheological [5, 6] and slip

behavior [14, 15] of inelastic, frictional/rough particles, producing explicit dependences on

these same parameters. However, the assumptions typically made when utilizing the kinetic-

theory approach can limit the range of applicability of the derived constitutive equations.

Most importantly, the assumption of molecular chaos limits the model validity to volume

fractions less than about 0.5, outside the dense regime of interest here. The use of kinetic

theory along with velocity distribution data from dense-regime simulations, an approach

taken by Kumaran [18], could reduce the need for empiricism, though it is not clear that

this approach would produce closed-form expressions for the stresses as needed for practical

continuum-modeling work. Hence, the approach we propose here is an interim solution until

models firmly grounded on underlying physics are rigorously derived. Despite the empirical

strategy, many of the model parameters, though fitted from simulation data, have direct

or approximate physical meanings. For example, ηs is the yield stress ratio for the particle

assembly, while η − ηs is the distance to the yield stress ratio. The effective restitution

coefficient eeff appears in terms of 1−e2
eff , which is an approximate measure of the collisional

loss of kinetic energy due to the combined effects of inelasticity and friction [11]. The term

µ∗w represents approximately the minimum required amount of wall friction to sustain shear,

and its value of 0.33 is, perhaps not by pure coincidence, also the value of µ at which

eeff is minimized, suggesting a possible microscopic reason for the failure to thermalize the

particle assembly when µw = µ∗w. While a more sound theoretical basis for the BC model is

certainly desirable, the model presented here provides usable expressions for the slip velocity

while also providing clues as to the possible forms and scalings that a detailed theoretical

treatment might produce.
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Finally, the BC model does not adequately address cases of unsteady particle cooling. As

mentioned in Section III A, in some simulated cases the dissipation of granular energy is too

high at the walls to allow sustained shear to occur. While we do observe an approximate

regime boundary between shearing and non-shearing cases at a critical value of µw as did

Shojaaee et al. [22], we do not conduct a thorough investigation of the nature of this tran-

sition. The reason for limiting our analysis to steady systems is the difficulty in obtaining

meaningful measurements of continuum field variables that vary both in space and time while

maintaining high spatial and temporal resolution. In the case of our steady simulations, high

spatial resolution is facilitated by time-averaging over long simulation times; this approach

is impeded if the dependence on time is also to be measured. Moreover, the resolution in

time and space cannot be improved by increasing the system size, as the field variables of

interest in the shear flow vary over distances of ∼10d, a distance that is independent of the

number of particles being considered. Overcoming these challenges to produce a dynamic

BC model would represent a substantial, standalone effort and is therefore outside the scope

of the present study.

V. SUMMARY

Solution of granular flow problems by continuum methods requires specification of wall

boundary conditions, expressions for which have not been fully established for dense flow

scenarios. Additionally, continuum methods are limited in the case of most practical flow

problems by the need for (1) coarse resolution of the flow field and (2) simple flow models

that consider only translational motion, as both of these choices reduce computational cost.

On the basis of DEM simulations for a wide array of particle and wall properties, we propose

a constitutive expression for the slip velocity for use in finely-resolved continuum simulations

tracking particle rotation. We then constitute additional terms that, when added to this slip

velocity model, extend its validity to coarsely-resolved, translation-only flow descriptions.

The presented model hence offers flexibility to the modeler in regard to the level of resolved

detail while reducing the loss of accuracy, thereby allowing for improved flow predictions
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across a wide range of practical flow problems.
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We investigate the dense-flow rheology of cohesive granular materials through discrete element simulations of
homogeneous, simple shear flows of frictional, cohesive, spherical particles. Dense shear flows of noncohesive
granular materials exhibit three regimes: quasistatic, inertial, and intermediate, which persist for cohesive
materials as well. It is found that cohesion results in bifurcation of the inertial regime into two regimes: (a)
a new rate-independent regime and (b) an inertial regime. Transition from rate-independent cohesive regime
to inertial regime occurs when the kinetic energy supplied by shearing is sufficient to overcome the cohesive
energy. Simulations reveal that inhomogeneous shear band forms in the vicinity of this transition, which is more
pronounced at lower particle volume fractions. We propose a rheological model for cohesive systems that captures
the simulation results across all four regimes.

DOI: 10.1103/PhysRevE.90.032206 PACS number(s): 45.70.−n, 47.57.Gc, 64.60.F−

I. INTRODUCTION

Flows of dense granular materials occur in both natural
and industrial processes and exhibit a variety of distinct
rheological behaviors. For noncohesive particles, three flow
regimes have been identified—namely the quasistatic, inertial,
and intermediate regimes [1–4]—each of which manifests
different scalings of the mean stresses with shear rate and
volume fraction. Numerous constitutive stress models have
been constructed with these scalings in mind [2,3,5–10].
However, many granular flows involve cohesive interparticle
forces for which the above models do not account. These
cohesive effects are the primary focus of the present study.

Cohesion can result from a variety of sources—including
van der Waals forces [11,12], electrostatic forces [13], cap-
illary forces [14], and solid bridges [15]—and has a strong
impact on granular rheology. For example, agglomeration
of particles has been observed in simulations of cohesive
granular materials in various flow geometries [16–21]. Annular
shear flow experiments [22] and plane shear simulations
[18,20,23] have shown that cohesion increases the shear-
stress ratio η, defined as the ratio of shear stress τ to
pressure p. Both simulations and experiments have shown
that the discharge flow rate from a hopper decreases with
increasing cohesion [24]. Rotating-drum experiments reveal
that cohesion increases avalanche size and leads to robust
pattern formation on the surface [25–27]. Despite the number
of such phenomenological studies, there is relatively little
literature on constituting the rheological effects of cohesion.
One notable work is that of Rognon et al. [20], which presents
modifications to friction and dilatancy laws for noncohesive
particles to account for the effects of cohesion observed in
two-dimensional (2D) simulations. The present study goes
beyond these earlier studies by exposing how the regime map
for noncohesive materials [1–4] is altered by the introduction
of cohesion and formulating explicit models for the mean
stresses.

