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THE DYNAMICS OF VARIABLE-DENSITY TURBULENCE
by
Donald L. Sandoval

ABSTRACT

The dynamics of variable-density turbulent fluids are studied by direct numerical
simulation. The flow is incompressible so that acoustic waves are decoupled from the

problem, and implying that density is not a thermodynamic variable. Changes in
density occur due to molecular mixing. The velocity field is, in general, divergent. A
pseudo-spectral numerical technique is used to solve the equations of motion. Three-
dimensional simulations are performed using a grid size of 12832 grid points. Two
types of problems are studied: (1) the decay of isotropic, variable-density turbulence,
and (2) buoyancy-generated turbulence in a fluid with large density fluctuations (such
that the Boussinesq approximation is not valid).

In the case of isotropic, variable-density turbulence, the overall statistical decay
behavior, for the cases studied, is relatively unaffected by the presence of density
variations when the initial density and velocity fields are statistically independent.
The results for this case are in quantitative agreement with previous numerical and
laboratory results. In this case, the initial density field has a bimodal probability
density function (pdf) which evolves in time towards a Gaussian distribution. The
pdf of the density field is symmetric about its mean value throughout its evolution.

If the initial velocity and density fields are statistically dependent, however, the decay

process is significantly affected by the density fluctuations. For this case, the pdf of
the density becomes asymmetric about its mean value during the early stages of its
evolution. It is argued that these asymmetries in the pdf of the density field are due
to different entrainment rates, into the mixing region, that favor the high speed fluid.

For the case of buoyancy-generated turbulence, variable-density departures from
the Boussinesq approximation are studied. Also, Reynolds number effects are investi-
gated using initial density fields with moderately large initial density variations. An
important parameter that characterizes buoyancy driven flow is the initial value of

xxiii

-k N PYRRMEN 2 T ey ¢ N gy A e PO ol = o = o et iul



the ratio of the rms density fluctuations to the mean density. If this quantity is less
than approximately 0.1 than the resulting buoyancy-driven flow is within the Boussi-
nesq approximation. It is shown that the mean pressure gradient, which is constant
in the Boussinesq limit, varies with time and is a function of magnitude of the density

fluctuations and the acceleration. Vorticity dynamics for this flow are also studied.
The results of the buoyancy-generated turbulence are compared with variable-

density model predictions. Both a one-point (engineering) model and a two-point

(spectral) model are tested against the numerical data. Some deficiencies in these

variable-density models are discussed and modifications are suggested.
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Chapter 1
INTRODUCTION

1.1 Motivation

A large body of work exists on the topic of turbulence in constant-density fluids [38].
Theoretical, experimental and numerical methods have been used to gain an under-
standing of such flows. The study of turbulence with large density variations is still in
its infancy, however, and the understanding of such flows is far from complete. Many
industrial and engineering applications involve variable-density fluids. Most chemical
reactions, e.g., in engine combustion, involve the turbulent mixing of two or more flu-
ids of different densities. In nuclear reactors one can find fluids of different densities
(e.g., water and steam) that are mixing due to turbulence. Natural phenomenon in-
volving variable-density flows are quite diverse, ranging from turbulent mixing driven
by buoyant convection in the oceans, the atmosphere, and the Earth’s mantle, to
turbulence found on Jupiter or the turbulent mixing of gases from an exploding nova.
Turbulence affects the environment in many ways, from the natural phenomenon of
the turbulent mixing of plumes of smoke and ash rising from a volcano, to the man-
made phenomenon of the turbulent transport and mixing of pollutants from a power

plant into the atmosphere.

Because of the importance of turbulence mixing in industrial applications, a num-
ber of turbulence mixing models (with and without chemical reactions) have been
proposed for variable-density flows. One approach that describes the transport of
two fluids consists of the so-called multi-phase (field) models [41]. Stewart and Wen-
droff [83] give a good review of such models. In these models there are two or more
distinct fluids (or phases) separated by a discontinuous interface. Each fluid has a
smoothly varying composition with steep gradients of properties close to the interface
[29]. The continuum field equations of motion are employed for each fluid with ap-
propriate boundary conditions between the fluids. Kataoka [46] has developed local,



instantaneous field conservation equations for density, velocity, and energy that ac-
count for discontinuous changes at the interface between the two fluids. In his model,
if the interfacial force and energy discontinuity are neglected, the two-field model re-
duces to that of a single-fluid. From this two-field model, Kataoka and Serizawa. [47]
develop a transport equation for turbulent energy using averaging techniques (for a
discussion of averaging techniques see Appendix A). An attribute of two-field models
of this nature is that they do not take into account molecular mixing [83] across the
interface. The mixing that occurs is at a macroscopic level and obtained through
averaging procedures. The advantage, here, is that this approach can account for

de-mixing when the two fluids are set to an acceleration.

There is a great deal of interest in modeling variable-density turbulent mixing,
which accounts for molecular mixing (e.g., in Britain, France, Russia and the United
States). Therefore, several single-field turbulence transport models for variable-
density compressible flow have been developed (see, e.g., Andronov et al. (1982)
[1], Besnard et al. (1987) [8], Cranfill (1992) [27]). These engineering models (one-
point statistical models) typically include the transport of the turbulent kinetic energy
and the turbulent energy dissipation rate (i-e., k-¢ models). The model presented by
Besnard, Harlow, Rauenzhan and Zemach (1992) [10] (herein referred to as the BHR
model) is a one-point model that describes variable-density turbulent flows. Trans-
port equations for the Reynolds stress tensor and the turbulent energy dissipation
rate are derived, as well as transport equations for the density-velocity correlation and
the density-density correlation. This model was developed employing techniques and
concepts from incompressible, constant-density turbulence modeling and incorporates

ideas from two-phase flow models.

In order to aid in the closure of such models, multi-point models are also de-
veloped. For example, two-point models for constant-density incompressible turbu-
lence are of interest because they account for the spectral character of turbulence
and predict nonequilibrum flows more accurately [33]. Clark and Spitz (1994) [23]
present a two-point model (herein referred as the CS model) for variable-density tur-
bulence. Their derivation is based on the two-point generalization of the Reynolds
stress tensor, and the derived equations are Fourier transformed with respect to the
separation distance between the two points. Transport equations are derived for the

generalized Reynolds stress tensor, the fluctuating density-velocity-specific volume



correlation, and the density-specific volume correlation. These models contain many

terms, ad-hoc assumptions and unknown model constants that need to be determined

by comparison with experimental and numerical data.

1.2 Previous work

Knowledge of constant-density turbulence has increased throughout the years due to
much theoretical, numerical and experimental research [38]. The extension of this
work to include variable-density effects is experimentally (and theoretically) more
difficult. This is partially due to the fundamental problems associated with how
the density and velocity fields are dynamically coupled. Some research has been
carried out to address this issue. The experiment of Brown and Roshko [15] was
one of the first designed to isolate the importance of the density fluctuations on
turbulent flow. They were interested in examining the effects of the density ratio
between two streams of different gases on the growth of a plane mixing layer. Their
interest in this problem was due to observations in a supersonic jet that, as the Mach
number increased, the growth of the mixing layer between the jet and the external gas
decreased. This inhibition was originally attributed to the increasing density ratio
between the jet and the external gas. If this was the case, then the trends seen in
the growth rate of a subsonic mixing layer would be similar to that of a supersonic
layer for the same density ratio. To isolate the question of whether the growth rate
suppression was due to increasing density rations or compressibility effects, Brown
and Roshko performed experiments of a plane turbulent mixing layer between two
different gases. The Mach number of both fluids was low enough that the flow was
effectively incompressible. They controlled the walls of their experimental apparatus
to obtain near zero pressure gradients, and examined density ratios of 1/7, 1 and 7.
Their results showed that, even though there was an effect of a change in the density
ratio on the growth rate of the mixing layer in this subsonic flow, these changes
were small when compared to previous supersonic results. Using Reynolds-averaged
equations for incompressible and for supersonic flow, Brown and Roshko showed that
the pressure-velocity correlations accounted for the observed differences in growth
rates, and not density ratio changes. Spark shadow photographs of the flow also
showed that, for all ratios of density difference between the two streams, the mixing

layer is dominated by large, coherent quasi-two-dimensional structures. It has also




been observed (see, e.g., Dimotakis (1986) {28]) in these spatially growing shear layers
that the flow entrains an unequal amount of fluid from each of the freestreams, which
results in a mixed fluid that favors the high-speed fluid.

In many other experiments to investigate the effects of scalar mixing in turbulence,
the scalar field was effectively passive (see, e.g., Lesieur (1990) [52]), i.e., not affecting
the velocity field. From an experimental viewpoint the simplest case of a scalar in
a turbulent flow is that of decaying passive scalar (e.g., temperature) fluctuations in
approximately isotropic, grid-generated turbulence. For example, Warhaft and Lum-
ley (1978) [88] reported on the decay of temperature fluctuations in grid-generated
turbulence. In their experiments the flow was incompressible with a Prandtl number
of order unity, since the fluid was air. Temperature fluctuations were small enough
that the corresponding density fluctuations did not affect the flow field, i.e., temper-
ature fluctuations were acting as a passive scalar. Warhaft and Lumley also reported
that the velocity characteristics for a heated grid remained the same as for an un-
heated grid, again an indication of the scalar being passive. This work was followed
up by the experiments of Jayesh and Warhaft [42, 43], who studied the probability
density distributions of the scalar and velocity in grid-generated turbulence. More
recently, Jayesh et al., (1994) [44] report on passive temperature spectra from wind
tunnel, grid-generated turbulence. Robey (1990) [73] presented results on the spec-
tral density of passive temperature fluctuations in a turbulent channel flow. Some
new, remarkable experimental techniques have recently been developed by Dahm et
al., (1991) [89]. In an axisymmetric, incompressible turbulent jet with a Schmidt
number much greater than 1, using laser-induced fluorescence, they were able to cap-
ture highly resolved, four-dimensional measurements of the fine-scale structure of a

conserved scalar and showed that mixing occurs in sheet-like layers.

Another large area of research where variable-density effects are being studied is
mixing in stratified flows, both stable and unstable, e.g., in oceanic and atmospheric

turbulence. Hopfinger (1987) [39] gives a good review of the experimental, numerical
and theoretical developments in turbulence in stably-stratified flows. Stratified tur-
bulent shear flows have been studied in the laboratory and the results demonstrate
that stable stratification inhibits the turbulence mechanisms, thus decreasing mixing.
Shy and Breidenthal (1991) [80] studied the effects of buoyancy reversal in a strati-

fied interface between two fluids. Their experimental observations suggest that the



entrainment rate at the stratified interface depends on the Schmidt, Reynolds and
Richardson numbers. A number of laboratory experiments have been performed to
quantify the effect of buoyancy forces on mixing (see, e.g., Lienhard and Van Atta
(1988) [54], Yoon and Warhaft (1990) [90], and Itsweire, et al (1986) [40]). Barrett
and Van Atta (1991) [2] studied the decay of velocity and density fluctuations in
buoyancy influenced turbulence generated by a grid, towed horizontally through a
stably stratified fluid. They showed that immediately behind the grid (i.e., at an
early time in the flow), the turbulence was unaffected by buoyancy forces. At late
times, buoyancy forces have significant effects on the decay of the turbulent flow.
Other experiments have been reported involving the mixing across an interface
between two fluids induced by Rayleigh-Taylor instability due to an acceleration of
the interface (see e.g., Sharp (1984) [78]; Smeeton and Youngs (1987) [81]; Linden and
Redondo (1991) [55]; and Sturtevant (1987) [84]). In these experiments large-scale
structures grow from instabilities on the interface between the two fluids and these

structures account for most of the mixing seen in these experiments.

In addition to experiments, numerical methods have been extensively employed to
further our understanding of variable-density flow. The advantages and disadvantages
of using numerical approaches instead of experiments are given in Section 1.3. Direct
numerical simulations (DNS) and large-eddy simulations* (LES) have been used for
these investigations. DNS has been employed in the study of passive scalar mixing in
forced isotropic turbulence (e.g., Chasnov, Canuto and Rogallo (1988) [19]; Eswaran
and Pope (1988) [30]; Ruetsch and Maxey (1991) [76]), and decaying isotropic turbu-
lence (e.g., Herring and Kerr (1982) [37]; Mell, (1994) [60]). Of particular interest are
the results of Eswaran and Pope and of Mell who show the evolution of the probability
density function (pdf) of the passive scalar. In both forced and decaying turbulence
the pdf, which initially is of double-delta function form, evolves towards a Gaussian.
LES have also been used to study passive scalar mixing in decaying isotropic tur-
bulence (see, e.g., Lesieur and Rogallo (1989) [53]). DNS and LES have also been
used to investigate turbulence in stably stratified flows (see, e.g., Riley et al. (1981)

[72]; Métais and Lesieur (1992) [61]). Finite difference techniques are often used in
the study of mixing due to Rayleigh-Taylor instability (see, e.g., Glimm et al. (1990)

! Large-eddy simulations are like direct numerical simulations, but the sub-grid scale effects not
resolved by the mesh are accounted for using a sub-grid scale model




[35]; Youngs (1991) [91]). Batchelor, Canuto and Chasnov (1991) [7] presented DNS
and LES results of homogeneous, buoyancy-generated turbulence. This type of flow
is generated by an ‘active’ scalar since it is through the density field, which represents
a source of potential energy, being accelerated by a body force (e.g., gravity) that
kinetic energy is created. As the scalar field decays so does the source of potential
energy; what remains is a decaying turbulent flow. Using the Boussinesq approxima-
tion (assuming small density fluctuations) in their numerical scheme, Batchelor et al.

present (along with analytical results) a description of the birth, life and “lingering

death” of buoyancy-generated turbulence.

1.3 Current work

We are interested in understanding the turbulent interactions of two miscible, in-
compressible fluids of different densities. By the terminology incompressible fluid we
mean a fluid whose compressibility coefficient and thermal expansion coefficient are
both zero (see, e.g., Panton [67], Chapter 2). This decouples acoustic waves from
the problem, implying an infinite sound speed and that density is no longer a ther-
modynamic variable and therefore not a function of the pressure. For a flow to be
incompressible, the main criterion is that the Mach number be low (M — 0). In our
study, the Mach number is assumed to be zero. Note that this definition of incom-
pressible flow is slightly different than that sometimes given in the literature. For
example, Panton (chapter 10, page 237) defines “incompressible flow” as a flow where
changes in the density are negligible, leading to a non-divergent velocity field, i.e.,

V-4 = 0. However, it has been shown [45] that the velocity field for the mixing of
two miscible, incompressible fluids is not in general divergence free, i.e.,V - @ # 0.
Herein, we refer to the flow in our study as being incompressible due to the low Mach
number criterion and this reference does not imply that the divergence of the velocity
field is zero.

With this in mind, we are interested in the effects of variable-density on turbulence
at a fundamental level. That is, we are interested in the nonlinear processes of turbu-
lence and the influence of variable density on this process. Therefore, we restrict our
fluids and flow to be incompressible (as described above) such that compressibility
effects do not complicate the flow. To further isolate the effects of variable-density
on the turbulence we restrict our flow to be statistically homogeneous and initially



isotropic. This requirement eliminates the study of flows with large-scale coherent
structures (e.g., plane mixing layers and flows generated by Rayleigh-Taylor insta-
bilities). With these requirements we investigate the effects of variable density on
turbulence by studying two types of flows: (1) isotropic decay of variable-density
turbulence and (2) homogeneous buoyancy-generated turbulence. The study of such
flows using experimental techniques is difficult. To avoid these difficulties, and fol-
lowing our desire to obtain a complete description of the flow, we resort to numerical
techniques, using direct numerical simulations to investigate these two types of flows.

The simulation procedure is analogous to an experiment and is sometimes referred
to as a ‘numerical experiment’. The main advantages of using a numerical simula-
tion over laboratory experiments are that (a) since the entire flow field is known at
every step in time and every point in space, much more (statistical) information of
interest can be obtained, (b) the parameters can be easily varied and (c) the external
conditions are more controllable so that we can simulate the conditions of the two
problems of interest more easily. The disadvantage of a numerical simulation is that
the temporal and spatial resolution is limited. The spatial resolution limits the range
of scales that can be computed, and, thus, the maximum Reynolds numbers that can
be treated. A review of the literature suggests that the state-of-the-art resolution for
DNS of a passive scalar in isotropic turbulence is with a mesh size of about 1282 grid
points having a maximum initial Taylor Reynolds number around 65 for S, < 1. In
Chapter 2 of this dissertation is discussed the formulation of the equations of motion
that are used in the research presented. In Chapter 3 is discussed the numerical

solution procedure used to solve the equations of motion.

For the case of isotropic turbulence, only small, passive density variations have
been treated. It is our intention to investigate how variable-density affects the decay

of isotropic turbulence (presented in Chapters 4 and 5). It is known that in isotropic
turbulence a single-point scalar-velocity correlation is zero (see, e.g., Lesieur (1991)

[52]). Intuitively, as density fluctuations change there must be some effect of this
change on the turbulence. With the lack of correlation between the density and
velocity field, the question that arises is: Where and how do density changes affect

the turbulence?

Previous work for the case of turbulence that includes buoyancy effects has been
for cases of (a) stably stratified flows or (b) flows within the Boussinesq approximation
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(or both). We are interested in the generation of turbulence due to buoyancy effects
in an unstably stratified field not within the Boussinesq approximation. To our
knowledge there has not been any research reported for this problem. The results

of Batchelor et al. [7], using the Boussinesq approximation, will provide a basis to
study the limits of this approximation for buoyancy-generated turbulence. This is

addressed in Chapter 6.

It is our hope that the knowledge gained from this numerical study will be in-
valuable in the development of variable-density models, such as the BHR and CS
variable-density turbulence models. In Chapter 7 are described some comparisons
between the predictions of the BHR and CS models with the results of direct numer-
ical simulation taken from this study. Some deficiencies in the models are identified

and modifications to these models are suggested.



Chapter 2
FORMULATION

In this numerical study of variable-density turbulence, the most general approach
is to use the single-field representation of variable-density flow and to perform a
direct numerical solution of the Navier-Stokes equations [67] for variable-density flows.
This is what is done for the research presented in this dissertation. In this chapter
are described the equations of motion used in this study. A constraint equation is
developed for the velocity divergence using the conservation equations for two miscible
fluids and assuming mixing according to Fick’s law. The equations of motion are also
rewritten in nondimensional form in preparation for their numerical solution.

2.1 Equations of Motion

In this study consider the flow of a viscous, Newtonian fluid at zero Mach number.

The conservation of mass is P 9
P+ _y, (2.1)

Bt 6113]'

The equations for the conservation of momentum are the Navier-Stokes equations

[67], here given as

Opu; 3ﬂuiuj _ Op 3Tij
ot + 332_7' - 63:,-+Ba:j+pg’ (22)

with the viscous stress tensor defined by

“=H bz " 9z 3%, [
Here p(z:,t), p(z;,t) and u;(z;, t) are the density, pressure and velocity fields, respec-

tively, dependent on the spatial coordinate z; and on time ¢, g; is an acceleration
(e.g., gravity), and u the fluid viscosity.

These equations require specified boundary and initial conditions. A condition
for a mean pressure gradient is also required to correctly specify the problem of
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a variable-density fluid subjected to an acceleration. The most common approach
to study variable-density flows is to use the Boussinesq approximation [69]. This
approximation is valid when the actual density and pressure fluctuations vary only
slightly from their respective means, the vertical scale of motion is small compared
with the scale height, and the Mach number of the flow is low.

In this work we consider a low Mach number flow with large density variations.
The Boussinesq approximation is not valid as the density and pressure vary sig-
nificantly from their mean. Because the Mach number is low acoustic waves are
suppressed, making the flow incompressible [52] and decoupling the energy equation

from the problem. Variations of the density field are due to the mixing of two fluids

with different reference densities. The densities of these two fluids are assumed to be
constant and not equal to each other. Fluctuations in the temperatures of the two
fluids are assumed to be small, however the temperatures of the two fluids are not

necessarily equal. For a single fluid, incompressibility usually implies that V - & = 0.
It has been shown [45] that this equation is inexact for the diffusion of two miscible,
incompressible liquids. To account for this, equations for the concentration of mass

for each species are employed.

2.2 Description of Mass Diffusion

To study variable-density flows we consider flow consisting of two miscible fluids of
different microscopic densities. The conservation of mass for species ¢, assuming
Fick’s law [12, 10] with with a constant diffusion coefficient, D, is

0pCo . 0punCq _ 0 9Cq
5% ' oz, o (pDaxn>’ (23)

where C,(z,t) is the local mass fraction, i.e., the local mass of species & (=1or2)
divided by the local total mass. Using the conservation of mass [eq. (2.1)], equation

(2.3) can be rearranged giving

DC, 8 ( _0C,
Dt T bz, {pD Ozn } (24)
Here
b_9,.79
Dt ot " oz,
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is the substantial (material) derivative.
The local mass fractions and the specific volume satisfy [12]

Ci+Cy=1 (2.5)

and 1 o C
o= 2 (2.6)

p M P2

Here, po (@ = 1 or 2) is the local microscopic density, i.e., the local mass of each
species divided by the local volume occupied by that mass. It follows directly that p

can be uniquely described in terms of C; or Cs:

1 G C 1 1 1
P £1 P2 pr P2 P2

The microscopic densities, p, (o = 1 or 2), are assumed constant and not equal to one
another. This assumption implies both small temperature fluctuations and that the
Mach number is low, and we conclude that the density is only a function of the mass
fraction, i.e., p = p(C}). With the relationship between C; and p, the conservation of
mass for a specie, eq. (2.4), can be written in terms of the density, p. If the constant
F is defined as

ol 1
P P2
then, using eq. (2.7),
Likewise 5C 1 8
1 P
= — . 2.9
0z, p*F 0z, (29)
Substituting (2.9) and (2.8) into eq. (2.4) for a = 1 gives
Dp _ 9p Op 0 [D dp
Dt = ot T Yoz, ~ Poa, { 7 1, (2.10)

Equation (2.10) can be used instead of eq. (2.4) for incompressible mixing. This equa-
tion, along with (2.1) and (2.2), comprise the complete system of equations which,
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given the appropriate initial and boundary conditions, describe the time evolution of

variable-density, zero Mach number flows.

Comparison of eq. (2.10) with (2.1) leads to the following result for incompressible

ow _ _ 0 (Dop
0z, Oz, { p B:L'n} ' (2.11)

mixing flows:

Thus, the incompressible velocity field is divergent.

2.3 Nondimensionalization of the equations of motion

The principle of dynamical similarity can be expressed in our equations of motion by

considering the following nondimensionalization:

(2.12)

Here U is a characteristic velocity, L a characteristic length, p, a characteristic density,
L/U? a characteristic time and p,U? is twice the characteristic dynamic pressure
head. Substituting the nondimensionalizations into egs. (2.10) and (2.2) gives the
nondimensional equations of motion (dropping the hat notation and assuming p is

constant). The density equation becomes

dp dp p 0 <1 3p>

_8? +Uja$j - ReSc 837_7' ;8.’1:1

or
dlnp dlmp 1 &lnp

% %8s RS, 0z (213)
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and the momentum equation becomes

Opui  Opuu;  dp | 1 0my 2
with
_[ouw | 0wy 2, Ou,
i {Ba:j * Oz; 36’73_2:"}'

Substituting the nondimensionalizations into the equation for velocity divergence, eq.
(2.11), gives

Oun, 19 1 9p
oz, R.S.0z, | pOz, |~

"The solutions of these equations, (2.13), (2.14) and (2.15), depend on the following

dimensionless groups:

(2.15)

oo UL
v
v
S = =,
)
and
U2
F2=_"_,
T gL

R, is a Reynolds number formed from characteristic length and velocity scales, and
represents the ratio of inertial forces to viscous forces. S, is the Schmidt number
which depends on the properties of the fluids, v and D, and is the ratio of momentum
diffusion to mass diffusion. F, is the Froude number and is the ratio of inertial to

buoyancy forces.
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Chapter 3
NUMERICAL SOLUTION METHOD

In this chapter is described the solution method for the equations of motion used in
this study. A numerical algorithm is developed to study the decay of isotropic turbu-
lence experienced by two miscible fluids as well as the mixing of two fluids subjected
to a constant acceleration. Spectral methods are used to approximate the spatial
gradients; for temporal discretization an Adams-Bashforth method is employed. The
solution procedure consists of first solving for the density at the next time step; then
the half-step momentum (the momentum not including pressure effects) is solved for

and finally the next time step density is used in a projection step to solve a Poisson

equation for the pressure and thus the next time step momentum.

