
Investigation of the Potential Impacts From Tritium Soil Contamination in the CP-5 Yard

RECEIVED
OCT 13 1989
OSTI

Decontamination and Decommissioning Program

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Operated by The University of Chicago,
under Contract W-31-109-ENG-38, for the
United States Department of Energy

Argonne National Laboratory

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government, and operated by the University of Chicago under the provisions of a contract with the Department of Energy.

This final project report is a product of Argonne's Technology Development Division, Decontamination and Decommissioning Program. For information on the division's activities, contact:

Director, Technology Development Division
Argonne National Laboratory
Argonne, Illinois 60439-4814
Telephone (630) 252-3293

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

Investigation of the Potential Impacts from
Tritium Soil Contamination in the CP-5 Yard

Robert J. Hysong

Decontamination and Decommissioning Program
Technology Development Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

November 1998

Work sponsored by United States Department of Energy,
Office of Environmental Management

ACKNOWLEDGEMENTS

The CP-5 yard tritium contamination investigation and RESRAD dose assessment discussed in this report were conducted in support of the Argonne National Laboratory-East, Technology Development Division, Decontamination and Decommissioning Program. The author benefitted from insights and comments provided by other ANL-E personnel including T. Yule and F. Clark (Technology Development Division), C. Yu and J. Peterson (Environmental Assessment Division), S. Baker and N. Golchert (Environment, Safety and Health Division), E. Zimmerman (Energy Systems Division), and R. Rose (formerly Technology Development Division, currently Florida International University).

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

TABLE OF CONTENTS

	<u>Page</u>
1.0 INTRODUCTION	1
1.1 Background	1
1.2 Purpose and Scope of This Investigation	6
2.0 GEOLOGY/HYDROGEOLOGY OF THE CP-5 SITE	6
2.1 Geology	6
2.2 Hydrogeology	11
2.3 Surface Water	12
3.0 POTENTIAL SOURCES OF TRITIUM IN CP-5 YARD SOIL	12
3.1 Tritium Releases From Primary to Secondary Cooling System	12
3.2 Draining Secondary System Water to Footing Drains	13
3.3 Secondary System Water Leakage to CP-5 Yard Soil	13
3.3.1 Tritiated Water Leaks From Cooling Tower Piping	13
3.3.2 Tritiated Water Leaks From CP-5 Drain Tile System	13
3.3.3 Tritiated Water Releases to a Storm Drain	13
3.4 Fuel Pool Liner Hole Leakage	14
3.5 Water Identified in the Rod Storage Area Below-Grade Holes	14
3.6 Airborne Tritium Fallout	14
3.6.1 Cooling Tower Evaporation	14
3.6.2 Ventilation System Stack	14
4.0 CP-5 RADIOLOGICAL MONITORING	15
4.1 Soil Sampling	15
4.1.1 1980 CP-5 Area Soil Sampling Results	15
4.1.2 1989 20-ft Soil Core Sampling Results	17
4.1.3 1993 IT Corporation CP-5 Yard Characterization	18
4.1.4 1997 Dolomite Well Installation	18
4.1.5 1997 50-ft Deep Split-Spoon Sampling	20
4.1.6 1998 Split-Spoon Sampling Adjacent to Fuel Pool	21
4.1.7 1998 CP-5 Yard Sampling	21
4.2 CP-5 Yard Area Water Sampling	24
4.2.1 Shallow Groundwater Monitoring	24
4.2.2 Dolomite Groundwater Monitoring	27

	<u>Page</u>
4.3 Miscellaneous Sampling	27
4.3.1 Results Fuel Pool Liner Investigation	27
4.3.2 CP-5 Reactor Building Drain Tile System	28
5.0 RESRAD DOSE ASSESSMENT INPUT PARAMETERS	30
6.0 RESULTS OF DETERMINISTIC DOSE ASSESSMENT	34
7.0 PARAMETER SENSITIVITY ANALYSIS	34
8.0 DISCUSSION	43
8.1 Residential Family-Farm Scenario Impacts	43
8.2 Industrial Use Scenario	44
9.0 CONCLUSIONS/RECOMMENDATIONS	44
10.0 REFERENCES	46
11.0 ACRONYMS AND ABBREVIATIONS	48
APPENDIX A Illinois Environmental Protection Agency Well Completed Report and Field Boring Log For Well # MW330012D and Borehole #330012D ..	49
APPENDIX B Stratigraphic column and Split-Spoon Core Log For Well # MW33001 ..	54
APPENDIX C 1989 20-ft Soil Boring Sampling Results	57
APPENDIX D 1993 IT Corporation Radiological Sampling Results	59
APPENDIX E Residential Family-Farm RESRAD Summary Report	67
APPENDIX F Residential Family-Farm RESRAD Detailed Report	82

LIST OF FIGURES

	<u>Page</u>	
Figure 1.1	Map of Argonne National Laboratory-East	2
Figure 1.2	CP-5 Reactor Area and Monitoring Well Locations	3
Figure 1.3	Location of Spent Fuel Pool in E-Wing	4
Figure 1.4	Shallow Well 330011 Groundwater Monitoring Results	5
Figure 2.1	Locations Selected for Detailed Geologic Study and Locations of Geologic Cross Sections at ANL-E	7
Figure 2.2	Locations Selected for Detailed Geologic Study and Locations of Geologic Cross Sections in the APS/A2R2 Area	8
Figure 2.3	West-to-East Geologic Section APS-A, Illustrating the Stratigraphic and Depositional Relationships in the APS/A2R2 Area of ANL-E	9
Figure 2.4	South-to-North Geologic Section APS-B, Illustrating the Stratigraphic and Depositional Relationships in the APS/A2R2 Area of ANL-E	10
Figure 4.1	Location of 1980 Soil Samples Around CP-5	16
Figure 4.2	CP-5 Soil Sample Locations	19
Figure 4.3	Location of 41-ft Core Bore in E-Wing	22
Figure 4.4	CP-5 Service Floor	29
Figure 5.1	RESRAD Family-Farm Pathways	31
Figure 6.1	Family-Farm Scenario Dose as a Function of Time	35
Figure 7.1	Family-Farm Dose Component Pathways	36
Figure 7.2	Concentration of Tritium in Well Water as a Function of Time	37

	<u>Page</u>
Figure 7.3 Sensitivity Analysis on Length Parallel to Aquifer Flow	38
Figure 7.4 Sensitivity Analysis on Saturated Zone Hydraulic Conductivity	39
Figure 7.5 Sensitivity Analysis on Contaminated Zone Hydraulic Conductivity	40
Figure 7.6 Sensitivity Analysis on Unsaturated Zone 1 Effective Porosity	41
Figure 7.7 Sensitivity Analysis on Saturated Zone Effective Porosity	42

LIST OF TABLES

	<u>Page</u>
Table 3.1 Average Tritiated Water Content of Water and Fish Samples from A2R2 Excavation	15
Table 4.1 1980 CP-5 Soil Sample Results	17
Table 4.2 1997 Split-Spoon Sample Results	20
Table 4.3 E-Wing Boring Split-Spoon Sample Results	23
Table 4.4 1998 CP-5 Yard Sample Results	24
Table 4.5 CP-5 Monitoring Well Specifications	25
Table 4.6 Tritium Concentrations in CP-5 Monitoring Wells	25
Table 4.7 Tritium Concentration in Fuel Pool Floor Concrete	27
Table 4.8 Rod-Out Hole Sampling Results	28
Table 5.1 RESRAD Input Parameters	32
Table 6.1 Potential Radiological Impacts Estimate Summary	34

1.0 INTRODUCTION

1.1 Background

The Chicago Pile-Five (CP-5) reactor is an inactive research reactor located in the Building 330 complex in the southwest quadrant of the Argonne National Laboratory-East (ANL-E) site (Figure 1.1). The CP-5 reactor first achieved criticality in 1954 and was shut down in September 1979. By January 1980, all of the spent fuel and heavy water that could be drained from the cooling system were shipped to the Savannah River Site.

CP-5 operated at a thermal power of 1 MW (million watt) from 1954 to 1960 and 5 MW from 1960 to 1979. The purpose of the reactor was to produce neutrons for experimentation. Essentially all of the thermal energy produced by CP-5 was dissipated to the atmosphere by cooling towers that were located at 330H and 330G in the CP-5 yard south of the reactor building (Figure 1.2). Initially, fuel was stored in below-grade storage holes. Wet-fuel storage was added after the reactor thermal power was increased to 5 MW. The spent fuel pool was located in E-Wing of the Building 330 complex, adjacent to the CP-5 yard.

In 1989, water was detected in the below-grade storage holes in the rod storage area (Figure 1.3). A shallow monitoring well (330011) was installed shortly after discovering the potential leakage into the storage holes to determine whether contamination was migrating from the building into the surrounding soil. Figure 1.4 presents the levels of tritium detected in the well since its installation. Tritium concentrations have never exceeded the 20 pCi/ml U.S. Environmental Protection Agency (EPA) drinking water limit for tritium. In 1993, extensive sampling of the CP-5 yard was performed. While radioactive contamination and some hazardous constituents were detected, the levels were low enough to indicate that no further action was necessary to release the yard for unrestricted use. Pending Illinois Environmental Protection Agency (IEPA) approval, the CP-5 yard could be removed from the list of Solid Waste Management Units (SWMU). The de-listing of the CP-5 yard as a SWMU was unsuccessful due to the level of hazardous constituents (antimony and chromium in soil and antimony and manganese in groundwater).

In June 1997, the deep groundwater monitoring well 330012D shown in Figure 1.2 was installed south of CP-5 to determine if any contaminants were migrating down to the Niagara Dolomite bedrock. Initial monitoring results from the deep dolomite well did not indicate that tritium had reached the groundwater; however, subsequent sampling results from November 1997 and March 1998 did indicate slightly elevated tritium levels in the dolomite groundwater.

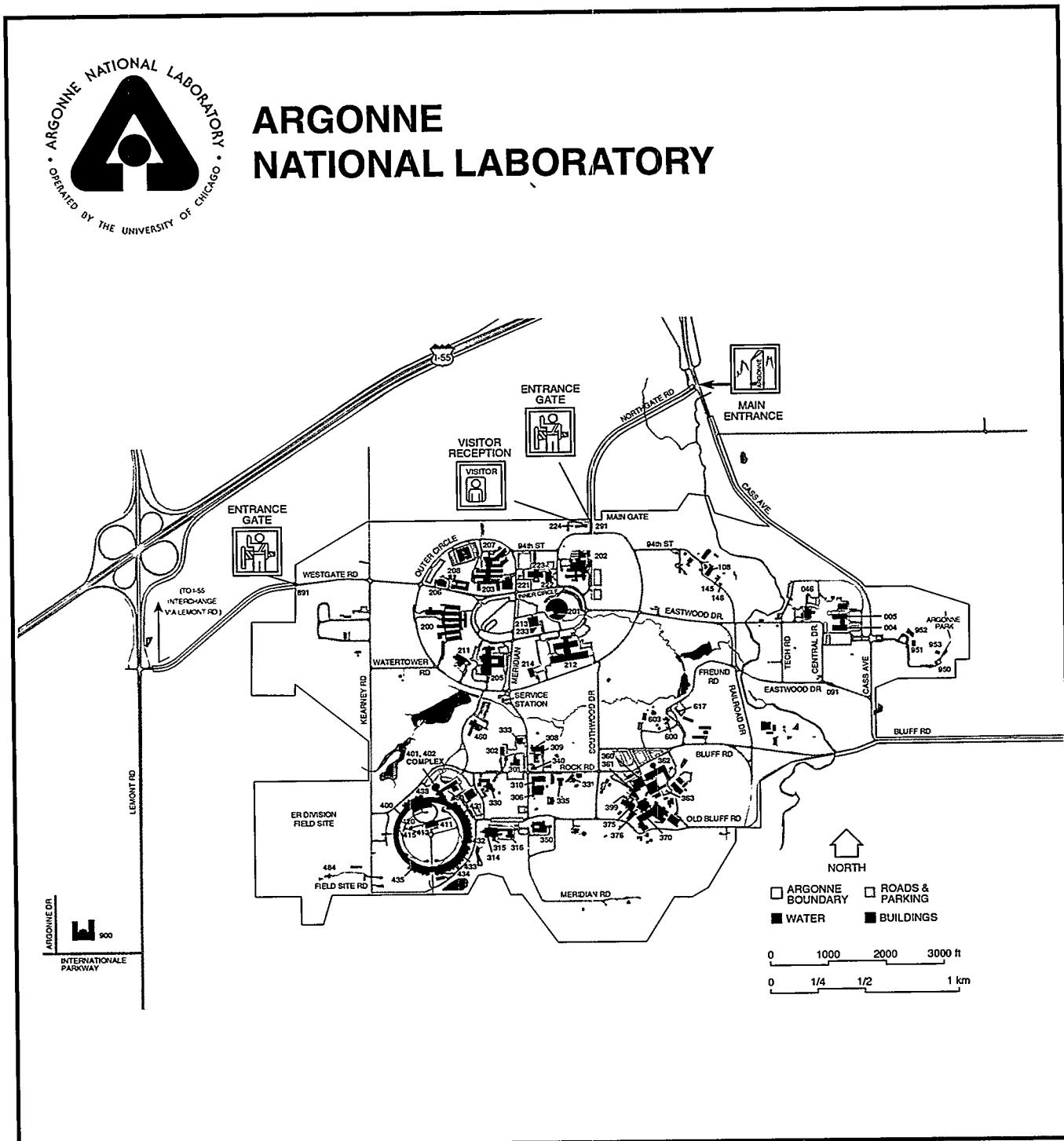
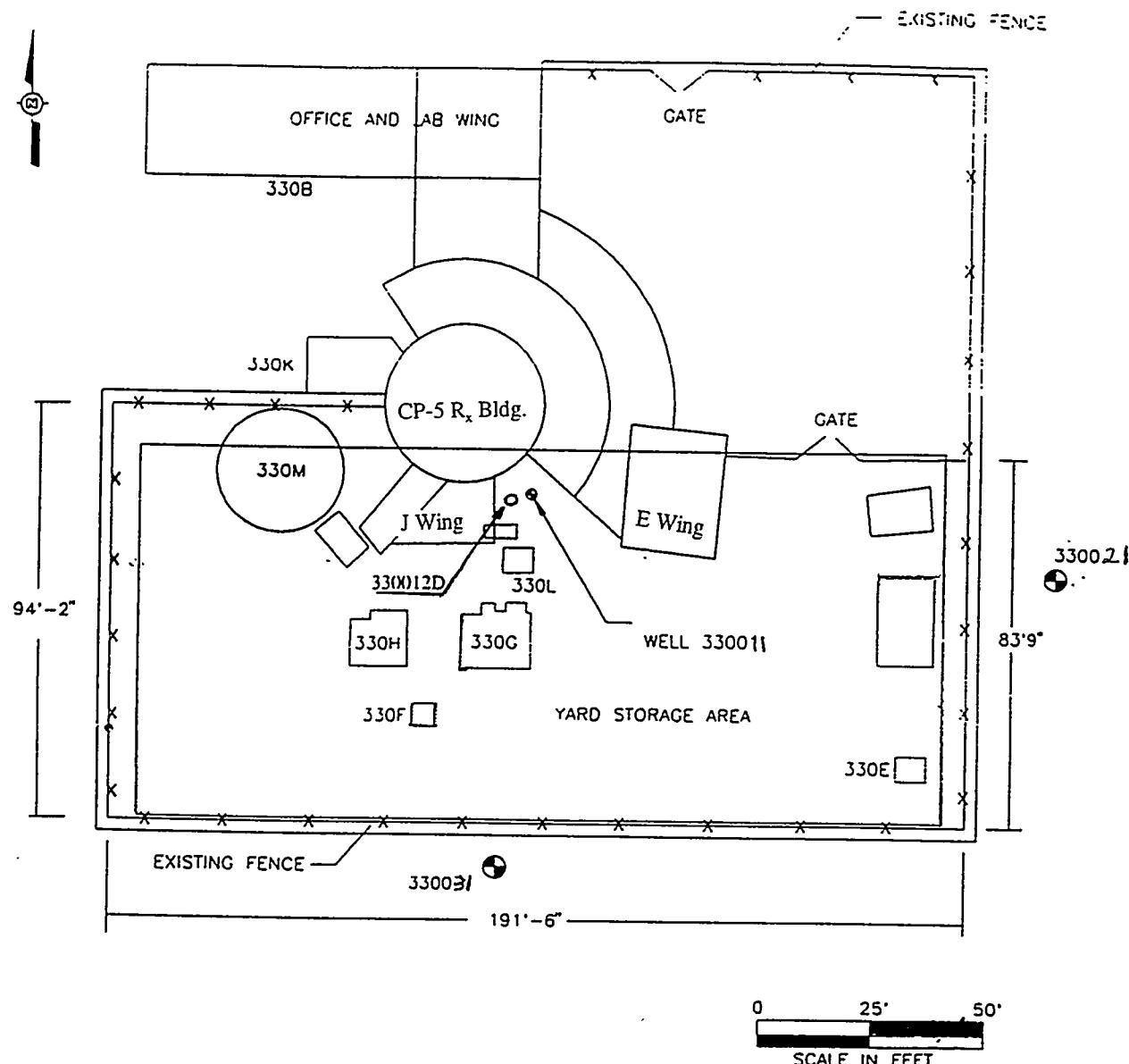



Figure 1.1 Map of Argonne National Laboratory-East

LEGEND:

300040

MONITORING WELL LOCATION

Figure 1.2 CP-5 Reactor Area and Monitoring Well Locations

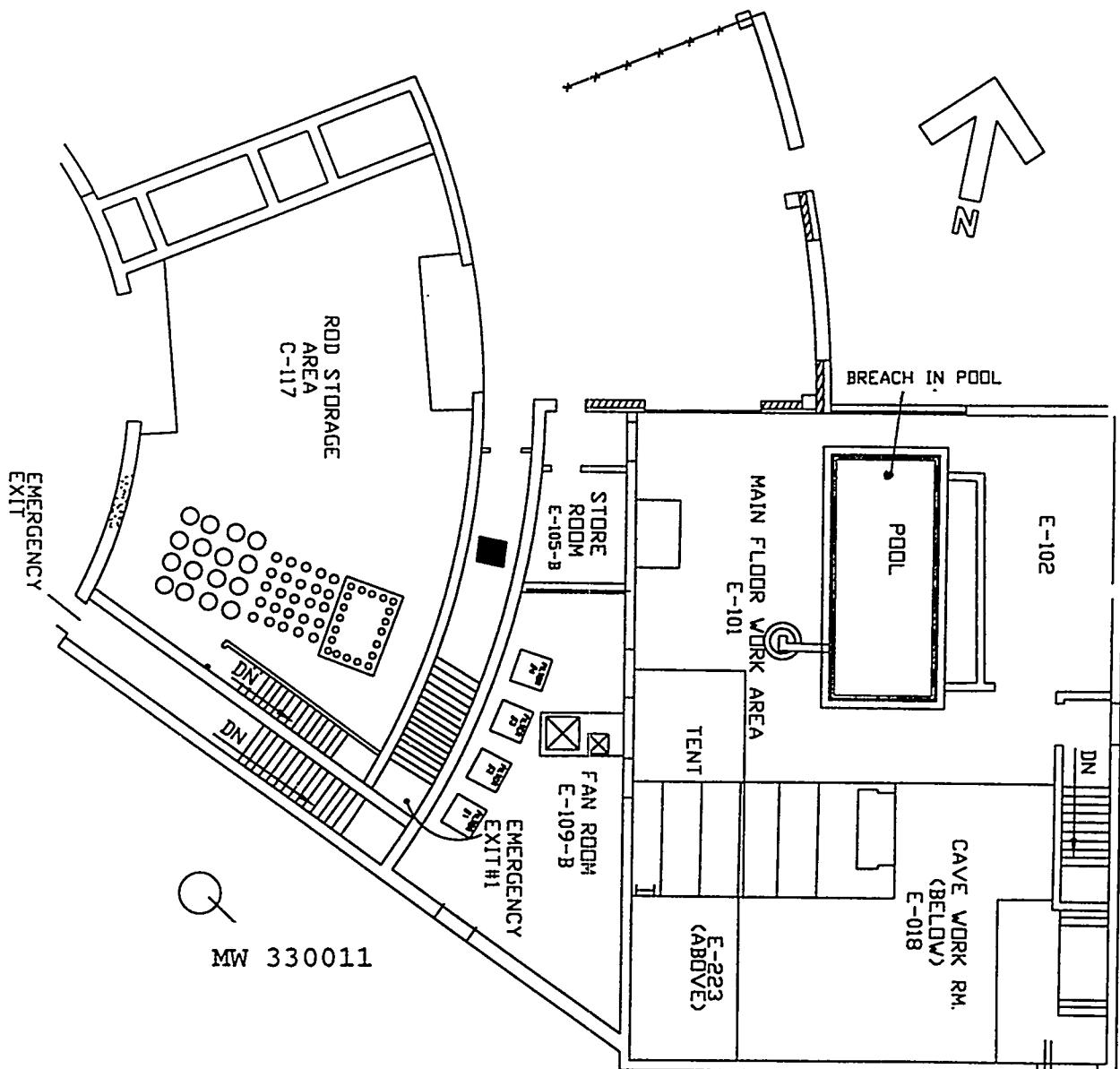
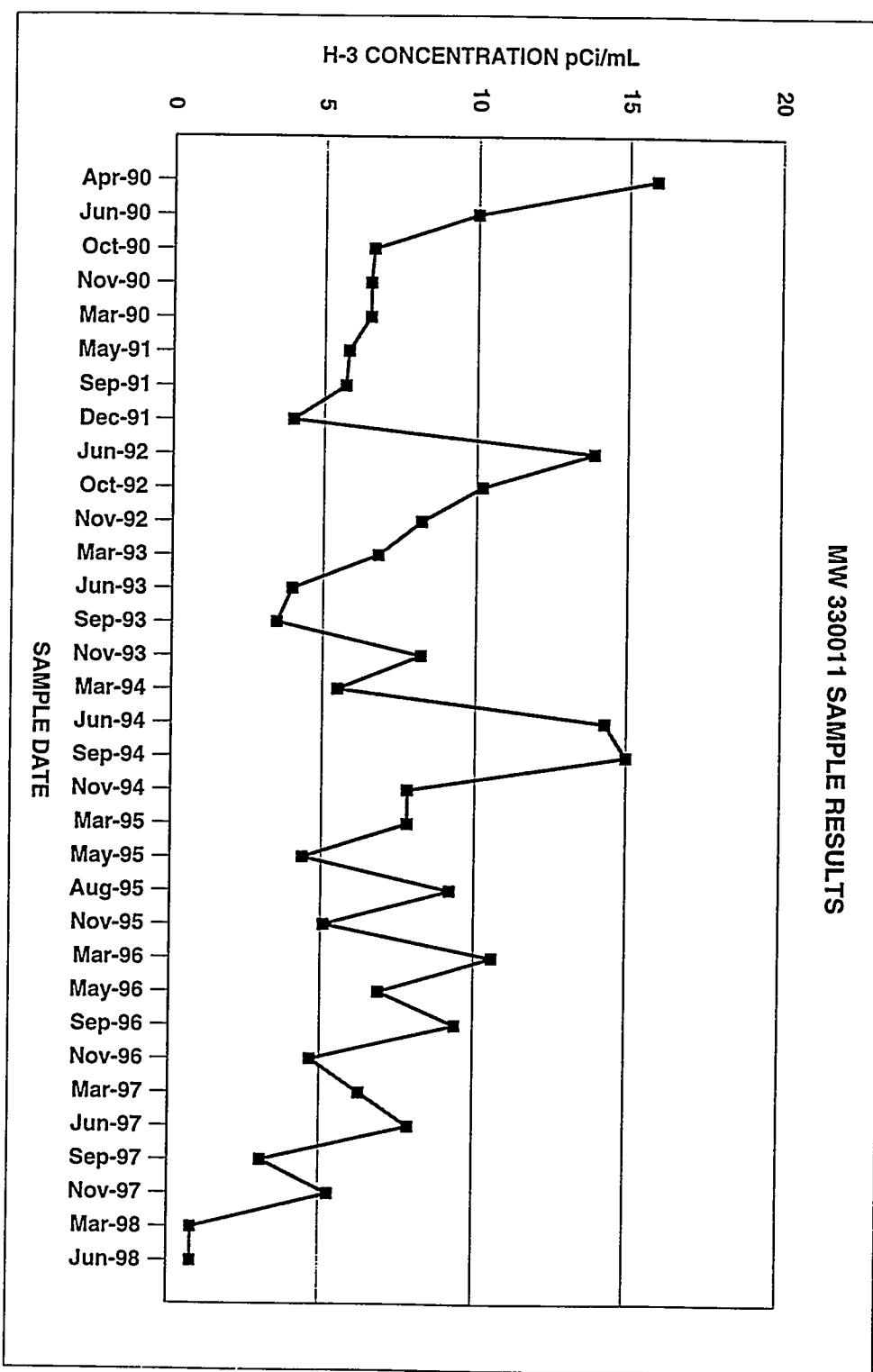



Figure 1.3 Location of Spent Fuel Pool in E-Wing

In November 1997, after removal and disposal of fuel pool water, a small, 1/8 in-diameter hole was discovered in the bottom of the spent fuel pool stainless steel liner (Figure 1.3). If the 3-ft concrete foundation of the pool had been breached, there may be a potential pathway to the soil surrounding Building 330. Consequently, additional core-bore sampling was performed to determine if the source of the tritium in CP-5 yard soil could be the fuel pool.

1.2 Purpose and Scope of This Investigation

The purpose of this investigation was to estimate the magnitude of potential radiological impacts from tritium-contaminated soil and groundwater at the CP-5 site and to determine whether remediation of tritium-contaminated soil is required for the restricted or unrestricted release of the CP-5 yard. This investigation consisted of a review of the CP-5 operating history, a radiological monitoring data review (soil, water, and miscellaneous sampling), and a pathway analysis/dose assessment using the **R**ESidual **R**ADioactive material guidelines (RESRAD) computer code, version 5.82. The results of this investigation are also intended to guide future surveillance, sampling, and surveying of outdoor areas encompassing the Building 330 complex for eventual restricted or unrestricted release.

2.0 GEOLOGY/HYDROGEOLOGY OF THE CP-5 SITE

2.1 Geology

The CP-5 yard area is generally flat with a ground elevation of approximately 745 ft above mean sea level (AMSL). The yard overlies a 126-ft thick deposit of heterogeneous glacial till on top of dolomite bedrock on the eastern edge of the Advanced Photon Source (APS) area of the ANL-E site. The northern portion of this area is known as the Argonne Advanced Research Reactor (A²R²) area, because it had been the proposed location for the A²R² project before its cancellation. The location of the APS/A²R² area and the location of the geologic cross sections are shown in Figures 2.1 and 2.2. The west-to-east trending geologic section, APS-A, is shown in Figure 2.3. APS-B trends south to north, as shown in Figure 2.4. Appendix A contains the IEPA Well Completion Report and Field Boring Log for deep well 330012D (Figure 2.2) installed south of the CP-5 reactor building.

The upper layer (Wadsworth Formation) of glacial till has a relatively uniform composition across the ANL-E site and consists of silty clay, clay loam, and silty clay loam glacial deposits with lenses of sand, silt, and clay (Killey and Trask 1994). The thickness of the Wadsworth layer under CP-5 is approximately 65 ft (Argonne 1997). Deposits of sand and gravel occur as discontinuous lenses throughout the glacial till of the Argonne site. The thin sand lenses occurring in the Wadsworth till of the APS/A²R² area are of limited hydrologic significance (Argonne 1998).

