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Executive Summary

A detailed understanding of Nuclear Physics is important for many areas of science and technology. The
nucleus is a complicated, strongly interacting, many-body dynamical system, whose accurate
description requires a precise treatment of the combined effects of 3 of the 4 fundamental forces in the
Standard Model (strong, weak, and electromagnetic). As a mesoscopic system composed of up to =
300 particles, the nucleus exhibits a wide range of collective phenomena, including vibrational and
rotational motion, and nuclear fission. Knowledge of the properties of nuclei is crucial for the study of
many topics in pure research, such as the use of weak decays to search for evidence of new physics
“Beyond the Standard Model.” In addition to providing a unique laboratory for scientific research, nuclei
are also important for a wide range of applications that are critical to society, including the generation of
energy, medical applications, and national (and international) security.

Quantitative predictions regarding the rich and complex phenomena that take place in the nucleus
require the use of a wide array of models and theoretical approaches, almost all of which lack predictive
capabilities of sufficient accuracy to meet the needs of the applications communities. For example,
although more than a century has passed since the discovery of the neutron, we still lack the ability to
predict the excitation energy or the lifetime of the first excited state of most nuclei to within +20%
accuracy! As a result, nuclear physics applications continue to be strongly dependent on the
measurement, publication, compilation, and evaluation of experimental nuclear data.

The United States Nuclear Data Program (USNDP) of the Department of Energy, Office of Science,
Office of Nuclear Physics (DOE NP) is the primary custodian of nuclear data in the US, and compiles,
evaluates and archives nuclear reaction and structure data for use in both basic and applied nuclear
science and engineering. The USNDP also serves as an interface to the international nuclear data
community, notably the International Atomic Energy Agency (IAEA) and the Organization for Economic
Co-operation and Development's (OECD) Nuclear Energy Agency (NEA).

In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several
recommendations, including that the USNDP should “devise effective and transparent mechanisms to
solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also
recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014
Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address
gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel
organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop
was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA
Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and
to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for
the required measurements. The first two days of the workshop consisted of 25 plenary talks by
speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production
(IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the
experimental facilities and instrumentation available for the measurement of nuclear data. This was
followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda
and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda . The
importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while
the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop
was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization
funded by the National Nuclear Security Administration (NNSA).
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A Path Forward

A principal goal of the NDNCA Workshop was to produce this whitepaper, which summarizes the data
needs of the participants and of others in the community who were not in attendance. This whitepaper
is more than just a bulleted list of needs; several items reappeared in multiple discussions, and are
highlighted in the Cross-Cutting Needs section below. References [1-9] in the section titled Cross-
Cutting Needs provide additional lists of some further needs that were collected previous to this
meeting. There is substantial overlap between these data needs and the needs outlined in the current
whitepaper, and we will highlight these overlaps within this document. While the main focus of the
meeting was to identify capabilities and experimental needs (especially overlapping needs), other
theoretical and workflow/process needs were also identified. It is hoped that this whitepaper will
provide useful guidance for DOE NP and partnering DOE offices in their planning exercises. The authors
also view it as a useful reference for the nuclear data community’s future strategic planning.

Although many of the talks in the Workshop were focused on specific needs, there were several non-
specific themes that were repeatedly emphasized, both in the talks and in discussions within the
breakout groups. One of these themes was that the immense progress in computational and analysis
capabilities, especially in the case of national security, have led to the discovery of significant, and in
some cases dramatic, deficiencies in USNDP databases. Unfortunately, the "time constant" for
addressing deficiencies in the USNDP evaluation process is often too slow relative to the needs of the
programs that use this data. In the worst case this delay could conceivably lead to catastrophic failures,
since certain applications rely on simulations using the best currently available nuclear data for their
predictions of system performance. A recurring theme of the meeting was that addressing these nuclear
data problems would necessitate an increased effort on the part of the USNDP to incorporate input from
external applications groups, as well as the support from non-USNDP programs, through additional
experiments and evaluation activities. In summary, the assessment of this Workshop was that although
the USNDP can help address the problem of making the most accurate nuclear data available to the
users in a timely fashion, it cannot solve it alone.

The USNDP can however serve as a “central clearing house” that compiles nuclear data needs from the
entire application space, and provides a framework for assessing the relative priority of each need. One
model of such a prioritization framework is the High Priority List (HPRL) used by the nuclear energy
community to assess nuclear data needs, and assign a relative importance to each [1]. Nuclear Energy
Agency (NEA) member countries then use this list to decide how to apportion resources to address the
needs. The USNDP could coordinate the formation of a “Super-HPRL” in which the data needs of the
entire US application space, not only in nuclear energy, would be compiled, regularly reviewed, and
assigned a priority. The resources needed for such a “super-HPRL” would be modest, presumably not
much more than the resources expended by the International Atomic Energy Agency (IAEA) in its
coordinated research proposal (CRP) process. Although the IAEA provides only modest funding for their
CRP, this does offer a proven model. Similarly, this new USNDP-coordinated effort would help provide
expert, program-neutral input to funding agencies that would help in assigning priority to specific needs,
taking into account the resources available to the various government agencies.

White Paper Outline

The organization of this whitepaper is as follows. First we will detail the cross-cutting data needs that
were highlighted by more than one application area. The needs described here are:

Dosimetry Standards

A Deeper Understanding of Fission

Decay Data and Gamma Branching Ratios

Targeted Covariance Reduction For Neutron Transport
Expanded Integral Validation

22Cf Production
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o Nuclear Reactor Antineutrinos

Following this, we outline the contributions of the speakers in the areas of Isotope Production, Nuclear
Security, and Nuclear Energy, and note other specific needs as they are encountered. We note that
although the National Security section is shorter than those of the other areas, this is not due to a
relative lack of needs, but is instead the result of classification issues that precluded a detailed
justification in many cases. Many of the National Security needs have a strong overlap with those
reported in the Nuclear Energy section. Occasionally in these discussions we highlight a related issue,
capability or accomplishment.

The whitepaper also includes four appendices. The first uses a matrix to summarize all of the needs of
the application areas represented at this workshop. This matrix summarizes the contents of the
whitepaper, and hopefully will provide a convenient guide to needs that overlap multiple application
domains. The second appendix is a series of lists of the specific data requested by several programs.
The third appendix provides a historical perspective of nuclear data in the Nuclear Energy domain. The
final, fourth appendix summarizes the experimental resources that are currently available to address the
nuclear data needs that have been identified in this Workshop.
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Prioritizing Needs

We emphasize that the topics discussed here necessarily represent an incomplete list of the needs of
nuclear data users, and in any case the importance of these needs will change with time as mission
needs evolve. In view of the very extensive needs for nuclear data, including many that were not
discussed in this workshop, it is evident that the USNDP cannot address more than a selected fraction
of high-priority needs. It is accordingly very important to develop a procedure for prioritizing needs. It will
also be important for USNDP to incorporate input from external applications groups, and to collaborate
with non-USNDP programs in addressing nuclear data needs.

A priori one might assume that a sensitivity study using modern uncertainty quantification (UQ)
techniques would provide an unbiased, and therefore preferable, method for establishing nuclear data
measurement priorities. An idealized workflow representing this is shown in Figure 1 below. Here,
covariance/uncertainty data from experiment and the evaluation process are folded into a simulation of
an application. With careful study, one can determine which application metrics are sensitive to which
experimental/theoretical inputs. One can then use these sensitivities to prioritize experiments to reduce
the underlying covariance/uncertainty. As we will discuss below, such studies do have an important role
in establishing relative priorities within a given application area. That being said, sensitivity studies are
ultimately application-driven, and are specialized to a specific application, or class of applications; they
do not reflect the needs of the community at large. Another concern is that it is often not possible to
vary all quantities that a particular application depends on, in which case a complete sensitivity study is
not feasible.

An alternate and likely more appropriate approach to prioritizing nuclear data needs is through expert
consensus. This approach is followed by the Nuclear Data High Priority Request List (HPRL), which is
coordinated by the Nuclear Energy Agency [1]. The HPRL is a long-running project that is focused on
the data needs of nuclear energy, and documents and quantifies target accuracies for each identified
need, and ranks the needs according to the consensus of Subgroup C. This type of approach should
be considered for the USNDP, in collaboration with CSEWG and other US nuclear data users.

How might this work in practice? The USNDP could serve as a “central clearing house”, compiling
nuclear data needs from the entire application space, and providing a framework for assessing the
relative priority of each item. The resources needed for such a “super-HPRL” would be modest,
probably not much more than the resources expended by the International Atomic Energy Agency (IAEA)
in its coordinated research proposal (CRP) process. Although the IAEA provides only modest funding for
the CRP process, it also provides an organizational structure and an unbiased viewpoint. Similarly, a
new, coordinated USNDP-sponsored HPRL type effort could provide expert, program-neutral input to
funding agencies, which would be very useful in assigning priorities to specific nuclear data needs,
taking into account the resources available to the various government agencies.
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conjunction with a witness foil, as a reaction monitor. A reaction monitor uses a well-characterized
reaction to reduce or eliminate systematic experimental errors. When used in this manner, the product
radionuclide is chosen so that the decay radiation (usually emitted gammas) is distinct, and is emitted
with a half-life commensurate with those of the other reaction products being studied.

The widespread use of the activation technique has motivated several efforts to establish dosimetry
standards. The Neutron Standards Project is prototypical of these efforts. Another such effort supports
the International Reactor Dosimetry and Fusion (IRDFF) library [51], which provides up to date source
data and a wide range of reaction monitor data, including production cross sections, decay data, and
recoil spectra.

There are many reactions that experimentalists would in principle like to employ as reaction monitors,
which are unfortunately not currently applicable due to poorly characterized decay products or poorly
known production cross sections. In particular, there is a need for standards for higher neutron
energies (up to 60 MeV) to support studies of material damage from fusion simulators such as the
International Fusion Material Irradiation Facility (IFMIF), accelerator driven systems (ADS), and
spallation neutron sources (SNS) [53-54]. To address this need, an IAEA Coordinated Research
Project (CRP) [561] was initiated to improve the coverage of the IRDFF for higher-energy neutron
standards. A large set of understudied reaction monitors was identified in reference [9], in which the
authors followed an unorthodox approach in studying the EXFOR database using “Big Data” network
theory methods. The full list of dosimetry reactions is given in Appendix B.

A Deeper Understanding of Fission

(Nuclear Energy, National Security, Basic Research, Safeguards, Isotope Production)

A first principles understanding of nuclear fission would likely be of great importance to nuclear physics
applications, since this understanding could lead to a predictive fission model that provides reliable
information about fission nuclides and fission products at energies not normally accessed by
experiment. Improved fission models will provide fission product information required by multiple
applications. Without high-fidelity fission models, one may still infer systematics from the limited
existing experimental fission studies, which may introduce large uncertainties to calculated values in
regimes that have not been addressed experimentally.

Two classes of fission models are in development by USNDP members and collaborators. The first
addresses the scission process itself, and seeks to develop a microscopic understanding of fission as it
proceeds through the scission point, which is a difficult many-body problem. This type of model, which
addresses pre-scission physics, requires data that directly probes fission dynamics, including fission
time scales and pre-scission photon emission, which can affect the final neutron multiplicity. The
second focuses on the description of post-scission emission of prompt and/or delayed neutrons,
photons, and other particles. These models can be either deterministic or stochastic; stochastic models
of (predominantly) prompt emission can address a wider range of observables, but require more input
data. A potential concern is that many database files related to actinide fission are not actually based on
measured data, but instead incorporate results from deterministic models based only on fission
systematics.

Independent of whether one approaches the physics of fission using a pre- or post-scission model, input
data are required to validate the model, and post-scission models also use input data to fix model
parameters. A quantity of particular importance for both classes of models, but contains large
uncertainties, is the yield of fission fragments (before prompt emission) and fission products (after
prompt emission). Fission fragment yields are important inputs for post-scission models, and also serve
to validate pre-scission models. The fragments themselves become products after de-excitation
through prompt neutron and photon emission. Fission products are the sources of delayed photon
emission, as well as neutrons, electrons and antineutrinos (through beta decays). These delayed decays
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lead to both decay heat and decay radiation, which are important in reactors as well as in the fission
byproducts of spent nuclear fuel. They also provide useful signatures for various detection schemes.

Although neutron-induced fission data is a high priority for many programs, the relevant data is usually
only available for thermal, fast, and high-energy (14 MeV) neutrons. Careful measurements of fission
yields are needed for more isotopes and more incident energies. Photofission is also of interest for
applications, but there is very little information available about the fission fragment yields needed as
input in this case. Fission yields of metastable states are also important.

Fission product yields are required for post-detonation forensics. The blocked cesium and iodine
fission products can be used to determine whether the fuel is uranium- or plutonium-based, and provide
an indication of the incident neutron energy in neutron-induced fission, in particular whether 14 MeV
neutrons were involved. For this particular application, the '*'l and ' thermal, fast and 14 MeV
fission yields need to be measured. Codes such as FIER, CASCADES, and ORIGEN use fission
product yields to simulate the isotopic inventory of fission products and their decay signatures.
However, in ENDF, the independent fission product yields (those following prompt particle emission) are
inconsistent with the cumulative fission product yields (those following all the fission product beta
decays) and the ENDF decay sub-library. This discrepancy must be resolved at some point.
Furthermore, users would like to have full sets of covariance data for the fission product yields of
all fissionable materials, for uncertainty quantification.

A second important input for post-scission models is the total kinetic energy (TKE) of the fragments, a
quantity that has often only been measured at thermal energies, or for spontaneous fission. There have
been recent measurements of the TKE as a function of incident neutron energy, but these are averaged
over the fragment mass, and do not give an indication of how TKE(A,)), usually presented as a function of
the heavy fragment mass, changes with energy. Differential measurements for more isotopes and
incident energies are critical for model tuning and validation. In addition, such measurements do
not yet exist for photofission.

An accurate description of Neutron and Photon Yields and Spectra is a goal of many fission models.
Highly-excited fission fragments typically de-excite by neutron and gamma emission. The prompt
gamma spectrum and multiplicity are crucial inputs in determining local heating post-fission, and are
not well known. Prompt gammas also induce radiation damage surrounding a fission event, and as such
must be accounted for when computing dosage. This data is needed not just for ?*°*U, 22U, and **Pu,
but for all minor actinides, and for neutrons and gammas as projectiles. Photon branching ratios
are also required. The prompt-fission neutron spectra of actinides was the subject of a recent IAEA
Coordinated Research Project. Much progress was made, but it was clear that further work was
needed, not only on the major actinides needed for security, but also on the minor ones needed for
nuclear power, isotope production and forensics. Stochastic post-fission models are only beginning to
be able to address evaluations of neutron and photon spectra. To broaden their reach, more
differential data, such as average neutron multiplicity, energy release and fission fragment yield
as a function of fragment mass number and incident neutron energy from thermal to >20 MeV, are
needed for validation.

Unfortunately, most recent experiments have tended to measure only one quantity well, such as the
fission cross section or the prompt neutron or photon spectrum, with no accompanying measurement of
the fragments. An ideal experiment for addressing prompt post-scission physics would be the
‘Mother of All Fission Experiments,’ in which the fission fragments, prompt neutrons, and prompt
photons are all measured in the same setup at the same time, for a range of actinides, and for a
range of energies from thermal to > 20 MeV.

