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Abstract

The goal of this effort was to apply four potential control analysis/design approaches to the design of
distributed grid control systems to address the impact of latency and communications uncertainty with
high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed
structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods.
A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab
Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g.,
a two-area, three-area, and four-area power system). Excellent results were obtained with the optimal
fixed structure approach, and the methodology we developed was published in a journal article. This
approach is promising because it offers a method for designing optimal control systems with the feedback
signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the
design of an observer. The Nyquist approach inherently handles time delay and incorporates performance
guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems,
but the approach does not scale well to extremely large system because of computational complexity.
The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling
communications uncertainty. Application to large power systems requires a method to automatically
expand/contract the state space and partition the system so that communications uncertainty can be
considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology
was selected to investigate grid systems for energy storage requirements to support high penetration of
variable or stochastic generation (such as wind and PV) and loads. This method was applied to several
small system models.

keywords: distributed control, renewable generation.
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Executive Summary
keywords: transient stability, small signal stability, renewable energy, power system stability.

The goal of this effort was to apply four potential control analysis/design approaches to the design of
distributed grid control systems to address the impact of latency and communications uncertainty with
high penetrations of photovoltaic (PV) generation. This research was funded by the DOE SunShot program,
with the goal of enabling 100s of Gigawatts (GW) of solar generation. This project was executed over a
10-month period in FY15. The four techniques considered were: optimal fixed structure control; Nyquist
stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. The goal was to apply
these approaches to a large scale system and a represntative small system. A reduced order model of
the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox
(PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area,
and four-area power system). Excellent results were obtained with the optimal fixed structure approach,
and the methodology we developed was published in a journal article. This approach is promising because
it offers a method for designing optimal control systems with the feedback signals available from Phasor
Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The
Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and
phase margin). We developed a technique that works for moderate sized systems, but the approach does
not scale well to extremely large system because of computational complexity.

For the vector Lyapunov approach, we investigated several test cases for a two-area system model. This
approach is promising, but additional research is required to overcome an obstacle: automatic partition-
ing of the state space and expansion/contraction of the state space to remove the uncertainty associated
with interconnection impedances (the partitioning problem has been solved, it needs to be addressed in
conjunction with the expansion/contraction). The Hamiltonian Surface Shaping and Power Flow Control
(HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements
to support high penetration of variable or stochastic generation (such as wind and PV) and loads. Spe-
cially designed models that are based on the physical (kinetic and potential) energy of the system (the
Hamiltonian) allow for the identification of static stability criterion. The Hamiltonian rate (or power flow)
determines the dynamic stability criterion. This leads directly to the stability and performance based on
energy storage; power, energy and frequency requirements needed to be realized. The technique allows for
the inclusion of nonlinear control law formulations. Several examples were investigated for a one machine
infinite bus (OMIB) and a four generator Kundur like model. Further developments will need to be ex-
plored to expand the technique specific for PV inverter systems operating in coordination with spinning
machines.

As part of the preliminary efforts, we updated the minni-WECC model to include PV generation, added
PV models to the PST Toolbox, and added linearization code for the PV plants. The original goal was to
achieve almost 100% PV generation. We were able to reach 75% without any additional controls, and 93%
with minimal controls (e.g., frequency droop and voltage support). With additional tweaking, we were able
to reach 95%. Based on the difficulty with reaching 100% renewable penetration with the PST model, and
previous research with General Electric’s Positive Sequence Load Flow (PSLF) software models, additional
research is required to develop meaningful grid models with very high renewable generation levels. The
eigenvalue and transient stability results for the minni-WECC with high PV penetrations were consistent
with previous research. As PV penetration increases, system inertia decreases and mode frequencies
increase, with minimal impact on mode damping. Similarly, the reduction in system inertia increases the
speed of the drop in frequency as a result of a loss of generation (e.g., a Palo Verde Trip of 1.4 GW). The
frequency nadir also decreases with increased PV generation. It should be noted that the minni-WECC
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model is a reduced-order model developed primarily for modal analysis of inter-area oscillations in the
western North American power grid. The fact that we were able to reach 75% solar penetration with no
additional controls should not be interpreted as the main result - there will be difficulties in achieving this
penetration that were not accurately captured by the reduced order model. Rather, the main takeaway
should be that displacing traditional generation inertia with PV will result in higher mode frequencies,
with similar damping in most cases. Also, the frequency nadir after a generator drop will decrease with
increasing PV generation and no additional controls for the PV. Including frequency droop control on the
PV can mitigate this effect.

The PST and minni-WECC model are open source code, and the models and algorithms developed
under this effort will be made publicly available on the “PV_LIB” web site (https://pvpmec.sandia.gov/).
The mathematical techniques summarized in this report are intended to provide tools for the design and
analysis of power system control systems with time delay that is naturally associated with distributed
control and communications.
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1 Background

Small system stability refers to the response of a system to small disturbances. Because the disturbances are
small, the system response can be modeled with a linearization of the system about the current operating
point. Typically, a linear time invariant state space model of the form:

#(t) = Az(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)

is employed for small signal analysis. The system dynamics are fully described by the constant matrices
(A, B,C, D). The state of the system at time ¢ is captured by the vector x(¢). The input to the system
is modeled by w(t) while the output of the system is y(¢). For the physical system, all of the states are
typically not directly observable. However, for simulation and analysis purpose, the C' matrix is usually
the identity matrix (all states are observable). For physical systems, the D matrix is normally 0 unless
there is some sort of feed-forward term in the model (e.g., the output moves instantaneously when an input
changes). For power systems, small perturbations consist of variations in load or generation, as well as
small disturbances caused by faults. Transient stability is concerned with the response of the system to
large disturbances, like a generator trip, where the response of the system often includes nonlinearities.
Small system stability is a concern in power systems because outages in the past have been partially
attributed to small signal instability [1]. All large power systems have low frequency oscillations in system
frequency where large generation and load complexes slowly oscillate against each other. These oscillations
are typically under 1 Hz. They are commonly referred to as inter-area oscillations, and they are so prevalent
that they are often named. For example, several of the known oscillations in the western interconnection
in the United States (U.S.) are listed below. The 1996 West coast blackout was partially attributed to

Table 1: Known inter-area oscillation modes in the western North American power grid [2].

Mode Name Nominal Frequency (Hz)
North-South A mode 0.25 Hz
North-South B mode 0.40 Hz
East-West mode 0.50 Hz
British Columbia mode 0.60 Hz
East-West southern mode 0.70 Hz
Montana mode 0.80 Hz

unstable oscillation of the North-South A mode. This is illustrated in Figure 1, which shows the power
flow on the California-Oregon Intertie (COI) in the minutes preceding the system breakup. The COI is
an AC transmission line that connects the pacific northwest to southern California. Lightly damped 0.25
Hz oscillations are present several minutes before the undamped oscillations which ultimately resulted in
a system breakup. A review of inter-area electromechanical oscillations found in the Continental Europe
power system is found in [3]. The impact of increased levels of renewable generation on the transient
stability of the western U.S. power grid were identified in the Western Wind and Solar Integration Study
(WWSIS) [4, 5]. They concluded that except for the most extreme cases, traditional mitigation methods
could accommodate the increased wind and solar generation. The extreme case approached 55% renewable
generation for brief periods over the course of a year’s dispatch.

Because inter-area oscillations can impact reliability in any large power system, their mitigation is
an active area of study. Schemes for damping these oscillations include: real power modulation of high
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August 10, 1996 Western Power System Breakup

Power (MW) California-Oregon Intertie
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Figure 1: The power flow on the COI during the August 10", 1996 Western power system breakup.

voltage DC links [2]; real power modulation of energy storage [6, 7]; power modulation of wind generation
[8]; voltage modulation with Static Var Compensators (SVC) [9]; and thyristor controlled series compen-
sator (TCSC) modulation [10]. With evolving grid dynamics as the quantity of renewable generation has
increased and will only increase further in the future, there is additional concern on the impacts of high
renewable penetrations on the small signal stability of power grids. A preliminary study described in [11]
came to the following conclusions:

e increasing renewable generation and the accompanying decrease in system inertia will increase the
frequency of inter-area modes.

e for the WECC model, mode damping stayed roughly constant with increasing renewable generation
with the exception of an East-West mode where the damping decreased.

This results is captured in Figure 2, which shows the increase in mode frequency of the WECC North-South
B mode as renewable generation is increased.

As the amount of renewable generation increases, distributed control algorithms will likely be required
to maintain or improve grid performance and reliability. Inherent to all distributed control schemes is the
negative impact of communications latency and the loss of data links. Communications latency is modeled
as

time delay =e™ %" (3)

where s is the complex variable s = jw 4 ¢ and 7 is the time delay in seconds. The reduction in phase
margin is directly proportional to the time delay 7. As the time delay increases, the phase margin is
decreased until the system becomes unstable. Similarly, the loss of a feedback signal can also lead to
instability. Therefore, the goal of this effort was to apply and assess four different control approaches that
are well suited for modeling communications delay and designing control systems that are robust with
respect to the loss of communications. The four approaches considered are:

1. Vector Lyapunov analysis

2. Fixed-structure Optimal Control
3. Nyquist Stability Analysis
4

. Hamiltonian Control Design
Vector Lyapunov Analysis

Vector Lyapunov analysis is used to determine the impact of communications connectivity on control
system stability. Vector Lyapunov analysis is a powerful tool for quantifying the stability regions of large

10
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Figure 2: WECC North-South B mode frequency and damping as a function of renewable generation [11].

distributed control systems. This approach has been successfully applied in the past by project team
members to analyze the performance of distributed control algorithms for mobile robots [12]. This theory
has been applied to small power system networks as well, but it has not been scaled to larger grids.
Assuming that a control function has already been identified, the closed loop dynamics of the discrete-time
system can be written as

S xi(k_'_l) :gi(kvxi)+g(k7f) (4)

where Z is the state of S at time ¢. z; is the state of the i*" subsystem at time k. The function g; describes
the local dynamics of S; and g; represents the dynamic interaction of S; with the rest of the system. An
interconnection matrix, £ = (&;;) is used to describe the communications connectivity between components
of the distributed system. Structural perturbations of the system are introduced by assuming the elements
of the interconnection matrix that are ‘1’ can be replaced by any number between 0 and 1 (to represent
the strength of coupling between individual subsystems).

A system is connectively stable if it is stable in the sense of Lyapunov for all possible E = (e;;) [13].
This is very powerful because it proves that a system will be stable even if a communications link is lost.
For a distributed grid control system with high penetration of solar, this approach can be used to define
stability regions in the face of communications failures, as well as a region of stable controller gains. An
example from the robotics application is shown in Figure 3.