In this paper, we investigate the rheology of cohesive
granular materials through discrete element method (DEM)
simulations of homogeneous, simple shear flows of frictional
and cohesive particles. Most of the simulations presented here
are based on a linear (Hookean) spring-dashpot model [28]

for particle-particle interaction and a commonly used model
for van der Waals force between particles [29]. The quasistatic
regime where the stress is proportional to spring stiffness (and
independent of shear rate), the inertial regime where stress is
proportional to square of shear rate (and independent of spring
stiffness), and the intermediate regime where stress depends
on both shear rate and spring stiffness—reported previously
for noncohesive particles [2]—persist even when cohesion
is added. The presence of cohesion is found to introduce a
new rate-independent regime where the stress depends on the
strength of cohesion. These regimes persist when the Hookean
contact model is replaced by a Hertzian contact model as well
as when the van der Waals force model is replaced with an
alternate cohesion model proposed by Rognon et al. [20],
illustrating the robustness of these regimes. Finally, we also
modify the blended stress model proposed by Chialvo et al. [2]
for dense flows of noncohesive particles to obtain an analogous
model for dense flow of cohesive particles.

II. SIMULATION METHODS

The DEM simulations [28] were performed using the
molecular dynamics package LAMMPS [30]. Particles interact
via repulsive spring-dashpot contact forces and attractive
cohesive forces. In the spring-dashpot model, the normal and
tangential contact forces on a spherical particle i resulting from
the contact of two spheres i and j with same diameter d are

Fnij
= f

(
δij d

4

)[
knδij nij − γnmeffvnij

]
, (1)

Ftij = f

(
δij d

4

)[−kt utij − γtmeffvtij

]
, (2)

where δij is the overlap distance, kn and kt are spring
elastic constants, γn and γt are viscous damping constants,
meff = mimj/(mi + mj ) is the effective mass of spheres with
masses mi and mj , vnij

and vtij are the normal and tangential
components of relative particle velocity, and utij is the elastic
shear displacement. For Hookean contact, f (x) = 1, while for
Hertzian contact, f (x) = √

x. The magnitude of tangential
force is limited by a static yield criterion, |Ftij | � μ|Fnij

|,
where μ is the particle friction coefficient. We set values
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of kt/kn = 2/7 [31] and γt = 0. For Hookean contact, for
the default case, γn is chosen such that the restitution coef-
ficient e = exp(−γnπ/

√
4kn/meff − γ 2

n ) = 0.7. For Hertzian
contact, we employ the same value for γn/

√
kn/meff , but now

the restitution coefficient e depends on the collision velocities.
To account for cohesion, an attractive force FC

nij
is included

so the total normal force between the particles becomes FT
nij

=
Fnij

+ FC
nij

. For the van der Waals force model, the cohesive
force between a pair of particles whose surfaces separated by
a distance s is written as [29]

FC
nij

= − Ad6

6s2(s + 2d)2(s + d)3
, (3)

where A is the Hamaker constant. It is assumed that the
force saturates at a minimum cutoff distance, smin = θd

[29]. Additionally, since the magnitude of the cohesive force
decreases rapidly with separation distance, a maximum cutoff
distance smax = d/4 [18] is used to accelerate the simulation
process; for s > smax, cohesive force is neglected.

We also investigated the alternate model of Rognon
et al. [20],

FC
nij

= −√
4knNAδij , (4)

where NA is specified as an input. Note that, in the static
limit, where the relative particle velocity is zero, for Hookean
contact, the total normal force between two particles is
knδij − √

4knNAδij . Accordingly, −NA is the maximum
attractive force between the two particles, experienced when
δij = NA/kn [20].

Differences between these two cohesion models are signifi-
cant. The cohesive force in the van der Waals model [Eq. (3)] is
present before the particles collide and does not increase with
overlap between particles. In Eq. (4), the cohesive force is only
present when particles are in contact and increases with extent
of overlap. Nevertheless, it will be seen that both models lead
to qualitatively similar results, differing in quantitative details
only modestly.

In the DEM simulations, assemblies of about 2000
monodisperse particles of diameter d and density ρs are
placed in a periodic box with fixed volume V . Through the
Lees-Edwards boundary condition [32], particles are subjected
to homogeneous steady simple shear at a shear rate γ̇ . The
macroscopic stress tensor is calculated as

σ = 1

V

∑
i

⎡
⎣∑

j �=i

1

2
rij Fij + mi(v′

i)(v
′
i)

⎤
⎦ , (5)

where rij is the normal vector pointing from the center of
particle j to that of particle i, and v′

i is the fluctuating velocity
of particle i relative to its mean streaming velocity. This
stress tensor is further ensemble-averaged over many time
steps. Ensemble-averaged pressure and shear stress can thus
be obtained as p = (σxx + σyy + σzz)/3 and τ = σxz. The
stresses and shear rate are made dimensionless through scaling
with d, ρs , and elasticity k = kn. Note that the dimensions
of the spring constants and damping coefficients differ for
Hookean and Hertzian contacts. Thus, for example, stress
will be scaled using k/d and k in Hookean and Hertzian
contacts, respectively. As gravity is not included in the

simulations, a modified Bond number Bo∗ is introduced, which
compares the maximum net cohesive force experienced by a
particle to a characteristic contact force. For Hookean contact
with the van der Waals force model, Bo∗ = F max

coh /(kd) ≈
A/(24kθ2d2), where F max

coh denotes the maximum cohesive
force. For Hertzian contact with the van der Waals force model,
Bo∗ = F max

coh /(kd2) ≈ A/(24kθ2d3). Simulation results indi-
cate that the results are insensitive to the particular value for
θ (1.0×10−5 � θ � 4.0×10−5) for specified value of Bo∗.
For the results presented in this paper, θ = 4×10−5 is chosen
[18]. Finally, for Hookean contact with the alternate cohesion
model, Bo∗ = NA/(kd).