Decay Data and Gamma Branching Ratios

(Nuclear Energy, National Security, Isotope Production, Safeqguards, Industrial Applications)
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The fission of a heavy nucleus such as **U can produce significant amounts of more than 800 different
types of radioactive fission fragments, which then decay back to stability by emitting photons, electrons,
neutrons, and antineutrinos. Given a sufficiently good decay database, the absolute yield and spectrum
of each type of radiation can be calculated. As these fission spectra have many observable
consequences, this decay data is correspondingly of great importance for a wide range of applications.
The electromagnetic and light-particle energy released by the fission fragments, the so-called decay
heat, is essential for a precise modeling of refueling and reprocessing strategies for nuclear reactor fuel
and materials. Reactor operation and control relies heavily on knowing the flux of beta-delayed neutrons.
In fundamental physics, the estimated antineutrino flux is currently being used to understand the
properties of neutrino oscillations, and to search for evidence of physics beyond the standard model.
The same antineutrino flux is of interest in nonproliferation studies, as it is sensitive to the mix of
actinides being burned. For each of the applications discussed above there have been several IAEA
consultants’ meetings to identify exactly which nuclides most urgently require better nuclear data. Here
we provide references to those reports in which specific high-priority nuclei are identified through
sensitivity analyses. For decay heat, a series of IAEA investigations led to a priority list of nuclides [21]
which required new measurements to better understand the decay heat generated by a reactor. This
decay-heat priority list encouraged several new measurements, which are summarized in a new IAEA
study [22] that includes an updated high-priority list. This new study also considers which nuclei require
new measurements to better model the antineutrino spectrum generated by a reactor, and provides an
additional high-priority list. Finally, a summary of the most important delayed neutron precursor nuclides
for reactor kinetics studies, based on a sensitivity study of delayed neutrons, was presented in another
IAEA coordinated research project [23].

The importance of decay data goes beyond fission-related applications. In the field of medical isotopes,
a precise understanding of the radiation emitted by radionuclides is needed to determine the total dose
received by the patient, the specific dose to targeted tissue, the cost of infrastructure in production
facilities (i.e. shielding requirements), the background in imaging technologies, etc. A measurement of a
single quantity can have a huge impact on the production and supply chain of a particular isotope. As
an example, a change in the absolute intensity of the 776-keV transition in **Rb decay (used to
determine the dose of this frequently used cardiac PET isotope) from 13% to 15% [24] had major
implications for the suppliers of the #Sr/*Rb generator. This higher value was recently verified by C.
Gross et al. [25]. The IAEA has investigated the decay data needs of certain medical isotopes, and
provides recommendations for new measurements and evaluations [26-29].

Conventional Non-Destructive Assay (NDA) methods for fresh fuel assay, forensics, and irradiated fuel
characterization also rely on the properties of the radiation emitted following beta decay [30]. Traditional
NDA methods utilize the absolute gamma-ray intensity, whereas newer techniques will need additional
information on the cascade nature of the gamma rays for coincidence and spectral techniques, thereby
yielding higher sensitivity and unique isotopic identification.

Targeted Covariance Reduction For Neutron Transport

(Nuclear Energy, National Security, Safeguards, Isotope Production)

The applications discussed at the workshop largely involve design and analysis through modeling and
simulation. To enable effective prediction, design, and analysis we need well-quantified uncertainties, so
that we can clearly characterize safe and economical operational areas, detailed isotope production
estimates, and calculate key quantities of relevance to national security.
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strong competition with fission in all of these isotopes means that the (n,y) cross section cannot be
evaluated accurately in the absence of experimental capture data in the energy range of interest. In
addition, the 2"Np(n,f) cross section in the energy region from 1-100 keV was brought up.

¢ (n,n’) and Cross Sections and Angular Distributions: Another recurring need was for accurate
modeling of neutron elastic and inelastic scattering, not just on actinides, but also on structural
materials. Both the cross sections and outgoing angular distributions are needed. These data are
important in small systems in which neutron leakage plays an outsized role. To a large degree,
WPEC Subgroup 35 and recent advances are addressing this problem in the EMPIRE [19] and CoH
[20] reaction code systems. This has already fed back into the CIELO evaluation for **U and *Fe.
Nonetheless we still need integral benchmark data for validating codes and evaluations. An RPI
group [20] has been investigating the measurements of semi-integral data for testing and have
developed a test for %¥Fe and 2%U, but additional tests are needed, especially for 2%°U,

Expanded Integral Validation

(Nuclear Energy, National Security)

It is expected that the providers of nuclear data are responsible for ensuring the quality of the nuclear
data they generate: the National Nuclear Data Center is responsible for simple format and physics
testing of nuclear reaction data files in the ENDF library on behalf of the Cross Section Working Group
(CSEWG) and the US Nuclear data program performs similar tests of the nuclear structure data files in
the ENSDF library. Beyond this testing, more advanced benchmarking is done, comparing results from
simulations done for example with ENDF files to results from high-fidelity integral experiments. These
experiments typically are critical assemblies or other simple benchmark problems that can be simulated
with modest computer resources, but test the underlying nuclear data in a rigorous and targeted way.
During the meeting, the need for more semi-integral and differential experiments that are driven by
application and science needs was raised. In particular, an understanding of the new Ohio
University and older LLNL pulsed-sphere experiments is needed, to separate the various effects
and achieve an understanding of some of the basic phenomena. Semi-integral data can help
diagnose shortcomings in elastic and inelastic neutron scattering. There is also a serious lack of
integral tests for incident charged-particle reaction data. Note: Highlight box #2 discusses a familiar
problem in the study of integral benchmarks, specifically that of compensating errors.

22Cf Production

(Nuclear Energy, National Security, Isotope Production, Industrial Applications)

The production of 2%Cf is essential for many applications, and the data needs to optimize #2Cf
production would have a simultaneous cross-cutting effect on these applications. These include
applications in the energy industry (nuclear fuel quality control, reactor startup sources, coal analyzers,
0il exploration); construction (mineral and cement analyzers, corrosion inspection); and security
(handheld contraband detectors, fission source, monitoring HEU down-blending, identifying unexploded
ordnance, landmine detection). ORNL is the world’s leader in the production of #2Cf. ?*2Cf and other
heavy isotopes are produced by successive neutron captures on mixed actinide targets containing
Cm/Am/Pu (curium feedstock) at the High Flux Isotope Reactor (HFIR). During this process, about 95%
of the initial heavy target nuclei undergo fission into lighter nuclides. These losses are highlighted in
Figure 2 below:
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Figure 2. Production of 2Cf through successive neutron captures, showing losses due to fission.

In addition to consuming valuable curium feedstock, fission heating constrains both target design and
chemical processing schedule flexibility. Target yields are further limited due to neutron absorption by
22Gf during production. The efficiency with which 2°2Cf is produced, incorporating both the isotope
transmutation fractions and #*2Cf retention, is strongly dependent on the incident neutron energy
spectrum. By shifting the hardness of the spectrum, or by suppressing the flux in certain energy ranges,
the ratio of beneficial to destructive neutron captures can be increased. Researchers are exploring the
use of focused resonance shielding [50] through a variety of neutron flux filter materials to increase this
ratio of (n,y) captures in the curium feedstock relative to destructive captures. '®Rh is being considered
as a potential filter material for 2°Cf, and has undergone preliminary experimental evaluation. Sensitivity
analyses are being performed to identify other possible filter materials as well as to assess other
methods of flux optimization such as target shuffling and the use of alternative geometries. Because
this optimization relies on the variation of neutron absorption ratios throughout the energy
spectrum, accurate neutron cross sections for key isotopes in the 22Cf production chain are
needed (see Appendix B).

Nuclear Reactor Antineutrinos
(Nuclear Energy, National Security)

Nuclear reactors are copious producers of antineutrinos, and generate about 10%' per second per GW
from the (- decay of neutron-rich fission products. In the first experimental observation of neutrinos [31],
this very large flux compensated for the extremely small neutrino cross sections. A white paper that was
prepared following a recent meeting at BNL [32] details recent advances and current research in this
field.

By placing detectors next to power reactors, in the last few years the neutrino oscillation parameter 6,4
was precisely measured [33-35]. These experiments have also yielded precise antineutrino spectra.
The energy-integrated antineutrino spectrum appears to be about 6% smaller than expected; this is
known as the short-distance anomaly. In addition, a distortion in the spectrum at around 5 MeV has
been seen.

An accurate calculation of the antineutrino spectrum emitted by a reactor requires knowledge of a) the
reactor core fuel composition, in other words the different power contributions from 2%°U, 2%, #°Pu, and
24Py, and b) the antineutrino spectrum that results from the neutron-induced fission of each of these
nuclides. Fission fragment and decay data are essential to determine the latter.

Two methods are available to obtain the antineutrino spectra from 2323 and 2**2'Puy. The summation
method [36] uses fission yields and decay data to compute the contributions of each decay branch of
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the over 800 f-decaying fission fragments involved. The main advantage of this method is that a good
understanding of the spectral features can be obtained [37-38]. However, in view of the incomplete
decay data and imprecise fission yield data, there is ample scope for improvement in the accuracy of
this method [39].

In the conversion method, one fits the corresponding measured electron spectra [40] with a number of
artificial decay branches. Because the electron data has been accurately measured (except for 2°8U), the
resulting predicted antineutrino spectra have smaller errors than those derived using the summation
method. The principal drawback of the conversion method is that only about 30 decay branches can be
used in fits to the electron spectra at present, due to the limited experimental resolution. This method is
not independent of fission yield and decay data, as they are used to obtain the Fermi function effective
charge of the decay branches as a function of the end-point energy [41].

To better understand the antineutrino anomaly and the 5 MeV spectral distortion we need the following
improvements in nuclear data:

¢ New measurements of the electron spectra following fission for the 4 main fuel
component nuclides, 2*°U,2%y, 2*py, and 2*'Pu, to confirm the Institut Laue-Langevin
(Grenoble, France) data.

¢ New fission yield measurements, in particular for odd-Z, odd-N nuclides with two long-
lived levels of low and high spin.

o Precise measurements of beta intensities for some 20-30 relevant nuclides.

¢ Precise measurement of the beta spectra for those same 20-30 nuclides, to test the
suggestion that non-allowed shapes may cause distortions in the spectra that solve the
anomaly problem [42].

We note that there are cross-cutting benefits associated with these measurements; since the energy
carried away by the antineutrinos is correlated with the energy deposited by the electrons, and anti-
correlated with that of the gammas, these new measurements will also result in more precise decay heat
calculations [43-44]. Additionally, these new measurements would allow for more precise non-
proliferation uses of antineutrino detectors [45]. Moreover, the Total Absorption Gamma Spectrometry
(TAGS) technique used to obtain beta intensities can also produce precise values of gamma and neutron
widths, which in turn can be used to calculate neutron capture cross sections for neutron-rich short-
lived nuclides [46] which are relevant in nuclear astrophysics, and reactor fuel burnup and isotope
production calculations.

The future of this field also includes new measurements of the antineutrino spectra at short distances,
(7-15 m) to better understand the anomaly, as well as medium distance experiments (47 - 53 km) that
will aim to measure the 8,, parameter and the antineutrino mass hierarchy [47-49].
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Specific Needs for Isotope Production

Over 20 million nuclear medicine procedures are performed each year in the United States [1]. Nuclear
data are essential for both the production and the proper application of these radionuclides. The main
goals of current research are to develop the production capabilities for new radionuclides, remove
discrepancies in existing data, and find alternative production routes for established radionuclides. Here
we will describe a representative set of current nuclear data needs for medical isotopes. We note
however that the field of nuclear medicine is continually evolving, so a continued nuclear data research
effort in this field is required to address changing trends in medical applications. We also note that the
use of a particular isotope in a medical application may be driven by availability; research into the
production of an isotope may therefore be driven by the prospects for applications of that isotope in a
clinical setting.

Knowledge of nuclear excitation functions, which describe reaction probabilities as a function of the
incident particle energy, is central to the isotope production effort. These functions are obviously
necessary to determine the yields of the nuclei of interest. In addition they are required for the prediction
of the amount of undesired “contaminant” materials produced, and are therefore crucial guides in the
choice of target materials. In many cases, particularly for the wide range of possible contaminants, the
excitation functions have never been measured. In some cases in which excitation functions have been
measured, significant differences exist between the measurements. New measurements are required to
resolve these discrepancies. As discussed below, there is also a need to have a set of excitation
functions known to high precision for use as monitor reactions. Finally, accurate excitation functions are
required for the verification, validation, and development of theoretical nuclear reaction model codes.

Cross sections are generally studied through the activation foil method, in which a well-characterized
thin foil is irradiated at a single beam energy, and the produced radioactive residuals are quantified
through off-line alpha, beta, gamma, or electron spectroscopy. In this approach, control of uncertainties
depends strongly on the accurate characterization of the target material, precise measurements of the
incident particle flux, and the spectroscopic assaying techniques used. Access to high quality nuclear
data can be useful in reducing the latter two sources of uncertainty.

The incident particle flux is commonly measured using a monitor reaction. For charged-particle induced
reactions, relatively few monitor reactions that can be applied in the low to intermediate energy regimes
of 30-70 MeV have been accurately measured (i.e. to a few percent level). Above 70 MeV, monitor
reactions whose experimental measurement is free from the potential influence of secondary neutron
contributions to residual yields are not well characterized. As both IPF and BLIP operate at proton
energies in the 100 MeV regime, monitor reactions at these high energies are an obvious, high-
priority nuclear data need for medical isotopes.

Gamma-ray spectroscopy is the most common tool used in the identification and quantification of nuclei
produced in a reaction. Traditionally, singles spectra are collected, and the gamma-ray intensity is
measured as a function of time to correlate half-life with parent nuclide. This technique is particularly
challenging at higher incident energies or with heavier target nuclei; as the number of reactions leading
to unstable nuclides is greatly increased, so is the density of gamma-ray transitions. With little
selectivity, products from contaminant reactions can compromise and degrade the quality and validity of
the cross section determination. The field of gamma-ray spectroscopy has now matured to a level at
which Compton-suppressed, gamma-gamma coincidence spectroscopy is the standard. Compton-
suppression improves the peak to background ratio in the spectrum, thus giving higher sensitivity, which
allows for more accurate peak area determinations. Gamma-gamma coincidence analysis enables one
to uniquely identify the parent isotope. New measurements for isotope production R&D, or the
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quantification of decay properties, should ideally employ such techniques, to achieve higher quality and
more reliable data. In some cases it will be necessary to combine Compton-suppressed gamma-
gamma coincidence spectroscopy with chemical separations.

In the following we outline some current needs for medical isotope production. We again emphasize that
this list is by no means exhaustive, and could change with the evolving needs of the medical isotope
community. In addition to the need for more accurate cross sections for the isotopes of interest, it is
also essential that the accompanying impurities be well characterized. Finally, we note that a recent
series of IAEA studies has also identified nuclear data needs relating to medical isotope production
[2,3,4].

¢ Theranostic agents: The future of personalized medicine lies with theranostic agents.
Theranostic agents are identical in molecular structure to the chemically active agent, but
incorporate an isotope that emits a gamma suitable for PET or SPECT imaging. These agents
may also incorporate isotopes of the same element that have a therapeutic emission (i.e. Auger,
alpha or beta) for radiotherapy applications. Such agents offer physicians the ability to perform
dynamic visualization studies of the active agent’s movement and localization at the target site.
Understanding the agent’s behavior allows the physician to optimize dosage, to enhance
treatment and reduce the side effects of the drugs. In order for this procedure to be successful,
the theranostic agents need to be produced with high-specific activity, and following
purification, should contain only very small amounts of other isotopes of the same element. One
specific example discussed in detail was the Platinum radioisotopes, which could be combined
with standard platinum chemotherapeutic agents. Pt and "'Pt show potential for use in
imaging chemotherapy, whereas '®™Pt, '%™Pt and Pt all have possible uses in radiotherapy.
All require more cross-section measurements, to determine optimum production routes. A
recent NSAC report [5] highlights additional pairs of isotopes that have potential uses as
theranostic agents.

¢ Intermediate-energy charged-particle reactions: In the energy regime of 30 to 100 MeV and
even beyond, which is most accessible to the major isotope production facilities BLIP and IPF,
there are many unexplored reactions which have strong cross section requirements. This
includes all types of medical isotopes; non-standard * emitters, SPECT radionuclides and their
generator parents, as well as therapeutic isotopes [2,6]. Examples of specific isotopes and
reactions are given in Appendix B. It was noted that a dedicated low-current, 200-MeV research
beamline at BLIP could address many of these data needs, while providing a training ground for
young nuclear scientists. Development of this capability at BLIP will complement the existing
cross section measurement capability at Los Alamos, which offers the potential for the
measurement of proton-induced reactions between 40 and 100 MeV, as well as at 200 and 800
MeV.

