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Abstract 

Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that acquired 

multi-drug resistance and cause infections that are effectively untreatable present a serious 

threat to public health. The problem is broadly recognized and tackled at both the fundamental 

and applied levels. This article summarizes current advances in understanding the molecular 

bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle 

in discovery and development of antibiotics effective against such pathogens. Gaps in 

knowledge and specific strategies to break this barrier and to achieve potent activities against 

difficult Gram-negative bacteria are also discussed. 
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Gram-negative pathogens and challenges of antibiotic discovery  

Drug resistance presents an ever-increasing threat to public health and encompasses all major 

microbial pathogens and antimicrobial drugs 1, 2. Some pathogens have acquired resistance to 

multiple antibiotics and cause infections that are effectively untreatable. Among pathogenic 

Gram-negative Enterobacteriaceae, Acinetobacter and Pseudomonas, species have emerged 

that are resistant to all good antibiotics 3. One of the most troubling event is the worldwide 

spread of carbapenem-resistant Klebsiella spp.4. Infections caused by these resistant variants 

have the mortality rate of up to 50%. By 2013, 17% of Escherichia coli infections became multi-

drug resistant. In some regions, fluoroquinolones are no longer on the lists of recommended 

treatment options5, 6. Such environmental species as P. aeruginosa, Stenotrophomonas 

maltophilia, Burkholderia cepacia complex (Bcc) and A. baumannii are intrinsically resistant to 

antibiotics. Among these species, P. aeruginosa is a common nosocomial pathogen, the 

causative agent of many life-threatening infections and the major reason for the shortened life 

span of people with cystic fibrosis. P. aeruginosa infections can be successfully treated by only 

a few specific representatives of fluoroquinolones, β-lactams, or aminoglycosides. However, 

even these few antibiotics fail against antibiotic resistant P. aeruginosa isolates. Thus, there is a 

strong need for new therapeutic options, particularly those directed against multi-resistant 

Gram-negative bacteria.  

The discovery of new antibiotics effective against Gram-negative bacteria is a major 

challenge, primarily because of the low hit rate during screening of compound libraries, which is 

up to 1000 fold lower in P. aeruginosa than against Gram-positive bacteria 7. The major reasons 

for such low hit rate are the low permeability barrier of two-membrane cell envelopes of Gram-

negative bacteria and insufficient chemical diversity of compound libraries to probe this barrier. 

Gram-negative bacteria vary significantly in their permeability to antibiotics, but one could 

expect that the basic principles established by extensive studies of E. coli would apply equally to 

such “impermeable” species as Burkholderia spp or Pseudomonas spp. It remains unclear 

however, whether permeation rules8, in analogy with Lipinski’s rules9, if such existed and 

applied to structure-activity relationships or to filtering compound libraries, would yield 

compounds that permeate all Gram-negative barriers. Here, we briefly review the current state 

of understanding of the molecular bases of low permeability barriers of problematic Gram-

negative pathogens and the current efforts to define physico-chemical properties that enable 

uptake of various compounds into bacterial cells.  
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The two-membrane barrier of Gram-negative bacteria 

Susceptibility of Gram-negative bacteria to antibiotics is defined by two opposing fluxes across 

the two membranes of these species (Fig. 1) 10-12. The influx and uptake of antibiotics are 

significantly slowed down by the elaborate outer membrane (OM). This membrane is an 

asymmetric bilayer of lipopolysaccharides (LPS) and phospholipids, into which non-specific 

porins and specific uptake channels are embedded 13, 14. The LPS-containing bilayers are more 

rigid than normal bilayers, slowing passive diffusion of hydrophobic compounds, whereas 

narrow pores limit by size the penetration of hydrophilic drugs. The slow influx of drugs across 

the OM is further opposed by active efflux mediated by multidrug efflux transporters. Multidrug 

efflux transporters are structurally and functionally diverse with some transporters pumping 

antibiotics across the inner membrane and reducing concentrations of antibiotics in the 

cytoplasm, whereas others expelling antibiotics from the periplasm into the external medium. 