Vector Lyapunov techniques have also been applied to power systems. An application to transient
stability applied to an m—machine system is described in [14]. However, to arrive at an analytic solution
the following assumptions had to be made:

11
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Figure 3: Distributed control of multiple robots. Stability region for N=2 (left) and N=1000 (right) vehicle
case. The interaction gain is the feedback gain across communication links to other nodes [12].

e inertia, electrical power, and voltage are constant for all machines
e uniform damping for each subsystem

A direct application of Lyapunov techniques applied to the transient stability problem is presented in
[15]. Analytic solutions were derived for a single-machine system and a two-machine system with uniform
damping. Higher order systems were too difficult because of the transfer conductances. A method for
automatically decomposing large power systems into smaller subsystems is described in [16]. A parallel
implementation of the epsilon decomposition was derived for large sparse systems. The epsilon decompo-
sition performs the following operation: on given a matrix A = [a;;] and a value of parameter € > 0, all
elements satisfying |a;;| < 0 are set to zero. The resulting sparsified matrix is then permuted into a block
diagonal form. All the variables in the same block are considered to be strongly coupled. This is equivalent
to the following decomposition:

A=Ap+e€Ac (5)

where Ap is a block diagonal matrix and the magnitude of the elements of Ax are less than or equal to
one.

Optimal Fixed Structure Control

Optimal fixed structure control is used to identify optimal distributed control solutions. A fixed struc-
ture control system is defined as a control system where the structure of the control algorithm is identified
first (e.g. frequency feedback), and then the controller gains are identified. Typically, a multi-input multi-
output (MIMO) optimal control system design attempts to minimize a cost function

T
J = / (2T Qz + u” Ru)dt (6)
0

where x is the state vector and w is the input vector. The R matrix represents the penalty on the input
while the ) matrix represents the penalty on the state. The solution to the LQR (Linear Quadratic
Regulator) problem requires full state feedback (e.g., access to all the states). For a scenario with limited

12
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state feedback (e.g., only use frequency at each control node) or a predefined feedback architecture (e.g.,
regional communications), one option is to design an optimal fixed structure controller [17]. We extended
this design methodology and applied it towards distributed controller design for a linearized power system
model. Traditional Linear Quadratic Regulator (LQR) control designs are very robust, with an infinite
gain margin and 60 degree phase margin. Although it was not the focus of this effort, we feel that some
robustness properties may be guaranteed for optimal fixed structure control.

Nyquist Stability Criterion

For representative reduced order models, the Nyquist stability criterion can be applied to identify the
tradeoffs between control system performance (e.g. gain and phase margin) and communications latency.
For transfer function models, the Nyquist stability criterion is a powerful tool for evaluating the control
system performance with communications delays [18]. This approach can also be applied numerically
when input/output data is available in lieu of model (e.g. PSLF simulations) for large systems. It is
also possible to apply this approach to multi-input multi-output (MIMO) systems using the generalized
Nyquist criterion for transfer function matrix representations; specifically, the relationship between time
delay, stability bounds, and control system performance (e.g., gain and phase margins) can be captured.

The project team has applied the Nyquist stability criteria to analyze the performance of energy storage
systems in damping inter-area oscillations [6]. Once a system model has been developed (single-input single-
output), the first step is to define minimum performance requirements in terms of gain and phase margin.
This can be represented graphically as shown in Figure 4 (left). Then, either using the model or input-
output data, one can calculate acceptable gain values for the controller as a function of communications
latency, as shown in Figure 4 (right).

Gain and Phase Margin Boundary,
Energy Systems Analysis Consortium (ESAC)

unit circle

ESAC
Boundary

Nyquist
contour

real
axis

K (d8)

Gain Margin = ZOloglo(llcx)
Phase Margin = <Dm (rad)

imag
axis

Figure 4: ESAC (Energy System Analysis Consortium) boundary for a specified gain and phase margin
(left), allowed controller gains as a function of communication latency (right) [6].

A similar process can be used to analyze distributed control systems for high penetrations of solar.
This is especially useful for looking at the tradeoffs between communications latency and control system
performance. Smaller latencies usually correspond to closer spatial separation and/or higher performance
communication links. This impacts control system architecture (e.g. local vs. global communications) as
well as communications requirements.

13
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Hamiltonian Optimal Control
The fourth methodology is Hamiltonian based optimal control [19]. The Hamiltonian, H, represents
the sum of the kinetic and potential energy of the system.

H = kinetic energy + potential energy (7)

In order for a system to be stable, the derivative of the Hamiltonian must be less than 0 (e.g., decreasing
energy). For previous micro-grid research, the team members have assumed a fixed controller structure
(e.g. a proportional-integral controller) at each node, and derived regions of acceptable gains based on
the constraint on the derivative of the Hamiltonian. A recent publication by the team has explored the
tradeoffs between communications update rate and the control effort required (an energy storage device
in this example) to stabilize a D.C. micro-grid with 100% renewable generation. The cost function was
defined as the variance of the power output of the energy storage system.

Below is a summary of each control system methodology. Each methodology can be applied to fre-
quency and voltage droop, as well as other more complex control algorithms.

14
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Vector Lyapunov Stability

e This is a stability test that guarantees connective stability in the face of structured perturbations.
The structured perturbations may be used to model plant uncertainty and/or communications
uncertainty.

e Given a control system structure, this technique may be applied to estimate regions of stability
as control gains are varied.

e While this approach handles robustness with respect to communication drop outs, latency must
be incorporated via a an approximation (e.g., Pade approximation).

e This approach requires a state space system model. For large systems, the model must be auto-
matically partitioned into smaller subsystems. Overlapping states require an expansion/contraction
of the state space model. The approach also extends well to nonlinear systems.

Optimal Fixed Structure Control

e Allows for optimal control system design with feedback from a subset of selected states. This is
well suited for PMU-based control systems where data is only available where PMUs are present.
e While no robustness properties have been derived, we feel that further analysis might yield some
degree of robustness with respect to gain and phase margin (beyond the scope of this effort). The
phase margin robustness properties are well suited for systems with time delay.

e This technique is a control system synthesis tool that requires a state space system model.

Nyquist stability

e The Nyquist stability criterion is an excellent tool for assessing stability of systems with communi-
cations delay. It is also possible to include minimum performance bounds expressed as a gain/phase
margin.

e This technique can be applied to analytical models as well as test data from an operational system
(e.g., magnitude and phase as the frequency is swept).

Hamiltonian Design Techniques

e Explicit analytical formulation of the total energy (Hamiltonian) in the system (kinetic and
potential energy) leads to specific static stability criteria. For electric grid systems this is typically
the energy storage (physical; inertial, capacitance, inductance, chemical, or information flow, etc.).
This defines the grid stability, or G-L = delta ES.

e The Hamiltonian rate or power flow leads to specific dynamic stability criteria. By incorporating
feedback control for the energy storage systems, the dynamic transient response can be determined
with respect to the renewable energy generation inputs and grid load demands. This defines the
grid performance.

e Nonlinear control laws can be easily incorporated into the formulation to help design specific
performance margins into both the static and dynamic stability criteria.

e This design technique is typically applied to the full nonlinear system and does not require
linearization of the system.

e Information flow (communication through feedback control) can be incorporated as additional
kinetic or potential functions such that information flow versus physical energy storage can be
evaluated which ultimately leads to determining the peak power, energy and frequency response
requirements/ specifications for the energy storage systems.

Recent efforts have proposed model predictive control (MPC) for the distributed control of solar gen-
eration. Examples are found in [20, 21, 22]. In [20], the authors address a limitation of model predictive
control, that requires an accurate system model, by employing a data-driven subspace approach which
only requires the input and output measurements to model the subsystems of the distributed system. In

15
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[21], a model predictive control optimization is proposed for the control of wind and solar with integrated
energy storage in a direct current (DC) grid. Model predictive control applied to an AC power system
with wind, solar, and energy storage is described in [22]. Model predictive control was initially developed
and applied to the petrochemical industry in the 1970’s [23]. Current applications include the chemical
and microelectronic industries [23]. One of the benefits of MPC is that it is formulated as an optimization
problem, which can be applied to the optimal dispatch of a power system. However, in order to incorporate
time delays in MPC, Lyapunov methods are often employed [24].
The next section discusses the project objectives.

2 Project Objectives

The goal of this research was to develop several distributed control algorithms that not only preserve,
but enhance the performance and reliability of the power system with respect to frequency regulation and
electromechanical stability. This knowledge and understanding is critical for meeting the Sunshot goals
of “achieving high penetration of solar generation at both the transmission and distribution levels in a
cost-effective manner, while ensuring safety and reliability of the grid”. Developing control algorithms
that mimic conventional generation will likely never result in performance better than the current grid.
This research is also well-aligned with the Sunshot long-term goals of enablement of wider deployment and
reduction in costs.

Since there is a strong relationship between the distributed control system design and communications
requirements, we purposely selected four different control approaches that work well with handling time
delay and communications uncertainty. The four control approaches considered were:

1. Vector Lyapunov analysis

2. Fixed-structure Optimal Control
3. Nyquist Stability Analysis

4. Hamiltonian Control Design

The intent was to apply each technique to a large and small power system model. The minni-WECC was
representative of a large power system, while a two-area, three-area, and four-area systems were employed
as surrogates for small power systems. The primary measure of performance was the eigenvalues of the
linearized system model. Transient simulations were performed where applicable to ensure that transient
stability was not negatively impacted by any control scheme. The goal was to analyze systems with very
close to 100% PV generation, e.g., 99.9%.

The next section summarizes the results from the project.

3 Project Results and Discussion

3.1 System Model

All analysis for this project was performed in MATLAB using the Power System Toolbox (PST). The PST
was originally developed by Prof. Joe Chow and Dr. Kwok Cheung in the early 1990’s [25]. It was further
marketed and developed by Graham Rogers, and is currently available from Dr. Luigi Vanfretti’s web site
[26]. The “minni-WECC” model, developed by Montana Tech, and employed by Sandia for the last few
years, was used as a surrogate for the WECC [2]. The current full WECC model has approximately 19,000
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buses, 4,000 generators, 9,000 loads, 8,000 transformers, and 16,000 transmission lines. The structure of
the reduced order minni-WECC model is shown in Figure 6. The reduced order minni-WECC model
contains approximately 122 buses, 172 transmission lines, 35 generators, and 66 loads. The minni-WECC
has been primarily used for modal analysis of inter-area oscillations, and the development of mitigation
schemes. The modes of the minni-WECC have been correlated with observed PMU data for many types
of system disturbances [2].