¢ Alpha-emitting radioisotopes: A major limitation encountered by studies of promising alpha-
emitting radioisotopes for cancer therapy is their lack of availability. There are attempts now
underway to address this problem in specific cases. Production of **Ac through the reaction
232Th(p,x) is being actively pursued at both IPF and BLIP. Production through neutron irradiation
of ?*Ra is also being investigated at HFIR. Further research into new production methods and
more efficient isolation methods is required. Production routes for 2"'At, 2'2Pb/?'?Bi, 2'°Bi, 22°Th
and ?*"Th have all been identified as high priority topics by the most recent NSAC Long Range
Plan on Isotope Production [5].
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insure that these targets will operate within their safety limits. Some of the nuclear data used in
these simulations, such as the 2*®Np fission product evaluation, have large uncertainties which
imply correspondingly large uncertainties in the target heating due to fission. New fission
product measurements on n,,+2**Np are needed to assess the total fission product inventory,
which will substantially reduce the level of uncertainty in target heating. Another concern is that
the absence of measured yields for thermal fission may have been addressed by the substitution
of fast fission data, which will clearly bias the fission heat calculations. The Appendix includes a
summary of the nuclear data used for modeling and simulation of 2®Pu production from ?*’Np
targets; evidently there is considerable scope for improved measurements.
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Specific Needs for National Security

As noted previously, there is considerable overlap between the nuclear data needs of National Security
and Nuclear Energy. This duplication, coupled with the classification issues inherent in much National
Security work, make this section somewhat less detailed than the sections that address other topical
areas. There is also a long history of “needs documents” [1-3], and a well-supported series of
experimental activities associated with the NNSA stockpile program, in the form of SSAA, campaigns,
etc., with overlaps with DNDO, NA-22, DTRA, and DHS. National Security applications nonetheless do
involve some unique aspects of nuclear data, especially in the areas of detection and forensics, and
neutronics and particle transport.

Needs for detection and forensics

There are many applications in the areas of detection, forensics, and non-destructive assay in which one
wishes to rapidly determine the isotopic composition of a sample, possibly in a high-background
environment. Examples of such applications within the Next Generation Safeguards Initiative (NGSI)
mission (NA-241) space are:

e Re-verification of material after a break in the chain of custody

e Determination of criteria for the termination of safeguards at a geologic repository
e Input accountability at reprocessing facilities

e Enhanced containment during transshipment

e Deterrence of diversion

e Non-safeguards applications: burn-up credit, efficient facility operations, and head-load
determination in a repository

Techniques that provide unique signatures rely on correlated data, such as y-y and y-n coincidence data
or time correlations from beta decay chains. Several techniques of this type were presented in this
workshop: NRF, PGAA (the most well developed), the computer codes CASCADES and FIER. The
coincidence and correlation data needed for these techniques and applications are derived from ENSDF,
and provide yet another example of needs at the intersection of structure and reactions. This list of
needs includes the following.

¢ The CASCADES tool developed at PNNL uses coincidence gammas to rapidly assay materials.
This tool needs up to date and complete gamma coincidence data.

e The FIER tool developed at U.C. Berkeley models time-dependent gamma emission from
decaying fission fragments. This tool needs up to date and accurate decay data.

¢ Nuclear Resonance Fluorescence (NRF) uses gamma rays to excite compound nuclei, which
populates states with spin distributions, unlike other probes. The resulting de-excitation
cascade or particle emission data provides another unique isotopic signature. Data on the
(v,Y)), (v.f), (v,n) interactions of major actinides and important fission products are needed.
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Meeds for neutronics and other particle tranaport
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¢ Individual and cumulative fission fragment yields as a function of incident neutron energy
for major actinides (2%°U, 2°Pu), and, to a lesser degree minor actinides, are required (see
Appendix B).

¢ Nuclear physics data is essential to characterize ignition-relevant implosion experiments. A list
of needs is provided in Appendix B.

Furthermore, it is clear that reaction modeling will continue to play a major role in these applications
since it is near-impossible to measure all needed (n,X) cross sections over the entire incident neutron
energy range of interest for national security. While there is a fairly good understanding of the nuclear
reaction models needed for neutrons, these models in turn require well-evaluated nuclear data to ensure
their reliability. This includes:

e Spin-parities, J", of low-lying states for improved modeling of (n,n’y).
o Neutron resonance data for improved modeling of (n,n,).

¢ Development of an improved targeted evaluation process for statistical nuclear properties,
including level densities and radiative strength functions for nuclei near the valley of
stability, of interest to national security applications.

One last concept that appeared to be emerging at the workshop was the idea that there needed to be a
new set of integral benchmark tests developed that would provide additional confidence in the cross
sections in ENDF. The current approach to reaction evaluation, which optimizes cross sections using
results from benchmark experiments, limits the use of this data to gain confidence in the resulting cross
sections. This effort would clearly require significant coordination with the nuclear energy research
community and will require more detailed study.
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Specific Needs for Nuclear Energy
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to be accurate, or at least consistent, as they are used in calculations that provide licensing
guidance.

3. We need to further reduce uncertainties in the neutron capture cross section data,
particularly for minor actinides and Pu isotopes in the fast and epithermal energy ranges,
to improve the modeling of advanced fuel cycles and fast-spectrum nuclear reactors.
Specific integral experiments are required to validate this data:

a. New, science-driven integral experiments that can provide accurate information on
separate physics effects. For example, the next phase of MANTRA (Measurement of
Actinide Neutronic Transmutation Rates with Accelerator mass spectroscopy)
experiments can target fast and epithermal data for minor actinides, and reanalysis of
past experiments available in the NEA DataBank could provide useful information. The
application of sensitivity and uncertainty analyses to these semi-integral measurements
could inform nuclear data evaluators of ways to improve ENDF data.

b. Follow up completed semi-integral experiments, to access existing information
that could satisfy some of the needs discussed above. For example, some pulsed
iron-sphere experiments identified issues in several iron cross sections, which are
important in nuclear engineering for operating reactors, spent fuel storage and
transportation, and shielding design. If needed, follow with new, science-driven semi-
integral experiments to generate targeted cross section data. Again, determine which
data is most needed through sensitivity analyses and uncertainty quantification.

4. Regarding innovative systems under study at several institutions, such as the TerraPower
concept, innovative molten salt concepts, and innovative and flexible breeder-burner fast
reactor concepts, typical examples of nuclear data dependent innovative design features are:

a. Cores with low reactivity loss during the cycle: In this case the compensating effects of
burn-out and built-in isotopes can strongly impact the safety case, since the control
system has to accommodate significant margins. This requires a drastic reduction in
certain nuclear data uncertainties which were not previously considered crucial.

b. Cores with an increased inventory of minor actinides in the fuel: In these cases, both
core criticality and the all-important safety-related reactivity coefficients are affected by
large uncertainties in the data, due to our limited knowledge of the nuclear properties of
minor actinide isotopes.

c. Cores with no uranium blankets (e.g. to address non-proliferation concerns): Reflector
effects are strongly dependent on anisotropic scattering effects, and the current nuclear
data uncertainties can lead to very significant power distribution uncertainties for
peripheral core fuel assemblies.

d. Cores optimized to minimize coolant (Na) void coefficients: In safety case assessments it
has been shown that current nuclear data uncertainties can result in the elimination of
any potential benefits associated with such innovative core features.

5. In studies of innovative materials as structural or fuel components, modern nuclear data
evaluations and precision measurements of fast-neutron cross sections for structural materials
and coolants are often missing or inadequate. For example, inelastic scattering cross sections
are required for important system-dependent structural materials, coolants, and inert fuel
elements. (The elements involved include Na, Mg, Si, Fe, Mo, Zr, Pb, and Bi.) As a specific
example, an accurate determination of the sodium void coefficient of an SFR (Sodium Fast
Reactor) requires improvements in the inelastic scattering cross sections for #*Na, as well as a
complete covariance treatment. A careful reevaluation of uncertainties is definitely needed for
materials associated with accident-tolerant fuels.
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6. During and after the Fukushima events, a renewed in-depth assessment of the design and
safety of spent nuclear fuel pools (SFP) at nuclear power plants was requested by all
national regulators, to evaluate the expected fuel rod behavior as a function of cooling
time in a realistic, modern PWR-BWR core stored in a SFP, assuming a sudden loss of
cooling capacity. The total pool heat load can result from compensating effects, specifically
opposing trends in the predicted decay heat for fresh versus highly burnt assemblies. Data
uncertainty play a very important role in this case, especially for high burnup fuels.

7. Specific practical issues may be recognized as having been neglected or underestimated
without convincing justification. As one example, this is the case for the accumulated fluence
at the tips of PWR control rods (CR). The fluence is required for both high-energy (E>1 MeV) and
thermal (E<0.625 eV) neutrons, as these affect CR integrity through stresses and strains induced
by coupled clad embrittlement and absorber swelling phenomena.

8. Optimization work on innovative features of the Canadian CANDU reactors has confirmed that
the thermal elastic neutron scattering cross section for °0O(n,n)’°0O reported in some
modern nuclear data libraries is too large relative to the best available experimental
measurements. The reactivity impact of revising the ®O scattering data was tested using the
Replica Method. The uncertainty in the '®0(n,n)'®0 thermal cross section propagates into an
uncertainty of the calculated k. in thermal critical assemblies. For example, large reactivity
differences of up to about 5-10 mk (500-1000 pcm) were observed using '®0 data files with
different elastic scattering data. A similar discrepancy has been noted in graphite as well.

9. In studies of decay heat, uncertainty propagation is required in complex computational
problems. This can be carried out by randomly perturbing the input data, using a probability
distribution derived from the evaluated mean and standard deviation of each datum; a
subsequent analysis gives the distribution of the quantity of interest about its mean. This basic
approach however ignores correlations between the data. The use of correlations, including
those associated with experiments, can have a significant effect on the final uncertainty
assessment of the decay heat.

10. Future advanced nuclear reactors will require a better understanding of the fission process.
Since four of the six impending Generation-1V reactors are fast ones, the high level of heat
deposition requires an innovative core design. Approximately 10% of the deposited heat is due
to gamma-ray energy, of which about 40% is due to prompt fission gamma-rays. Adequate
modeling of heating in these cores requires estimated uncertainties of less than 7.5%. Use of
the present evaluated nuclear data actually leads to an underestimate of gamma-heating of the
principal reactor isotopes #*°U and 2**Pu by up to 28%. We therefore need to considerably
improve the accuracy of data on gamma production in fission events and in decay chains,
as well as the associated KERMA (kinetic energy released in matter) data. Gamma
production data are missing or are unbalanced for 155 of the 423 nuclides addressed in
ENDF/B-VII. 1, and 26 of the nuclides demonstrate negative KERMA data in at least one
energy group of a commonly used 200-group structure.

11. In a material irradiation test, it is essential to precisely characterize the irradiation field,
considering not only the neutron fluence and displacements per atom (dpa), but also the
temperature. Facilities and experiments for this type of study are essential for the development
and validation of new fuels, and in view of the very limited availability of both, every effort should
be made to extract as much reliable information as possible. The principal heat source in a
material irradiation test is the gamma heating of surrounding materials, such as the stainless
steels that constitute the irradiation rig, including the irradiation specimen and capsule. Accurate
core and temperature calculation methods are required to predict the gamma heat rate and
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other key performance parameters for irradiation tests. To evaluate the spatial distribution of
gamma heating in fast reactors, it is necessary to consider complete contributions to gamma
intensities. Unfortunately, delayed gamma ray yield data for all actinides are not yet available in
the standard evaluated nuclear data files.

12. Considerable effort has been expended in assessing and comparing various options for future
fuel cycles (See for example the recent study by R. Wigeland et al.) The need to screen fuel
cycle options requires that the appropriate uncertainties (including nuclear data
uncertainties) be propagated in scenario codes. This is a fairly new nuclear data need, and
no systematic approach is currently available.

Other specific needs

Several other nuclear data needs were described in presentations at the NDNCA Workshop that were
not directly driven by known data uncertainties. These are:

One should determine of the accuracies required in B-delayed neutron data for reactor safety
and criticality analyses. This should be followed by more and better measurements of 3-
delayed neutrons, branching ratios, and neutron energy spectra that achieve the necessary
level of accuracy. These data are currently sparse and incomplete, and we need
spectroscopic standards. A small change in values could have a large impact on reactor accident
analyses. VANDLE is an example of a detector that can help gather this data. These experiments
can be directed towards isotopes of special interest for reactors, such as Br and I. In addition, new
integral experiments for decay heat and B-delayed neutron energy spectra for the principal nuclear
fuel components 2%°U, %84, 2*Py, and *'Pu can generate the reliable data needed for reactors. We
also need to verify the earlier measurements (typically from 40-50 years ago) with modern
spectroscopy techniques.

Support the development of accurate neutral particle transport codes. High-accuracy
simulations are essential for identifying incorrect data; if something is modeled accurately and does
not match experiment, we can then identify which data lead to the discrepancy. Correct methods
are also essential for extracting data from integral and semi-integral experiments. For example,
without the proper incorporation of self-shielding corrections in transport calculations, integral
experimental results cannot be properly modeled.

Implement the deformed Hauser-Feshbach models in EMPIRE and TALYS. These models
include more complete physics information, and their predictions more closely match experimental
results. This in turn generates better data for application users.

Better characterize fission product yield data. Current inconsistencies in this data raises
questions regarding how well we can characterize used nuclear fuel, which may impact the licensing
of used fuel storage and transportation. For example, there are inconsistencies between cumulative
versus independent yields.

Determine whether S(a, B) data are important for accurately modeling FLiBe as a coolant in
advanced reactor designs such as the Fluoride Salt-cooled High-temperature Reactor (FHR). If
S0, this data should be generated.
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Appendix A: Matrix of Data Needs

At the end of the workshop it was suggested that a matrix of nuclear data needs vs. national security applications would help to map the needs
identified in the workshop onto the potential offices/organizations, which are charged with addressing specific appllcation needs. However, it
quickly became clear to the members of the writing committee that there were enough crosscutting nuclear data needs valuable to multiple
applications that this approach should be expanded to cover the entire application space presented in the workshop (National Security/Defense
Programs, Counter-Proliferation/Safeguards/Forensics, Nuclear Energy and Isotope Production/Industrial Applications). We have therefore
assembled a series of 8 matrices that address all of the potential overlaps between these application topics. The matrices are:

* Matrix A.1: National Security, Counter-proliferation/Safeguards and Energy

* Matrix A.2: National Security, Counter-proliferation and Safeguards, and Isotope Production
* Matrix A.3: National Security, Energy and Isotope Production

*  Matrix A.4: National Security, Counter-proliferation and Safeguards

*  Matrix A.5: Counter-proliferation/Safeguards and Energy

* Matrix A.6: Energy and Isotope Production

* Matrix A.7: National Security and Isotope Production

An eighth matrix corresponding to the overlap between only National Security and Energy (but not Counter-proliferation/Safeguards) is absent
since no such needs were identified.

A partial list of the agencies that support these different applications would include:

* National Security: NA-1X

*  Counter-proliferation/Safeguards: NA-22, NA-241, DHS/DNDQ, DTRA (especially area 6.1)
* Energy: DOE-NE, Industry

* Isotope Production/Other: DOE-Office of Science Isotope Production Program, DTRA-6.1...

These matrices, in addition to providing quick tabular access to nuclear data needs identified in the workshop and other contemporary sources,

could potentially help in the coordination of research and evaluation efforts, and help guide proposal writing efforts at national laboratories and
universities.

38 Nuclear Data Needs and Capabilities for Applications



The matrix is comprised of 2 columns:
1. Description of Problem & Isotopes Involved: A short description of the situation/scenario requiring improved nuclear data and the
nuclides involved.
2. Nuclear Data Need: The nuclear data quantity that requires improvement (cross section, gamma-spectrum etc.)