3.1 Temporal Discretization

A numerical algorithm for solving egs. (2.13), (2.14), and (2.15) is developed here.
It is based on the algorithm of McMurtry [58] for low Mach number, variable-density
reacting flows. Here it is modified for the incompressible mixing of two miscible fluids
subject to a constant acceleration. This method is related to the projection method
[68] but takes into account the fact that the velocity field is divergent. The equations
are temporally discretized using an Adams-Bashforth scheme, except for the initial
time step in which is a forward Euler scheme is used.

3.1.1 Density Equation

A useful simplification to the nondimensional equation for the density p [eq. (2.10)]
is to rewrite it in terms of In p, i.e., eq. (2.13), repeated here

Dlnp 1 9%Inp

Dt  R.S. 0z (3-1)
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It is useful to rearrange this into the form

Olnp 1 O0%lnp  dlp
8t RS, 052 “ oz

In order to time-step this equation a 3rd-order Adams-Bashforth scheme is used. The
integral on the right side is approximated as

it Glnp 1 Olnp " Olnp e 3
/t,, wi Lt = 5 (3{u o } {UW} At+0(AF).  (3.2)

As will be shown below in discussing the approximation of spatial derivatives using
spectral methods (section 3.2), that the time-derivative and the diffusion terms can

be combined together using an integrating factor.

3.1.2 Momentum Equation

The momentum equation, eq. (2.14), is rewritten as

dpu; Op | 10m; Opuy

ot 8_:1:1 Re Oz § oz j

19
+ F g = —3—;’—_ + A+ F g, (33)

Using the Adams-Bashforth philosophy, we integrate eq. (3.3) from t, to t,4; =
t, + At to give:

tni1 6,0ui tnt1 5]) tn+t1 tnt1
dt = — / 9P g / Adt / F2pg,dt
./t,, ot ta  OT; + in ot -+ tn r Poi

The term on the left side immediately integrates to give:

tnt1 Qpu;
/ Wdt = (pUi)n+1 — (PUi)n-
tn
In the first term on the right side, the gradient operator commutes with the integration
to give
tat1 Op 0 [tri1 op
“ o %= g /t Pt = — 55 At
where

t+At

! pdt

1)
Il
B
N\

R e e Yy T r— rog T—— e (T — ey
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is the average pressure over the integral ¢ to ¢t + At. Using the trapezoid rule,

.1 A 1 [o(t) +p(t+ At) AL _ p" 4+ p"
P="At /t pdt = 75 2 2 (3.4)

is the density averaged over the same interval. Finally, the second term on the right

side is evaluated with a second-order accurate expression

tnt+l
" At = % (347 — A7) At + O(AF),

tn

Putting these all together gives a time approximation to eq. (3.3):

An+1 An =~
(pu:) = (puws)™ _ ( 855 _F% ,-) +

(34 — APy +O(AP).  (3.5)

N~

The solution procedure for this equation is related to the projection method [68].
This momentum equation is solved in two steps, the first step taking account of
the viscous and nonlinear effects and the second step including the pressure and

acceleration effects. The first step is
* n At n n—
(pws)* = (pus)" + - [347 — A77'] (3.6)

and the second step is

(o)™ = (pus)* - At ( &R ) (37)

Equations (3.6) and (3.7) sum to give (3.5). Equation (3.6) is solved to obtain the
half-step momentum field (pu;)*. This is then used to find the pressure using a
Poisson equation for $, which is obtained by taking the divergence of (3.7), i.e.,

0*p 1 (0 n P) . 9 L
5~ a {aazi (™" = 5, (o) }+ 5, (FrP0s) (38)
An estimation for
0 n
(pus)™* (3.9)

6$i
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is needed in order to solve for 7 since (pu;)®*' has not yet been calculated. One
method, developed by McMurtry [58], for determining this is to employ the conser-

vation of mass at time-step n + 1, i.e.,

9 . 9 n+l
70; (P = - (5") : (3.10)

At this point in the numerical solution p"**! has been obtained using the mass equa-
tion. Thus a backward difference of (3.10) can be used to estimate (3.9),

'a_p n+1 _ 3pn+1 — 4pn +p -1 (3 11)
ot 24t ' ’

Equation (3.11) is substituted into (3.10) and an estimation for (3.9) is obtained.
This estimation has been found to work well if the fluctuations in density are not too
large. If the fluctuations are large (i.e., |p/|/7 < 0.4), however, we have found that
this approximation can cause the numerical scheme to breakdown. A more robust

estimation is

d(pu;)"+1 0t ottt 9t 62
ek Ve AR o 2 e —L =ttt _ Dyt _(Inp)™t,  (3.12
Oz; Y Oz; p 0z; Y Oz; p 0z2 (Inp) (3.12)

obtained by expanding (3.9). Here, g*t! is known and an estimation for u?*! is

needed and is derived below. Consider the Taylor series representation of u?*! based
on uj

ou? 02\ (At)?
nt+l __ . n 1 i 3
urtt =ul + ( 5t ) (At) + (_8t2 ) 5 + O(At?) (3.13)

along with the Taylor series representation of 47~ based on u?

ou? 2P\ (—At)?
n-1__mn %Y i _ 3
ul Tt =ul + ( Em ) (—At) + < £v) ) 5 O(At®) (3.14)
Equation (3.14) and (3.13) are used to solve for uft*:
Ut =207 — w7 + O(A?) (3.15)

where 47 and u?~! are known from previous time-steps. Equation (3.15) is substituted
into (3.12), then eq. (3.12) is substituted into the Poisson equation, eq. (3.8).
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Recently, Najm [63] has proposed a predictor-corrector projection method which
increases the stability of the projection method of McMurtry [58]. The use of this
predictor-corrector method may be helpful in the numerical scheme presented in this
study. However, we have not investigated this.

The solution procedure for the momentum consists of first solving for the half-step
momentum using (3.6). Then the next-step momentum is solved using (3.7). The
pressure p is solved using (3.8) , (3.12) and (3.15) and § is found using eq. (3.4).
This projection method ensures that the pressure is computed so as to “project” the

velocity vector into the space of u;s satisfying

Ou, 0 {'D Bp}

8z, 0z, | p Ozn

3.1.8 Mean Pressure Gradient in Accelerated Case

The case of a statistically homogeneous turbulence [7, 23] subjected to a constant
acceleration (e.g. gravity) will also be examined in this dissertation. The flow is
generated by an acceleration acting on a fluctuating density field, which represents
a source of potential energy. The kinetic energy, initially near zero, is created as
the heavy and light fluids are set into motion. The mean pressure gradient in the
direction of acceleration (i.e., the z-direction) is not periodic. As discussed below,
the use of Fourier transforms in the spatial discretization of the equations of motion
restrict the computational mesh to be periodic. To take this periodicity into account

we start by considering the momentum equation

Opui n Opuiun _ Op T OTin

ot 8z,  Oz; Oz, + Pi-

Letting a tilde denote a mass-weighted (or Favre) average and an overbar denote
a volume-weighted (or Reynolds) average (see Appendix A), we have

—_— /
U =U +U; = U+ ;.

As a consequence, ¥} = a; + u; where a; = u”;. We shall choose the frame of motion
to be one in which the volumetric mean (Reynolds-averaged) velocity is zero, so
U; = 0 = 4; +a;. A useful analogy for the use of this reference frame is the case of a

gravitational acceleration. The effects of gravity and acceleration can be interchanged
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using a change of reference frames following the well-known “Elevator” principle [85]
(see for example, G. Birkhoff [11] or Synge and Griffith [85]). From Birkhoff [11]:
“The effect of an acceleration G(t) relative to the laboratory frame is the same as
an apparent gravity g(t) = —G(t), relative to an accelerated frame moving with the
fluid.” An advantage of this reference frame is that, for an incompressible fluid, there
is no net volumetric flux of fluid, i.e., @; = 0. Using the momentum equation above,
and exploiting homogeneity, the averaged equation for the turbulence mass flux a;

(see Appendix B) is

Oa; ,0u;  bOp , ,0r,; O
ot +u"6:z:n PO T Bzn Oz (3.16)

where

v

p p

SRR

Again, exploiting homogeneity, the mass-weighted mean velocity is given (see eq.
(B.20) in Appendix B) by

ot; 10p
—3? = _%6_1111 + g;. (317)

We have chosen the frame of motion to be one which the mean (Reynolds-averaged)

velocity is Zero, so u; = 0= U; + a;. As a consequence,
— (i +a;)) =0 (3.18)
5t i i . .

Then from egs. (3.16) and (3.17) we have

gi=0.

,6u,-_< baﬁﬂ,arm._v,ai)erﬁ

" Oz, e Oz, Oz; poz;

Solving for the pressure gradient and rearranging the velocity-velocity gradient cor-

relation and exploiting homogeneity gives

1 T 7 7
g = {gi +7)’2TE +u’au" —v’ap } (3.19)

dz; o oz, ' 0z, Oz
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In the limit of vanishing density fluctuations the last three terms on the right side
of eq. (3.19) vanish and the mean-pressure gradient is pg, which is the hydrostatic
mean pressure gradient.

This condition is implemented into the numerical scheme as follows. Consider the

momentum equation

Opu; ~ Opusun _ Op O

ot oz,  Oz; Oz,

Splitting the right side into mean and fluctuating parts gives

+ pg:.

Opu; + Opusun _8]5 B op + o},
ot oz,  Ox; Oz; Oz,

Substituting eq. (3.19) into (3.20) gives

+ pgi + p'gi (3.20)

Opu;  Opuju, 1 ,0ul,  Ooj, o) or, |,
3 ' oz, ‘a{bz B ”azn} oz o, TP B2

where b is defined as b = 50 — 1 (see Appendix A). It can be shown by averaging
eq. (3.21) and exploiting homogeneity, that the term in brackets on the right side
is the mean momentum (p/u!) contribution from the mean pressure gradient. The
remaining terms are the contribution to the fluctuating momentum, p'u;. In the
numerical scheme, the mean momentum equation is computed separately from the
fluctuating momentum equation. Defining the mean pressure gradient contribution

to the mean momentum as

1 ! :
i fon TR, o2n

then the equation for p'u! is

9o’
o - O
Therefore, the mean momentum is computed using the Adams-Bashforth scheme as
——\ 41 —n At _
(p’ug) = (p’ug) -5 <3B? — B} 1) : (3.23)

This scheme ensures that the momentum flux evolves properly due to the mean
pressure gradient and ensures that the mean (Reynolds-averaged) velocity remains

Zero.
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3.1.4 Simplification for Isotropic Turbulence

For the case of the decay of isotropic turbulence without a gravitational acceleration,
the numerical scheme presented here can be simplified. The gravity terms in egs.
(3.7) and (3.8) are set to zero since g = 0. Also, the mean momentum, p'u] is always
zero since the density and velocity fields are uncorrelated in isotropic turbulence.
Thus, eqgs. (3.22) and (3.23) do not need to be computed.

3.2 Spatial Discretization

The spatial discretization utilized is a spectral technique [17] in which the equations
of motion are represented as a truncated series of orthogonal functions. The three
main types of expansion functions that are usually used in numerical simulations
are trigonometric polynomials (Fourier series), Chebyshev polynomials, and Legen-
dre polynomials. The choice of expansion functions used in the solution procedure is
dependent on the boundary conditions of the physical problem being studied. Cheby-

shev and Legendre polynomials are typically used for problems where the boundaries
are rigid with no-slip. Fourier series expansions are used for problems where the
boundaries are periodic or free-slip.

In this study we consider flows that are periodic with, say, period L. Thus,
our equations of motions are transformed to wave number space using the following
discrete Fourier transform (see, e.g., Bracewell [13])

A

1 X :
F(k,,t) = = Zf(a:j,t)e_‘k""’f.
N =
and the inverse discrete transform:

N
f(zit) =3 Flkn, t)e*=i.
n=1

Here, F‘(kn,t) are the expansion coefficients, k, = 2’2—”, and e**n%i are the linearly
independent expansion functions. f(z;,t) is the representation of f at the discrete
points z;. In our use of the discrete Fourier transform f represents a continuous
property of the flow, say e.g., velocity or density. NN is the number of collocation

points used to discretely represent the continuous function f(z,t). The expansion
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coefficients are the quantities that are time-advanced in this numerical scheme. By
expanding the individual terms in the equations of motion, the spatial derivatives are
easily computed by multiplying each of the expansion coefficients in the finite series
by ik (where i = /—1). It can be shown that the error in the approximation of the
spatial derivatives decreases to zero faster than any finite power of N as N gets large
[17]. Thus the accuracy of the spatial derivative is increased as the number of modes,

N, of the expansion is increased.

As a result of expanding the equations of motion using discrete Fourier trans-
forms, the nonlinear terms of the equation become convolution sums over all pos-
sible wavenumbers, k;. The direct summation operation of the convolution sum
takes O(N®) operations for a quadratic term in three dimensions. This is compu-
tationally expensive considering that, for finite-difference algorithms, the nonlinear
term takes O(N3) operations. To avoid this computationally expensive operation
the variables in the nonlinear term are individually transformed to physical (real)
space using highly efficient Fast Fourier Transforms (FFT’s). The variables are then
multiplied in physical space and the product is transformed back to Fourier space.
This is known as a pseudo-spectral method and enables the nonlinear product to
be computed in O(N3log, N) operations. This solution procedure for the nonlin-
ear products introduces aliasing errors (see, e.g., Rogallo, 1981) [74] into the com-
putational results. Aliasing errors occur when the product of two (or more) data
points (with wave numbers, say, n and m) that have a given wave number span, &
(where 1 — N/2 < k < N/2), produces a wave number span greater than N (say
n+m = M > N) so that the affected wave, M, is aliased to wave M — N. The
aliasing is partially removed using spherical truncation where the upper part of the
wave number spectrum is set to zero. For a quadratic product, alias free results are
produced in the lowest 2N/3 modes [65]. For the product of three terms this cutoff
is more severe, a truncation [93] is needed at N/2 to produce alias free results. In
the simulations described here a 9N/10 truncation is used, allowing some aliasing to
occur. This aliasing effect will be small, however, as long as the various fields are well

resolved.
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3.2.1 Solution of the Density Fquation

The density equation, eq. (2.13), is Fourier transformed and evolved in Fourier space.

Introducing an integrating factor the transformed density equation can be written as

gz {(1570) exp(’*’fstc)} = — e(%)ﬂ.

where

T, = FT. {unahm},

0z,
and F.T.() is a Fourier transform of ().

As mentioned previously, this is solved using an Adams-Bashforth discretization,
written as

- 2k2

—n k2 p, ——m 2 -
(In p) o eﬁe%?At(ln p) — %E {36 RekScAtTln - eHeScAtTI"“l} . (3.24)

During the first time step , 77! is not known, so that the Adams-Bashforth
~ (1
scheme is not adequate for the solution of (In p)n . For the initial time-step a forward
BEuler time discretization is used,

— n+1 —K2 —n
(inp)" = emst{(lnp)" — (A)TT}.

3.2.2 Solution of the Momentum Equation

In the solution procedure, egs. (3.6)-(3.8) are Fourier transformed and the equations
of motion are time advanced in Fourier space using an Adams-Bashforth scheme (a
forward Euler is used for the first time step). The procedure is as follows: eq. (3.6)
becomes, upon transformation

At [ - ~ n—1
i = i+ [3Ai" - A" ] (3.25)
where m; is (;u\z) The pressure is solved from the Poisson equation, eq. (3.8),

transformed to Fourier space, i.e.,

T2 - 'I,k,ﬁ'l: (k,) _ ('Lkzﬁ) giF-,-_2
K2(At) 2
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Here
T, = FT.{V-m""(@)}.

Next V - m™*1(Z) is found from the transform of (3.12) and (3.15). P is then substi-
tuted into the transform of eq. (3.7) to obtain the momentum at n + 1:

ik;

I ) = 13 (k) — 75

1 1

{Ty — ikaini (k) — At (ikip) 0:F72) + Atpg:F72 (3.26)

The numerical solution procedure consists of solving for the density p"*!(k;) using the
discretized diffusion equation, eq. (3.24). Then the momentum equation is solved,
neglecting pressure effects using eq. (3.25). Knowing p"*!(k;) and the two previous
step values of p(k;), Tp can be found using the transform of eqs. (3.12) and (3.15).
Knowing this and the half-step momentum, the momentum at n+1 is found using eq.
(3.26). The mean momentum is time advanced using (3.23).

For the computation of isotropic decay of turbulence without acceleration, g; is
zero in eq. (3.26) and the mean momentum time-advancement using eq. (3.23) is not

needed.

3.3 Initial Conditions

There are two types of flows of interest in this study: the mixing of two miscible fluids
due to the isotropic decay of turbulence and the mixing due to a constant acceleration
of a variable-density fluid. The initial velocity and density fields used in this study
are described in the chapters 4 and 6. Appendices C and D describe the initialization
procedures for the velocity and density fields respectively.

3.3.1 Initialization of the Velocity Field

In the study of isotropic turbulence using direct numerical simulations, since the mean
velocity T; is constant in time, it is common to use a Galilean transformation to choose
a coordinate system such that it is zero, i.e., @; = 0. In the work presented in this
thesis, the initial fluctuating velocity field is initialized using two methods depending
on the problem: (a) the method of Orszag [64] suitably modified to account for the

divergent aspect of the velocity [eq. (2.11)], and (b) the method of Mell [60]. These
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methods are described in Appendix C. The choice of method depends on the problem
under study and is discussed in conjunction with the results of the problem. For the

isotropic decay case, the mean momentum, p'u; is zero initially and remains zero

throughout the simulation.

In the study of a variable-density fluid subjected to a constant acceleration, a
reference frame is chosen such that the mean velocity, u; is zero. In this case the
initial velocity is nearly zero (as the initial density fluctuations are increased, so to
does the velocity that accounts for the divergent aspect of the velocity field). Here,
the correlation between the initial velocity field and the initial density field is initially
nearly zero. This correlation will quickly grow as the high density field is set into
motion in the direction of the acceleration and the low-density fluid is set into motion
in the opposite direction. Thus there is a strong correlation between density and

velocity fields in the accelerated case.

3.8.2 Initialization of the Density Field

In this study, there are two type of initial density fields utilized. The first (and most
frequently used in this study) is the bimodal density field initialized using the method
of Eswaran and Pope [30]. This method creates an initial density field that conforms
approximately to a double-delta function probability density function (pdf), where
the initial fluid consists of regions of either high or low density fluid typified by an
integral length scale of I, = 0.53 (see Section 4.3) which is roughly half the velocity
integral scale (see Section 4.2). In order for the field to be well resolved they are
smoothed to avoid sharp gradients. Following Eswaran and Pope, the initial scalar
field is initialized such that the two scalar values of the initial double-delta function
pdf are +1 and —1. A linear transformation from this scalar field to a density field, p,
is made such that the two density values of the initial double-delta function correspond
to positive values of the density with a nonzero mean. The details of this initialization
scheme can be found in Eswaran and Pope [30] and are presented in Appendix D.
This density field represents the early stages in the mixing of two fluids of different
densities.

The second type of initialization used is an initialization which creates a random
density field that has Gaussian statistics. The details of this initialization scheme

are also presented in Appendix D. In this case the most probable value is the mean
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density. This initial density field represents the late stages of the mixing of two fluid

of different densities.

3.4 Implementation of Numerical Scheme

Computer programs to solve the system of equations described above have been de-
veloped for both the Cray (Y-MP and C90) and the Connection Machine (CM-2,
CM-200). These codes have been tested, developed and used at the Los Alamos Na-
tional Laboratory’s Cray Y-MP, Cray M-98 and CM-200 as well as on the Pittsburgh
Supercomputer Center’s Cray C90 and CM-2 (no longer active). Comparative testing
of this algorithm amongst the different machines and CPU time availability has led
us to exclusively use the Cray computers. A great deal of effort was put into the CM

version of our numerical scheme, however; thus it will be described briefly.

To solve the system of equations a pseudo-spectral technique is employed, whereby
spatial derivatives are computed in Fourier space and nonlinear products in physical
space. The transformation of the real physical data field into Fourier amplitudes is
accomplished with Fast Fourier Transforms (FFT). The numerical solution involves
numerous transformations per time-step. These transformations are the most costly
part of the simulation, comprising roughly 80 percent of the total CPU time of the
simulation. Thus it is essential that the FFT algorithm used has been optimized for
the specific machine on which the computations are being made.

The three-dimensional nature of the physical problem we are studying coupled
with the parallel nature of the spectral scheme makes the massively parallel archi-
tecture of the Connection Machines (CM-2, CM-200, or CM-5) highly attractive for
these types of problems. Currently, state-of-the-art simulations of constant-density
turbulent flow using spectral techniques are computed on Connection Machines [79].
A version of our code has been developed using the CM Scientific Software Library
(CMSSL) FFT complex-to-complex algorithm. An efficient FFT driver has been
written [20] and optimized to ensure that all of the cyclic operations are executed in
parallel. The code was written in CM FORTRAN, a derivative of FORTRAN 90.

A version of the code written in FORTRAN 77 is employed on the Cray Y-MP,
M-98 and the C90. The code utilizes the Cray scientific library FFT package. This is
a highly optimized FFT algorithm written in assembly language specifically for the
Cray computers. Comparisons between the Cray results and the CM results revealed
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disagreements which have not been resolved. The results of a test problem using the
algorithm on the CM-200 agreed with those of the Cray Y-MP for the identical test
problem. However, results for the same test problem using the CM-2 did not agree
with the results of the CM-200. The initial conditions of the test problem and the
numerical code were identical in the CM comparisons, yet the numerical solution on
the CM-2 became unstable while the solutions on the CM-200 did not.

This discrepancy of CM-2 and CM-200 results, coupled with the vanishing of our
CM-2 resources directed us to dedicate our efforts towards the well established Cray
architecture. A numerical code was developed in FORTRAN 77 to solve the equations
of motion. This code requires approximately 120 Mwords of memory to execute a
1283 simulation, and a typical simulation takes 10 to 30 hours depending on whether
the problem being solved is an isotropic decay or a constant acceleration problem.
The main cycle routines (excluding the FFT package) run at about 300 Mflops, while
the FFT package runs at about 306 Mflops on a Cray C90. 80 percent of the CPU
time is spent in the FFT package; thus it is crucial to have an optimized FFT package
for this type of problem.

3.4.1 Computational Mesh

Using pseudo-spectral techniques to solve the equations of motion limits the type of
boundary conditions considered. As mentioned in section (3.2), the use of Fourier
series in the numerical scheme implies that the computational domain is periodic.