The later transporters confer resistance to antibiotics by associating with the periplasmic and 

OM accessory proteins to form trans-envelope complexes 15, 16. These complexes enable 

conversion of the energy stored in the inner membrane into active efflux of antibiotics across the 

OM. Efflux of antibiotics across the inner membrane acts synergistically with the trans-envelope 

efflux and, as a result, inactivation of efflux pumps leads to dramatic sensitization of Gram-

negative bacteria to antibiotics.  The clinical relevance of the multi-drug efflux of antibiotics has 

also been established. For example, in clinical isolates of E. coli and K. pneumonia, 

fluoroquinolone resistance is linked to overproduction of AcrAB-TolC efflux pump, whereas 

multiple efflux pumps confer antibiotic resistance in P. aeruginosa, Burkholderia spp. and A. 

baumannii 17-20.	
  The interplay between uptake and efflux define the steady-state accumulation 

level of antibiotics at targets. 

 

Composition and properties of LPS-containing bilayers.  

Despite similar organization, the outer membranes of Gram-negative bacteria differ dramatically 

in their permeability properties. These differences are largely attributed to differences in 

composition and permeability properties of general porins12, 14 (see also below), but the 

chemical structure and properties of LPS-containing bilayer could also play an important role. 

Typical LPS comprises a basic lipid A structure containing an N- and O-acylated diglucosamine 

bisphosphate backbone. Chemical variations of lipid A among species involve the number of 

primary acyl groups and the types of fatty acids substituting the primary and secondary acyl 

groups (Fig. 2). Escherichia lipid A is most frequently described as a hexaacylated molecular 



5	
  
	
  

species although penta-, and tetra-acylated molecules are also present in varying amounts 
21.  Most of the laboratory-adapted strains of P. aeruginosa synthesize a penta-acylated (75% of 

the molecules) LPS, with some proportion made as a hexa-acylated LPS (25% of the 

molecules)22, 23. Growth conditions, notably magnesium levels, can affect the acylation pattern 

of P. aeruginosa lipid A. Among  isolates from chronically infected CF patients, which are known 

to be mutants generally unable to synthesize O-antigen side chains, a hexa-acylated LPS form 

predominates, although a hepta-acylated lipid A has been isolated, containing an additional 

palmitoyl (C16:0) group linked to the primary 3-hydroxy decanoic acid group at position 3′ of 

glucosamine 224, 25. The hexa- and hepta-acylated lipid A moieties also contain cationic 4-

amino-4-deoxy-L-arabinose sugars. Similarly, the major lipid A species in Burkholderia spp. (B. 

cepacia, B. mallei, B. pseudomallei) consists of a biphosphorylated disaccharide backbone, 

which is constitutively modified with 4-amino-4-deoxy-L-arabinose and penta-or tetra-acylated26. 

Lipid A of A. baumannii is often modified by phosphorylethanolamine and an unusual sugar 

galactosamine and hexa- and hepta-acylated 27 (Fig. 2). 

 Early studies showed that the permeability of E. coli and P. aeruginosa OM to hydrophobic 

steroid probes is similar, suggesting that the differences in the lipid A acylation state and the 

length of fatty acids do not affect significantly the OM permeability to small planar molecules28, 

29. On the other hand, amphiphilic and charged molecules are likely to interact with the 

backbone of lipid A and LPS cores and their permeation could be sensitive to modifications of 

both the lipids and polysaccharides of the LPS-containing bilayers. 