In addition to the presentations and discussions that were a part of the workshop, several other documents were used in the preparation of this
matrix. A list of these source documents follows:
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Matrix A.1 - National Security, Counter-Proliferation and Energy

Description of Problem

Nuclear data need

Isotopes of these elements have been prioritized by Nonproliferation
and Homeland Security funding agencies: H, Li, Be, B, N, O, Mg, Al,
Si, Ti, V, Cr, Fe, Ni, Cu, Ga, Zr, Nb, Mo, Eu, Gd, Ta, W, Ir, Pt, Au, Pb,
Po, Ra, Th, U, Np, Pu, Am: Improved data and corresponding
evaluations are required to meet the demands of several applications
of societal interest, including: transport modeling of unknown
assemblies, NDA to enable reliable accounting for SNM, detection of
contraband substances and explosives, radiation shielding design and
characterization, and institutionalizing a “Safeguards by Design”
approach in the development of clean, cost-effective, proliferation-
resistant nuclear reactor facilities, enrichment, fuel-fabrication and
reprocessing plants. Systematic experimental campaigns based on
this set isotopes will greatly facilitate this need and are described, in
turn.

Precise y-ray energy data and their corresponding total and partial
radiative-capture (n,y) cross sections, particularly for primary gamma
rays, are needed for the EGAF library. New measurements for
separated isotopes are especially required from thermal incident
neutron energies to 20 MeV. These unique gamma-ray signatures are
essential for ENDF to create complete and accurate libraries for
nonproliferation applications predicated on credible high-fidelity data
authentication. A particular concern are the actinides for which there
are no primaries in ENDF.

Isotopes of these elements have been prioritized by Nonproliferation
and Homeland Security funding agencies: H, Li, Be, B, N, O, Mg, Al,
Si, Ti, V, Cr, Fe, Ni, Cu, Ga, Zr, Nb, Mo, Eu, Gd, Ta, W, Ir, Pt, Au, Pb,
Po, Ra, Th, U, Np, Pu, Am: Improved data and corresponding
evaluations are required to meet the demands of several applications
of societal interest, including: transport modeling of unknown
assemblies, NDA to enable reliable accounting for SNM, detection of
contraband substances and explosives, radiation shielding design and
characterization, and institutionalizing a “Safeguards by Design”
approach in the development of clean, cost-effective, proliferation-
resistant nuclear reactor facilities, enrichment, fuel-fabrication and
reprocessing plants. Systematic experimental campaigns based on
this set isotopes will greatly facilitate this need and are described, in
turn.

Improved inelastic scattering cross sections are needed over a wide
range of neutron energies to provide data where none-to-little exists,
and to meet targeted-accuracy application-driven uncertainty margins.
New measurements of total inelastic and partial cross sections to
individual levels are required. For many isotopes, there are
considerable discrepancies between the evaluated data libraries and
experimental information.

40 Nuclear Data Needs and Capabilities for Applications




Description of Problem

Nuclear data need

Isotopes of these elements have been prioritized by Nonproliferation
and Homeland Security funding agencies: H, Li, Be, B, N, O, Mg, Al,
Si, Ti, V, Cr, Fe, Ni, Cu, Ga, Zr, Nb, Mo, Eu, Gd, Ta, W, Ir, Pt, Au, Pb,
Po, Ra, Th, U, Np, Pu, Am: Improved data and corresponding
evaluations are required to meet the demands of several applications
of societal interest, including: transport modeling of unknown
assemblies, NDA to enable reliable accounting for SNM, detection of
contraband substances and explosives, radiation shielding design and
characterization, and institutionalizing a “Safeguards by Design”
approach in the development of clean, cost-effective, proliferation-
resistant nuclear reactor facilities, enrichment, fuel-fabrication and
reprocessing plants. Systematic experimental campaigns based on
this set isotopes will greatly facilitate this need and are described, in
turn.

There is a need for new and improved NRF data over proton energies
of 1-5 MeV. Photonuclear elastic scattering cross-section data and
electronic excitation cross section data are also required.

Neutron induced fission yields and cross sections are a cross cutting
need for: prompt neutron spectroscopy; delayed gamma
measurement for SNM identification; heat calculations for spent fuel
storage; spent and fresh fuel assay; post-detonation forensics-based
fallout analysis; reactor anti-neutrino source terms; isotope production
calculations; new reactor design . Fission data of minor actinides are
becoming more important as reactor fuels are highly burned

Improved cross section and prompt yield measurements are required
as a function of incident neutron energy from thermal to ~20 MeV to
provide improved correlated particle emission data from fission.
Prompt fission neutron/gamma multiplicity and spectra as a function
of fission fragment mass and TKE. The epithermal range of Pu-239
has large uncertainties, and the minor actinide fission cross sections
and yields require improved data. Improved covariance data is
required. In addition, fission fragment half-lives, peak gamma-ray
energies and corresponding branching ratios are needed.

Numerous applications will be better served by targeted fission-data
measurements, including: material characterization via neutron
spectroscopy; spent fuel assay; post-detonation forensics-based
fallout analysis; next generation safeguards.

New measurements are required in the thermal to fast region to
provide improved correlated particle-emission data from fission
corresponding to fission-product yields and covariances, prompt
fission neutron spectra, half lives, peak gamma-ray energies and
corresponding branching ratios.

'®0: CIELO high-priority nucleus. Improved evaluated nuclear data
needed to create accurate ENDF-formatted files for general purpose
transport applications, e.qg., criticality, shielding, activation.

Discrepancies of up to 30% in both measured and evaluated "*O(n,y)
are problematic for fission applications. These discrepancies impact
criticality predictions for reactors and helium production rates. New
measurements are needed in the 2.5-20 MeV region to reduce
uncertainties to within 5-10%.
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Description of Problem

Nuclear data need

235 (continued): CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted files for
general purpose transport applications, e.g., criticality, shielding,
activation.

There are significant differences in evaluations in inelastic cross-
section data from threshold to several MeV. These differences impact
fast-criticality measurements. Differences exist in total and partial
inelastic cross sections and angular distributions. New measurements
and modeling are needed.

238 (continued): CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted files for
general purpose transport applications, e.g., criticality, shielding,
activation.

Significant discrepancies between cross-section libraries for both
elastic and inelastic scattering and angular distributions need to be
addressed. Cross section differences are evident for total inelastic
and partial cross sections to individual levels. This may have a severe
impact on calculated criticality for fast systems. A global consensus
on reactor sensitivity studies points to an urgent need for more
accurate inelastic cross sections and angular distributions.

235 (continued): CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted files for
general purpose transport applications, e.g., criticality, shielding,
activation.

Notable differences amongst the evaluations below 4 MeV for prompt
average neutron multiplicty per fission. Libraries provide markedly
different representations at 3 MeV, the average neutron energy
causing fission in 2*®U in critical assemblies. This discrepancy has a
clear impact on criticality calculations.

23%py: CIELO high-priority nucleus. Improved evaluated nuclear data
needed to create accurate ENDF-formatted files for general purpose
transport applications, e.qg., criticality, shielding, activation.

Significant differences between evaluated data libraries for 2°Pu in fast
energy range for (n,inl). New measurements are needed to determine
(n,inl) cross sections and theoretical work is needed by Hauser-
Feshbach practioners to better understand plutonium scattering
reactions.

23%py: CIELO high-priority nucleus. Improved evaluated nuclear data
needed to create accurate ENDF-formatted files for general purpose
transport applications, e.qg., criticality, shielding, activation.

Radiative-capture cross sections should be improved to meet the
target accuracy requirements for advanced reactor systems. New
measurements and evaluations are needed from 2 keV to 1.5 MeV to
reduced uncertainty down to 3-7% level (depending on region and
reactor considerations).
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Description of Problem

Nuclear data need

27Np; **Pa: Branching ratios for certain peak y- and x-ray energy
measurements differ by 5-15% with those in NuDat. Combining
protactinium x-rays with uranium x-rays yields ratios approximately
30% higher than those in NuDat.

Further experimental decay-spectroscopy measurements needed for
verification.

238py29py, 24Py, ##pu, ***Cm: SF data is lacking to accurately model
neutron characteristics of the advanced burner reactor fuel (ABR).

Improved data concerning the 1%, 2", and 3" factorial moments of the
SF neutron multiplicity distribution, and of the neutron-induced fission
neutron multiplicity distribution are needed.

2py: Decay-spectroscopy data are lacking for accurate fuel-cycle
analyses.

Improved measurement of half-life required; contributes to 2'Am in-
growth.

242py: Thermal neutron-capture radiative-capture (n,y) cross section
requires verification as several measurements are at odds with each
other and the evaluated nuclear data libraries. This isotope
contributes significantly to the mass inventory of spent fuel in the
uranium nuclear fuel cycle and may have implications concerning the
amount of spent fuel in burnup calculations.

Verification measurements of the total radiative thermal neutron-
capture (n,y) cross section are required.

232Th,'236U, 236PU,238PU, 244PU, 250Cm,,24QBk, 246Cf,249Cf, 250Cf,

24Ct, 25,2 Fm,**Fm,*Fm, *°No: Consensus values for average
number of prompt neutrons (<v>) and prompt neutron multiplicity
distributions (P) for these actinides are based on only 1 or 2 (max) SF
measurements. The errors on <v> for Fm are currently 25%, while Es
is reported without uncertainty. These quantities are important
because it is unclear what actinides will be present in the ABR fuel
after multiple cycles of the ABR.

New verification and precision measurements of P and <v> are highly
desirable.

21 Am, >*Cm, **Cm: Neutron multiplicity data does not currently exist
for these actinides. Although these actinides have relatively small SF
decay rates, and therefore negligible impact in modeling neutron
emissions from ABR fuel, SF multiplicity data is essential for
safeguarding fuel discharged from the ABR.

New verification and precision measurements of P and <v> are highly
desirable.

28Cm, 2*°Cm, 2 Np: There is no neutron-induced fission neutron

multiplicity data for these actinides that will be present in the ABR fuel.

This hampers efforts to reliably model neutron emissions.

Measurements of neutron-induced-fission neutron multiplicity are
required.
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Description of Problem

Nuclear data need

2331, 2oy, 28y, *Pu, **’Pu: Very limited measured neutron-emission
probability distribution data exist. This data is needed to accurately
model neutron emissions in the burnup fuel and also has importance
for NDA techniques.

Experimental measurements of neutron-emission probabilities are
required as a function of incident neutron energy.

Li, N, B, C, "0,70,"®0, ®F, Na: Nuclear materials that produce a
much larger number of neutrons from (a,n) reactions on light low-Z
elements than from SF may cause biases in neutron-coincidence or
multiplicity measurements due to the large number of accidental
coincidences. Improved (a,n) cross sections are essential for
background modeling in multiplicity measurements for SNM
characterization, enrichment verification, and Pu oxide
characterization at reprocessing facilities. Not all (a,n) cross sections
for these nuclei have uncertainties associated with them.

New and improved measurements of («,n) cross sections as a function
of incident alpha-particle energy from 0-10 MeV are essential.

24Cm, 2*°Cm: Longer-lived alternatives over 2®Cf as SF source for

neutron-detector characterization for nonproliferation applications.

Improvements in correlated-fission particle-emission data and («,n)
yields required.

2331: High-quality data is needed for the fission-to-capture ratio for
233 to facilitate thorium-based reactor design.

Measurements of neutron-induced fission and radiative capture are
required to vield improved data for the (n,f)/(n,y) ratio.

Cd: New capture-gamma data is needed for safeguards instruments
that use Cd to get flux ratios (e.g. PNAR, SINRD).

Radiative-capture (n,y) cross sections need improving from thermal to
20 MeV for all major Cd isotopes; enriched-sample measurements are
required to provide desired cross-section information.

Gd, Pb: Total and partial cross sections from individual gamma
transitions are necessary for applications in neutron radiography and
prompt neutron gamma activation analysis.

Radiative-capture (n,y) cross sections need improving from thermal to
20 MeV for all major Gd and Pb isotopes; enriched-sample
measurements required.

2Mo,*Mo,**Mo,*®Mo,**Mo,*Mo, ®Mo: New data is needed to assess
HEU to LEU fuel conversion feasibility at the MURR facility and to
predict recoverable capture energy for proposed U10Mo LEU matrix.

Total and partial radiative neutron-capture (n,y) measurements from
thermal to 10 MeV incident neutron energies in addition to
photonuclear (y,n) and neutron-induced (n,xn) cross-section
measurements.
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Description of Problem

Nuclear data need

%Nb,"™®In: The total radiative thermal neutron-capture (n,y) cross
sections reported using the kO method are in conflict with adopted
values in the Atlas of Neutron Resonances. The IRDFF database
values for 115In(n,y) are also significantly discrepant with the Atlas
value.

Verification of the total radiative thermal neutron-capture cross
sections are required. Standalone methodologies that do not require
decay-scheme normalizations will be required for independent
verification.

#Na: New data are needed to resolve ambiguities and support
evaluations for material damage studies.

Total radiative neutron-capture (n,y) data are discrepant in the fast
neutron-energy region > 100 keV and new cross-section
measurements are required.

%Mn,**Fe: New data are needed to resolve ambiguities and support
evaluations for material damage studies. New data is needed to
resolve ambiguities in the 10 keV to 1 MeV region for fast reactor
neutrons to support evaluations for material damage studies.

Total radiative neutron-capture (n,y) cross section measurements are
needed from 10 keV to 1 MeV.

"7Sn: Enhanced understanding of materials damage.

Inelastic (n,n'y) cross sections (total and partial) are needed to cover
the energy response function from 0.3-3.0 MeV.

A=~143 Isotopes: New data for high-yield fission fragments are needed
for accurate prediction of inventory in used nuclear fuel assemblies,
development of better physics models for calculation-based nuclear
forensic tools, and neutron resonance transmission analysis.

Improved (n,f), (n,y) thermal to fast, and (n,n'y) fast, cross-section
measurements are required.

Am and Cm isotopes, ?*’Np, **Np, ?**Np: Improved data are needed
for determination of spent-fuel isotopics, such as production of 24Py
and ?**Cm.

Improved thermal neutron-capture radiative (n,y) cross-section
measurements will facilitate this goal.

27Np, **Np, ?*Np : New data for determining spent-fuel isotopics as
well assessing weapons-usable material production.

Improved decay data, (n,f), and (n,n'y) cross sections in the fast region
of the neutron spectrum are required

U, Pu: Explosives detection diagnostics.

Delayed neutron-emission spectroscopy measurements.

U, Pu Fission Fragments: Better data is needed for enabling active
interrogation technologies.

Fission-product yields needed from photofission measurements.

235, 238U, **Pu, **°Pu: New data is required to assess potential
methods for photon production from NRF.

Measurements of the (e,y) electronic excitation cross section required
from 0.5-4 MeV.

1391, '%]: Accurate nuclear forensics relies on measuring actinide ratios

in the debris. Blocked cesium and iodine products retain fission
information and can be used to determine whether the fuel is uranium
and plutonium and if 14-MeV neutron-induced fission is involved.

The *° and ' thermal, fast, and 14-MeV fission yields need to be
measured.
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Matrix A.2 — National Security, Counter-Proliferation and Isotope Production

Description of Problem

Nuclear data need

°2jr is ysed in the high dose-rate brachytherapy.

Alternative production mechanisms: high energy protons on Platinum

11is used in the treatment of thyroid cancer.

Production rates may be investigated from 0Te(n,y)'*' Te->"8"I; *°Te(d,p)'*' Te->"";
130Te(d,n)131|.

"®Re is used for palliative care of metastatic bone
disease.

Alternative production: "¥"Re(d,p)'**Re.

'%8Sm is used for palliative bone therapy.

Alternative production mechanisms require accurate data for the reaction cross section:
"®Nd(a,n)'>*Sm.

"®Re is used for palliative bone therapy.

Alternative production mechanisms require accurate data for the reaction cross sections:
186W(p’n)186Re.