The numerical scheme takes advantage of the complex-conjugate symmetry of the
data field in spectral space. The arrays in the computational code are defined such
that the Fourier amplitudes, which are complex, are loaded as follows: in the k;
(corresponding to the physical space z direction) the complex data is loaded from
ky = —(kmaz — 1) to k; = 0, while in the k, and k, direction the data is loaded
from —(kmer — 1) < k < kmez. In physical space this data corresponds to a three-
dimensional box that has periodic boundaries. The smallest nonzero wavenumber
in the simulation is 1 and the wavenumber spacing, Ak, is also 1. Therefore the
nondimensional box length is L = 27 /Ak = 2.

For direct numerical simulations of isotropic constant-density turbulence, the lim-
itations of the initial Taylor microscale Reynolds number due to mesh size are well

known. Mell [59] has given the relationship between the mesh resolution requirements
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and the initial Taylor microscale Reynolds number in order that the passive scalars
are well-resolved. For variable-density simulations of turbulence the relationship be-
tween the mesh resolution requirements and the initial Taylor scale Reynolds number
is not well established. It is expected, however, that the Taylor scale Reynolds num-
ber that can be achieved in simulations that are well resolved should be similar to

that reported in the literature for constant-density and passive scalar simulations.



Chapter 4

ISOTROPIC DECAY OF STATISTICALLY
INDEPENDENT INITIAL TURBULENT VELOCITY
AND DENSITY FIELDS

4.1 Introduction

In our study of isotropic, decaying, variable-density turbulence the density and ve-
locity fields approximately satisfy the conditions of statistical isotropy; the various
fluctuating quantities can be considered as random functions that are statistically
invariant under translations, rotations and reflections. Therefore, a property of this
isotropic turbulence is that there is no net momentum, i.e., the correlations between
a scalar and velocity field are zero [52], or p'u! is zero.

There are many ways to characterize the initial conditions of the flow fields used
in the study of isotropic, decaying turbulence. One characterization is that the initial
velocity field is statistically independent on the initial density field. This character-
ization implies that we impose on a velocity field a density field that is independent
of this velocity field. This characterization is one that is analogous to that typically
used in the numerical study of passive scalars. This chapter examines the behavior
of isotropic, decaying, variable-density turbulence using initial velocity and density
fields that are statistically independent.

An alternative characterization is that the initial velocity field is statistically de-
pendent on the initial density field. This characterization is studied in the following
chapter. There are two types of statistical dependence studied. One type is where
the high velocities are associated with the positive density fluctuations and the other
is where the high velocities are associated with the negative density fluctuations.

There has been considerable work reported on the isotropic mixing of passive
scalars (scalars that have no influence on the velocity field) [30, 52, 53, 60]. To
date there has been no work reported on the isotropic mixing of scalars that are
not passive. The numerical scheme presented here allows for scalars (the density) to
effect the time development of the velocity field and thus permits the study of the
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effect of “active” scalars on the velocity field. Of course, in the limit as the density
fluctuations go to zero the behavior should be like that of a passive scalar.

Below are described the initialization of the statistically independent velocity and
density fields used in this numerical study of isotropically decaying variable-density

turbulence and the results of simulations using these initial fields.

4.2 Initialization of the Velocity Field

The initial velocity field used for this study of isotropically decaying variable-density
turbulence is the velocity field “3u” used by Mell [60] in his study of passive scalars.
This velocity field is in “full spectrum decay” at an initial Taylor-scale Reynolds
number of 55. [The term “full spectrum decay” means that the velocity spectrum is
decaying at all wavenumbers in an approximately self-similar fashion.] This initial
velocity field is statistically independent of the initial density field and is a “Navier-
Stokes” velocity field. This means that the initial velocity field does not have random
Fourier amplitudes and phasing. The procedure for establishing this velocity field is
as follows. First, a random velocity field is computed using the method of Orszag
and Patterson [65], which gives random Fourier amplitudes and phasing. Then this
random field is evolved using a numerical Navier-Stokes solver until the initial random
velocity field has reached full spectrum decay. The resulting velocity field is rescaled
to give a desired initial Taylor-scale Reynolds number and then used as the initial
velocity field in this study. The main advantage of this procedure is that it avoids
the early time adjustment period of the spectral evolution that occurs using only
the method of Orszag and Patterson. This velocity field initialization method was
developed by Mell [60] and is described in more detail in Appendix C. The use of
velocity field “3u” in this study will thus also provide a comparison with the numerical
results of Mell. This comparison is made to validate the numerical method used in
our study of variable-density turbulence.

Table 4.1 lists the simulations and the initial velocity statistics for the variable-
density isotropic decay simulations reported here. N3 is the number of computational
grid points, Rey is the Reynolds number based on the Taylor microscale, v is the

kinematic viscosity, [, A and 7, are the integral, Taylor and Kolmogorov velocity

length scales, respectively. From Tennekes and Lumley [87] the integral velocity scale
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is

[ B(k,t)/k dk

L= B7/4) gy g

the Taylor microscale is
A =U(15v/€)/?,

where

P CTAN
3

is the root-mean-square velocity. The Kolmogorov velocity length scale is
e = (/)4
and a characteristic strain rate of the largest eddies is
S=U/l

The initial energy per unit mass is -;—u_iu_f and the initial total energy (Favre energy)
is 2pulu.

Runs 55 and 55a use the initial velocity field “3u” created by Mell for his study
and which is statistically independent of the initial density field.

Runs Iso3, Iso4, Isob, Iso6, Iso7 and Iso8 have initial velocity fields that are
statistically dependent on the initial density field. The initialization processes and
results for these cases are discussed in Chapter 5.

4.3 Initialization of the Density Field

The density field is initialized using the method of Eswaran and Pope [30]. This
method creates an initial density field that conforms approximately to a double-delta
function probability density function (pdf), where the density values of the initial field
corresponds closely to either the high density or low density value. The pdf is not
an exact double-delta function because the density field is smoothed to avoid sharp
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Table 4.1: List of initial velocity statistics for isotropic decay simulations

Run No. N3®  Re, v D N S fuju  jpuju
55 128%  55.0 .005 1.12 .30 .0207 0.81 1.245 1.245
9da 1283 55.0 .005 1.12 .30 .0207 0.81 1.245 1.245
Iso3 1283 54.9 .005 1.07 .29 .0201 0.87 1.245 1.32
Isod 1283 58.2 .005 1.13 .29 .0195 0.87 1.480 1.32
Isod 1283 52.4 005 1.02 .29 .0204 0.87 1.205 1.32
Iso6 1282 58.2 .005 1.13 .29 .0195 0.87 1.480 1.32
Iso7 1283 549 .005 1.07 .29 .0201 0.87 1.245 1.32
Iso8 1283 52.4 .005 1.02 .29 .0204 0.87 1.205 1.32

gradients so that it is well resolved in the simulation. Following Eswaran and Pope,
the initial scalar field is created such that the two scalar values of the initial double-
delta function pdf are +1 and —1. A linear transformation from this scalar field to
a density field is made such that the two density values of the initial double-delta
function correspond to desired values.

The details of this initialization scheme can be found in Eswaran and Pope [30]
and are presented in Appendix D. Briefly, the Fourier amplitudes of the scalar field
are assigned random values corresponding to an initial spectral shape. This random
field represented by Fourier amplitudes is inverse transformed to physical space and
the positive values in this random field are given the value of pmq. and the negative
values are given a value of pmin. This adjusted field is then transformed into spectral
space and the Fourier amplitudes are multiplied by a filter function that “smoothes”
the physical-space density field, thus producing a physical density field that is well-
resolved in the simulation.

This initialization procedure creates a fluid with regions of high and low density

typified by an integral length scale

L= (n/2) [/0°°E,,(k,t)/k dk]/ /o°°E,,(k,t) dk.

Here, E, is the spectra of the variance of the isotropic density field. For all the sim-
ulations presented in this study !, = 0.53, which is roughly half the initial velocity
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Figure 4.1: Typical 2-D slice of the 3-D initial density field

integral scale. Figure 4.1 shows a typical two-dimensional slice of the three dimen-
sional density field. The solid contours represent density values that are larger than
the mean density, while the dashed contours represent values smaller than the mean.
Visible are regions of high density, pmqr, surrounded by regions of low density, pmin,
which can represent the two fluids. In between the high and low density regions are
smooth gradients of the density field which represents a “premixed” interface between
the two fluids. Figure 4.2 shows the corresponding initial probability density function
of the 3-D density field. This shows high probability for the density to be either ppa.
OT Pmin, and also the “U-shaped” lower probability region in between the two peaks

representing the premixed interface.

Table 4.2 lists the initial density field statistics for the variable-density isotropic
decay simulations reported in this study. The cases with the density ratio of 1.02 are
nearly constant-density cases performed to provide comparisons with the variable-
density cases, which have a density ratio of either 2.33 or 4.0. The quantity B(t) =
P70’ /7? is the mean-square-fluctuating density (i.e., the variance) divided by the mean
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Figure 4.2: The initial PDF of the 3-D density field

density squared, and the quantity

b(t) = —p (1> (41)

is the negative of the correlation between the fluctuating density and fluctuating
specific volume. Both of these quantities are a nondimensional measure of the density
variations in the flow. In the limit as the density fluctuations tend to zero b(t) =~ B(t).

4.4 Isotropically decaying turbulence with small density variations

Consider first the case of a freely-decaying, isotropic, variable-density flow. The initial
statistically independent velocity field is field “3u” described in the previous sections.
The bimodal density field is setup using the scheme of Eswaran and Pope. The pdf
of the initial density field is symmetric about its mean (5 = 1.0). A result of the
condition of isotropy is that any vector correlation between a scalar field and the
velocity field will be zero [38, 52]. In these isotropic problems it is anticipated that
the effect of the density field (the active scalar) on the evolution of the total energy
will be small. It will be shown in Section 4.4.1 that the total turbulent kinetic energy
density is made up of three terms: p m, p'u_:u; and pa;a; where a; = —pu}/p. In
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Table 4.2: List of initial density field statistics for isotropic decay simulations

Run No.  fmec  Pmin  Pmas/Pmin o0 p —0' (1/p)
55 1.01  0.99 1.02 7.53¢-5 7.53e-5
55 1.60  0.40 4.00 0.4530 498
Iso3 1.01 0.9 1.02 7.550-5 7.55e-5
Isod 1.40 0.60 2.33 0.1209 149
Iso5 1.40 0.60 2.33 0.1209 .149
Iso6 1.01 0.9 1.02 7.556-5 7.55¢-5
Tso7 1.01  0.99 1.02 7.55¢-5 7.55e-5
Tso8 1.01  0.99 1.02 7.556-5 7.556-5

isotropic turbulence, g4} is zero for all times. It will also be shown that because of
the lack of statistical dependence of the initial velocity and density fields p/ulul =~ 0
for all times. So the velocity self-correlation is the dominant term in the energy
evolution. Also, because the Taylor-scale Reynolds number and |p'|/7 are low, the
statistical dependence between the velocity and density fields will not develop in a

manner such that p'uju; will effect the energy decay behavior.

The first velocity field (Mell’s field “3u”) used in this study of isotropic decay of
variable-density turbulence has an initial Taylor-scale Reynolds number of 55. This
is fairly low compared to laboratory flows and implies that almost all the scales of
motion are significantly influenced by viscous forces. This initial velocity field is
statistically isotropic and undergoing full spectrum decay. The first simulation using
this velocity field is Run 55a. The initial density field has a density ratio (pmaz/Pmin)
of 1.02, nearly constant density (pmer = 1.01 and ppi, = 0.99). The initial energy
spectrum for this simulation (and Run 55) is shown in Fig. 4.3. Here, < () > refers
to the spectrum of (). An explanation of how the energy spectra is computed is
given in Appendix E. The initial velocity integral scale is 1.19. The domain size
is L = 2n/Ak = 2r (Ak = 1) so that /L =~ 1/5. This suggests that there are
initially approximately 5 large eddies in one direction and thus 53 large eddies in the

computational box.
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Figure 4.3: The initial velocity spectra for Runs 55 and 55a

There are two reasons for using this initial velocity field with an initial density
field that is nearly constant. The first is to provide a direct comparison with the
numerical results of Mell [60]. In the limit as the initial density variations goes to zero
the numerical scheme used in this study should reproduce constant-density turbulence
results. An agreement with Mell’s results will give us confidence that, within the limit
as the density fluctuations go to zero, the numerical scheme is reproducing known
results. Second, this simulation will provide results for comparison with a simulation
with large density variations (Run 55, discussed below).

This section describes the results of the numerical simulation, Run 55a, with
the initial conditions described above. A direct comparisons will be made with the
results of Mell. Also, results will be presented that demonstrate consistency (i.e., in

quantitative agreement) with constant-density results and expectations.

4.4.1 Decay of turbulent kinetic energy

The total turbulent kinetic energy density, which is half of the trace of the Favre-
averaged Reynolds stress tensor for variable-density flow, eq. (A.6), is given as
1 l—7—=

1.— ot 1 NG 1._
§Rii(t) = PU U = 5P Uty + 5 P Ul — 500 (4.2)
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where

. yza
a; = —ﬁ_:;—t = £ (4.3)

7

is the turbulent mass flux divided by the mean density. Here the 6 represents a
volume average over the entire computational domain. For this case a, should be
identically zero since there is no scalar-velocity correlation in isotropic decay. Figure
4.4 shows the evolution of R;; as a function of ¢ for this nearly constant-density
case (Run 55a). The time, ¢, used in plotting the DNS data is the actual time
nondimensionalized by the initial large eddy turnover time, l,/u,. The Pa;a; term
is zero due to isotropy. The triple correlation term, m, is initially zero since the
initial velocity and density fields are statistically independent, and it remains small
since the density fluctuations are very small. Thus the total turbulent kinetic energy
density is approximately the mean density multiplied by the mean squared velocity,
ie.,

1 1_—
§Rii(t) = 5P Uilh-

This figure also shows the result of Mell’s simulation for the term wufu, (note that
Mell’s simulation was carried out to a time of 5). This can be directly compared to
the 7 uju; term of Run 55a since in this case (as with all the cases in this study)
p = 1.0. This figure shows that the two numerical schemes give the same mean-
velocity-squared decay for the same initial velocity field.

To gain insight into the flow energetics, we can write the decay of the total tur-
bulent kinetic energy, eq. (B.14), for an isotropic, decaying turbulence field (without
body forces), employing homogeneity, as

0 ou; 0T

— L ol S = A . .
at{z"“’“’} Pow: T o, (4.4)

For a complete derivation of this equation see Appendix B. The first term on the right

1—

side of eq. (4.4) is the pressure-work term and represents a production/destruction

of energy due to dilatation effects. For the immiscible problem and constant-density
flows this term is zero. The second term on the right side is the viscous dissipation rate
term and represents the rate of decrease in kinetic energy due to viscous dissipation.
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Figure 4.4: Evolution of R;; for Run 55a

Figure 4.5 shows the evolution of each term of eq. (4.4). This clearly demonstrates
that kinetic energy decay follows the viscous dissipation rate term. Evolution equa-
tions for each term of the total turbulent kinetic energy density, given by eq. (4.2),
are derived in Appendix B. Since the behavior of 5 ;,L_;—'U,—; is the same as the behavior
as Ry;(t), its decay is solely due to viscous dissipation.

As previously mentioned, the decay of isotropic turbulence has been extensively
studied using laboratory experiments and direct numerical simulations. In all these
studies a common characteristic is a power-law decay of the mean-square of the

fluctuating velocities,

Kalt) = Y% — g, [1 + i] - (4.5)
2 to
where K,, t, and v are constants and t, is called the virtual origin. K, is the energy
at time t = 0 and ~ is the power-law exponent. (Note that K;; = R;;/2p). The power
law exponent has been determined from many experimental and numerical studies
[24]. These studies have been inconclusive in this regard. The numerical studies are
limited by the turbulence Reynolds number that can be obtained. Thus the flows
studied are at least moderately viscous dominated, and the study of the dynamics of

flows that are primarily due to nonlinear interactions cannot be made using direct
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Figure 4.5: Terms in the evolution equation [eq. (4.4)] for the total kinetic energy
density for Run 55a

numerical simulations. In the simulations here, the power law decay of the turbulence
is found to be consistent with previous laboratory experiments.

A characteristic time scale for the decay of isotropic turbulence is

Ki(t) 1

T = el = Z(t 4 ¢,). 4.6
"= TR AT (46)

Following Mell [60], substituting eq. (4.5) into (4.6) and solving for the power-law

exponent gives

ﬂa=—u+mﬁg%%@ﬁ. (47)

In order to use this equation to determine the v(¢), the virtual origin, t,, must be
found using curve-fitting. The virtual origin was found to be ¢, = 1.82. In Mell’s
results, the virtual origin was found to be 2.074. This difference is probably due to
the fact that the DNS simulations in this study were carried out twice as far in time
as that of Mell’s. If we curve-fit over the time range used by Mell the virtual origin
is found to agree with that found by Mell. Thus the power-law exponent can be
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evaluated from
{0K(t)/0t}

70 (4.8)

~(t) = —(t + 1.82)

Here, 'y_(t—) is referred to as the “average” value (not volumetric average as previously

defined) of the power-law exponent computed from the DNS. The term “average”

(adopted by Mell) is used because of the curve fitting involved in obtaining .
Another determination of the power-law exponent can be made by taking the time

derivative of eq. (4.6) to get

'r(t)=—{% {a—;{%}}—l. (4.9)

Here, (t) is referred to as the “instantaneous” value of . This method has the
advantage of not having to compute a virtual origin.

Figure 4.6 shows 7x (+ curves), v(¢) (e curve) and ~(t) (x curve) as functions
of time for this nearly constant-density case. The solid lines are the results of Mell
and this figure again shows good agreement between Mell’s results and this nearly
constant-density case. The value of ~(t) varies quite a bit at early times but at late
times this “instantaneous” power-law exponent is very nearly the same value as the
“average” power-law exponent W It is also seen that W grows slightly at early
times but then remains nearly constant at a value of about 1.65 at late times.

This value is larger than the bulk of the experimental data from grid experiments.
In the initial period of decay, v is found to range from 1.2 to 1.35 [38]. However,
Mohamed and LaRue [62], surveying experimental data, argue that this variation
in v is due to the selection of the virtual origin, t,. Their analysis shows that if ¢,
is selected in a consistent manner then v = 1.3. For a more detailed discussion of
this see, for example, Clark [22]. For a discussion on the relationship between the

power-law exponent and the low wavenumber exponent see Section 4.4.5.

4.4.2  Velocity-derivative skewness

The velocity-derivative skewness is defined as (see, e.g., Tavoularis et al. [86])

(34)
Si(t) = — 82/ _ | no summation on i (4.10)




41

Figure 4.6: Time scale and power law exponents for Run 55a and comparison to
Mell’s results (solid lines) '

where u; is any component of the velocity (i = 1,2 or 3). The velocity-derivative skew-
ness would be zero if the velocity derivative were Gaussian. The velocity-derivative
skewness represents the average rate of production of the mean-square vorticity (en-
strophy) by vortex stretching [86]). If the velocity-derivative skewness is positive
there is an increase in enstrophy due to vortex stretching [52]. Figure 4.7 shows the
velocity-derivative skewness as a function of time for all three components of the ve-
locity. For this case, S;(t) &~ 0.5, which agrees with Orszag and Patterson [66], and
falls within the range of nearly-isotropic grid experiments, S;(t) ~ 0.32— 0.6 reported
in Tavoularis et al. [86].

4.4.8 Length scales and Taylor Reynolds number

There are three characteristic length scales that are often used in turbulence. The
largest is the velocity integral scale, I, and is a measure of the size of the most
energetic eddies in the flow. The Taylor microscale, ), is the second characteristic
length and is smaller than the integral scale, but does not typify the smallest scales
in turbulence. The smallest scales are typified by the Kolmogorov scale, 7, which is
a measure of the smallest eddy that can be expected in a turbulent flow. It is at this
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Figure 4.7: Velocity-derivative skewness for the three components of velocity for Run
5da

scale that viscous and convective forces are in balance, so that the local Reynolds
number is unity. Figure 4.8 show these length scales as functions of time for this
nearly constant-density case. Comparisons of the integral length scale, the Taylor
length scale and the Kolmogorov length scale are made with the results of Mell (dots,
diamonds and triangles) and are in good agreement. This figure also shows that for
t > 0.5 all the length scales are growing in time.

The Taylor Reynolds number, R,, is a Reynolds number based on the Taylor
microscale. Figure 4.9 shows the evolution of this quantity as a function of time
for the nearly constant-density case (Run 55a) and also shows the results of Mell.
Again, there is good agreement between the two simulations. Mell [60] compared the
behavior of the Taylor Reynolds number found in his simulations with grid turbulence
experiments of Comte-Bellot and Corrsin [25] and Sreenivasan et al. [82], and found
that the results of his numerical simulations are in qualitative agreement with the

grid turbulence experiments.

= e oty o = - b — e e = A -
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Figure 4.9: Evolution of R, comparison with Mell’s result and Run 55a



44

4.4.4 FEnergy spectrum

The spectral data are obtained in Fourier space by averaging the dependent variables
of interest over spherical shells creating a spectrum over the entire wavenumber range.
The usefulness of this data is that it gives an understanding of the length scales of
the computed quantity. The energy spectrum is a decomposition of the energy into
fluctuations at different wavelengths, and the value at a given wavelength is the energy
associated with that wavelength.

Previous researchers have studied the energy spectrum in detail using laboratory
experiments, numerical simulations and theory. Analyzing the spectrum from the
DNS is a good way to determine (a) if the simulation is well resolved and (b) how
well the simulation represents “real world” turbulence by qualitative comparison with
experimental data. Appendix E describes the binning procedure used to compute the

velocity spectra.

As mentioned before, the initial velocity field used in this study is in full spec-
trum decay. This means that the velocity spectrum is decaying at all values of the
wavenumber, k. Figure 4.10 shows the energy spectrum for a sequence of times for
this simulation of nearly constant-density flow. As time proceeds the spectrum is
decaying at all wavenumbers. The values of the spectrum of energy are largest at
the low wavenumbers, so that the large eddies in the flow contain the majority of
the energy. Only integer wave vectors are resolved in our numerical simulations. The
energy spectrum values decrease nearly 4 decades from the low wavenumbers to the
high wavenumbers at the initial time. This decrease gets larger with time, so it is
observed that in this simulation the energy is well resolved since high wavenumber

contributions are small compared with the low wavenumber contributions.

4.4.5 Wavenumber ranges of the energy spectrum

There are several characteristic ranges in the one-dimensional energy spectrum of tur-
bulence. The first range, called the “energy containing range”, is in the low wavenum-
ber part of the spectrum, and contains the large-scale energetic eddies of turbulence.
At these scales the turbulence receives energy from the mean-flow reservoir of kinetic
energy through coupling to the mean-flow shear, and from the reservoir of potential
energy, through differential acceleration from an externally applied pressure gradient.
At these scales the effect of viscosity is small if the Reynolds number is high enough.
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Figure 4.10: Energy spectrum for a sequence of times for Run 55a

In a second range of the energy spectrum (the so-called “inertial range”), energy cas-
cades from the energy-containing range to the third range (the so-called “dissipation
range”). Using turbulent length scales we can propose self-similar expressions for the
energy spectrum as (see, e.g., Lesieur [52])

E(k,t) = KL F(kL). (4.11)

Here K is typical kinetic energy, L a typical length scale and F is a dimensionless
form function that characterizes the spectral shape.

In the energy containing range where the effects of viscosity is small, a typical
kinetic energy may the mean-squared velocity, i.e., K = U2 and a typical length scale
may be the integral length scale, i.e., L = I. Then the self-similar expression [eq.
(4.11)] becomes (see, e.g., Tennekes and Lumley [87])

E(k,t
BED _ p,
Using this normalization for scales of motion where viscosity is not important, the
energy spectra should collapse onto a self-similar curve.