III. FLOW REGIMES

We first consider Hookean contact and van der Waals
cohesion. Simulations are performed for various shear rates,
volume fractions, friction coefficients, and modified Bond
numbers. Figure 1(a) plots the scaled pressure pd/k against the
scaled shear rate ˆ̇γ = γ̇ d/

√
k/(ρsd) for noncohesive particles

with μ = 0.1. Three regimes are present [1–4]: quasistatic
at low shear rates and high volume fractions, inertial at low
shear rates and low volume fractions, and intermediate at
high shear rates and all volume fractions. The quasistatic and
inertial regimes are separated by a critical volume fraction φc,
which is a function of μ as summarized in Table I. When
cohesive forces are included, however, it is found that this
regime map is modified, as shown in Figs. 1(b) and 1(c),
where Bo∗ is 5×10−6 and 5×10−5, respectively. Some aspects
remain unchanged: all three noncohesive regimes persist with
no change in φc(μ), and the quasistatic and intermediate
pressure values show no appreciable changes. However, the
inertial regime is now bifurcated into two regimes occurring
at different scaled shear rates: at higher ˆ̇γ the flow remains
inertial (i.e., exhibiting Bagnold scaling), while at lower ˆ̇γ the
flow becomes rate independent. We term this latter, new regime
the cohesive regime. As Bo∗ increases, this cohesive regime
expands to encompass a larger domain of ˆ̇γ , as illustrated in
Figs. 1(b) and 1(c). Simulations were also performed for a
highly inelastic system by lowering e from 0.7 (default case)
to 0.02. It was found that all four regimes persist even for such
a highly dissipative system, with no discernible change in the
magnitude of the jamming volume fraction (see Fig. 2).

TABLE I. Values of model constants.

μ-dependent parameters
μ 0.1 0.3 0.5

φc 0.614 ± 0.001 0.596 ± 0.001 0.587 ± 0.001
χ 2.08 ± 0.02 2.09 ± 0.02 2.14 ± 0.08
ε 1.00 ± 0.01 0.92 ± 0.01 0.67 ± 0.02
αQS 0.36 0.36 0.20
αint 0.15 0.13 0.10
αcoh,1 0.15 0.32 0.26
ηs 0.268 0.357 0.382
α3 0.23 0.23 0.15

μ-independent parameters
φa αinert αcoh,2 I0 α1 β1 ˆ̇γ0 α2 β2 α4

0.45 ± 0.01 0.015 0.008 0.32 0.37 1.5 0.1 0.2 1.0 0.1
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FIG. 1. Scaled pressure versus scaled shear rate for (a) noncohesive particles, (b) cohesive particles with Bo∗ = 5×10−6, and (c) cohesive
particles with Bo∗ = 5×10−5. In all cases, Hookean contact and van der Waals force model are used, and the interparticle friction coefficient
μ = 0.1. Symbols denote simulation results, while lines denote model predictions from Eqs. (7)–(12).

In Figs. 1 and 2, we present the results only from simulations
in which the velocity profile in the statistical steady state is
found to be linear indicating homogeneous shear. There is a
conspicuous absence of simulation results in Figs. 1(b), 1(c),
and 2(b) at the lower volume fractions and shear rates in the
region representing transition from cohesive regime to inertial
regime. In this region, the velocity profiles are found to be
inhomogeneous (see Appendix A for further details). These
cases are not included in the analysis of the homogeneously
sheared state presented here.

The cohesive regime corresponds well to previous re-
sults [18] which report the existence of a rate-independent
regime due to cohesion. Also, the cohesive-to-inertial regime
transition is in accord with results from dynamic shear cell
experiments on slightly cohesive powders [22]; the pressure
in these experiments is roughly rate independent at low shear
rates but increases significantly at higher shear rates. Finally,
the impact of cohesion on the scaling of pressure with respect
to shear rate is consistent with previous 2D, constant-pressure
shear simulations of Rognon et al. [20]. They utilize NA/(pd)
to characterize cohesion and find that, when NA/(pd) is large,
the solid fraction no longer varies with inertial number (defined
by them as γ̇

√
m/p for particle mass m) in their dilatancy

law, which corresponds to the rate-independent behavior we
observe for the pressure in the cohesive regime. The present
paper details where this new rate-independent cohesive regime
is located in parameter space with respect to the other three
regimes and provides a comprehensive regime map for dense
flows of cohesive granular materials capable of explaining all
of the above behaviors.

Because previous works (e.g., Refs. [20,33]) demonstrate
the importance of microstructure on dense granular rheology,
we aim to explain the cohesive-to-inertial regime transition
in terms of changes in microstructure. To this end, we study
the average coordination number Z, which is defined as the
average number of contacts per particle in the system. Specif-
ically, Z = 2nc/n, where nc is the total number of contacts
(with particle overlap) and n is the total number of particles
in the system. When φ > φc, cohesion has negligible impact
on Z across all shear rates (i.e., quasistatic and intermediate
regimes), as seen in Fig. 3(a). For φ < φc, cohesion has
a weak impact on Z at high shear rates (i.e., inertial and
intermediate regimes) but substantially increases the value of
Z in lower-shear-rate region (i.e., the cohesive regime), as
seen in Fig. 3(b). Thus, cohesion has an appreciable impact
on Z only in the cohesive regime, which is consistent with the
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FIG. 2. Scaled pressure versus scaled shear rate for (a) non-
cohesive particles and (b) cohesive particles with Bo∗ = 5×10−5.
Hookean contact and van der Waals force model are used, and the
interparticle friction coefficient μ = 0.1 and restitution coefficient
e = 0.02. Symbols denote simulation results at various volume
fractions as per the legend from Fig. 1. Lines denote model predictions
from Eqs. (7)–(12). Model parameters used are the same as those
in Table I.

pressure data shown in Fig. 1. To make this observation more
transparent, we present in Figs. 4(a) and 4(b) the variation
of pressure with shear rate corresponding to conditions in
Figs. 3(a) and 3(b), respectively. It is clear that cohesion has
only a weak impact (if any) on pressure (and, as presented

later, shear stress) in quasistatic, inertial, and intermediate
regimes. The emergence of a rate-independent regime because
of the cohesive force can be reasoned through the average
coordination number characterizing the microstructure. When
a dense assembly of noncohesive particles is subjected to
steady (and slow) shear, jamming occurs at a critical volume
fraction, φc, which depends on the particle-particle coefficient
of friction [33,34] and there is a corresponding average
coordination number Zc. Under dynamic conditions [33], the
stress tracks Z more closely than the particle volume fraction.
Hence it is more accurate to characterize the regimes in terms
of Z and shear rate than in terms of volume fraction and
shear rate. This distinction is more apparent when particles
interact cohesively. For noncohesive assemblies in slow, steady
shear, Z falls below Zc when φ drops below φc. In contrast,
for cohesive assemblies, Z can remain large even when φ

is lowered below φc, and force chains persist, leading to
rate-independent regime. [Compare Figs. 3(b) and 4(b).]