Figure 5: “minni-WECC” reduced order model for the MATLAB Power Systems Toolbox [7].

In order to add solar generation to the model, solar plants were co-located with all generators, and a
scale factor o was used to scale the amount of traditional generation relative to PV generation. When
a = 0, the model contains no PV generation. When « = 1, the model contains 100% PV generation. By
scaling the generator base MVA, the ‘size’ and thus inertia of the traditional generation is scaled properly
as the penetration of PV increases. The nominal real and reactive generation is given by Py and @g. The
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real and reactive control effort at the PV plant are Po and Qc¢.

Pgen = (1-a)b (8)

Qgen = (1-a)Qo (9)

Psolar = oPy+ Pc (10)

Qsolar = aQo+ Q¢ (11)

base MVA (with solar generation) = (1 — «a)(base MVA) (12)

The advantage of this approach is that power flows remain roughly the same for all cases. Any changes
can be directly attributed to the PV displacement of traditional generation, so this provides a favorable
framework for investigating the impact of high PV penetrations. A disadvantage is that in reality, increased
PV penetrations will likely be in areas favorable to PV. Going down this path would have required the
development of a new WECC model, which would have been a significant investment, and inappropriate
for a 1-year project. This is especially true when considering PV penetrations approaching 100% of load.
Likewise, considering behind the meter versus utility solar is beyond the scope of this effort. This level of
modeling detail is not captured in a lumped parameter model like the minni-WECC.

Traditional generation

Pgen = (1 - {:.-POO

Jgen = - a)qQ
Qge (1=a)Q high voltage transmission
PV generation
O transformer
Pgen = “PU + Pflf.' As @ = 1, PV generation
Qgen = aQy + Qc(t) approaches 100%

Figure 6: MinniWECC modification to accommodate high PV penetrations.

After adjusting the minni-WECC to accommodate high PV penetrations, models had to be developed
for PV generation. Two different models were developed: power injection and current injection. Finally,
the PST linearization code had to be updated to include the PV generation. The next section describes
the derivation of the linear model of the PV plants.

3.2 Linear Minni-WECC Model with Droop and Voltage Gain Control

This section reviews the derivation of the linearized PV models that incorporate frequency droop and
voltage support. Given the following state space model

21 = Ax1 + B1AP + BoAQ (13)

where the " entry of AP; = (P; — Py) and the i*" entry of AQ; = (Q; — Qo),

Af = 01331 (14)

where A6 is the vector of voltage angle deviations at each of the individual injection buses, and
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AV = CQFL‘l (15)

where AV is the vector of voltage magnitude deviations at each of the individual injection buses, we can
develop a control scheme using real and reactive power actuation at bus 1.

In order to introduce the control scheme, the concepts of frequency droop control must be discussed
briefly. In essence, droop control uses active power injection at generator buses as a method to control
frequency. The derivation begins with the equations for real and reactive power transmission across a
lossless line (shown in equations (16) and (17)) with impedance X, bus 1 voltage Vi, bus 2 voltage V5, and
power angle 4.

~ WiVasin(6)
P=—2 (16)
Q= Vo(Va —)‘?008(5)) (17)
Letting sin(d) ~ 0 and cos(d) ~ 1, we have
PX
0~ 1
Vs (18)
and 0X
Vo-Vi~— 19
2 -Vim (19)

Finally, the equations for frequency and droop control may be developed so that by servoing active power,
d (and hence frequency) can be controlled. Similarly, reactive power of the bus, and hence bus voltage, can
be controlled. Let the nominal value of a variable be denoted by the subscript ‘0’ (i.e. fo = 60 [Hz], the
nominal frequency of the system.) Then, frequency and voltage droop control can be implemented using
equations (20) and (21).

Af:

AP, = ——fl, 1=0,1,... M (20)

R;
where AP; = (P, — Py), Afy, = (fi — fo), Ri is the ‘frequency droop gain’ at bus 4, and M is the number
of buses to be controlled. Similarly,

AQ; = —GyAVi, i =0,1,... M (21)

where AQ; = (Qi — Qo), AV, = (V; — W), G, is the ‘voltage droop gain’, and M is the number of control
buses. Equations (20) and (21) are simply linear equations, and can be interpreted as when the system
frequency decreases from its nominal value fy to f;, the active power of the generator is required to increase
from Py to P; in a linear fashion, proportional to a chosen gain value (i.e. the slope of the line). Similarly,
this rationale can be applied to reactive power output for voltage droop control.

Using a Taylor’s series expansion to linearize and implementing a derivative filter with constant T small,
we can write the second state vector as

. 1
Zy = —Dpxy — —DF,Ciay (22)

wo

and 1
AP = Drxo — —DgrCixy (23)

wo
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1 1
where wy = 27 fo, D, = <T0> ,and Dp = <R) .
MaxM MaxM

Similarly, the voltage droop control can be written in matrix format as in equation (24)
AQ = —Dngml (24)
where Do = diag(Gy) panr-

Now, combining the state space equations (13), (14), and (15) with (23) and (24), the final closed-loop
system state space representation can be determined. First,

#1 = Az; — Bi DRy (25)

where A = A— ﬁBlDRCl — ByD;Co, and combining (22) with (25), (14), and (15), the final closed-loop
linear system can be expressed in (26).

+ | — Pref+ — Qref (26)

[m.l ] - A |-BiDg| |z By By
_DTO 9 g %)

T2
12
wo DTocl

In order to synthesize the controllers and demonstrate the control scheme using photovoltaic (PV)
plants, the real and reactive power injected at any particular generation bus in the minni-WECC model is
controlled using the closed-loop state space representation of the system, given in (26). Once the control
gains are calculated for a given amount of photovoltaic penetration, the closed loop system can be modeled
quite compactly. In order to demonstrate the small signal stability of the system, the eigenvalues of the
plant matrix can be investigated both before and after adding solar generation to the model, and the
associated movement of the eigenvalues of the system can be tracked based on the control gains.

It is important to note that the minni-WECC model maintains stability in an absolute sense as the solar
penetration increases to roughly 75%, with no additional control needed (simulation results are presented
in the next section). However, beyond this amount of penetration, it is necessary to implement control
action to maintain stability. Because photovoltaic generators are displacing traditional electromechanical
generation in this model, the implication is that the system will eventually have too little damping torque
to maintain synchronism across generating units, and the system’s small-signal stability will no longer be
intact. It is also demonstrated that an effective control scheme derived using the basic equations for power
transmission across a lossless line can alleviate some of this problem and allow a higher penetration of
photovoltaics to be connected to the grid. The model will attain much higher penetration levels (> 95%)
when distributed frequency and voltage droop control is implemented. The next section presents small
signal and transient stability results for the minni-WECC as the amount of PV generation is varied.

3.3 Small Signal and Transient Analysis with Minimal Controls

As mentioned in the previous section, the minni-WECC model was able to incorporate up to 75% solar
generation without any additional controls. The eigenvalues as a function of solar penetration are shown in
Figure 7. The solar penetration levels simulated are: 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 75%.
The results are consistent with previous studies - increasing renewable penetration results in an increase
in mode frequency as renewable generation displaces the inertia of traditional generation. The blue line

20



Agreement No. 29094
Distributed Controls for High Penetrations of Renewables (e.g. 100% of peak load)
Sandia National Laboratories

represents a constant damping ratio (|R(\)|/|A| = constant). An oscillatory system has a damping ratio of
0. The larger the damping ratio, the quicker oscillations decay after a perturbation. The blue 'x’ represents
the nominal case (no solar), the black 'x’ represents the 75% solar case, and the trajectory of eigenvalues
is shown by the green ’.’s. All eigenvalues in the range (0 < freq < 1.5 Hz) and (-2 < R(\) < 0) are
plotted. The stability region is given by R(\) < 0. However, in reality modes with damping less than
approximately 8% are considered problematic (e.g., getting close enough to the stability boundary that a
small system change might result in instability). The red circles highlight the nominal North-South WECC
modes. While the reduced-order minni-WECC model captures the behavior of the two primary North-
South modes, the fidelity of the model is likely insufficient to draw any conclusions about the East-West
mode behavior identified in a previous study [11] because the amplitude of the East-West mode is much
smaller (and therefore more prone to modeling errors in a simplified model). The transient response of

Eigenvalues for solar penetration sweep: 0% to 75.00%
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*
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x % » »
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Figure 7: Minni-WECC eigenvalues as solar penetration goes from 0% to 75%, no controls case.

the minni-WECC model in response to a Palo Verde (PV) generator drop (1.4 GW) with varying solar
penetrations is summarized in Figure 8. As expected, the frequency nadir is lower with increased PV
generation. In addition, the reduction in system inertia results in a faster decrease in system frequency
with increasing PV generation. The same information is summarized in Table 2.

Above 75% PV generation, some controls were required for the system to be stable. Adding local
frequency droop and voltage support, described by equations 20 - 21, enabled PV penetrations up to 93%.
The transient response for R = 0.05 and Gv = 20 is summarized in Figure 9. Increasing the gain of the
frequency droop to R = 0.01 improves (increases) the value of the steady state system frequency after the
generation drop. This is illustrated in Figure 10. Since the gain value R is in the denominator, a smaller
value results in a larger overall gain.

These results are consistent with the Western Wind and Solar Integration Study (WWSIS). The WW-
SIS is a DOE sponsored effort to assess the impact of high penetrations of renewable generation on the
western U.S. power grid [4]. The most recent phase investigated the impact of high renewable generation
combined with low synchronous generation (e.g., significant coal plant retirement) [5]. The study found
that increasing levels of renewable generation could be handled with traditional mitigation techniques,
except for the highest penetration case. For the most extreme scenario, a system separation was observed
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Figure 8: Minni-WECC transient response to a Palo Verde drop (1.4 GW) at t=10 sec, no controls case.

Table 2: Minni-WECC transient response to a Palo Verde drop (1.4GW) at t=10 sec, no controls case.