 LPS cores of enterobacteria typically consist of 8–12 often branched sugar units 30. The 

sugar at the reducing end is always α-3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) (2→6)-linked 

to lipid A. At the C-4 position of Kdo, there may be one or two Kdo groupings. Three L-glycero-

D-manno-heptose residues are also (1→5)-linked to the first Kdo. A heptose residue may be 

substituted by a phosphate, pyrophosphate, or phosphorylethanolamine group, or by another 

sugar to make up the inner core. In Pseudomonas spp. cores, one often finds an alanyl group 

substituting a GalN residue, and a carbamoyl group on heptose I 31. P. aeruginosa PAO1 

serotype O5 and its two rough-type mutants share these characteristics, but have in addition 

three phosphomonoester groups on their heptose31, 32. It was suggested that these groups play 

a role in interactions with antibiotics. Some Acinetobacter and Burkholderia spp. produce LPS 

cores devoid of heptose. B. cepacia and A. haemolyticus synthesize and incorporate the Kdo 

analogue D-glycero-D-talo-oct-2-ulosonic acid (Ko)33-35   
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 The O-chains determine the specificity of each bacterial serotype. A combination of 

monosaccharide diversity, the numerous possibilities of glycosidic linkage, substitution and 

configuration of sugars, and the genetic capacities of the diverse organisms, have all 

contributed to the uniqueness of the great majority of O-chain structures.  

 It is broadly accepted that LPS cores and lipid A of enterobacteria and P. aeruginosa are 

modified in response to specific growth conditions and stresses (Fig. 2) 36-38. These 

modifications are critical under the low magnesium ion conditions that destabilize the LPS leaflet 

and increase permeability of the OM, as well as in the development of resistance to cationic 

peptides including polymixins36, 39. However, in Acinetobacter spp. and Burkholderia spp. some 

of the modifications are constitutive (Fig. 2). How the phosphate, pyrophosphate, or 

phosphorylethanolamine groups on Kdo and heptoses, terminal sugars, amino acid and other 

groups occurring non-stoichiometrically correlate with specific growth conditions of these 

bacteria remains unclear. Even less is known how these modifications affect the packing and 

rigidity of the LPS layer and its interactions with proteins and small molecules in the context of 

the outer membrane.  

 The recent advances in molecular dynamics (MD) simulations of asymmetric bilayers 

containing LPS offer first glimpses into packing and dynamics of such structures40, 41. The inner 

leaflet of the outer membrane is composed of phospholipids and with the composition similar to 

that of the cytoplasmic membrane. Hence, the geometry of the LPS leaflet should match that of 

the phospholipid leaflet. Based on MD simulations LPS-containing bilayers appear to be more 

disordered and thinner than bilayers assembled from phospholipids only. Magnesium ions form 

a layer of ionic bonds with phosphoryl moieties of lipid A and the core and stabilize LPS 

molecules in the bilayers. Packing and rigidity of LPS bilayers are expected to affect permeation 

of amphiphilic and hydrophobic antibiotics. However, this picture remains incomplete because 

about 50% of the E.coli OM mass consists of protein and the OM resembles a LPS-protein 

aggregate. 

Outer membrane proteins and permeability.  

In E. coli, a few integral membrane proteins, such as OmpA and the general porins OmpF/C, 

are expressed at high levels (Table 1). Besides these, there are minor proteins whose synthesis 

in some cases is strongly induced when they are needed, such as specific porins (e.g. PhoE 

and LamB), TonB-dependent receptors (e.g. FhuA and FepA), components of several protein 

export systems, proteins involved in the biogenesis of flagella and pili, and enzymes (e.g. OmpT 

protease and phospholipase A14, 42. The permeability properties of E. coli membranes are 
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largely defined by general porins that have an exclusion limit at about 600 Da for OmpF. Most 

hydrophilic and amphiphilic antibiotics reach the periplasm through porins, whereas larger 

antibiotics, for example erythromycin or novobiocin are believed to cross the outer membrane 

through lipid bilayer by diffusion, which is expected to be slow14, 43.  

 The existing paradigm that only small molecules (MW ~600 Da) can cross the 

membrane by passive diffusion has recently been challenged by studies of CymA cannel from 

Klebsiella oxytoca44. CymA mediates diffusion of cyclodextrins with the diameter up to 15 Å by a 

novel mechanism, which involves a mobile N-terminal peptide acting as a periplasmic gate. 