Another behavior connected to the coordination number is
the expansion of the cohesive regime with increasing Bo∗, as
illustrated in Fig. 3(b). The critical shear rate which sets the
boundary between the cohesive and inertial regimes scales with√

Bo∗, as demonstrated in Fig. 3(c), where data are collapsed
by scaling the dimensionless shear rate with

√
Bo∗. The

√
Bo∗

scaling can readily be rationalized: When cohesive energy
(∼Bo∗) is overcome by the kinetic energy supplied by the
shearing (∼ ˆ̇γ 2), the system transitions from a cohesive regime
to an inertial regime. This transition in dependence of Z on
shear rate between the cohesive regime and inertial regime is
consistent with previous findings [18,19].

The variation of Z with shear rate is analyzed in more detail
by decomposing the average coordination number plotted in
Figs. 3(a) and 3(b) into two components: one in the extension
quadrants (Zext) and one in the compression quadrants (Zcom),
as shown in Figs. 5(a) and 5(b). As one would expect, the
average coordination number in the compression quadrants is
always higher than the counterpart in the extension quadrants
[35]. At a packing fraction of 0.62 (which is larger than φc),
Zcom and Zext are essentially the same for cohesive and
noncohesive systems, see Fig. 5(a). Furthermore, both of them
remain nearly independent of shear rate at low shear rates and
decrease at higher shear rates; thus, there is no discernible
difference in the behavior in the different quadrants. At
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FIG. 3. The average coordination number versus scaled shear rate at μ = 0.1 and various modified Bond numbers for (a) φ = 0.62 and (b)
φ = 0.59. In (c), the data from (b) are collapsed into one curve by subtracting Z for noncohesive system from that of cohesive systems and
rescaling the shear rate. Hookean contact and van der Waals force model are used here.
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FIG. 4. Scaled pressure versus scaled shear rate at μ = 0.1 and various modified Bond numbers for (a) φ = 0.62 and (b) φ = 0.59. Hookean
contact and van der Waals force model are used here.

packing fractions lower than φc, inertial regime is obtained
for noncohesive systems, where both Zcom and Zext increase
with shear rate [see Fig. 5(b)]. When the particles interact
cohesively and the shear flow is in the cohesive regime, both
Zcom and Zext are large at low shear rates (comparable in
magnitude to those in the quasistatic regime) under low-shear-
rate conditions. Increasing shear rate tends to break down the
force chains in all quadrants, weakly at low shear rates and
rapidly in the vicinity of

√
Bo∗, see Fig. 5(b). Once a cohesive

system enters the inertial regime, its behavior is similar to
that of noncohesive systems, with new contacts forming more
readily, leading to an increase in Zcom and Zext. It is the
interplay between these two trends that give rise to a minimum
in the average coordination number for cohesive systems in
the vicinity of

√
Bo∗ [Figs. 3(b) and 5(b)], and the regime

transition observed in the pressure plot [Fig. 4(b)].

IV. PRESSURE

A blended pressure model has been previously proposed for
noncohesive granular materials, which can capture the pressure
continuously across different dense-flow regimes for different

volume fractions and shear rates [2],

p =
{

pQS + pint for φ � φc(
p−1

inert + p−1
int

)−1
for φ < φc.

(6)

In this model, pQS, pinert, and pint represent pressure in the
quasistatic, inertial, and intermediate regimes. To model the
transitions between them, a blending function B of the form
B(y1,y2) = (yw

1 + yw
2 )1/w is used; w = 1 is chosen to create

an additive blend for the quasistatic-to-intermediate transition
and w = −1 is chosen to yield a harmonic blend for the
inertial-to-intermedaite transition. Pressure in each individual
regime is modeled based on scaling law similar to those in con-
ventional critical phenomena [36–39]. Specifically, one seeks
a power-law relationship between pressure and shear rate in
each flow regime [2]: pj

|φ−φc|ε ∼ [ γ̇

|φ−φc|ω ]
mj , j = QS, int, inert.

In the rate-independent quasistatic regime, mQS = 0. In the
inertial regime, where pressure varies as the square of shear
rate, minert = 2. Thus, assuming pinert ∼ |φ − φc|−χ , we set
ω = (ε + χ )/2. Furthermore, as the pressure is essentially
independent of |φ − φc| in the vicinity of the intermediate
asymptote, we deduce that mint = ε/ω = 2ε/(ε + χ ). Thus,
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FIG. 5. The average coordination number in the extension quadrants (unfilled symbols) and compression quadrants (filled symbols) versus
scaled shear rate at μ = 0.1 for (a) φ = 0.62 and (b) φ = 0.59. Hookean contact and van der Waals force model are used here.
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FIG. 6. Collapse of pressure for (a) inertial regime and (b)
quasistatic regime. For both (a) and (b), the solid line has a slope
of 1 and y intercept of 0. All points with different volume fractions
and particle friction coefficients fall on the lines. Hookean contact
is used.

for noncohesive particles with Hookean contact,

pQSd/k = αQS|φ − φc|ε, (7)

pintd/k = αint ˆ̇γ 2ε/(ε+χ), (8)

pinertd/k = αinert ˆ̇γ 2

|φc − φ|χ . (9)

The Levenberg-Marquardt method [40] is used to estimate
the model constants. Details are included in Appendix B.
As shown in Table I, it is found that αinert is approximately
independent of μ, while φc and αint differ for different μ. The
scaling exponent ε and prefactor αQS in Eq. (7), as well as the
scaling exponent χ in Eq. (9), manifest systematic dependence
on μ, which was not reported by Chialvo et al. [2], who took
χ = 2 and ε = 2/3 for all μ. Although it is not the principal
focus of this study, we report in Table I the best-fit values of
ε, αQS, and χ for three different μ values. As demonstrated in
Figs. 6(a) and 6(b), Eqs. (7) and (9), respectively, capture
the pressure in the quasistatic regime and inertial regime
satisfactorily.