%Y is used to treat liver cancer.

Alternative production mechanisms require accurate data for the reaction cross sections:
*Y(d,p).

251 is commonly used in the treatment of prostate
cancer.

Alternative production mechanisms require accurate data for the reaction cross sections:
125Te(p,n)125|.
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Matrix A.3 - National Security, Energy and Isotope Production

Description of Problem Nuclear data need

205205B: Better data is needed for high-threshold reactions such as 2*°Bi(n,4n), and 2*Bi(n,xn),

where x>4, to help resolve discrepancies between the TENDL-2012 and ENDF/B-VII.1 Several high-accuracy cross-section measureme
evaluations. The level of discrepancy increases with x in (n,xn). A high-threshold 2*°Bi(n,xn) reactions are desirable.

reaction may also find application as a NIF diagnostic.

. . . . . Improved dosimetry cross section data is
48 64 113 63 . .
Ti,**Zn, ""In, *°Cu: New dosimetry measurements will help guide future IRDFF evaluations; needed near 14 MeV for the following

the current dosimetry evaluations are discrepant for several reactions in the 14-MeV neutron- reactions: “*Ti(n,x)"Sc; “Zn(n,p)*Cu:
energy region. "8In(n,n")""* In; #Cu(n,2n)*Cu.
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Matrix A.4 - National Security, Counter-proliferation/Safeguards

Description of Problem

Nuclear data need

%Fe: CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted
files for general purpose transport applications, e.g.,
criticality, shielding, activation.

Innovative reactor systems require improved inelastic scattering cross section data ¢
demands. New measurements and evaluations are needed in the range 0.5-20 MeV |
down to 2-10% (depending on region). Substantial differences currently exist in the (
below 2 MeV the differences between JEFF-3.1 and ENDF/B-VII.1 reaches 28%.

%Fe: CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted
files for general purpose transport applications, e.g.,
criticality, shielding, activation.

Improved capture-gamma data from radiative neutron-capture required for
nonproliferation applications (e.g. NDA screening): thermal — 20 MeV. High-energy
primary gamma rays are particularly important.

%Fe: CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted
files for general purpose transport applications, e.g.,
criticality, shielding, activation.

Double-differential neutron- and proton-emission cross section, i.e. (n,xn) and
(n,xp), data needed in 20-200 MeV range to develop pre-equilibrium models.

235J: CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted
files for general purpose transport applications, e.g.,
criticality, shielding, activation.

Radiative-capture data is poorly known in many regions and new (n,y)
measurements are needed for verification. The recent JENDL-4.0 evaluation
lowered the cross section by over 25% in the 0.5-2 keV region. ENDF and JEFF
libraries are also at odds with JENDL in the 3-5 keV region, and for 100-1000 keV.
All evaluations need improving in the 10-70 keV region and recent findings suggest
a lower capture cross section in the 100 eV to 2 keV region.

233 (continued): CIELO high-priority nucleus. Improved
evaluated nuclear data needed to create accurate ENDF-
formatted files for general purpose transport applications,
e.g., criticality, shielding, activation. (continued)

Discrepant data evaluations for prompt and total neutron-multiplicities at 10-15
MeV indicate that new measurements and covariance analyses are needed. There
are slight differences for total-thermal neutron multiplicities.

233 (continued): CIELO high-priority nucleus. Improved
evaluated nuclear data needed to create accurate ENDF-
formatted files for general purpose transport applications,
e.g., criticality, shielding, activation. (continued)

Improved capture-gamma data from radiative neutron-capture required for
nonproliferation applications (e.g. NDA screening): thermal — 20 MeV. Experimental
high-energy primary gamma rays are particularly important; currently this
information is nonexistent in the ENDF libraries. Assess HEU to LEU conversion
analysis.
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Description of Problem

Nuclear data need

235 (continued): CIELO high-priority nucleus. Improved
evaluated nuclear data needed to create accurate ENDF-
formatted files for general purpose transport applications,
e.g., criticality, shielding, activation. (continued)

Improved capture-gamma data from radiative neutron-capture required for
nonproliferation applications (e.g. NDA screening): thermal — 20 MeV. Experimental
high-energy primary gamma rays are particularly important; currently this
information is nonexistent in the ENDF libraries. Assess HEU to LEU conversion
analysis.

23%py: CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted
files for general purpose transport applications, e.g.,
criticality, shielding, activation.

Improved capture-gamma data from radiative neutron-capture required for
nonproliferation applications (e.g. NDA screening): thermal — 20 MeV. Experimental
high-energy primary gamma rays are particularly important; currently this
information is nonexistent in the ENDF libraries. Currently there exists only one
measurement in the 200 keV — 1 MeV region. Reaction theory will also be needed
for cross-section evaluations owing to the paucity of data above 100 keV.

23%py (continued): CIELO high-priority nucleus. Improved
evaluated nuclear data needed to create accurate ENDF-
formatted files for general purpose transport applications,
e.g., criticality, shielding, activation.

Criticality deviations between prediction and measurement could point to possible
deficiencies in the PFNS as well as (n,2n) cross sections. Deviations are
particularly pronounced for outgoing neutron energies above 10 MeV and would
benefit from further studies in this region.
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Matrix A.5 -Counter-proliferation/Safeguards, Energy

Description of Problem Nuclear data need
Evaluated total thermal neutron multiplicity
23%py: CIELO high-priority nucleus. Improved evaluated nuclear data needed to create value in data libraries are more than one
accurate ENDF-formatted files for general purpose transport applications, e.g., criticality, standard deviation lower than the evaluated
shielding, activation. constant. This discrepancy needs to be
addressed.
Reactor Neutrinos: Nuclear reactors provide an intense source of neutrinos up to 10 MeV and
permit the study of neutrino oscillations. Two major problems are facing reactor-neutrino Improved experimental measurements of
physics: (i) The short baseline reactor-neutrino anomaly which reveals a 6% deficit in the fission products that dominate the high-energy
antineutrino flux at all short-baseline experiments; (i) A shoulder (bump) observed at E=4.5-6.5 | spectrum need to be measured to address
MeV in all current reactor neutrino experiments. The evaluations in ENDF and JEFF give these issues.

different predictions because yields for the important fission products are different.

Matrix A.6 — Energy and Isotope Production

Description of Problem Nuclear data need

Te,Ru,’®Rh,"*Eu,"*°Eu,'*'Ce,'*°Ce,Sn: There is no
radiative-capture (n,y) gamma-ray production data in
ENDF/BVII.1 for these target nuclides. This information is
important for assessing heating limits from capture
gammas for isotope production irradiations at the MURR.

Total and partial radiative neutron-capture (n,y) cross-section measurements from
thermal to 20 MeV incident neutron energies.
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Matrix A.7 — National Security and Isotope Production

Description of Problem

Nuclear Data Need

'H: CIELO high-priority nucleus. Improved evaluated nuclear data
needed to create accurate ENDF-formatted files for general purpose
transport applications, e.g., criticality, shielding, activation.

Precision determination (1-2%) of both total and double-differential
elastic scattering cross sections at high-incident neutron energies
(10-20 MeV) with emphasis on data at small cm scattering angles.

235 (continued): CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted files for
general purpose transport applications, e.g., criticality, shielding,
activation. (continued)

Integral validation of the prompt-fission neutron spectrum (PFNS) for
fast criticality assemblies using the (n,2n) reaction. Future work is
needed to understand the differences between results from LANL and
CEA in France. Better understanding of shape of PFENS is desirable.

235 (continued): CIELO high-priority nucleus. Improved evaluated
nuclear data needed to create accurate ENDF-formatted files for
general purpose transport applications, e.g., criticality, shielding,
activation. (continued)

Discrepancies between ENDF/B-VII evaluations and IAEA-WPEC-
CSEWG standards need to be resolved for radiative-capture (RC) in
20-100 keV region. Uncertainties in RC cross section need to be
reduced to 1-3% from 20 eV to 25 keV for innovative reactor design.
New measurements are needed to improve understanding of RC
cross section from a 1-10° eV.

23%py: CIELO high-priority nucleus. Improved evaluated nuclear data
needed to create accurate ENDF-formatted files for general purpose
transport applications, e.g., criticality, shielding, activation.

Resonance-parameter analyses to improve modeling of plutonium-
solution critical assemblies and angular distribution measurements
from resonance fission neutrons for high-fidelity criticality simulations.

220f- Validation data are needed for several reactions for the 2%°Cf SF
Standard Neutron Benchmark Field.

Cross section data which are currently lacking for this standard
include: 2%U(n,y), ®®Fe(n,y), °Sc(n,y), #Zn(n,p), *'P(n,p), °B(n,x)a,
#Fe(n,a), 2Na(n,2n), *W(n,y), "°In(n,n"), >*Fe(n,2n), "°As(n,2n). Cross
section data with large discrepancies: ?*Th(n,f), 23*U(n,2n).

22Cf: There are also some known existing issues for the following
reaction cross sections pertaining to the 2Cf SF standard: "’ Au(n,y)
due to room-return neutrons; *Zr(n,2n) due to thorium contamination;
%Zr(n,2n) due to contribution from *Zr(n,y).

Greater accuracy is needed for cross-section measurements for the
following reactions to help resolve ambiguities: "’ Au(n,y), *°Zr(n,2n),
and %Zr(n,2n).

2%5(J: Validation data are needed for several reactions for the 2*°U
thermal fission Reference Neutron Benchmark Field.

Cross section data which are currently lacking for this standard
include: *°Sc(n,y), ®Nb(n,y), ®Fe(n,y), '°Ag(n,y), "*®In(n,2n), ®Cu(n,2n),
®2Cr(n,2n), 2Na(n,2n), *Ti(n,2n), **Fe(n,2n), **Co(n,3n), **W(n,y). Cross
section data with large discrepancies: '®Rh(n,n"), ®*Cu(n,y), *Ni(n,2n),
28(n,y), "*°Tm(n,2n), **Mn(n,2n).
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Description of Problem

Nuclear Data Need

2350J: It is important to compare calculated (C) and experimentally-
measured (E) k. to advance evaluated library accuracy. Deviations
from C/E=1 could point to (n,2n) cross section and/or PFNS
deficiencies. Cross-section data for several high-threshold reactions
are needed to establish consistency between ENDF/B-VI and
measured values for the U (n,,,f) Reference Neutron Benchmark
Field.

Calculated and experimentally-measured cross section ratios (C/E)
that deviate significantly from unity, or have very high associated
uncertainties, and require improved k. data: ®Cu(n,2n), *Ni(n,2n),
0Zr(n,2n), ?7I(n,2n), *Nb(n,2n), “®Ti(n,p), *Fe(n,p), *S(n,p), #*Zn(n,p),
27Al(n, p), 2*Mg(n,p), ZAl(n,y), '°F(n,2n), *Co(n,2n), *Mn(n,2n), **Cu(n,w),
*V(n,p), **Ti(n,p), “'Ti(n,p).

1%Aq, 2°2Th, U, ?%%U: Validation data in the 30-keV Maxwellian
Averaged Cross Section (MACS) neutron field are lacking.

Radiative-capture (n,y) cross-section measurements needed at 30-
keV incident neutron energy.

9meh, %L a: For improved IRDFF evaluations, improved
electromagnetic emission-probability data are needed.

X-ray emission probability measurements around 20 keV in '®™Rh,
LEPS measurements required.

For improved IRDFF evaluations, improved electromagnetic emission-
probability data are needed.

Gamma-ray intensities for all lines below 1596 keV in *°La.
Radiative-capture "**La(n,y) studies will greatly facilitate this need.

For improved IRDFF evaluations, improved electromagnetic emission-
probability data are needed.

Gamma-ray intensities for transitions at around 473.5 and 685.8 keV
in ""W. Radiative "*®*W(n,y) studies will greatly facilitate this need.

2Na: New data are needed to resolve ambiguities and support
evaluations for material damage studies.

New (n,2n) cross-section measurements are required.
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Appendix B: Lists of Requested Reaction Data

Many of the presentations at the workshop called out individual nuclear reaction cross sections
(including partial y-ray production cross sections) that were important for applications. While many of
these are mentioned in other portions of the whitepaper, the editors decided to list them as well in this
separate appendix broken out by topical area in the interest of completeness.

Isotope Production Needs

1. Charged-particle reactions for the production of medical isotopes at low energies (E < 30 MeV):

O

Sc(p,n)*?Ti; Cr(p,n)**Mn; *Fe(d,n)*°Co; Zn(p,a)**Cu; *Ge(p,n)?As, "“Se(d,n)"°Br;
BGSr(p’n)SGY; 12°Te(p,n)12°|

2. Charged-particle reactions for the production of medical isotopes at intermediate energies (30-
100 MeV) organized by reaction:

O
O

O o0 OO0 O 0O OO0 0 0O O©°

Sc(p,2n)y*Ti, ®Ga(p,2n)®Ge, *°Te(p,2n)

%¥Co(p,3n)*'Ni, "°As(p,3n)"*Se, ®*Rb(p,3n)*Sr, *Te(p,3n)", #Sr(p,3n)*Y,
121Sb(p,3n)119Te/”QSb, 133Cs(p,3n)131Ba

®Mn(p,4n)*Fe, "'Ga(p,4n)*®Ge, "°As(p,4n)"*Se

133Cs(p,5n)1288a

127|(p’6n)122xe

”atBr(p,x)mSe, natln(p’x)‘l‘IOSn’ 122Te(p,x)11BSb, 232Th(p,X)225AC,225Ra,227AC
”atSb(p,xn)”gTe/”QSb, ”atLa(p,xn)134Ce/134La

#Zn(p,an)®*Cu

GBZn(p,2p)G7Cu, 124Xe(p’2p)123|

124 e(p,pn) 22Xe

(p,X) reaction on **Mo for impurities in ®™Tc production
1°7Ag(p,ocn)1°3Pd

116Cd(a,3n)”7mSn; 19203((1,3n)193mPt

3. Nuclear data needed for radionuclides produced using spallation, deuteron break-up and/or
fission neutrons:

O

O O O O O

%83 (n,x)%S;|

"2Cl(n,x)*2Si, ¥'Cl(n,x)*Si

"tZn(n,x)*’Cu, #Zn(n,x)*’Cu, °Zn(n,x)*’Cu

226Ra(n,2n)***Ra

232Th(n,X)225AC, 232Th(n,X)227AC

¥3(n,p)*P; *'Ti(n,p)*'Ca, *Zn(n,p)**Cu; *Zn(n,p)*’ Cu; #Y(n,p)**Sr, '®°Pd(n,p)'*°Rh;
14QSm(n’p)149Pm’ 153Eu(n,p)1533m, 159Tb(n,p)159Gd; 161Dy(n,p)161Tb; 166Er(n,p)166HO;
169Tm(n,p)169Er; 175Lu(n,p)175Yb; 177Hf(n,p)177Lu

4. High energy photon-induced reactions

O

GBZn(v’p)67Cu; 100MO(Y,n)ggMO; 1°4Pd(y,n)1°3Pd; 124Xe(v’n)123xe; 232Th(v,f)ggMO; ZSBU(Y,f)ggMO

5. Nuclear data needed for alternative *™Tc¢ production

O

O 0 O O

Mo(d,3n)

232Th(p,f)

Mo(d, p2n)

Mo(n,2n)

©Mo(p,pn) - data on long-lived impurities
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o '™Mo(p,2n) - data on long-lived impurities

o (p,x) reaction on **Mo for impurities in *™T¢ production
6. Nuclear data needed for optimizing 2°2Cf

245 247, 248,

o ““Cm(n,y), ='Cm(n,y), ~“Cm(n,y)

o  #°Bk(n,y)

o 2°Cf(n,y) and 2°°Cf (n,f), *'Cf(n,y) and **'Cf (n,f)

o ?2Cf(n,x) - resonance near 1 eV in particular!