Binding of the incoming substrate displaces the N-terminal constriction and allows diffusion of 

the bulky molecule without compromising the permeability barrier of the OM. One could imagine 

that antibiotics could be modified in a way to mimic the interactions of substrates with specific 

porins and facilitate their own diffusion across the OM.  

In addition, some leakage of large antibiotics is possible through export systems. E. coli 

cells lacking TolC channel, which is involved in efflux of antibiotics and export of proteins as a 

part of the type I secretion pathway, are less susceptible to vancomycin than the wild type cells 

suggesting some penetration of this ~1200 Da molecule through TolC 45, 46. Interestingly, this 

penetration requires the presence of active AcrAB transporter further suggesting that 

vancomycin slips through TolC when it is engaged by AcrAB pump (see also below). It is 

possible that permeation through other specific porins and TonB-dependent channels, the Bam 

complex responsible for the assembly of the outer membrane and at protein-LPS interfaces also 

contribute to the intracellular accumulation of antibiotics.   

The overall compositions and architectures of Pseudomonas spp. and Acinetobacter 

spp. outer membranes are similar to other Gram-negative bacteria 47. About 160 various 

proteins are embedded into the asymmetric bilayer and play a role in generalized and specific 

uptake and export of various compounds and polypeptides. Unlike enterobacteria, outer 

membranes of Pseudomonads and Acinetobacter spp. do not contain general trimeric porins 

such as OmpF and OmpC of E. coli. It is estimated that the permeability of P. aeruginosa and A. 

baumannii outer membranes is only 1-8% of that E. coli and that non-specific “slow” porins OprF 

and OmpA, respectively, restrict access of molecules larger than ~200 Da, which is the size of a 

typical monosaccharide47-49. However, the growth rate of P. aeruginosa as well as of A. 

baumannii in a rich medium is comparable to that of E. coli and hence to sustain the high rate of 

metabolism, the net influx of nutrients is expected to be comparable for the three species. P. 

aeruginosa likely solves this conundrum of the low permeability of the outer membrane despite 
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the high nutrient uptake in several ways: (i) by secreting degrading enzymes that convert larger 

molecules into mono-units (pseudomonads are masters of biodegradation); (ii) by producing a 

larger fraction of substrate-specific channels (such as OprB and OprD); and (iii) by transiently 

producing large porins (i.e. an open conformer of OprF).  

OprF is one of the most abundant protein in P. aeruginosa with a copy number of 

200,000 per cell47. This protein plays a structural role by associating with LPS and 

peptidoglycan. P. aeruginosa mutants deficient in OprF synthesis have an almost spherical appearance, 

are shorter than wild-type cells and do not grow in low osmolarity medium. OprF also plays an 

important non-specific uptake function by existing in closed and open conformations (400 open 

conformers out of 200,000 total OprF)50, 51. Even a low copy number of open OprF could make a 

significant difference in net influx of small and large molecules. The open OprF is also likely to 

be a route for some of the hydrophilic antibiotics to get access to the periplasm. Much less is 

known about the major porin OmpA of A. baumannii. This protein has a permeability similar to 

that OprF and also plays both the structural and uptake roles in the outer membrane but 

whether or not it exists as different conformers is unclear52.  

In addition to “slow” porins, P. aeruginosa and A. baumannii use specific porins for 

uptake of small molecules. The large number of specific porins provides an advantage in 

nutrient deficient environments, but could be limiting in rich growth media. P. aeruginosa OprB, 

specific for glucose uptake and OprD, specific for the diffusion of basic amino acids and 

peptides, are best characterized. OprD is the primary channel for the entry of carbapenems 

across the OM, and the reduced expression or loss of OprD has been frequently observed in 

carbapenem-resistant clinical isolates. A. baumannii produces an OprD homolog CarO, but 

whether or not this porin provides a path for carpenems remains under debate53, 54.  