Furthermore, the resultant value of mint = 2ε/(ε + χ ) is
consistent with experimental results [41,42]. The effectiveness
of the power-law relations is illustrated in Fig. 7, where the
pressure versus shear rate data at several different volume
fractions are collapsed onto two curves (one above φc and
one below). Figures 7(a)–7(c) show results for three different
values of μ.

It has been noted previously in the literature [33] that the
pressure in the quasistatic regime is not set by particle volume
fraction [as in Eq. (7)] and that it tracks more closely the
average contact coordination number Z under both steady
and dynamic flow conditions. In steady shear flows, Z is
set by the particle volume fraction and so Eq. (7) can be
thought of the outcome of integrating a relation that applies
under steady as well as dynamic conditions and one that is
restricted to steady shear flows. Since stress is principally
transmitted in the quasistatic regime through force chains,
researchers have focused on Z2, where particles with 0 or
1 contact are excluded as they are not involved in the force
chains (e.g., see Refs. [33,43]). We find that the pressure in
the quasistatic regime can be expressed as αZ[Z − Zc(μ)]2 or
αZ2 (μ)[Z2 − Z2c(μ)]2; see Figs. 8(a) and 8(b). It is interesting
to note that when the pressure is expressed in terms of Z or
Z2, the exponent is independent of μ; furthermore, when it is
expressed in terms of Z (instead of Z2), the proportionality
constant is also independent of μ and the role of friction is
manifested only through Zc(μ). As seen in the caption for
Fig. 8(a) and 8(b), Zc and Z2c decrease as μ increases, which
is consistent with previous results [33,34]. As seen in Figs. 3(a)
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FIG. 7. Collapse of pressure versus shear rate curves for (a) μ = 0.1, (b) μ = 0.3, and (c) μ = 0.5. In all cases, the pressure is scaled as
p∗ = p/|φ − φc|ε and shear rate as γ̇ ∗ = γ̇ /|φ − φc|(ε+χ )/2. (Values for ε and χ are included in Table I.) Symbols denote simulation results at
various volume fractions as per the legend from Fig. 1. The blending function, described in Eqs. (6)–(9) and represented by solid lines, captures
regime asymptotes as well as transitions. Hookean contact with no cohesion is used.
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FIG. 8. Simulation data of scaled pressure in the quasistatic
regime versus the predictions from the models based on (a) Z

and (b) Z2 for various volume fractions. In (a), αZ = 0.007 and
Zc = 5.10, 4.38, and 4.00 for μ = 0.1, 0.3, and 0.5, respectively.
In (b), Z2c = 5.20, αZ2 = 0.0077 for μ = 0.1; Z2c = 4.56, αZ2 =
0.0083 for μ = 0.3; and Z2c = 4.26, αZ2 = 0.0091 for μ = 0.5.
The system is noncohesive and Hookean contact is used. The line
represents y = x.

and 4(a), the pressure in the intermediate regime (and φ > φc)
increases with shear rate, while Z decreases with increasing
shear rate. This clearly shows that the relationship of the type
shown in Figs. 8(a) and 8(b) fail in the intermediate regime,
even though the stress continues to be largely transmitted
through force chains.

The pressure model for noncohesive systems is readily
modified to account for the effect of cohesion, as described
below. The data reveal two trends which provide clues for
constructing simple models. First, as illustrated in Fig. 9,
pd/k ∼ Bo∗ in the cohesive regime for all volume fractions
(except for those near φc). This behavior is consistent with
(a) pd/k ∼ ˆ̇γ 2 in the inertial regime and (b) the critical
ˆ̇γ value separating the inertial and cohesive regimes scales
as

√
Bo∗. Figure 9 shows results down only to φ ≈ 0.50.

At lower values of φ, the flow transitions to shear flows of
agglomerates, and the size of the simulation domain used in
this study is inadequate to get meaningful results. Second,
while the intermediate asymptote (at φ = φc) given by Eq. (8)
persists for cohesive particles at high ˆ̇γ values, it becomes rate
independent when ˆ̇γ becomes small compared to a critical
shear rate. This critical shear rate scales as

√
Bo∗, as shown
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FIG. 9. Dimensionless pressure scaled by Bo∗ versus volume
fraction in the cohesive regime at ˆ̇γ = 3.2×10−6 for μ = 0.1 and
various Bo∗ values. The line represents 0.15 |φ−φa |

|φc−φ| , where φc(μ =
0.1) = 0.614 and φa(μ = 0.1) = 0.45. Hookean contact and van der
Waals force model are used here.

in Fig. 10; this is exactly the same dependence as observed
eariler for the cohesive-to-inertial transition. Together these
observations suggest that, in the vicinity of φc, pd/k in
cohesive regime scales as (Bo∗)ε/(ε+χ ).

Based on these observations, Eq. (6) is adapted using the
blending function previously described with w = 1 to provide
an additive blend that can model both the cohesive-to-inertial
and cohesive-to-intermediate transitions. Thus, the model
becomes

p =
{

pQS + (pint + pcoh,2) for φ � φc

[(pinert + pcoh,1)−1 + (pint + pcoh,2)−1]
−1

for φ <φc,

(10)

where pQS, pint, and pinert are given by Eqs. (7)–(9), and

pcoh,1d/k = αcoh,1Bo∗ |φ − φa|
|φc − φ| , (11)

pcoh,2d/k = αcoh,2(Bo∗)ε/(ε+χ)
. (12)
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FIG. 10. Scaled pressure versus scaled shear rate at φ = 0.614
for different cohesion levels (as shown in the legend). Interparticle
friction coefficient μ = 0.1 is used. Hookean contact and van der
Waals force model are used here.
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FIG. 11. Shear-stress ratio versus scaled shear rate for (a) noncohesive particles, (b) cohesive particles with Bo∗ = 5×10−6, and (c) cohesive
particles with Bo∗ = 5×10−5. In all cases, Hookean contact and van der Waals force model are used, and the interparticle friction coefficient
μ = 0.1. Symbols denote simulation results at various volume fractions as per the legend from Fig. 1. Lines denote model predictions from
Eqs. (13)–(15) and (19).