7. Nuclear data needed for Super Heavy Element (SHE) target isotopes production
o #8Cm(n,y) low energy resonances
o 2°Bk(n,y)
o 29Cf (n,y) and 2°Cf (n,f)
o *'Cf(n,y) and *'Cf (n,f)- first resonance varies greatly by library

8. Nuclear data needed in the production of 3Py
o n+2Np fission products and related uncertainties (priority)
o 238Np(n,f)
o #'Np(n,y)

9. Nuclear data needed in the production of medical isotopes at MURR,;
Gamma yield spectrum for incident neutron energies in the thermal to 10 MeV range for target
heat generation rates:

*Te(n,y) (production of "'l

0O O 0O O 0 O 0O O

o *Sn(ny)
Note: * indicates stable isotopes

Excitation function for incident neutron energies from thermal to 10 MeV
o Lu(n, y), "*Eu(n, v), "CEu(, y), "As(n, v), “As(n, y), *'Ce(n, v), *Ir(n, v), "*Au(n, y),
"Au(n, v)

Dosimetry Needs

1. ""8n(n,n’), covering energy response 0.3 - 3.0 MeV

2. Data to support new evaluations
o *Na(n,y), it is discrepant in fast neutron region, > 100 keV
o  #Na(n,2n)
o ZAln,2n)

3. Address discrepancies:

o ®Mn(n,y) cross section from 10 keV to 1 MeV
%8Fg(n,y) reaction in the 10 keV to 1 MeV energy region for fast reactor
27Np(n,f) and *'Am(n,f) measurements between LANL and n-TOF (CERN) on the plateau
Some 14-MeV dosimetry reactions (**Ti(n,x)*’Sc, #Zn(n,p)**Cu,®In(n,n’), ®*Cu(n,2n)**Cu)
Thermal capture for ®*Nb, "°In
209Bi(n,4n), in fact all 2°Bi(n,xn) with x=4,5,6,7

O O O O O

4. Need small uncertainty on all dosimetry reactions
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5. Validation data in **Cf spontaneous fission standard benchmark neutron field
o Data lacking 2%U(n,y), ®Fe(n,y), *'P(n,p), "°B(n,X)a, **Fe(n,a), 2*Na(n,2n), *wW(n,y),
"8In(n,n’), **Fe(n,2n), "°As(n,2n), *°*Sc(n,y), and #Zn(n,p)
o 14 other reactions from IRDFF library
o Data with large discrepancy **?Th(n,f) and ?**U(n,2n)
o Data with outliers (4 reactions)

6. IRMM Exploratory Study of Validation Data in **Cf Standard Neutron Benchmark Field
o Issues with existing '’Au(n,y) due to room return
o Issues with existing *Zr(n,2n) due to Th contamination
o lIssue with existing *Zr(n,2n) due to *Zr(n,y) contribution

7. Validation data in **U thermal fission reference benchmark neutron field
o Data lacking **Sc(n,y), '*°In(n,2n), ®*Cu(n,2n), *2Cr(n,2n), 2*Na(n,2n), *Ti(n,2n), >*Fe(n,2n),
%¥Co(n,3n), W(n,y), *Nb(n,y), ®Fe(n,y), "®Ag(n,y), and 6 other reactions from IRDFF
library
o Data with large discrepancy '®Rh(n,n’), ©Cu(n,y), ®Ni(n,2n), >*U(n,y), '**Tm(n,2n), and
Mn(n,2n)
o Data with outliers (5 reactions)

8. Validation data in 30 keV MACS neutron field, data is lacking "®Ag(n,y), *Th(n,y), **U(n,y), and
#2U(n,y)

9. Test and improve decay characteristics for radionuclides in new IRDFF reactions:
55CO

56CO

94Nb

114m|n

117mSn

195Au

O O 0O O O O

10. Gamma Emission Probabilities
o '®M™Rh -- x-ray emission probability around 20 keV
o ™La -- gamma intensities for lines below 1596 keV
o "W -- gamma intensities of 2 lines (473.53 keV and 685.81 keV)

11. Important Isotopes
o ®Ga, "Ga, *As (ASTM E722)
o *Fe, %Fe (ASTM E693)

12. Uncertainty in recoil spectrum
o Recoil spectrum characterization in cross sections (MF=6)
o %Ga, "Ga, ®As
o Feisotopes
o Validate/test use of calculated cross section libraries, e.g. TENDL, to characterize this
uncertainty component and Scope “model defect”

13. Other dosimetry reactions identified by text-mining the EXFOR database
o Reactions that produce "Be: "Li(p, n), *C(p, X)'Be and °Be(p, X)'Be
Reaction that produces "'C: C(p, X)"'C
Reaction that produce *Na: ?’Al("2C, X)*Na
Reaction that produces *Co: ™Fe(p, X)**Co
Reaction that produces ®'Cu: "*Cu(p, X)*'Cu
Reaction that produces ®'Cr: ®'V(p, n)

O O O O O
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o Reactions that use ™Mo as a target material: "*Mo(p, X)*Tc and "*Mo(a, X)*’Ru

Inertial Confinement Fusion Needs

1.

Accurate temperature dependent fusion reactivity for light ions is of primary importance to
describe thermonuclear burn.

o da)n, tt, a)2n, d(d,Hp, d(d,*He)n, dCHe, a)p

o d-t, t-t, d-d, d-t-*He and d-*He gas fills are all used.

Energy loss of fusion-generated alpha particles in hot dense plasmas must be accurately
assessed (engine of ignition). Radiochemical neutron activation and neutron time-of-flight
diagnostics validate stopping power models.
Diagnostics for degraded implosion performance.

o Xe dopants to probe ablation front instabilities.

o Br(d,2n)Kr to probe ablator/cold fuel and ablator/hot core mix.

o Alpha particle induced reactions to probe hot core mix: °Li, °Be, '°B (best one), *C, ™N,

160’ 19F, 20Ne, 23Na, 24Mg, 27A|.

Gamma-ray diagnostics for performance and ablator/fuel instabilities.
o Total yield from d-t fusion y branching ratio at 17.6 MeV.
o '™C(n,n’y) 4.4 MeV time-integrated emission provides hydrocarbon areal densities
(remaining mass). Cross section at 14 MeV must be accurate.
o Does ®C(n,n’y) have strong emission near 4 MeV? If not, then a useful mix diagnostic is
possible.

Solid Radiochemistry Diagnostic (SRC) is currently a NIF diagnostic complementary to "C-y
GRH detection (CH pr).

o Ratio of "®Au/'*Au from the activated hohlraum.

o (n,y)/(n,2n):low energy neutrons/14 MeV neutrons.

RIF that make n’s in addition to d-d, d-t and t-t: 2H(n,2n), *C(n,n2a), *H(n,2n), *C(n,2n), *H(p,n),
°0(n,nay), #*Si(n,np), #Si(n,2n), *H(p,pn), *Si(n,2n), ?*Si(n,na), *He(t,np)
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Appendix C: Historical Perspective
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3. A better and long-lasting connection was established between reactor designers and both
reactor and nuclear physicists, in order to optimize the production of complete, reliable,
user-oriented and validated nuclear data. The use of reactor physics critical facilities was
expanded, sometimes with as primary objective the performance of integral experiments
designed specifically to improve nuclear data, in particular in support of fast reactors (ZPR,
ZPPR, MASURCA, BFS, FCA, SNEAK, ZEBRA etc.), but also in support of commercial reactors
(e.g. EOLE, VENUS, PROTEUS etc. in Europe)

4. A new branch of reactor physics was developed, to formalize in a rigorous way the relation
between reactor physics oriented integral data and nuclear data for applications (sensitivity
theory based on generalized perturbation theory, sensitivity/uncertainty analysis, target
accuracies assessment etc.)

Slow-down and revival

In the 1980s there has been a significant slowdown of the nuclear data related activities in the US
(somewhat related to e.g. the FR program cancellation) and, for different reasons, also in Europe (e.g.
the shut-down of SUPERPHENIX) while in parallel there was some consolidation or emergence of new
nuclear data projects: JEFF (Europe, Korea...), JENDL (Japan), CENDL (China), BROND/ROSFOND
(Russia + former Soviet Union states). At the same time there was a progressive shutdown of critical
facilities, reducing drastically the number of new data-oriented integral experiments. These reductions
did also imply that over more than a decade, the training and hiring of nuclear data and experimental
reactor physicists was also drastically reduced practically everywhere in the OECD countries.

During the 1990s, new issues became of high importance, mostly related to waste management that
emerged as a key issue for any future development of nuclear energy (see e.g. the OMEGA program in
Japan). Advanced fuel cycle challenges, as well as a renewal of interest for subcritical systems (e.g.
ADS), the investigation of new fuels and materials and of new fuel cycle concepts and strategies,
resulted in new research programs. It was quickly realized that most of the new challenges did
require a very significant enlargement of the traditional nuclear databases. Due to the reduction
of effort, funding and manpower in the previous decade or more, collaborative projects were
considered by most countries as the only feasible approach to addressing this need, with OECD-
NEA and IAEA playing a key role.

For example, the NEA's nuclear data evaluation co-operation activities involve the following evaluation
projects: ENDF (United States), JENDL (Japan), ROSFOND/BROND (Russia), JEFF (other Data Bank
member countries) and CENDL (China) in close co-operation with the Nuclear Data Section of the
International Atomic Energy Agency (IAEA). The NEA Working Party on International Nuclear Data
Evaluation Cooperation (WPEC) was established in 1989 to promote the exchange of information on
nuclear data evaluations, measurements, nuclear model calculations, validation, and related topics, and
to provide a framework for co-operative activities between the participating projects. The working party
assesses nuclear data improvement needs via the Nuclear Data High Priority Request List (HPRL), which
is an internationally agreed compilation of the most important nuclear data requirements and addresses
these needs by initiating joint evaluation and/or measurement efforts.

However, it should be kept in mind that these are volunteer projects and partners need to obtain
own funding for work. In this sense, neither long-term commitment of manpower nor continuity of
research directions is a-priori guaranteed, unless there is a strong support and a clear long-term
vision of each of the participating national groups.
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New paradigms: uncertainty assessment and science-based
validation

Starting in the years 2000s, partly under the request of industry and due to a new awareness of nuclear
data end-users, nuclear data uncertainty impact studies were performed, using the tools of sensitivity-
uncertainty analysis, mentioned above. These studies did point out that present uncertainties on the
nuclear data should be significantly reduced, in order to get full benefit from the advanced modeling and
simulation initiatives that had been launched worldwide. In fact at the same time, efforts towards the
development of advanced simulations had been initiated with significant funding (and in particular in the
us).

However, it was quickly realized that only a parallel effort in advanced simulation and in nuclear
data improvement could be able to provide designers with more general and well validated
calculation tools that would be able to meet new tight design and safely target accuracies. It was
also realized that no simulation tool whatever the degree of sophistication (e.g. new Monte Carlo
methods and approaches) could replace the need of well design, science-oriented validation
experiments.

The interest expressed by industry, regulators and by the scientific community for the sensitivity-
uncertainty impact analysis (see e.g. the US DOE Office of Science “NUCLEAR PHYSICS AND RELATED
COMPUTATIONAL SCIENCE R&D FOR ADVANCED FUEL CYCLES WORKSHOP” Washington DC,
August 2006), did encourage and accelerate the development of data covariance assessments, using
new science-based tools. This brand new effort did spread worldwide, with the US initiatives, led by
BNL, in the forefront, producing spectacular results.
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Appendix D: Capabilities and Facilities

The need to generate nuclear data for applications can arise from either a lack of key information, or
from a situation where discrepant experiments limit confidence in evaluation. In some cases, only
modest precision is required for improvement, while in others increasingly precise data provides greater
benefit for the application. In some situations, modest improvements in the quality of available nuclear
data can be gained using straightforward and simple experimental approaches; while in others
improvements can only be obtained by significant rethinking of experimental techniques. One concept
that became clear in the workshop was that no one facility was capable of addressing the entire
spectrum of nuclear applications.

Fortunately, the capabilities and facilities available in the United States for applied nuclear science are
robust diverse. In some cases, such as the Gaerttner LINAC Center at RPI, the detector and beam
characteristics are focused on the production of data relevant for nuclear energy. Others, such as the
Weapons Neutron Research (WNR) facility at LANL and the National Ignition Facility (NIF) at LLNL,
emphasize national security needs such as stockpile stewardship and counter-proliferation. In contrast,
facilities like ANL and NSCL have broad reaching capabilities that can potentially contribute to either
curiosity- or application-driven projects.

That being said, while the primary focus of curiosity-driven low-energy nuclear science involves studying
nuclei far from the valley of stability, the needs of the applications communities presented in this
workshop tended to focus more on neutron-induced reactions on stable nuclei, with the notable
exceptions being charged particle reactions for medical isotope production. Since neutron beam are
amongst the first radioactive beams, most of the neutron facilities discussed in the workshop utilized
“secondary beams” formed from either charged-particle induced nuclear reaction products (LANL, RPI,
TUNL, Ohio, Kentucky RPI, LBNL etc.) or from fission at reactors, such as MURR and HFIR at ORNL.
The US is fortunate to host such a wide range of neutron beam facilities.

One of the challenges facing a researcher interested in performing neutron reaction studies is to choose
which facility provides the optimal blend of neutron beam characteristics (pulse structure, flux, energy
range) and detector capabilities to obtain the required data. One of the speakers at the workshop
(Darren Bleuel, LLNL) attempted to help in this decision making process by producing a comparison of
neutron capabilities at different pulsed beam facilities. Figure 6 below shows the flux and energy
spectrum of a number of neutron sources available to the applications community. These include the
thick-target deuteron breakup neutron source at Lawrence Berkeley National Laboratory (LBNL), the
Weapons Nuclear Research (WNR) facility at the Los Alamos National Laboratory (green curve), and the
Gelina neutron source in Brussels. A “typical” monoenergetic CW neutron source, the UC Berkeley
quasi-monoenergetic High-Flux Neutron Generator (HFNG) is presented for comparison purposes. It
should be noted that Dr. Bleuel’s comparison was by no means comprehensive in that it excluded a
number of other important neutron source, such as the (y,n) neutron source at RPI. Fortunately, these
facilities are well described in their own sections of this appendix.
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Figure 6. Comparison of the neutron flux available at several neutron facilities from the talk by Bleuel.

Many of the neutron facilities described in this work utilize light charged particles (p, d, t, *He, or a‘s).
This is a “happy coincidence” in that the much of the nuclear data needs relevant to medical isotope
production center of light-ion production cross section measurements. This potentially allow for a
number of facilities described in this report to serve the needs of all three major applications topics
(Energy, National Security and Isotope Production). Examples of facilities in this category include the 88-
Inch cyclotron at LBNL, the tandem accelerator at TUNL and the Edwards Accelerator Lab at Ohio
University.

A “third class” of facility presented in this report is the High Intensity Gamma Source (HIGS) which
produces mono-energetic photon beams through the use of a free electron laser: a unique capability for
measuring (y,y’) and (y,n) cross sections. These cross sections are needed for a number of national
security applications and were specifically called out as requiring additional measurement in the talks by
Quiter, and Cerjan.

Along with issues such as beam and detection capabilities and sensitivities, the issues of beam-time
allocation and detectors/spectrometers availability are non-negligible. While some facilities operate as
user facilities with rather straightforward opportunities for collaboration in connection with beam
availability, others operate utilizing highly competitive Program Advisory Committees that review the
scientific merit of any proposed experimental work, and others may operate using a cost-center model
where beam-time charges of tens to hundreds of thousands of dollars per week are typical.