% Solar Frequency Nadir Steady State
Generation Nadir (p.u.) Time (sec) Frequency (p.u.)
0.00% 0.99788 15.43 sec 0.9991
10.00% 0.99765 15.30 sec 0.9991
20.00% 0.99737 15.18 sec 0.9989
30.00% 0.99701 15.05 sec 0.9988
40.00% 0.99644 16.60 sec 0.9986
50.00% 0.99564 16.32 sec 0.9984
60.00% 0.99447 15.97 sec 0.9980
70.00% 0.99251 17.11 sec 0.9974
75.00% 0.99067 6.86 sec 0.9969

in response to a fault. The behavior was primarily attributed to transient voltage collapse rather than
machine angular transient stability. The study found that the results were highly dependent on: the load
models; wind power plant models; and wind power plant control features. The study also noted that
higher functionality wind power plants (e.g., additional controls), tended to reduce the need for other
traditional mitigation [5]. Because this study employed a reduced order model of the WECC, and many of
the implementation difficulties are often a local phenomenon, it is difficult to draw a conclusion on what
percentage of PV generation will start to cause problems. Instead, the conclusions of eigenvalue movement
and decreasing frequency nadir are the main takeaways, and are consistent with other studies.
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93.00% solar, frequency nadir: 0.99544 (pu) at t=12.41 sec
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Figure 9: Minni-WECC transient response to a Palo Verde drop (1.4GW) at t=10 sec, 93% solar penetra-
tion. R = 0.05, Gv = 20. Steady state system frequency: 0.9953.

93.00% solar, frequency nadir: 0.98592 (pu) at t=14.36 sec
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Figure 10: Minni-WECC transient response to a Palo Verde drop (1.4GW) at t=10 sec, 93% solar pene-
tration. R = 0.01, Gv = 20. Steady state system frequency: 0.9974.
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3.4 Fixed Structure Optimal Control

The Fixed structure control development for mitigating frequency deviations across the grid begins with
the development of the small-signal model and the identification of an appropriate algorithm. In this
section, these steps are presented and then applied to a minni-WECC example.

It is common for the small-signal dynamic behavior of large power systems to be described using linear
models [27]. In particular, when linearized about an operating point, the power system dynamics may be
represented as the state space model

#(t) = Ax(t) + Baug(t) + Beue(t) (27)

y(t) = Cx(t) (28)

where x € R"™ is the system state vector, which includes small-signal rotor angle and speed deviations
among other quantities, ug € RP is the input vector of real power injection intended to provide system
damping, and u, € R™ is an exogenous input that may represent probing signals or other inputs designed
to excite a system response [27]. For damping control, the output vector y € R” is a vector of generator
speeds available for feedback.

The stability of the system is described by the eigenvalues of the n x n matrix A, and the mode shape
is encoded into the eigenvectors of A. Elements of the n x p matrix By would be determined by the
location and interconnection of distributed damping control resources. The goal herein is to compute a
p X h damping controller gain matrix Ky such that the eigenvalues of A — B — dK;C' are further left in
the complex plane, indicating improved damping. Furthermore, the selection of gain values should account
for priorities concerning performance and control energy expended by the distributed resources. These
priorities are represented using a performance index.

The performance index, or cost function, is given as follows

J = / h (v"Qy + U Rug) dt (29)
0

wherein the term 3?7 Qy assigns a penalty for the state trajectory with Q > 0, and udTRud penalizes the
control energy with R > 0 . For a damping control application 47 Qy would be formulated to penalize
frequency error (local and/or inter-area). The control design problem is thus to select the controller
gain matrix Ky so as to minimize J. The problem resembles the familiar linear quadratic regulator (LQR)
problem wherein an optimal K is computed analytically through solution of the algebraic Riccati equation
for full state feedback. In this application however, full state feedback is not required or desired, and it
cannot be assumed the pair (A, By) is controllable. Thus, the LQR solution is not used directly to compute
K g; rather the solution is attained numerically.

The optimal gain is computed using an iterative numerical method based on the Anderson-Moore
descent function [17, 28]. which allows for feedback signals to be excluded from the optimal solution. The
system model and performance metric, however, must be augmented to enable this approach. The damping
controller inputs are partitioned into p areas/subsystems wherein

P
Bquq =Y  Bauq, (30)

=1
Ud; = Kd,icixu (IS {17 27 e 7p} (31)

In addition, the R matrix is assumed to be diagonal R = diag(R1, Rs, ..., Rp), and the control inputs are
normalized such that q; = \/R;juq; where ug; is the ith element of wug .
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Second, an additional cost term is formulated to penalize the use of unavailable or undesired feedback
signals, and the term is added to the cost function, resulting in the expression

J = / (v" Qu + iy iq) dr + || Kq,;T:Ciz||? (32)
to

where I'; > 0 is a diagonal matrix of weights that penalizes feedback of select signals. The optimal damping
control problem may be summarized as follows

minimize J

Ky

subject to:

(1) &(t) = (A - Bdf(d0> x(t)

(2)Q=0

3) ;>0

The gain matrix K} is then determined through proper scaling of Ky .

To solve the above optimization problem, a numerical algorithm is used to iteratively approach the
solution. The algorithm requires the calculation of some intermediate quantities. In each iteration, f(d’i
values are updated and the system A—matrix is updated.

p
Ag=A+ Z Bd,if(dJCi (33)
i=1
Likewise, the Q matrix is extended to include the clontrol signal penalties according to
p
Q=Q+> (qT KYKy,Ci+CF r;fkgikd,irici) (34)
i=1
In each iteration, the gain matrix is irllcremented by a quantity computed according to
AKy; = —Kq; — BLPXCT (G;xCT +Ti0;xcfTT) ™ (35)

where X is the state covariance matrix.

Algorithm 1 Structured Control Algorithm

Initialize the state Covariance Xy
Initialize K4 by solving the LQR problem, and segment into p rows: uq,, ¢ € {1,2,...,p}
while change in gain is above tolerance A||K,||sc > tol do
Compute Ay using Equation (33)
Solve Xo + XAl + AgX =0 for X
Compute @ using Equation (34)
Solve Qo + PAy + ALY P =0 for P
Compute new gain IN(dJ + ozAIN(dyi using Equation (35)
end while

Kq;

L Vie{l,2,...,
NI { P}

Compute Kg; =

The intention is that this algorithm can compute gains that result in a more optimal allocation of
control energy. This would be useful for utilities that wish to realize prioritized wide area damping control
given limited resources, i.e. PV curtailment or energy storage. The next section presents results for a
reduced order model of the WECC.
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3.4.1 Minni-WECC Scenario: Damping the East-West Mode

To demonstrate the algorithm, it is convenient to consider again the nominal mini-WECC model (0% PV)
and a relevant damping scenario. Assuming a damping control resource may be installed at each bus
hosting a generator, a cost function is formulated to penalize the nominally 0.5 Hz East-West oscillations
in particular. The Mode shape is illustrated in Figure 11. Therein, generators/buses marked with a red
dot are oscillating against those marked with a blue dot. The diameter of the dot provides an indication
of the amplitude of participation in the given mode.

0.51261 Hz mode
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700

800
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Figure 11: East-West mode shape: buses marked by a red dot are oscillating against those marked by a
blue dot, and dot diameter indicates the magnitude of participation in the mode
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The cost function is given as the linear combination of the generator speeds, squared and is designed
to isolate the energy in this particular mode. The cost function is formulated as follows

N 2
y'Qy = <Z ki%’) (36)
i=1
where

N
> ki=0 (37)
=1

The k; values are computed using terms from the right eigenvector (which contains mode shape in-
formation) with a projection method that ensures the values sum to zero. The values used to isolate the
East-West mode are shown graphically in Figure 12.

0.51261 Hz mode

0.8 T T

_0-4 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Bus number i

Figure 12: Weighting terms used in the cost function.

Algorithm 1 was utilized to compute the optimal gains for two implementation scenarios: local and
networked (local plus remote) frequency feedback. For the local feedback scenario, the I' matrix was
configured to provide no additional penalty for control energy based on local feedback but to penalize
control energy based on remote signal feedback. The resulting controller gains are shown in Figure 13.
Therein the damping K gains as determined by Algorithm 1 are shown both as an image of the gain matrix
where off-diagonal values are zero (shown as grey) and as a bar graph, clarifying the sign of the gain values.
The units are given in per-unit (ie. scaled by base power divided by base frequency). Since typical gain
values are in the MW /mHz range, the per unit quantities are rather large. Therein, one notes the damping
is primarily prioritized at generators 16 through 25 and 30 through 34 which corresponds closely to the
key generators identified in Figure 11. Furthermore, it is noted that two of the gain values are actually
negative, indicating a positive local feedback; this would be difficult to implement in practice.
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Figure 13: Damping K gains as determined by Algorithm 1 shown (left) as an image of the gain matrix:
gray = 0, black = negative, white = positive and (right) as a bar graph .

To evaluate the effect of these optimal gain selections, the root locus is shown in Figure 14. Therein,
the blue Xs indicate the eigenvalues without control and the red Xs indicate the eignevalues with the
gain matrix as computed. The red dots are attained by scaling the gain matrix by numbers that vary
from 0 to 1. It is noted that the targeted mode at 0.5 Hz (approximately 3.14 radians/sec) exhibits much
improved damping. Other modes also show some improvement, however, some reduced damping is seen
in modes at 0.67 Hz and at 0.97 Hz. The 0.67 Hz mode is likely the Alberta mode, and the 0.97 Hz mode
is likely generator 28 swinging against the rest of the system due to positive local feedback. Since only
local feedback was used, the ability to isolate the effect to one mode is limited, and the risk of worsening
other modes is plausible. Since the actuation is distributed, controllability should not be an issue. Rather,
distributed feedback may instead provide an improved response. This motivates the use of Networked
information (from a WAMS-like network). Comparing to Figure 14 to Figure 7, Figure 7 illustrates the
eigenvalues of the system with no additional controls as the percentage of PV is increased. Figure 14
shows the eigenvalue movement for a particular PV penetration (0% for this case) as the damping gains
are adjusted by Algorithm 1. Note that the targeted mode (eigenvalue) is moved to the left with minimal
impact to other eigenvalues.

Using the minni-WECC model, the control goal is now to dampen the East-West mode at approximately
0.5 Hz using wide area feedback. For the wide area feedback scenario, the I' matrix does not include any
penalties for frequency feedback. This allows for each control to use feedback from any of the 34 bus
frequency sensors. The feedback gain matrix, as computed by Algorithm 1, is illustrated in Figure 15.
Therein, local and remote feedback is included with diagonal elements representing the local feeback and
off-diagonal elements being remote signals with black being negative and white being positive. Contrasting
this image with that in Figure 13 illustrates the difference. It is further noted in Figure 15 that a definite
structure is present with select buses being modulated against one another, and these correspond strongly
with what would be expected through study of Figure 11.

The eigenvalue plot for wide area feedback is given in Figure 16. The benefit of wide area feedback
over local feedback is clear, wide area feedback results in greatly improved damping of the 0.5 Hz mode
and slight improvements in other modes without worsening the damping of any modes. Additional results
on optimal fixed structure control applied to the frequency-watt inverter function can be found in [29].