For noncohesive particles, where Bo∗ = 0, pcoh,1 and pcoh,2

vanish, and the proposed model returns to its original form
written for noncohesive particles. The Levenberg-Marquardt
method [40] is again used to estimate the model constants.
(Details are included in Appendix B.) They are provided in
Table I. Predictions based on this pressure model are compared
with the simulation results in Fig. 1. The proposed model
captures the data reasonably well not only in each regime but
also in the transition regions.

V. SHEAR-STRESS RATIO

Figure 11 displays the variation of stress ratio η(=τ/p)
with the scaled shear rate ˆ̇γ for both noncohesive and cohesive
particles with μ = 0.1. Cohesion has a significant effect on
the stress ratio only in the cohesive regime, where cohesion
increases the stress ratio appreciably. This increase in stress
ratio due to cohesion is in agreement with prior experiments
[22] and simulations [18,20,23]. It is also consistent with
increasing average coordination number with the inclusion
of cohesion in the cohesive regime.

The stress-ratio model for noncohesive frictional granular
materials proposed by Chialvo et al. [2] is composed of two
contributions, ηhard and ηsoft. The term ηhard is a function of
inertial number I ≡ γ̇ d/

√
p/ρs and describes the shear-stress

ratio for infinitely hard particles [8–10], while ηsoft is a function
of ˆ̇γ and describes the deviation from hard-particle behavior
due to finite stiffness,

η∗ = ηhard(I ) − ηsoft( ˆ̇γ ), (13)

ηhard(I ) = ηs(μ) + α1

(I0/I )β1 + 1
, (14)

ηsoft( ˆ̇γ ) = α2

( ˆ̇γ0/ ˆ̇γ )β2 + 1
. (15)

Here η∗ is the stress ratio for noncohesive granular materials,
and ηs is the yield stress ratio. The validity of this stress-ratio
model for noncohesive granular materials is demonstrated in
Fig. 12. By correcting for particle softness, the stress-ratio
data from all three regimes and particle friction coefficients
are collapsed onto one curve.

As shown below, the well-known Mohr-Coulomb relation
τ = η∗p + C, which can be cast as

η = η∗ + C/p, (16)

captures our steady, simple shear flow simulation results in
the rate-independent regimes, namely quasistatic and cohesive
regimes, provided C is properly modeled. Rognon et al. [20]
found that the model proposed by Rumpf [44] for C, CRumpf =
Zη∗φBo∗k/(πd), overestimates the value of C needed to
match the simulation results. We found the same to be true
as well. It is now known that Rumpf’s formula does not
account for nonaffine particle displacements [45–48], which
arise due to the structural disorder in the system. The relevance
of nonaffine displacement has been investigated in the context
of the shear modulus of covalent amorphous solids. He and
Thorpe [49] performed simulations on randomly depleted
covalent lattices and found that, for the shear modulus G,
G = 0.33(Z − 2.4)1.42. Recent analytical theory by Zaccone
[48] was applied to the same system and led to the expression,
G = 0.36(Z − 2.4). While this theory captured the critical
coordination number well, there is a discrepancy between the
theory and simulation results for the exponent and proportion-
ality constant. In an analogous fashion, we accounted for the

10
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η s

+
η s

o
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µ=0.1
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FIG. 12. The correction for particle softness yields a collapse of
stress-ratio data for noncohesive particles in all three regimes for
various particle friction coefficients (as shown in the legend). The
line denotes the expression α1

(I0/I )β1 +1
. Hookean contact is used.
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FIG. 13. Predictions of Ccorr
Rumpf/p taking account of nonaffine

displacements versus η − η∗ from simulation results for different
volume fractions (0.50 � φ � φc), cohesion levels (as shown in
the legend), and friction coefficients (μ = 0.1,0.3, and 0.5) in the
cohesive regime. In all cases, Hookean contact and van der Waals
force model are used. The line represents y = x.

effect of nonaffine displacement in our system by replacing Z

in the Rumpf model with a(Z − Zn)b so

Ccorr
Rumpf = a(Z − Zn)bη∗φBo∗k/(πd), (17)

and sought if a suitable choice of a, Zn, and b could capture
our simulation results. We found that many combinations of
these values yielded equally good fits, making it difficult to
discriminate among the different choices. For example, in the
spirit of Zaccone [48], one could set Zn = 2.4, b = 1 and
allow a to be a function of μ and capture the data well (not
shown). We found that we could get an equally good fit by
setting a = b = 1 and Zn = 3 (where now all the parameters
are independent of μ); this fit is illustrated in Fig. 13. (As
discussed later, a = b = 1 and Zn = 3 captured the Hertzian
contact results as well.) The simplicity of the fit with Zn = 3
(as opposed to 2.4) could be due to the fact that microscopic
models differ. For example, the cohesive force is active not
only on the contacts that emerge due to cohesion but also on
those that form even in the absence of cohesion in our system,
which differs from the system studied by He and Thorpe [49]
and Zaccone [48]. In any case, our data do not permit more
definitive analysis.

In the quasistatic and cohesive regimes, η∗ is essentially
ηs , and Z does not vary significantly with the shear rate
[e.g., see Figs. 3(a) and 3(b)] and volume fraction (see results
for the case of Hookean contact and van der Waals force model
shown in Fig. 14). In views of these, and since the coordination
number is not directly accessible, a lumped model constant
α3 = (Z − Zn)ηs/π is sufficient to capture our data,

η = η∗ + α3φBo∗k/d

p
. (18)

To extend this model to cover rate-dependent regimes, namely
inertial and intermediate, we modify the model as follows:

η = η∗ + α3φBo∗k/d

p

1
ˆ̇γ

α4
√

Bo∗ + 1
. (19)

0.5 0.52 0.54 0.56 0.58 0.6 0.62
3.5

4

4.5

5

5.5

6

6.5

φ

Z

Hookean and van der Waals
Hertzian and van der Waals
Hookean and alternative cohesion

FIG. 14. The average coordination number versus volume frac-
tion in the cohesive regime for particles with μ = 0.1 and
Bo∗ = 5×10−5.