INVESTIGATION OF TRITIUM SOIL CONTAMINATION IN THE CP-5 YARD

Page 7 of 118

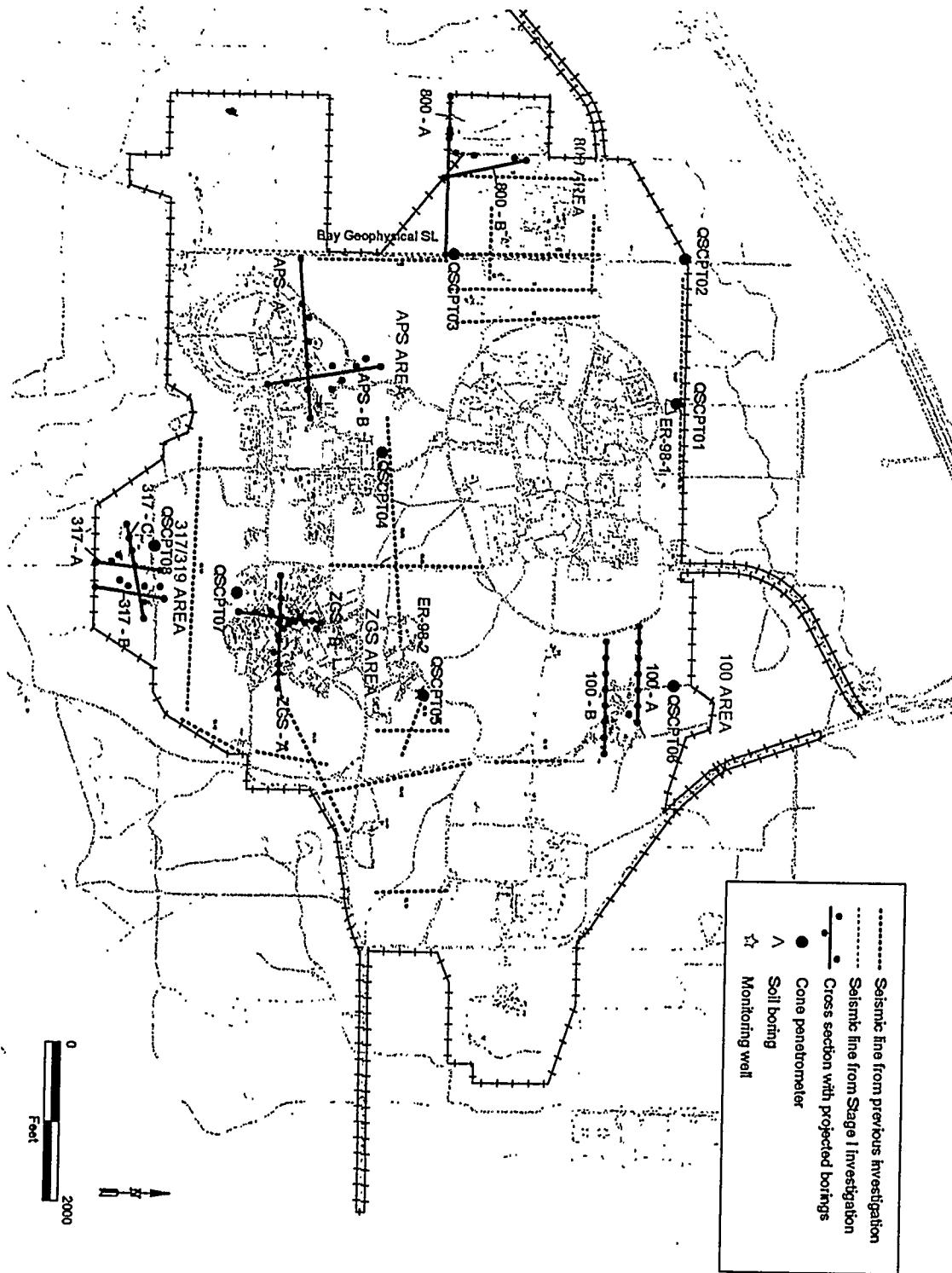


Figure 2.1 Locations Selected for Detailed Geological Study and Locations of Geologic Cross Sections at ANL-E

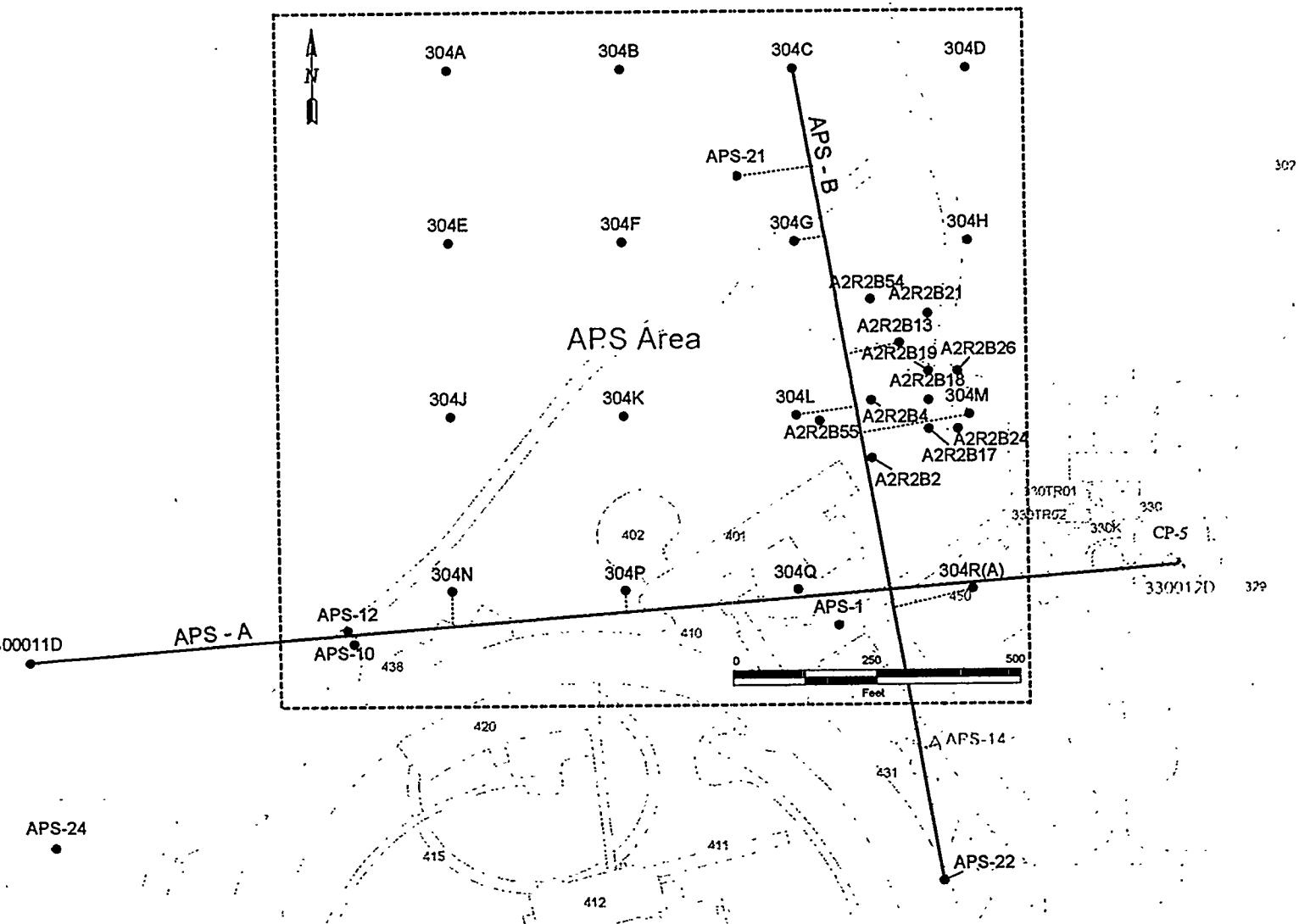


Figure 2.2 Locations Selected for Detailed Geologic Study and Locations of Geologic Cross Sections in the APS/A²R² Area

INVESTIGATION OF TRITIUM SOIL CONTAMINATION IN THE CP-5 YARD

Page 9 of 118

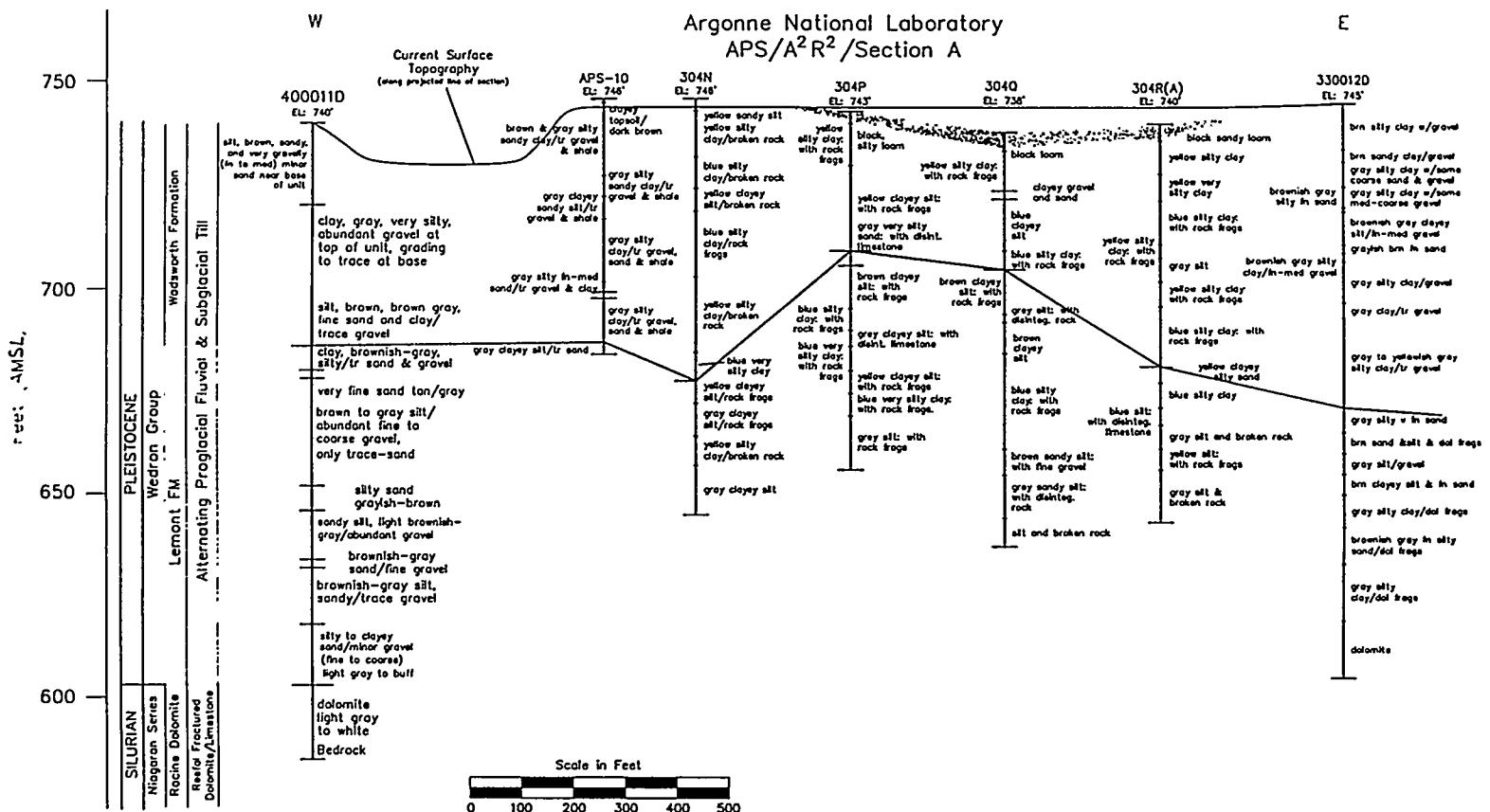


Figure 2.3 West-to-East Geologic Section APS-A, Illustrating the Stratigraphic and Depositional Relationships in the APS/A²R² Area of ANL-E

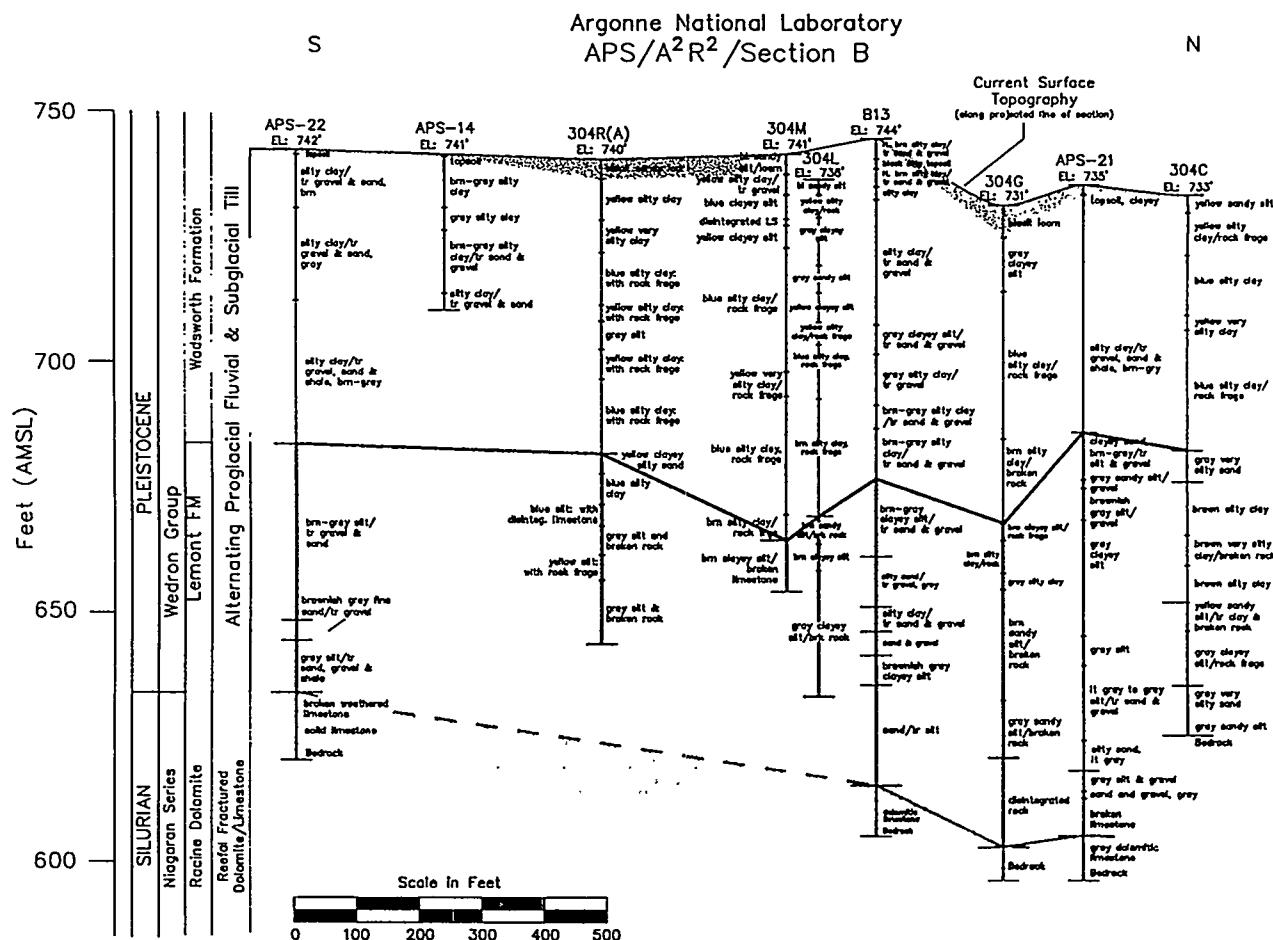


Figure 2.4 South-to-North Geologic Section APS-B, Illustrating the Stratigraphic and Depositional Relationships in the APS/A²R² Area of ANL-E

Shallow monitoring wells (monitoring zones ranging from 2 to 20 ft in depth) installed south and east of the CP-5 complex and soil boring logs performed by IT Corporation in 1993, indicated that relatively porous, water-bearing regions of soil (sandy, gravelly, clay) do exist within the upper Wadsworth clay-till region around CP-5 (IT 1994). Lithologic and hydraulic-head relationships identified primarily in the 317/319/ENE and 800 Areas indicated that shallow groundwater may exist locally under unconfined to marginally confined conditions as relatively isolated perched accumulations within discontinuous deposits of coarser-grained materials above the dolomite water table at the ANL-E site (Argonne 1997). Appendix B contains the stratigraphic column and split-spoon core log for the shallow water well (330011) installed south of the CP-5 reactor building in 1989.

The underlying Lemont Formation beneath the Wadsworth layer consists of considerably more silt and less clay than the overlying Wadsworth layer. A study conducted by the Illinois State Geologic Survey (ISGS) at the APS site indicated that the Lemont drift, which consists of silty clay loam to silt loam, has an average fine-grained matrix (less than 2 mm) of 16% sand, 64% silt, and 20% clay compared with the average of 16% sand, 45% silt, and 39% clay in the overlying Wadsworth till (Killey and Trask 1994). The thickness of the Lemont Formation under the CP-5 complex is approximately 60 ft (Argonne 1997).

2.2 Hydrogeology

The downward velocity of water through the glacial till at ANL-E was determined by W. J. Drescher of the U.S. Geologic Survey (USGS) in 1952 to average 0.25 cm/day (0.91 m/yr). More recent estimates of the downward velocity of water through the till were made in the vicinity of the 800 Area landfill (located in the northeast quadrant). They indicate a downward velocity of 6×10^{-3} cm/day (Geraghty and Miller, 1995).

Available data indicate that the direction of groundwater movement within the dolomite bedrock aquifer under ANL-E is predominantly east (Argonne 1998). Groundwater within the dolomite aquifer originating in the western and central portions of ANL-E flows off-site both to the south and east, toward discharge areas along the Des Plaines River Valley (583 ft AMSL). The horizontal groundwater velocity calculated using a horizontal hydraulic conductivity of 4×10^{-3} cm/sec and an estimated fracture porosity of 10% is 1.9 cm/day, but channelized flow in fractures may be significantly higher (Geraghty and Miller, 1995). Recharge of the dolomite aquifer occurs via precipitation through the unconsolidated glacial sediments that cover the ANL-E site. Since no drinking water supplies are located between the CP-5 complex and the Des Plaines River (located south of CP-5), the potential for human consumption is low (Argonne 1998).

2.3 Surface Water

Natural surface runoff from the ANL-E site, including CP-5, occurs primarily via a network of streams and ditches that are tributary to Sawmill Creek. The creek discharges into the Des Plaines River, located approximately 1.2 miles south of CP-5.

3.0 POTENTIAL SOURCES OF TRITIUM IN CP-5 YARD SOIL

Tritium (H-3) is a radioactive isotope of hydrogen with an atomic number of 1 and atomic weight of 3. It decays with a half-life of 12.35 years by emission of a low-energy beta particle (electron with a mean energy of 5.7 keV). Tritium is primarily an internal dose hazard. The low-energy beta emitted during the decay process from tritium is unable to penetrate the skin. In heavy water reactors like CP-5, neutron activation of deuterium (H-2) is the main source of tritium. Tritium was normally released by CP-5 both in the form of tritiated water vapor released by the CP-5 stack and in the form of water that circulated in the CP-5 cooling system that may have leaked during off-normal conditions into the surrounding soil. Once tritiated water has entered the soil, its transport will involve the same processes and follow the same paths as other water. Tritiated water is carried by bulk flow with the liquid water in the soil. At the same time, there is mixing of water in the soil because the water is dispersed among the different pores in the soil as it is transported. Tritium concentration units in this report either specify tritium radioactivity per unit mass of dry soil from which the water and tritium have been removed for analysis or tritium radioactivity per unit of water volume that has been removed from soil or simply well water. There are several potential tritium sources that may have contributed to the tritium identified in soil samples and monitoring well samples around the CP-5 yard. Several documented incidents and hypothetical scenarios are discussed below.

3.1 Tritium Releases From Primary to Secondary Cooling System

A primary-to-secondary coolant leak through a small hole in the main heat exchanger of CP-5 occurred in 1964 (Argonne 1965). The leak allowed between 364 and 738 Ci of tritiated water to enter the secondary cooling system.^{1,2,3} In 1971, another primary-to-secondary cooling system leak allowed between 40 to 80 Ci to enter the secondary cooling system.⁴

¹Memo, R. Ditch to R. Rose, "Heat Exchanger Leaks Discharging Tritium Contaminated Heavy Water to Cooling Towers", 2/16/98

²Reactor Operations Memo #55 titled: "Failure and Repair of the Main Heat Exchanger of CP-5," September 2, 1964

³Data log "Tritium Concentration in CP-5 Heavy Water"

⁴CP-5 Operations Log Concerning Heat Exchanger Leak in 1971, Talboy, J.

3.2 Draining Secondary System Water to Footing Drains

The service floor of CP-5 contains several iron rod-out holes (similar to manholes) joined by clay piping located under and around the outer circumference of the service floor approximately 14 ft below grade. The piping leads to the laboratory sanitary drain system. The purpose of this circular ring of piping or drain-tile system under the service floor is to prevent shallow groundwater from damaging the building foundation. The system allowed groundwater to enter the clay pipe at loose or "leaky" connections between pipe segments, thereby draining the groundwater into the clay piping. It also provided a convenient route for the release of water from the secondary side of the main heat exchanger that had been located on the service floor.

3.3 Secondary System Water Leakage to CP-5 Yard Soil

3.3.1 Tritiated Water Leaks From Cooling Tower Piping

The CP-5 secondary cooling system water is believed to have been normally contaminated with low levels of tritium from small primary-to-secondary system leaks. On at least two documented occasions, as discussed in Section 3.1, large quantities of tritium entered the secondary cooling system water. Some tritiated water may have been released through a postulated leak in the secondary cooling system piping leading from the service floor of the CP-5 reactor building to the cooling towers located in the south yard. Based on an old photograph of the excavated secondary piping leading to the cooling towers, the piping was located approximately 12 ft below grade, or 732 ft AMSL, and contained at least two flanged pipe-segment connections.

3.3.2 Tritiated Water Leaks From CP-5 Drain Tile System

In February 1998, sludge and water samples were collected from the rod-out holes in the service floor of CP-5 (see Section 4.3.2). Based on the tritium levels found in the holes, it appears likely that CP-5 operational personnel drained contaminated secondary coolant water to the drain tile system, causing a small fraction of the tritiated water to escape the pipe at the loose or "leaky" pipe connection points and thereby making a contribution to the tritium concentrations in CP-5 yard soil. These subsurface leaks would have occurred at approximately 14 ft below grade or 731 ft AMSL.

3.3.3 Tritiated Water Releases to a Storm Drain

In 1964, 3,000 gal of tritiated water were mistakenly sent directly to a storm drain located in the south end of the CP-5 yard rather than to the laboratory drain for processing.⁵ The extent to which this release may have contributed to tritium in CP-5 yard soil is unknown.

⁵Memo, J. Aldana to R. Rose, "Possible Sources of Tritium Around Building 330", 3/3/98

3.4 Fuel Pool Liner Hole Leakage

In November 1997, a small, 1/8-in diameter hole was discovered in the spent fuel pool's liner (located in E-Wing) approximately 25 ft below grade. Subsequent sampling of the concrete pool foundation and adjacent soil core bores did not indicate that the fuel pool had contributed to CP-5 yard tritium (see section 4.1.6).

3.5 Water Identified in the Rod Storage Area Below-Grade Holes

In 1989, water was detected in the below-grade storage holes in the rod storage area in Room C-117. Follow-up sampling and monitoring did not indicate that the rod storage area below-grade holes had contributed to CP-5 yard tritium.

3.6 Airborne Tritium Fallout

3.6.1 Cooling Tower Evaporation

Evaporation and subsequent fallout or rainout of tritium-contaminated secondary cooling system water as it flowed within the cooling towers during the operational life of CP-5 would have contributed to tritium identified in CP-5 yard soil.

3.6.2 Ventilation System Stack

The normal operation of CP-5 (1954-1979) released significant amounts of water vapor containing tritium (up to 3 Ci/day and 1,000 Ci/yr) from the main ventilation system stack located 56 ft above the ground on the east side of the CP-5 Reactor Building. The water vapor emitted from the stack would have either condensed and fallen to the ground as precipitation or been brought to the ground by rain (rainout) and would have contributed significantly to tritium in CP-5 yard soil.

In 1967, an excavation was dug approximately 150 m northwest of CP-5 for the foundation of the proposed A²R². The project was canceled, but the 40-m diameter, 13-m deep excavation eventually filled with water, creating a pond. Radiological monitoring of the water and fish that eventually populated the A²R² pond began in 1973. The pond water monitoring results shown in Table 3.1 indicate that tritium emissions from CP-5 accumulated in the pond as a result of rainout. The tritium concentration in pond water increased until 1978 and then decreased as the tritium released from CP-5 decreased (Golchert et al. 1983). Based on the levels of tritium measured in the pond 150 m away, rainout of tritium near the point of exhaust from the east side of CP-5 would have significantly contributed to the tritium levels identified in CP-5 yard soil and water.

Table 3.1 Average Tritiated Water Content of Water and Fish Samples from A²R² Excavation

Year	Number Of Water Samples	Tritium Concentration in Water (pCi/ml)	Number of Fish Samples	Tritium Concentration in Fish Tissue Water (pCi/ml)
1973	2	8.1	1	6.0
1974	3	6.8	3	5.9
1975	3	9.1	1	8.8
1976	2	11.1	2	8.9
1978	1	11.4	1	11.0
1979	1	8.7	1	9.0
1980	1	8.4	2	7.8
1981	4	4.3	-	-
Jan.-June 1982	6	3.7	-	-
July-Dec. 1982	5	2.1	-	-

4.0 CP-5 RADIOLOGICAL MONITORING

4.1 Soil Sampling

4.1.1 1980 CP-5 Area Soil Sampling Results

In June 1980, twelve surface soil samples were collected from depth intervals of 0 – 2 in and 2 – 6 in below the surface at eight locations around the CP-5 reactor building. Each sample was analyzed by ANL-E Environment, Safety and Health (ESH) personnel using gamma-ray spectrometry. Soil moisture tritium concentrations were determined by liquid scintillation. The analytical results are presented in Table 4.1.⁶ Tritium levels measured in surface soil moisture ranged from 0.3 to 3.9 pCi/g with the highest tritium levels occurring at sample location B (Figure 4.1) located closest to the CP-5 ventilation system stack on the east side of the CP-5 reactor building roof. Cs-137 and Co-60 soil concentrations are within the range normally present in environmental samples.

⁶Memo, N. Golchert to M. Robinet, "Analysis of CP-5 Soil Samples", 9/18/80

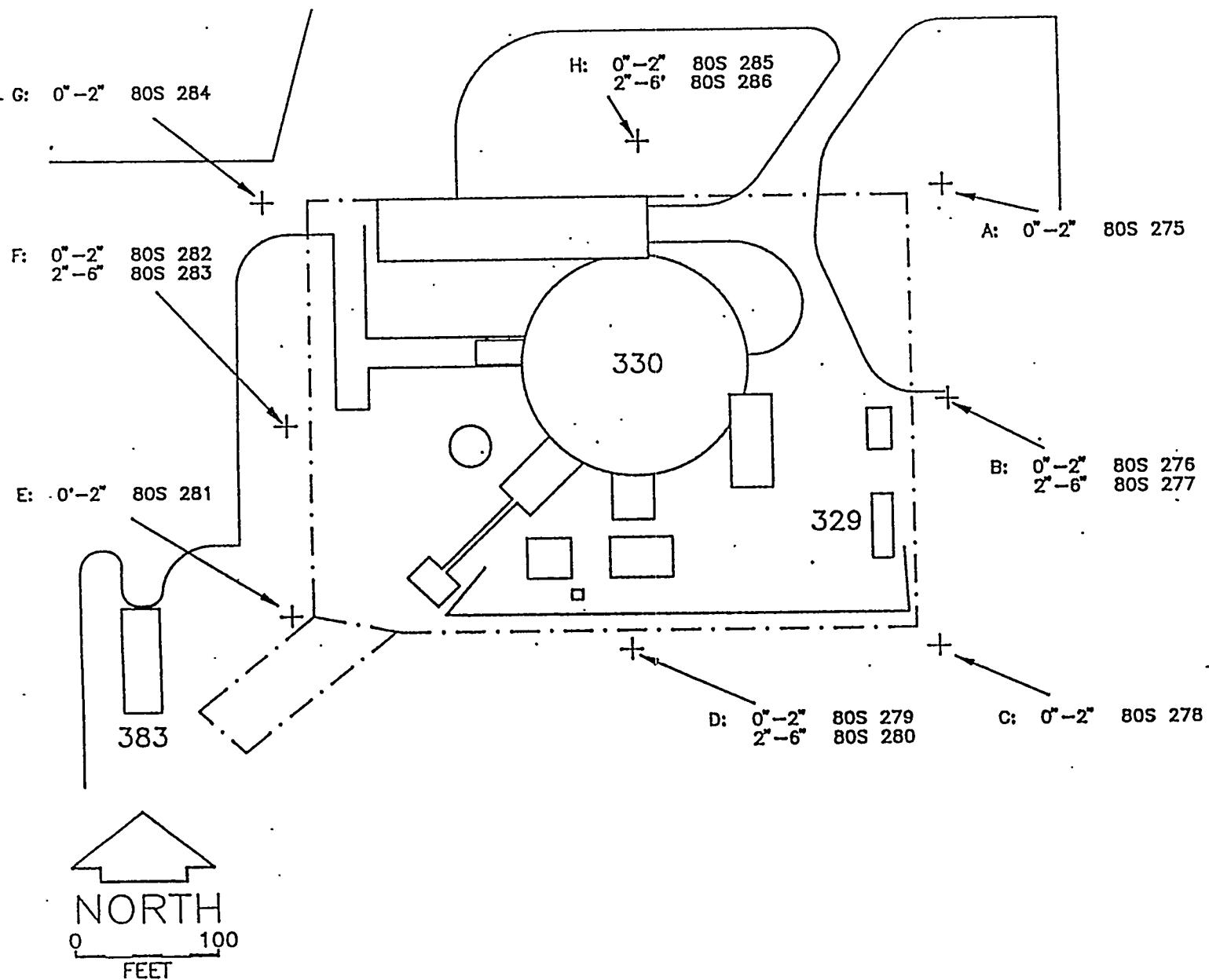


Figure 4.1 Location of 1980 Soil Samples Around CP-5

Table 4.1 1980 CP-5 Soil Sample Results

Sample Number	Location in Figure 4.1	Sampling Depth Interval (in)	H-3 (pCi/g)	Co-60 (pCi/g)	Cs-137 (pCi/g)
80S275	A	0-2	0.48 ± 0.04	<0.1	0.3 ± 0.1
80S276	B	0-2	3.90 ± 0.07	<0.1	1.2 ± 0.1
80S277	B	2-6	2.96 ± 0.05	<0.1	0.4 ± 0.1
80S278	C	0-2	0.31 ± 0.05	<0.1	1.1 ± 0.1
80S279	D	0-2	0.51 ± 0.05	0.1 ± 0.1	1.3 ± 0.1
80S280	D	2-6	0.46 ± 0.03	<0.1	0.3 ± 0.1
80S281	E	0-2	0.42 ± 0.05	<0.1	1.2 ± 0.1
80S282	F	0-2	0.56 ± 0.05	<0.1	1.3 ± 0.1
80S283	F	2-6	0.46 ± 0.04	<0.1	0.9 ± 0.1
80S284	G	0-2	0.93 ± 0.05	<0.1	0.7 ± 0.1
80S285	H	0-2	0.30 ± 0.04	<0.1	0.4 ± 0.1
80S286	H	2-6	0.31 ± 0.03	<0.1	0.1 ± 0.1

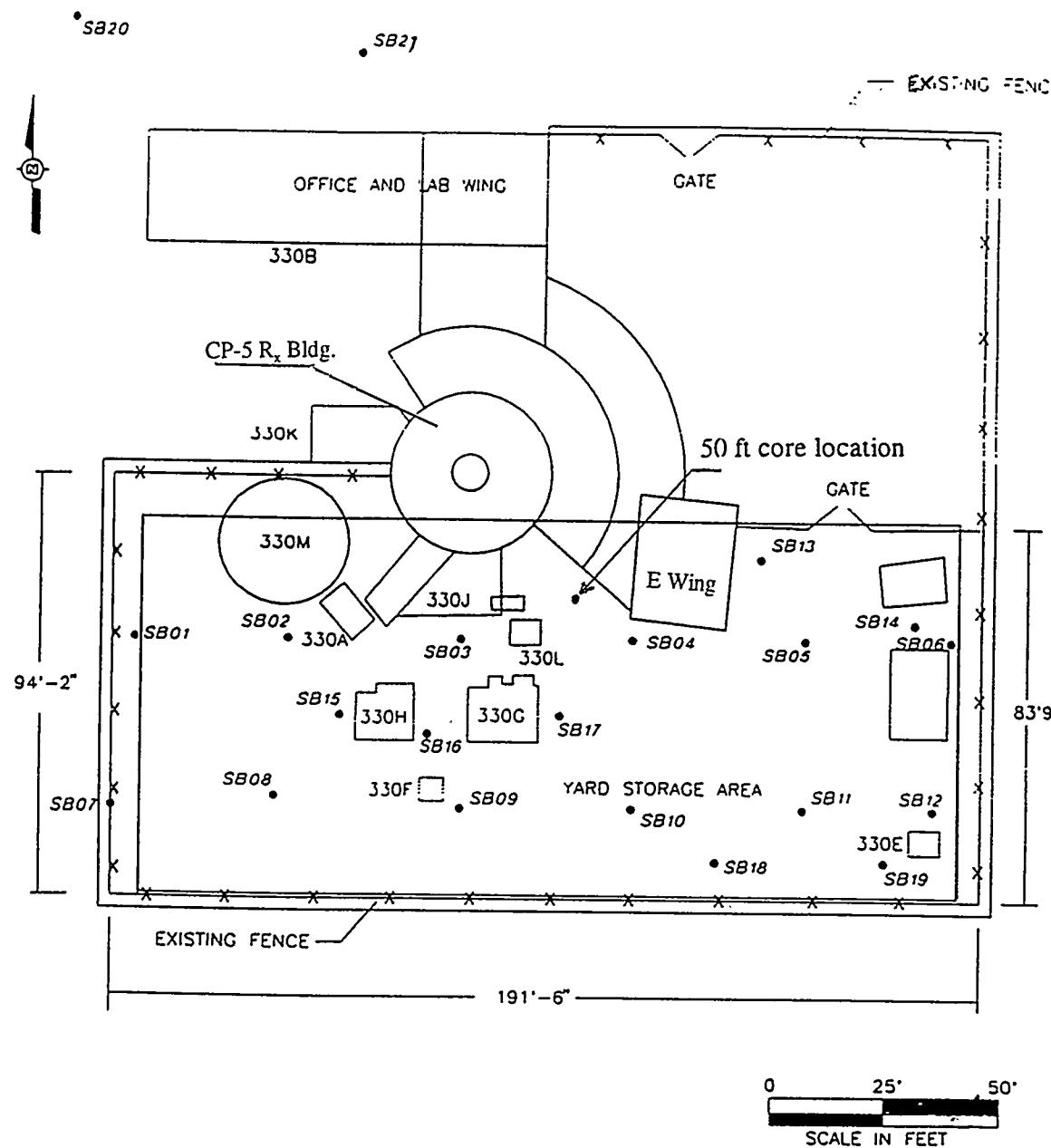
4.1.2 1989 20-ft Soil Core Sampling Results

In August 1989, a shallow well (330011) was installed in a relatively porous, saturated soil region approximately 20 ft south of the CP-5 reactor building and 8 ft from E-Wing (Figure 1.3) after tritiated water was identified in the rod storage area below-grade holes. Core bore sampling was performed at 2-ft intervals from the surface to a 20-ft depth during well installation. Tritium soil concentration measurements performed by ESH ranged from 0.013 to 2.9 pCi/g with the highest level occurring in the 14 – 16-ft below-grade depth interval. Soil water content ranged from 10.3% to 15.3%, averaging 12.85%⁷ (see Appendix C). This water content is in good agreement with the mean water content (15.9%) of glacial till measured at the APS site (STS 1990) and the water content of glacial till (10% to 20%) cited in Fetter 1980.