Interestingly, although the outer membrane permeability of A. baumannii to cephalothin 

and cephaloridine, measured in intact cells, was found to be about 100-fold lower than that of E. 

coli K-1252, these cells are more susceptible to such large antibiotics such as novobiocin and 

erythromycin28, 55. Many Acinetobater spp.  are capable of using long-chain hydrocarbons as 

growth substrates suggesting that their LPS-phospholipid bilayers of the outer membrane are 

more permeable for the hydrophobic molecules55. 

  Outer membranes of Burkholderia spp. contain a trimeric general porin Omp38 (OpcP), 

a homolog of E. coli OmpF56-58. The two studies of Omp38 permeability produced contradictory 

results: this porin is either similar to E. coli OmpF or by 1 or 2 orders of magnitude is less 

permeable than OmpF. Further studies are needed to analyze the properties of porins and outer 



9	
  
	
  

membranes for challenging Gram-negative bacteria such as A. baumannii and Burkholderia 

spp. 

 

Efflux pumps 

Efflux across the outer membrane. All Gram-negative bacteria examined so far contain at least 

one multidrug efflux transporter responsible for protection against a variety of antimicrobial 

agents 10, 11. AcrAB-TolC of E. coli, is the best characterized efflux pump and its homologs are 

broadly represented in enterobacteria and other Gram-negative species 16, 59-61. In this three-

component complex, AcrB is a proton-motive force driven transporter from Resistance-

Nodulation-Division (RND) superfamily of proteins, TolC is an outer membrane channel and 

AcrA is a periplasmic Membrane Fusion Protein (MFP). The three proteins form a trans-

envelope complex that expels multiple antibiotics from E. coli cells 62, 63. Extensive structural and 

functional analyses, including our own studies, showed that AcrB captures its substrates from 

the membrane and from the periplasm and expels them through TolC channel into external 

medium with the help of AcrA protein 64-66. At least two substrate binding sites in AcrB, the 

proximal and the distal, are both located in the periplasmic domains of the protein. Thus, unlike 

other typical secondary transporters, AcrB with the help of AcrA and TolC expels substrates 

across the outer membrane, while driven by the proton transfer across the cytoplasmic 

membrane. All RND-type multidrug efflux pumps are likely to share this mechanism but it 

remains unclear whether some of these protein complexes can actually pump substrates not 

only across the outer but also across the inner membrane, thus performing the trans-envelope 

efflux of antibiotics from the cytoplasm directly into the external medium. 

 Among AcrAB-TolC substrates are organic solvents, antibiotics, detergents, dyes and 

even hormones. Examination of chemical structures, as well as cocrystallization and molecular 

dynamics studies significantly advanced understanding of the molecular mechanism of 

multidrug recognition by AcrB67, 68. However, physicochemical properties of compounds that 

would distinguish AcrB substrates from non-substrates remain elusive. The current consensus 

is that AcrAB-TolC is the most effective against amphiphilic compounds that diffuse slowly 

across the OM. Recent attempts to determine the affinity of AcrAB-TolC toward its substrates 

demonstrated convincingly that minimal inhibitory concentrations of antibiotics is a very poor, if 

at all, measure of whether an antibiotic is a good or a bad substrate of an efflux pump 69. 

Several uptake assays were developed to analyze drug efflux with most of them informative in 

both E. coli and P. aeruginosa. However, further characterization of kinetic behavior of efflux 

pumps in the context of two-membrane envelopes of Gram-negative bacteria is needed.  
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 P. aeruginosa MexAB-OprM is a close homolog of AcrAB-TolC and the major “house-

keeping” efflux pump but it is not the only pump, which is expressed and contributes to antibiotic 

resistance in this species. The constitutive expression of MexAB-OprM confers intrinsic 

antibiotic resistance17-19, whereas elevated expression of MexXY-OprM is the major cause of 

aminoglycoside resistance in the absence of modifying enzymes 70. In addition, efflux pumps 

MexCD-OprJ and MexEF-OprN are often overproduced in multiresistant clinical isolates. 