Here α4

√
Bo∗ approximates the critical shear rate which sep-

arates the cohesive and inertial regimes. When ˆ̇γ 	 α4

√
Bo∗,

the model returns to Eq. (18). When ˆ̇γ 
 α4

√
Bo∗, the second

term in the model vanishes. The model describes stress ratio
reasonably well for all Bo∗ values considered without any
changes to constitutive parameters and for different μ values
with slight adjustment of α3. The values for α3 and α4 are
listed in Table I.

VI. GENERALITY OF THE RESULTS

The newly identified regime map is preserved when the
Hookean contact model is replaced by a Hertzian contact
model as well as when the van der Waals force model is
replaced with the alternate cohesion model of Rognon et al.
[20]. The general form of the stress model is also preserved,
albeit with small modifications. We illustrate these points by
presenting two different particle-scale models: (a) Hertzian
contact and the van der Waals force model and (b) Hookean
contact and the alternative cohesion model [Eq. (4)].

A. Flow regimes

Figures 15(a) and 15(b) show the variation of scaled
pressure against the scaled shear rate for cohesive particles
from these two particle-scale models. The cohesive regime,
characterized by rate-independent behavior below the critical
volume fraction (φc = 0.614 for μ = 0.1 in the figures) and
lower shear rates, is clearly present in both cases. In addition,
simulation results from different Bo∗ values confirm that the
critical shear rate, separating the cohesive and inertial regimes,
scales with

√
Bo∗ for both cases (not shown).

B. Pressure

The blended model for pressure, given by Eq. (10), remains
unaltered, but scalings for the various contributions there
change when Hookean contact is replaced with Hertzian
contact.

Specifically, pjd/k is changed to pj/k. Therefore,

pQS/k = αQS|φ − φc|ε, (20)
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FIG. 15. Scaled pressure versus scaled shear rate for (a) Hertzian contact and the van der Waals force model and (b) Hookean contact and
the alternative cohesion model [20]. Here μ = 0.1 and Bo∗ = 5×10−5. Symbols denote simulation results at various volume fractions as per
the legend from Fig. 1. Lines denote model predictions from Eqs. (10) and (17)–(21) in (a) and Eqs. (10)–(12) in (b).

pint/k = αint ˆ̇γ 2ε/(ε+χ), (21)

pinert/k = αinert ˆ̇γ 2

|φc − φ|χ . (22)

The Levenberg-Marquardt method [40] is performed to es-
timate the model constants. (Details are presented in Ap-
pendix B.) It is found that χ = 1.43 ± 0.03. It is found that
ε = 1.56, 1.21, and 1.10 with uncertainties of ±0.03 for
μ = 0.1, 0.3, and 0.5, respectively. The value of ε for Hertzian
contact is approximately 3/2 times the one for Hookean
contact, which is consistent with previous results [33,50].
Using the values for χ and ε, the pressure data can now be
collapsed onto two curves for different μ, as illustrated in
Fig. 16 for the case of μ = 0.1. Thus, Hertzian and Hookean
contacts afford similar simulation results such that pressure
can be collapsed in a similar fashion.
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FIG. 16. Collapse of pressure versus shear rate curves for μ =
0.1. The pressure is scaled as p∗ = p/|φ − φc|ε , and shear rate as
γ̇ ∗ = γ̇ /|φ − φc|(ε+χ )/2. ε = 1.56 and χ = 1.43 is used. Symbols
denote simulation results at various volume fractions as per the legend
from Fig. 1. The blending function, described in Eqs. (20)–(22) and
represented by solid lines, captures regime asymptotes as well as
transitions. Hertzian contact with no cohesion is used.

The first cohesive contribution pcoh,1 remains unchanged
from Eq. (11) except for scaling on the left-hand side,

pcoh,1/k = αcoh,1Bo∗ |φ − φa|
|φc − φ| . (23)

Finally, since pcoh,2 modifies the intermediate-regime con-
tribution (pint/k ∼ ˆ̇γ 2ε/(ε+χ)) and their sum becomes rate in-
dependent for ˆ̇γ 	 √

Bo∗, it is modified to scale as Bo∗ε/(ε+χ ).
This term now becomes

pcoh,2/k = αcoh,2(Bo∗)ε/(ε+χ)
. (24)

Model parameters used in the lines shown in Fig. 15(a)
are as follows: χ = 1.43, ε = 1.56, αQS = 0.19, αint = 0.15,
αinert = 0.13, αcoh,2 = 0.006. Values for φc, φa , and αcoh,1 are
the same as those for Hookean contact with van der Waals
force model (see Table I).

For case (b), the functional forms for the pressure model
are unchanged, and Eqs. (7)–(12) are applied. Only values
for φa , αcoh,1, and αcoh,2 now differ: φa = 0.50, αcoh,1 = 1.2,
αcoh,2 = 0.03.

C. Shear-stress ratio

Stress-ratio models are slightly modified for both cases and
compared with the simulation data in Figs. 17(a) and 17(b).
For case (a), as noted earlier, Zn = 3 captures our simulation
results, and since Z does not change significantly with volume
fraction (see results for the case of Hertzian contact and van der
Waals force model shown in Fig. 14), we can continue to lump
(Z − Zn)ηs/π as α3. As a result of change in the dimension
of k for the Hertzian contact, Eq. (19) now reads as follows:

η = η∗ + α3φBo∗k
p

1
ˆ̇γ

α4

√
Bo∗ + 1

, (25)

where η∗ is described in Eqs. (13)–(15). Model parameters
used in the lines shown in Fig. 17(a) are α1 = 0.27, α2 = 0.23,
β1 = 1.0, α4 = 3. Values for all the other parameters are the
same as those for Hookean contact with the van der Waals
force model.