To demonstrate the effect of this control in the time-domain, the minni-WECC model was simulated
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Figure 14: Minni-WECC eigenvalues as damping K gains are adjusted by Algorithm 1.
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Figure 15: Visualization of gain matrix with wide area feedback: gray = 0, black = negative, white =
positive.
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Figure 16: East-West mode damping with wide area feedback.

with and without the Networked damping control. The simulation runs for 40 seconds with a simulated
loss of generation at the Palo Verde plant. This causes a large depression in the generator speeds and
excites an inter-area oscillation that includes several modes including the East-West mode. To illustrate
the East-West mode in particular, it is convenient to focus on the generators 19 and 30 and the difference in
generator speeds between them. Figure 17 shows the generator response following this event with no added
controls. Therein, the speeds for generators 19 and 30 reach a nadir of 59.58 Hz and 59.56 Hz respectively,
and the two machines are visibly oscillating against one another. Figure 18 shows the generator response
following this event with added damping controls and Network feedback given by the gain matrix depicted
in Figure 15. The frequency nadir is much improved; generators 19 and 30 reach a nadir of 59.87 Hz and
59.85 Hz respectively. This may be due to the local feedback element of the control effectivley contributing
to the droop response. Figure 19 shows the differences in generator speed errors in the controlled and
uncontrolled cases. This response is dominated by the East-West mode. The value of the damping control
is immediately evident. For the uncontrolled case, the peak speed error is 60.4 mHz, and the system
persists ringing for nearly the whole simulation. For the case with damping control, the speed error peak
is reduced to 25.4 mHz, and the ring-down event is seen to extinguish is approximately 7 seconds.

This section demonstrated the application of the structured control approach to a real-life damping
control problem in the minni-WECC model. The example illustrates how the approach can enable precise
changes to the eigenvalues of the system, and the time domain simulation demonstrates the improvement
to oscillation response. The next section discusses some observations on the relationship between phase
margin and damping ratio in multi-mode systems.
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Figure 17: Generator speeds following a simulated loss of Palo Verde without added damping controls
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Figure 18: Generator speeds following a simulated loss of Palo Verde with added damping controls
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Figure 19: Generator speed differences following a simulated loss of Palo Verde with and without added
damping controls
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3.4.2 Phase Margin in Multi-Mode Systems

To aid in interpreting results, a brief investigation was done into the dependency of phase margin (PM)
on damping in multi-mode systems. Consider a second order system with a stable pole and a pole at the
origin
w2
G(s)= ——
() s(s+2¢w)
Phase margin is defined as the difference in phase from 180 degrees at unity feedback. If unity feedback is
applied, the closed-loop transfer function is given by

G(s) w?

(38)

T(s) = —
() 1+ G(s)  s%2+2Cws + w? (39)
The phase margin may be computed explicitly as
2
PM = tan? ¢ (40)

(vivaci-2¢)”

Equation (40) was then evaluated over a range of damping ratios and compared to the Matlab margin()
function. The results are found in figure 20. The phase margin is approximately linear in the damping
ratio up to a damping ratio of 0.6 and a phase margin of 60 degrees regardless of natural frequency w. For

Phase Margin versus Damping Ratio for G(s)
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( - damping ratio

Figure 20: Phase margin versus damping ratio for a second order system.

a three-area system, there are two modes and an analytical expression for phase margin is more difficult
to attain. Therefore, this was analyzed using only Matlab with a model having no zeros. The open-loop
system transfer function was assumed to be

w12
Gam(s) =

s (83 + 2(Qwr + Gowa)s? + (wi + wi + 4¢ Gwiws)s + 2Gwiw3 + 2owiws)

(41)

To illustrate an example, the frequencies wy and wy were selected to coincide with realistic oscillatory mode
frequencies and the phase margin was computed in Matlab for a range of damping values. A 3D surface
plot is shown in Figure 21. Therein, it is noted that the phase margin benefits more from increases in
(1 , the lower frequency damping coefficient. This is verified in Figure 21 wherein damping coefficients
corresponding to PM=9 degrees were identified, forming a line whose slope indicates that greater increases
in (o than in {7 are needed to accomplish the same phase margin. In fact, the difference is quite considerable
despite the small difference in frequency. This suggests that, under certain circumstances, phase margin
stability margins may be predicted from estimates of damping coefficients for the lowest frequency modes.
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Damping Ratios that Provide 9° Phase Margin
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Figure 21: Relationship of Phase Margin to damping values in an example two-mode system showing (a)
3D surface plot of PM vs (; and {2 and (b) line of {; and (s values that give a PM of 9 degrees.
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3.5 Nyquist Stability Methods

The Nyquist stability criterion is a vital tool to examine the small signal stability of the system. The
criterion is based on the Nyquist contour mapped through the function G(s) where G(s) is the open loop
transfer function of the system of interest. The Nyquist contour is a D-shaped region that encircles the
left half plane. The stability criterion is summarized below:

Nyquist Stability Criterion: A system G(s) is stable if the Nyquist contour T'(,) encircles (clock-wise)
the -1 point N times, where N = Z — P where Z is the number of open-loop poles in the right-half-plane
(RHP) and P is the number of open-loop zeros in the right-half-plane.

The next section applies the Nyquist stability criterion to a three-area power system model with time
delay.

3.5.1 Three-Area Model

To begin the analysis it is helpful to examine a simplified three area model as shown in Figure 22. The
model parameters are defined in the table below. First, a state space model of the system was constructed

Table 3: Three-Area System Model Quantities

Quantity Description

M; Area i inertia
D; Area i damping
T;j Synchronizing torque coefficient between area i and j

APy, Area i load variation
APp; Area i damping torque (control effort)
Aw; Area i change in speed

Ad; Area i change in angle

from the transfer function block diagram. Focusing on area 1, the area frequency, Awq, can be expressed
by the differential equation:

1

Awj= ——
w1 Mis+ D1

(APLl — APpy + T3 (A53 — A51) —Ti9 (A51 — A52)) (42)

Rearranging (42) to solve for the first derivative of Aw; will result in:

MlsAwl + DlAwl = (APLl - APDl + T31 (A53 - A(Sl) - T12 (A61 - A(SQ)) (43)
1
SAOJl = ﬁ (—DlAwl + APLl — APDl — (T12 + T31) A(Sl + T12A52 + T31A53) (44)
1
A similar procedure can be done on areas two and three to get differential equations for Aws and Aws:
1
sAwy = A (—=D9Awy + APrs — APps + T19Ad — (Tha + Tag) Ada + T31Ad3) (45)
2
1
sAws = A (—=D3Aws + APr3 — APps + T31A01 4 TagAdy — (Tas + T31) Ads) (46)
3
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Figure 22: Three Area Model

The angle differences in each area, Ady, Ado, and Adsz, can be expressed with the differential equations:

sAd = Aw; (47)
SA(52 = ACL)Q (48)
sAS3 = Aws (49)
using equations (44)-(49) a state space model can be constructed such that:
X = AR + By, — Boiiy (50)
y = CxX+ Dyu; — Doty (51)
Where the matrices and vectors are defined as:
r Dy (Ti2+T31) 0 Tio 0 Ts1 T
My My My My
1 0 0 0 0 0
0 Tio Dy (Th2+T>3) 0 Tos
A — Mo Mo Mo Mo (52)
0 0 1 0 0 0
0 T3 0 Tos D3 (Ta3+T31)
. O 0 0 0 1 0 J
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S O O
o O

Aw1

>
g

o | Awe
X=1 As, (55)
Awg

Ads

[ AP,
;= | AP (56)
| AP

[ APpy
s = | APps (57)
| APp3

The input vector has two components separated into u; and usz. The first input is based on the load
torques in each area, APr1, APro, and APr3, and the other is based on the damping torques in each area,
APp1, APps, and APp3. The damping torques supply the system feedback and can be expressed by the

system of equations:
APp1+ APps + APp3 =0 58

(58)
APDl = kdlZ (Awl — Awg) — k?dgl (Aa)g — Awl) (59)
APps = kg3 (Awz — Awz) — kqi2 (Aw; — Aws) (60)
APD3 = kidgl (AW3 — Awl) - kdgg (AWQ — Awg) (61)

- (61)

where kg, is the damping coefficient between areas x and y (e.g., controller gain). Equations (59) - (61

can be expressed in linear form in relation to the state vector as:

APpq kg2 + kaz1 0 —ka12 0 —kaz1 0
Up= | APpy | =KX= —kgiz 0 kqio+kazs 0 —kgps 0 |X (62)
APp3 —ka31 0 —ka23 0 ka3 + ka1 O

Because of the distances involved in inter-area communications a time delay, Ty, is added to the
controller to fully analyze the stability of the model

X = (A +BK (1+¢ 7)) % + Bij (63)

The state space model was implemented in Matlab using the delayss() function to incorporate the
damping time delay. Since there are three inputs and three outputs to the system, the nyquist() function
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was used to find the Nyquist curves of all nine resulting transfer functions. In order to test the stability
of these Nyquist curves, the ESAC criterion was applied [6]. This criterion sets up a polygon around
the point (—1,0) based on a given phase and gain margin as shown in Figure 23. The Matlab function
inpolygon() is then used to determine if any of the Nyquist curves violate the ESAC criteria. To make
sure that sampling does not result in a missed detection of an unacceptable point, the zero crossings of the
real axis are calculated and checked against the ESAC gain margin criterion. This procedure is repeated for
a range of damping coefficients to find the volume of values that are not guaranteed stable. The results of
this procedure for different values of time delay are shown in Figure 24 through Figure 27. An alternative
approach would have been to visualize the regions of gains and time delays which meet the ESAC stability
criterion.

Gain and Phase Margin Boundary,
Energy Systems Analysis Consortium (ESAC)

unit circle

ESAC
Boundary

Nyquist
contour

real
axis

Gain Margin = 20Ioglo(1/0()
Phase Margin = (Dm (rad)

imag
axis

Figure 23: ESAC criterion boundary.