To emphasize self-similarity of the energy containing range, Fig. 4.11 shows the

entire energy spectrum normalized by U42] plotted as a function of klI. The scales of
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Figure 4.11: Large-scale normalization of the energy spectrum evolution for Run 55a

motion for kI < 6 are developing in a self-similar manner.

There has been considerable work with the goal of understanding the low wavenum-
ber power-law exponent, n, and its relationship to the energy decay exponent, v, (see,
e.g., Saffman [77] and Clark and Zemach [24]) i.e.,

llciII(l) E(k,t) = C(t)k™,
and

t177
K@:mp+{ .

to
The simulations of this study are inconclusive regarding the relationship between
n and v. The reason for this is two-fold. First, the Reynolds number is low and,
second, there is inadequate resolution of the low wavenumber portion of the flow.
There do exist two limits for the relationship between the low wavenumber power-
law exponent, 7, and the decay exponent, . In the limit of infinite Reynolds number
this relationship is [24]

_ 2(n+1)

4.12
n+3 "’ (4.12)
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and in the limit of the “final period of decay” [6], where the turbulent motions are of
an entirely viscous nature,

_n+1
T=—g

(4.13)

At late times in the simulation, the energy decay exponent, v, is 1.65. Assuming
the flow is in the final stages of decay then the low wavenumber power-law exponent
is found from eq. (4.12) to be 2.3. However, due to insufficient low wavenumber
resolution in the simulation, the low wavenumber exponent cannot be determined
accurately as it appears in Fig. 4.10 that there is no region where E(k,t) ~ C(t)k".

It is hypothesized that, in the limit of infinite Reynolds number, there exists
a subrange (the “inertial” range) in which the energy spectrum is independent of
viscosity and also independent of the energy-containing range. This inertial range is
in the “equilibrium” range at scales between the “energy-containing” range and the
“dissipation” range. Dimensional analysis applied to this hypothesis gives the k=53
law of Kolmogorov (38, 50]. Due to an inadequate resolution in this simulation the
Reynolds number is low, and therefore, there is an absence of this inertial range.

The third range, the “dissipation” range, which characterizes the smallest scales of
motion is also in the “equilibrium” range. Kolmogorov [48] hypothesized the existence
of this “dissipation” range where, for a sufficiently high Reynolds number, there exists
statistical equilibrium such that the energy flux into this range is balanced by viscous
dissipation. Therefore the energy spectra can be uniquely determined by the energy
dissipation rate, €, and viscosity, v. In this range the time scales of motion are so short
that the mean flow coupling to turbulence (i.e., energy transfer from the mean flow to
turbulence) is not important. Thus, the strain rate of the mean flow is not relevant
and energy cascades from large scale to small scale at the energy dissipation rate.
At the smallest scales, kinetic energy is finally dissipated into heat by viscosity. At
these small scales the kinetic energy is typified by the Kolmogorov velocity squared,
i.e., K = v* = (ve)'/? and a typical length scale is the Kolmogorov microscale, i.e.,
L = ng. Then the self similar expression [eq. (4.11)] becomes (see, e.g., Tennekes and
Lumley [87])




— e e e b — — e e

48

10' 3

Increasing time

10" F l E

&
N> 10_3 2 3
< F 1
=
A 3 E
SN’ E 3
| e | ]
- .
107 ¢ 1
- .
10—9: 1 : 2 1 o111l L 1 SIS | 1 1 PSS T T SO
0.01 0.1 ] 10
knk

Figure 4.12: Small-scale normalization of the energy spectrum evolution for Run 55a

To address self similarity of the dissipation range, Fig. 4.12 shows the energy
spectrum normalized by v®n;, plotted as a function of k7. At high wavenumbers
there is self-similar collapse, consistent with the assumption that, at these small
scales, the energy transfer is dominated by the dissipation rate and viscosity (note

that v2n, = v¥/4eV/4).

4.4.6 Discussion

The results presented above for the nearly constant-density simulation, Run 53a,
shows quantitative agreement with constant-density results of Mell [60]. Thus, when
the initial density fluctuations are small the results of the numerical scheme used in
our study approach the constant-density limit. The comparison with Mell’s results,
and the fact that the results of Mell qualitatively agree with actual grid turbulence
experiments gives us confidence in the numerical scheme used in our study.

4.5 Decaying, isotropic turbulence with large density variations

Consider now the case where the initial density variations of the flow are somewhat
large. The initial density field used in this case has the same spatial distribution

as that for the nearly constant-density field used in Run 55a; here the fluctuations
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are scaled by a factor of 60 so that pmer = 1.6 and ppi, = 0.4 and the density ratio,
Prmaz | Pmin, 18 4. The initial velocity field used here is similar to that used in the nearly
constant-density case, the difference being the adjustment to the velocity field due
to condition (2.11). The initial Taylor Reynolds number is 55. The initial velocity
spectrum is shown in Fig. 4.3. This section describes the isotropic decay of this

variable-density flow simulation, Run 55.

4.5.1 Decay of turbulent kinetic energy

For isotropic decay the total turbulent kinetic energy per unit mass is given as (see
eq. (A.7) in Appendix A)

P, _ i, |
K(t) = = . 4.14
()= = 2 2 (4.14)

Initially, this variable-density case has nearly the same total energy as the nearly
constant-density case for two reasons. The mean density, p, is the same for both,
and, there is a lack of statistical correlation between the initial density and velocity
fields, i.e., puu, = 0. Figure 4.13 shows K(t) as a function of time for the case
with the density ratio of 1.02 (nearly constant-density) and the case with the density
ratio of 4 (variable-density). From this plot it is seen that the total kinetic energy
per unit mass decay is nearly unaffected by the large density variations. Figure 4.14
shows the evolution of R;; as a function of ¢ for this variable-density case. Due to
isotropy, the pa;a; term is zero. The triple correlation term, m, is initially zero
since the initial velocity and density fields are statistically independent. As the flow
develops this triple correlation term becomes slightly negative (discussed in more
detail below) then decays to a negligibly small positive value. Therefore the behavior
of the total turbulent kinetic energy for this variable-density case is governed by the
evolution of m, which decays with time in the same manner as the total energy for
the constant-density case.

To gain insight on the behavior of various terms of importance to the process of
energy decay, we plot the various terms in the total kinetic energy evolution equation
[eq. (4.4)] for the present case. Figure 4.15 shows the evolution of each term in eq.
(4.4). This shows that the energy decay follows the behavior of the viscous dissipation
term, as the pressure-work term has little effect. Since the triple correlation, m,
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Figure 4.14: Evolution of R;; for Run 55
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Figure 4.15: Contributing terms in the evolution equation for total fluid kinetic energy
density [eq. (4.4)] for Run 55

does not grow to an appreciable amount, the decay of 7 uju; is nearly the same as

that of R;(t)/2.

It is seen in Fig. 4.14 that the triple correlation term, m, is initially zero, grows
to a small nonzero value and then decays to a negligibly small value. This behavior
can be understood by observing the spectral distributions for pu;u;/2, P u;u,/2 and
puu;/2. Figure 4.16 shows the initial spectrum for puju;/2 and puju;/2. Initially
these two spectrum are slightly different. The small difference is due to a nonzero
initial spectral distribution of p'w;u;/2, which is shown in Fig. 4.17. The initial
spectrum of p'u;u; /2 is small compared to the spectra given in Fig. 4.14 and integrates
over all wavenumbers to a zero value for M/ 2. Figure 4.17 also shows the spectra
of puzu;/2 for a sequence of early times. As this spectrum evolves in time, the
values within the spectrum are redistributed such that its spectrally integrated value

becomes nonzero. Also, as time evolves the spectrum is decaying so that its spectrally

integrated value also decays.
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Figure 4.17: Spectral evolution of < p'ujuj > /2 for Run 55



53

4.8.2  Decay of density field

In section 4.3 the negative of the correlation between fluctuations of density and those
of specific volume is defined as

b(t) = —p (%) - 7,

where v = 1/p is the specific volume. This can be written as (see Appendix B)
b(t)=pv— 1.

This can also be written [10] as

-G53 12

From this latter result, it can be seen that b(¢) is nonnegative, and in the limit as the
density fluctuations tend to zero, b(t) ~ ¢/¢//p*. This quantity is important since it
arises in the modeling of variable-density flow [10, 23]; thus its behavior is described
here. Figure 4.18 shows b(t) as a function of ¢ for the nearly constant-density case,
Run 55a (dashed curve), and this variable-density case, Run 55 (solid curve), plotted
to different scales. The left axis is for the nearly constant-density case, while the right

axis is for the variable-density case. Note that the large difference in values is due to
the difference in the initial density fluctuations. For both cases this quantity decays
rapidly for ¢ < 1.5 and more slowly thereafter. Also note that b(t) decays slightly
differently for the two cases.

Another measure of the decay of the density fluctuations is the variance, or the
second (central) moment [56]. The variance is the mean-square departure from the

mean value, and is defined as
2 0 N2 / Ay ey 1 il —=\2
o= [ WPPO) = T~ Y (-7
— n=1
where P(p’) the probability density of the fluctuating density and the summation is

over all mesh points. The square root of the variance is the standard deviation (rms
amplitude), o,y. Figure 4.19 shows the evolution of the variance for the fluctuating
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Figure 4.18: Comparison of the evolution of b(¢) for Run 55 and Run 55a

density field for both the nearly constant-density and variable-density case to different
scales. The decay of the two density fields are quite similar, indicating that the density
field in the case with the large density fluctuations is behaving approximately as a
passive scalar.

As previously mentioned, in the limit as the density variations tends to zero, b(¢)
should tend to p'p//p®. It is convenient to employ the same nomenclature used in

Besnard, et el. {10, i.e.,
B(t) =07 /7"

Figure 4.20 shows a comparison of the decay of b(t) and B(t) for Run 55. Initially b(¢)
is almost twice as large as B(t). For t < 2, when the density fluctuations are large,
b(t) decays faster than B(t). For t > 2, as the density fluctuations become smaller,
b(t) tends towards B(t). Figure 4.21 shows the same results on a log-log plot. For
t < 0.5, convective mixing occurs and the decay rate is small; thereafter, molecular
mixing occurs and the decay rate is larger. For ¢t > 2, the curves decay as a power
law. Curve fitting gives a power law exponent of about 2.29. The “average” value
of the power law exponent can be computed for the decay of b(t) and B(t) using an
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Figure 4.19: Evolution of ¢/¢’ for Run 55 and Run55a

equation similar to eq. (4.8), written here as

\Loe(e/or)

W0 =~

Here ¢ is either b(¢) or B(t) and ¢, is the virtual origin. Another estimate of the
power-law exponent is the “instantaneous” value. An equation similar to eq. (4.9) is

0=~ {3}

Figure 4.22 shows the “instantaneous” and “average” values for the power law expo-
nent of b(t) and B(t) for Run 55. At early times when b(t) and B(t) are different
the “average” value of the power law exponent is different. At late times, when b(t)

used, i.e.,

tends towards B(t), the power law exponents become nearly the same value of about
2.3.
The characteristic time scales of decay for X (¢) and b(t) are written as

K()

T TR @)/ot (19
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Figure 4.22: Power law exponents for the decay of b(¢) and B(t) for Run 55

and

b(¢)
= = 4.16
™= T 50) /ot (4.16)
Figure 4.23 shows the time evolution of the time scales for K(¢) and b(t) for this
variable-density case. After a time greater than 1 the curves are approximately
straight lines with positive slopes, characteristic of power law decay behavior. As-

suming power law decay,

K(t) = K, [1 + %]_7,

(«]

the characteristic time scale for the decay can be written as

K() 1

TR/ ¢t

T =

Thus if the characteristic time scale is growing linearly, then the power law coefficient
is the slope of this curve. Another interesting feature seen in Fig. 4.23 is that the time
scale for the decay of the total turbulent kinetic energy density is larger than that
for b(t), implying that K (t) is decaying slower than b(t). This can also be seen by
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Figure 4.23: Time scale evolution of K(t) and b(t) for Run 55

comparing Fig. 4.18 with Fig. 4.13. For laboratory experiments with decaying grid
turbulence the scalar (usually a temperature field) and velocity fields decay according
to power laws [88]. Here the velocity and density decay (at late times) nearly as power
laws, with a corresponding mechanical-to-density time-scale ratio

TK
To

T =

that varies slowly [30]. Figure 4.24 shows r for Runs 55 and 55a. In both cases
this ratio becomes nearly constant with a value of almost 2 for ¢ greater than 2.
Warhaft and Lumley [88] and Sreenivasan et al. [82] have shown that this time-scale
ratio in grid turbulence has values that range from 0.6 — 2.4 depending on the initial
conditions. In our study the time-scale ratio is near the upper limits of their range.

An evolution equation for b(t) can be derived (see Appendix B), assuming statis-
tical homogeneity and isotropy, and is

9b(t) —oul,

= 2p v —=. 4.1
ot 2pv8xn (4.17)

Note that if the divergent velocity field condition, eq. (2.11), is substituted into eq.
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Figure 4.24: Mechanical-to-density time-scale ratio for Run 55 and 55a

(4.17) this leads to (assuming D is constant)

o) _ 5 (10
5t 2W”axn{paxn}'

For a fixed Schmidt number S, = v/D, as the Reynolds number increases the molec-
ular diffusion of b(t) decreases. Therefore, b(t) will decay slower at higher Reynolds
numbers because the length scales at which diffusion is relevant decrease. The decay
rate for b(t),
A
&=—-2pV %—;,
is plotted in Fig. 4.25 as a function of ¢, showing behavior similar to what Mell
[60] reported in his study of passive scalars. The increase in ¢, is due to convective
mixing which increases the density gradients, while the decay of ¢, is due to molecular
mixing. The time at which convective mixing occurs corresponds to the time that
b(t) decays rapidly (see Fig. 4.18) . During this time period, the time scales for the
decay of K(t) and b(t) are also decreasing (see Fig. 4.23).
The right side and the left side of eq. (4.17) can be computed individually and
compared. This is a useful numerical check to determine whether the decay of b(¢)
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Figure 4.25: Dissipation rate of b(t) as a function of ¢ for Run 55

is being accurately computed in the simulation. Figure 4.26 shows each term of eq.
(4.17) plotted as a function of time, indicating that indeed the simulation is accurately

computing the decay of b(t).

4.5.8 PDF evolution

In this section, the evolution of the pdf of density and of velocity are presented.
Comparison between the nearly constant-density case (density ratio = 1.02) and the
variable-density case (density ratio = 4) will be made. Again, the initial velocity
fields used for both cases are nearly the same with modifications to take into account

the divergent velocity condition.

FEvolution of the density PDF

Knowledge of the pdf of the density field is important in helping to understand the
mixing behavior of the density field. It has been observed that, in the mixing of
passive scalars which have been initialized with a bimodal distribution [60, 30}, the
scalar pdf’s evolve toward a Gaussian distribution. As the fluids continue to mix the
final state of the scalar field should be a delta function at the mean of the initial
scalar field, representing a completely mixed fluid.
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Figure 4.27 shows the evolution of the density field pdf for both the variable-
density (solid curves) and nearly constant-density (dashed curves) cases. The plot
show the probability of a given pdf as a function of the fluid density. The horizontal
axis is labeled with two density values, one for the variable-density case and the
other for the nearly constant-density case. The initial pdf’s for both cases have the
same shape because the two initial density fields are similar, the difference being
that the fluctuations have been scaled to give a variable-density field in one case,
and a nearly constant-density field in the other. As a result, axes of the plot for the
nearly constant-density field can be scaled and compared with the variable-density
case. Initially the two pdf’s are the same. As time evolves the bimodal distribution
approaches a Gaussian distribution as the initially separated fluids become more
thoroughly mixed. The time increment between curves is 0.5. By ¢ = 1.0 the density
field has lost its bimodal distribution, and the pdf has a nearly semi-circle distribution.
From this plot it is seen that the evolution of both density fields are nearly identical,
the only noticeable difference being that the pdf for the variable-density is slightly
skewed positive to the mean density value of 1.

Defined in section 4.5.2 is the variance of the density field. The square-root of the

variance is the standard deviation and is a measure of the width of the probability
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Figure 4.27: Density pdf evolution for Run 55 and Run 55a

density. Figure 4.19 shows that the variance for these density fields decays rapidly for
t < 2. Thus, the standard deviation also decays rapidly during this time. This is seen
in the pdf as it is during this time the bimodal distribution approaches a Gaussian
shape.

A measure of whether or not the pdf is Gaussian is the third and fourth moments of
the fluctuating density field. The third moment nondimensionalized by the standard
deviation is known as the skewness, and is a measure of the lack of symmetry of the
pdf. The skewness is defined as

oo N
Sy = 513 /_ oO(p’)?'P(p')dp’ ~ % {% :L;l (p— 5)3} :
For a probability density function that is Gaussian, the skewness is zero. The fourth

moment nondimensionalized by the standard deviation is known as the kurtosis, some-
times referred to as the flatness factor, and is a measure of the broadness of the

probability density. The kurtosis of the fluctuating density field is defined as

Ky = o [P~ o {55 -9},

For a probability density function that is Gaussian, the kurtosis is three. Figure
4.28 shows the skewness and kurtosis of the fluctuating density field as functions of
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Figure 4.28: Evolution of the skewness and kurtosis of the density field for Run 55a

time for the nearly constant-density case. The density field has very little skewness
and the kurtosis is very nearly three at late times, indicating that the fluctuating
density field is indeed nearly Gaussian. Figure 4.29 shows the skewness and kurtosis
of the fluctuating density field as a function of time for the variable-density case. The
density field indeed has some skewness to it, though it is small. Also, the kurtosis is
very nearly three for late times, again indicating that the fluctuating density field is
approaching a Gaussian form.

Evolution of the Velocity PDF

In this case where the initial velocity and density fields are statistically independent
the statistical behavior of the flow is nearly the same for the nearly constant-density
field and the variable-density field. Figure 4.30 shows the evolution of the pdf of
the velocity magnitude at three times, where the velocity magnitude is defined as
[u| = (u?+v"2 +w)2. At t = 0 the pdf is the same for the two cases. At ¢ = 3 (the
last time shown), the velocity field pdf is still essentially the same. The case with the
density ratio = 4 is slightly skewed to the positive side of the mean. This skewness is
so small, however, that it is not clear whether it is due to statistical error or whether

it is a true effect of variable density.
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Because there is a difference in the momentum fields between the nearly constant-
density case and the variable-density case, it is anticipated that the pdf of the mo-
mentum magnitude divided by 7 for the two cases will be quite different. Figure 4.31
shows the evolution of the pdf of the momentum magnitude divided by 7 for the same
three times that are given for the velocity field. The momentum magnitude divided
by 7, loul/p, is defined as |pul/p = {(pv)? + (0v')? + (pw')?}/?/p. Clearly, at ¢ =0
there is a difference for the two cases. For the nearly constant-density case (dashed
curve) the initial momentum divided by p pdf is very nearly Gaussian and in fact is
the same as the initial pdf for the velocity field for that case. For the variable-density
case there is a larger peak about the mean momentum, and “tails” that are of larger
value than that of the nearly constant-density case. As time evolves the pdf’s become

nearly the same as the density variations tend to zero. At t = 3 (an early time in the

simulation) the pdf’s are essentially identical.

4.8.4 Spectral Statistics

In this section are discussed spectra of B(t) = g/’ /P, b(t) = —p'v" and of the square
of the velocity divergence, i.e., (8u!,/8z,)2. For the nearly constant-density case the
spectra of B(t) and b(t) should be the nearly same as the density fluctuations are
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Figure 4.32: Density self-correlation and negative density-specific volume correlation

spectra for Run 55a

small about the mean density. Figure 4.32 shows the spectral evolution of B(t) and
b(t) at four different times for Run 55a. The initial spectrum for b(t) is not shown
as it is negative at some wavenumbers. At all the other times shown, the spectra for

these two quantities are essentially the same.

It has already been shown the b(t) and B(t) for the variable-density case start out
different, but, as the density fluctuations decay, these two terms become nearly the
same. This may also be seen in the spectra of these quantities because, as the density
fluctuations tend to zero, b(t) can be approximated by B(t). Figure 4.33 shows the
spectral evolution of B(t) and b(t) for the variable-density case for the same times as
for the nearly constant-density case. Again the initial spectrum for b(t) is not shown.
However, at t = 1.25 and t = 2.5 there are clearly differences in the spectra. These
differences are small by ¢ = 3.75 as the density fluctuations are becoming small about

their mean.

Figures 4.34 and 4.35 show the spectral evolution of (8uj,/8z,)* for the nearly
constant-density case and the variable-density case, respectively. From these two
figures it is seen that the velocity field divergence is largest at the small scales (high

wavenumbers) as the spectra have a maximum at a wavenumber of about 23 for
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spectra for Run 55

t > 1.25. Between t = 0.0 and ¢ = 1.25 there is a build up at the higher wavenumbers.
After this time there is full spectrum decay at all wavenumbers. From Figs. 4.34
and 4.35, it appears that the spectral evolution of (0u/,/8z,)? for the two cases are
nearly the same within a constant factor. This may be expected as the velocity field
divergence is related to the density field through the compressibility condition given
by eq. (2.11). As the initial density fluctuations are larger, so also is the velocity field
divergence. Figure 4.36 shows the spectra for the two cases, with the nearly constant-

density case scaled by the ratio of the spectrum of b(t) (defined here as < b >) for

the two cases. With this scaling the spectra for the two cases are almost identical.

4.6 Summary

Presented in this chapter are the results of the isotropic decay of a nearly constant-
density (Run 55a) turbulent flow and a variable-density (Run 55) turbulent flow. For
each case the initial velocity and density field are statistically independent. Com-
parisons are made between the results for the nearly constant-density case and the
results of Mell, who used the same initial velocity field to study closure models for

nonpremixed turbulent reacting flows. This comparison shows that, in the limit as
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Figure 4.36: Spectra of the square of velocity divergent field for Run 55 and scaled
for Run 55a

the density fluctuations tend to zero, the numerical scheme used in this study is able
to produce results that are consistent with known results. It was also shown by Mell
[60] that his results are consistent with laboratory isotropic grid-turbulence. This
comparison gives us confidence in our numerical scheme.

Comparisons are also then made between the nearly constant-density results and
the variable-density results. This comparison shows that, for this case in which
the initial velocity and density field are statistically independent, the presence of
variations of density has little effect on the overall statistical decay behavior of the
flow. For the case with large initial density fluctuations, the decay of the total
turbulent kinetic energy density closely follows the decay of the mean-square velocity.
This is due to the fact that pulu! is initially zero and, for the conditions of the
flow, remains small such that it has little effect on the decay processes. It is seen
that, in the variable-density case, the triple correlation term does grow to a small
amount. However, because the flow is at low Reynolds number and dominated by
viscous effects this triple correlation remains small. It has been seen in the course
of this study (described in the following chapter) that, if this triple correlation is
nonzero, the decay of the turbulent velocity and density fields are affected by the
fluctuations in density. The statistics presented are all averaged quantities of second
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order moments or higher. And though the results showed that the decay processes
are almost unaffected by the presence of variable-density , this does not prove that
on a pointwise basis the turbulent field showed no effect of the variations in density.
To test differences on a pointwise basis we computed correlation coefficients between
the two turbulent flows for the three components of the velocity, the density and the
pressure. The correlation coefficient for a given quantity is given as

015502550

—5——5 "
12 12
Q55 (554

Co =

where 55 is the quantity o from Run 55 (variable-density case) and 55a is the quantity
« from Run 55a (constant-density case). Figure 4.37 shows the correlation coefficients
of three components of the velocity field (solid line curves), the density field (dashed
curve), the fluctuating density field (solid line with x’s), and the pressure field (solid
line with e’s). At ¢ = 0 the correlation coeflicient for the velocity and fluctuating

density fields are equal to one. For early times, ¢ < 3, the correlation coefficients
rapidly change. During this time the velocity and fluctuating density fields for the two
cases quickly become uncorrelated. The correlation coefficient for the initial density
field is 0.9, and as the fluctuating density field rapidly decays, the two density fields
become highly correlated.