The goal of this appendix is to provide a review of the capabilities at many of the facilities available for
applied nuclear science research in the US that can be used by experimentalists who are planning to
carry out applications-relevant nuclear data measurements. The editors of this whitepaper attempted to
keep this list as broad as possible, including a number of facilities that were not presented in great detail
at the workshop due to time constraints. While the list is undoubtedly incomplete, every effort was
made to have it be representative of the broad spectrum of facilities at hand. Lastly, it should be noted
that most of the text in the individual facility descriptions were provided by points-of-contact (POC) at
each institution, and that the editors performed only limited revision of the content. Users of this
appendix are urged to approach the POCs at each facility if they require any additional information.
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instrumentation include a gamma counter, 5 fumehoods, HPLC, balances, centrifuges, glove boxes,
machining capabilities and thermal analysis to target materials.
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Radiobiology Research Facility

Complementing the NASA Radiations Effects Facility (NSRL) at BNL, we have recently developed a
lower ion energy radiobiology research facility at the Tandem. Low energies may be of particular interest
since the high energy ions lose energy when traversing spacecraft materials and produce the maximum
damage just before coming to rest in the astronauts’ bodies. Thus, energies lower than most present in
the primary cosmic ray spectrum are appropriate to cover the range of maximum LET (the Bragg peak)
but, due to their short ranges, they are only useful to perform studies with thin samples such as cell
cultures. Figure 8 illustrates the very large range of LET values and respective penetration depths in
water (or tissue) for iron beams from 10 KeV per nucleon to 1 GeV per nucleon.

. Radiobiclogy
Dosimetry Elecp'onlcs SEUV Irradiation Window
Chamber Testing Chamber Enclosure Location

Figure 8. The radiobiology irradiation enclosure is shown at the right of the picture, the Single Event
Upset Test Facility (SEUTF) chamber in the middle and the dosimetry chamber used for both at the left.
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experiments PROFIL at least three, in PROFIL-2 even six samples of the same isotope were irradiated.
This approach is justified by the fact that in certain cases during the post irradiation analysis, and due to
bad manipulation, some samples may become contaminated. While for MANTRA, a low failure rate is
expected, a MANTRA-2 campaign would provide the opportunity for repeating the compromised
irradiation of the respective isotopes.

In complementing the MANTRA campaign, a separate experimental program performed at the NRAD
facility would provide a wealth of integral experimental data in support of nuclear data validation and
uncertainty quantification efforts. The INL NRAD is a TRIGA reactor that has enough space to allow the
introduction of thick neutron filters (including ***U blocks) allowing simulating the full gamut of neutron
spectra from thermal, epithermal, soft fast, to hard fast. The systematic measurement of fission rate
spectral indices using fission micro-chamber would enhance the knowledge on a vast range of actinides
(both major and minor). Moreover, in this facility reactivity sample oscillation measurements could be
performed with the help of an Idaho State University (ISU) apparatus (open and closed loop) that could
be easily installed at NRAD. These measurements of actinides samples in different spectra would be
invaluable for the validation and uncertainty quantification of cross sections needed for advanced fuel
cycles analyses.
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Gamma-ray production cross sections are also of interest for neutrinoless double-beta decay (Ov3p). The
experimental signature of Ovpp is a discrete peak at the energy of the Q value of the decay. It is possible
that neutrons may inelastically scatter from surrounding materials or those composing the detector and
produce background gamma rays in the region of the Q value, which would obscure the observation of
this speculated but yet-to-be-observed process. Experiments have been performed to identify and
measure cross sections for such background gamma rays for the OvBp candidates ®Ge [4] and "**Xe [5].

Other applications-based programs have been established with collaborators from multiple institutions
who are interested in detector development and/or characterization. Groups from the University of
Guelph, the University of Nevada Las Vegas, and the University of Massachusetts at Lowell have all
performed experiments which utilize the monoenergetic neutron capabilities in order to perform detector
tests and characterizations. The Guelph group characterized deuterated benzene liquid scintillators,
which will now be employed in the DESCANT array at TRIUMF [3].

Scientists with commercial interests, for example, Radiation Monitoring Devices in Watertown, MA, also
visit the laboratory to make use of the monoenergetic neutrons. Projects range from development of
radiation detecting materials to imaging systems. In addition to the typical nuclear physics markets, their
detection systems are deployed in medical diagnostic, homeland security, and industrial non-destructive
testing applications.

See the laboratory web page at http://www.pa.uky.edu/accelerator/ for an expanded description of the
facilities, the research programs, and recent results from UKAL.
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research. It started operation in 1961 and has maintained its position as a premier stable-beam facility
through periodic upgrades, especially to its ion sources [2]. These ion sources have enabled acceleration
of an ever-increasing variety of heavy-ion beams up to, and beyond, the Coulomb barrier. Protons,
deuterons, and alpha particle beams are available up to maximum energies of 55, 65, and 130 MeV,
respectively. For extracted beams the operational upper limits of current intensities are not known since
we restrict running to a maximum power of 1.5 kW. These administrative limitations are self-imposed.
There is no reason that we cannot exceed these restrictions with proper planning and preparation. One
can readily envision extracted beams of several tens of particle-microamperes. Development of a
negative ion acceleration scheme combined with “stripping” would allow a clean extraction of intense
proton beams (as recently demonstrated with the same cyclotron at Texas A&M University).

One consideration for even more intense beams of light ions is the use of internal targets. Indeed, this
technique was used at the 88 in its early years to produce isotopes for research and there is no reason
that the capability cannot be re-established. This would enable use of beams with intensities exceeding
a milliampere (1000pA). This would open up great possibilities for production of isotopes. But then
radioactive target handling and radiochemistry would need additional attention. The resulting power
levels (tens of kW) make it the only charged particle accelerator facility currently in the DOE complex
capable of large-scale isotope production using light-ion beams other than protons.

Beam-time at the 88-Inch cyclotron can be obtained either via purchase (=$1500/hour), or by merit-
based review provided by a local advisory committee. Approximately 60% of the beam-time is reserved
for nuclear science research. Individuals interested in performing experiments at the 88-Inch should
contact the user liaison, Mike Johnson (MBJohnson@lbl.gov), the cyclotron Larry Phair
(LWPhair@Ibl.gov) or the scientific director Paul Fallon (PFallon@Ibl.gov).

Instrumentation and facility layout

The 88-Inch Cyclotron is host a number of unique instruments and capabilities. These include three
electron cyclotron resonance (ECR) ion sources, featuring VENUS, the most powerful superconducting
ECR ion source in the world. These ECRs provide a range of highly-charged ions up to and including
fully-stripped U%*. The cyclotron also plays host to the Berkeley Gas-filled Separator (BGS). The BGS
provides rejection of beam-like and fission fragment nuclides formed in heavy-ion reactions in excess
1:10' for use in heavy-element research. The back end of the BGS can accommodate an array of
pixelated Micron “W2” Si detectors three “Clover” HPGe detectors for use in alpha- and gamma-decay
spectroscopy of evaporation product nuclides. Alternatively, the back end of the BGS can be coupled
to the FIONA ion trap which can isolate a single charge-to-mass ratio fragment.

The 88-Inch also has a mobile data acquisition system that can be used to with the three in-house
“clover” HPGe detectors and an array of 6-10 modular neutron detectors. LBNL is also a member of the
clovershare program, providing access to an additional 6-10 detectors on a by-arrangement basis.
Lastly, LBNL has a pair of well-calibrated shielded HPGe detectors located outside of the experimental
caves that can be used to measure activities off-line for cross section or decay spectroscopy
measurements.

The figure below shows the layout of the experimental capabilities at the cyclotron.
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Figure 16. Experimental Cave Beam Lines Layout

The High Flux Neutron Generator at UC-Berkeley

In addition to the 88-Inch cyclotron, nuclear researchers working in Berkeley can utilize the High Flux
Neutron Generator (HFNG) on the UC-Berkeley campus. The HFNG is a dual-ion source-based DD
neutron generator located in a 62”-thick concrete enclosure in Etcheverry Hall on the UC-Berkeley
campus. Collaborative research, including radioactive material transport between LBNL and UC-
Berkeley is facilitated by the designation of Etcheverry Hall as a location on the LBNL campus.

The HFNG uses a self-loading titanium-coated copper target to provide continuous operation. Voltages
from 80-120 keV are used to accelerate beams from 1-50 mA onto the production target. The target is
designed to allow the placement of samples in the center of the generator less than 5 mm from the DD
reaction surfaces. In addition, the HFNG can be positioned to allow the extraction of an external beam
of monochromatic 2.45 MeV neutron beam for use in prompt (n,n) and (n,n’y) measurements. The
HFNG currently runs at a total neutron output of 10® n/s into 41t solid angle, but fluxes up to several 10°,
to 10" could be achieved if deemed necessary.
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Figure 17. The HFNG facility layout, including the external beam-line. The inset shows a photo of the
HFNG with its ion sources energized.

Equipment at the HFNG several HPGe, X-ray and proton-recoil detectors. Researchers can also utilize
the adjacent teaching laboratories with on a by-arrangement basis The HFNG is runned and maintained
by students in the UC-Berkeley department of nuclear engineering. For information about running at the
HFNG researchers should contact Lee Bernstein (labernstein@berkeley.edu).

The Berkeley Accelerator Space Effects (BASE) facility

In addition to the basic nuclear science research the 88-Inch cyclotron is host to the
Berkeley Accelerator Space Effects (BASE) Facility. BASE provides well-
characterized beams of protons, heavy ions, and other medium energy particles
which simulate the space environment. The primary capability employed at BASE is
a “cocktail” heavy-ion beam capable of performing damage and electronic upset
studies over a range of thicknesses in materials. The table 4 lists the properties and
constituents of these cocktail beams.

Table 4. BASE Facility Standard “Cocktail” lon List. Standard “cocktails” (of species with similar charge-
to-mass ratios) are listed along with their energy loss and range values.

lon Cocktail Energy Z A Chg. % Nat. LETO0° LET 60° Range (Max)

(AMeV)  (MeV) State Abund. (MeV/mg/cm2)  (um)
B 45 4490 5 10 +2 19.9 165 3.30 78.5
N 45 6744 7 15 +3 0.37 3.08 6.16 67.8
Ne 4.5 8995 10 20 +4 90.48 577 11.54 53.1
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Si 45 139.61 14 29 +6 4.67 9.28 18.56 52.4
Ar 45 180.00 18 40 +8 99.6 1432 28.64 48.3
V 45 221.00 23 51 +10 99.75 21.68 43.36 42.5
Cu 45 301.79 29 63 +13 69.17 29.33 58.66 45.6
Kr 4.5 378.11 36 86 +17 17.3 39.25 78.50 42.4
Y 45 409.58 39 89 +18 100 4558 91.16 45.8
Ag 45 499.50 47 109 +22 48.161 58.18 116.36 46.3
Xe 45 602.90 54 136 +27 8.9 68.84 137.68 48.3
Tb 45 72417 65 159 +32 100 7752 155.04 524
Ta 4.5 805.02 73 181 +36 99.988 87.15 174.30 53.0
Bi* 4.5 904.16 83 209 +41 100 99.74 199.48 529
B 10 108.01 5 11 43 80.1 0.89 1.78 305.7
o 10 18347 8 18 45 0.2 219 438 226.4
Ne 10 21628 10 22 +6 9.25 3.49 6.98 174.6
Si 10 2901.77 14 29 48 4.67 6.09 12.18 141.7
Ar 10 400.00 18 40 +11 99.6 9.74 19.48 130.1
v 10 508.27 23 51 +14 99.75 1459 29.18 113.4
Cu 10 659.19 29 65 +18 30.83 21.17 4234 108.0
Kr 10 88559 36 86 +24 17.3 30.86 61.72 109.9
Y 10 928.49 39 89 +25 100 34.73 69.46 102.2
Ag 10 1039.42 47 107 +29 51.839 48.15 96.30 90.0
Xe 10 1232.55 54 124 +34 0.1 58.78 117.56 90.0
Au* 10 1955.87 79 197 +54 100 85.76 17152 105.9
He* 16 43.46 2 3 +1 0.000137 0.11 0.22 1020.0
N 16 233.75 7 14 45 99.63 116 2.32 505.9
O 16 27733 8 17 +6 0.04 154 3.08 462.4
Ne 16 321.00 10 20 +7 90.48 239 4.78 347.9
Si 16 452.10 14 29 +10 4.67 456 9.12 274.3
Cl 16 539.51 17 35 +12 75.77 6.61 13.22 233.6
Ar 16 642.36 18 40 +14 99.600 7.27 14.54 255.6
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vV 16 832.84 23 51 +18 99.750 10.90 21.80 225.8
Cu 16 1007.34 29 63 +22 69.17 16.53 33.06 190.3
Kr 16 122554 36 78 +27 0.35 24.98 49.96 165.4
Xe* 16 1954.71 54 124 +43 0.1 49.29 98.58 147.9
N 30 425645 7 15 47 0.370 0.76 1.52 1370.0
O 30 49022 8 17 +8 0.04 0.98 1.96 1220.0
Ne 30 620.00 10 21 +10 0.27 148 2.96 1040.0
Ar 30 1046.11 18 36 +17 0.337 4.87 9.74 578.1

Additionally, BASE is unique in having beams parallel enough to support microbeams, used to probe
increasingly miniaturized semiconductor parts with new modes of failure. The National Security Space
(NSS) community and researchers from other government, university, commercial, and international
institutions use these beams to understand the effect of radiation on microelectronics, optics, materials,
and cells. Space missions utilizing the BASE Facility include Voyager, the Space Shuttle, Solar Dynamics
Observatory, Mars Spirit and Opportunity rovers, Galileo (Jupiter), Cassini (Saturn), and the new James
Webb Space Telescope, currently preparing for launch in 2018.

References

1. http://cyclotron.lbl.gov/

2. D. Leitner, C. M. Lyneis, T. Loew, et al., Rev. Sci. Instrum. 77, 03A303 (2006).
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include High Purity Germanium (HPGe) gamma- and X-ray spectrometers, alpha spectrometers and
counters, and beta counters, operate 24x7x365, and perform more than 70,000 measurements annually.
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Contact person: LANSCE User Office;
lansce-user-office@lanl.gov ; +1 505 665
1010

Prepared by Ron Nelson & Steve Wender

The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-
energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight
paths at the Lujan Center (Target-1), and a proton reaction area (Target-2). The neutron beams
produced at the WNR Target 4 complement those produced at the Lujan Center because they are of
much higher energy and have shorter pulse widths. The neutron sources are driven by the 800 MeV
proton beam of the LANSCE linear accelerator or linac. Proposals for beam time at the neutron
production targets, Blue Room, and proton radiography facilities may be submitted for open research or
proprietary work. See http://lansce.lanl.gov “Facilities” and “User Resources” tabs for details on the
facilities and proposal submission.

Neutron beams with energies ranging from approximately 0.1 MeV to greater than 600 MeV are
produced in Target-4. The Target-4 neutron production target is a bare unmoderated tungsten cylinder
that is bombarded by the 800 MeV pulsed proton beam from the LANSCE linear accelerator and
produces neutrons via spallation reactions. Because the proton beam is pulsed, the energy of the
neutrons can be determined by time-of-flight (TOF) techniques. The time structure of the proton beam
can be easily changed to optimize a particular experiment. Presently, Target-4 operates with a proton
beam current of approximately 4 pA, 1.8 us between pulses and approximately 35,000 pulses/sec.
Target-4 is the most intense high-energy neutron source in the world and has 6 flight paths instrumented
for a variety of measurements.

In the Target-2 area (Blue Room), samples can be exposed to the 800 MeV proton beam directly from
the linac, or with more peak intensity with a beam that has been accumulated in the Proton Storage Ring
(PSR). Although the total beam current is limited by the shielding in Target-2, the PSR beam provides
significantly greater peak intensity than the direct beam from the accelerator. Target-2 is used for
proton irradiations and hosts the Lead Slowing-Down Spectrometer (LSDS). Proton beams with
energies as low as 211 MeV can be transported to Target-2.

At present there are three flight paths at the Lujan Center that are devoted to Nuclear Science research.
Other flight paths are devoted to Materials Science research. These flight paths view a moderated
target with both water and liquid hydrogen moderators, and have useful neutron fluxes that range from
sub-thermal to approximately 500 keV.

With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt
to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity
characteristics. The facilities, instruments and research programs are described briefly below.