As shown in Figure 24, even with no time delay there is a significant region along the k412, ko3, and
k431 axes where the Nyquist curves violate the ESAC criteria. This shows that some damping is required
in the system to ensure stability. As the delay is increased, additional volumes of disallowed states start
to appear, typically starting at higher values of k412, k423, and kg31 and moving closer to the origin as the
delay increases. Eventually these volumes will increase the size of the final volume. Based on this simplified
model it is clear that this method can be used to validate the stability of a given system. However, the
computational needs of using the method to search for stable solutions grows exponentially with the number
of damping coefficients. The number of test case data points N that must be checked is given by

N =n? x fpts x Kpts x Tpts (64)
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Figure 24: Disallowed damping values with T; = 0.0 ms, three-area system.
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Figure 25: Disallowed damping values with T; = 1.0 ms, three-area system.

where n is the size of the A matrix,

pts is the number of frequency points, Kpts is the number of gain
values tested (assuming same gain at all controllers), and T'pts is the number of time delay values of
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Figure 26: Disallowed damping values with T; = 10 ms, three-area system.
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Figure 27: Disallowed damping values with T; = 100 ms, three-area system.

interest. If each controller is tested for a unique gain value, the number of test cases increases to

N =n? x fpts x Kpts™VC x Tpts (65)
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where NC' is the number of control systems with independent gain settings. For minni-WECC system
with 34 generators, a test of 10 possible gain values results in 103* potential cases. Therefore, for large
power systems, it is only feasible to test for constant gain values. This is somewhat reasonable, given that
frequency droop is typically set at 5%. The next section presents results for the nominal minni-WECC
linearized model.

3.5.2 Minni-WECC Nominal Case

In order to examine the stability for the entire minni-WECC there are two possible uses for the method
outlined above. In order to use the method as a design tool, some constrains on the allowable values of
kg must be imposed. This can be as simple as selecting a single k; for all the generators, or applying a
weighting for each generator. This will reduce the parameter space down to a single variable that can be
easily automated to find stable values. By using the method as a validation tool, we can select damping
gains through some other strategy and determine the degree of stability of the resulting system.

As shown in Figures 28 and 29 the method determines the stability of a solution by checking to see if
the Nyquist contour crosses into the ESAC boundary. In order to reduce the computational complexity
of the model, a single k; was chosen and used to build a controller K. The damping coefficient was then
varied from -40 dB to 40 dB for each time delay. A visualization of the results, where 1 represents a stable
result and 0 represents an unstable result, for a 10 ms time delay is shown in Figure 30. The results for
a 100 ms time delay are shown in Figure 31. From this result it can be seen that k; less than -10 dB
(kg < 0.3162) is always stable for this case. While some k; values greater than this value result in stable
Nyquist plots, other concerns will eliminate these potential values. Repeating this code for T, also show
that kg less than -10 dB will result in stable Nyquist contours. To apply this technique to a generic system,
the following steps should be applied:

1. obtain a linearized state space model about an operating point.
2. define the feedback structure and signals with communications delays.

3. apply the ESAC criterion to transfer functions of interest for the expected range of gain and time
delay values.

4. “acceptable” gain and time delay values pass the ESAC criterion for all transfer functions of interest.
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Figure 28: Unstable Nyquist curves k; = 0.4132 and T; = 0.012 ms.
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Figure 29: Stable Nyquist curves kg = 0.01 and T; = 0.120 ms.
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Figure 30: Allowable k4 values with T; = 10 ms, minni-WECC model.
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Figure 31: Allowable k4 values with Ty = 100 ms, minni-WECC model.
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3.6 Vector Lyapunov Methods

Vector Lyapunov methods are well suited to evaluate the stability of control algorithms with structured
perturbations. These perturbations may be used to address model or communications uncertainty. These
methods are also a powerful analysis tool for the evaluation of distributed control strategies with uncertain
communications. To apply these methods, the system model must be partitioned into N interconnected

subsystems such that
N

S: ;= Ajx; + Zeiin]’l‘j, 1€ N (66)

j=1
A; and A;; are assumed to be constant matrices, and each subsystem A; is assumed to be stable (the
stability may be the result of local feedback applied to an unstable system). The dynamics of the "

subsystem are modeled by
Si : .1"2' = Aixi (67)

Note that for this formulation, there are no overlapping states in the subsystems. For each subsystem,
states from other subsystems only interact through the coupling parameter e;;. For an e;; = 1, the system
is connectively stable for e;; € [0, 1] if the stability criteria are met. Thus, subsystem model uncertainties
can be captured by the A; matrix, and communication uncertainty with feedback from other subsystems
is captured by the A;; matrix. For cases with no interconnection, e;; = 0.

For the system to be collectively stable [13], the test matrix W = (w;;) defined in equation (68) must
be an M matrix.

. . Am (G ~ \1/2
i=j, Gk — e (AT An)

. . _ \1/2, 47 (68)
i F 3, —€ijAy (Aiinj)

w,-j =

Am (@) is defined as the minimum eigenvalue, while Ays(e) is defined as the maximum eigenvalue. Further-
more, the matrices H; and G; satisfy the Lyapunov matrix equation

A simple test to determine if W is an M matrix is that every real eigenvalue of W is positive. Forty
conditions equivalent to the statement “W is a nonsingular M matrix” are found in [30]. The smaller the
off diagonal elements w;; of W relative to the diagonal elements, the likelihood of W being an M matrix
increases [13]. Therefore, a goal should be to maximize the following ratio

>\m 7
Find: max (Gi)

Gi Av(H;) (70)

In [13], it is shown that selecting G; as the identity matrix maximizes the ratio above. This yields a
simplified test matrix W:

o _ \1/2
=7, m - eii)\]\//[ (AT A;)

. . _ N\1/2, 47 (71)
LFJy —eijAy (Aiinj)

Wi =

The next section presents results for a two-area power system model.
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Table 4: Two-Area System Model Quantities

Quantity Description

M; Area 17 inertia

D; Area i damping

T Synchronizing torque coefficient
APy, Area 7 load variation

APp; Area i damping torque

Aw; Area i change in speed
AY; Area i change in angle
Awq 1 Ady @ Adg 1 Awsg
|¢ s + \\J - s
1 . 1
]\118 + D1 ]WQS + D2
APyp

APpy

_,@_.
—(O

>
S

APLQ

Figure 32: Two-area system [31] with damping control.

3.6.1 Two-Area System

A critical step in applying distributed control concepts is the partition of the system. In this section,
we consider a 2-area power system model, illustrated in Figure 32. The parameters are defined in Table
4. Different PV penetrations can be approximated by adjusting the inertia and damping based on the
generation characteristics. The two-area model simplifies to the following state space system.

x = Ax+ Bu (72)
y = Cx (73)
where
Aw1
| A4 | APpy
o AUL)2 ’ o |: APDQ :| ’ (74)
Ado
_D _T s
M M M1
1 0 0 0
e T A (75)
My Mo Mo
0 0 1
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1
w0 1000
0 0 0100
B_OM%’C_0010 (76)
0 0 0001

We assume that each state is observable, e.g., bus frequency and angle data are available for Phasor
Measurement Unit (PMU) data. The system model can be rearranged into two loosely coupled systems,
as shown by the partitions below.

D _T | g T
My My My
1 0 0 0
A= (77)
0 I |_Dz _T
Mo Mo Mo
0 0 1 0 |

M% 0
010
B=|—1— (78)
0 | 15
- 0 0 -

Since the stiffness of the transmission system coupling the two areas can change over time, we introduce
a coupling coefficient e € [0,1]. The two area system can be decomposed along the dashed lines to obtain
the system in equations 84-85. This is equivalent to the interconnection of two subsystems

_D _ T 1

. L M, My My
Sy : T I: 1 0 :| r1 + I: 0 ] U1 (79)

_Dy _ T 1

. e — Mo Mo Mo
Sy : To |: 1 0 :| T2 + |: 0 ] U2 (80)

where 21 = (Awr, Ad1)T and x5 = (Aws, Ady)T are the states of the two subsystems. The goal is for the
two subsystems to be stable when decoupled (e = 0) using the decentralized feedback laws

APp1 = —kix1, APpy = —kaxa, (81)

The feedback gains, k; = (k;1, ki2), are selected so that the closed-loop subsystems are stable.

_Dy _kn _ T _ k2
Sy : T = My M My Mgy (82)
1 0
[ Dy _kn T kp ]
S'Q : i‘z = Mz My My Mo X9 (83)
1 0

The overall system model is described by
Aw —Br LT Aw w 0 & 1T Aws
. = AP My 4
[Aél} [ 10 |las T o prtel g o || A (84)

45



Agreement No. 29094
Distributed Controls for High Penetrations of Renewables (e.g. 100% of peak load)
Sandia National Laboratories

Awy —D2 LT Aw, T 0 = 1[ Aw
. = 2 2 2 | AP M, 85
{ } {1 0 As, | T 0 D2Ee) o g || Ag (85)
Note that for this model, there are no communications uncertainty, just uncertainty in the interconnection
strength T'/M;. This case only considers local feedback. Results for this system are shown in Figure 33.
The system is connectively stable for a range of gains when k11 is approximately equal to k12. Note that
it is not connectively stable without feedback (k = 0 case).

Stability Region (red)
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Figure 33: Two-area system stability region, T=3, M 1=8, M2=8, D2=1. Local feedback, no communica-
tions uncertainty.

The next case considered looks at limited local communications bandwidth and uncertainty in the
coupling between areas. Communications bandwidth limitations are modeled by a first order low-pass
filter

zf (s 1
x((s)) TosTH1 (86)
The resulting models for the two subsystems are given by
(A ] D Tk B T Ac ] [0 L 0 07 Aw]
Ad | 1 0 00 Ad, 0 0 0 0] A%
Aol [T L 0 -1 Aol [T 0 0 0 0] Awd (87)
_M{_ L0 1 0o -1 ][ a8 ] [0 0 0 0] [ A8
R A AR
A | 11 0 0 0 Ady 0 0 0 0]| Ad
Ad |7 L 0 =L o A [T 0 0 0 0] Aw (88)
asf ] Lo 2o LA ] Lo o ool A
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Figure 34: Two-area system results for bandwidth limited local communications and uncertainty in inter-
connection strength.

Results for the case of limited bandwidth local communications are summarized in Figure 34. As the
bandwidth of the local feedback signal is reduced, the stability region is reduced.

Next, we considered the case of limited global communications bandwidth and no limits on local
feedback, as well as uncertainty in the interconnection strength 7. The models for this case are shown
below. The local feedback is defined by k;jocqr While the global feedback is defined as k;;. Results for this
case are summarized in Figure 35. For this case, as small amount of delay on the global feedback actually
increases the range of acceptable gain values.