For times ¢ > 3, the correlation coefficients vary more slowly. This corresponds
to the times when the density fields of the two cases are highly correlated. The
decorrelation of the velocity field must be due to density differences as the initial
density is the only difference between the two cases. These coefficients show that the
flow behavior, on a pointwise basis, is affected by the density changes. The question
is then: how can variable-density effects be felt on the averaged statistics of the flow?
It will be shown in the next chapter that if pulu! is allowed to develop, statistical
differences occur. The next chapter describes an initialization scheme that imparts a
statistical dependence between the initial density field and the initial velocity field,

producing fields that have puju! initially nonzero. The effects of p'ulu) initially
nonzero on the decay behavior of variable-density turbulence is studied.
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Chapter 5

ISOTROPIC DECAY OF STATISTICALLY DEPENDENT
INITIAL VELOCITY AND DENSITY FIELDS

5.1 Introduction

Two characterizations of the initial velocity and density fields were discussed in Chap-

ter 4. In the first, the initial velocity and density fields are statistically independent.
Results from simulations of decaying, isotropic, variable-density turbulence using this
characterization were presented. In particular, it was shown that, when the initial

fields are statistically independent, so that the triple correlation, E’ug_ug, is initially
zero, this triple correlation remained small. It was observed that the behavior of
statistical quantities of the flow were relatively unaffected by the density variations.

In the second characterization, the initial velocity and density fields are statisti-
cally dependent. This statistical dependence is discussed in this chapter. Also, results
of several simulations of decaying, isotropic, variable-density turbulence using the sec-
ond characterization are presented and discussed. By initializing the flow simulations
with an initial velocity field that is statistically dependent on the density field, it will
be shown that this triple correlation is initially nonzero and, as a result, may have

an important effect on the behavior of variable-density turbulent flows.

Presented in this chapter are the results of two types of initial variable-density
fields. The first set of results are obtained using the initial bimodal pdf density field;
these are runs Iso3 to Iso8 computed on a 128% computational grid. The second set of
results are obtained using an initial variable-density field having density fluctuations
which have a Gaussian distribution about the mean density, and are computed on a
643 grid.

5.2 Initialization of the Velocity and Density Fields

It is not possible to use velocity field “3u” (which was created and used by Mell
[60] and used in our study presented in Chapter 4) for this study of statistically
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dependent fields because this velocity field is statistically independent of the density
fields we are studying. We use, however, the initial energy spectrum from velocity
field “3u” to create, using the method of Orszag and Patterson [65], an initial random
velocity field. This random velocity field is created such that the fluctuations have
a normal, Gaussian distribution about the its mean and are statistically dependent
on the initial density field (discussed briefly below in Section 5.3). By using the
method of Orszag and Patterson, the initial velocity field has random initial Fourier
amplitudes and phasing. A description of the procedure that initializes a velocity
field that is statistically dependent on the density field is described briefly below in

Section 5.3 and in more detail in Appendix C.

There are two type of statistical dependence utilized in the study presented in
this chapter. In the first case the large velocity magnitudes are associated with
positive density fluctuations (and, correspondingly, small velocity magnitudes are
associated with negative density fluctuations). Therefore, on the average the heavier
fluid has larger velocity magnitudes and the lighter fluid has smaller ones. In this
case the triple correlation, puful, will be initially positive since positive fluctuations
in density are associated with a larger value of ujuj. In the second case, large velocity
magnitudes are associated with negative density fluctuations (and, correspondingly,
small velocity magnitudes are associated with positive density fluctuations). Here,
the triple correlation, puluf, will be initially negative because on the average negative
fluctuations in density are associated with larger values of wju;. Table 4.1 lists the
initial velocity statistics for the statistically-dependent, initial variable-density fields

used in the simulations reported here.

For the first set of results presented in this chapter, the density field is initialized
using the method of Eswaran and Pope [30]. This method creates an initial density

field that conforms approximately to a double-delta pdf, where the initial fluid consists
of regions of either high or low density typified by an integral length scale of I, = 0.53
(see section 4.3), which is roughly half the velocity integral scale. This method was
describe briefly in Chapter 4 and in detail in Appendix D, so it will not be repeated
here. The second set of results presented in this chapter uses a random initial density
field created such that the density fluctuations have a Gaussian distribution about
the its mean value of one. The details of this initialization scheme can be found in
Appendix D. Table 4.2 lists the initial density field statistics for the statistically-
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dependent, initial variable-density fields used in the simulations reported here.

Qualitative comparison between the results of the two types of initial density

fields will be discussed. The case of the bimodal density distribution represents
approximately two unmixed fluids, whereas the Gaussian distribution could represent
the late stages of flow development of the bimodal (unmixed) pdf case. It will be
shown that, due to the statistical dependence of the initial velocity on the initial
density field, for the bimodal case the pdf becomes asymmetric. As the density
fluctuations become smaller the asymmetry is reduced and the pdf’s evolve to a
nearly Gaussian form. It will be found for the case with initial Gaussian distribution
that, due to the Gaussian statistical nature, the effects of the fluctuating density are
not strongly felt (at least for the cases presented in this study).

5.3 Creating statistically dependent initial velocity and density fields

This section describes briefly how a velocity field is created that is statistically depen-
dent on the initial density field. For more detail the reader is referred to Section C.3
in the appendix. The first step in the initialization procedure is to use the method
of Orszag and Patterson [65] to create a vector field, A, that has random Fourier
amplitudes and phases. The initial energy spectrum from velocity field “3u” [60] is
used with the method of Orszag and Patterson in order to determine A. This random
vector field is then multiplied in real space by some function of the density, f (p), to
give A’ = 5( p)ff A’ represents the non-divergent part of the initial velocity field and
is now directly dependent on the initial density field. To obtain an initial velocity
field with large velocity magnitudes associated with low densities, the function f (p)
is defined to be f(p) = ca/p, where c4 is a constant (chosen to be 1 in this study).
This is referred to as Method A. To obtain an initial velocity field with large ve-
locity magnitudes associated with high densities, the function f(p) is defined to be
f(p) = cpp, where cp is a constant (chosen to be 1 in this study). This is referred
to as Method B. As the initial density fluctuations increase, so also does the initial
statistical dependence. The next step in this procedure is to rescale the velocity field
such that it has the desired energy spectrum. Finally, the velocity field is modified
to account for the non-divergent condition given by eq. (2.11).
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5.4 Results for the case with the initial bimodal pdf

5.4.1 Introduction

We now consider the case of a freely decaying, isotropic, variable-density flow where
the initial velocity field is statistically dependent on the initial bimodal density field.
As mentioned in a previous section (Section 5.2) there are two types of dependence
studied, one where large velocity magnitudes are associated with low densities (Run
Iso4) and the other where large velocity magnitudes are associated with the high
densities (Run Iso5). Because of this dependence, there will be nonzero values for the

triple correlation, p'wju;. The two variable-density problems (Iso4 and Iso5) each are

examined with an initial density ratio of 2.33.

To compare these cases (Iso4 and Iso5) to nearly constant-density results, a third
case (Run Iso3) is simulated with a density ratio = 1.02. In all of these cases, the
initial total turbulent kinetic energy, W/ 2, will have the same value of 1.32, which
is achieved by rescaling each initial velocity field by a constant value. This is discussed
in more detail in Section 5.4.3 below. Studied will be the decay processes and the
density pdf evolution. For these three cases the grid resolution is 1283.

Finally, two other cases are presented in order to examine the effect of statisti-
cal dependence when the initial density fluctuations are very small. In both cases,
the density ratio is 1.02. In one case (Run Iso6), the high velocity magnitudes are
associated with negative density fluctuations, while in the other (Iso8), high velocity
magnitudes are associated with positive density fluctuations. For these two cases the

grid resolution is 1283,

5.4.2 Nearly constant-density case

To provide a result for which the variable-density cases can be compared, a nearly-
constant density case (Run Iso3) is simulated using an initial density ratio of 1.02.
By using Method A for this case, the initial density fluctuations and kinetic energy
(per unit mass) are positively correlated. Because the initial density fluctuations are
small, the triple correlation p/ulu is initially nearly zero. In this case the density field
should act as a passive scalar.

Because the initial energy spectrum and viscosity used in this study are the same

as for the statistically independent fields reported in Chapter 4, the initial Taylor
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Reynolds number is Ry = 54.9. The initial velocity field is nearly in full spectrum
decay, although there is a small build-up phase where there is growth of energy at

the high wave numbers prior to decay at these wave numbers.

Decay of the turbulent kinetic energy

In this section the decay behavior of the total turbulent kinetic energy density is
investigated. The terms of the total kinetic energy density is described by eq. (4.2).
For isotropic decay the pa,a,/2 term is zero since scalar-velocity correlations are
zero. Figure 5.1 is a plot of the components of the generalized Reynolds stress tensor,
R, (twice the total kinetic energy density) as a function of time, ¢{. Here ¢ is the
computational time divided by the initial large eddy turnover time, u,/l, (where
uo = (uful/3)V/? at t = 0 and I, is the initial velocity integral scale). For this
nearly constant density case, p'uu! is initially small compared to 7 u/u} and remains
nearly zero throughout the evolution of the flow. Thus, as seen in the results of
Chapter 4 for nearly constant-density flows, the total turbulent kinetic energy density
is approximately equal to 7 u/u}/2 as the pulu’/2 is nearly zero. The decay of the total
turbulent kinetic energy density is given by eq. (4.4) written here for homogeneous

flow as

o (1 _ B 0%
57 {7} = P, +
The first term on the right side is the pressure-work term due to dilatational effects.
The second term represents changes in the total turbulent kinetic energy due to the
viscous dissipation rate. Figure 5.2 shows the evolution of each term of this equation.
The pressure-work term is small for this case so that the decay of total kinetic energy
density is due to viscous dissipation.

Figure 5.3 shows the time scale for the decay of the total kinetic energy density,
given by eq. (4.6), as a function of time. For times later than 1, the time scale is
growing nearly linearly, indicating that the decay of the energy is following a near
power-law behavior. Curve fitting suggests that the power-law exponent in this case
is 1.7.

Figure 5.4 shows the velocity-derivative skewness [given by eq. (4.10)] for all three

directions as a function of time. Initially it is zero, reflecting the fact that the spectral
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Figure 5.1: The evolution of R,, for Run Iso3
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Figure 5.2: Terms in the evolution equation [eq. (4.4)] for the total kinetic energy
density for Run Iso3
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Figure 5.3: Time scale of decay for the total kinetic energy density for Run Iso3

energy transfer is initially zero [72], due to the initialization method, which forces
the wave number amplitudes to be statistically independent. The transfer spectrum
quickly builds up as the initial velocity field properly adjusts, and hence the velocity-
derivative skewness builds up to values typical of laboratory grid turbulence, and are
consistent with the results reported in Chapter 4.

Decay of the density fluctuations

In this section is described the decay of the density fluctuations for this nearly
constant-density case. For this case, the evolution of b(t) = —p'v’ should be nearly
the same as the evolution of B(t) = p'p/p%. Figure 5.5 shows the evolution of these
quantities as a function of time, demonstrating that these two quantities evolve nearly
identically. As in the results shown in Chapter 4, the decay of the density field is fast
for early time, and by ¢ = 2 the variance of the density field is about 10 percent of
its initial value. Figure 5.6 shows the dissipation rate for b(¢). The increase in ¢, for
time less than 0.5 is due to convective mixing, which increases the density gradients.

For times larger than 0.5 the decay of ¢, is due to molecular mixing.

Figure 5.7 shows the skewness and kurtosis for the density field. The density field
is not skewed at early times and becomes slightly skewed at late times. The kurtosis
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Figure 5.4: The velocity derivative skewness for the three components of velocity for
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Figure 5.5: Evolution of b(t) = —p'v" and B(t) = ¢/p'/p* for Run Iso3
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Figure 5.6: Dissipation rate evolution for b(¢) = —p™v’ for Run Iso3

starts out at 1.5 and grows to a nearly constant value of 3.5. With the density field
slightly skewed and its kurtosis not equal to 3, the field is not quite Gaussian. Figure
5.8 shows the evolution of the pdf of the density field from ¢ = 0 to ¢ = 4 in steps
of 0.5. The pdf evolves in a nearly symmetric manner towards a nearly Gaussian
form. The evolution is very similar with the results presented in Chapter 4 for the

statistically independent initial fields, which also show the evolution of the pdf of the

density field towards a nearly Gaussian distribution.

Energy Spectrum evolution

Figure 5.9 shows the evolution of the energy spectrum (i.e., energy per unit mass,
ul,ul,/2) in time increments of 1 from the initial time to ¢ = 10. The initial spectrum
is the same as for the simulations presented in Chapter 4. The evolution of the spectra
for this nearly constant-density case is very similar to the energy spectrum evolution
for the statistically independent case. This is expected since the initial energy spectra

for the two cases are the same.
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Figure 5.9: Energy spectrum evolution, ¢t = 0.0 to 10.0 by 1.0, for Run Iso3

Conclusions of this nearly constant-density case

It has been seen that the decay process of this nearly constant-density case, where
the initial velocity and density are statistically dependent, are similar to the results
for the statistically independent initial fields. The reason for this is two-fold; first,
these simulations have the same spectral shape for the initial velocity and density
fields, and second, the initial density fluctuations are small. By using of the initial
spectral shape of Mell’s velocity field, “3u”, we are able to create an initial velocity
field that is dependent on the density field, and with initial statistics similar to the
initial velocity fields used in the study of Chapter 4. The nearly constant-density case
presented here provides a comparison for the variable-density, statistically-dependent

cases studied in the following sections.

5.4.3 Cases with large initial density fluctuations

In this section, two decaying, isotropic, variable-density turbulence cases will be pre-
sented. Both have initial density ratios of 2.33. In the first case, Run Iso4, the
velocity field has large magnitudes where the density is low (i.e., where the density
fluctuations are negative) and in the second case, Run Iso5, the velocity magnitude is

large where the density is high (i.e., where the density fluctuations are positive). The
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initial total turbulent kinetic energy density for these two cases is the same as for the
nearly constant-density case presented in the previous section, which is achieved by
rescaling the initial energy per unit mass for each case. The effects of this rescaling
can be seen in the initial spectrum of v, u;,/2 for Runs Iso3, Iso4 and Iso5, shown in
Fig. 5.10. For Run Iso4, the initial spectrum has slightly higher values than for the
other two cases, while for Run Iso5, the initial spectrum has slightly lower values than
for the other two cases. Figure 5.11 shows the initial total kinetic energy spectrum,
< pujul, > /2, for these three cases. All three of these initial spectra integrate to give
the same initial value for pu! u/ /2. For Run Iso4 the initial spectrum is slightly larger
than for the other two cases at the small wavenumbers and slightly smaller than the
other two cases at the higher wavenumbers. For Run Iso5 the initial spectrum is
slightly smaller than for the other two cases at the small wavenumbers and slightly
larger than the other two cases at the higher wavenumbers. Figure 5.12 shows the
initial spectrum of p'u; u; /2 for all three cases. For the nearly constant-density case,
Run Isom3, the 1n1t1a1 spectrum is small compared to the other two cases. For the
case with large initial density fluctuations, where the large velocity magnitudes are
associated with the negative density fluctuations, Run Iso4, the initial spectrum is
negative. For the case with large initial density fluctuations, where the large velocity
magnitudes are associated with the positive density fluctuations, Run Iso5, the initial
spectrum is positive.

The results for these simulations will be presented first as a comparison between

all three cases, and then each of the variable-density cases will be studied individually.

Decay of the turbulent kinetic energy for the three cases

The total turbulent kinetic energy density for the two variable-density cases and the
nearly constant-density case, given by eq. (4.2), is plotted as a function of time in
Fig. 5.13. The nearly constant-density case is shown by the solid line curve, the
variable-density case Isob is shown by the “small” dashed curve, and cases Iso4 is

shown by the “large” dashed curve. Initially all three of these cases start with the
same turbulent kinetic energy density. At very early times, the turbulent kinetic
energy decays fastest for case Iso4 and slowest for case Iso5 (i.e., for ¢t < 0.2). The
reason for this observed behavior is due to the difference in the initial dissipation

rates for the three cases. To ensure that the initial total turbulent kinetic energy
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Figure 5.12: Initial spectrum of p'u,u;,/2 for Run Iso3, Iso4 and Iso5

for all three cases is the same, the initial velocity fields need proper re-scaling. For
case Iso5, the initial velocity field needs to be re-scaled downwards to a lower mean-
squared velocity, p uiul/2, value so that the total turbulent kinetic energy density,
pulal /2, is initially the same as that of the nearly constant-density case. For case
Iso4, the initial velocity field needs to be re-scaled upwards. This can be seen in Fig.
5.14 which shows 7 u/,u/,/2 as a function of time for all three cases. Initially, 7 uju} wlul/2
is the largest for case Iso4 and smallest for case Iso5. As the result of this re-scaling of
the initial velocity field, the initial dissipation rates for these three cases are different.

Figure 5.15 shows the dissipation rate for the turbulent kinetic energy per unit
mass for variable-density flows, defined for homogeneous flows [87] as [10]

€=2v Si5Sij
where v is assumed constant, and s;; is the fluctuating rate of strain, defined by,
1[0y, Ou;
Sii =5 | 5a— -+ .
2\0z; O

This figure shows that the initial dissipation rates of the turbulent kinetic energy per
unit mass are different for the three cases. The dissipation rate for Iso4 is the largest
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Figure 5.13: Total turbulent kinetic energy density evolution for Runs Iso3 (nearly
constant-density), Iso4 (light fluid moving fast) and Iso5 (heavy fluid moving fast)
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Figure 5.14: Evolution of p ufu/, for Runs Iso3 (nearly constant-density), Iso4 (light

fluid moving fast) and Iso5 (heavy fluid moving fast)
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Figure 5.15: Total kinetic energy density dissipation rate for Runs Iso3 (nearly
constant-density), Iso4 (light fluid moving fast) and Iso5 (heavy fluid moving fast)

due to the initial velocity field having the largest mean squared-velocity. Likewise,
for Iso5, the dissipation rate is smallest due to the initial velocity field having the

smallest mean squared-velocity. The dissipation rate for Iso4, however, quickly (for
t < 0.2) becomes smaller than for the other two cases. As a result, the total kinetic
energy density for this case decays slightly slower than for the other two cases (see
Fig. 5.13). The dissipation rate for Isob quickly (¢ < 0.2) becomes largest. As a
result, the total kinetic energy density for this case decays faster than for the other
two cases (see Fig. 5.13). This can be seen more clearly in Fig. 5.16 which shows the
time scale for the decay of the total kinetic energy density for these three cases. At
times less than 0.2 the time scale is largest for Isob and smallest for Iso4. After this
time and up to a time of about 2.4, the time scale of decay is largest for Iso4 and
smallest for Iso5. After a time of 2.4 the nearly constant-density case, Iso3, has the
largest time scale of decay.

Figure 5.17 shows the decay of pu/u/,/2 as a function of time. In the nearly
constant-density case, this triple correlation, p'ulu/, /2, is nearly zero due to the small
density fluctuations. In the variable-density cases the triple correlation terms are
initially nonzero, being positive for Iso5 and negative for Iso4. This triple correlation
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Figure 5.16: Total kinetic energy density time scale for decay for Runs Iso3 (nearly
constant-density), Isod (light fluid moving fast) and Iso5 (heavy fluid moving fast)

decays faster for case Iso5 than for Iso4. When these triple correlations have decayed

away, the mean squared-velocity term is equal to the total kinetic energy density [see
eq. (4.2)].

Fast moving, light density case

In this section is discussed in more detail the energy decay for case Iso4. Equation
(4.4) is the evolution equation for the total kinetic energy density, pujup,/2. Figure
5.18 contains plots of each term of this equation as a function of time for Run Iso4.
This plot shows that the decay of total kinetic energy density is due to viscous
dissipation, as dilatation effects are negligible.

To study the evolution behavior of the total kinetic energy in more detail, evolu-
tion equations can be written for each term of the total kinetic energy density, i.e.,
for each term on the right side of eq. (4.2). The evolution equation for p w2 is

given as (for statistically homogeneous flow)

14 ou 0 ul, 015
R B (5.1)

p Oz, '0-/76:1:]- ’
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Figure 5.17: Evolution of p'u/ul for Runs Iso3 (nearly constant-density), Iso4 (light
fluid moving fast) and Iso5 (heavy fluid moving fast)
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Figure 5.18: Terms in the evolution equation [eq. (4.4)] for total kinetic energy
density for Run Iso4
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Figure 5.19: Contributing terms in the evolution equation for 7 ufu}/2 [eq. (5.1)] for
Run Iso4

The first term on the right side, B, represents production/destruction of the mean-
squared velocity due to dilatation/contraction effects and vanishes in an immiscible
problem. The second term, C, is a modified pressure-work that acts against the
turbulence. The third term, D, represents the destruction of turbulence due to viscous
effects. Figure 5.19 plots each term of eq. (5.1) as a function of time. The decay
of p mﬂ is mostly due to viscous dissipation. The modified pressure-work term
slightly dampens the decay of p u/u/,/2 and there is a small increase in the energy
decay rate from term B.

The evolution equation for p'u,u,,/2 is

9 ﬁ‘T} .., 0w pup OP  plup, 0Ty
iy =—7 _ Pl . 5.2
ot {2'0 Un'in P Unn oz; p Oz, + p Oz (52)
\——,——-—J “ ', ~ W] \ -~ ,

A B C D

Figure 5.20 plots each term of eq. (5.2) as a function of time. The decay of m/ 2
is, again, mostly due to viscous dissipation. The decay is dampened by the pressure-
work term and there is an enhancement from dilatation effects.

Figure 5.21 shows a two dimensional slice of the x-y plane for run Iso4 at ¢ = 0.75.

The horizontal axis is the x-direction and the vertical axis is the y-direction. The
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Figure 5.20: Contributing terms in the evolution equation for p'vwju}/2 [eq. (5.2)] for
Run Iso4

color field represents values of density with the orange being the heaviest and the
purple being the lightest. The other colors represent a mixture of the two fluids with
the green being the mean density. The contours are of the fluctuating pressure field
with the solid lines representing positive fluctuations and the dashed lines represent-
ing negative fluctuations. The vectors give the magnitude and direction of the x-y
velocity. The scale difference between the initial density field and the initial velocity
field is evident, as it appears that the eddy size is somewhat larger than the density
“blob” size. In this case, where the large velocity magnitudes are initially associated
with the negative density fluctuations, the regions of higher velocities are to some
extent associated with the low density regions and regions of the mixture of the two
fluids (i.e., the interface between the heaviest and lightest fluids). Jetting occurs along
the interface because the interface is being squeezed by motion of the heavy and light
regions. The pressure field does not appear to be correlated with the density field,
though there does appear to be regions of mixed fluid that are associated with smaller
pressures. There are also regions between the heavy and light fluid where shearing
and entrainment occurs. The length scales of the larger density “blobs” appear to be
statistically similar to the length scales associated with the lower density “blobs”.
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Figure 5.21: Two Dimensional slice of the x-y plane for Run Iso4
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Fast moving, heavy density case

In this section is discussed in more detail the energy decay for case Iso5. Figure 5.22
contains plots of each term of the total kinetic energy density evolution equation [eq.
(4.4)] as a function of time for this case. The decay of total energy is mostly due to
viscous dissipation, although, the pressure-work term acts also as a small source for
decay at early times.