Overview of the Flight Paths

Each Flight Path name identifies the target and the direction of the flight path (FP) with respect to the
proton beam. For example, 4FP15R is a FP (flight path) that starts at Target 4 and is 15 degrees to the
right (15R) of the incoming proton beam. Figure 18 shows the layout of the flight paths.

The neutron fluxes available are shown in Figure 19.
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4FP90L is the location of the Time-Projection Chamber (TPC) that is used to measure fission
cross sections to high precision.

4FP30L The ICE House is ~20 m from the production target and is used by industry, universities,
and national laboratories for semiconductor electronics testing (SET) to measure neutron-
induced failures in devices.

4FP15L has two experimental locations available at distances of 22 and 90 meters from the
spallation target. Primarily used for the Chi-Nu experiments at 22 meters. Chi-Nu is measuring
the fission neutron output spectrum. A low-neutron-return room is below the 22 m station. The
90 m flight path is used mostly for neutron detector development and calibration

4FP15R is a general purpose flight path that is now being used for neutron radiography, the
SPIDER detector (fission product yields) and the low-energy (n,z) (LENZ) experiment.

4FP30R or ICE Il station at 15 m is primarily used by industry, universities, and national
laboratories for SET.

4FP60R The 20 m station is used for gamma-ray spectroscopy and other experiments. An
irradiation station using peripheral beam is available at 10 m.

Target 2 (Blue Room)

Target 2 is used for proton beam irradiation experiments. Beam is available directly from the
linac or from the proton storage ring (PSR). Present and past experiments include:

A lead slowing-down spectrometer (LSDS) provides very large effective neutron fluxes in the
energy range from ~1 eV to ~10 keV with low neutron energy resolution for measuring cross
sections with ultra-small samples.

Pulsed beam experiments to simulate intense neutron environments for semiconductor
certification.

Proton irradiation of detectors and radiation-hardness testing of components for the Large
Hadron Collider at CERN.

Measurement of radio-isotope production cross sections for the Isotope Production Facility (IPF)
at LANSCE (see the IPF contribution to this report).

Target 1 Lujan Center Flight Paths

FP5 is a water-moderated general purpose flight path that is currently being used for neutron
radiography. It has two detector areas: one at approximately 10m in ER-1 and the second at a
distance of 60 m that is reached from the Target-4 yard. The 60 m station has a large field of
view.

FP14 is the location of the Detector for Advanced Neutron Capture Experiments (DANCE). It
consists of a 4-1t array of BaF, scintillators designed for neutron capture measurements on sub-
milligram and radioactive samples. These measurements support radiochemical detector cross
section measurements for Defense Programs, and experiments for nuclear astrophysics.

FP12 is a cold-moderator flight path currently used by the SPIDER spectrometer to measure
fission fragment yields. FP12 has a neutron guide.

Other Experimental Areas

Target-4 East Port provides a mechanism for irradiating samples in the intense broad spectrum neutron
field at 0.7 m from the Target-4 neutron production target. Samples can be moved from the irradiation
position to a storage position by remote control.

Proton Radiography Facility The pRad facility provides fast imaging of static and dynamic systems.
See http://lansce.lanl.gov/pRad/index.shtml for more information.
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Ultra-Cold Neutron (UCN) Facility State-of-the-art UCN Facility See
http://lansce.lanl.gov/UCN/index.shtml
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Michigan State University,
National Superconducting
Cyclotron Laboratory

Prepared by Sean Liddick

General Description: University-based,
national user facility focused on basic
research in low-energy nuclear science,
accelerator science, fundamental symmetries
and societal applications.

Accelerators: 2 coupled cyclotrons, one
linear reaccelerator

Beams: Over 1000 rare isotopes produced
both neutron-rich and neutron deficient.

¢ Primary beam rates are available
from:
http://www.nscl.msu.edu/users/beam

s.html
¢ Secondary beams rates can be
calculated with LISE available at:
https://groups.nscl.msu.edu/a1900/s
oftware/lise++/
Beam time is allocated by PAC.

Experimental focus (relevant to
applications):

e Beams of most isotopes of data
interest

¢ Decay spectroscopy

o Neutron capture rate inference on
short-lived rare isotopes

e |sotope Harvesting

Present detector array capabilities
(relevant to applications):

¢ Decay spectroscopy station

e Total absorption gamma-ray
spectrometer

e Proof-of-principle isotope harvesting
station

Contact person: Sean Liddick

Facility provides unique access to rare isotopes over a broad energy range including thermal, few
MeV/nucleon to ~100 MeV/nucleon. It includes a large complement of state-of-the art experimental
equipment for study of nuclear properties and reactions.
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HATIONAL SLUPERCONMODUCTING
CTCLOTRON LARCEATORY

Figure 20. General layout of experimental equipment at NSCL for usa with fast, stopped, and
reaccelerated beams. See hittp//wivw. nsclmsu,edi/vsers/equipment himl for mone detail.

Decay Spectroscopy

Motivation: Decay spectroscopy provides a number of quantities of intarast for the low-energy nuclear
scienca community such has half-lives, delayed neutran-branching ratios, and delayed gamma-ray
transitions, Absolute gamma-ray intensities can be obtained based on lon-by-ion counting of the
radioactive ion beam and the beta-delaved gamma rays are used 1o alucidate the [ow-anergy lovel
scheme of the daughter nucleus. High- and low-resclution delayed gamma-ray studies can be used to
infer average slectron and gamma-ray energies emitted following beta decay,

Datection System: The detection system consists of either a central S or Ge detector for lon and beta-
decay electron detaction [1.2]. Multiple ancillary amays existed for delaved amissions inchuding gamma-
rays and neutrons [3,4,5,6)

Recent Resuits: Conversion electron emission from an [somer state was monitared in ™Ni to extract EO
menopele transition strengths [7], Decays of various neutron-rich isctopes were studied to determing
low-gnargy level schemes and identify gamma and beta-emitting isomeric states [8]. Total absomption
spectroscopy addressed deficiencies in previously reported decay scheme of ™Ga into "Ge.

References

1. *“Bala counting system for fast fragment beams”, J. | Prisciandaro ef af., Nucl. Instrum. Meth.
Phys. Res. A 505, 140 (2002),

2. "High Efficiency Beta-decay Spectroscopy using a Planar Garmanium Double-Sided Sinp
Detector”, M. Larson et ai., Nucl. Instrum, Methods in Phys, Res, A, 727, 59 (2013).

3. "Thirty-two-fold segmented germanium detectors to identify gamma rays from infermediafe-
energy exolic beams”, W.F. Mueller ef al,, Nugl, Instrum. Meth, in Phys, Res, A, 466, 482 [2001).
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St. Louis are working with NSCL researchers to develop systems and to solve problems associated with
harvesting the unused isotopes at now at the NSCL, and eventually FRIB, for off-line experiments.

Detection Systern: The team from Hope College designed and built an end-station to fill, irradiate and
collect samples of 100 milliliters of water. The collection system does not have any metal parts in
contact with the water so that only metallic elements delivered by the beam will remain in the water. The
group from Washington University in St. Louis developed chemical processing schemes to purify the
various elements, removing all the unwanted activities that might be present, and to chemically attach
the collected radioisotopes to biological molecules for testing. The next step in this work is the
construction of a new system to collect long-lived isotopes from the cooling water in the NSCL A1900
beam blocker. The beam blocker is at the exit of the first large bending magnet of the fragment
separator and is often used to intercept the unused primary beam.

Recent Results: The first experiments produced and extracted the relatively easy isotope **Na.
Subsequently ®Cu was extracted from a relatively pure sample and then this isotope was extracted from
a very contaminated sample similar to what would be present in the NSCL and FRIB beam dumps. The
¥’Cu was used to create a radioactive antibody that was injected into mice and the distribution of the
activity in different biological materials was determined.

References

1. Design and construction of a water target system for harvesting radioisotopes at the National
Superconducting Cyclotron Laboratory, A. Pen, et al., Nucl. Instrum. Meth. A 747, 62 (2014).

2. Feasibility of Isotope Harvesting at a Projectile Fragmentation Facility: ®Cu, T. Mastren, et al.,
Nature/Scientific Research 4, 6706 (2014).
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medical, industrial, and research isotope production; research on neutron damage to materials; and
neutron activation analysis to examine trace elements in the environment. Additionally, the building

houses a gamma irradiation facility that uses spent fuel assemblies and is capable of providing high
gamma doses for studies of the effects of radiation on materials.

Neutron Scattering

Neutron scattering can provide information about the structure and properties of materials that cannot
be obtained from other techniques such as x-rays or electron microscopes. There are many neutron
scattering techniques, but they all involve the detection of particles after a beam of neutrons collides
with a sample material. HFIR uses nuclear fission to release neutrons which are directed away from the
reactor core and down four steady beams. Three of these beams use the neutrons as they are created
(thermal neutrons), and one beam moderates (cools and slows) the neutrons with supercritical hydrogen,
enabling the study of soft matter such as plastics and biological materials. The thermal and cold
neutrons produced by HFIR are used for research in a wide array of fields of study, from fundamental
physics to cancer research. The high neutron flux in HFIR produces the world's brightest neutron
beams, which allow faster and higher resolution detection.

Irradiation Materials Testing

HFIR provides a variety of in-core irradiation facilities, allowing for a wide range of materials experiments
to study the effects of neutron-induced damage to materials. This research supports fusion energy and
next-generation nuclear power programs, as well as extending the lifetime of the world's current nuclear
power plants. HFIR has the unique ability to deliver the highest material damage in the

The HFIR Gamma Irradiation Facility is designed to expose material samples to gamma radiation using
spent HFIR fuel elements. The facility offers high dose rates and custom sample environments for the
most innovative research.

Isotope Production

Isotopes play an extremely important role in the fields of nuclear medicine, homeland security, energy,
defense, as well as in basic research. HFIR's high neutron flux enables the production of key isotopes
that can not be made elsewhere, such as ?**Ca, "°Se, and ®Ni, among others. Additionally, HFIR will
produce **Pu, which is used to power NASA's deep space missions.

Neutron Activation Analysis

Neutron Activation Analysis (NM) is an extremely sensitive technique used to determine the existence
and quantities of major, minor and trace elements in a material sample for applications including forensic
science, environmental monitoring, nonproliferation, homeland security, and fundamental research.
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procuction terget 29 ([lusratad in Flgure 20, To cowver he wide renga of reutron energhes foled
nuhedar reactor @nd ather criticality appllcatlons, measuremem capabiiles fiom thermal to 20 Moy ware
devetopad wih a lecua an the rescnence reglan. The measuremen capabiity mauis i showm in Flguea
20 a3 & lunction of ncidert neuTron enery.

Figurs 23. The spacious LINAC Largs moom.

108 Mieehsar Dala Mewds Sand Capabllies o Apgpicaton s



Scattering | gg| [ sy Dwecks T[ 0
ETT| Mutiplicity Detector Hﬂb
C3pure | | gaTPAC (G, it Dt
BaT Muliplicity Detector
_EI'T Multiplicity Detector
Transmission B[
PAC Ui Detoctor |
BBT mm%
5em ETT
B s e T e SR T S BT
10° 107 10" 10° 10' 10° 10° 10° 10° 10° 10
Neutron Enargy (V]
m-m‘n‘-n-ﬁm

BET - Eere Bonswsy Tompal
BT- Barw Targol on Axa
FAL - Pachian Tarom.

Flguwrs X The Gzt LINAC Cenler cgpebdty maine for reutron mcheeess ragEnng meagusmenls A
kel nesubrmen pegttening eysdam 9 i densghopment

Elalow v provide shorl descnplions of curmar sxparmertal aslops.

Neutron Transmission

Ml mn ranammeinn gepenmesnts nehbete 2eeprgl aetups iecatead gt diferend Aighl path slatons, whieh
ugs driferert cembinelpng of neviron producton lergels and delgetor bpes Lo optimiee tha
rmemEurarmEnia for 8 gresn modanl neutren sy mga

Tharmal mauton irangmiission [0.007-20 oY) usea p Li-Class defacior scaled &1 15 m faghipath and
raiArcn produchon fram the Enhanced Thenmal Teaga.

Epfithermal mavtron ransmriasion (1 &V-10 kel uzas g Li-Cleas dedactor locaed & 35 m gl peth
salhon and neunred preduciion from the Bare Bounce Targed.

Mid Ermrgy reviron transmiasfon (S kel -1 MeV) u=as an amay of U-Glays deteciorn ocared gl tha
100 rm fagll path suEbon and newtren produston o s Pacman Teeged.

Higir emirgy neolnod Drecamisaiodn [0.24=20 Mav), tesers an aray of Bkl scintllators caled &t 250 m
fhgit path statken erd neuinen production rom tn Bem Taman,

N0 Nl Data Nawds and Capablibes o Appics bons



Neutron Capture
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Faet Neutron Scattering
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in both theta and roll angle. Positioning and dosimetry are carried out by our custom-made SEUSS
software. A degrader foil system makes it possible to change beam energy without cyclotron retuning
or target rotations.

Our 15 MeV/nucleon (He, N, Ne, Ar, Cu, Kr, Ag, Xe, Pr, Ho, Ta, Au) series allows testing with Linear
Energy Transfer (LET) from 1 — 93 MeV/mg/cm? in Si. Our 25 MeV/nucleon (He, N, Ne, Ar, Kr, Ag, Xe)
and 40 MeV/nucleon (N, Ne, Ar, Kr) series offer heavy ions for long range testing from 286 pm to 2.3 mm
in Si. Typical beam time changes are between 30 minutes to 1 hour.

The beam flux is adjustable between 1E1 - 2E7 ions/cm?/sec. A higher flux of 1E10 protons/cm?/sec is
obtainable from the K150 cyclotron. The beam spot size is selectable between 0.1 - 2 in. in diameter.
Beam uniformity is typically better than 90%.

The beam uniformity and dosimetry are determined by an array of five plastic scintillators coupled to
photo multiplier tubes. These scintillators are located in the diagnostic chamber adjacent to and
upstream from the target area. The control software determines beam uniformity, axial gain, and beam
flux (in particles/cm?/sec), based on scintillator count rates. The results are displayed and updated once
per second.
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Prepared by Werner Tornow

LEBAF: “Low-Energy Beam Accelerator
Facility” utilizing the Atomic Beam Polarized
lon Source for delivering polarized (or
unpolarized) hydrogen or deuterium beams
which can be accelerated from 60 keV to 680
keV using a 200 kV mini-tandem in
conjunction with a scattering chamber
operated at 200 kV.

l.x=50 pA of positive ions with energies
between 60 and 120 keV and I,,,,=10 pA for
negative ions at the higher energies.

Beam time cost: $150/hour.

FN-Tandem: 10 MV tandem accelerator with
ion sources to accelerate p, d, °*He and “He
ions. Pulsed beam operation (1.5 to 3 ns time
resolution) at 2.5 MHz or reduced repetition
rate.

e | .=10pAdcand 1 pA pulsed for
protons and deuterons and

e | =2 pAdc & 0.2 pA pulsed for *He
and “He.

e Polarized proton and deuteron beam
intensities: |,=2 YA dc.

Secondary beams: Mono-energetic or quasi
mono-energetic neutrons in the 0.1 MeV to 35
MeV neutron energy range using the
reactions ’Li(p,n)’Be, *H(p,n)*He, 2H(d,n)*He
and °H(d,n)*He with neutron fluxes up to 10®
n/(cm? sec) at 1 cm distance from the neutron
source in dc operation and up to 3 x 107
n/(cm?sec) in pulsed mode operation.

Collimated neutron beam with adjustable
cross sectional area (up to 6 cm in diameter)
and 10* n/(cm? sec) in the 4 to 20 MeV
neutron energy

Experiments in support of fundamental
physics applications include neutron-induced
background reactions relevant to neutrino-less
double-beta decay and dark-matter searches.

Contact person: C.R. Howell

An important part of the applied research program is conducted in collaboration with scientists from
LANL and LLNL and focuses on neutron- and gamma-ray induced reactions on actinide nuclei,
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