⁷Memo with Attachments, N. Golchert to R. Wynveen, "Analysis of CP-5 Monitoring Well Soil Cores", 11/16/89

4.1.3 1993 IT Corporation CP-5 Yard Characterization

In 1993, IT Corporation performed a radiological and hazardous material characterization of the CP-5 yard to determine whether the storage in the yard of equipment and lead shielding had resulted in contamination of the soil from radioactivity or hazardous material. A total of 21 soil borings were drilled at locations SB01 through SB21, as shown in Figure 4.2. At each location, one sample was obtained from the 0.5 – 1.5-ft interval using a stainless steel hand auger. Continuous split-spoon samples were collected in all borings from 2 ft to total depth (between 4 and 14 ft deep). IT Laboratory results for the tritium levels obtained from soil moisture by the cryogenic distillation method are provided in Appendix C. Assuming that the samples had a 13% water content, typical of CP-5 yard soils, tritium concentrations in surface soils (0.5 – 1.5 ft) and subsurface soils (4 – 14 ft) ranged from <0.03 to 2.8 pCi/g and <0.05 to 18.5 pCi/g, respectively. The highest tritium levels were detected approximately 40 ft south and 40 ft east of the CP-5 reactor building within an area of approximately 150 m², encompassing samples SB03, SB04, SB05, and SB13 in the 8 – 10-ft deep sampling interval. The average subsurface (8 – 10-ft deep) tritium level at these locations is 10.4 pCi/g, assuming a soil water content of 13%.


The IT Laboratory analytical results (Appendix D) indicated that concentrations of naturally occurring radionuclides (K-40, Ra-226, Ra-228, and U-238) were within the range normally present in environmental samples. One surface sample, however, contained 8.6 pCi/g of Cs-137, approximately eight times the concentration of Cs-137 typically present in environmental samples from fallout. IT also identified Co-57, Co-60 and Eu-152 in several samples that were collected from 0.5 – 1.5 ft deep. All of these radionuclides were present in levels of less than 2 pCi/g and were not included in this analysis. The focus of this analysis was tritium due to its mobility in the environment and prevalence in soils around the CP-5 yard.

4.1.4 1997 Dolomite Well Installation

In June 1997, a deep monitoring well (330012D) was installed approximately 10 ft west of shallow monitoring well 330011 (Figure 1.2) to monitor the tritium concentration in the dolomite groundwater. During well construction, an attempt was made to save selected soil cores for tritium analysis. No samples were collected between the ground surface and 50 ft below grade. Only four samples collected between 50 to 125 ft yielded sufficient water content for tritium analysis. Of these four samples, two contained soil water tritium concentrations <0.1 pCi/ml. Samples collected from the 50 – 52-ft deep and 103 – 105-ft deep intervals contained soil water tritium concentrations of 0.41 pCi/ml and 0.54 pCi/ml, respectively.⁸ These low tritium concentrations reflect the low permeability of the glacial till underlying the CP-5 yard. Assuming a moisture content of 13%, the measured soil water concentrations of 0.41 pCi/ml and 0.54 pCi/ml correspond to tritium soil concentrations of only 0.05 and 0.07 pCi/g, respectively.

⁸Memo, N. Golchert to R. Coley, "Tritium Concentrations in CP-5 Soil Cores", 12/04/97

SB08 • SOIL SAMPLING LOCATION

Figure 4.2 CP-5 Soil Sample Locations

4.1.5 1997 50-ft Deep Split-Spoon Sampling

In December 1997, a 50-ft deep core boring was made at a location approximately 10 ft south of shallow monitoring well 330011 and adjacent to E-Wing (Figure 4.2) to determine whether a hole in the stainless steel liner of the fuel pool floor had contributed to tritium identified in CP-5 yard soil (see section 4.3.1). Split-spoon samples were obtained from 10 – 52.5 ft deep at 1.5 ft intervals. Table 4.2 contains the results of samples selected for tritium analysis by the ANL-E Analytical Chemistry Laboratory (ACL). Soil concentrations ranged from <0.04 to 14.4 pCi/g with concentrations reaching a maximum in the 20 – 21.5-ft deep interval. Beyond 21.5 ft deep, soil sample tritium concentrations declined with sample depth and showed no indication of tritium from the adjacent fuel pool concrete foundation located approximately 27 ft below grade.⁹ The tritium concentration in the sample from the 14 – 15.5-ft below grade sampling interval (11.5 pCi/g) was consistent with the results obtained during the 1993 IT sampling at locations SB03, SB04, and SB05 in the 8 – 10-ft below grade sample interval.

Table 4.2 1997 Split-Spoon Sample Results

Sample ID	Depth (ft)	H-3 (pCi/ml)	H-3 (pCi/g)	% Moisture
03	14 – 15.5	91.0 ± 2.0	11.5 ± 0.2	12.6
03 (Dup)	14 – 15.5	88.4 ± 1.8	11.1 ± 0.2	----
06	20 – 21.5	109 ± 2	14.4 ± 0.2	13.3
07	22 – 23.5	52.3 ± 0.9	6.8 ± 0.1	12.9
08	24 – 25.5	45.3 ± 0.7	5.7 ± 0.1	12.6
11	30 – 31.5	39.8 ± 0.7	5.6 ± 0.1	14.1
15	39 – 40.5	5.5 ± 0.2	0.74 ± 0.03	13.5
20	51 – 52.5	<0.33	<0.04	12.6

⁹ANL Analytical Chemistry Laboratory "Report of Analytical Results", Sample Nos. 98-2027-01 thru 06, 12/22/97

4.1.6 1998 Split-Spoon Sampling Adjacent to Fuel Pool

In February 1998, split-spoon samples were obtained from a 41-ft-deep soil boring made through the floor of a room adjacent to the fuel pool in E Wing to determine whether the fuel pool was the source of tritium in CP-5 yard soil (Figure 4.3). Most of the samples were analyzed by Paragon Analytics, but some were "split" with the ACL. Note that the samples were not "split" in accordance with the technical meaning of "split sample." The split-spoon samples were simply divided with the upper portion going to Paragon and the lower portion going to the ACL. Other samples were analyzed only by the ACL. The Paragon Lab soil moisture tritium results from each 2-ft sampling interval from 13 – 41-ft deep ranged from 0.1 pCi/g to 42.3 pCi/g¹⁰ (Table 4.3). The highest tritium concentration reported by Paragon (42.3 pCi/g) was obtained from the 13 – 15-ft deep sampling interval. This result is somewhat anomalous, because the other portion of sample, which was analyzed by ACL, yielded only 3.52 pCi/g tritium.¹¹ Excluding the 42.3 pCi/g anomalous sample result, the range of concentrations obtained from the entire core was 0.1 to 3.8 pCi/g with an average of 1.7 pCi/g. Sample concentrations generally showed a decline with sample depth beyond 15 ft deep and showed no indication of tritium from the adjacent fuel pool floor located approximately 27 ft below grade.

Assuming that the Paragon Laboratory sample result of 42.3 pCi/g at the 13 – 15-ft interval is correct, the mean concentration in the 41-ft core is 4.73 pCi/g. A high tritium concentration (42.3 pCi/g) adjacent to a low concentration (3.52 pCi/g) would be indicative of a highly impermeable, retarding layer within the 13 – 15-ft interval (between the Paragon sample and ACL sample) beneath the E-Wing and/or CP-5 Complex. No construction drawings indicated that such a man-made layer existed, but the existence of such a layer composed of engineered fill cannot be ruled out.

4.1.7 1998 CP-5 Yard Sampling

In March 1998, soil samples were obtained at various distances from the CP-5 reactor building at various depths in the approximate location of the secondary system piping that led to the valve pit (330L in Figure 4.2) and cooling towers (330G and 330H in Figure 4.2) south of the CP-5 reactor building prior to the dismantlement of the cooling system in 1979. The soil tritium concentrations reported by Paragon Lab are presented below in Table 4.4. Tritium concentrations ranged from 0.79 to 8.8 pCi/g¹² with the highest sample result obtained 42 ft south of the CP-5 reactor building at the 14 – 16-ft below grade depth interval. Tritium concentrations generally increased with distance

¹⁰Paragon Analytics, Inc., "Tritium Analysis Results Summary", PAI ID Nos. 98-02-210-09 through -19, 3/3/98

¹¹ANL Analytical Chemistry Laboratory, "Report of Analytical Results" Sample Nos. 98-8135-01A through 01C, 02; 98-8139-01 and -02

¹²Paragon Analytics Inc., "Tritium Analysis Results Summary", PAI ID Nos. 98-02-210-09 through -19, 3/2/98

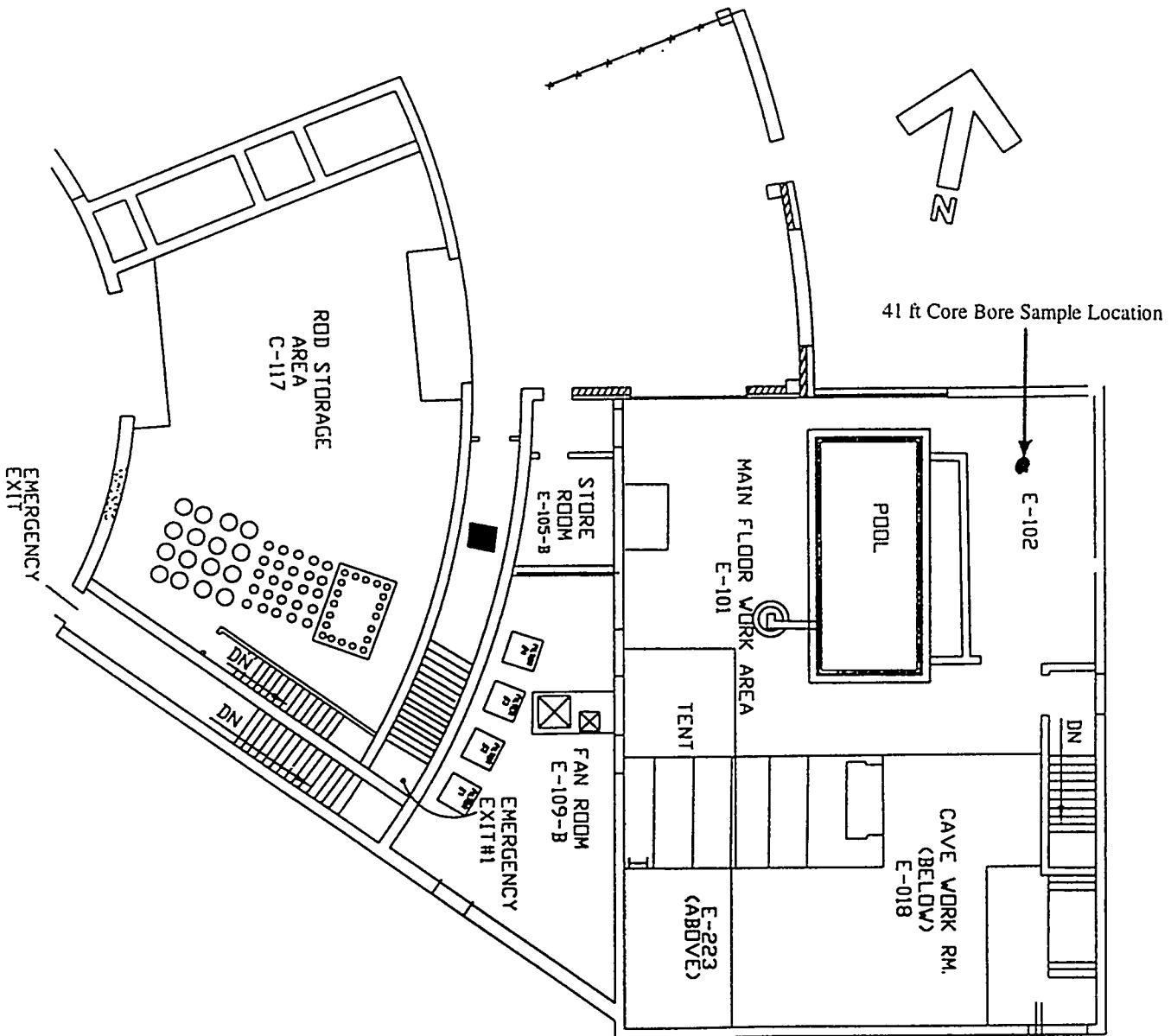


Figure 4.3 Location of 41-ft Core Bore in E-Wing

Table 4.3 E-Wing Boring Split-Spoon Sample Results

Sample ID	Depth Interval (ft)	Paragon Lab H-3 (pCi/g)	ANL-E ACL H-3 (pCi/g)	% Moisture
FP01 09-11	9 – 11	-----	3.8 ± 0.1	2.9
FP01 11-13	11 – 13	-----	1.3 ± 0.1	1.3
FP01 13-15	13 – 15	42.3 ± 5.5	3.52 ± 0.08	14.9/12.0
FP01 15-17	15 – 17	3.73 ± 0.49	-----	14.1
FP01 17-19	17 – 19	2.42 ± 0.32	-----	13.8
FP01 19-21	19 – 21	2.69 ± 0.36	-----	11.7
FP01 21-23	21 – 23	1.26 ± 0.17	-----	12.5
FP01 23-25	23 – 25	2.24 ± 0.3	1.15 ± 0.05	18.4/15.7
FP01 25-27	25 – 27	0.73 ± 0.1	-----	11.0
FP01 33-35	33 – 35	0.19 ± 0.03	-----	6.6
FP01 35-37	35 – 37	0.55 ± 0.08	-----	16
FP01 37-39	37 – 39	0.18 ± 0.04	-----	13.3
FP01 39-41	39 – 41	0.1 ± 0.04	<0.05	13.8/11.5

from the CP-5 reactor building and reached their highest levels in the same vicinity as the 1993 IT SB03 sample location (Figure 4.2), suggesting that leaks in piping associated with the cooling towers may have significantly contributed to the tritium in the CP-5 yard soil. Paragon also performed gamma spectroscopy and Sr-90 analysis on each soil sample. All of the sample Sr-90 results were <0.67 pCi/g.¹³ Gamma-ray emitting radionuclides identified were naturally occurring decay chain progeny or fallout radionuclides in their typical environmental concentrations.

¹³Paragon Analytics Inc., "Sr-90 Analysis Results Summary" & "Gamma Spec Results" PAI ID Nos. 98-02-210-01 thru -08, 3/19/98

Table 4.4 1998 CP-5 Yard Sample Results

Sample ID	Depth Interval (ft)	Distance from Rx Bldg. (ft)	Paragon H-3 (pCi/g)	ANL-E ACL H-3 (pCi/g)	% Moisture
YA1 10-12	10 – 12	2.7	1.3 ± 0.18	-----	19.6
YA1 12-14	12 – 14	2.7	0.82 ± 0.11	0.7±0.03	12/11.5
YA2 11-13	11 – 13	12	0.79 ± 0.11	-----	12
YA2 13-15	13 – 15	12	0.89 ± 0.12	-----	16.9
YA3 12-14	12 – 14	25	1.27 ± 0.17	-----	10.7
YA3 14-16	14 – 16	25	2.14 ± 0.28	-----	12.9
YA4 12-14	12 – 14	42	3.82 ± 0.50	-----	11.9
YA4 14-16	14 – 16	42	8.8 ± 1.2	-----	13.2

4.2 CP-5 Yard Area Water Sampling

4.2.1 Shallow Groundwater Monitoring

In addition to the exploratory well installed in 1989 south of CP-5, two downgradient, shallow groundwater monitoring wells were installed as part of the 1993 IT Corporation CP-5 yard characterization. Monitoring well 330021 is located on the east side of the CP-5 yard, and monitoring well 330031 is located on the south end of the CP-5 yard (Figure 1.2). Monitoring well specifications from the annual ANL-E Site Environmental Reports are shown in Table 4.5. A fourth upgradient monitoring well was to be located on the north side of the CP-5 complex; however, the drilling of two separate boreholes, SB20 to 32 ft deep and SB21 to 24 ft deep (Figure 4.2), resulted in no water yields.

Sampling of the CP-5 monitoring wells is performed quarterly. The ESH tritium sampling results are published annually in the ANL-E Site Environmental Report and are summarized in Table 4.6. The highest tritium concentrations are associated with shallow groundwater monitoring well 330011 installed in 1989, where tritium concentrations ranged from 15.9 pCi/ml to 0.8 pCi/ml with significant fluctuation between 1990 and 1997 (Figure 1.4). Levels of tritium in the other two shallow wells are lower by at least a factor of ten. Even though soil moisture tritium concentrations have exceeded the EPA drinking water standard of 20 pCi/ml, no shallow well water sample has ever been above the EPA drinking water standard of 20 pCi/ml. The discrepancy between soil water

**INVESTIGATION OF TRITIUM SOIL
CONTAMINATION IN THE CP-5 YARD**

Page 25 of 118

Table 4.5 CP-5 Monitoring Well Specifications

ID No.	Depth ¹	Ground Elevation ²	Monitoring Zone ³	Well Type ⁴	Date Drilled
330011	20	745.5	10 – 20/736 – 726	2/PVC	8/89
330021	19	746.5	4 – 19/743 – 728	2/SS	9/93
330031	17.1	742.1	2 – 17/740 – 725	2/SS	9/93
330012D	140	745	122 – 137/623 – 608	2/SS	6/97

¹Feet Below Ground

³Depth/Elevation

²Feet Mean Sea Level

⁴Inner Diam.(in)/Well Material

Table 4.6 Tritium Concentrations in CP-5 Monitoring Wells

Sample Date	MW 330011 South (pCi/ml)	MW 330021 East (pCi/ml)	MW 330031 South (pCi/ml)	MW 330012D South pCi/ml)
4-09-90	15.9	N/A	N/A	N/A
6-19-90	10.0	N/A	N/A	N/A
10-24-90	6.6	N/A	N/A	N/A
11-16-90	6.5	N/A	N/A	N/A
3-22-90	6.5	N/A	N/A	N/A
5-14-91	5.8	N/A	N/A	N/A
9-10-91	5.7	N/A	N/A	N/A
12-6-91	4.0	N/A	N/A	N/A
6-26-92	13.9	N/A	N/A	N/A
10-16-92	10.2	N/A	N/A	N/A
11-09-92	8.2	N/A	N/A	N/A
3-24-93	6.8	N/A	N/A	N/A
6-24-93	4	N/A	N/A	N/A
9-20-93	3.5	N/A	N/A	N/A
11-19-93	8.2	N/A	N/A	N/A
3-15-94	5.5	0.20	0.33	N/A

INVESTIGATION OF TRITIUM SOIL
CONTAMINATION IN THE CP-5 YARD

Page 26 of 118

Sample Date	MW 330011 South (pCi/ml)	MW 330021 East (pCi/ml)	MW 330031 South (pCi/ml)	MW 330012D South pCi/ml)
6-22-94	14.3	0.14	0.46	N/A
9-16-94	15	0.48	0.22	N/A
11-29-94	7.8	0.30	0.44	N/A
3-09-95	7.8	0.23	0.34	N/A
5-31-95	4.4	0.10	0.28	N/A
8-29-95	9.2	0.15	0.31	N/A
11-10-95	5.1	0.18	0.27	N/A
3-05-96	10.6	0.20	0.21	N/A
5-28-96	6.9	0.12	0.27	N/A
9-16-96	9.4	0.19	0.33	N/A
11-14-96	4.7	0.17	0.29	N/A
3-11-97	6.3	0.12	0.22	N/A
6-17-97	7.9	0.16	0.24	<0.10 ¹⁴
9-10-97	3.1	0.17	0.23	0.140
11-24-97	5.3	0.26	0.21	0.330
3-19-98	0.8	<0.1	0.16	0.16 ¹⁵
6-01-98	0.8	0.20	0.3	<0.10 ¹⁵

tritium concentration data, which indicate tritium concentrations in excess of 20 pCi/ml (2.6 pCi/g dry soil with a 13% moisture content) and shallow groundwater tritium concentrations which are all <20 pCi/ml, may be a reflection of the dilution occurring within the water bearing, courser grained soils (sandy, gravelly, clay) in the CP-5 yard compared to the tritium-saturated pore space in impermeable clay soil. Nevertheless, these results suggest that deep ground water concentrations of tritium under CP-5 are unlikely to approach 20 pCi/ml in the future. In addition, the slowly decreasing tritium concentrations indicated by shallow groundwater well monitoring data reflect the slow migration of tritium through the impermeable glacial till underlying CP-5.

¹⁴Memo, N. Golchert to R. Coley, "Results of initial tritium sampling from the CP-5 Dolomite Well, 7/1/97

¹⁵Monitoring results from N. Golchert to R. Hysong

4.2.2 Dolomite Groundwater Monitoring

In June 1997, a deep monitoring well (330012D) was installed approximately 12 ft west of shallow monitoring well 330011 (Figure 1.2) to monitor the tritium levels in the dolomite groundwater. Dolomite bedrock was encountered while drilling the deep well at the 126-ft deep point, but drilling continued for 14 ft prior to well installation. The deep well monitoring results first indicated a slight increase in tritium concentration in November 1997, but the latest results from the June 1998 sampling are again below detection limits (<0.1 pCi/ml).

4.3 Miscellaneous Sampling Results

4.3.1 Fuel Pool Liner Investigation

In November 1997, a small, 1/8-in diameter hole was discovered in the spent fuel pool stainless steel liner. As indicated in Figure 1.3, the hole is located at the north end of the fuel pool floor (25 ft below grade) approximately 2 feet from the north pool wall midway between the east and west walls.¹⁶ Thirty gallons of tritium-contaminated water (1,520 pCi/ml) were pumped from between the metal pool liner and the concrete pool foundation.¹⁷ Tritium concentrations in an 8-in core of the upper fuel pool foundation (pool side) concrete are shown in Table 4.7 below. The deepest (5 to 9 in) section of concrete core contained 56 pCi/g H-3. Since the pool foundation is 3-ft thick, it would appear that migration of tritium from the pool concrete was minimal. Cs-137 concentrations in each core section were <0.2 pCi/g.

Table 4.7 Tritium Concentration in Fuel Pool Floor Concrete¹⁸

Core Section (in deep from pool floor)	Tritium Concentration (pCi/g)
0 – 1	210
1 – 2.5	125
2.5 – 5	54
5 – 9	56

¹⁶Memo, R. Ditch to R. Rose, "Discovery of a hole in the CP-5 Fuel Pool Liner", 11/21/97

¹⁷ANL-E Analytical Chemistry Laboratory, "Report of Analytical Results", Sample No. 98-8036-01

¹⁸ANL-E Analytical Chemistry Laboratory, "Report of Analytical Results", Sample Nos. 98-8094-01 through -04

4.3.2 CP-5 Reactor Building Drain Tile System

In March 1998, sampling of sludge and water from the rod-out holes on the south and west sides of the CP-5 service floor was performed. The water levels in the rod-out holes were all well below the level at which the clay pipes enter the rod-out holes (at approximately 14 ft below grade). Tritium water concentrations from the holes shown in Table 4.8 below ranged from <0.33 pCi/ml to 327 pCi/ml with the highest concentration coming from a rod-out hole (DR2) located on the south side of CP-5 adjacent to the CP-5 yard (Figure 4.4). The tritium concentrations measured in DR1, DR2 and DR3 suggest that operational personnel may have released secondary system cooling water contaminated with tritium into the drain tile system which leads to the ANL-E sanitary drain system.

Table 4.8 Rod-Out Hole Sampling Results¹⁹

Sample ID	Water H-3 (pCi/ml)	Sludge Ra-226 (pCi/g)	Sludge Cs-137 (pCi/g)	Sludge Co-60 (pCi/g)
DR1 S/W	190 ± 2	0.5 ± 0.1	2.6 ± 0.1	1.1 ± 0.1
DR2 S/W	327 ± 3	0.5 ± 0.1	3.9 ± 0.2	< 0.2
DR3 S/W	26.2 ± 0.7	1.2 ± 0.1	28 ± 1	1.7 ± 0.1
DR4 S/W	< 0.33	0.4 ± 0.1	< 0.2	< 0.2
AW SUMP	< 0.33	0.6 ± 0.06	< 0.2	< 0.2

¹⁹ANL-E ACL "Report of Analytical Results" Sample No.s 98-8140-01 through -05

INVESTIGATION OF TRITIUM SOIL CONTAMINATION IN THE CP-5 YARD

Page 29 of 118

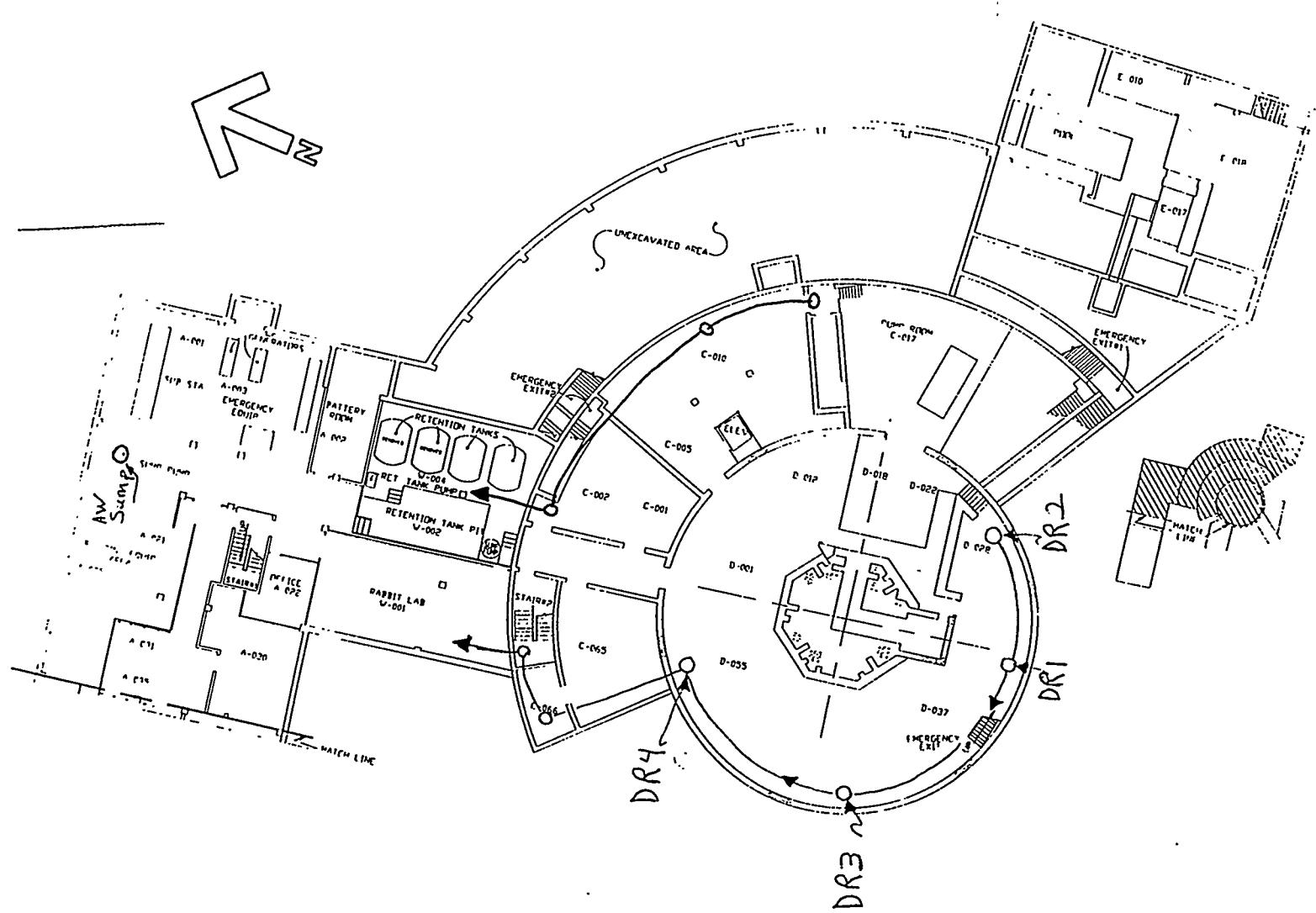


Figure 4.4 CP-5 Service Floor

5.0 RESRAD DOSE ASSESSMENT INPUT PARAMETERS

One RESRAD calculation has been performed to estimate the conservative, upper-bound potential radiological impacts from tritium soil contamination in the CP-5 yard. This case is based on the worst-case residential family-farm scenario in which the source of water for drinking, household uses, irrigation, and livestock watering is assumed to be a local well drilled at the downgradient edge of the contaminated zone which contains a homogeneous concentration of tritium. A graphical representation of RESRAD residential family-farm scenario pathways is shown in Figure 5.1.