Figure 5.23 contains plots of each term of the evolution equation for p ulul /2 [eq.
(5.1)] as a function of time. This shows that the decay of p ulul,/2 is also mainly due
to viscous dissipation. The modified pressure-work term acts to dampen the decay at
early times and there is a small source for decay due to dilatation/contraction effects
from term B. For times greater than 1.5 all the decay is due to viscous dissipation.

Equation (5.2) describes the evolution of the triple correlation, p'ul,uf,/2 and Fig.
5.24 contains plots of each term for this triple correlation as a function of time. This
shows that, for times less than 0.25, the decay of this quantity is due to contributions
from the modified pressure-work, viscous dissipation and dilatation/contraction ef-
fects, the modified pressure-work term being the largest contribution. The decay due
to the modified pressure-work term occurs because there is a larger loss of energy due
to the decay of the density field in this case (where the large velocity magnitudes are
associated with the positive density fluctuations) than there is in the previous case
(where the large velocity magnitudes are associated with the negative density fluctu-
ations). More specifically, as the negative fluctuations decay, there is a dampening of
total energy decay because the decay of negative fluctuations represents an increase
in the density associated with that negative fluctuation.

Figure 5.25 shows a two dimensional slice of the x-y plane for run Iso5 at ¢ = 0.75.
The horizontal axis is the x-direction and the vertical axis is the y-direction. The
color field represents the density with the orange being the heaviest and the purple
being the lightest. The other colors represent a mixture of the two fluids with the
green being the mean density. The contours are of the fluctuating pressure field, with
the solid lines representing positive fluctuations and the dashed lines representing
negative fluctuations. The vectors give the magnitude and direction of the x-y ve-
locity. This case, where the larger velocity magnitudes are initially associated with
positive density fluctuations, the configurations appear to be quite different than for
the Iso4 case (see Fig. 5.21). The initial density fields for these two cases are the
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Figure 5.22: Terms in the evolution equation [eq. (4.4)] for total kinetic energy

density for Run Isob
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Figure 5.23: Contributing terms in the evolution equation for p uju}/2 [eq. (5.1)] for
Run Isob
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Figure 5.24: Contributing terms in the evolution equation for p'ulul/2 [eq. (5.2)] for
Run Isob

same so, in general, the structure is similar at this time for the two cases. For run
Iso5, however, the length scales associated with the density field are smaller. Also,
there are larger regions of mixed fluid. For this case (run Iso5), it appears that the
lower pressure is predominantly associated with higher densities. Again, there are
shear regions between the two fluids where entrainment appears to occur.
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Figure 5.25: Two Dimensional slice of the x-y plane for Run Iso5

99







101

Decay of the density fields

It was shown that the decay of b(t) = —p'v" and of B(t) = p/p//p* were approximately
the same for the nearly constant-density case. For the cases where the density fluc-
tuations are large, the decay of these two quantities are different. Figure 5.26 shows

the decay of these quantities for case Iso4: here b(t) is decaying faster then B(t) at
early times. At a time of ¢ = 1.5 in the simulation, however, the two quantities are
nearly the same, which is expected in the limit as the density fluctuations tend to
zero. In case Iso5, the decay behavior of b(¢) and B(%) is similar and is not presented
here. Figure 5.27 compares the decay of b(t) for both cases Iso4 and Iso5, showing
that b(t) decays slightly faster for case Iso4. This is because the dissipation for b(t)
is larger (at early times) for case Iso4, due to the larger initial mean square-velocity.
Recall that the decay of b(%) is driven by a correlation between the fluctuating specific
volume and the velocity divergence [see eq. (4.17)]; therefore, as the initial velocities
increase, so too does the initial dissipation rates of the density field. The decay of
B(t) for these two cases shows similar behavior and is not presented here. Figure 5.28
shows the evolution of the dissipation rate for b(t) as a function of time for these two
cases. At early times the dissipation rate for case Iso4 is larger, while at intermediate
times the dissipation rate for case Iso5 is larger and at late times the dissipation rates
are similar. For case Iso4, the dissipation rate peaks at an earlier time than case Iso5,

indicating that molecular mixing occurs sooner in that case.

Figures 5.29 and 5.30 show the evolution of the pdf of the density field for cases
Iso4 and Iso5. Comparing these two figures, the feature that immediately stands
out is the skewed behavior of the pdf’s as they evolve. For Run Iso4, the pdf is
skewed to the negative side of the mean density of 1. For Run Iso5, the pdf is
skewed to the positive side of the mean density of 1. The physical explanation for
this behavior possibly lies in the entrainment rates of the heavy and light fluid into
the mixing region. It has been observed (see, e.g., Dimotakis (1986) [28]) that, in
spatially growing shear layers, an unequal amount of fluid is entrained from each
of the freestreams, resulting in a mixed fluid that favors the high-speed fluid. The
first experiments to show this were the incompressible, variable-density shear layer
experiments of Brown and Roshko [15]. Brown showed [16} that the fluid associated
with the higher velocities had higher entrainment rates into the mixing layer. If the

low density fluid has higher velocity magnitudes (a case where p'u u}, is negative)
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Figure 5.28: b(¢) dissipation rate evolution for Runs Iso4 and Iso5

then the low density fluid will entrain faster into the mixing region than the high
density fluid. Likewise, if the high density fluid has higher velocity magnitudes (a
case where p'ul,u/, is positive) then the high density fluid will entrain faster into the
mixing region than the low density fluid. This behavior in variable-density shear
layers can explain the behavior of the skewed pdf’s of the density field shown here.
In case Iso4, the low density fluid has relatively larger velocity magnitudes so that

the triple correlation is negative and the entrainment rate of the low density fluid into

the mixing region (the interface between the two fluids) is larger then that for the

high density fluid. As a result the pdf of the density field evolves in a skewed manner
with the skew to the negative of the mean density. Likewise, in case Iso5 the high

density fluid has relatively larger velocity magnitudes so that the triple correlation is
positive and the entrainment rate of the high density fluid into the mixing region is
larger then for that of the low density fluid. As a result the pdf of the density field

is evolving with a skew to the positive side of the mean density.
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Figure 5.31: Spectral evolution of pu;u,,/2 for Run Iso4

Spectral evolution of the components of the kinetic energy density

The total turbulent kinetic energy density is given by eq. (4.2) as

1

-7 7 1_ 77 1 7 77
5PUL; = 5P Uit + 5P Uil

1
‘2‘Rii (t) = D)

for decaying, isotropic variable-density turbulence. Given in this section is the spec-

tral evolution of each term of this equation for runs Iso4 and Isob. Figures 5.31 and
5.32 show the spectral evolution of pul,u}, /2 for these cases at a sequence of times from
t = 0 to 3.5 in increments of 0.5. For run Iso4, the spectrum of pu,u,/2 is decaying
at all wavenumbers (i.e., full spectrum decay). For run Iso5, energy is building up the
high wave numbers for times less than 1 before the spectrum reaches full spectrum
decay.

Figures 5.33 and 5.34 show the spectral evolution of p'uyu,/2 for runs Iso4 and
Iso5 for a sequence of times from ¢ = 0 to 3.5 in increments of 0.5. For run Iso4, the
spectrum of p'ulul, /2 is negative at all wavenumbers. As this spectrum evolves the
values at each wavenumber decreases with time just as the spectrally integrated value
of this spectrum, pulu, /2, decays in time. For run Iso5, the spectrum of p'upuy,/2
is positive at all wavenumbers except at k = 2 where it is slightly negative. At the
next time given, ¢ = 0.5, the maximum of the spectrum has decreased and there has
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Figure 5.32: Spectral evolution of pu/,u;,/2 for Run Iso5

been a slight increase at the high wavenumbers. Also, the minimum in the spectrum

is at a larger negative value that at the initial time given. After this time the values

of the spectrum are decaying to zero at all wavenumbers.

5.4.4 Case with a nearly constant density initially strongly dependent on the velocity
field

In this section are described the results of two nearly constant-density cases with an
initial density ratio of 1.02. The initial density fields for both cases are the same.
The first case is Run Iso6. The initial velocity field used in this case is the same
velocity field used in Run Iso4, so that the velocity is weighted such that the large
velocities are associated with the negative density fluctuations and the statistical
dependence is strong between the initial velocity and density fields. This is the same
as initializing the velocity fields using Method A (see Section C.3 in the appendix)
with A" = A/(p+60p') where 7 is the mean density and o are fluctuations about the
mean. In the second case, Run Iso8, the initial velocity field is the same that is used
in Run Iso5 and has a strong statistical dependence on the initial density field and
weighted such that the large velocities are associated with positive fluctuations of the
density. This is the same as using Method B (see Section C.3 in the appendix) with
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Figure 5.35: Total energy evolution for Runs Iso4 (large initial density fluctuations)
and Iso6 (small initial density fluctuations). Both cases have strong initial statistical
dependence such that the large velocities are associated with the negative density
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A" = (p+60p)A. The initial velocity field and density field statistics are given in
Table 4.1. Comparisons of the total turbulent kinetic energy evolution will be made
between runs Iso4 and Iso6 and runs Iso5 and Iso8. The evolution of the pdf’s of the
density field for runs Iso6 and Iso8 are also examined.

Because the density fluctuations are small in runs Iso6 and Iso8, the density field
should behave as a passive scalar and not have strong effect on the energy decay
processes of the flow. Figure 5.35 shows the evolution of the kinetic energy density,
K(t) = pul,ul,/2p, for runs Iso4 and Iso6 and the evolution of u/u! /2 for run Iso4.
K(t) is not the same for both cases since the density fields are initially different. Also,
K(t) for case Iso6 and u/,ul, /2 for case Iso4 are initially the same since the velocity
fields are initially nearly the same and the density fluctuations are small for case Iso6.
From this figure is seen that, as the flows evolve K(t) for case Iso6 approaches that
of case Iso4. This occurs at a time at which the large density fluctuations in run Iso4
have decayed appreciable (approximately ¢ = 2).

Figure 5.8 shows the evolution of the pdf of the density field for run Iso3, which

has an initially weak dependence between the velocity and density fields. In this
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Figure 5.36: Total energy evolution for Runs Iso6 (large initial density fluctuations)
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nearly constant-density case, where the initial velocity and density fields had only a
small statistical dependence, the pdf evolves nearly symmetrically about the mean
density. Figures 5.37 and 5.38 show the evolution of the pdf’s of the density fields
for runs Iso6 and Iso8, which initially has a strong dependence between the velocity
and density field, though the initial fluctuations are small. These figures show that
there is a significant effect on the evolution of the pdf due the the dependence of the
velocity on the initial density field. The pdf for the case where the large velocity
magnitudes are associated with the negative density fluctuations (Iso6) is strongly
skewed negative of the mean value. For the case where the large velocity magnitudes
are associated with the positive density fluctuations (Iso8), the pdf is strongly skewed
positive of the mean value. The evolution of the pdf’s of these density fields, which
are essentially passive, looks remarkably similar to the analogous evolution for runs
Iso4 (see Fig. 5.29) and Iso5 (see Fig. 5.30), which initially have large density
variations. Since the density fluctuations are small in runs Iso6 and Iso8, the triple
correlation terms, p/ul u/,, are also very small. The statistical dependence is such that,

for run Iso6, the large velocity magnitudes are associated with the negative density
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Figure 5.37: Density pdf evolution, £ = 0.0 to 1.5 by 0.25, for Run Iso6

fluctuations (i.e., the low density field) so that the triple correlation term, p'u/u!,
is slightly negative (though very small). It has been argued in the previous sections
that, for this situation, the skewness seen in the pdf is due to a higher entrainment
rate for the low density fluid into the mixing region than for the high density fluid.
Likewise, for run Iso8, the statistical dependence is such that the large velocities are
associated with the positive density fluctuations (i.e., the high density fluid) so that
the triple correlation term, pulul, is slightly positive (though also very small). It
has also been argued that for this situation the skewness seen in the pdf is due to a
higher entrainment rate for the high density fluid into the mixing region than for the
low density fluid. This same explanation appears to hold, even though the density
fields are basically passive. This is not surprising as the this entrainment behavior is

seen in spatially evolving constant density mixing layers [16, 28].

5.5 Results for initial Gaussian pdf’s

In this study, the effects of using initial density fields that have a Gaussian distribution
(see Appendix D for initialization procedure) instead of a bimodal distribution are
also addressed. The results of this work are not presented, however, because no new

conclusions are contributed. The effects observed using the bimodal distribution are
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Figure 5.38: Density pdf evolution, ¢ = 0.0 to 1.5 by 0.25, for Run Iso8

also present in the results using the Gaussian distribution. The effects of large density
fluctuations seen in the results with the initial bimodal density pdf distribution are
not as strong when the Gaussian distribution is used. When the density field has
a Gaussian distribution, the most probable density is the mean density itself. The
mean density in this study corresponds with a completely mixed fluid, and the density
field is at a constant density. The bimodal distribution is different in that the most
probable density is either a high density or a low density, or some value in between
depending on the stage of the flow in the mixing process. At late times, the initial
bimodal distribution evolves to a nearly Gaussian form, and it can be argued that
a Gaussian distribution represents the late stages of the mixing of a bimodal scalar
field.

5.6 Summary

The results presented in this chapter clearly identify the importance of the triple
correlation term, pulul, on variable density flow. In Chapter 4, cases where the
initial velocity and density fields were statistically independent were examined. It
was shown that the triple correlation was initially nearly zero and did not grow to a
large enough value to effect the statistical behavior of the decay. In this chapter, a
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statistical dependence was initially imparted between the velocity and density fields
and flow was examined. The triple correlation term is initially nonzero, its sign
dependent on the type of statistical dependence. A positive sign indicates that the
higher velocity magnitudes are associated with the larger density, while a negative
sign indicates that the higher velocity magnitudes are associated with the smaller

density.

Some conclusions can be drawn from this study of the isotropic decay of variable-
density turbulence when compared with a decaying, isotropic constant-density turbu-
lent flow. If, for both cases, the initial total turbulent kinetic energy densities are the
same, the initial energy dissipation rates are different and depend on the statistical
dependence between the velocity and density fields. If the triple correlation, g'u/ ul,,
is initially negative, the energy dissipation rate is the highest, while the case where
the triple correlation is positive has the smallest energy dissipation rate.

It has also been seen that the pdf of the density field is not symmetric about the
mean density and it is argued that this is due to different entrainment rates for the
high and low density fluids into the mixing region (the mixed interface between the
two fluids). This conclusion is based on analogy to numerous shear layer results (see
e.g., Dimotakis (1986) [28]), the first of which are the results of Brown [16] in his study
of the Brown and Roshko [15] variable-density mixing layer experiments. These shear
layer studies showed that a spatially-growing shear layer entrains an unequal amount
of fluid from each of the free streams, which results in a mixed fluid composition
that favors the high-speed fluid. It has been seen in the results presented in this

dissertation that the sign of the triple correlation, pu/u!, reflects this entrainment

rate behavior.

Another important result has implications for passive scalar problems. If the
velocity field is statistically dependent on density field but the density fluctuations are
small so that the density field is passive, the pdf of the density field is not symmetric
about its mean value. It is easily imagined that one could create a passive scalar
experiment where there is a statistical dependence between the velocity and density
fields.

Finally, it has been observed that, if the initial density field has a Gaussian dis-
tribution instead of a bimodal distribution, the same general effects as described in
this chapter hold. However, for the cases studies, the Gaussian distribution results
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observed are not as strong as in cases which have a bimodal distribution, even though
the maximum density fluctuations were nearly equivalent in both cases. This has im-
plications regarding the modeling of variable-density turbulence because inherent in
most turbulence models is the assumption that the various quantities are Gaussianly
distributed. It has also been seen that the pdf of the initially bimodal density field
evolves towards a nearly Gaussian form (skewed and non-skewed depending on the

statistical dependence on the velocity and density fields). So it could be argued that
a Gaussian distribution for the density field occurs at late stages in the mixing of a

bimodally distributed density field.



Chapter 6
BUOYANCY-GENERATED TURBULENCE

6.1 Introduction

The case of a variable-density fluid subjected to a constant (or gravitational) accel-
eration is also studied in this dissertation. The fluid is initially at rest, and, in the
presence of the acceleration, the variations in density act as a source of potential
energy for the flow. The potential energy is converted into kinetic energy as the fluid
is set into motion. The velocity and density fields are directly correlated since it is
the presence of the fluctuations in the density fields that create, through accelera-
tion, motion of the fluid. This motion is resisted by drag and the variable-density
field is smoothed by molecular diffusion. As the flow develops and mixing occurs,

the source of potential energy diminishes as the density field tends toward a constant
mean value. Through the action of viscosity, the kinetic energy is dissipated to heat
and the flow eventually comes to rest.

In the case studied here, the gradient of the mean density is zero. Neglecting
viscous and diffusion effects, since the extent of the fluid in the direction of the
acceleration is unlimited, the acceleration would cause any fluid element to wander
an unlimited distance in that direction. Thus, there is an infinite source of energy. In
this problem, the potential energy is (1) eroded by diffusion and (2) converted into
kinetic energy.

There are several parameters associated with the fluid and its flow that determine
the subsequent motion caused by buoyancy forces. The potential energy is repre-
sented by statistical parameters that specify the initial random spatial distribution
of the density field, e.g., the initial variance of the density. The molecular transport
coeflicients, the viscosity and diffusivity of the fluid, create sinks for the energy. An-
other parameter is the body force, i.e., the acceleration. From these parameters the
initial state of the flow can be specified. In particular, a Reynolds number can be
formulated (discussed below in Section 6.3.2) which characterizes the flow. Higher

Reynolds number flows are of greatest interest because it is in these flows that the



115

motion of the fluid will be the most turbulent, as inertial forces dominate viscous and
diffusive forces.

We are aware of only one other attempt to study a spatially homogeneous, buoyancy-
driven flow. This is the work of Batchelor, Canuto and Chasnov [7] in which they
assumed small density variations and invoked the Boussinesq approximation. Their
work is discussed briefly in this chapter. A study of the variable-density problem,
without the Boussinesq approximation, is also presented in this chapter. This prob-
lem has not previously been reported in the literature. In this dissertation the effects
of different initial density ratios at a given Reynolds number are studied, as well as
Reynoldé number effects at a fixed initial density ratio. Departures from the Boussi-
nesq limit are shown and discussed. For these cases, it is also demonstrated that the
mean pressure gradient is not constant in time, and is dependent on the magnitude
of the density difference and the Reynolds number.

6.2 List of Buoyancy-driven simulations

Specific conditions for the simulations are chosen in order to study (1) the effects of
an increasing initial density ratio and (2) the effects of changing the initial “pseudo-
Reynolds” number, R,, (discussed in Section 6.3). The maximum initial density ratio
used in this study is 4. At this density ratio, the numerical results are well resolved;
however, for larger initial density ratios the numerical scheme becomes inaccurate at
the maximum resolution utilized.

Table 6.1 lists all the simulations of buoyancy-driven turbulence reported in this
dissertation. The runs with “Acc” in the run name are for the cases where the
Boussinesq approximation (see section 6.4) has not been made. The run with “Bos”
in the run name is a case where the Boussinesq approximation has been made (see
section 6.3). For all the cases reported the Schmidt number, o, is unity. For run
Acc3c the grid size is 643, while for all other “Acc” simulations the grid size is 128°.
For the Boussinesq approximation case, run Bos9, the density field statistics are not
given (i.e., Pmaz, Pmins Pmaz/Pmin and 6,) because the initial density distribution is
created using the method given by Batchelor, et al. (discussed below in section 6.3)
and these parameters are not relevant in that case. For the “Acc” cases the initial

density field is created using the method of Eswaran and Pope, discussed in Chapter

4. This procedure creates an initial fluid with regions of high density, pmez, and low
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Table 6.1: List of initial statistics for buoyancy-driven cases

Run No. R, v g g Pmaz  Pmin pma:z:/ Pmin 90

Accla 256 7.800e-3 1.0 10. 1.06 0.95 1.105  0.0434
Acclc 256 8.543e-3 1.0 1.0 1.60  0.40 4.000  0.5206
Acc2c 512 4.272¢-3 1.0 1.0 1.60 0.40 4.000  0.5206

Acc3e 64 3.423e-2 1.0 1.0 1.60 0.40 4.000 0.5206
Accdb 714  2.500e-3 1.0 1.0 1.40 0.60 2.333 0.3480
Bos9 64 1.562e-2 1.0 1.0

density, pmin, typified by an integral length scale [, = 0.53. The parameter 8,, defined
as 6, = W% |t=0, is & nondimensional measure of the initial density variations in
the flow. As the initial density variations increase so too does 8,, while as 6, decreases
the variable-density flow approaches the Boussinesq limit.

Runs Accla and Acclc are made at a Reynolds number (defined below) of R, =
256. Run Acclc has moderately large initial density variations (such that the density
ratio, Pmasz/Pmin, €quals 4) and in Run Accla the initial density variations are small
(such that the density ratio equals 1.105) and, as will be shown below, is within the
Boussinesq limit. These two simulations are made in order to study the effects of
the initial density variation on the subsequent buoyancy-driven motion. Runs Acclc,
Acc2c and Acc3c all have the same initial density variations, a density ratio of 4, and
the effects of different R, are examined. Run Acc4b is made at a Reynolds number of
R, = 714 with an initial density ratio of 2.33. At this density ratio, R, = 714 is near
the largest Reynolds number that can be computed accurately. Run Bos9 is made to
compare with the Boussinesq results of Batchelor, et al. [7].

6.3 Boussinesq Case

Batchelor, Canuto and Chasnov (1992) [7] presented the case of statistically homo-
geneous, buoyancy-driven turbulence. They assume small density fluctuations in the
flow and, therefore, use the Boussinesq approximation in the equations of motion. A

brief discussion of their results is presented in this section. We expect that, in the
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limit as the density fluctuations tend to zero, the non-Boussinesq variable-density

results approach the Boussinesq limit.

6.3.1 Navier-Stokes equations with the Boussinesq approzimation

Following Batchelor, et al. [7], the equations of motion are derived for the Boussinesq
approximation by first starting with the usual equations for the conservation of mass
and momentum [egs. (2.1) and (2.2)], written here as (7, 52]

%+u-Vp+pV-u=0, (6.1)
odu 9
P E—i-u-Vu = pg — Vp + uV-u, (6.2)

where p, p and u are the fluid density, pressure and velocity.
The Boussinesq approximation is valid [69] when the actual density and pressure

fluctuations vary only slightly from their respective means, the vertical scale of motion
is small compared with the scale height, and the Mach number is low. Separating the

density and pressure into their mean and fluctuating parts gives

p=po+p (6.3)

and

p=pr+p (6.4)

where p, = 7 is the uniform and constant mean value of the density, o’ is the variation
about the mean density, p, is the hydrostatic pressure corresponding to p, and p’ is
the fluctuation about the hydrostatic pressure. Assuming low Mach number and

small heat or mass transfer, eq. (6.1) becomes
V.u=0. (6.5)

Thus, the velocity field is non-divergent.
Using the Boussinesq approximation, eq. (6.2) becomes

0u | w.yu=FB_YP—rE %) oo (6.6)
ot Po Po
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where v = p/p,. The first term on the right side represents changes in the velocity
due to the buoyancy force per unit volume. It is the primary source [34] for fluid
motion in buoyancy-induced flows. The second term on the right side is the gradient
of the pressure change that produces the fluid motion. The pressure difference, called
the “motion” pressure [34], can be written as

P =D—p.g-X=0p—pp,

where p is the actual pressure and pj, is hydrostatic pressure. Thus, the hydrostatic

pressure has been removed from the problem in eq. 6.6. The hydrostatic balance can
be demonstrated by considering the momentum equation [eq. (6.2)] for a fluid at rest
the instant the acceleration is applied, which is

pg—Vp=10
or

Vp = pg. (6.7)

Thus, in the absence of velocity (at the instant the acceleration is applied), the
gradient of the pressure is due to the buoyancy force.
A conservation equation is also needed to describe the evolution of the density

variations. This equation is derived from a species concentration equation or the

internal energy equation (see, e.g., Lesieur [52]), assuming low Mach number, to be
op'

5 T Vo' =DV?, (6.8)

where D is the diffusivity of the density. Equations (6.5), (6.6) and (6.8) govern the
motion of a buoyancy-driven flow within the Boussinesq limit.