Ac Di+kiioca T+k310cq 1T 7 r T  ku ok
A%Jl _D Mlll Lo JV% L0 0 Aw 0 o ]V% ﬁf Aws
S 1 0 0 0 Ad 0 0 0 0 Ady (89)
Aw] 1 0 -1 0 Aw] 00 0 O© Aw)
) 1 1
Ast 0 1 o -LJ[lasf] Lo o o o0 ASJ
AWQ _ D2+]\[§21local _ T‘Fff\jéocal O 0 1T AWQ T B 0 Ml2 % % Awl
Ak | 1 0 0 0 Ady | o 0 0 0 Ad |0,
Aw] 1 0 -1 0 Aw] 00 0 0 Aw]
AS! 0 1 o -L]lasf] Lo o o o0 AS]
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Figure 35: Two-area system, case of limited bandwidth global communications, unlimited local communi-
cations, and uncertainty in the interconnection strength.
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3.7 Hamiltonian Surface shaping and Power Flow Control (HSSPFC)

Our goal in developing a nonlinear control design methodology is to help address some of the key issues
surrounding high penetration of renewable energy (wind, solar) generation for the future smart grid. A
simple example is explored further to show the necessary power and energy storage requirements.

The HSSPFC design [32] steps are summarized in the following ten steps: 1) define Reduced Order
Model (ROM), 2) formulate the kinetic and potential energies, 3) formulate the Hamiltonian, 4) derive
the power flow (Hamiltonian rate), 5) design the nonlinear control laws, 6) determine the static stability
conditions, 7) determine the dynamic stability conditions, 8) optimize the control system (controller gains)
for the desired performance, 9) perform enterprising optimization (specific to Microgrid mission metrics),
and 10) simultaneously minimize information flow and energy storage. The following section investigates
the HSSPFC design, analysis and numerical simulations as applied to a conventional One Machine Infinite
Bus (OMIB) model with variable input that represents stochastic solar generation to determine stability
and performance via energy storage systems. The next section develops the HSSPFC for simple AC grid
systems and demonstrates the reduced order model to initial conditions offsets for the spinning machines.

3.7.1 Example 1: OMIB model and control

Summarizing and starting with a power engineering OMIB model from RNM conventions [33], [34], [35]
that best reflects the new nonlinear power flow control methodology gives

Ty — T, =Jwpm + Bwrym (91)
Wiy = W/ (Np/2) W= wpef + 8 (92)
T — To = J(Oref +0) + Blwyes +0) (93)

Initially, the Hamiltonian is defined as
1.
where the power flow or Hamiltonian rate becomes
H = Jiw = P, — P. — Buw’. (95)

The next step is to add the approximate power flows from the generator, mechanical controls, and unified
power control (UPFC) [33] [1] as

ue, = Kp, cosds+ Kp, sin 80 + K, sind fg(é — ds)dT (96)
Ue, = Kp, sinds+ Kp, cosdd — K7, coséfg(é — ds)dT.
Finally, substitute these control laws into the previous equation and simplifying yields the following
t
Jo+ [P, sind — Py, |+ P..Kp, sin(d —d05) = —[B+ P.,Kp,|0 — K|, / (6 — 0s)dr. (97)
0
The static stability condition becomes
1 .-
H= §J52 + P.,(1+ Kp,)(1 —cos(d — &) (98)
with H being positive definite and the set point determined as
§s = sin”Y(Py,./Pe.). (99)
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The dynamic stability condition for a passively stable control design yields

t
jq{ B+ P, Kp,6%dt > — 7{ [P, K7, / (6 — 85)dm]ddt. (100)
T T 0
Clearly, the nonlinear PID controller through the proportional term expands the region of stability by
increasing the Potential Energy Boundary Surface (PEBS) from

P, — P..(14+Kp) (101)

and by adding the PID controller integrator and derivative terms, the system will be able to respond more
quickly, increasing the performance, and reducing the transient settling response times. A feedforward
control term can be added to the UPFC controllers and is defined by

Uey = Ue — [(Pmref — Pn(t))/ Prnaz] sin 0

tes = ey — [(Prrry — Pult))/Prsas] cos § (102)

where P, . is designed to emulate a constant input and P, (t) is from variable generation such as solar
power generation.

3.7.2 UPFC Control Simulation

Initially, the OMIB without the UPFC is given a faulted initial condition that is away from the stable
equilibrium point and the machine goes unstable (see Figure 36 left). By adding the UPFC proportional
gain (energy storage) the machine becomes stable (see Figure 36 right) and returns to the equilibrium
set point. The UPFC control system gains are designed to ensure static stability and dynamic stability

0.5%8/(100%3.1415)% ). + 1.2647%(1)*(1-cos(5-1.0547)

W

#8/(100%3.1415)%().” + 1.2647*(1)*(1-c0s(5-1.0547)

[=3

Hamiltonian (per unit)
Hamiltonian (per unit) o
%)

S

@) 0 -5 o (1/s)

8 (radian) 5 (radian)
radian

Figure 36: Unstable without UPFC (left) and stable with UPFC (right) (see [35]).

conditions and were adjusted for tolerable transient responses. The dynamic stability performance is
determined with Integral and Derivative terms of the nonlinear PID UPFC control law. Figure 37 (left)
shows the phase plane plot and Figure 37 (right) the transient response. The stochastic nature of the solar
input is approximated very simply as a random input as shown in Figure 38. The feed-forward component
is used to help predict the random process and helps to give the desired constant power reference input.
Figure 39 (left) and (right), respectively, show the corresponding phase plane and transient responses,
respectively.
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Figure 37: Dynamic stability and performance (left) and transient response (right) (see [35]).

To achieve the constant power input to the grid for the OMIB the UPFC provides both the additional
power and energy storage to the system. This design and analysis allows one to determine the required
energy storage and power requirements as shown in Figure 40. Figure 40 (left) is for the UPFC design
without feedforward and Figure 40 (right) is the UPFC design with feedforward. These transient responses
can be used to size critical components in the system by providing peak power, energy storage amounts
(charge/discharge profiles), and device bandwidths for necessary power electronics as required to achieve

the given performance specifications.
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Figure 38: Constant power signal compared to stochastic or random signal input (see [35]).
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Figure 41: AC inverter model with two generation inputs and load and bus storage components attached

to AC bus (see [36]).

3.7.3 Simple AC Inverter Electric Grid Systems

The goal of this section is to identify reduced order models for control designs and establish stability
and performance criteria for AC inverter electric grid systems that have both spinning machines and
AC inverters that support renewable energy generation sources such as PV. Preliminary development for
inverter based AC electric grid models has been documented in reference [36] and the schematic shown in
Figure 41. The model can be summarized in marix form as

Mx = Rx + Du+ Bv = [R + R] + Du + Bv (103)
where S -
X = [Zdl y Lgry Udas Ygas Udy s v%}
u = [u1, u2, ug, , uqb]T (104)
v = [Ul, ’UQ]

and the matricies are defined as

Ly 0 0 0 0 0
0 Ly 0 0 0 0
o 0 L, 0 0 o0
M=109 0 0 L, 0 o (105)
0 0 0 0 Cp O
L0 0 0 0 0 Cp|
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i —R1 le 0 0 —1 0 ]
—wL, -Ry, 0 0 0 -1
0 0 —R2 wLQ -1 0
R=1"09 0 —wl, R 0 -1 (106)
1 0 1 0 -z wG
0 10 1 —wC 2 |
[ %\/g(cosqﬁl))\l 0 0 0]
3/3(sin o) 0 00
B 0 L\/3(cosga)da 0 0 (107)
0 1/ 0 0
0 0 10
0 0 01

and

%\/g(cos b1)M 0
%\/g(sin h1)\1 0
D= 0 %\/g(cos $2)Ae | . (108)
0 1\/3(sind) s
0 0
0 0

To illustrate the control system design, define the error state along with the reference control as
€ =X = Xpef — X

MXyef = Rxyef + BV + Duye. (109)

It is assumed that the reference state vector is constant and operating at some desired steady-state condi-
tion, and the reference control signal becomes

Duger = —Rxper — Bv. (110)

Next, based on the error-state the Hamiltonian or energy surface is defined as

1 1
H = 2~TM§<+2(/5<dt)TKI(/5<dt) % =0 (111)
where the controller integral term provides a control potential energy to help design or shape the energy
surface to meet the static stability condition. Note the integral controller diagonal gain matrix is
positive definite.
The Hamiltonian time derivative (or power flow) becomes

H = xTMx = XT[MXyer — MX] + %K / %dt (112)
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By selecting the right conversion for the matrix D and using a PI controller of the form
Au = -Kpx — K; / Xdt and u = uper — Au (113)

and substituting and simplifying the Hamiltonian time derivative (power flow) will result in the dynamic
stability condition given as
H=-%"[Kp-RJx<0 (114)

The performance is determined by the selection of the proportional controller diagonal gain matrix, defined
as positive definite.

The nonlinear HSSPFC design is composed of both feedforward and feedback portions. The feedback
controller design integrates the energy storage into the AC bus grid. It includes both the feedback into
the guidance command algorithm for the boost converter duty cycles and implements the energy storage
systems. The duty cycle servo control is fully coupled and the HSSPFC for the energy storage is decoupled
due to the skew-symmetric form of the R matrix. This HSSPFC design is primarily for the dynamic
transient development.

3.7.4 Example 2: Kundur "like" Model

A Kundur like model was assembled representing four separate grid systems and two load busses. This
reduced order model follows the previous development but also includes a spinning machine representation.
This is shown schematically in Figure 42. The preliminary results are shown in Figures 42 to 45 for initial
condition offsets for the spinning machines and their corresponding bus voltage response, apparent power,
injected currents, and energy storage requirements, respectively. Further investigations are warranted with
specific details provided for renewable energy generation for each generator model.

o6



Areal

Area 3

Agreement No. 29094

Distributed Controls for High Penetrations of Renewables (e.g. 100% of peak load)
Sandia National Laboratories

T
i Y
H Vi
1 vll Spimning; Ty, |
' YZ]. Machine 1 I:F \ IE, <0
' oy )
! S —,
Pl oy - | NN
Spinning I 5 by 1 Xou \h|m.|.1.|_- T i ©
Machines: To L F— | _l1,.\ T 5 cal 1 E
k=2ton] SN - - - =
Inverters W ! :n\;mln . L <T
=at . H L ¥ U
I=at] loenm xmxmnmmer] ity L. 5
. s !
'L = - wi* Ry ; 1
1 1
wiy RL'._ I ¢ v \J JE <&
"‘“\. 1., a1 1 vaa O ‘ s
1 Yaea() T et ' 1 2
1 H — L
I s N E - L] —-——
——— - v12 - - .
v i L
1 Y Spinning, T,
i 32 ming: Tuy
i Machine 1. S= U (1]
: Ya2 D
; - L
= } 1. b1 ramsmsmssseaas Ry
ol i iR L | Ix
_ N comne. (P 1%
Spinming ] i Xon (X pnmng I ; s
| 1 | Machines ik 1 I
Machines L . DL < L ©
k=2lon By < &) /. k=2ton So i &
Y 3 ) > i Inverters o, [ ) bt
Iaverters . | . — i 1 =
l=natltonm ik S LR T S Sp— (Hu
I 1 I =R
1 W 1 | -+ 1 1 i -
1 ul®) Raci A 1 : ) 4 1 I
R o ' By 8 var S 5
Yoo lp [l i Yocil ) s [
~ I i T =
: ! | I - [

Figure 42: Kundur like model assembled on four separate generators.
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Figure 43: Kundur spinning machine transients four generator system.
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Figure 44: Kundur spinning machine bus voltages (left) and apparent power (right).
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Figure 45: Kundur spinning machine injected currents (left) and energy storage (right).