The soil guideline concentration has been derived using a 25 mrem/yr basic dose limit in order to ensure that potential doses from residual tritium at the CP-5 site are well below the requirements of DOE Order 5400.5, which specifies an annual dose limit of 100 mrem. In addition, a 25 mrem/yr dose limit was chosen because it represents the lowest dose limit criterion used by a federal agency (Nuclear Regulatory Commission) for the unrestricted release of property containing residual radioactive material.²⁰ EPA has a dose-based limit of 4 mrem/yr for the drinking water pathway, as well as a concentration-based limit of 20 pCi/ml for tritium.

Table 5.1 contains a summary of RESRAD input parameters used in this analysis and the references on which they are based. Appendices E and F contain the RESRAD Summary Report and Detailed RESRAD Report, respectively.

The area of the rectangular-contaminated zone is conservatively assumed to extend from underneath the middle of the CP-5 reactor building southward 38 m to monitoring well 330031, and from the west yard fence line east 64 m to monitoring well 330021 (Figure 4.1). This area encompasses the area under E-Wing and approximately half the area under the CP-5 reactor building. Tritium concentrations in the east and south wells drop off significantly and are indicative of a much lower tritium soil concentration (approximately 0.05 pCi/g assuming a 13% water content) averaged over their monitoring zones. Two thousand four hundred thirty square meters is a very conservative estimation of the contaminated area, given the results of CP-5 yard sampling which indicate that less than one quarter of the yard is contaminated with over 1 pCi/g tritium (i.e., 7.7 pCi/ml tritium in soil water).

The thickness of the contaminated zone is 15.24 m based on the 1997, 50-ft soil core results obtained from the most contaminated 100 m² area identified in the 1993 IT characterization encompassing sample locations SB03, SB04 and SB05. The thickness of the contaminated zone under the reactor building and under E-Wing are conservatively over estimated because of the presence of the reactor building foundation and E-Wing pool foundation. An uncontaminated, 1.5-m thick cover has also been used because the concentration of tritium in surface soil at CP-5 is negligible (IT 1994).

²⁰Federal Register, Vol.2, No. 139. Monday, July 21, 1997

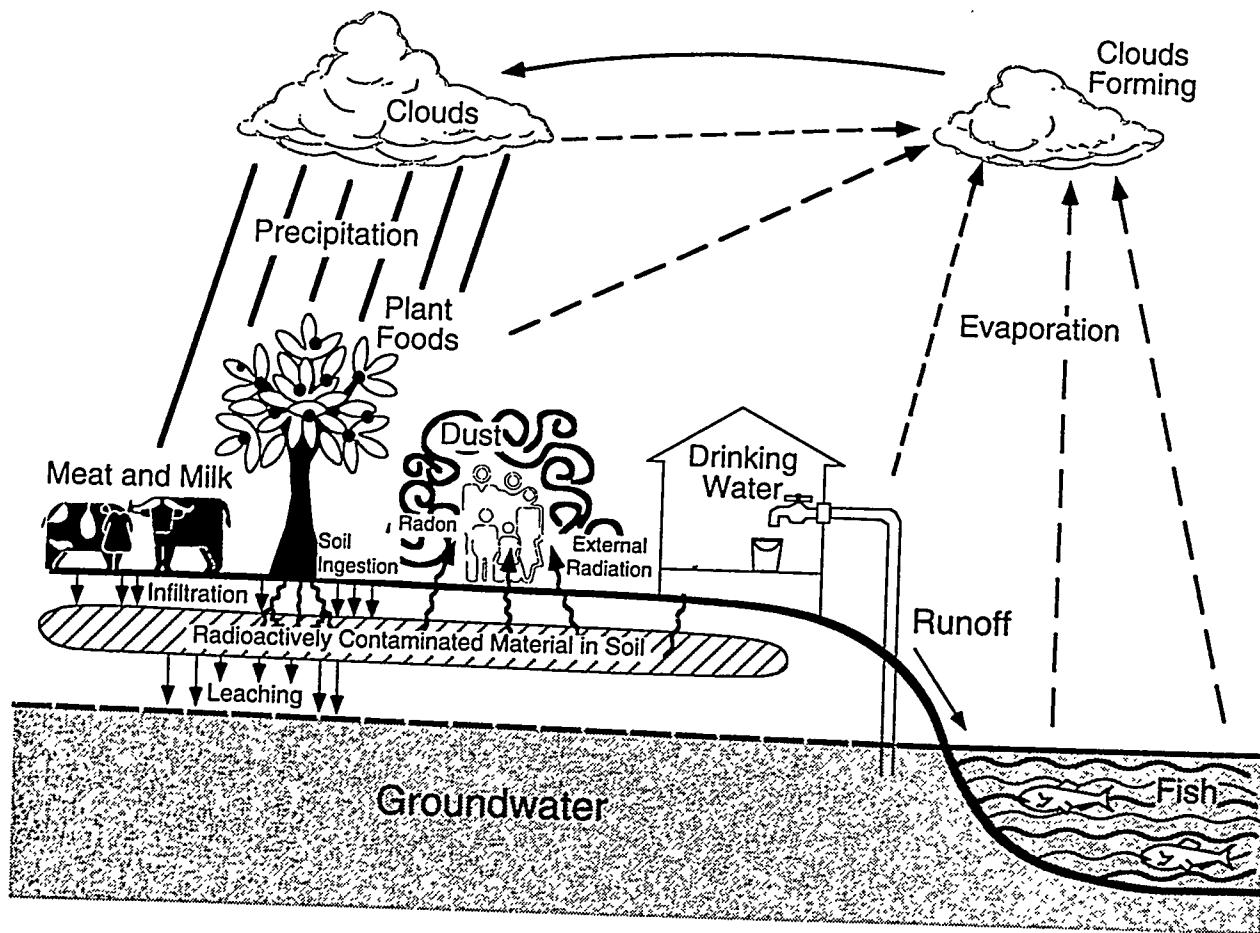


Figure 5.1 RESRAD Family-Farm Pathways

The length parallel to aquifer flow is the horizontal dimension of contaminated zone parallel to the groundwater flow direction. The length of contaminated zone parallel to aquifer flow is conservatively assumed to be the maximum horizontal distance within the contaminated zone or the diagonal line cutting across the contaminated zone (38 m x 64 m rectangle) from NW to SE (74 m).

The initial principle radionuclide concentration in the homogeneous contaminated zone (6.9 pCi/g) has been derived by averaging the results of the 1997, 50-ft core samples obtained from an area of relatively high tritium soil contamination compared to the rest of the yard.

Geological and hydrogeological parameters relating to the contaminated and underlying unsaturated zone 1 are based on previous RESRAD evaluations at ANL-E in the 317 area (Kou et al. 1997). Based on a review of core logs and well installation stratigraphic columns, the Wadsworth layer of the 317/319 Area appears to be composed of the same glacial till (silty clay) as that found in the CP-5 area. The 317/319 Area also contains shallow groundwater where precipitation is able to migrate through small fractures in the weathered portions of the clay and in small sand and gravel lenses similar to the CP-5 yard (Patton et al. 1990). The well pump intake depth is conservatively assumed to be 5 m below the water table instead of the 10-m RESRAD default. The parameters used for the second underlying unsaturated zone (Unsat-2 consisting of upper and middle Lemont Formation units) are based on the parameters for silty clay loam (Yu et al. 1993).

Table 5.1 RESRAD Input Parameters

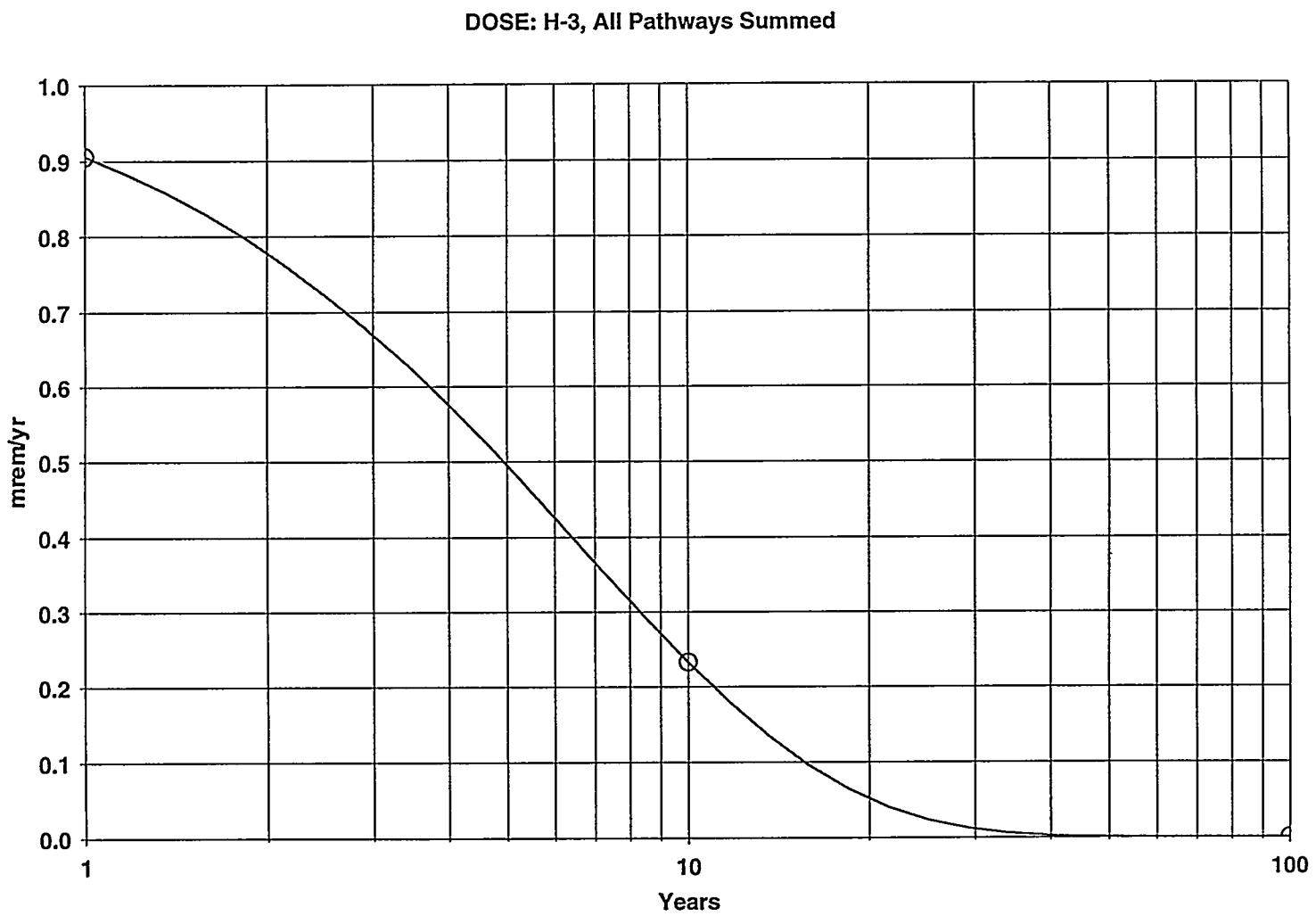
RESRAD Input Parameter	Family-Farm Scenario	Reference
Area of the contaminated zone (m ²)	2430	CP-5 Yard Sampling
Thickness contaminated zone (m)	15.24	50-ft Soil Boring 1997
Length (m) parallel to aquifer flow	74	Calculated Based on Worst Case Geometry
Dose limit (mrem)	25	Lowest Federal Limit
Initial H-3 soil conc. (pCi/g)	6.9	50-ft Soil Boring 1997
Density of contaminated zone	1.76	Kou et al. 1997
Contaminated zone total porosity	0.3	Kou et al. 1997
Contaminated zone effective porosity	0.2	Kou et al. 1997
Contaminated zone hydraulic conductivity (m/y)	0.95	Kou et al. 1997
Contaminated zone b parameter	11.4	Kou et al. 1997
Cover thickness (m)	1.5	IT 1994

RESRAD Input Parameter	Family-Farm Scenario	Reference
Humidity (g/cm ³)	7	Yu et al. 1993
Precipitation (m/y)	0.8	Golchert et al. 1996
Saturated zone total porosity	0.3	Kou et al. 1997
Saturated zone effective porosity	0.2	Kou et al. 1997
Saturated zone hydraulic conductivity (m/y)	950	Kou et al. 1997
Saturated zone b parameter	11.4	Kou et al. 1997
Well pump intake depth (m below water table)	5	Kou et al. 1997
Number unsat zones	2	Argonne 1997
Unsat zone 1 thickness (m)	2.5	Argonne 1997
Unsat zone 1 total porosity	0.3	Kou et al. 1997
Unsat zone 1 effective porosity	0.2	Kou et al. 1997
Unsat zone 1 b parameter	11.4	Kou et al. 1997
Unsat zone 1 hydraulic conductivity (m/y)	1	Kou et al. 1997
Unsat zone 2 thickness (m)	18.3	Argonne 1997
Unsat zone 2 total porosity	0.3	Yu et al. 1993
Unsat zone 2 effective porosity	0.2	Yu et al. 1993
Unsat zone 2 b parameter	7.75	Yu et al. 1993
Unsat zone 2 hydraulic conductivity (m/y)	50	Yu et al. 1993

6.0 RESULTS OF DETERMINISTIC DOSE ASSESSMENT

The RESRAD computer code, version 5.82 was used to calculate the potential radiation dose for a residential family-farm scenario at the CP-5 complex. The time frame considered in this analysis was only 100 years due to the short half-life of tritium (12.35 y). Doses calculated by RESRAD are always relative to the time at which the radiological survey was performed to collect input data (December 1997). A summary of the RESRAD results is presented in Table 6.1 below.

Table 6.1 Potential Radiological Impacts Estimate Summary


Soil Guideline (pCi/g)	RESRAD Well H ₂ O pCi/l @ t=0 yr. 12/97	RESRAD Well H ₂ O pCi/l @ t=1 yr. 12/98	Year of Maximum Dose	Maximum Dose (mrem)	Dose Limit (mrem)	Percent of Dose Limit
164	28,000	24,000	1997	1.05	25	4

The soil guideline level for a 15.24-m thick contaminated zone having an area of 2,430 m² is 164 pCi/g, approximately four times higher than the highest tritium concentration measured (42 pCi/g) during CP-5 investigative sampling. In addition, the 42 pCi/g measurement was from a sample less than 1 m thick. The concentration in drinking water from a theoretical well located at the downgradient edge of the contaminated zone at the time of obtaining the 50-ft core (December 1997) is 28,000 pCi/l (28 pCi/ml). Note that RESRAD output data and graphical output is in units of pCi/l. The annual effective dose equivalent resulting from all pathways is 1.05 mrem. Figure 6.1 shows the dose from all pathways as a function of time measured from year zero or December 1997.

7.0 PARAMETER SENSITIVITY ANALYSIS

Figure 7.1 shows the individual dose component pathways. As illustrated in Figure 7.1, the drinking water pathway is the dominant pathway for dose from tritium-contaminated soil in the CP-5 yard. Consequently, the calculated doses will be sensitive to parameters that affect the drinking water pathway. Figure 7.2 shows the concentration of tritium in well water used for drinking as a function of time.

A sensitivity analysis was performed on the geologic and hydrogeologic parameters which affect the concentration of tritium in well water used in the family-farm scenario. Significant parameters identified in the sensitivity analyses were the length parallel to aquifer flow, the hydraulic conductivities of the saturated and contaminated zones, and the effective porosity of the unsaturated and saturated zones. The effect of these parameters can be seen in Figures 7.3 through 7.7. Note

CP5OSITE.RAD 11/04/98 10:56 Includes All Pathways

Figure 6.1 Family-Farm Scenario Dose as a Function of Time

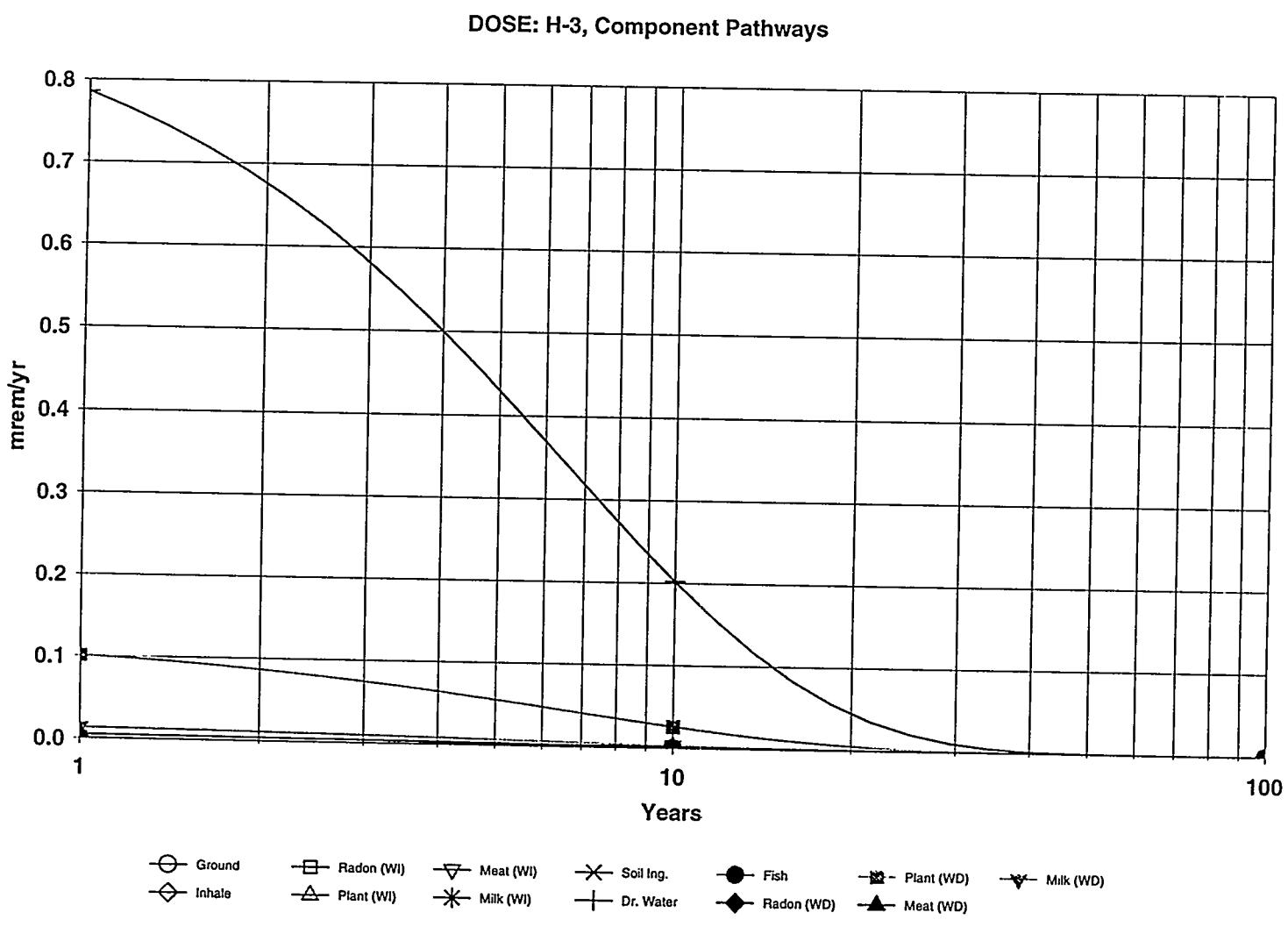
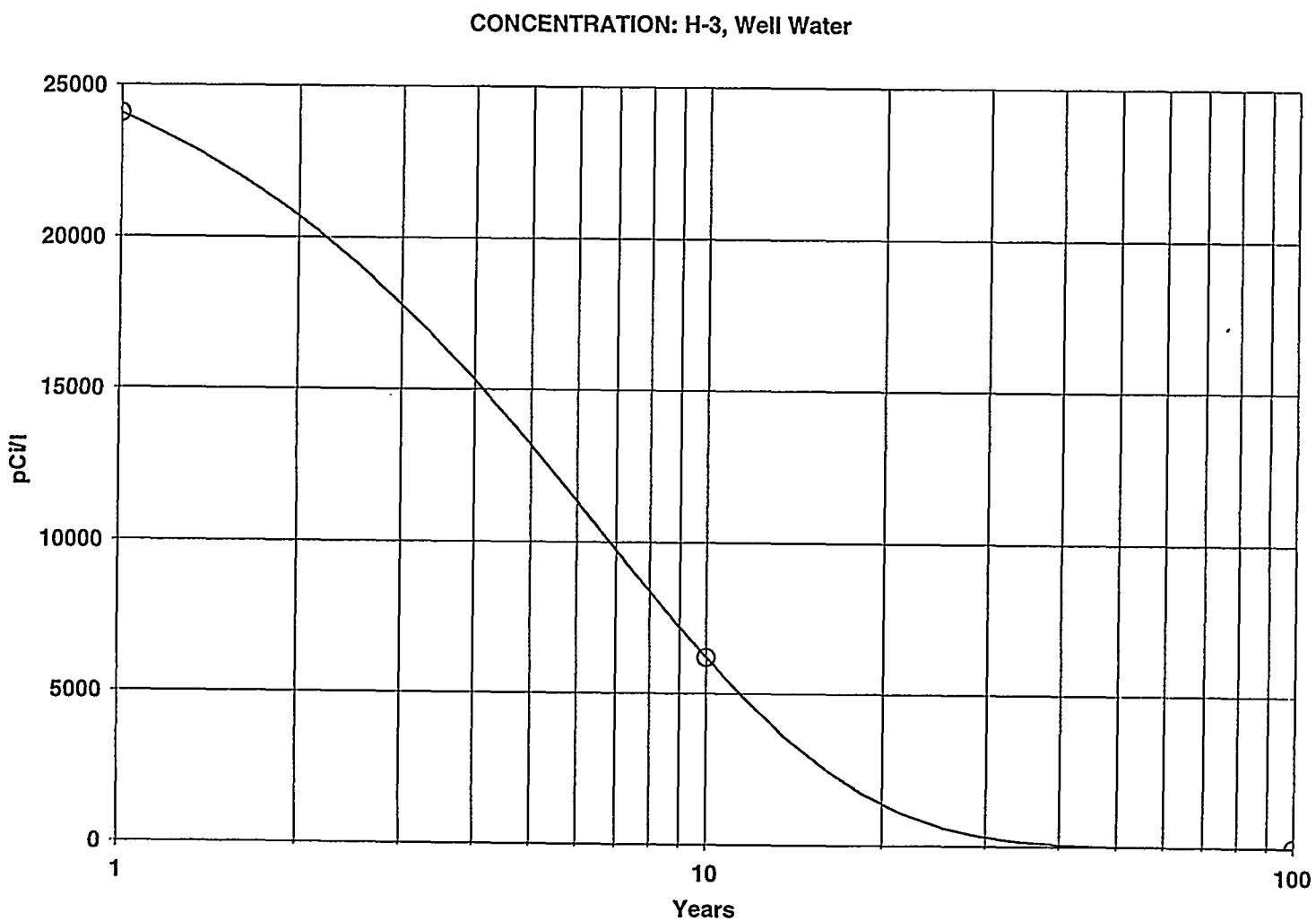