6.3.2 Nondimensionalization

The equations of motion are here solved in nondimensional form. As previously
discussed, there are several dimensional parameters associated with the fluid and its
flow that determine the motion generated by buoyancy forces. These are the fiuid
viscosity, diffusivity and the acceleration. Also, a statistical measure of the initial



119

density variations is used; 6, is a measure of the dimensionless density variations
defined as

b0 = (FPTR)y = 7100 (69)
where
7= (7)1 (610

is the rms value of the initial density fluctuations. A characteristic length scale is
also needed. Here, we choose the length scale, [,, which characterizes the wavelength
at which the initial spatial spectrum of p’ has its maximum. That is, [, = 27/kn,
where k,, is the wavenumber at which the density spectrum is a maximum. For the
density fields studied here, k,, = 3 so that I, = 27/3.

It should be noted here that the nondimensionalization proposed in Chapter 2,
which is suitable for the study of decaying, isotropic variable-density turbulence, is
not suitable for the study of buoyancy-driven turbulence. For a buoyancy-driven
problem, within the Boussinesq limit, a careful choice of dimensionless variables are
defined in Batchelor, et al. [7], as

1
rd(®)' o)
o
X = lf (6.12)
(4]

U=—" (6.13)
 (logbo)? '
P= 1%959;", (6.14)
ovo. o

and
o = ppg% = %. (6.15)
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Using this nondimensionalization, the equations of motion in the Boussinesq approx-

imation can be rewritten as

V.U=0, (6.16)
00’ o 1 20y
57 T U VO = Ve, (6.17)
oU . 1,
37 +U VU= = VP+ VU, (6.18)

where j is the unit vector in the direction of the acceleration. The so-called “pseudo-
Reynolds number”, R,, is defined from the characteristic length and velocity scales

as
1
1.396,)?
g, (o%)" 610)
174
and
_ 14
=D

is the Schmidt number. Equations (6.16), (6.17) and (6.18) are the nondimensional
equations of motion in the Boussinesq approximation. In these equations the key
independent, nondimensional parameters are R,, 6, and o. In the Boussinesq ap-
proximation, #, does not arise as a separate nondimensional parameter as it does in

the general problem (see Section 6.4), but only in the combination gé,.

6.3.3 Comparison to Batchelor, et al.

Batchelor, Canuto and Chasnov [7] computed numerical solutions of egs. (6.16),
(6.17) and (6.18). Their results are presented here and a comparison is made using our
numerical scheme in order to validate our numerical code. Also, an understanding of
these Boussinesq results will help to identify non-Boussinesq effects which are studied
in the following sections. In their study the initial velocity field is zero and the initial

random density field is approximately statistically homogeneous and isotropic. This
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initial density field is generated from the initial density spectrum G(k, 0) = 6(k — 2m)
(7], where § is the Dirac delta-function. This spectrum can be approximated [7] by

k0= 22 (£) oo | 1o (L)

where n = 64 and A, is given as

A, = [3]% )

7] 1-3-..-(n—1)
The normalization constant A, is chosen so that the condition @_’_@—7;/:0 = 1 [which
arises from (6.10) and (6.15)] is satisfied. Batchelor et al. [7] presented dimensionless
mean-square velocity in the direction of the acceleration and buoyancy histories as
functions of R,, for direct numerical simulations and large eddy simulations using 643
and 1283 grid sizes.

Figure 6.1 shows the time history of the mean-square dimensionless velocity, in
the direction of the acceleration, for various values of R, with o = 1. The Boussinesq
results of Batchelor et al. are the solid lines and the results of our numerical scheme
(run Bos9) solving the equations of motion with the Boussinesq approximation are

given by the dots. From this figure we see that the velocity increases rapidly as the
fiuid is set into motion through acceleration. The mean-square velocity reaches a
maximum and begins to decrease as the density field mixes and diffuses towards its
constant mean value, and as viscous dissipation becomes appreciable. In this case,
the velocity is directly correlated with the density field. The density field corresponds
to a source of potential energy; when the acceleration is applied the fluid is set into
motion and a conversion of potential energy to kinetic energy takes place. As the
density field diffuses and mixes towards its mean value the source of potential energy
decays and the remaining kinetic energy decays away through drag. The kinetic
energy will eventually go to zero as the density field is uniformly mixed and there
is no available potential energy. The results of our numerical scheme are computed
using a mesh size of 128%. Our Boussinesq numerical code produces results that agree
with Batchelor, et al. It is seen from this figure that as R, approaches infinity (a cases
computed by Batchelor et al. as a large eddy simulation) the mean-square velocity

approaches a limiting curve with a maximum at T = 1.8.
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Boussinesq results of Batchelor, Canuto and Chasnov
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Figure 6.1: T;U; vs. T as a function of R,. Dots are Boussinesq limit of variable-

density case, solid curves are results of Batchelor, et al.

Figure 6.2 shows nondimensional mean-square of the density fluctuations as a
function of the nondimensional time. For this quantity our numerical results again
agree well with the results of Batchelor et al. The mean-square density also ap-
proaches a limiting curve as R, approaches infinity. As pointed out in [7], at large
values of R, the mean-square buoyancy is conserved for small times, after which it

cascades to smaller scales where it is diffused away.

6.4 Non-Boussinesq, variable-density nondimensionalization

Next we consider the case of a statistically homogeneous, buoyancy-driven turbulence
with large density variations such that the Boussinesq approximation is not valid.
Section 6.3.2 presents a nondimensionalization that is suitable for the buoyancy-
driven problem. To discuss differences between the Boussinesq and non-Boussinesq
cases we apply this nondimensionalization to the Navier-Stokes equations of motion
which are non-Boussinesq. In addition to using the nondimensionalization (6.11),
(6.12), and (6.13) we use the following for the pressure and total density

P

P =
pologeo’

(6.20)
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Boussinesq results of Batchelor, Canuto and Chasnov
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Figure 6.2: ©'© vs. T as a function of R,. Dots are Boussinesq limit of variable-
density case, solid curves are results of Batchelor, et al.

and

P
Q=—. 6.21
o (6.21)

The nondimensionalization for the fluctuation density is

o=L£ (6.22)

Applying this nondimensionalization, the divergent velocity condition given by eq.
(2.11) becomes

ou, 1 9 [10©
8X,  oR,0X, {6aXn}’ (6.23)
the mass conservation equation [eq. (2.1)] becomes
00 00U,
7t axs =0 (6.24)

and the momentum equation [eq. (2.2)] becomes

6@U, BG)U,U] _ 8]3 1 BT,-J- @gi
8T ' oxX,  oX. R,0%; G,g (6.25)

L T e e T A e, e okl T o
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where T;; is the nondimensional viscous stress tensor. The term g;/g is a unit vector
that points in the direction of the acceleration. Egs. (6.23), (6.24) and (6.25) are the
nondimensional equations of motion without the Boussinesq approximation. From
these equations it is clear that the adjustable parameters are R,, ¢ and 6,. Recall
that 6, is a nondimensional measure of the initial density variations and is defined by
eq. (6.9). This measure did not appear as an independent nondimensional parameter
in the Navier-Stokes equations with the Boussinesq approximation (it appears in
conjunction with g) because its effects are absorbed into the nondimensionalization
of the equations. However, in this non-Boussinesq case, nonlinearity does not allow

its effects to be so simply scaled.

6.5 Variable density effects for R, = 256

In this section is studied the results of two simulations, Accla and Acclc. Both sim-
ulations are made with the Navier-Stokes equations of motion where the Boussinesq
approximation has not been made. Both are at a Reynolds number, R,, of 256, a
Schmidt number of ¢ = 1, and at a grid size of 128%. The effects on the developing
flow of increasingly larger initial density variations are examined. Both cases have an
initial bimodal density distribution that is initialized using the method of Eswaran
and Pope. The density ratio in the case with the initially small density fluctuations
(Run Accla) is 1.105. As will be shown, at this ratio, the solution is within the
Boussinesq limit (but solved with the non-Boussinesq equations of motion). Run
Acclc has the same statistical distribution for the density field but the fluctuations
are scaled such that the density ratio in this case is 4.0, which will be shown to be
outside the Boussinesq limit. By comparing the results of these two simulations we
can examine density effects on buoyancy-driven flows at this given Reynolds number.

For these buoyancy-driven cases the initial velocity field is set to zero, then slightly
modified to account for the divergent velocity [eq. (2.11)] condition. Because the
initial velocity field is nearly zero, density-velocity correlations are initially nearly
zero; through the action of an acceleration, however, this correlation grows to a
nonzero value. The acceleration is applied in the vertical (z-) direction and the

developing flow is statistically axisymmetric about the vertical axis.
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6.5.1 Energy evolution

We begin the study of variable-density effects at R, = 256 by first examining at the
time evolution of the total turbulent kinetic energy per unit mass as a function of
time. Recall from Chapter 4 that the total turbulent kinetic energy per unit mass,
which is half the trace of the generalized Reynolds stress tensor divided by the mean
density [eq. (A.7)], is given as

n_ 1 ! 7 r 7 4
_ Raa(t) _ punty, _ Uplp | PUgU,  Gnln

K(t)= 25 % - 2 | 2 2
where
az=_§=_.p_l_’lz
P p

is the negative of the turbulent mass flux per unit mass. Figure 6.3 shows the evolution
of the total turbulent kinetic energy per unit mass evolution for the two cases (Run
Acclc with an initial density ratio of 4 such that , = 0.52 and Accla with an initial
density ratio of 1.105 such that 6, = 0.04). This shows the effect of increasing initial
density fluctuations. The results for run Accla, given by the solid line curve, are
within the Boussinesq approximation. That is to say, a flow within the Boussinesq
approximation is on where the mean flow statistics match that of the Boussinesq
approximation. The dashed curve shows the results of run Acclc. The total turbulent
kinetic energy is initially nearly zero. At T = 0, the acceleration is initiated and the
fluid is set into motion. The buoyancy force decays in time due to molecular diffusion.
As a result the velocity reaches a maximum (at 7' = 1.8) and, through viscous effects,
begins to decay. At T = 4 there is still a significant amount of kinetic energy in the
flow. At later times, the total turbulent kinetic energy would eventually tend to zero
as the thoroughly mixed fluid comes to rest due to the dissipation of kinetic energy
into heat by viscous stresses. As the initial density fluctuations becomes larger, the
growth rate of the nondimensional kinetic energy lowers. Likewise, the peak of the
nondimensional turbulent kinetic energy is larger for the case with the smaller initial
density fluctuations. As explained below, this result is due to the fact that the second
and third terms on the right side of eq. (A.7) grow to larger values, which contribute
to make the nondimensional total turbulent kinetic energy lower as R, increases.
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Figure 6.3: Total nondimensional turbulent kinetic energy per unit mass vs. T for
R, = 256 for the initial density ratio = 1.105 case (Run Accla) and the initial density
ratio = 4 case (Run Acclc)

Figure 6.4 shows the dimensionless mean-squared velocity as a function of di-
mensionless time. As the initial density fluctuations are increased the mean-squared
velocity grows faster. For the initial density ratio of 1.105 case, the nondimensional
mean-squared velocity reaches a peak at the same time as for the Boussinesq results
[7], shown in Fig. 6.1. Figure 6.4 shows that, as the initial density fluctuations
become larger, and the Boussinesq approximation is no longer valid, the nondimen-
sional time at which the mean-squared velocity peaks decreases. In the limit as the
initial density ratio becomes very large (much larger than 4), the time at which the
mean-squared velocity reaches a maximum should approach a limiting value. This is
because, as the initial density ratio increases, the time shift must be bounded but the

= 0 axis. This limit cannot be examined in this study due to resolution limitations
of our numerical code.

Figure 6.5 shows the three components of the mean-squared velocity as functions

of nondimensional time for both cases. This figure shows the axisymmetric nature of

these buoyancy-generated flows, as the component in the direction of the acceleration
(i.e., the vertical component, W) contains the largest amount of the kinetic energy,
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Figure 6.4: U!U! vs. T for R, = 256 for the initial density ratio = 1.105 case (Run
Accla) and the initial density ratio = 4 case (Run Acclc)

whereas the two off-diagonal components are planar isotropic with each having nearly
the same amount of energy. The difference between U'U’ and V'V” can be attributed
to statistical scatter in the simulations. Comparison with this figure and Fig. 6.4
shows that the vertical component, W'W’, reaches a maximum at a time less than
that for the total mean-squared velocity. Figure 6.6 shows the ratio

2wWw!

=TT vV (6.26)

Y
as a function of T. < is a measure of the large-scale anisotropy [7] of the velocity
field. For isotropic flow this quantity is unity. The discontinuous slope seen in the
curve for the initial density ratio is 1.105 cases is due to the method of extracting the
data from the numerical simulations and not physical. Predictions of the linearized
equations with the Boussinesq approximation made by Batchelor et al. [7] give a
value of <y at early times of eight. For the case where the initial density ratio is 1.105,
the density fluctuations are small enough that the value of v is the same as predicted
by Batchelor et al. It is observed that as the initial density variations become larger,
the anisotropy parameter, v, decreases (at least for the early times). This measure
of anisotropy at early times is a function of initial density ratio and becomes nearly
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Figure 6.5: Nondimensional mean-squared velocity components for the initial density
ratio = 1.105 case (solid lines) and the initial density ratio = 4 case (dashed lines)

the same constant value as the density fluctuations tend to zero. At the end of the
simulations < is approximately 2.5. The result for the case with the initial density
ratio of 1.105 is a good indication that the initial density variations for that case
allow the flow within the Boussinesq approximation limit, since the early time results
agree well with the analytical predictions of Batchelor et al.

The total turbulent kinetic energy per unit mass, given by eq. (A.7), as a function
of time for case with the initial density ratio of 1.105 is shown in Fig. 6.7. Initially
each term in eq. (A.7) is nearly zero because the initial velocity is small. At this
initial density ratio, the energy is made up almost completely from the mean-squared
velocity since the triple correlation term, p'ulu/ /2p, and the turbulent mass flux per
unit mass, a,, remain small.

An evolution equation for pulu}/2 is derived in Appendix B and written here as

— { —puiu p = p—= +ul + pulg; . (6.27)
de 127" O0r, '0Oz; —
A B C

The first term on the right side, term B, is a pressure-work term that represents

a conversion of kinetic energy into internal energy. For the compressible case this
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Figure 6.6: Measure of anisotropy of the mean-squared velocity for the initial density
ratio = 1.105 case (solid lines) and the initial density ratio = 4 case (dashed lines)
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Figure 6.7: Terms of the total turbulent kinetic energy per unit mass for the initial
density ratio = 1.105 case (Run Accla)
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term is reversible; here it is not because the divergent velocity field is a result of the
diffusion of mass. The second term, C, is the dissipation rate and the third term,
D, is the buoyancy force term which represents a source of kinetic energy from the
conversion of potential energy through the mass flux p'ul. In the limiting case of
vanishing molecular effects (i.e., zero viscosity and diffusivity) this equation reduces

to

d (1—) —
p {§W§u§} = pu;g;.
In this limit the only source of kinetic energy is from potential energy, and occurs

through buoyancy effects. Figure 6.8 shows each term of this evolution equation [eq.

(6.27)] as a function of time for the initial density ratio of 1.105 case. We see that
the generation of kinetic energy is through the buoyancy term. The buoyancy term
reaches a peak at a time of T' = 1 and then decays away as the density field, which

represents the source for potential energy, decays to a uniform density. The growth

of the kinetic energy is impeded by viscous and drag effects. In the final stages of
the flow, viscosity is the sink for which the kinetic energy is lost to heat and the flow
reaches its final resting state. In this problem, where the initial density fluctuations
are small with respect to its mean value, the pressure-work term does not affect the
evolution of the kinetic energy.

To gain insight on the differences in the energy evolution between the case with the
initial density ratio of 1.105 and that with the initial density ratio of 4, we show in Fig.
6.9 the total turbulent kinetic energy per unit mass and its components given by eq.
(A.7) as a function of time for the case with the initial density ratio of 4. Comparison
of this figure with Fig. 6.7 immediately highlights differences in the two cases. For
the larger initial density ratio case, the triple correlation term, pu’u Pulul /25, and the

term associated with the mass flux, a,a,/2, which are initially nearly zero, grow to
negative nonzero values with a minimum at approximately, T = 1, then decay to zero.
In the smaller initial density ratio case these terms are small. The main contribution
to the total turbulent kinetic energy is from the mean-squared velocity term, uhul /2,
while the other two terms act to impede the growth of the total turbulent kinetic
energy. By the time of approximately T' = 2.5, the contributions from p/u/ v/ Pyl /2p and
anGn/2 are small so that the total turbulent kinetic energy is just wul /2.

Evolution equations for each term shown in Fig. 6.9 are derived in Appendix B.
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Figure 6.8: Terms in the evolution equation [eq. (6.27)] for puju}/2 for initial density

ratio of 1.105 case (Run Accla)
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The evolution equation for 7 ufu! is given by eq. (B.15), and written here as

_ — o I orl.
d{;"’}=§ 9% _ 5 % 0P % O (6.28)

dat |27 4t *“’azj p Oz; P p Oz;
N s’ s, e

A D

The first term on the right side represents production/destruction due to dilatation
effects. The second term on the right side, term C, can be rewritten as

! / ! !
u} 0 u;\ 07 u} 0
R CAX

oz; p 01;
N —
C] CZ

(6.29)

where D is the hydrostatic pressure. A more complete discussion of the mean pressure
gradient term is given below in section 6.5.4. The third term, D, is the viscous
dissipation rate. Figure 6.10 shows the contribution of each term of eq. (6.28) as a
function of nondimensional time. The growth of 5 u/u}/2 is due to the mean pressure
gradient term, C;. This term has incorporated into it the contribution from the
buoyancy flux (see Section 3.1.3), which is the source for the kinetic energy. The
viscous stress term, D, acts strongly to damp the growth of 7 u/u//2 and is the main
impedance to the growth of the mean-squared velocity. The dilatation term, B, and
the fluctuating pressure (i.e., the motion pressure) gradient term, C,, also act to
slightly impede the growth of the mean-squared velocity. As the density fluctuations
decay and the fluid mixes, the driving term for the growth (i.e., the mean pressure
gradient) of 7 u/ul/2 reaches a maximum and tends to zero. The time rate-of-change
of 7 ulul/2 is positive up to a time of approximately T' = 1.5. For times greater
than 1.5, the contribution from the buoyancy flux is smaller than the effects due to
viscosity and as a result the total turbulent kinetic energy is decaying as it is being
converted into heat through viscous dissipation.

The evolution equation for the triple correlation term, p'uful/2, is given by eq.
(B.16), written here as

7 oy /
4 {lm} . uju i A (—pl u‘)—aﬁ +— pus aT” + pulg;. (6.30)
ozx; o
N s/ E

dt {2 T2 ‘0z; p Ozx; p p Oz;
e e Vet _/——/
A B Cy Ca D

Each term of this equation is plotted in Fig. 6.11 as a function of nondimensional time.

The growth of p'ufu]/2 is being driven by the mean pressure gradient. The buoyancy
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Figure 6.10: Terms of the evolution equation [eq. (6.28)] for p wlul/2 for initial
density ratio of 4 case (Run Acclc)

flux term, term E, acts strongly to oppose the growth of this triple correlation term.
Viscous effects also act to impede the growth of this triple correlation and ultimately
are responsible for the dissipation of p/ulu}/2 into heat. At late times, when the
density variations are small, the mean pressure gradient and the buoyancy flux terms

nearly balance and the time rate-of-change of this triple correlation is nearly zero.

6.5.2 Ewvolution of the mass fluz

For the case of isotropic decay the fluctuating density-velocity correlation, p'a, is
zero. For the buoyancy driven case this correlation is initially zero when the fluid is
at rest and grows because the induced velocity is highly correlated with the density
fluctuations. The evolution of the negative of the mass flux per unit mass, a,, for

both cases is given in nondimensional form, i.e., for

an

An - —(10990)1/290,

in Fig. 6.12. For the case with the initial density ratio of 4, A, grows to a larger
value than for the other case even though this quantity is nondimensionalized. This
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Figure 6.11: Terms of the evolution equation [eq. (6.30)] for p'uju;/2 for initial density

ratio of 4 case (Run Acclc)

is due to the available potential energy for the larger initial density ratio case being
larger and, thus, having a larger buoyancy flux.

An evolution equation for a; is derived in Appendix B, and written here, for
homogeneous flow, as

da; ,0ul 1\ op ,00;

e Y ks Y ;) P/ Rk 3 31
dr Oz, ('u ﬁ) Oz, +v Oz, (6:31)
A B C D

Figure 6.13 shows each term of this equation as a function of time for run Acclc.
The first term on the right side, term B represents production/destruction of the
turbulent mass flux due to dilatation effects. The second term on the right side of
this evolution equation is a contribution to the growth of the turbulent mass flux
due to the mean pressure gradient multiplied by the factor 7 — 1/p = b/p. It has
been shown in the case of isotropic decaying turbulence (and also is shown below in
the context of this buoyancy-driven problem) that b is a time dependent variable.
Since the mean density, 7, is fixed in time, this equation shows that 7 is also a time
dependent variable (An evolution equation for this quantity is derived in Appendix
B). The mean pressure gradient term is responsible for the majority of the growth of
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Figure 6.12: Turbulent mass flux for initial density ratio of 1.105 case (Run Accla)
and the initial density ratio of 4 case (Run Acclc)

the turbulence mass flux. The dilatation term, term B, also adds a small contribution
to the growth of the turbulence mass flux. The third term on the right side of eq.
(6.31), term D, represents a correlation between the fluctuating specific volume and
fluctuating stress gradient. This term is discussed in more detail in the Section 6.5.4
in relation to the mean pressure gradient. At the instant an acceleration is applied,
and prior to the onset of fluid motion, the evolution equation [eq. (6.31)] reduces to

da,- b 6’]‘)

dt ~  poz, = oz ﬁi)‘{bgi 81:,-}'

The initial growth of the mass flux is therefore due to the acceleration. The second
term on the right side is a correlation between the fluctuating specific volume and
fluctuating pressure gradient. Initially this term is nonzero and it acts to impede the
growth rate of the turbulence mass flux. This term is has similar effects in the flow

as virtual mass. Just as virtual mass impedes the acceleration of a bubble rising in a
liquid, v’ gﬁ;— impedes the acceleration of one fluid into the other.
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Figure 6.13: Terms of the turbulent mass flux evolution equation [eq. (6.31)] for
initial density ratio of 4 case (Run Acclc)

6.5.3 Velocity derivative skewness

The velocity derivative skewness is a measure of the strength of the nonlinear effects in
the spectral transfer of energy and characterizes the rate at which enstrophy increases
by vortex stretching [52]. The velocity derivative skewness is defined as [eq. (4.10)]

du;

3
Si(t) = ~ (39?1')
()

where u; is any component of the velocity (i = 1,2,3). Tavoularis et al. [86] report

, No summation on %

3
2

that for moderate Reynolds numbers S;(¢) =~ 0.32 — 0.6 for nearly-isotropic grid ex-
periments. The larger the value of S; the greater the effect of nonlinearity on the
spectral energy transfer. Figures 6.14 and 6.15 show the velocity derivative skewness
for the initial density ratio of 1.105 case (Run Accla), and the larger initial density
ratio case (Run Acclc), (both at R, = 256), respectively. The subscripts ¢ = 1,2
represent the x- and y-directions (horizontal direction) and 7 = 3 is the z-direction
(the direction of the acceleration). These two figures display that overall behavior
that is similar for both cases. The initial values are different between the two cases
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Figure 6.14: Velocity derivative skewness for each component for the initial density
ratio of 1.104 case (Run Accla)

due to the differences in the initial conditions. Planar isotropy is seen in the hori-
zontal components, as they have nearly the same value. In the horizontal direction
the velocity derivative skewness is driven negative, and reaches a minimum value at
a time that roughly corresponds with that for the maximum turbulent mass flux.
As the mass flux decays it is observed that the velocity derivative skewness in the
horizontal plane increases to a nearly constant value of 0.35 which is characteristic
for laboratory experiments of isotropic turbulence. The vertical component grows to
a large positive value and decreases to a nearly constant value that is roughly twice

that for the horizontal components. This shows that nonlinear effects on the energy
transfer are stronger in the the direction of the acceleration than in the horizontal
direction. This also reflects that there is a strong growth of enstrophy in the direction
of the acceleration due to vortex stretching (see Section 6.5.5). Figure 6.16 shows the
average of the velocity derivative skewness over all three components for both cases.
This shows that by a time of T' = 2 the average velocity derivative skewness is a
constant value of about 0.5 for both cases.
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Figure 6.15: Velocity derivative skewness for each component for the initial density
ratio of 1.104 case (Run Accla)
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Figure 6.16: Average velocity derivative skewness for the initial density ratio of 1.104
case (Run Accla) and for the initial density ratio of 4 case (Run Acclc)



139

6.5.4 Mean pressure gradient evolution

It has been shown that the mean pressure gradient drives the growth of the turbulence
mass flux. Because of this important feature it will be studied in detail in this section.
Our goal here is to investigate departures from the Boussinesq approximation in the
mean pressure gradient. This will have much significance for the modeling of variable-
density flows.