MexEF-OprN and MexGHI-OprD play important roles in P. aeruginosa physiology and are 

involved in secretion of quorum sensing signals and biofilm formation 71-73. Furthermore, P. 

aeruginosa lacking either MexAB or MexHI is attenuated in animal models 73, 74.  

As in the case of P. aeruginosa, genomes of Burkholderia spp. and Acinetobacter spp. 

contain multiple operons encoding RND-type efflux pumps. Some of these pumps are 

constitutively expressed and confer intrinsic antibiotic resistance, whereas other are inducible 

and expressed under specific physiological conditions. AmrAB-OprA B. pseudomallei and its 

homologs in other Burkholderia spp. are largely responsible for intrinsic antibiotic resistance 75. 

AmrAB-OprA is closely related to MexXY-OprM of P. aeruginosa and in addition to various 

antibiotics, confers resistance to aminoglycosides. In the most comprehensive genetic analysis, 

deletion of the 16 putative RND operons from B. cenocepacia strain J2315 showed that these 

pumps play differential roles in the drug resistance of sessile (biofilm) and planktonic cells. 

These studies revealed that: (1) RND-3 (a homolog of AmrAB-OprA) and RND-4 play important 

roles in resistance to various antibiotics, including fluoroquinolones and aminoglycosides, in 

planktonic populations; (2) RND-3, RND-8, and RND-9 protect from the antimicrobial effects of 

tobramycin in biofilm cells; and (3) RND-8 and RND-9 do not play a role in ciprofloxacin 

resistance76.   

A. baumannii genome encodes seven RND-type efflux pumps. AdeIJK confers intrinsic 

resistance to various antibiotics including beta-lactams, fluoroquinolones, tetracyclines, 

lincosamides and chloramphenicol. In addition, AdeABC and AdeFGH are overproduced in 

clinical multidrug resistant isolates 77. Surprisingly, overproduction of AdeABC and AdeIJK could 

also alter bacterial membrane composition, resulting in decreased biofilm formation but not 

motility78. When expressed in E. coli at the levels comparable to those of AcrAB-TolC, AdeIJK 

but not AdeABC was more effective in removal of lipophilic β-lactams, novobiocin, and ethidium 

bromide78.  

Efflux across the cytoplasmic membrane. Highly abundant in genomes of various Gram-

negative bacteria, single component transporters extruding drugs from the cytoplasm into 
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periplasm remain understudied in clinical settings, in part because their drug efflux activities are 

important only in the context of intact OM and in the presence of active efflux across the OM. 

Inactivation of single component transporters that pump antibiotics across the inner membrane 

usually does not lead to significant changes in susceptibilities to antibiotics79. However, 

inactivation of multiple such pumps in E. coli is able to negate even the activity of AcrAB-TolC 
80.  

 Drug-specific transporters, such as TetA and similar, are also spread by plasmids and their 

contribution could be either additive or multiplicative depending on the combination of 

transporters expressed in host cells81. Experimental data and kinetic modeling showed that the 

co-expression of single- and three-component transporters leads to a synergistic loss of 

susceptibility to shared substrates81, 82. 

 Single component transporters can belong to one of the three protein families: Small 

Multidrug Resistance (SMR), Major Facilitator Superfamily (MFS) or Multidrug and Toxic 

Extrusion (MATE).  

E. coli SMR transporter EmrE, MFS MdfA and MATE transporter NorE are the best 

characterized representatives83-85. MdfA and NorE are commonly expressed in fluoroquinolone-

resistant isolates and contribute to resistance against these antibiotics18. Properties and 

mechanisms of these proteins are well-characterized but very little is known about their 

homologs in “difficult” Gram-negative pathogens.  

 

Approaches to bypass or break the permeability barrier 

In general, several approaches are envisioned how antibiotic penetration across the 

permeability barrier of Gram-negative bacteria could be improved but all these approaches 

suffer from intrinsic limitations that need to be further addressed for new therapeutics to 

emerge.  