Figure 7.1 Family-Farm Dose Component Pathways

CP5OSITE.RAD 11/04/98 10:56

Figure 7.2 Concentration of Tritium in Well Water as a Function of Time

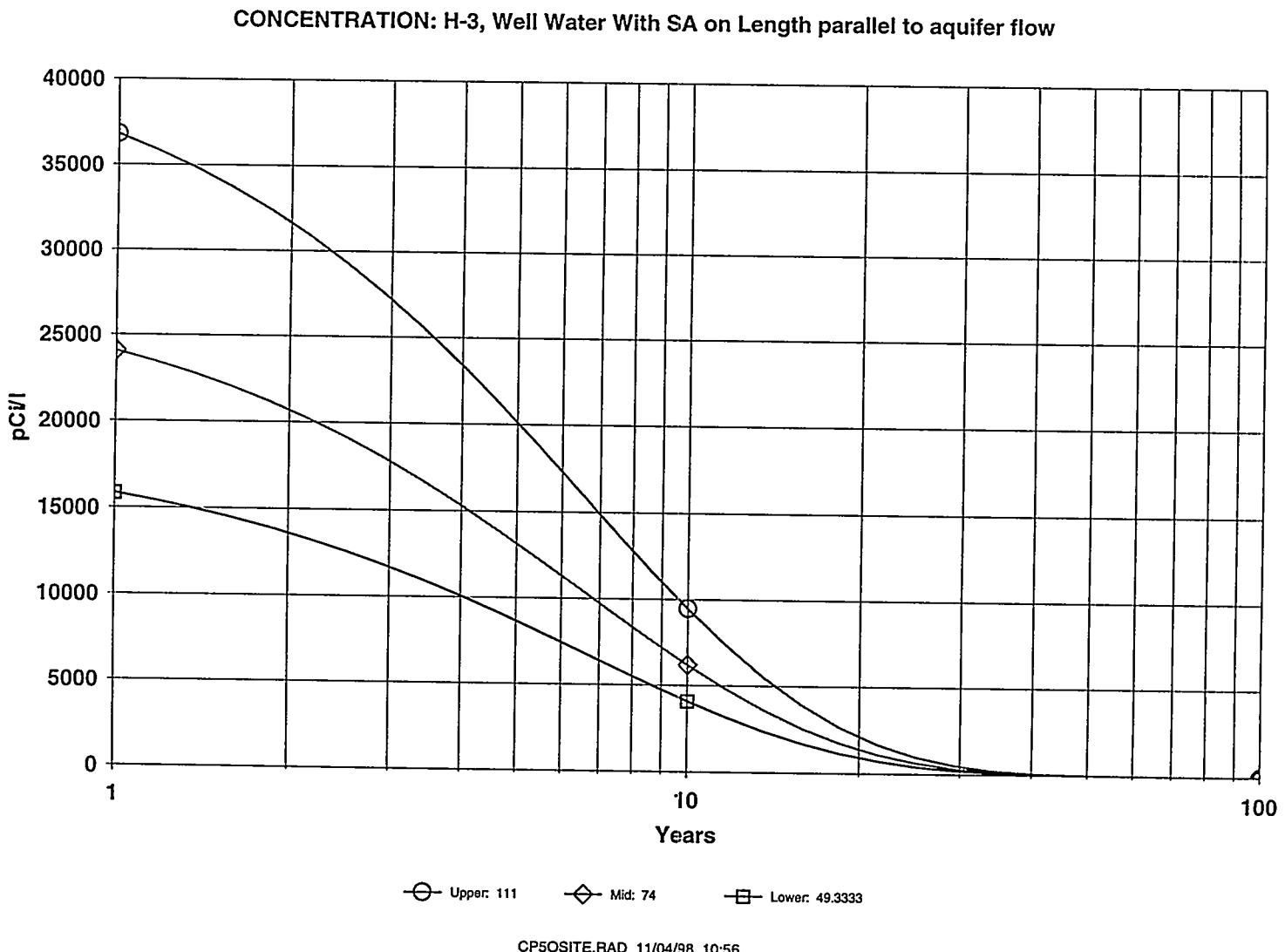


Figure 7.3 Sensitivity Analysis on Length Parallel to Aquifer Flow

CONCENTRATION: H-3, Well Water With SA on Saturated zone hydraulic conductivity

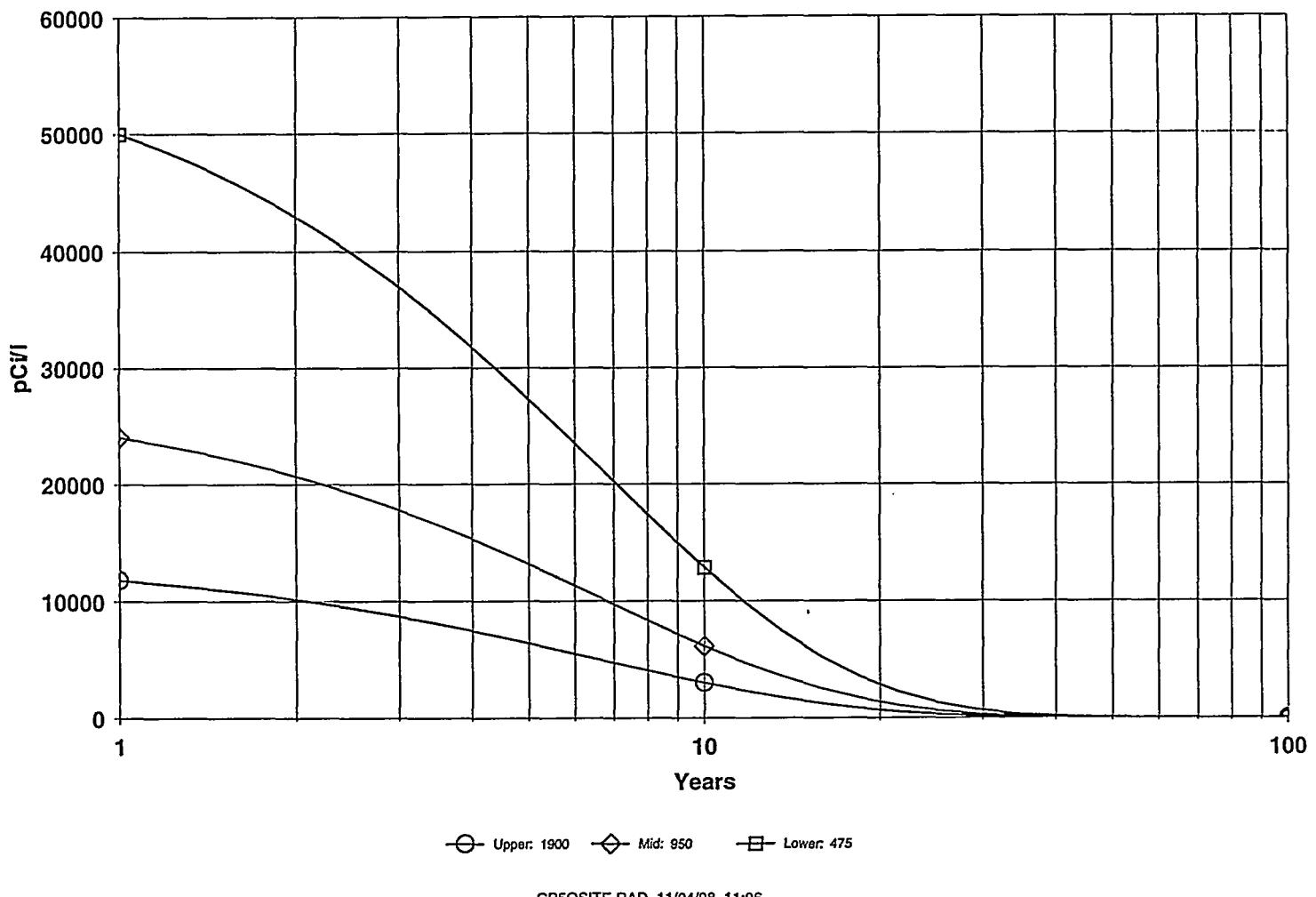


Figure 7.4 Sensitivity Analysis on Saturated Zone Hydraulic Conductivity

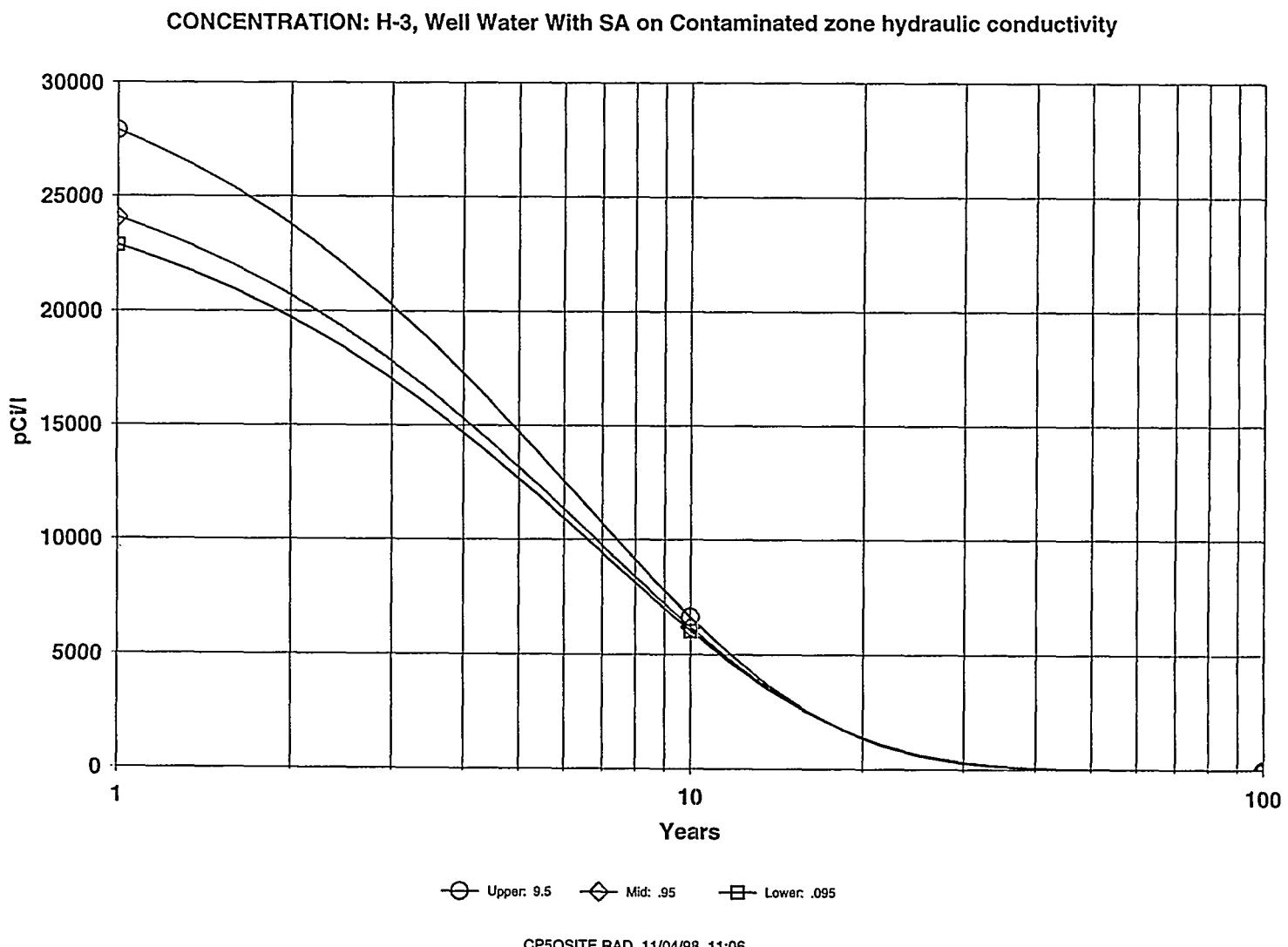


Figure 7.5 Sensitivity Analysis on Contaminated Zone Hydraulic Conductivity

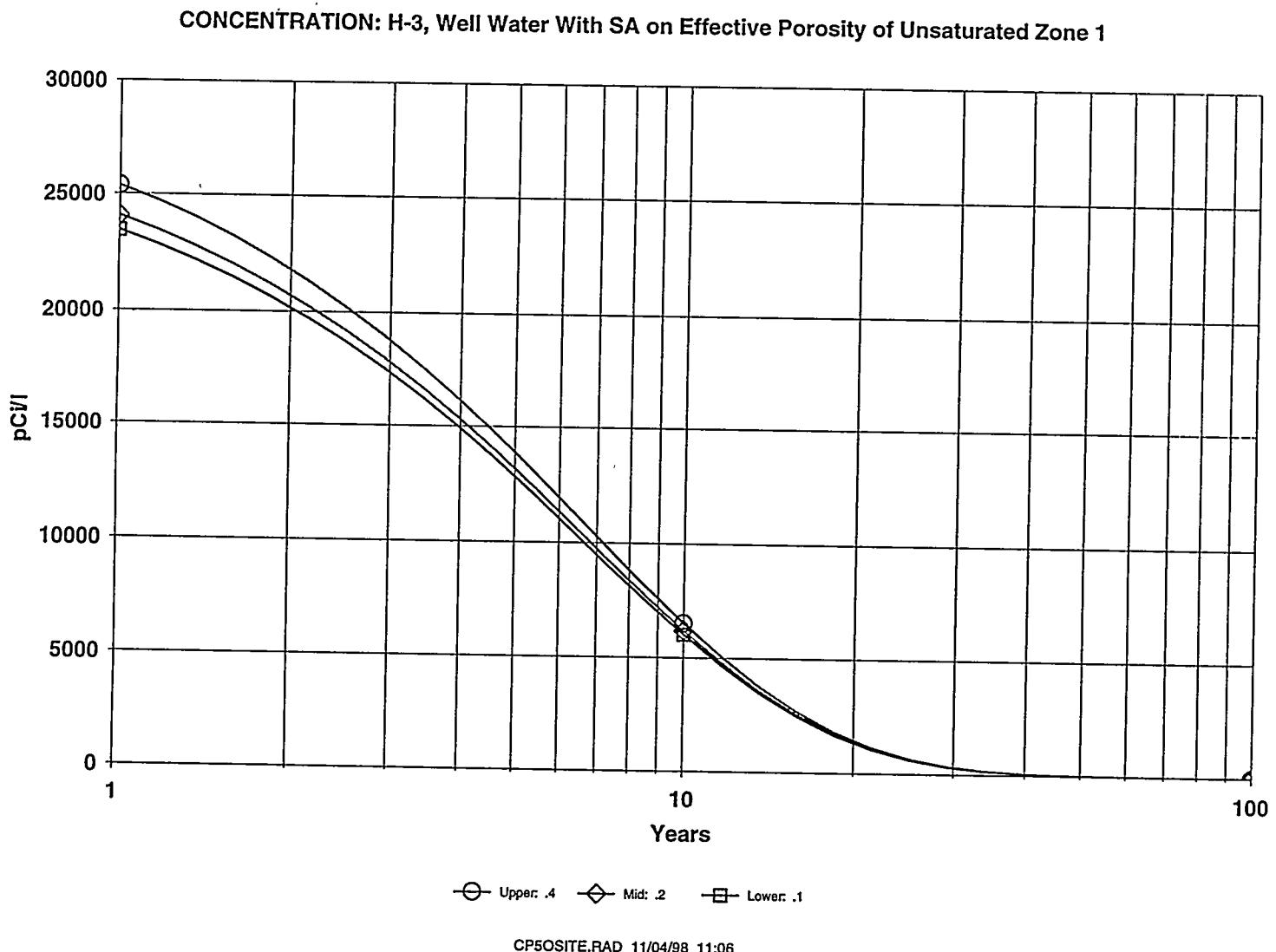


Figure 7.6 Sensitivity Analysis on Unsaturated Zone 1 Effective Porosity

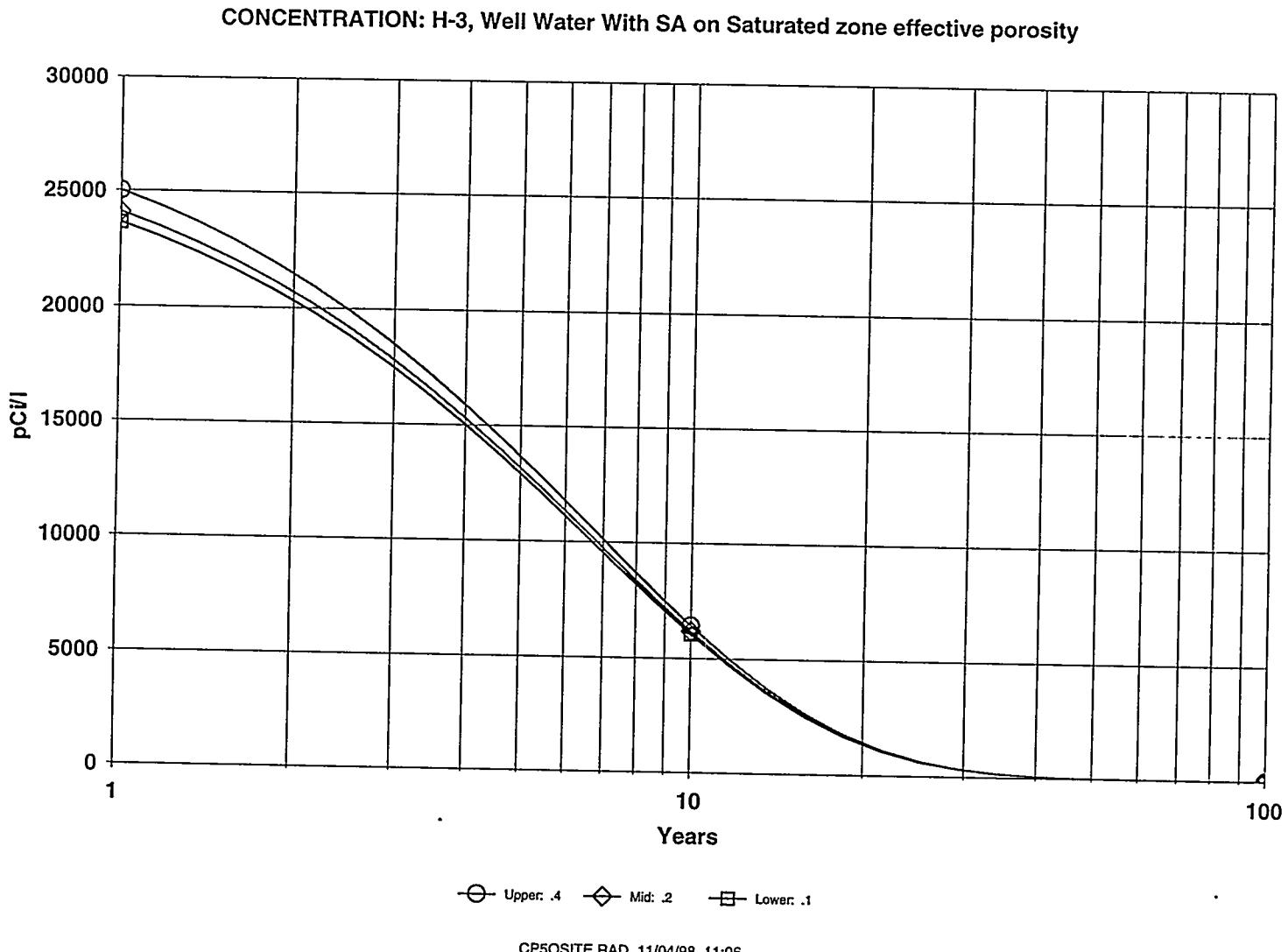


Figure 7.7 Sensitivity Analysis on Saturated Zone Effective Porosity

that RESRAD graphical output data is in units of pCi/l. Based on CP-5 yard soil sampling and well monitoring, the actual length parallel to aquifer flow of 74 m used in this analysis is much more likely to approach the lower value of 49 m shown in Figure 7.3, because of the conservative overestimate of the area of the contaminated zone. In addition, the saturated hydraulic conductivity of the saturated zone is more likely to be greater than 500 m/y as shown in Figure 7.4 due to the presence of sands and gravels in the basal Lemont unit of the glacial till directly overlying the dolomite and due to channelized flow in fractures in the dolomite aquifer. In any case, the peak dose (at time zero) changes by less than a factor of approximately 2.5 within a wide, conservative range of parameter change.

8.0 DISCUSSION

8.1 Residential Family-Farm Scenario Impacts

A residential family-farm scenario located on the tritium-contaminated soil around the CP-5 complex has been evaluated to conservatively estimate the magnitude of the on-site radiological impacts from tritium-contaminated soil in the CP-5 yard. The geological and hydrogeological parameters used in this analysis are generally conservative with respect to the rate of downward tritium migration to the dolomite aquifer, the concentration of tritium in the yard, and the size of the contaminated zone. In addition, the presence of the CP-5 Reactor Building foundation and E-Wing pool foundation have been ignored and are assumed to contain tritium-contaminated soil. Lastly, the infiltration rate of water into the contaminated zone has been overestimated by neglecting the presence of the Reactor Building and E-Wing roof tops, which intercept rainfall.

Sampling results from the deep, dolomite aquifer well (330012D) located within the contaminated zone south of the CP-5 reactor building do not indicate that significant migration of tritium down to the dolomite groundwater has occurred. The slow decrease in tritium concentrations in samples from the shallow well (330011) behind the CP-5 reactor building also indicate that the downward migration of tritium through the glacial till is very slow. Based on the time that has elapsed since the deposition of tritium into and onto CP-5 yard soils, and given the decreasing tritium concentration profile in the 50-ft soil boring, it is likely that the family-farm scenario dose estimate of 1.05 mrem represents a significant overestimate of radiological impacts. Likewise, off-site radiological impacts, if any, would be small to negligible.

In the very worst case, one would have to assume that a series of interconnected sand and/or gravel formations exists in the glacial till underlying CP-5. Experimental leaching tests of tritium in a sand and gravel column with a water content of 20% (similar to the volumetric water content of ANL-E glacial till) indicate that 85% of the tritium in the sand and gravel column are only released from the column after water weighing 20% of the weight of the column percolates through the column (Baker 1975). In other words, there would be a dilution factor of about 2.3 simply due to the amount of water necessary to leach and transport the tritium from its present location. If a series of sand and gravel lenses containing an average of 6.9 pCi/g (34.5 pCi/ml soil water) of tritium existed in a

narrow channel (over 60 ft long) from the tritium-contaminated volume in the CP-5 yard soil down to the dolomite groundwater, a pulse-type release of tritium would be expected to produce a peak concentration of approximately 15 pCi/ml before depleting 85% of the tritium along the channel. A tritium concentration of 15 pCi/ml is less than the EPA drinking water standard of 20 pCi/ml.

8.2 Industrial Use Scenario

The current plans are to complete the D&D of the entire CP-5 Complex in the near future. Under the less conservative, but more realistic industrial-use scenario, one might expect that soil excavation activities may proceed in the CP-5 yard for approximately one year for some type of construction project. Since tritium only decays by a low energy beta emission, it is primarily an internal hazard. Consequently, the inhalation dose equivalent from working 2,000 hr/yr would be no greater than the inhalation dose at time zero in the residential scenario considered above with no clean soil cover, or 2.7×10^{-3} mrem. Likewise, the ingestion dose from incidental soil ingestion would not be expected to be greater than the ingestion dose equivalent of 1.2×10^{-5} mrem. Consequently, under the industrial-use scenario in the year 2000, the worst case, realistic dose equivalent would be 2.4×10^{-3} mrem under an industrial use scenario.

9.0 CONCLUSIONS/RECOMMENDATIONS

Based on a review of available data, significant contributions to low-level tritium soil contamination in the CP-5 yard have been made by airborne tritium fallout and rainout from the CP-5 ventilation system stack. Based on the distribution of tritium in the yard, it is also likely that leaks in secondary system piping which lead to the cooling towers were a significant contributor to tritium in CP-5 yard subsurface soil.

Based on the foregoing analysis, low-level tritium contamination will not prohibit the release of the yard for unrestricted use in the future. Worst case dose estimates based on very conservative assumptions indicate that a 25 mrem annual effective dose equivalent limit will not be exceeded under the most restrictive residential-use family farm scenario. Given the impermeable nature of the glacial till under CP-5, low-level concentrations of tritium may be occasionally detected in the deep well (330012D), but the peak concentration will not approach the levels calculated by RESRAD; however, continued monitoring of the deep well is recommended.

To ensure that all sources of potential tritium release have been removed from the CP-5 complex, removal of tritiated water from each rod-out hole and an evaluation of the physical integrity of the rod-out holes is recommended. This will also allow for an evaluation of tritium concentrations in shallow groundwater under CP-5 by sampling groundwater that is currently being forced into the drain tile system.

Additional surface and subsurface soil sampling and analysis will be required to determine the final release status of soils around the Building 330 complex relative to elevated concentrations of Cs-137,

Co-60, Co-57, and Eu-152 identified during the 1993 IT Corporation characterization. The potential radiological impact from isolated elevations of the latter radionuclides is relatively low and can be evaluated as part of the final status survey of outdoor areas surrounding the Building 330 complex.

In summary, the following activities are recommended:

- Remove tritiated water from each rod-out hole
- Monitor rod-out hole tritium concentrations as they fill up with shallow groundwater
- Continue groundwater monitoring
- Perform surface and subsurface soil sampling around the CP-5 complex as part of the final status survey

10.0 REFERENCES

Argonne, 1998, *Quicksite Report: Stage 1 Argonne-East Geologic/Hydrogeologic Model Based on Existing Data and Limited Field Investigations*, Applied Geosciences and Environmental Management Section, Environmental Research Division, Argonne National Laboratory, Argonne IL, May 1998.

Argonne, 1997, *Quicksite Analysis of Geologic/Hydrogeologic Data for Argonne-East and Proposed Hydrogeologic Site Investigation*, Vol. 1, Applied Geosciences and Environmental Management Section, Environmental Research Division, Argonne National Laboratory, Argonne IL, June 1997.

Argonne, 1965, *Environmental Radioactivity at Argonne National Laboratory Report for 1964*, Argonne Report ANL-7104, Iwami, F.S. and Sedlet, J. Argonne National Laboratory, Argonne IL.

Baker, S., 1975, "Soil Activation Measurements at Fermi Lab," paper presented at the Third Environmental Protection Conference, Washington, DC, DOE Publication ERDA-92, CONF-750967, 329-346, 1975.

Fetter, C., Jr., *Applied Hydrogeology*, Charles E. Merrill Publishing Company, Columbus OH, 1980.

Golchert, N.W. and R.G. Kolzow, 1998, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1997*, Argonne Report ANL-98/2, Argonne National Laboratory, Argonne IL.

Golchert, N.W. and R.G. Kolzow, 1997, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1996*, Argonne Report ANL-97/6, Argonne National Laboratory, Argonne IL.

Golchert, N.W. and R.G. Kolzow, 1996, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1995*, Argonne Report ANL-96/3, Argonne National Laboratory, Argonne IL.

Golchert, N.W. and R.G. Kolzow, 1995, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1994*, Argonne Report ANL-95/8, Argonne National Laboratory, Argonne IL.

Golchert, N.W. and R.G. Kolzow, 1994, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1993*, Argonne Report ANL-94/10, Argonne National Laboratory, Argonne IL.

Golchert, N.W. and R.G. Kolzow, 1993, Argonne National Laboratory-East Site Environmental Report for Calendar Year 1992, Argonne Report ANL-93/5, Argonne National Laboratory, Argonne IL.

Golchert, N.W., Duffy, T.L., and Moos, L.P., 1992, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1991*, Argonne Report ANL-92/14, Argonne National Laboratory, Argonne IL.

Golchert, N.W., Duffy, T.L., and Moos, L.P., 1991, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1990*, Argonne Report ANL-91/3, Argonne National Laboratory, Argonne IL.

Golchert, N.W. and R.G. Kolzow, 1990, *Argonne National Laboratory-East Site Environmental Report for Calendar Year 1989*, Argonne Report ANL-90/8, Argonne National Laboratory, Argonne IL.

Golchert, N., Duffy, T., Sedlet, J., 1983, *ANL-E Site Environmental Report for Calendar Year 1982*, Argonne National Laboratory, Argonne Report ANL-83-26, Argonne IL.

Geraghty and Miller, 1995, *Final Phase 1 Hydrogeological Assessment Report-ANL*, Geraghty and Miller Inc., Milwaukee WI, April 1995.

IT, 1994, *Final CP-5 Yard Characterization Report*, IT Corporation, Itasca, IL, February.

Killey, M. and Trask, C., *Geotechnical Site Investigation for an Advanced Photon Source at Argonne National Laboratory*, Illinois State Geological Survey, Champaign IL, 1994.

Kou, J., Moos, L., Yu, C., and Gabel, A., "Radiological Risks and Cleanup Costs: A Remediation Case Study," Remediation, Summer/1997, John Wiley & Sons, Inc.

Patton, T., Pearl, R., Tsai, S., 1990, *Hydrological Conditions at the 317/319 Area at Argonne National Laboratory*, Environmental Assessment and Information Sciences Division, Argonne Report ANL/EAIS/TM-28, Argonne National Laboratory, Argonne IL.

STS, 1990, *Title II Subsurface Exploration and Geotechnical Engineering Evaluation for the Proposed 7 GeV Advanced Photon Source (APS)*, STS Consultants, Ltd., Northbrook IL, April 30, 1990.

Yu, C., et al., 1993, *Manual for Implementing Residual Radioactivity Material Guidelines Using RESRAD Version 5.0*, Argonne National Laboratory, Argonne Report ANL/EAD/LD-2 (September 1993).

11.0 ACRONYMS AND ABBREVIATIONS

ACL	Analytical Chemistry Laboratory, Argonne National Laboratory
AMSL	Above Mean Sea Level
ANL-E	Argonne National Laboratory-East, Argonne, Illinois
APS	Advanced Photon Source
A ² R ²	Argonne Advanced Research Reactor
Ci	curies
cm	centimeter
CP-5	Chicago Pile-Five
EPA	U. S. Environmental Protection Agency
ESH	Environment, Safety and Health Division, Argonne National Laboratory
ft	foot
g	gram
gal	gallon
IEPA	Illinois Environmental Protection Agency
ISGS	Illinois State Geologic Survey
in	inch
keV	kilo electron volt
m	meter
ml	milliliter
MW	million watt
pCi	pico curie
RESRAD	RESidual RADioactive computer code
SWMU	Solid Waste Management Units
yr	year

APPENDIX A

**ILLINOIS ENVIRONMENTAL PROTECTION AGENCY
WELL COMPLETION REPORT AND FIELD BORING LOG
FOR WELL # MW330012D AND BOREHOLE # 330012D**

CP-S Deep Well

Illinois Environmental Protection Agency Well Completion Report

SITE #: _____ COUNTY: DuPage WELL #: MW330012D

SITE NAME: Argonne National Laboratory BOREHOLE #: SB330012D

STATE PLANS COORDINATE: X _____ Y _____ LATITUDE: _____ ° _____ LONGITUDE: _____ ° _____

SURVEYED BY: (not surveyed: referenced to adjacent surveyed) SURVEYOR #: _____ WELL #: _____

DRILLING CONTRACTOR: Patrick Drilling, Inc. DRILLER: T. Zwolinski

CONSULTING FIRM: GEOLOGIST: G. Wittman, ANL

DRILLING METHOD: Hollow-stem auger & hydraulic rotary DRILLING FLUIDS (TYPE): Potable water

LOGGED BY: G. Wittman, ANL DATE STARTED: 6/16/97 DATE FINISHED: 6/17/97

REPORT FORM COMPLETED BY: G. Wittman DATE: 7/8/97

ANNUAL SPACE DETAILS

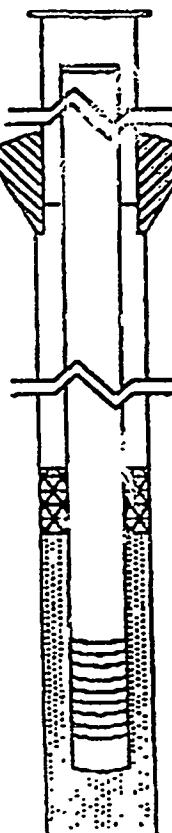
ELEVATIONS DEPTHS (.01 ft)
(MSL)* (BGS)

747.5 + 2.5 TOP OF PROTECTIVE CASING

747.3 + 2.3 TOP OF RISER PIPE

745 0 GROUND SURFACE

745 0 TOP OF ANNUAL SEALANT


627 118 STATIC WATER LEVEL
(AFTER COMPLETION)

TYPE OF SURFACE SEAL: Cement pad

TYPE OF ANNUAL SEALANT: Hydro-Ben "Ground-Well"

INSTALLATION METHOD: tremie pipe

SETTING TIME: 24 hours

TYPE OF BENTONITE SEAL - GRANULAR, PELLET, SLURRY
(CIRCLE ONE)

INSTALLATION METHOD: tremie pipe

SETTING TIME: 2 hours

TYPE OF SAND PACK: GA-9 silica sand

GRAIN SIZE: 10-20 (SIZE: #)

INSTALLATION METHOD: tremie pipe

TYPE OF BACKFILL MATERIAL: None
(IF APPLICABLE)

INSTALLATION METHOD: _____

627 118 TOP OF SEAL

624 (121) 121 TOP OF SANDPACK

623 122 TOP OF SCREEN

608 137 BOTTOM OF SCREEN

608 137 BOTTOM OF WELL

605 140 BOTTOM OF BOREHOLE
REFERENCE TO A NATIONAL GEODETIC VERTICAL DATUM

WELL CONSTRUCTION
MATERIALS
(CIRCLE ONE)

CASING MEASUREMENTS

DIAMETER OF BOREHOLE (in)	8
ID OF RISER PIPE (in)	2
PROTECTIVE CASING LENGTH (ft)	5
RISER PIPE LENGTH (ft)	124
BOTTOM OF SCREEN TO END CAP (ft)	0
SCREEN LENGTH (ft - SLOT TO LAST SLOT (ft))	15
TOTAL LENGTH OF CASING (ft)	140
SCREEN SLOT SIZE "	10

** HAND-SLOTTED WELL SCREENS ARE UNACCEPTABLE

PROTECTIVE CASING	SS304, SS316, PTFE, PVC OR OTHER
RISER PIPE ABOVE W.T.	SS304, SS316, PTFE, PVC OR OTHER
RISER PIPE BELOW W.T.	SS304, SS316, PTFE, PVC OR OTHER
SCREEN	SS304, SS316, PTFE, PVC OR OTHER

(841Q14)

Illinois Environmental Protection Agency Field Boring Log 1 of 3

Site File No.: _____ County DuPage Boring No. SB330012D Monitor Well No. MW330012D
 Site File Name Argonne National Laboratory Surface Elevation 745 ft msl Completion Depth 140 ft
 Fed. ID. No. Auger Depth 126 ft Rotary Depth 140 ft
 Quadrangle Sag Bridge Sec. 9 T. 37N R. 11E Date Start 6/9/97 Finish 6/13/97

UTM (or State Plane) Coord. N.(X) E(Y)

Latitude _____ Longitude _____

Boring Location S.E. of Building 330, adjacent to MW330011

Drilling Equipment CME - Patrick Drilling, Inc.

SAMPLES						Personnel	
	SAMPLE NO.	SAMPLE TYPE	SAMPLE RECOVERY (%)	PENETROMETER	N VALUES (BLOW COUNTS)	QVA or HNU READINGS	
							G - G. Wittman D - T. Zwolinski H - M. Gajos H -

Elev.	DESCRIPTION OF MATERIALS	Graphic Log	Depth In feet				REMARKS
745	Brown silty clay w/gravel		0	.			
740			5			
	Dark brown silty clay w/gravel						
735	Brown silty clay w/some gravel		10			
	Brown sandy clay w/gravel						
730	Gray silty clay w/some coarse sand and gravel pebbles		15			
725			20			
	Gray silty clay w/some medium-coarse gravel, moist						
720	Brownish gray silty fine sand, moist		25			
	Brownish gray clayey silt w/fine-medium gravel, moist						
715			30			
710	Grayish brown fine sand, dry		35			
	Brownish gray silty clay w/fine-medium gravel, moist						
705	Gray silty clay w/fine-coarse gravel, moist		40			
700			45			
695	Gray clay w/trace fine gravel		50			
							Bag sample, 50'-52'

(RECORDS)

Illinois Environmental Protection Agency

Field Boring Log Page 2 of 3Site File No.: _____ County DuPageBoring No. SB330012DMonitor Well No. MW330012DSite File Name Argonne National LaboratorySurface Elevation 745 ft mslCompletion Depth 140 ft

Fed. ID. No. _____

Auger Depth 126 ftRotary Depth 140 ftQuadrangle Sag Bridge Sec. 9 T. 37N R. 11EDate Start 6/9/97Finish 6/13/97UTM (or State
Plane) Coord. H.(X) _____ E(Y) _____

Latitude _____ Longitude _____

Boring Location S.E. of Building 330, adjacent to MW330011Drilling Equipment CME - Patrick Drilling, Inc.