For case (b), Zn = 0.5 captures our simulation results
adequately. Since Z changes significantly with volume fraction

032206-10



RHEOLOGY OF COHESIVE GRANULAR MATERIALS . . . PHYSICAL REVIEW E 90, 032206 (2014)

10
−6

10
−4

10
−2

10
0

0

0.5

1

1.5

2

ˆ̇γ ≡ γ̇d/ k/ρs

η

(a)

10
−6

10
−4

10
−2

10
0

0.2

0.3

0.4

0.5

0.6

0.7

ˆ̇γ ≡ γ̇d/ k/(ρsd)

η

(b)

FIG. 17. Shear-stress ratio versus scaled shear rate for (a) Hertzian contact and the van der Waals force model and (b) Hookean contact and
the alternative cohesion model [20]. Here μ = 0.1 and Bo∗ = 5×10−5. Symbols denote simulation results at various volume fractions as per
the legend from Fig. 1. Lines denote model predictions from Eqs. (13)–(15) and (25) in (a) and Eqs. (13)–(15) and (26) in (b).

(see the results for the case of Hookean contact and the
alternative cohesion model shown in Fig. 14), we find
that modeling (Z − Zn)ηs/π as α5(φ − φa) with α5 = 10.3
captures the stress-ratio data well. As a result, Eq. (19) is
modified to the following:

η = η∗ + α5(φ − φa)φBo∗k/d

p

1
ˆ̇γ

α4

√
Bo∗ + 1

, (26)

where α4 = 0.5. The solid lines in Fig. 17(b) correspond to
Eq. (26). Good agreement with simulation results is readily
seen.

Note that different expressions for (Z − Zn)ηs/π are
needed to capture stress-ratio results for van der Waals force
model and alternative cohesion model. As noted earlier, the
two cohesion models significantly differ: The van der Waals
force saturates when the particles come to contact, while the
cohesion is only present when the particles are in contact
in the alternative cohesion model. Figure 14 illustrates the
dependence of the coordination number on volume fraction
for the three different cases presented in this article. For
Hookean contact and the van der Waals force model, Z is
roughly independent from φ; for Hertzian contact and the
van der Waals force model, Z shows slight dependence on φ;
and for Hookean contact and the alternative cohesion model,
Z increases appreciably with φ. This difference in response
of coordination number to volume fraction helps explain the
necessity of different expressions for (Z − Zn)ηs/π .

VII. SUMMARY

We have investigated shear flows of dense cohesive granular
materials via DEM simulations. The quasistatic and interme-
diate regimes observed for noncohesive particles persist for
cohesive particles, while the inertial regime of noncohesive
particles bifurcates into two regimes: rate-independent cohe-
sive regime at low shear rates and inertial regime at higher
shear rates. The regime map for the rheology of dense assem-
blies of cohesive particles is found to be robust even when the
particle-scale details of the model are altered. Furthermore,
the pressure and shear-stress-ratio results obtained in our

simulations can be captured via simple algebraic expressions
that can be used in conjunction with continuum models for
flows in practical devices.
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APPENDIX A: INHOMOGENEOUSLY SHEARED STATE

In all the simple shear simulation results presented in the
main text, the locally averaged velocity of the particles is
verified to have a very nearly linear profile, and the particle
volume fraction profile is uniform. For cohesive particles,
shear flow simulations yield inhomogeneous volume fraction
and velocity fields at the lower volume fractions considered in
this study (namely φ ≈ 0.5) and at shear rates in the vicinity of
the transition between cohesive and inertial regimes. Figure 18
shows the scaled velocity profiles for two different scaled
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v x
/
(γ̇

H
/
2
)
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FIG. 18. Locally averaged velocity versus position in the di-
rection of shear. Domain-averaged volume fraction of particles is
0.51. Hookean contact and van der Waals force model are used with
μ = 0.1 and Bo∗ = 5×10−6. H denotes the thickness of the periodic
box in the shear direction.

032206-11



YILE GU, SEBASTIAN CHIALVO, AND SANKARAN SUNDARESAN PHYSICAL REVIEW E 90, 032206 (2014)

shear rates and domain-averaged volume fraction of 0.51. All
other conditions are as in Fig. 1(b). It is readily seen that
a linear velocity profile was achieved for ˆ̇γ = 9.49×10−4

[results included in Fig. 1(b)] but not for ˆ̇γ = 3.16×10−4

[and hence omitted from Fig. 1(b)]. It appears reasonable to
hypothesize that the occurrence of an inhomogeneous state
is a manifestation of shear-banding instability [51,52], which
has not been a focus of the present study but merits future
investigation.

APPENDIX B: MODEL CONSTANTS DETERMINATION

The Levenberg-Marquardt method [40] is used to estimate
the critical exponents as well as the values for φc and φa in
the pressure models for the inertial, quasistatic, and cohesive
regimes. Here, we use the case of Hookean contact and the
van der Waals force model to detail the process of using this
method to arrive at the values as shown in Table I.

For the pressure model in the inertial regime, the functional
form pinertd/k

ˆ̇γ 2 = αinert
|φc−φ|χ is assumed. The Levenberg-Marquardt

method is used to estimate φc and χ from simulation results
for noncohesive particles at various shear rates with φ

as the independent variable and pinertd/k
ˆ̇γ 2 as the dependent

variable. The values of χ and φc for different particle friction
coefficients are found and included in Table I.

For the pressure in the quasistatic regime, the functional
form pQSd/k = αQS|φ − φc|ε is assumed. The Levenberg-
Marquardt method is performed to estimate φc and ε from
simulation results for noncohesive particles at various shear
rates with φ as the independent variable and pQSd/k

as the dependent variable. The values for φc are found
to be close to the ones previously determined in the inertial
regime. These previously determined φc values are then used
to estimate ε, which are reported in Table I.

For the pressure in the cohesive regime, the functional form
pcoh,1d/k

Bo∗ = αcoh,1
|φ−φa |
|φc−φ| is assumed. The Levenberg-Marquardt

method is again performed to estimate φa and φc from
simulation results for cohesive particles at various shear rates
and modified Bond values with φ as the independent variable
and pcoh,1d/k

Bo∗ as the dependent variable. The values for φc

are found to be close to the ones previously determined in
the inertial regime. These previously determined φc values are
then used to estimate φa . It is found that φa is 0.45 ± 0.01,
0.45 ± 0.01, and 0.44 ± 0.01 for μ = 0.1, 0.3, and 0.5,
respectively. Thus, the values for φa are the same for different
particle friction coefficients within uncertainties. In Table I of
the manuscript, we only report one value for φa for different
particle friction coefficients.
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