Inhibition of new accessible targets  

The most traditional approach would be to identify new accessible targets on cell surfaces or in 

the periplasm that could be interrogated in drug discovery efforts. The major bottleneck here is 

that such targets are optimized over millions years of evolution to be resistant to antibiotics. On 

the other hand, recent breakthroughs in understanding the molecular mechanisms of cell 

envelope assembly promise that such goal is attainable, albeit through the more target oriented 

approach. LPS biosynthesis pathway has been considered a highly attractive target in Gram-
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negative bacteria for decades 7, 86. There are two drug candidates in clinical trials that target this 

pathway in P. aeruginosa 87. ACHN-975 (Achaogen) is a synthetic molecule that inhibits LpxC 

deacylase and POL7080 (Polyphor) is a synthetic peptide targeting the outer membrane protein 

LptD, involved in exporting LPS molecules across the periplasm. In addition to targeting 

essential enzymes, these inhibitors are expected to be synergistic with other antibiotics by 

enabling their permeation across the cell envelope. 

Identification of uptake pathways and the “Trojan Horse” approach.   

Another approach to bypass the permeability problem would be to achieve fast or facilitated 

uptake of an antibiotic. Such efficient uptake would negate the impact of efflux and increase the 

concentration of an antibiotic at the target. As discussed above, Pae and other “impermeable” 

Gram-negative species rely on specific porins and active uptake system to fulfil their metabolic 

demands and to maximize their growth rates. These pathways could be potentially exploited for 

delivery of antibiotics to their targets through the characterization of specificity determinants and 

modification of antibiotics to enable their uptake through such specific systems. The major 

limitation of such approach is a high frequency of resistance because the pathways are 

redundant and non-essential. However, identification and exploitation of uptake systems that 

are essential during establishment and proliferation of infections could facilitate the development 

of new therapeutics. 

The “Trojan Horse” approach, which is largely derived from siderophore- conjugated 

antibiotics, is an example of such a strategy. Siderophore-conjugated antibiotics can be actively 

transported into the periplasm and cytoplasm by various iron-uptake systems88. A common 

pathway of bacterial siderophore transport systems in Gram-negative bacteria has been 

identified 89. An outer membrane transporter binds the Fe3+-siderophore complex with an affinity 

in the range of 1 nM and translocates this complex across the outer membrane with the help of 

TonB protein anchored in the cytoplasmic membrane. This process is driven by the cytoplasmic 

membrane potential. The Fe3+-siderophore in the periplasm is bound by a binding protein that 

delivers its cargo via the cognate ABC transporter into the cytoplasm. Alternatively, the reduced 

iron is unloaded in the periplasm, as in the case of yersiniabactin and P. aeruginosa 

pyoverdines90. Hence, siderophore-conjugated antibiotics could be delivered by such uptake 

pathways either into periplasm or all the way into cytoplasm91. BAL30072 (Basilea) is the only 

candidate currently in clinical trials92. This compound is a monocyclic β-lactam conjugated to a 

dihydropyridone siderophore moiety, which has a potent activity against multi-drug resistant 

Gram-negative pathogens including “impermeable” species.   
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Studies of natural peptide antibiotics suggested additional pathways that could exploited 

for bypassing the “impermeable” cell envelopes. Pacidamycins are uridyl peptide antibiotics, 

which specifically kill strains against P. aeruginosa93-95. These antibiotics inhibit MraY 

translocase catalyzing the first step in peptidoglycan synthesis. With the MW >800 Da, 

pacidamycins cannot penetrate the OM but exploit a specific uptake system to reach the target. 

The ABC transporter NppABCD belonging to PepT family of transporters is implicated in the 

uptake of pacidamycin and other peptidyl nucleoside antibiotics such as blastidin S, albomycin 

and microcin C, across the inner membrane96. These antibiotics are likely to cross the OM 

through the TonB-dependent receptors involved in uptake of siderophores.    