SAMPLES						Personnel
	SAMPLE NO.	SAMPLE TYPE	SAMPLE RECOVERY (%)	PENETROMETER	VALUES (BLOW COUNTS)	GRADINGS
						G - D - H - H -

Elev.	DESCRIPTION OF MATERIALS	Graphic Log	Depth in feet	SAMPLE NO.	SAMPLE TYPE	SAMPLE RECOVERY (%)	PENETROMETER	VALUES (BLOW COUNTS)	GRADINGS	REMARKS
690	Gray silty clay w/trace fine gravel, moist		55							Bag sample, 58'-60'
685	Yellowish gray silty clay w/trace sand and fine gravel, moist		60							
680	Dark gray silty clay w/trace fine gravel, moist		65							Bag sample, 64'-66'
675			70							
670	Gray silty clay to silty very fine sand w/weathered dolomite fragments, moist		75							Bag sample, 72'-74'
665	Weathered dolomite fragments, brown sand and silt, moist		80							Bag samples, 80'-82'
660	Gray silt w/some medium-coarse gravel, dry		85							Bag sample, 85'-87'
655	Brown clayey silt and fine sand, dry - moist		90							Bag sample, 90'-92'
650	Gray silty clay w/ weathered dolomite fragments		95							Bag sample, 97'-98.5'
645			100							Bag sample, 98.5'-100'
640	Brownish gray silty fine sand, moist, w/dolomite fragments		105							Bag sample, 103'-105'

(600008)

Illinois Environmental Protection Agency

Field Boring Log 3 of 3

Site File No.: _____ County DuPage Boring No. SB330012D Monitor Well No. MW330012D
 Site File Name Argonne National Laboratory Surface Elevation 745 ft msl Completion Depth 140 ft
 Fed. ID. No. _____ Auger Depth 126 ft Rotary Depth 140 ft
 Quadrangle Sag Bridge Sec. 9 T. 37N R. 11E Date Start 6/9/97 Finish 6/13/97

UTM (or State Plane) Coord. N.(X) _____ E(Y) _____

Latitude _____ Longitude _____

Boring Location S.E. of Building 330, adjacent to MW330011

Drilling Equipment CME - Patrick Drilling, Inc.

SAMPLES						Personnel
SAMPLE NO.	SAMPLE TYPE	SAMPLE RECOVERY (%)	PENETROMETER	N VALUES (BLOW COUNTS)	OVA or INVA READINGS	G - D - H - H -

Elev.	DESCRIPTION OF MATERIALS	Graphic Log	Depth In feet	SAMPLE NO.	SAMPLE TYPE	SAMPLE RECOVERY (%)	PENETROMETER	N VALUES (BLOW COUNTS)	OVA or INVA READINGS	REMARKS
635			110							
630	Gray silty clay w/weathered dolomite fragments		115							Bag sample, 118'-120'
625			120							
620			125							Bag sample, 123'-125'
614	Competent bedrock at 126'. Cored dolomite from 126'-140'		130							Auger refusal at 126'
615			135							
610			140							
605	End of boring.									

No basal silt - loamy soil

(00226)

1107 1107 / 1107 1107 1107 1107 1107 1107 1107 1107 1107 1107 1107 1107

APPENDIX B

**STRATIGRAPHIC COLUMN AND SPLIT-SPOON
CORE LOG FOR WELL # MW330011**

NEW WELL AT CP-5

SPLIT SPOON CORE LOG

Location: Behind the reactor at CP-5

Date Drilled: August 11, 1989

Total Depth: 20 ft

Water Level While Drilling: Approximately 14 ft
8/17/89: 10.31 ft from top of
casing

Completion: Schedule 40 PVC blank casing and screen

0-10 ft blank casing	0-2 ft cement
10-20 ft screen	2-8 ft bentonite
	8-20 ft silica sand

Geologist: T.L. Patton, ANL

Depth (ft) Description

0	-	0.5	Limestone gravel fill, coarse grained sand
0.5	-	2	Clay, brown-ocre (fill)
2	-	4	Clay, brown, damp, with limestone gravel
4	-	6	Clay, brown-ocre, red streaks, gravel
6	-	8	Clay, dark brown-ocre, red streaks, gravel
8	-	10	Clay, dark brown, some red streaks, changing to a lighter brown, fairly damp clay at 9 ft
10	-	11	Clay, brown, some limestone gravel, wet at 11 ft
11	-	12	Clay, brown-ocre, some red streaks, sandy, gravel
12	-	14	Clay, brown, sandy, some red streaks, gravel
14	-	16	Clay, gray, with some coarse sand
16	-	18	Poor return, Gray clay with gravel
18	-	20	Drilling hard, hitting rock - Gray clay with rounded pebbles, wet

NEW WELL AT CP-5

STRATIGRAPHIC COLUMN

Location: behind reactor

Date Drilled: August 11, 1989

Total Depth: 20 ft

Water Level While Drilling: approximately 14 ft
8/17/89: 10.31 ft from top of
casing

Completion: Schedule 40 PVC blank casing and screen

0-10 ft blank casing	0-2 ft cement
10-20 ft screen	2-8 ft bentonite
	8-20 ft silica sand

Geologist: T.L. Patton, ANL

Depth (ft)	Description
0	----- Limestone gravel fill, coarse grained sand
0.5	----- Brown clay, contains some gravel
4	----- Brown-ocre clay, red streaking, gravel, fairly damp at 9 ft, wet at 11 ft
11	----- Sandy, brown to brown-ocre clay with some red streaking, gravel, wet
14	----- Gray clay with some coarse sand, gravel, and pebbles, wet
20	Total depth

APPENDIX C

1989 20-ft SOIL BORING SAMPLING RESULTS

TABLE 1
SUMMARY OF RADIOLOGICAL ANALYSIS OF SOIL FROM EXISTING
MONITORING WELL 330011 IN CP-5 YARD, 1989
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
(Page 1 of 1)

SAMPLE NO.	DEPTH	WATER CONTENT	HYDROGEN-3 (pCi/L)	HYDROGEN-3 (pCi/g)	POTASSIUM-40 (pCi/g)	CESIUM-137 (pCi/g)	RADIUM-226 (pCi/g)	THORIUM-228 (pCi/g)	THORIUM-232 (pCi/g)
89SO-1360	0-2'	10.3%	128 ± 96	0.013 ± 0.010	17.87 ± 0.74	0.04 ± 0.02	1.45 ± 0.07	0.85 ± 0.04	0.63 ± 0.09
89SO-1361	2-4'	10.6%	346 ± 100	0.037 ± 0.011	17.06 ± 0.45	0.07 ± 0.01	1.32 ± 0.04	0.80 ± 0.02	0.60 ± 0.05
89SO-1362	4-6'	13.7%	398 ± 102	0.055 ± 0.014	20.50 ± 0.77	<0.03	1.83 ± 0.07	0.91 ± 0.04	0.80 ± 0.10
89SO-1363	6-8'	14.5%	386 ± 101	0.056 ± 0.015	19.10 ± 0.76	0.08 ± 0.02	1.20 ± 0.06	0.94 ± 0.04	0.66 ± 0.09
89SO-1364	8-10'	14.5%	850 ± 110	0.123 ± 0.016	19.63 ± 0.79	<0.03	1.37 ± 0.07	0.94 ± 0.04	0.75 ± 0.09
89SO-1365	10-12'	12.7%	1.40x10 ⁴ ± 258	1.778 ± 0.033	19.68 ± 0.76	<0.03	1.22 ± 0.06	0.73 ± 0.04	0.70 ± 0.09
89SO-1366	12-14'	12.5%	1.61x10 ⁴ ± 275	2.020 ± 0.034	19.33 ± 0.76	<0.03	1.30 ± 0.07	0.77 ± 0.04	0.69 ± 0.09
89SO-1367	14-16'	15.3%	1.90x10 ⁴ ± 297	2.915 ± 0.045	20.09 ± 0.79	<0.03	1.18 ± 0.07	0.88 ± 0.04	0.73 ± 0.09
89SO-1368	16-18'	11.0%	1.96x10 ⁴ ± 400	2.156 ± 0.044	21.68 ± 1.34	<0.03	1.52 ± 0.12	0.93 ± 0.07	0.86 ± 0.16
89SO-1369	18-20'	13.4%	1.82x10 ⁴ ± 291	2.439 ± 0.038	17.99 ± 0.75	<0.03	1.24 ± 0.07	0.75 ± 0.04	0.63 ± 0.09

APPENDIX D

1993 IT CORPORATION RADIOLOGICAL SAMPLING RESULTS

ANALYTICAL SUMMARY - SURFACE SOIL RADIOLOGICAL PARAMETERS
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
(Page 1 of 4)

Sample ID Number	Result +/- 2-Sigma Error			
	H-3 (pCi/L) (1)	Gross Alpha (pCi/g)	Gross Beta (pCi/g)	K-40 (pCi/g)
SB20-0.5-1.5	2.75E+02 + 1.22E+02	6.15E+00 + 4.06E+00	2.87E+01 + 7.20E+00	1.99E+01 + 2.90E+00
SB01-0.5-1.5	3.95E+02 + 1.70E+02	6.34E+00 + 4.18E+00	2.28E+01 + 6.20E+00	1.13E+01 + 1.90E+00
SB02-0.5-1.5	3.07E+02 + 1.65E+02	7.52E+00 + 4.58E+00	2.64E+01 + 6.70E+00	1.50E+01 + 2.40E+00
DUP SB02-0.5-1.5	3.35E+02 + 1.81E+02	NA (2)	NA	NA
SB03-0.5-1.5	4.06E+02 + 1.30E+02	1.13E+01 + 5.40E+00	2.87E+01 + 7.30E+00	2.36E+01 + 3.40E+00
SB04-0.5-1.5	2.30E+03 + 3.00E+02	< 6.00E+00	2.56E+01 + 6.70E+00	2.08E+01 + 3.10E+00
SB05-0.5-1.5	1.23E+03 + 2.00E+02	< 5.60E+00	1.25E+01 + 4.40E+00	8.61E+00 + 1.67E+00
SB06-0.5-1.5 (3)	1.51E+03 + 3.90E+02	< 5.50E+00	2.80E+01 + 7.10E+00	2.28E+01 + 3.00E+00
SB06-0.5-1.5D	3.24E+03 + 4.30E+02	8.26E+00 + 4.78E+00	2.89E+01 + 7.50E+00	2.40E+01 + 3.40E+00
DUP SB06-0.5-1.5D	NA	1.32E+01 + 5.80E+00	3.03E+01 + 7.60E+00	NA
SB07-0.5-1.5	6.24E+02 + 1.82E+02	< 5.50E+00	1.22E+01 + 4.30E+00	6.60E+00 + 1.30E+00
SB08-0.5-1.5 (3)	2.15E+04 + 2.40E+03	8.23E+00 + 4.74E+00	2.48E+01 + 6.50E+00	1.93E+01 + 2.80E+00
SB09-0.5-1.5	9.29E+02 + 1.69E+02	< 4.70E+00	7.42E+00 + 3.75E+00	3.92E+00 + 8.40E-01
SB10-0.5-1.5	2.43E+02 + 1.24E+02	7.69E+00 + 4.57E+00	2.60E+01 + 6.70E+00	2.05E+01 + 3.00E+00
SB11-0.5-1.5	1.21E+03 + 2.20E+02	8.25E+00 + 4.55E+00	2.66E+01 + 6.80E+00	1.94E+01 + 2.90E+00
SB12-0.5-1.5	< 3.50E+02	< 5.90E+00	8.64E+00 + 3.73E+00	5.63E+00 + 1.15E+00
SB13-0.5-1.5	3.12E+02 + 1.33E+02	< 5.70E+00	1.30E+01 + 4.70E+00	2.73E+01 + 4.90E+00
SB14-0.5-1.5	6.58E+02 + 1.75E+02	< 6.20E+00	2.28E+01 + 6.20E+00	6.05E+01 + 8.20E+00
DUP SB14-0.5-1.5	4.98E+02 + 1.50E+02	< 5.50E+00	2.21E+01 + 6.00E+00	2.03E+01 + 3.00E+00
SB15-0.5-1.5	9.45E+02 + 1.70E+02	8.37E+00 + 4.40E+00	1.85E+01 + 5.50E+00	1.55E+01 + 2.20E+00
SB16-0.5-1.5	3.70E+01 + 1.10E+02	< 6.10E+00	2.50E+01 + 6.90E+00	2.21E+01 + 3.20E+00
SB17-0.5-1.5	< 2.40E+02	< 5.10E+00	2.70E+01 + 6.80E+00	2.18E+01 + 2.90E+00
SB17-0.5-1.5D	5.56E+02 + 1.44E+02	9.37E+00 + 5.02E+00	2.60E+01 + 6.80E+00	1.94E+01 + 2.90E+00
SB18-0.5-1.5	1.52E+03 + 2.50E+02	9.51E+00 + 5.38E+00	2.17E+01 + 5.90E+00	1.63E+01 + 2.40E+00
SB19-0.5-1.5 (3)	5.22E+03 + 7.30E+02	6.01E+00 + 4.35E+00	1.91E+01 + 5.50E+00	1.21E+01 + 1.80E+00
SB21-0.5-1.5	1.54E+03 + 2.90E+02	6.38E+00 + 4.09E+00	2.63E+01 + 6.70E+00	2.10E+01 + 3.20E+00

See page 4 for footnotes.

ANALYTICAL SUMMARY - SURFACE SOIL RADIOLOGICAL PARAMETERS
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
(Page 2 of 4)

Sample ID Number	Result +/- 2-Sigma Error			
	RA-226 (pCi/g)	RA-228 (pCi/g)	CS-137 (pCi/g)	CO-57 (pCi/g)
SB20-0.5-1.5	1.43E+00 + 2.30E-01	1.01E+00 + 3.10E-01	< 7.80E-02	ND (4)
SB01-0.5-1.5	6.74E-01 + 1.46E-01	5.26E-01 + 2.38E-01	5.82E-01 + 1.15E-01	ND
SB02-0.5-1.5	1.21E+00 + 2.10E-01	9.48E-01 + 3.14E-01	5.00E-01 + 1.14E-01	ND
DUP SB02-0.5-1.5	NA	NA	NA	ND
SB03-0.5-1.5	1.64E+00 + 2.60E-01	6.07E-01 + 2.85E-01	< 1.00E-01	ND
SB04-0.5-1.5	1.29E+00 + 2.30E-01	9.32E-01 + 3.13E-01	6.57E-02 + 6.01E-02	ND
SB05-0.5-1.5	7.30E-01 + 1.59E-01	4.78E-01 + 2.60E-01	4.42E-01 + 1.04E-01	5.52E-02 + 2.22E-02
SB06-0.5-1.5 (3)	1.17E+00 + 1.80E-01	1.08E+00 + 2.60E-01	< 6.40E-02	ND
SB06-0.5-1.5D	1.47E+00 + 2.30E-01	1.30E+00 + 3.40E-01	< 1.10E-01	ND
DUP SB06-0.5-1.5D	NA	NA	NA	ND
SB07-0.5-1.5	3.24E-01 + 9.50E-02	2.37E-01 + 1.80E-01	2.10E-01 + 6.50E-02	ND
SB08-0.5-1.5 (3)	1.26E+00 + 2.10E-01	9.99E-01 + 3.09E-01	< 9.00E-02	ND
SB09-0.5-1.5	1.78E-01 + 6.90E-02	< 1.30E-01	2.55E-01 + 5.60E-02	ND
SB10-0.5-1.5	1.30E+00 + 2.10E-01	9.49E-01 + 2.96E-01	< 1.10E-01	ND
SB11-0.5-1.5	1.49E+00 + 2.30E-01	1.12E+00 + 3.20E-01	< 9.50E-02	ND
SB12-0.5-1.5	3.40E-01 + 9.70E-02	2.42E-01 + 1.68E-01	8.00E-01 + 1.29E-01	ND
SB13-0.5-1.5	2.09E+00 + 4.80E-01	1.31E+00 + 7.00E-01	8.64E+00 + 1.09E+00	ND
SB14-0.5-1.5	3.31E+00 + 5.20E-01	2.51E+00 + 7.10E-01	< 2.20E-01	ND
DUP SB14-0.5-1.5	1.04E+00 + 2.00E-01	1.03E+00 + 3.30E-01	< 1.00E-01	ND
SB15-0.5-1.5	1.07E+00 + 1.70E-01	1.04E+00 + 2.60E-01	1.91E-01 + 6.20E-02	ND
SB16-0.5-1.5	1.77E+00 + 2.70E-01	8.73E-01 + 3.24E-01	< 9.90E-02	ND
SB17-0.5-1.5	1.52E+00 + 2.20E-01	9.32E-01 + 2.69E-01	< 7.60E-02	ND
SB17-0.5-1.5D	1.47E+00 + 2.30E-01	1.07E+00 + 3.30E-01	< 1.00E-01	ND
SB18-0.5-1.5	1.07E+00 + 1.80E-01	8.67E-01 + 2.91E-01	4.70E-01 + 1.04E-01	2.03E-01 + 3.70E-02
SB19-0.5-1.5 (3)	8.94E-01 + 1.45E-01	6.31E-01 + 2.11E-01	1.18E+00 + 1.60E-01	ND
SB21-0.5-1.5	1.67E+00 + 2.60E-01	9.68E-01 + 3.50E-01	1.70E-01 + 8.60E-02	ND

See page 4 for footnotes.

ANALYTICAL SUMMARY - SURFACE SOIL RADIOLOGICAL PARAMETERS
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
(Page 3 of 4)

Sample ID Number	Result +/- 2-Sigma Error			
	CO-60 (pCi/g)	AM-241 (pCi/g)	U-238 (ug/g)	EU-152 (pCi/g)
SB20-0.5-1.5	ND	ND	< 2.60E+00 (5)	ND
SB01-0.5-1.5	ND	ND	NA	ND
SB02-0.5-1.5	ND	ND	3.66E+00 + 2.51E+00	ND
DUP SB02-0.5-1.5	ND	ND	NA	ND
SB03-0.5-1.5	ND	ND	5.36E+00 + 2.72E+00	ND
SB04-0.5-1.5	ND	ND	4.70E+00 + 3.52E+00	ND
SB05-0.5-1.5	1.32E+00 + 2.10E-01	ND	9.67E+00 + 2.69E+00	ND
SB06-0.5-1.5 (3)	ND	ND	4.42E+00 + 2.08E+00	ND
SB06-0.5-1.5D	ND	ND	4.79E+00 + 2.59E+00	ND
DUP SB06-0.5-1.5D	ND	ND	NA	ND
SB07-0.5-1.5	ND	ND	NA	ND
SB08-0.5-1.5 (3)	ND	ND	5.87E+00 + 2.42E+00	ND
SB09-0.5-1.5	ND	ND	< 1.60E+00 (5)	ND
SB10-0.5-1.5	ND	ND	4.23E+00 + 2.16E+00	ND
SB11-0.5-1.5	ND	ND	5.83E+00 + 2.36E+00	ND
SB12-0.5-1.5	ND	ND	NA	ND
SB13-0.5-1.5	2.51E+00 + 4.50E-01	4.63E-01 + 1.92E-01 (6)	NA	ND
SB14-0.5-1.5	ND	ND	1.04E+01 + 2.30E+00	ND
DUP SB14-0.5-1.5	ND	ND	3.69E+00 + 3.49E+00	ND
SB15-0.5-1.5	ND	ND	2.33E+00 + 2.02E+00	ND
SB16-0.5-1.5	ND	ND	4.97E+00 + 2.40E+00	ND
SB17-0.5-1.5	ND	ND	4.24E+00 + 2.19E+00	ND
SB17-0.5-1.5D	ND	ND	< 3.10E+00	ND
SB18-0.5-1.5	1.68E-01 + 7.20E-02	ND	2.67E+00 + 2.20E+00	9.90E-01 + 5.18E-01
SB19-0.5-1.5 (3)	1.22E-01 + 5.20E-02	ND	3.68E+00 + 1.81E+00	ND
SB21-0.5-1.5	ND	ND	7.36E+00 + 3.16E+00 (5)	ND

See page 4 for footnotes.

ANALYTICAL SUMMARY - SURFACE SOIL RADIOLOGICAL PARAMETERS
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
(Page 4 of 4)

- (1) Tritium (H-3) analyses are performed on the moisture present in the soil which is distilled from the sample and counted on a liquid scintillation counter; therefore, results are reported in pCi/L.
- (2) NA = Not Analyzed
- (3) For these tritium samples, the count rates were inconsistent indicating possible matrix interference. Therefore, only the first count was used to calculate the activity.
- (4) ND = Not Detected (the analysis did not detect the parameter and, therefore, no result was indicated).
- (5) Parameter is U-Total.
- (6) The gamma spectrum for this sample showed a peak at 0.059 Mev which was identified by the gamma system software library as Am-241. Th-232 also has a low abundance peak at the same energy. Since both radioisotopes are single gamma line isotopes, it is impossible to determine by gamma spectroscopy which isotope is responsible for this peak.

ANALYTICAL SUMMARY - SUBSURFACE SOIL RADIOLOGICAL PARAMETERS
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
 (Page 1 of 3)

Sample ID Number	Result +/- 2-Sigma Error			
	H-3 (pCi/L) (1)	Gross Alpha (pCi/g)	Gross Beta (pCi/g)	K-40 (pCi/g)
SB20-6.0-8.0	6.27E+02 + 1.45E+02	< 5.30E+00	2.63E+01 + 6.90E+00	2.18E+01 + 3.10E+00
SB01-8.0-10.0	8.88E+03 + 9.70E+02	1.08E+01 + 5.40E+00	2.82E+01 + 7.10E+00	2.04E+01 + 2.90E+00
DUP SB01-8.0-10.0	NA (2)	NA	NA	2.19E+01 + 2.90E+00
SB02-8.0-10.0	6.41E+03 + 7.10E+02	8.43E+00 + 4.54E+00	2.59E+01 + 6.70E+00	2.16E+01 + 3.00E+00
SB03-8.0-10.0	1.07E+05 + 1.10E+04	5.24E+00 + 3.78E+00	2.69E+01 + 6.90E+00	2.12E+01 + 3.20E+00
SB03-8.0-10.0D	7.98E+04 + 8.10E+03	1.03E+01 + 4.70E+00	2.71E+01 + 7.10E+00	2.28E+01 + 3.30E+00
SB04-8.0-10.0	5.14E+04 + 5.20E+03	< 6.60E+00	2.62E+01 + 6.80E+00	2.36E+01 + 3.60E+00
SB05-8.0-10.0	1.42E+05 + 1.40E+04	8.78E+00 + 4.83E+00	2.58E+01 + 6.80E+00	2.71E+01 + 3.90E+00
SB06-6.0-8.0	6.13E+03 + 7.00E+02	< 6.00E+00	2.60E+01 + 6.70E+00	2.43E+01 + 3.50E+00
SB07-4.0-6.0	5.82E+02 + 1.79E+02	8.48E+00 + 4.46E+00	2.34E+01 + 6.50E+00	1.29E+01 + 1.80E+00
SB07-4.0-6.0D	9.36E+02 + 2.25E+02	< 5.10E+00	1.50E+01 + 4.90E+00	1.70E+01 + 2.50E+00
DUP SB07-4.0-6.0	NA	NA	NA	1.49E+01 + 2.20E+00
SB08-4.0-6.0	3.18E+03 + 4.20E+02	8.30E+00 + 4.91E+00	3.05E+01 + 7.80E+00	2.03E+01 + 3.10E+00
SB09-8.0-10.0	7.34E+03 + 7.90E+02	< 5.60E+00	2.86E+01 + 7.30E+00	2.20E+01 + 3.20E+00
SB10-2.0-4.0 (3)	9.33E+02 + 2.75E+02	6.12E+00 + 4.43E+00	2.83E+01 + 7.30E+00	2.09E+01 + 2.80E+00
DUP SB10-2.0-4.0	NA	7.10E+00 + 4.60E+00	2.67E+01 + 6.90E+00	2.16E+01 + 3.00E+00
SB11-2.0-4.0	6.16E+02 + 1.81E+02	6.10E+00 + 4.42E+00	8.77E+00 + 3.87E+00	2.48E+01 + 3.30E+00
SB12-4.0-6.0	< 3.50E+02	7.62E+00 + 4.74E+00	3.11E+01 + 7.60E+00	2.04E+01 + 3.00E+00
SB13-8.0-10.0	1.99E+04 + 2.10E+03	< 5.90E+00	2.16E+01 + 5.90E+00	2.14E+01 + 3.00E+00
SB14-6.0-8.0	1.61E+02 + 1.24E+02	< 5.70E+00	2.68E+01 + 6.80E+00	2.34E+01 + 3.10E+00
SB15-2.0-4.0	5.87E+03 + 6.40E+02	7.62E+00 + 4.32E+00	2.90E+01 + 7.30E+00	2.10E+01 + 3.10E+00
SB16-6.0-8.0	8.99E+03 + 9.50E+02	7.64E+00 + 4.44E+00	2.17E+01 + 6.00E+00	2.37E+01 + 3.10E+00
SB17-6.0-8.0	1.36E+03 + 2.10E+02	< 5.20E+00	2.66E+01 + 6.80E+00	2.23E+01 + 3.20E+00
SB18-6.0-8.0	1.67E+03 + 2.90E+02	9.39E+00 + 4.83E+00	2.83E+01 + 7.00E+00	2.21E+01 + 3.20E+00
DUP SB18-6.0-8.0	5.07E+03 + 6.00E+02	NA	NA	NA
SB19-6.0-8.0	< 3.50E+02	6.60E+00 + 4.42E+00	2.86E+01 + 7.20E+00	2.11E+01 + 3.00E+00
SB21-12.0-14.0	< 3.50E+02	1.19E+01 + 5.70E+00	2.50E+01 + 6.60E+00	2.42E+01 + 3.60E+00
DUP SB21-12.0-14.0	NA	1.17E+01 + 5.40E+00	2.89E+01 + 7.40E+00	NA

See page 3 for footnotes.

ANALYTICAL SUMMARY - SUBSURFACE SOIL RADIOLOGICAL PARAMETERS
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
(Page 2 of 3)

Sample ID Number	Result +/- 2-Sigma Error			
	RA-226 (pCi/g)	RA-228 (pCi/g)	CS-137 (pCi/g)	U-238 (ug/g)
SB20-6.0-8.0	1.45E+00 + 2.20E-01	5.22E-01 + 2.29E-01	< 6.90E-02	2.50E+00 + 2.37E+00
SB01-8.0-10.0	1.72E+00 + 2.50E-01	8.03E-01 + 2.50E-01	< 7.60E-02	4.04E+00 + 2.07E+00
DUP SB01-8.0-10.0	1.59E+00 + 2.20E-01	7.79E-01 + 2.40E-01	< 6.80E-02	4.19E+00 + 2.07E+00
SB02-8.0-10.0	1.28E+00 + 2.00E-01	8.28E-01 + 2.00E-01	< 7.40E-02	NA
SB03-8.0-10.0	1.67E+00 + 2.60E-01	1.03E+00 + 3.40E-01	< 1.00E-01	6.12E+00 + 2.91E+00
SB03-8.0-10.0D	1.28E+00 + 2.20E-01	1.01E+00 + 3.20E-01	< 8.80E-02	3.86E+00 + 2.43E+00
SB04-8.0-10.0	1.46E+00 + 2.70E-01	9.77E-01 + 3.80E-01	< 1.10E-01	3.73E+00 + 4.40E+00
SB05-8.0-10.0	1.42E+00 + 2.80E-01	1.03E+00 + 3.40E-01	< 1.10E-01	1.52E+01 + 3.60E+00
SB06-6.0-8.0	1.72E+00 + 2.70E-01	1.26E+00 + 4.10E-01	< 9.90E-02	3.70E+00 + 2.95E+00
SB07-4.0-6.0	1.15E+00 + 1.60E-01	6.85E-01 + 1.90E-01	7.65E-02 + 4.38E-02	3.99E+00 + 1.74E+00
SB07-4.0-6.0D	1.34E+00 + 2.00E-01	9.84E-01 + 2.65E-01	< 8.70E-02	5.76E+00 + 2.12E+00
DUP SB07-4.0-6.0	1.18E+00 + 1.80E-01	7.07E-01 + 2.59E-01	8.71E-02 + 6.40E-02	3.92E+00 + 1.80E+00
SB08-4.0-6.0	1.41E+00 + 2.40E-01	8.99E-01 + 3.63E-01	< 1.20E-01	3.28E+00 + 2.99E+00
SB09-8.0-10.0	1.50E+00 + 2.40E-01	7.84E-01 + 2.83E-01	< 9.90E-02	5.34E+00 + 2.52E+00
SB10-2.0-4.0	1.42E+00 + 2.10E-01	1.03E+00 + 2.60E-01	< 7.00E-02	4.22E+00 + 2.13E+00
DUP SB10-2.0-4.0	1.46E+00 + 2.30E-01	1.11E+00 + 3.10E-01	< 9.10E-02	5.06E+00 + 2.50E+00
SB11-2.0-4.0	1.83E+00 + 2.60E-01	1.09E+00 + 3.00E-01	< 7.70E-02	4.69E+00 + 2.39E+00
SB12-4.0-6.0	1.39E+00 + 2.20E-01	1.07E+00 + 3.10E-01	< 9.50E-02	5.34E+00 + 2.30E+00
SB13-8.0-10.0	1.21E+00 + 1.90E-01	7.09E-01 + 2.47E-01	< 7.10E-02	9.09E+00 + 2.42E+00
SB14-6.0-8.0	1.37E+00 + 2.00E-01	8.94E-01 + 2.53E-01	< 7.50E-02	9.88E+00 + 2.31E+00
SB15-2.0-4.0	1.40E+00 + 2.30E-01	1.17E+00 + 3.50E-01	< 1.10E-01	2.94E+00 + 2.52E+00
SB16-6.0-8.0	1.38E+00 + 2.10E-01	9.44E-01 + 2.64E-01	< 8.10E-02	4.65E+00 + 2.29E+00
SB17-6.0-8.0	1.41E+00 + 2.30E-01	8.17E-01 + 3.10E-01	< 8.50E-02	5.52E+00 + 2.60E+00
SB18-6.0-8.0	1.53E+00 + 2.40E-01	1.03E+00 + 3.10E-01	< 8.90E-02	4.33E+00 + 2.48E+00
DUP SB18-6.0-8.0	NA	NA	NA	NA
SB19-6.0-8.0	1.17E+00 + 2.00E-01	9.78E-01 + 3.24E-01	< 8.60E-02	3.70E+00 + 2.36E+00
SB21-12.0-14.0	1.59E+00 + 2.70E-01	1.14E+00 + 3.70E-01	< 1.00E-01	5.27E+00 + 3.07E+00 (4)
DUP SB21-12.0-14.0	NA	NA	NA	NA

See page 3 for footnotes.