58



Agreement No. 29094
Distributed Controls for High Penetrations of Renewables (e.g. 100% of peak load)
Sandia National Laboratories

4 Significant Accomplishments and Conclusions

This one-year effort investigated four potential control design/analysis methodologies for addressing the
impact of latency and availability of PV distributed control systems with high penetrations of renewables.
The four methodologies considered were: optimal fixed structure control; Nyquist stability; Vector Lya-
punov; and Hamiltonian design methods. The most progress was made on the optimal fixed structure
control approach. Because of the sheer number of states associated with a power system model, state
space methods are typically applied. One drawback of many optimal control design methodologies is the
requirement for full state feedback (e.g., access to all system states), or the design of an observer (e.g.,
Linear Quadratic Gaussian control). In reality, as PMU technology becomes more widespread, there will
be an increasing amount of highly accurate data available for control. However, there will likely never be
enough PMU’s in place in a large power system to measure every state, and if this were to happen, the
communication requirements for centralized control would be extreme. Optimal fixed structure control is
advantageous because it allows for the design of an optimal controller with limited state feedback, e.g., the
state that you can easily observe. This makes it a powerful tool for PMU-enabled grid control schemes.
This year we made significant progress developing algorithms and applying this approach to grid control
[29]. When full state feedback is available, an optimal control system (e.g., Linear Quadratic Regulator)
has inherent robustness: a phase margin greater than 60 degrees and an infinite gain margin (e.g., the
controller will be stable for all possible uncertainties in system gain). Currently, no such statement can be
derived for optimal fixed structure control. A recommended area for future research is to investigate the
potential to guarantee a certain level of performance with limited state feedback. Phase margin is critical
for time delay systems because latency directly impacts phase margin.

The Nyquist stability approach was investigated because it elegantly handles time delay and can in-
corporate performance measures like gain and phase margin. The approach is also readily applied to
analytic models as well as system test data (e.g., gain and phase measurements as frequency is swept).
We developed numerical techniques for applying this method to large power systems, and were able to
successfully identify stable gain regions with guaranteed levels of performance (e.g., gain and phase mar-
gin) for different levels of time delay using the minni-WECC model. Since the algorithm requires testing
every potential system transfer function, the algorithm has difficulty scaling to large power systems. If
the assumption can be made that all controller gain values are the same, the algorithm can be applied to
moderately large models. There is some precedent for this type of assumption, for example, a gain of 5% is
typically employed for frequency droop. If this assumption can’t be made, the approach quickly becomes
too computationally expensive. The number of ESAC criterion tests that must be performed, N, is given
by

N =n? x fpts x Kpts™© x Tpts (115)

where n is the size of the A matrix, fpts is the number of frequency points, Kpts is the number of gain
values tested, T'pts is the number of time delay values of interest, and NC' is the number of control systems
with independent gain settings. For minni-WECC system with 34 generators, a test of 10 possible gain
values results in 103* potential cases without accounting for the number of states, frequency points, and
time delay values. One promising application that would not suffer from this limitation is wide area
control based on PMU data where the number of PMU’s and actuators is limited, and where one is mostly
concerned with the robustness of the controller and the stability of the overall system can be verified by
other means.

The vector Lyapunov approach was selected because it is well suited to analyze the stability of dis-
tributed control systems with structured perturbations. The structured perturbations may be used to
model a combination of plant uncertainty and communications uncertainty (e.g., guarantee stability with
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or without a particular communications link). This approach is well suited to state space systems, and
easily handles nonlinear systems. Results were obtained for several simple test cases with a two-area
system. Two difficulties with the application of this control approach were identified. First, the most
straightforward approach assigns an uncertainty of € € [0, 1] for the interconnection stiffness between dif-
ferent areas. While this parameter can change, and will go to 0 if the line is opened, it limits the range of
acceptable stable controllers because it is likely too conservative of a requirement. This can be remedied
by expanding the state space and bringing in states from other areas into each subsystem. The second
difficulty is associated with automatically partitioning a large state space model into a decomposition of
distributed systems. An approach has been proposed, the epsilon decomposition [16], but does not address
the previous issue of assigning a large uncertainty to the interconnection coefficients. Further research is
required to develop algorithms that perform the decomposition and state space expansion/contraction in-
telligently. This method does not address latency directly, but it can be incorporated via an approximation
(e.g., Pade approximation). We still believe that this is a promising technique for handling communications
uncertainty.

The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was se-
lected to investigate grid systems for energy storage requirements to support high penetration of variable
or stochastic generation (such as wind and PV) and loads. Specially designed models that are based on
the physical (kinetic and potential) energy of the system (the Hamiltonian) allow for the identification of
static stability criterion. The Hamiltonian rate (or power flow) determines the dynamic stability criterion.
This lead directly to the stability and performance based on energy storage; power, energy and frequency
requirements needed to be realized. The technique allows for the inclusion of nonlinear control law formu-
lations. Several examples were investigated for a OMIB and a four generator Kundur like model. Further
developments will need to be explored to expand the technique specific for PV inverter systems operating
in coordination with spinning machines.

Finally, some time was spent updating the minni-WECC model with high penetrations of PV, adding
solar plant models, and adding linearization code for the solar plant models. We had originally planned to
update the model with close to 100% PV generation. This proved more difficult than expected. The input
to the optimal fixed structure control and Nyquist approaches is a linearized system model (A4, B,C, D).
Results were only presented for the nominal (no PV) case because we questioned the validity of the results
with PV penetrations (likely a programming bug in the linearization algorithm). The analysis algorithms
were developed and demonstrated with the nominal linearization, so once an acceptable linearized model for
the minni-WECC is obtained, it is relatively straightforward to run the various solar cases. We were able
to get to 75% PV generation without any additional controls, 93% with some minimal controls, and 95%
with more focussed voltage support. The difficulty getting to very high penetrations in PV is consistent
with difficulties we have seen with PSLF models. Going into the project, we assumed that it would be
easier with a reduced order model in Matlab. The development of realistic models of systems with high
penetrations of PV should be a priority. To do this properly is a painstaking task. First, one has to make
intelligent predictions about the path the grid will take as renewable penetration increases. Then one has
to build the new models and get them to run. The farther out in the future one goes (e.g., higher renewable
penetrations), the more uncertainty in the models and the associated predictions. There are components
that can probably be addressed with smaller models. For example, the performance of phase-locked-loops in
inverters as grid dynamics become faster is a concern. Ultimately, more time needs to be spent developing
suitable grid models for dynamic simulations with very high penetrations of renewables. On a positive note,
the eigenvalue and transient response results for increased PV penetrations are consistent with previous
PSLF results [11]. Mode frequencies increased with higher renewable penetrations and there was minimal
impact on mode damping.

60



Agreement No. 29094
Distributed Controls for High Penetrations of Renewables (e.g. 100% of peak load)
Sandia National Laboratories

5 Inventions, Patents, Publications, and Other Results

A journal article was published on the application of optimal fixed structure control to the frequency-watt
grid support functions for wide area damping of inter-area oscillations in power systems. The citation is
listed below:

J. Neely, J. Johnson, R. Byrne, and R. T. Elliott, “Structured optimization for parameter selection of
frequency-watt grid support functions for wide-area damping,” International Journal of Distributed
Energy Resources and Smart Grids, DERlab/SIRFN Special Issue on Pre-standardization Activities
in Grid Integration of DER, vol. 11, no. 1, pp. 69-94, 2015.

Conference publications have been submitted for the vector Lyapunov and Hamiltonian approaches:

R. H. Byrne, D. J. Trudnowski, J. C. Neely, D. A. Schoenwald, D. G. Wilson, and L. J. Rashkin, “Small
Signal Stability Analysis and Distributed Control with Communications Uncertainty,” submitted
to International Symposium on Power Electronics, Electrical Drives, Automation and Motion,
SPEEDAM 2016, June 22-24, Anacapri, Capri Island, Italy.

D. G. Wilson, R. D. Robinett III, W. W. Weaver, and R. H. Byrne, “Nonlinear Power Flow Control
Design of High Penetration Renewable Sources for AC Inverter Based Microgrids,” submitted

to International Symposium on Power Electronics, Electrical Drives, Automation and Motion,
SPEEDAM 2016, June 22-24, Anacapri, Capri Island, Italy.

This research continued to foster a relationship between Montana Tech University and Sandia National
Laboratories on control of power systems with high penetrations of renewables.

6 Path Forward

While simplified models are excellent for gaining insight into the impacts of increased renewable pene-
trations, they will not provide an exact answer of what penetration level starts to become problematic
(except for the particular simplified model considered). Many of the impacts from increased renewable
penetrations are “local problems”, as noted in [4, 5]. These can only be identified with accurate system
models. Therefore, future distributed control design and analysis tools need to be easily extendable to
large power system models. This likely will have to include distribution and sub-transmission models.

The impact of latency, availability, and scalability on the performance of distributed control algorithms
for PV generation is a topic that requires significant research to make sure that it does not become a barrier
to large-scale adoption of PV generation. This one year effort focussed on latency and availability by looking
at four promising control design/analysis methodologies that are appropriate for systems with distributed
control, communications latency, and communications uncertainty. Another important topic is cyber
security. As more intelligence is integrated into the electric power grid, the associated communications
provide more opportunities for an adversary to disrupt larger and larger areas. In addition, the required
level of cyber security must not negatively impact the performance or reliability of the power system by
inducing an undesirable level of latency. A SunLamp proposal has been submitted to DOE to evaluate
the impact of latency, availability, and scalability on grid performance, as well as to evaluate the impact
of potential cyber security schemes.
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