Rules of permeation.  

It is likely that the permeation of different classes of compounds is affected by the outer 

membrane barrier and by the active efflux to different degrees. At present no rules exist to 

predict whether increasing uptake or reducing efflux would be the most efficient way to increase 

the potency of a specific class of compounds. It is believed that these rules will emerge when 

we address a critical gap in knowledge about what physicochemical properties and specific 

functional groups define the permeation of compounds across cell walls of Gram-negative 

pathogens 8. Having such rules to guide medicinal chemistry efforts could potentially facilitate 

the discovery of novel anti-Gram negative drugs97. Although the task is complex, the recent 

success with development of a predictive model for drug accumulation in Caenorhabditis 

elegans98 is inspiring. Several investigators including this author lead the efforts to develop 

experimental approaches and to generate representative data sets of compound penetration 

into difficult Gram-negative pathogens99, 100. These studies complement the activity-based 

approaches to identify physico-chemical properties that facilitate efflux of compounds101.  

 In addition, first bacterial membrane models reflecting the biological complexity are 

emerging and could be used to address a wide range of questions about protein-lipid packing 

and dynamics that are not accessible by experiments102. With these models and methods it is 

now possible to study interactions of antimicrobial peptides and antibiotics with membranes and 

to identify their preferable penetration routes103. 

Efflux pump inhibitors.  

The unquestionably significant impact of multidrug efflux pumps on bacterial physiology and the 

resistance to antibiotics in clinical settings makes them attractive targets for inhibition. Several 

classes of efflux pump inhibitors (EPIs) have been reported in the literature and are being 

pursued in drug development programs104-108. Phenylalanyl-arginyl-β-naphtylamide and 
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analogous arylamines are broad-spectrum EPIs with activities against Gram-negative bacteria 
105, 109, 110, arylpiperidines111 and more recently pyrinopyridine112 are inhibitors of AcrAB-TolC 

from E. coli. Likewise, pyridopyrimidines are specific inhibitors of MexAB-OprM from P. 

aeruginosa and quinazoline derivatives are able to potentiate multiple antibiotics against both 

Enterobacteriaceae and P. aeruginosa 113. Importantly, broad- spectrum EPIs that target 

multiple efflux pumps have been reported not only to restore activities of antibiotics but also to 

reduce frequencies of antibiotic resistance 114. As with many combination therapies, the task of 

EPIs development is not easy and must overcome multiple hurdles starting with choice of the 

antibiotic for potentiation and all the way to matching the pharmacological properties of an 

EPI/antibiotic pair 107. At the same time, some efflux pumps are critical for virulence and biofilm 

formation, i.a. MexGHI-OpmH and MexEF-OprN from P. aeruginosa. EPIs effective against 

such transporters, if available, could be useful alternative therapeutics on their own. 

 

Conclusions 

The emerging multi-drug resistant Gram-negative pathogens present a significant challenge in 

clinics that should be addressed in a timely manner. Several decades of antibiotic discovery 

experience suggested that the permeability barrier is the major hurdle in the development of 

new therapeutics against these pathogens. Significant efforts are currently directed at 

understanding at the molecular level both the permeability properties of the OM from different 

bacterial species, as well as at finding correlations between physico-chemical properties of 

compounds and their permeation across the two membrane cell envelopes in the presence of 

efflux. The task is complex and multi-faceted but could be achieved by combined efforts at the 

government, industry and academy levels.   
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Table 1. Major porins and efflux pumps of Gram-negative bacteria. 

Species Relative OM 

Permeability 

Major Porins Major Efflux Pumps 

E. coli 100% OmpF/OmpC AcrAB-TolC 

P. aeruginosa 1-8% OprF MexAB-OprM, MexXY-

OprM 

B. cepacia 11% OpcP1/OpcP2 AmrAB-OprA, BpeAB-

OprB, BpeEF-OprC 

A. baumannii 1-5% OmpA-AB AdeABC and AdeIJK 

 