ANALYTICAL SUMMARY - SUBSURFACE SOIL RADIOLOGICAL PARAMETERS
CP-5 YARD CHARACTERIZATION
ARGONNE NATIONAL LABORATORY
ARGONNE, ILLINOIS
(Page 3 of 3)

- (1) Tritium (H-3) analyses are performed on the moisture present in the soil which is distilled from the sample and counted on a liquid scintillation counter; therefore, results are reported in pCi/L.
- (2) NA = Not Analyzed
- (3) Distilled water was used to increase the volume for this sample in order to perform the tritium analysis.
- (4) Sample was analyzed for total uranium (U-Total).

APPENDIX E
RESIDENTIAL FAMILY-FARM RESRAD SUMMARY REPORT

Table of Contents

Part I: Mixture Sums and Single Radionuclide Guidelines

Dose Conversion Factor (and Related) Parameter Summary ...	2
Site-Specific Parameter Summary	3
Summary of Pathway Selections	7
Contaminated Zone and Total Dose Summary	8
Total Dose Components	
Time = 0.000E+00	9
Time = 1.000E+00	10
Time = 1.000E+01	11
Time = 1.000E+02	12
Dose/Source Ratios Summed Over All Pathways	13
Single Radionuclide Soil Guidelines	13
Dose Per Nuclide Summed Over All Pathways	14
Soil Concentration Per Nuclide	14

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 10:01 Page 2
Summary : CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose Conversion Factor (and Related) Parameter Summary
File: DOSFAC.BIN

Menu	Parameter	Current		Parameter Name
		Value	Default	
B-1	Dose conversion factors for inhalation, mrem/pCi:			
B-1	H-3	6.400E-08	6.400E-08	DCF2(1)
D-1	Dose conversion factors for ingestion, mrem/pCi:			
D-1	H-3	6.400E-08	6.400E-08	DCF3(1)
D-34	Food transfer factors:			
D-34	H-3 , plant/soil concentration ratio, dimensionless	4.800E+00	4.800E+00	RTF(1,1)
D-34	H-3 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d)	1.200E-02	1.200E-02	RTF(1,2)
D-34	H-3 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	1.000E-02	1.000E-02	RTF(1,3)
D-5	Bioaccumulation factors, fresh water, L/kg:			
D-5	H-3 , fish	1.000E+00	1.000E+00	BIOFAC(1,1)
D-5	H-3 , crustacea and mollusks	1.000E+00	1.000E+00	BIOFAC(1,2)

Site-Specific Parameter Summary

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
R011	Area of contaminated zone (m**2)	2.430E+03	1.000E+04	---	AREA
R011	Thickness of contaminated zone (m)	1.524E+01	2.000E+00	---	THICK0
R011	Length parallel to aquifer flow (m)	7.400E+01	1.000E+02	---	LCZPAQ
R011	Basic radiation dose limit (mrem/yr)	2.500E+01	3.000E+01	---	BRDL
R011	Time since placement of material (yr)	3.000E+01	0.000E+00	---	TI
R011	Times for calculations (yr)	1.000E+00	1.000E+00	---	T(2)
R011	Times for calculations (yr)	1.000E+01	3.000E+00	---	T(3)
R011	Times for calculations (yr)	1.000E+02	1.000E+01	---	T(4)
R011	Times for calculations (yr)	not used	3.000E+01	---	T(5)
R011	Times for calculations (yr)	not used	1.000E+02	---	T(6)
R011	Times for calculations (yr)	not used	3.000E+02	---	T(7)
R011	Times for calculations (yr)	not used	1.000E+03	---	T(8)
R011	Times for calculations (yr)	not used	0.000E+00	---	T(9)
R011	Times for calculations (yr)	not used	0.000E+00	---	T(10)
R012	Initial principal radionuclide (pCi/g): H-3	6.900E+00	0.000E+00	---	S1(1)
R012	Concentration in groundwater (pCi/L): H-3	not used	0.000E+00	---	W1(1)
R013	Cover depth (m)	1.500E+00	0.000E+00	---	COVER0
R013	Density of cover material (g/cm**3)	1.500E+00	1.500E+00	---	DENSCV
R013	Cover depth erosion rate (m/yr)	1.000E-03	1.000E-03	---	VCV
R013	Density of contaminated zone (g/cm**3)	1.760E+00	1.500E+00	---	DENSCZ
R013	Contaminated zone erosion rate (m/yr)	1.000E-03	1.000E-03	---	VCZ
R013	Contaminated zone total porosity	3.000E-01	4.000E-01	---	TPCZ
R013	Contaminated zone effective porosity	2.000E-01	2.000E-01	---	EPCZ
R013	Contaminated zone hydraulic conductivity (m/yr)	9.500E-01	1.000E+01	---	HCCZ
R013	Contaminated zone b parameter	1.140E+01	5.300E+00	---	BCZ
R013	Average annual wind speed (m/sec)	2.000E+00	2.000E+00	---	WIND
R013	Humidity in air (g/m**3)	7.000E+00	8.000E+00	---	HUMID
R013	Evapotranspiration coefficient	5.000E-01	5.000E-01	---	EVAPTR
R013	Precipitation (m/yr)	8.000E-01	1.000E+00	---	PRECIP
R013	Irrigation (m/yr)	2.000E-01	2.000E-01	---	RI
R013	Irrigation mode	overhead	overhead	---	IDITCH
R013	Runoff coefficient	2.000E-01	2.000E-01	---	RUNOFF
R013	Watershed area for nearby stream or pond (m**2)	1.000E+06	1.000E+06	---	WAREA
R013	Accuracy for water/soil computations	1.000E-03	1.000E-03	---	EPS
R014	Density of saturated zone (g/cm**3)	1.500E+00	1.500E+00	---	DENSAQ
R014	Saturated zone total porosity	3.000E-01	4.000E-01	---	TPSZ
R014	Saturated zone effective porosity	2.000E-01	2.000E-01	---	EPSZ
R014	Saturated zone hydraulic conductivity (m/yr)	9.500E+02	1.000E+02	---	HCSZ
R014	Saturated zone hydraulic gradient	2.000E-02	2.000E-02	---	HGWT
R014	Saturated zone b parameter	1.140E+01	5.300E+00	---	BSZ
R014	Water table drop rate (m/yr)	1.000E-03	1.000E-03	---	VWT
R014	Well pump intake depth (m below water table)	5.000E+00	1.000E+01	---	DWIBWT
R014	Model: Nondispersion (ND) or Mass-Balance (MB)	ND	ND	---	MODEL
R014	Well pumping rate (m**3/yr)	2.500E+02	2.500E+02	---	UW
R015	Number of unsaturated zone strata	2	1	---	NS

Site-Specific Parameter Summary (continued)

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
R015	Unsat. zone 1, thickness (m)	1.200E+00	4.000E+00	---	H(1)
R015	Unsat. zone 1, soil density (g/cm**3)	1.760E+00	1.500E+00	---	DENSUZ(1)
R015	Unsat. zone 1, total porosity	3.000E-01	4.000E-01	---	TPUZ(1)
R015	Unsat. zone 1, effective porosity	2.000E-01	2.000E-01	---	EPUZ(1)
R015	Unsat. zone 1, soil-specific b parameter	1.140E+01	5.300E+00	---	BUZ(1)
R015	Unsat. zone 1, hydraulic conductivity (m/yr)	9.500E-01	1.000E+01	---	HCUZ(1)
R015					
R015	Unsat. zone 2, thickness (m)	1.800E+01	0.000E+00	---	H(2)
R015	Unsat. zone 2, soil density (g/cm**3)	1.500E+00	1.500E+00	---	DENSUZ(2)
R015	Unsat. zone 2, total porosity	4.000E-01	4.000E-01	---	TPUZ(2)
R015	Unsat. zone 2, effective porosity	2.000E-01	2.000E-01	---	EPUZ(2)
R015	Unsat. zone 2, soil-specific b parameter	7.750E+00	5.300E+00	---	BUZ(2)
R015	Unsat. zone 2, hydraulic conductivity (m/yr)	5.000E+01	1.000E+01	---	HCUZ(2)
R015					
R016	Distribution coefficients for H-3				
R016	Contaminated zone (cm**3/g)	0.000E+00	0.000E+00	---	DCNUCC(1)
R016	Unsaturated zone 1 (cm**3/g)	0.000E+00	0.000E+00	---	DCNUCU(1,1)
R016	Unsaturated zone 2 (cm**3/g)	0.000E+00	0.000E+00	---	DCNUCU(1,2)
R016	Saturated zone (cm**3/g)	0.000E+00	0.000E+00	---	DCNUCS(1)
R016	Leach rate (/yr)	0.000E+00	0.000E+00	9.482E-02	ALEACH(1)
R016	Solubility constant	0.000E+00	0.000E+00	not used	SOLUBK(1)
R016					
R017	Inhalation rate (m**3/yr)	8.400E+03	8.400E+03	---	INHALR
R017	Mass loading for inhalation (g/m**3)	2.000E-04	1.000E-04	---	MLINH
R017	Exposure duration	3.000E+01	3.000E+01	---	ED
R017	Shielding factor, inhalation	4.000E-01	4.000E-01	---	SHF3
R017	Shielding factor, external gamma	7.000E-01	7.000E-01	---	SHF1
R017	Fraction of time spent indoors	5.000E-01	5.000E-01	---	FIND
R017	Fraction of time spent outdoors (on site)	2.500E-01	2.500E-01	---	FOTD
R017	Shape factor flag, external gamma	1.000E+00	1.000E+00	>0 shows circular AREA.	FS
R017	Radii of shape factor array (used if FS = -1):				
R017	Outer annular radius (m), ring 1:	not used	5.000E+01	---	RAD_SHAPE(1)
R017	Outer annular radius (m), ring 2:	not used	7.071E+01	---	RAD_SHAPE(2)
R017	Outer annular radius (m), ring 3:	not used	0.000E+00	---	RAD_SHAPE(3)
R017	Outer annular radius (m), ring 4:	not used	0.000E+00	---	RAD_SHAPE(4)
R017	Outer annular radius (m), ring 5:	not used	0.000E+00	---	RAD_SHAPE(5)
R017	Outer annular radius (m), ring 6:	not used	0.000E+00	---	RAD_SHAPE(6)
R017	Outer annular radius (m), ring 7:	not used	0.000E+00	---	RAD_SHAPE(7)
R017	Outer annular radius (m), ring 8:	not used	0.000E+00	---	RAD_SHAPE(8)
R017	Outer annular radius (m), ring 9:	not used	0.000E+00	---	RAD_SHAPE(9)
R017	Outer annular radius (m), ring 10:	not used	0.000E+00	---	RAD_SHAPE(10)
R017	Outer annular radius (m), ring 11:	not used	0.000E+00	---	RAD_SHAPE(11)
R017	Outer annular radius (m), ring 12:	not used	0.000E+00	---	RAD_SHAPE(12)
R017					

Site-Specific Parameter Summary (continued)

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
R017	Fractions of annular areas within AREA:				
R017	Ring 1	not used	1.000E+00	---	FRACA(1)
R017	Ring 2	not used	2.732E-01	---	FRACA(2)
R017	Ring 3	not used	0.000E+00	---	FRACA(3)
R017	Ring 4	not used	0.000E+00	---	FRACA(4)
R017	Ring 5	not used	0.000E+00	---	FRACA(5)
R017	Ring 6	not used	0.000E+00	---	FRACA(6)
R017	Ring 7	not used	0.000E+00	---	FRACA(7)
R017	Ring 8	not used	0.000E+00	---	FRACA(8)
R017	Ring 9	not used	0.000E+00	---	FRACA(9)
R017	Ring 10	not used	0.000E+00	---	FRACA(10)
R017	Ring 11	not used	0.000E+00	---	FRACA(11)
R017	Ring 12	not used	0.000E+00	---	FRACA(12)
R018	Fruits, vegetables and grain consumption (kg/yr)	1.600E+02	1.600E+02	---	DIET(1)
R018	Leafy vegetable consumption (kg/yr)	1.400E+01	1.400E+01	---	DIET(2)
R018	Milk consumption (L/yr)	9.200E+01	9.200E+01	---	DIET(3)
R018	Meat and poultry consumption (kg/yr)	6.300E+01	6.300E+01	---	DIET(4)
R018	Fish consumption (kg/yr)	5.400E+00	5.400E+00	---	DIET(5)
R018	Other seafood consumption (kg/yr)	9.000E-01	9.000E-01	---	DIET(6)
R018	Soil ingestion rate (g/yr)	3.650E+01	3.650E+01	---	SOIL
R018	Drinking water intake (L/yr)	5.100E+02	5.100E+02	---	DWI
R018	Contamination fraction of drinking water	1.000E+00	1.000E+00	---	FDW
R018	Contamination fraction of household water	not used	1.000E+00	---	FHHW
R018	Contamination fraction of livestock water	1.000E+00	1.000E+00	---	FLW
R018	Contamination fraction of irrigation water	1.000E+00	1.000E+00	---	FIRW
R018	Contamination fraction of aquatic food	5.000E-01	5.000E-01	---	FR9
R018	Contamination fraction of plant food	-1	-1	0.500E+00	FPLANT
R018	Contamination fraction of meat	-1	-1	0.122E+00	FMEAT
R018	Contamination fraction of milk	-1	-1	0.122E+00	FMILK
R019	Livestock fodder intake for meat (kg/day)	6.800E+01	6.800E+01	---	LF15
R019	Livestock fodder intake for milk (kg/day)	5.500E+01	5.500E+01	---	LF16
R019	Livestock water intake for meat (L/day)	5.000E+01	5.000E+01	---	LWI5
R019	Livestock water intake for milk (L/day)	1.600E+02	1.600E+02	---	LWI6
R019	Livestock soil intake (kg/day)	5.000E-01	5.000E-01	---	LSI
R019	Mass loading for foliar deposition (g/m**3)	1.000E-04	1.000E-04	---	MLFD
R019	Depth of soil mixing layer (m)	1.500E-01	1.500E-01	---	DM
R019	Depth of roots (m)	9.000E-01	9.000E-01	---	DROOT
R019	Drinking water fraction from ground water	1.000E+00	1.000E+00	---	FGWDW
R019	Household water fraction from ground water	1.000E+00	1.000E+00	---	FGWHH
R019	Livestock water fraction from ground water	not used	1.000E+00	---	FGWLW
R019	Irrigation fraction from ground water	1.000E+00	1.000E+00	---	FGWIR
R19B	Wet weight crop yield for Non-Leafy (kg/m**2)	7.000E-01	7.000E-01	---	YV(1)
R19B	Wet weight crop yield for Leafy (kg/m**2)	1.500E+00	1.500E+00	---	YV(2)
R19B	Wet weight crop yield for Fodder (kg/m**2)	1.100E+00	1.100E+00	---	YV(3)
R19B	Growing Season for Non-Leafy (years)	1.700E-01	1.700E-01	---	TE(1)
R19B	Growing Season for Leafy (years)	2.500E-01	2.500E-01	---	TE(2)
R19B	Growing Season for Fodder (years)	8.000E-02	8.000E-02	---	TE(3)
R19B	Translocation Factor for Non-Leafy	1.000E-01	1.000E-01	---	TIV(1)

Site-Specific Parameter Summary (continued)

Menu	Parameter	User Input	Default	Used by RESRAD (If different from user input)	Parameter Name
R19B	Translocation Factor for Leafy	1.000E+00	1.000E+00	---	TIV(2)
R19B	Translocation Factor for Fodder	1.000E+00	1.000E+00	---	TIV(3)
R19B	Dry Foliar Interception Fraction for Non-Leafy	2.500E-01	2.500E-01	---	RDRY(1)
R19B	Dry Foliar Interception Fraction for Leafy	2.500E-01	2.500E-01	---	RDRY(2)
R19B	Dry Foliar Interception Fraction for Fodder	2.500E-01	2.500E-01	---	RDRY(3)
R19B	Wet Foliar Interception Fraction for Non-Leafy	2.500E-01	2.500E-01	---	RWET(1)
R19B	Wet Foliar Interception Fraction for Leafy	2.500E-01	2.500E-01	---	RWET(2)
R19B	Wet Foliar Interception Fraction for Fodder	2.500E-01	2.500E-01	---	RWET(3)
R19B	Weathering Removal Constant for Vegetation	2.000E+01	2.000E+01	---	WLAM
C14	C-12 concentration in water (g/cm**3)	not used	2.000E-05	---	C12WTR
C14	C-12 concentration in contaminated soil (g/g)	not used	3.000E-02	---	C12CZ
C14	Fraction of vegetation carbon from soil	not used	2.000E-02	---	CSOIL
C14	Fraction of vegetation carbon from air	not used	9.800E-01	---	CAIR
C14	C-14 evasion layer thickness in soil (m)	not used	3.000E-01	---	DMC
C14	C-14 evasion flux rate from soil (1/sec)	not used	7.000E-07	---	EVSN
C14	C-12 evasion flux rate from soil (1/sec)	not used	1.000E-10	---	REVSN
C14	Fraction of grain in beef cattle feed	not used	8.000E-01	---	AVFG4
C14	Fraction of grain in milk cow feed	not used	2.000E-01	---	AVFG5
STOR	Storage times of contaminated foodstuffs (days):				
STOR	Fruits, non-leafy vegetables, and grain	1.400E+01	1.400E+01	---	STOR_T(1)
STOR	Leafy vegetables	1.000E+00	1.000E+00	---	STOR_T(2)
STOR	Milk	1.000E+00	1.000E+00	---	STOR_T(3)
STOR	Meat and poultry	2.000E+01	2.000E+01	---	STOR_T(4)
STOR	Fish	7.000E+00	7.000E+00	---	STOR_T(5)
STOR	Crustacea and mollusks	7.000E+00	7.000E+00	---	STOR_T(6)
STOR	Well water	1.000E+00	1.000E+00	---	STOR_T(7)
STOR	Surface water	1.000E+00	1.000E+00	---	STOR_T(8)
STOR	Livestock fodder	4.500E+01	4.500E+01	---	STOR_T(9)
R021	Thickness of building foundation (m)	not used	1.500E-01	---	FLOOR
R021	Bulk density of building foundation (g/cm**3)	not used	2.400E+00	---	DENSFL
R021	Total porosity of the cover material	not used	4.000E-01	---	TPCV
R021	Total porosity of the building foundation	not used	1.000E-01	---	TPFL
R021	Volumetric water content of the cover material	not used	5.000E-02	---	PH2OCV
R021	Volumetric water content of the foundation	not used	3.000E-02	---	PH2OFL
R021	Diffusion coefficient for radon gas (m/sec):				
R021	in cover material	not used	2.000E-06	---	DIFCV
R021	in foundation material	not used	3.000E-07	---	DIFFL
R021	in contaminated zone soil	not used	2.000E-06	---	DIFCZ
R021	Radon vertical dimension of mixing (m)	not used	2.000E+00	---	HMX
R021	Average building air exchange rate (1/hr)	not used	5.000E-01	---	REXG
R021	Height of the building (room) (m)	not used	2.500E+00	---	HRM
R021	Building interior area factor	not used	0.000E+00	---	FAI
R021	Building depth below ground surface (m)	not used	-1.000E+00	---	DMFL
R021	Emanating power of Rn-222 gas	not used	2.500E-01	---	EMANA(1)
R021	Emanating power of Rn-220 gas	not used	1.500E-01	---	EMANA(2)

Summary of Pathway Selections

Pathway	User Selection
1 -- external gamma	active
2 -- inhalation (w/o radon)	active
3 -- plant ingestion	active
4 -- meat ingestion	active
5 -- milk ingestion	active
6 -- aquatic foods	active
7 -- drinking water	active
8 -- soil ingestion	active
9 -- radon	suppressed
Find peak pathway doses	suppressed

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 10:01 Page 8
Summary : CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Contaminated Zone Dimensions	Initial Soil Concentrations, pCi/g
Area: 2430.00 square meters	H-3 6.900E+00
Thickness: 15.24 meters	
Cover Depth: 1.50 meters	

Total Dose TDOSE(t), mrem/yr

Basic Radiation Dose Limit = 25 mrem/yr

Total Mixture Sum M(t) = Fraction of Basic Dose Limit Received at Time (t)

t (years):	0.000E+00	1.000E+00	1.000E+01	1.000E+02
TDOSE(t):	1.053E+00	9.059E-01	2.329E-01	2.943E-07
M(t):	4.211E-02	3.624E-02	9.318E-03	1.177E-08

Maximum TDOSE(t): 1.053E+00 mrem/yr at t = 0.000E+00 years

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 10:01 Page 9
 Summary : CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
 As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

Radio-	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
 As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years

Water Dependent Pathways

Radio-	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
Nuclide	mrem/yr	fract.	mrem/yr	fract.										
H-3	9.141E-01	0.8683	4.194E-05	0.0000	0.000E+00	0.0000	1.174E-01	0.1115	5.776E-03	0.0055	1.545E-02	0.0147	1.053E+00	1.0000
Total	9.141E-01	0.8683	4.194E-05	0.0000	0.000E+00	0.0000	1.174E-01	0.1115	5.776E-03	0.0055	1.545E-02	0.0147	1.053E+00	1.0000

*Sum of all water independent and dependent pathways.

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 10:01 Page 10
 Summary : CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
 As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

Water Independent Pathways (Inhalation excludes radon)

Radio-	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
 As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years

Water Dependent Pathways

Radio-	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
Nuclide	mrem/yr	fract.	mrem/yr	fract.										
H-3	7.863E-01	0.8679	3.613E-05	0.0000	0.000E+00	0.0000	1.013E-01	0.1118	5.013E-03	0.0055	1.331E-02	0.0147	9.059E-01	1.0000
Total	7.863E-01	0.8679	3.613E-05	0.0000	0.000E+00	0.0000	1.013E-01	0.1118	5.013E-03	0.0055	1.331E-02	0.0147	9.059E-01	1.0000

*Sum of all water independent and dependent pathways.

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 10:01 Page 11
 Summary : CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
 As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

Radio-	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
 As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years

Water Dependent Pathways

Radio-	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
Nuclide	mrem/yr	fract.	mrem/yr	fract.										
H-3	2.022E-01	0.8679	9.290E-06	0.0000	0.000E+00	0.0000	2.604E-02	0.1118	1.289E-03	0.0055	3.423E-03	0.0147	2.329E-01	1.0000
Total	2.022E-01	0.8679	9.290E-06	0.0000	0.000E+00	0.0000	2.604E-02	0.1118	1.289E-03	0.0055	3.423E-03	0.0147	2.329E-01	1.0000

*Sum of all water independent and dependent pathways.

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

Radio-	Ground		Inhalation		Radon		Plant		Meat		Milk		Soil	
Nuclide	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.	mrem/yr	fract.
H-3	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000
Total	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000	0.000E+00	0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p)
As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Dependent Pathways

Radio-	Water		Fish		Radon		Plant		Meat		Milk		All Pathways*	
Nuclide	mrem/yr	fract.	mrem/yr	fract.										
H-3	2.554E-07	0.8679	1.174E-11	0.0000	0.000E+00	0.0000	3.290E-08	0.1118	1.629E-09	0.0055	4.324E-09	0.0147	2.943E-07	1.0000
Total	2.554E-07	0.8679	1.174E-11	0.0000	0.000E+00	0.0000	3.290E-08	0.1118	1.629E-09	0.0055	4.324E-09	0.0147	2.943E-07	1.0000

*Sum of all water independent and dependent pathways.

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 10:01 Page 13
Summary : CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios Summed Over All Pathways

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,t) (mrem/yr)/(pCi/g)			
(i)	(j)	Fraction*	t = 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	H-3	1.000E+00	1.526E-01	1.313E-01	3.376E-02	4.265E-08

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Single Radionuclide Soil Guidelines G(i,t) in pCi/g

Basic Radiation Dose Limit = 25 mrem/yr

Nuclide				
(i)	t = 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	1.639E+02	1.904E+02	7.405E+02	5.861E+08

Summed Dose/Source Ratios DSR(i,t) in (mrem/yr)/(pCi/g)

and Single Radionuclide Soil Guidelines G(i,t) in pCi/g

at tmin = time of minimum single radionuclide soil guideline

and at tmax = time of maximum total dose = 0.000E+00 years

Nuclide	Initial	tmin	DSR(i,tmin)	G(i,tmin)	DSR(i,tmax)	G(i,tmax)
(i)	pCi/g	(years)		(pCi/g)		(pCi/g)
H-3	6.900E+00	0.000E+00	1.526E-01	1.639E+02	1.526E-01	1.639E+02

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 10:01 Page 14
Summary : CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Individual Nuclide Dose Summed Over All Pathways
Parent Nuclide and Branch Fraction Indicated

Nuclide	Parent	BRF(i)	DOSE(j,t), mrem/yr			
(j)	(i)		t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	H-3	1.000E+00	1.053E+00	9.059E-01	2.329E-01	2.943E-07

BRF(i) is the branch fraction of the parent nuclide.

Individual Nuclide Soil Concentration
Parent Nuclide and Branch Fraction Indicated

Nuclide	Parent	BRF(i)	S(j,t), pCi/g			
(j)	(i)		t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	H-3	1.000E+00	6.900E+00	5.933E+00	1.525E+00	1.921E-06

BRF(i) is the branch fraction of the parent nuclide.

APPENDIX F

RESIDENTIAL FAMILY-FARM RESRAD DETAILED REPORT

Table of Contents

Part II: Source Terms, Factors, and Parameters for Individual Pathways

Source Factors for Ingrowth and Decay

Radioactivity Only	3
Combined Radioactivity and Leaching	3

Ground Pathway

Source Term Parameters	4
Time Dependence of Source Geometry	4
Occupancy, Cover/Depth, and Area Factors	5
Dose Conversion and Environmental Transport Factors ..	5
Dose/Source Ratios	5

Inhalation Pathway (radon excluded)

Dose/Source Ratios	6
Pathway Factors	6
Dose Conversion and Environmental Transport Factors ..	6

Groundwater and Surface Water Pathway Segments

Transport Time Parameters for Unsaturated Zone Strata	7
Dilution Factor and Rise Time Parameters for Nondispersion (ND) Model	8
Primary Parameters Used to Calculate Ratios	8
Water/Soil Concentration Ratios	9

Table of Contents (cont.)

Part II: Source Terms, Factors, and Parameters for Individual Pathways

Food Pathways

Storage Times for Contaminated Foodstuffs	10
Storage Time Ingrowth and Decay Factors	10
Storage Correction Factors	
Drinking Water	11
Irrigation Water	11
Livestock Water	12
Plants	12
Livestock Fodder	13
Meat and Milk	13
Fish and Crustacea	14
Area and Depth Factors	15
Dose Conversion and Environmental Transport Factors	
Plant	17
Meat	18
Milk	19
Fish	20
Drinking Water	20
Dose/Source Ratios	
Plant	21
Plant Total	22
Meat	23
Meat Total	24
Milk	25
Milk Total	26
Fish	27
Drinking Water	28
Concentration Ratios	
Plant/Air and Plant/Water	29
Plant/Soil	29
Meat/Fodder, Fodder/Air, Fodder/Water	31
Fodder/Soil	32
Meat/Soil	33
Milk/Soil	34
Soil Ingestion Pathway	
Dose/Source Ratios.....	35
Dose Conversion and Environmental Transport Factors .	35

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 3
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Source Factors for Ingrowth and Decay

Radioactivity Factors Only

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	$ID(j,t) = CUMBFR(j)*S1(j,t)/S1(i,0)$			
(i)	(j)		Fraction*	t =	0.000E+00 1.000E+00 1.000E+01 1.000E+02	
H-3	H-3	1.000E+00	1.000E+00	9.454E-01	5.705E-01	3.652E-03

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: $CUMBFR(j) = BRF(1)*BRF(2)* \dots BRF(j)$.

Source Factors for Ingrowth and Decay

Combined Radioactivity and Leaching Factors

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	$SF(j,t) = BRF(i)*S1(j,t)/S1(i,0)$			
(i)	(j)		Fraction*	t =	0.000E+00 1.000E+00 1.000E+01 1.000E+02	
H-3	H-3	1.000E+00	1.000E+00	8.599E-01	2.210E-01	2.784E-07

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: $CUMBFR(j) = BRF(1)*BRF(2)* \dots BRF(j)$.
The effect of volatilization was also considered when computing the source factors for H-3 and C-14.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 4
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Parameters Used for Calculating Cover Depth and Contaminated Zone Thicknesses

Cover Erosion rate (vcv): 0.001000 m/yr
Contaminated Zone Erosion rate (vcz): 0.001000 m/yr
Water Table Drop rate (vwt): 0.001000 m/yr
Precipitation rate (Pr): 0.800000 m/yr
Cover Removal Time (Tc): 1.500E+03 yr
Overhead irrigation rate (Irr): 0.200 m/yr Runoff coefficient (Cr): 0.200
Evapotranspiration coeff. (Ce): 0.500 Infiltration rate (In): 0.420 m/yr
Bulk soil density (rhob): 1.760 g/cm**3 Effective porosity (pe): 0.200

Radio- nuclide	Distribution Coefficient	Leaching Ratio
(i)	Kd(i),cm**3/g	q(i)
H-3	0.000000E+00	1.000E+00

Time Dependence of Source Geometry

Time Dependence of Cover Depth [Cd(i,t)]

Nuclide	Cd(i,t) (meters)			
(i)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	1.5000E+00	1.4990E+00	1.4900E+00	1.4000E+00

Time Dependence of Contaminated Zone Thicknesses [T(i,t)]

Nuclide	T(i,t) (meters)			
(i)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	1.5240E+01	1.5240E+01	1.5240E+01	1.5240E+01

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 5
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Occupancy, Cover/Depth, and Area Factors for Ground Pathway

Occupancy Factor (FO1): 0.600
Area (A): 2430. sq. meters
Initial cover depth (Cd): 1.500 meters
Initial contaminated zone thickness (T): 15.240 meters

Time Dependence of Cover/Depth Factor [FCTR_COV_DEPTH(i,t)]

Nuclide	FCTR_COV_DEPTH(i,t) (dimensionless)			
(i)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
_____	_____	_____	_____	_____
H-3	1.000E+00	1.000E+00	1.000E+00	1.000E+00
_____	_____	_____	_____	_____

Time Dependence of Area Factor [FCTR_AREA(i,t)]

Nuclide	FCTR_AREA(i,t) (dimensionless)			
(i)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
_____	_____	_____	_____	_____
H-3	1.000E+00	1.000E+00	1.000E+00	1.000E+00
_____	_____	_____	_____	_____

Dose Conversion and Environmental Transport Factors for the Ground Pathway (p=1)

Parent	Product	DCF(j,1)*	ETF(j,1,t) (dimensionless)			
(i)	(j)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02	
_____	_____	_____	_____	_____	_____	
H-3	H-3	0.000E+00	6.000E-01	6.000E-01	6.000E-01	6.000E-01
_____	_____	_____	_____	_____	_____	_____

* - The dose conversion factor units are (mrem/yr)/(pCi/g) at infinite depth and area.

Dose/Source Ratios for External Radiation from the Ground (p=1)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,1,t) (mrem/yr)/(pCi/g)			
(i)	(j)	Fraction*	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
_____	_____	_____	_____	_____	_____	_____
H-3	H-3	1.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
_____	_____	_____	_____	_____	_____	_____

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBDF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 6
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Inhalation Pathway, Excluding Radon (p=2)
Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,2,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction*	t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Pathway Factors for the Inhalation Pathway (radon excluded)

Area (A):	2.4300E+03 m**2	Occupancy Factor (FO2):	4.5000E-01
Area Factor (FA2):	1.4630E-01	Annual Air Intake (F12):	8.4000E+03 m**3/yr
Cover Depth [Cd(0)]:	1.5000E+00 m	Mass Loading (ASR2):	2.0000E-04 g/m**3
Contaminated Zone Thickness [T(0)]:	1.5240E+01 m	FA2 * FO2 * F12 * ASR2:	1.1060E-01 g/yr

Nuclide	Depth Factor [FD(i,2,t)] (dimensionless)
(i)	t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

Dose Conversion and Environmental Transport Factors for the Inhalation Pathway, Excluding Radon (p=2)

Parent	Product	DCF(j,2)*	ETF(j,2,t) (g/yr)
(i)	(j)	t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02	
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

RESRAD, Version 5.82 TH Limit = 0.5 year 10/26/98 11:44 Page 7
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Transport Time Parameters for Unsaturated Zone Stratum No. 1

Stratum thickness [h(1)]: 1.200000 m
Bulk soil material density [rhob(1)]: 1.760000 g/cm**3
Effective porosity [peuz(1)]: 0.200000
Hydraulic conductivity [Khuz(1)]: 0.950000 m/yr
Total porosity [ptuz(1)]: 0.300000
Soil specific b parameter [buz(1)]: 11.400000
Saturation ratio [sruz(1)]: 0.968859

Radio- nuclide	Distribution Coefficient	Retardation Factor	Transport Time
(i)	Kduz(i,1), cm**3/g	Rduz(i,1)	Dtuz(i,1), yr
_____	_____	_____	_____
H-3	0.0000E+00	1.0000E+00	5.5363E-01
_____	_____	_____	_____

Transport Time Parameters for Unsaturated Zone Stratum No. 2

Stratum thickness [h(2)]: 18.000000 m
Bulk soil material density [rhob(2)]: 1.500000 g/cm**3
Effective porosity [peuz(2)]: 0.200000
Hydraulic conductivity [Khuz(2)]: 50.000000 m/yr
Total porosity [ptuz(2)]: 0.400000
Soil specific b parameter [buz(2)]: 7.750000
Saturation ratio [sruz(2)]: 0.772323

Radio- nuclide	Distribution Coefficient	Retardation Factor	Transport Time
(i)	Kduz(i,2), cm**3/g	Rduz(i,2)	Dtuz(i,2), yr
_____	_____	_____	_____
H-3	0.0000E+00	1.0000E+00	6.6199E+00
_____	_____	_____	_____

Transport Time Parameters for Unsaturated Zone created by the Falling Water Table

Water table drop rate [vwt]: 0.001000 m/yr
Bulk soil material density [rhobaq]: 1.500000 g/cm**3
Effective porosity [peaq]: 0.200000
Hydraulic conductivity [Khaq]: 950.000000 m/yr
Total porosity [ptaq]: 0.300000
Soil specific b parameter [baq]: 11.400000
Saturation ratio [sruaq]: 0.741279

Radio- nuclide	Distribution Coefficient	Retardation Factor	Minimum Transport Time
(i)	Kdaq(i), cm**3/g	Rduaq(i)	Dtuaq(i), yr
_____	_____	_____	_____
H-3	0.0000E+00	1.0000E+00	2.5331E-03
_____	_____	_____	_____

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 8
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dilution Factor and Rise Time Parameters for Nondispersion (ND) Model

Aquifer contamination depth at well (z): 1.63579E+00 m
Depth of water intake below water table (dw): 5.00000E+00 m
Infiltration rate (In): 4.20000E-01 m/yr
Aquifer water flow rate (Vwfr): 1.90000E+01 m/yr
Hydraulic gradient (J): 2.00000E-02
Hydraulic conductivity of aquifer (Kszh): 9.50000E+02 m/yr
Contaminated zone extent parallel to gradient (l): 7.40000E+01 m
Distance below contaminated zone to water table (h): 0.19200E+02 m
Initial thickness of uncontaminated cover (Cd): 0.15000E+01 m
Initial thickness of contaminated zone (T): 0.15240E+02 m
Effective porosity of saturated zone (pesz): 0.20000E+00

Radio-nuclide (i)	Dilution Factor f(i)	Retardation Factor Rdsz(i)	Horizontal Transport Time Onsite Tauh(i), yr	Rise Time dt(i), yr	Decay Time Parameter 1/lambda(i), yr
H-3	3.272E-01	1.000E+00	7.789E-01	7.789E-01	1.782E+01

Primary Parameters Used for Calculating Water/Soil
Concentration Ratios for Groundwater Pathway Segment

Model used: Nondispersion (ND)
Bulk soil density in contaminated zone (rhob): 1.760 g/cm**3

Radio-nuclide (i)	Dilution Factor f(i)	Retardation Factor Rdcz(i)	Breakthrough Time Chain year	Rise Time dt(i), yr
H-3	3.272E-01	1.000E+00	7.176E+00	7.176E+00

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 9
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Water/Soil Concentration Ratios [WSR(j,1,t)] for Groundwater Pathway Segment

Parent	Product	Branch	WSR(j,1,t) in (pCi/L)/(pCi/g)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	4.059E+03 3.490E+03 8.975E+02 1.134E-03

Water/Soil Concentration Ratios [WSR(j,2,t)] for Surface Water Pathway Segment

Watershed Area (Aw) = 1.0000E+06 m**2
Contaminated Zone Area (A) = 2.4300E+03 m**2
Dilution Factor (f') = 2.4300E-03
Soil Density (rhob) = 1.7600E+00 kg/m**3

Parent	Product	Branch	WSR(j,2,t) in (pCi/L)/(pCi/g)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	3.015E+01 2.593E+01 6.666E+00 8.422E-06

Storage Times For Contaminated Foodstuffs

k	Food Item	STOR_T(k), days
1	non-leafy plants	14
2	leafy plants	1
3	milk	1
4	meat	20
5	fish	7
6	crustacea	7
7	well water	1
8	surface water	1
9	livestock fodder	45

Storage Time Ingrowth and Decay Factors

Storage Time for k'th Foodstuff: $t = \text{STOR_T}(k)$, days

Parent	Product	Branch	STOR_ID(i,j,t) = CONCE(i,j,t)/CONCE(i,i,0)
(i)	(j)	Fraction	$t = 1.400E+01 \quad 1.000E+00 \quad 1.000E+00 \quad 2.000E+01 \quad 7.000E+00 \quad 7.000E+00 \quad 1.000E+00 \quad 1.000E+00 \quad 4.500E+01$
H-3	H-3	1.000E+00	9.979E-01 9.998E-01 9.998E-01 9.969E-01 9.989E-01 9.989E-01 9.998E-01 9.998E-01 9.931E-01

$\text{CONCE}(i,j,t)/\text{CONCE}(i,i,0)$ is the concentration ratio of Product(j) at time t to Parent(i) at start of storage time.

RESRAD, Version 5.82 T^4 Limit = 0.5 year 10/26/98 11:44 Page 11
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Storage Time Correction Factors
Drinking Water from Well and/or Surface
Harvest Time = $t - 2.74E-03$ yr; Consumption Time = t yr

Parent	Product	Branch	CFWW(j,t,1) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.998E-01 9.998E-01 9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors
Irrigation Water for Nonleafy Plants from Well and/or Surface
Harvest Time = $t - 4.11E-02$ yr; Consumption Time = $t - 3.83E-02$ yr

Parent	Product	Branch	CFWW(j,t,2) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.998E-01 9.998E-01 9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors
Irrigation Water for Leafy Plants from Well and/or Surface
Harvest Time = $t - 5.48E-03$ yr; Consumption Time = $t - 2.74E-03$ yr

Parent	Product	Branch	CFWW(j,t,3) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.998E-01 9.998E-01 9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors
Irrigation Water for Livestock (Milk) Fodder from Well and/or Surface
Harvest Time = $t - 1.29E-01$ yr; Consumption Time = $t - 1.26E-01$ yr

Parent	Product	Branch	CFWW(j,t,5) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.998E-01 9.998E-01 9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 12
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Storage Time Correction Factors

Irrigation Water for Livestock (Meat) Fodder from Well and/or Surface

Harvest Time = $t - 1.81E-01$ yr; Consumption Time = $t - 1.78E-01$ yr

Parent	Product	Branch	CFWW(j,t,7) #			
(i)	(j)	Fraction*	$t = 0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	1.000E+00	9.998E-01	9.998E-01	9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).

#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors

Livestock (Milk) Water from Well and/or Surface

Harvest Time = $t - 5.48E-03$ yr; Consumption Time = $t - 2.74E-03$ yr

Parent	Product	Branch	CFWW(j,t,4) #			
(i)	(j)	Fraction*	$t = 0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	1.000E+00	9.998E-01	9.998E-01	9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).

#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors

Livestock (Meat) Water from Well and/or Surface

Harvest Time = $t - 5.75E-02$ yr; Consumption Time = $t - 5.48E-02$ yr

Parent	Product	Branch	CFWW(j,t,6) #			
(i)	(j)	Fraction*	$t = 0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	1.000E+00	9.998E-01	9.998E-01	9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).

#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors for Nonleafy Plants

Harvest Time = $t - 3.83E-02$ yr; Consumption Time = t yr

Parent	Product	Branch	CF3(j,1,t) #			
(i)	(j)	Fraction*	$t = 0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	1.000E+00	9.979E-01	9.979E-01	9.979E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).

#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

RESRAD, Version 5.82 TH Limit = 0.5 year 10/26/98 11:44 Page 13
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Storage Time Correction Factors for Leafy Plants
Harvest Time = $t - 2.74E-03$ yr; Consumption Time = t yr

Parent	Product	Branch	CF3(j,2,t) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.998E-01 9.998E-01 9.998E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors for Livestock (Meat) Fodder
Harvest Time = $t - 1.78E-01$ yr; Consumption Time = $t - 5.48E-02$ yr

Parent	Product	Branch	CFLF(j,1,t) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.931E-01 9.931E-01 9.931E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors for Livestock (Milk) Fodder
Harvest Time = $t - 1.26E-01$ yr; Consumption Time = $t - 2.74E-03$ yr

Parent	Product	Branch	CFLF(j,2,t) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.931E-01 9.931E-01 9.931E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors for Meat
Harvest Time = $t - 5.48E-02$ yr; Consumption Time = t yr

Parent	Product	Branch	CF45(j,1,t) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.969E-01 9.969E-01 9.969E-01

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 14
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Storage Time Correction Factors for Milk

Harvest Time = $t - 2.74E-03$ yr; Consumption Time = t yr

Parent	Product	Branch	CF45(j,2,t) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.998E-01 9.998E-01 9.998E-01

*Branch Fraction is the cumulative factor for the j 't principal radionuclide daughter: $CUMBRF(j) = BRF(1)*BRF(2)* \dots BRF(j)$.

#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

Storage Time Correction Factors for Fish & Crustacea

Harvest Time = $t - 1.92E-02$ yr; Consumption Time = t yr

Parent	Product	Branch	CFF(j,1,t) #
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
H-3	H-3	1.000E+00	1.000E+00 9.989E-01 9.989E-01 9.989E-01

*Branch Fraction is the cumulative factor for the j 't principal radionuclide daughter: $CUMBRF(j) = BRF(1)*BRF(2)* \dots BRF(j)$.

#Correction factor = (concentration in media at consumption time)/(concentration at harvest time).

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 15
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Area and Depth Factors for Plant (p=3), Meat (p=4), and Milk (p=5) Pathways
Root Uptake from Contaminated Soil (q=1)

Area Factor for Plant Foods [FA(3)] = 0.50

Nuclide	Depth Factor FD(i,1,t) (dimensionless)			
(i)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00

Area and Depth Factors for Plant (p=3), Meat (p=4), and Milk (p=5) Pathways
Foliar Uptake from Contaminated Dust (q=2)

Area Factor for Plant Foods [FA(3)] = 0.50

Nuclide	Depth Factor FD(i,2,t) (dimensionless)			
(i)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00

Area and Depth Factors for Plant (p=3), Meat (p=4), and Milk (p=5) Pathways
Ditch Irrigation (q=3)

Area Factor for Plant Foods [FA(3)] = 0.50

Nuclide	Depth Factor FD(i,3,t) (dimensionless)			
(i)	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02
H-3	1.0000E+00	1.0000E+00	1.0000E+00	1.0000E+00

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 11:44 Page 16
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Area and Depth Factors for Plant (p=3), Meat (p=4), and Milk (p=5) Pathways
Overhead Irrigation (q=4)

Area Factor for Plant Foods [FA(3)] = 0.50

The Depth Factor Value

FD(i,p,q,t) = 1.0000E+00

is applicable for all radionuclides(i) and times(t).

Area and Depth Factors for Meat (p=4) and Milk (p=5) Pathways
Transfer from Livestock Water (q=5) and Soil (q=6) Intake

Area Factor for Meat and Milk [FA(p),p=4,5] = 0.12

The livestock water subpathway (q=5) and livestock soil intake subpathway (q=6)
occur only for the meat (p=4) and milk (p=5) pathways.

Area and Depth Factors for Meat (p=4) and Milk (p=5) Pathways
Transfer from Livestock Water (q=5) and Soil (q=6) Intake

Area Factor for Meat and Milk [FA(p),p=4,5] = 0.12

The livestock water subpathway (q=5) and livestock soil intake subpathway (q=6)
occur only for the meat (p=4) and milk (p=5) pathways.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 17
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose Conversion and Environmental Transport Factors for the Plant Food Pathway (p=3)
Subpathway: Root Uptake from Contaminated Soil (q=1)

Parent	Product	DCF(j,3)*	ETF(j,3,1,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Plant Food Pathway (p=3)
Subpathway: Foliar Uptake from Contaminated Dust (q=2)

Parent	Product	DCF(j,3)*	ETF(j,3,2,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Plant Food Pathway (p=3)
Subpathway: Ditch Irrigation (q=3)

Parent	Product	DCF(j,3)*	ETF(j,3,3,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	2.658E+05 2.293E+05 5.897E+04 7.450E-02

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Plant Food Pathway (p=3)
Subpathway: Overhead Irrigation (q=4)

Parent	Product	DCF(j,3)*	ETF(j,3,4,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

RESRAD, Version 5.82 Th Limit = 0.5 year 10/26/98 11:44 Page 18
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose Conversion and Environmental Transport Factors for the Meat Pathway (p=4)
Subpathway: Fodder Root Uptake from Contaminated Soil (q=1)

Parent	Product	DCF(j,4)*	ETF(j,4,1,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Meat Pathway (p=4)
Subpathway: Fodder Foliar Uptake from Contaminated Dust (q=2)

Parent	Product	DCF(j,4)*	ETF(j,4,2,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Meat Pathway (p=4)
Subpathway: Ditch Irrigation (q=3)

Parent	Product	DCF(j,4)*	ETF(j,4,3,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	4.159E+03 3.639E+03 9.356E+02 1.182E-03

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Meat Pathway (p=4)
Subpathway: Overhead Irrigation (q=4)

Parent	Product	DCF(j,4)*	ETF(j,4,4,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Meat Pathway (p=4)
Subpathway: Livestock Water (q=5)

Parent	Product	DCF(j,4)*	ETF(j,4,5,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	8.921E+03 7.713E+03 1.983E+03 2.506E-03

* - The dose conversion factor units are mrem/pCi.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 19
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose Conversion and Environmental Transport Factors for the Milk Pathway (p=5)
Subpathway: Fodder Root Uptake from Contaminated Soil (q=1)

Parent	Product	DCF(j,5)*	ETF(j,5,1,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Milk Pathway (p=5)
Subpathway: Fodder Foliar Uptake from Contaminated Dust (q=2)

Parent	Product	DCF(j,5)*	ETF(j,5,2,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Milk Pathway (p=5)
Subpathway: Ditch Irrigation (q=3)

Parent	Product	DCF(j,5)*	ETF(j,5,3,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	3.689E+03 3.211E+03 8.257E+02 1.043E-03

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Milk Pathway (p=5)
Subpathway: Overhead Irrigation (q=4)

Parent	Product	DCF(j,5)*	ETF(j,5,4,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Milk Pathway (p=5)
Subpathway: Livestock Water (q=5)

Parent	Product	DCF(j,5)*	ETF(j,5,5,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	3.130E+04 2.693E+04 6.925E+03 8.749E-03

* - The dose conversion factor units are mrem/pCi.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 20
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose Conversion and Environmental Transport Factors for the Fish Pathway (p=6)

Parent	Product	DCF(j,6)*	ETF(j,6,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	9.497E+01 8.181E+01 2.104E+01 2.658E-05

* - The dose conversion factor units are mrem/pCi.

Dose Conversion and Environmental Transport Factors for the Drinking Water Pathway (p=7)

Parent	Product	DCF(j,7)*	ETF(j,7,t) * SF(j,t) (g/yr)
(i)	(j)		t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	6.400E-08	2.070E+06 1.781E+06 4.578E+05 5.784E-01

* - The dose conversion factor units are mrem/pCi.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 21
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from Ingestion of Plant Foods (p=3)

Subpathway: Root Uptake from Contaminated Soil (q=1)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,3,1,t) (mrem/yr)/(pCi/g)	(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00			

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Plant Foods (p=3)

Subpathway: Foliar Uptake from Contaminated Dust (q=2)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,3,2,t) (mrem/yr)/(pCi/g)	(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00			

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Plant Foods (p=3)

Subpathway: Ditch Irrigation (q=3)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,3,3,t) (mrem/yr)/(pCi/g)	(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	1.701E-02 1.468E-02 3.774E-03 4.768E-09			

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Plant Foods (p=3)

Subpathway: Overhead Irrigation (q=4)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,3,4,t) (mrem/yr)/(pCi/g)	(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00			

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 22
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from Ingestion of Plant Foods (p=3)

Total for All Subpathways

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,3,t) (mrem/yr)/(pCi/g)				
(i)	(j)	Fraction*	t= 0.000E+00	1.000E+00	1.000E+01	1.000E+02	
H-3	H-3	1.000E+00	1.701E-02	1.468E-02	3.774E-03	4.768E-09	

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 11:44 Page 23
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from Ingestion of Meat (p=4)

Subpathway: Fodder Root Uptake from Contaminated Soil (q=1)
Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,4,1,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Meat (p=4)

Subpathway: Fodder Foliar Uptake from Contaminated Dust (q=2)
Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,4,2,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Meat (p=4)

Subpathway: Ditch Irrigation (q=3)
Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,4,3,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	2.662E-04 2.329E-04 5.988E-05 7.565E-11

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Meat (p=4)

Subpathway: Overhead Irrigation (q=4)
Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,4,4,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 24
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from Ingestion of Meat (p=4)

Subpathway: Livestock Water (q=5)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,4,5,t) (mrem/yr)/(pCi/g)				
(i)	(j)	Fraction*	t = 0.000E+00	1.000E+00	1.000E+01	1.000E+02	
H-3	H-3	1.000E+00	5.709E-04	4.937E-04	1.269E-04	1.604E-10	

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Meat (p=4)

Total for All Subpathways

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,4,t) (mrem/yr)/(pCi/g)				
(i)	(j)	Fraction*	t = 0.000E+00	1.000E+00	1.000E+01	1.000E+02	
H-3	H-3	1.000E+00	8.371E-04	7.265E-04	1.868E-04	2.360E-10	

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

RESRAD, Version 5.82 TM Limit = 0.5 year 10/26/98 11:44 Page 25
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from Ingestion of Milk (p=5)

Subpathway: Fodder Root Uptake from Contaminated Soil (q=1)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,5,1,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02	
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Milk (p=5)

Subpathway: Fodder Foliar Uptake from Contaminated Dust (q=2)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,5,2,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02	
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Milk (p=5)

Subpathway: Ditch Irrigation (q=3)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,5,3,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02	
H-3	H-3	1.000E+00	2.361E-04 2.055E-04 5.284E-05 6.676E-11

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Milk (p=5)

Subpathway: Overhead Irrigation (q=4)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,5,4,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02	
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life ≤ 0.5 yr) daughters.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 26
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from Ingestion of Milk (p=5)

Subpathway: Livestock Water (q=5)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,5,5,t) (mrem/yr)/(pCi/g)	(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	2.003E-03 1.724E-03 4.432E-04 5.599E-10			

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Dose/Source Ratios for Internal Radiation from Ingestion of Milk (p=5)

Total for All Subpathways

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,5,t) (mrem/yr)/(pCi/g)	(i)	(j)	Fraction* t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	2.239E-03 1.929E-03 4.960E-04 6.267E-10			

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 27
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from the Ingestion of Fish (p=6)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,6,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	6.078E-06 5.236E-06 1.346E-06 1.701E-12

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

RESRAD, Version 5.82 T_{1/2} Limit = 0.5 year 10/26/98 11:44 Page 28
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Internal Radiation from the Ingestion of Drinking Water (p=7)
Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,7,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction* t= 0.000E+00	1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	1.325E-01 1.140E-01 2.930E-02 3.702E-08

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Plant/Air and Plant/Water Concentration Ratios

Mass loading [ASR(3)]: 1.000E-04 g/m**3

Area Factor for Mass Loading [FA(2)]: 1.463E-01

Nuclide	FAR(i,3,2,1)	FAR(i,3,2,2)	FWR(i,3,3,1)	FWR(i,3,3,2)	FWR(i,3,4,1)	FWR(i,3,4,2)
(i)	m**3/g	m**3/g	L/g	L/g	L/g	L/g
H-3	5.4545E-02	2.6156E-01	7.2542E-04	1.0628E-03	0.0000E+00	0.0000E+00

FAR(i,p,q,k) is the plant/air concentration ratio for airborne contaminated dust, and FWR(i,p,q,k) is the plant/water concentration ratio. See groundwater displays for water/soil concentration ratios.

Plant/Soil Concentration Ratios, FSR(i,3,q,k,t)

Root Uptake (q=1) and Foliar Dust Deposition (q=2)
 Nonleafy (k=1) and/or Leafy (k=2) Vegetables

Nuclide(i)		Parent	Product	FSR(i,3,1,k)	FSR(i,3,2,1)	FSR(i,3,2,2)
H-3	H-3			4.8393E+00	7.9797E-07	3.8265E-06

Plant/Soil Concentration Ratio, FSR(j,3,q,k,t)

Ditch Irrigation (q=3)

Parent	Product	Branch	FSR(j,3,3,k,t)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	2.944E+00 2.547E+00 6.550E-01 8.275E-07

Plant/Soil Concentration Ratio, FSR(j,3,q,k,t)

Overhead Irrigation (q=4) and Nonleafy Vegetables (k=1)

Parent	Product	Branch	FSR(j,3,4,1,t) * SF(j,t)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

Plant/Soil Concentration Ratio, FSR(j,3,q,k,t)

Overhead Irrigation (q=4) and Leafy Vegetables (k=2)

Parent	Product	Branch	FSR(j,3,4,2,t) * SF(j,t)
(i)	(j)	Fraction*	t= 0.000E+00 1.000E+00 1.000E+01 1.000E+02

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 30
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Plant/Soil Concentration Ratio, $FSR(j,3,q,k,t)$
Overhead Irrigation ($q=4$) and Leafy Vegetables ($k=2$)

Parent	Product	Branch	$FSR(j,3,4,2,t) * SF(j,t)$
(i)	(j)	Fraction*	$t = 0.000E+00 \ 1.000E+00 \ 1.000E+01 \ 1.000E+02$
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

Meat/Fodder, Milk/Fodder, Fodder/Air and Fodder/Water Concentration Ratios

FI(4,q): 68.0 kg/day FI(5,q): 55.0 kg/day q=1,2,3,4
FI(4,q): 50.0 L/day FI(5,q): 160.0 L/day q=5
FI(4,q): 0.5 kg/day FI(5,q):

Nuclide (i)	FQR(i,4) d/kg	FQR(i,5) d/kg	FAR(i,3,2,3) m**3/g	FWR(i,3,3,3) L/g	FWR(i,3,4,3) L/g
H-3	5.7426E-03	4.3120E-03	2.8659E-01	3.4283E-04	0.0000E+00

FI(p,q) are the fodder (q=1,2,3,4), livestock water (q=5) and soil (q=6) intake rates; FQR(i,p) are the transfer coefficients from contaminated fodder of livestock water to meat (p=4) or milk (p=5). FAR(i,3,2,3) are the fodder/air concentration ratios, and FWR(i,3,3,3) and FWR(i,3,4,3) are the fodder/water concentration ratios for ditch and overhead irrigation, respectively.

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 . Page 32
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Fodder/Soil Concentration Ratios, $QSR(i,p,q,t)$, for Meat and Milk Pathways
Root Uptake ($q=1$) and Foliar Dust Deposition ($q=2$)

Nuclide(i)		Parent	Product	$QSR(i,p,1)$	$QSR(i,p,2)$
_____	_____	_____	_____	_____	_____
H-3	H-3			4.8393E+00	4.1927E-06
_____	_____	_____	_____	_____	_____

Fodder/Soil Concentration Ratio, $QSR(j,p,q,t)$, for Meat and Milk Pathways
Ditch Irrigation ($q=3$)

Parent	Product	Branch	$QSR(j,p,3,t) * SF(j,t)$
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
_____	_____	_____	_____
H-3	H-3	1.000E+00	1.392E+00 1.392E+00 1.230E+00 1.220E+00
_____	_____	_____	_____

Fodder/Soil Concentration Ratio, $QSR(j,p,q,t)$, for Meat and Milk Pathways
Overhead Irrigation ($q=4$)

Parent	Product	Branch	$QSR(j,p,4,t) * SF(j,t)$
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
_____	_____	_____	_____
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00
_____	_____	_____	_____

Fodder/Soil Concentration Ratio, $QSR(j,p,q,t)$, for Meat and Milk Pathways
Livestock Water ($q=5$)

Parent	Product	Branch	$QSR(j,p,5,t) * SF(j,t)$
(i)	(j)	Fraction*	$t = 0.000E+00 1.000E+00 1.000E+01 1.000E+02$
_____	_____	_____	_____
H-3	H-3	1.000E+00	4.059E+00 4.059E+00 3.520E+00 3.493E+00
_____	_____	_____	_____

Meat/Soil Concentration Ratios, $FSR(i,4,q,t)$
Root Uptake ($q=1$) and Foliar Dust Deposition ($q=2$)

Nuclide(i)			
Parent	Product	$FSR(i,4,1)$	$FSR(i,4,2)$
H-3	H-3	0.0000E+00	0.0000E+00

Meat/Soil Concentration Ratio, $FSR(j,4,q,t)$
Ditch Irrigation ($q=3$)

Parent	Product	Branch	$FSR(j,4,3,t) * SF(j,t)$			
(i)	(j)	Fraction*	$t = 0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	5.434E-01	4.768E-01	1.226E-01	1.549E-07

Meat/Soil Concentration Ratio, $FSR(j,4,q,t)$
Overhead Irrigation ($q=4$)

Parent	Product	Branch	$FSR(j,4,4,t) * SF(j,t)$			
(i)	(j)	Fraction*	$t = 0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Meat/Soil Concentration Ratio, $FSR(j,4,q,t)$
Livestock Water ($q=5$)

Parent	Product	Branch	$FSR(j,4,5,t) * SF(j,t)$			
(i)	(j)	Fraction*	$t = 0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	1.165E+00	1.011E+00	2.599E-01	3.284E-07

Milk/Soil Concentration Ratios, $FSR(i,5,q,t)$
Root Uptake ($q=1$) and Foliar Dust Deposition ($q=2$)

Nuclide(i)			
Parent	Product	$FSR(i,5,1)$	$FSR(i,5,2)$
H-3	H-3	0.0000E+00	0.0000E+00

Milk/Soil Concentration Ratio, $FSR(j,5,q,t)$
Ditch Irrigation ($q=3$)

Parent	Product	Branch	$FSR(j,5,3,t) * SF(j,t)$			
(i)	(j)	Fraction*	$t=0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	3.300E-01	2.873E-01	7.388E-02	9.334E-08

Milk/Soil Concentration Ratio, $FSR(j,5,q,t)$
Overhead Irrigation ($q=4$)

Parent	Product	Branch	$FSR(j,5,4,t) * SF(j,t)$			
(i)	(j)	Fraction*	$t=0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Milk/Soil Concentration Ratio, $FSR(j,5,q,t)$
Livestock Water ($q=5$)

Parent	Product	Branch	$FSR(j,5,5,t) * SF(j,t)$			
(i)	(j)	Fraction*	$t=0.000E+00$	$1.000E+00$	$1.000E+01$	$1.000E+02$
H-3	H-3	1.000E+00	2.800E+00	2.410E+00	6.196E-01	7.828E-07

RESRAD, Version 5.82 $T_{1/2}$ Limit = 0.5 year 10/26/98 11:44 Page 35
Detailed: CP-5 Residential Family-Farm Scenario File: CP5OSITE.RAD

Dose/Source Ratios for Soil Ingestion Pathway (p=8)

Parent and Progeny Principal Radionuclide Contributions Indicated

Parent	Product	Branch	DSR(j,8,t) (mrem/yr)/(pCi/g)
(i)	(j)	Fraction*	$t = 0.000E+00 \ 1.000E+00 \ 1.000E+01 \ 1.000E+02$
H-3	H-3	1.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00

*Branch Fraction is the cumulative factor for the j't principal radionuclide daughter: CUMBRF(j) = BRF(1)*BRF(2)* ... BRF(j).
The DSR includes contributions from associated (half-life \leq 0.5 yr) daughters.

Dose Conversion and Environmental Transport Factors for the Soil Ingestion Pathway (p=8)

Parent	Product	DCF(j,8)*	ETF(j,8,t) (g/yr)
(i)	(j)		$t = 0.000E+00 \ 1.000E+00 \ 1.000E+01 \ 1.000E+02$
H-3	H-3	6.400E-08	0.000E+00 0.000E+00 0.000E+00 0.000E+00

* - The dose conversion factor units are mrem/pCi.