The equation for the gradient of the mean pressure is derived in Section 3.1.3 for
the case where there is zero volumetric mean motion, %; = 0, and given by eq. (3.19),
and repeated here

% 1, . 1,0m_ 100 1 0u (6.32)
Oz; ©° T Oz, T Or; T ‘Oz, ’
OL

A B ¢ Ca D

The first term on the right side is the contribution to the mean pressure gradient
from the acceleration. The other three terms are due to fluctuating specific volume
correlations with the fluctuating stress terms and a contribution from a correlation
between the fluctuating velocity and the dilatation term. The last three terms on the
right side represent a departure from the Boussinesq and hydrostatic limits. In the
limit as the density variations tend to zero, these terms tend to zero and the mean
pressure gradient becomes

op _ _
8.'1:1', - pgi)

which is the hydrostatic balance. In the absence of fluid motion (e.g., at time equal

to zero) the mean pressure gradient is

®_1 {gi — } (6.33)

3:1:,- - ] 32:,-

This shows that, in the absence of motion, the correlation between the fluctuation
specific volume and fluctuating pressure gradient is a non-Boussinesq departure from
the hydrostatic pressure gradient. As previously mentioned, this term has similar
effects as virtual mass on a bubble. This correlation impedes turbulence mass growth
rate just as virtual mass is attributed to impede the acceleration of a bubble rising
in a liquid.
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Figure 6.17: Evolution of terms in the mean pressure gradient [eq. (5.32)] for initial
density ratio of 1.105 case at R, = 256 (Run Accla)

Figure 6.17 shows each of the terms in the equation for mean pressure gradient for
the case with the initial density ratio of 1.105 (Run Accla). In this case g = 10 and
5 = 1 so that pg = 10. For this case the mean pressure gradient is comprised mostly
of the acceleration term g/, which is approximately equal to pg. The second and
third terms are initially nearly zero and remain small compared to g/7. The fourth
term, the correlation between the fluctuating specific volume and fluctuating pressure
gradient starts out at a small nonzero value and represents less than one-percent of
the contribution. This figure is consistent with the conjecture that the behavior of
the buoyancy generated flow for this case is within the Boussinesq approximation

limit, since the mean pressure gradient has the Boussinesq limiting value of pg.

Figure 6.18 plots each of the terms in the equation for the mean pressure gradient
for the case with the initial density ratio of 4 (Run Acclc). Inthiscaseg=landp=1
so that, in the limit as the density variations tend to zero, the mean pressure gradient
tends to the value pg = 1. Initially, the mean pressure gradient is approximately 0.75
and the acceleration term, g/, is approximately 0.67. The correlation W is
approximately 0.08 and represents 11 percent of the initial mean pressure gradient.
All other terms are initially nearly zero since the flow is nearly motionless. As the
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Figure 6.18: Evolution of terms in the mean pressure gradient [eq. (5.32)] for initial
density ratio of 4 case at R, = 256 (Run Acclc)

flow develops the mean pressure gradient increases to a value slightly larger than 1.0
and at the last time shown has very nearly a constant value of 1.0. For this case the
Boussinesq approximation implies the mean pressure gradient is constant in time with
a value of 1.0. Therefore, the Boussinesq approximation is not valid in this case since
the mean pressure gradient, which is partially responsible for the fluid motion, varies
in time and differs significantly from the Boussinesq approximation limit. As the flow
develops the second and third terms in the equation for the mean pressure gradient
grow slightly from their nonzero values and contribute only a few percent to the total
mean pressure gradient. The correlation v'(8p’/dx;) remains a large contribution to

the mean pressure gradient up to late times.

The departure from the Boussinesq limit shown here increases as the initial density
fluctuations are increased. This is due to the fact that fluid of different density is
accelerated differently as the density variations are increased. As a result, as the initial
density fluctuations increase, so also does the magnitude of the correlation between
the fluctuating specific volume and the fluctuating pressure gradient. Figure 6.19
shows the negative of this correlation as a function of nondimensional time (on a semi-
log plot) for the cases with both large and small initial fluctuations. The magnitude of
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Figure 6.19: —v' 0p'/0x3 evolution for initial density ratio of 1.105 and 4 cases

this correlation increases as the initial density fluctuations are increased. As a result,
the mean pressure gradient deviates further from the Boussinesq approximation, and
the mean pressure gradient becomes more non-uniform in time. This plot shows that
this correlation has the same trends at this Reynolds number of 256 for large and
small initial density fluctuations. The nonzero value at the initial time represents
a “rapid” part of this correlation. The use of the term “rapid” implies that the
correlation takes on a nonzero value the instant that the fluid feels an acceleration
because it is an instant linear response of the mean pressure. As the flow develops
this correlation increases due to the “slow” part which is a source of drag for the

mass flux. At late times this correlation is decaying and represents a drag for the

turbulent mass flux (see below in this section).

This correlation, W, is postulated by modelers (see, e.g., Besnard, et al.,
[10]) to behave as a “drag” term which impedes the growth of the turbulent mass
flux. It has already been shown that the presence of this correlation indeed acts to
impede the growth of the turbulent mass flux. These results, however, suggest that
this correlation behaves as both a “drag” term and as a “rapid” term. The instant
that the fluid is accelerated, this correlation immediately takes a nonzero value, even

though the mass flux is zero. If this correlation behaved as only a “drag” on the
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Figure 6.20: Nondimensional —v' 9p'/0z3 vs. nondimensional a3 for initial density
ratio of 1.105 and 4 cases at R, = 256

mass flux, it would grow with the mass flux. When the mass flux is zero so too
would be this correlation. However, it has a nonzero value the instant the fluid is
accelerated and thus is a “rapid” term. To understand how this correlation behaves
as a function of the mass flux, it is plotted in nondimensional form as a function of
the nondimensional mass flux in Fig. 6.20. This figure shows that indeed v'(9p’/dx;)
does not behave as drag term at early times. At the initial time, the negative of the
nondimensional W correlation is approximately 0.32 for the case with the
initial density ratio of 1.105 and approximately 0.56 for the larger density ratio case.
At T = 0, when the acceleration is applied, the dominant part of v/(9p’/dz;) is the
“rapid” part. As the flow evolves, the “rapid” part vanishes as the density fluctuations
decay resulting in the decay of this correlation. Also as the flow evolves, the “drag”
part increases causing an increase in W Ultimately, at late times, the “drag”
part is dominant as the “rapid” part has vanished so that v'(8p'/0z;) decays nearly
linearly with the mass flux. At late times in this buoyancy-driven turbulent flow this
correlation represents a “drag” on turbulent mass flux.

Figure 6.21 shows a cross-section of the three-dimensional density field in the x-z
plane for Run Acc4b. The horizontal axis corresponds to the x-direction and the
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vertical axis is the z-direction. The color field represents the density with the orange
being the heaviest fluid and the purple being the lightest. All other colors represent a
mixture of the two fluids and the green corresponds to the mean density. The contours
correspond to the fluctuating pressure field and the vectors indicate the direction and
magnitude of the velocity. The acceleration is in the positive z-direction so that the

heavy fluid is moving in the positive z-direction and the light fluid is moving in the
opposite direction. This figure shows that the largest velocities are associated with the
lighter fluid. The maximum pressures occur at the leading edges of the heavy fluid
“blobs” and the smallest pressures are at the trailing edges (i.e., the wake region)
of the heavy blobs. On the vertical interface between the heavy and light fluids
are regions of high shear which create regions of large vorticity along the vertical
interface. Gradients of pressure and gradients of density are perpendicular to each
other along the vertical interface and, therefore, produce regions of large vorticity
due to baroclinic torque. Also visible are regions where the light fluid is penetrating
into regions of the heavy fluid and the breakdown of the large “blobs” into smaller

ones occurs.



145

Figure 6.21: x-z cross
time

section at the y midplane for an accelerated case at an early
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6.5.5 Vorticity dynamics

It is important to examine the vorticity dynamics in order to provide interpretations
of the behavior of the developing flow. The vorticity equation is derived by taking
the curl of the velocity equation

Ou; Ou; 10p 10m;
Bt T Yoz, 5dm | poz

to obtain (see, e.g., Lesieur (1990) [52])

3 (3}
5 — Wi 72; — u; 7z; — p—Vp x Vp+v , (6.34)

where @ is the vorticity. The first term on the right side represents the creation or

destruction of vorticity through vortex distortion and rearrangement. The second
term represents the advection of vorticity, while the third term represents produc-
tion/destruction of vorticity due to dilatation. The fourth term is the baroclinic term

and the last term accounts for the viscous dissipation of vorticity. The mean-squared
vorticity equation is obtained by multiplying the vorticity equation [eq. (6.34)] by
wj, rearranging and averaging, which gives

1 dwyo; Ou; Y Ow;w; Ou; O%w;
5 = w;wj 3z; 2 63:] —WiWw; 8 + Vp X Vp+1/w, (9517]2- . (6.35)
—_— e, oo’ 7~ -~ \ ~ N’

A B c D E F

The enstrophy is the variance of the vorticity [52]. Thus eq. (6.35) is an evolution
equation of the enstrophy. The first term on the right side, term B, represents the
stretching of the vorticity and is related to the velocity derivative skewness [52]. The
last term on the right side, term F, can be written as
Ow; 0? { } Ow; Ow;
Wi = —Wil; p — Ve— . 6.36

' 822 Yoz 8z \2 % dz; 0z; (6.36)
The first term on the right side of (6.36) is the viscous transport of enstrophy and is
zero in the present case because of statistical homogeneity. Thus,

2 B
uw,-a Wi _ _V3w1 Ow; = —2UP.

0z Oz; Oz;

2
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Figure 6.22: Enstrophy evolution for initial density ratio of 4 case (Run Acclc)

The right side is the viscous dissipation of enstrophy and is related to the palinstrophy,
P, for homogeneous flow.

Figure 6.22 shows the enstrophy as a function of time for the case with the initial
density ratio of 4 (Run Acclc). The enstrophy, being initially small due to the
fluid being initially nearly motionless, grows, reaches a maximum at approximately
T = 1.8, and begins to decay through viscous effects. To understand the underlying
physics each term in eq. (6.35) is plotted as a function of nondimensional time in
Fig. 6.23. This shows that term E, the baroclinic term, is the one most responsible
for the initial growth. The baroclinic term reaches a maximum and tends to zero
as the density fluctuations decay towards zero. Term F', viscous dissipation, acts to
damp the growth and eventually is responsible for the decay of the vorticity. After
a time of approximately T° = 0.5, nonlinear effects develop and the stretching of
vorticity increases and acts to slow its decay. The other two terms which represent

the advection of vorticity and the dilatation effects remain small in this case.

For further insight into the enstrophy development we look at the behavior of
each component. Figure 6.24 shows these components as functions of time for the
case with the initial density ratio of 4 (Run Acclc). The axisymmetric aspect of this

problem is seen in this figure as the components of vorticity in the horizontal (x and
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———A [eq. (6.35)]
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Figure 6.23: Terms of the enstrophy evolution equation [eq. (6.35)] for initial density
ratio of 4 case (Run Acclc)

y directions) are nearly the same and differ significantly from the vertical component.
The difference between the two horizontal components can be attributed to the sta-
tistical scatter in the simulation. The main vorticity production is in the horizontal
direction and is due to baroclinic generation of vorticity. The production of vorticity
in the vertical direction is due to vortex turning and then stretching. The enstrophy
reaches a maximum and begins to decay through viscous dissipation. Figure 6.25
shows each term of the enstrophy equation [eq. (6.35)] for the x-component. The
behavior of the y-component contribution is similar to that for the x-component and
is not shown here. Consistent with the interpretation of the overall enstrophy, this
figure shows that the enstrophy production at early times for the horizontal compo-
nents is due to baroclinic production. As the nonlinear effects of the flow develop the
enstrophy is maintained by production through vortex stretching and it is surmised
that it is decreased due to turning (into the vertical component). The viscous effect
slows the growth of enstrophy and eventually is responsible for its decay. Figure 6.26
shows each term of the enstrophy equation [eq. (6.35)] for the z-component. This
figure shows that, in the direction of the acceleration, the production of vorticity is

due to vortex stretching and turning from the horizontal components. The baroclinic
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Figure 6.24: Contributions from each direction to the enstrophy for initial density
ratio of 4 case (Run Acclc)

production in this direction is small. Again, viscous effects act to slow the growth of
vorticity and is responsible for its decay.

6.5.6 FEuvolution of the density field

In this section is discussed the evolution of the density field in these buoyancy-
generated cases. The evolution of the variance of the density, of the quantity b(t) =
—p'v', of the time scales of decay of b(t), and of the pdf of the density field are

examined.

Figure 6.27 contains plots of the variance of the nondimensional density for both
initial density ratio cases. For this case at R, = 256, the decay behavior of the
nondimensional density is only slightly affected by the magnitude of the initial den-
sity fluctuations. The decay behavior is similar to that of the Boussinesq results of
Batchelor, et al. for R, = 256. The decay of the variance is slow and nearly linear
for T < 1. For intermediate times, 1 < T' < 2, it is slightly more rapid and begins to
slow again at T" =~ 2. For the late times, the decay process is slower. At these times
the density fluctuations are smaller than 5 percent of their initial value.

Figure 6.28 compares, for the case with initial density ratio of 1.105 (run Accla),
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Figure 6.25: Terms of the x-direction contribution to the enstrophy evolution equation
[eq. (6.35)] for initial density ratio of 4 case (Run Acclc)
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Figure 6.26: Terms of the z-direction contribution to the enstrophy evolution equation
[eq. (6.35)] for initial density ratio of 4 case (Run Acclc)
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Figure 6.27: Variance of the nondimensional density at R, = 256 for initial density
ratio of 1.105 case (Run Accla) and 4 case (Run Acclc)

the evolution of the quantity B(¢) = o¢/p? with the quantity b(t) = —p'v’. In the
limit as the density fluctuations tend to zero, b(t) ~ B(t), and this figure shows that,
at this small initial density ratio, b(t) is nearly equal to B(%).

Figure 6.29 shows the same quantities as plotted in Fig. 6.28 for the case with the
initial density ratio of 4 (Run Acclc). At this larger initial density ratio, b(t) is not
equal to B(t). At early times, b(t) is larger than B(t) and is decaying faster. After
a time of approximately T = 2.75, b(t) = B(t). Also, it is seen in Fig. 6.18 that,
after this time, the mean pressure gradient is very nearly pg, which is the Boussinesq
approximation limit for the mean pressure gradient. It has also been shown that after
this time the total turbulent kinetic energy per unit mass is equal to ulul/2 as the
terms pufu, and a; are nearly zero. Therefore, these are good indications that the
flow behavior is within the Poussinesq approximation limit of the flow. At a time of
2.75, the quantity (W) 2 = 0.13. Therefore, a possible rule of thumb for studying
buoyancy-driven flows with an initial bimodal density distribution is that, if 6, < 0.1,
then the flow is within the Boussinesq approximation limit, whereas, if §, > 0.1 the
flow is not within this limit. For the initial density ratio of 1.105 case (Run Accla),
6, = 0.0434 and all the results shown for that case are consistent with Boussinesq
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Figure 6.28: Comparison of b(t) and B(t) evolution for initial density ratio of 1.105
case at R,=256 (Run Accla)

approximation limit expectations.

Figure 6.30 shows the time scale for the decay of b(t), given by eq. (4.16), for
both cases studied at R, = 256. The decay time scales of the variance of the density
field show the same trends and, therefore, are not presented here. Figure 6.30 shows
that the time scale for decay for the case with the initial density ratio of 4 is much
smaller for all times when b(t) is larger than B(t) (see Fig. 6.29). This means that
b(t) is decaying faster for the case with initially larger density fluctuations than for
the case with small initial density fluctuations. The time scales grow slightly and
then decrease to a value of 1.5, remain at the value for some time, then begin to
increase indicating a change in the decay behavior. A linear increase in time scales
correspond to a power-law decay, and a constant value for the time scale indicates an
exponential decay. For the case with the initial density ratio of 4, from T of 1.5 to
2.75 the time scale of decay for b(t) is nearly constant suggesting exponential decay.

Figure 6.31 show the evolution of the pdf of the density field for the case with
the initial density ratio of 1.105 (Run Accla). At the initial time the pdf resembles a
double-delta function with a “U”-shaped region in between, which represents regions
of large and of small density separated by a thin interface in which there is a mixture
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Figure 6.29: Comparison of b(t) and B(t) evolution for initial density ratio of 4 case
at R,=256 (Run Acclc)

----- Density ratio= 4
Density ratio = 1.105

Figure 6.30: Comparison of the time scale of decay for b(t) at R, = 256 for initial
density ratio of 1.105 case (Run Accla) and 4 case (Run Acclc)
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Figure 6.31: PDF evolution, for T=0.0 to 2.0 by 0.125, of the density field at R, = 256
for initial density ratio of 1.105 case (Run Accla)

of the two fluids. As time evolves and the flow develops, the density field is mixing
through convective and molecular effects, and the bimodal pdf evolves towards a

nearly Gaussian function whose maximum is at the mean density of 1.0. For this
case the pdf is slightly skewed to the lower side of the mean density. A Boussinesq
approximation of this problem would give symmetric pdf because of the symmetry
of the problem. The asymmetry seen in this non-Boussinesq case is similar to those
presented in the results for isotropic decay where there was a statistical dependence
of the velocity field on the density field (see Chapter 5). In buoyancy-driven flows
the velocity field is inherently statistically dependent on the density field. The lower
density fluid has the larger velocities associated with it so that the triple correlation,
pulul, is negative. Therefore, the lower density fluid is entrained in the mixing region
at a greater rate than the high density fluid, causing this slight skewness. As the initial
density ratio increases (with R, fixed) so too does the maximum value of p'ufu} and
the skewness observed in the pdf of the density field also increases. Figure 6.32 shows
the evolution of the pdf of the density field for the case with the initial density ratio
of 4 (Run Acclc). As the initial density fluctuations increase so too does the skewed
behavior seen in the pdf, as expected from the entrainment argument.
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Figure 6.32: PDF evolution, for T=0.0 to 1.75 by 0.125, of the density field at
R, = 256 for initial density ratio of 4 case (Run Acclc)

Two-dimensional cross-sections of the three dimensional density field are here
presented for an accelerated case (Run Acc4b) at T = 1. Figure 6.33 shows the x-z
cross-section at the y-midplane. The horizontal axis is the x-direction and the vertical
axis is the z-direction. The orange color represents the heaviest fluid while the purple
represents the lightest. All other colors are a mixture of the two fluids with the green
representing the mean density. The acceleration is applied in the positive z-direction.
Therefore, the heavy fluid is moving in the positive z-direction and the light fluid
is moving in the opposite direction. At this time, the flow still exhibits some of
the random nature of the initial conditions. However, there are several identifiable
features that can be seen. The length scales of the density “blobs” are axisymmetric.
At the leading edges of the heavy fluid, the interface between the heavy and the
light fluids is very narrow. In the wake regions, at the trailing edges of the heavy
fluid, the interface is more diffuse. There are narrow regions where the heavy fluid is
jetting around the light fluid. Some of the smaller light fluid “blobs” are “U” shaped
because drag between the heavy and light fluids is causing some of the light fluid
particles to trail the main body of the light “blobs”. Some of the light density fluid
appears to have coalesced and formed an elongated “tube” in the direction of the
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acceleration (seen near the horizontal center of the figure). Along the interface of this
“tube” structure a Kelvin-Helmholtz-like shear layer has formed and entrainment
regions are visible. Also visible are the “mushroom-like” features that are seen in

Rayleigh-Taylor instabilities.
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Figure 6.33: x-z cross-section of the density field near the y-midplane for an acceler-
ated case at T' = 1. Heaviest fluid is orange and the lightest is purple.
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Figure 6.34: x-y cross-section at z=0.1 of the density field for an accelerated case at
T = 1. Heaviest fluid is orange and the lightest is purple.
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Figure 6.34 shows the x-y cross section at z=0.1. The horizontal axis is the x-
direction and the vertical axis is the y-direction. This cross section is perpendicular
the direction of acceleration (z-direction). The large nearly circular low density blob
to the left of the center of the figure is a cross section of the elongated low-density
“tube” discussed in the previous figure. The center of this tube contains low density
fluid. This core is surrounded by a region of heavier fluid which in turn is surrounded
by a region of light fluid. This show the entrainment behavior between the two fluids
which is possibly due to a Kelvin-Helmholtz instability. This figure shows planar
isotropy in the direction perpendicular to the acceleration and that the interface
between the light and the heavy fluids is quite sharp. In regions where the heavy
fluid is not well represented the interface is more diffuse.

Figure 6.35 shows the y-z cross section at x=0.25. The horizontal axis is the
y-direction and the vertical axis is the z-direction. The low density “blob” at the
bottom-center of the figure is a cross section of the elongated low density “tube” seen

in Fig. 6.33. This figure shows similar features as seen in Fig. 6.33.
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Figure 6.35: y-z cross-section at x=0.25 of the density field for an accelerated case at
T = 1. Heaviest fluid is orange and the lightest is purple.
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6.5.7 Length scales

In this section we examine the behavior of length scales. It is useful to discuss the
anisotropy in terms of length scales, and hence to address the longitudinal and lateral
microscales. The longitudinal microscale is defined as (see, e.g., Riley, et al. [72])

1,0

A2 — UU;

i o' 2
ou;

(aui)

while the lateral microscale is defined as

i=1,2, 3, no summation on (6.37)

/a0
2 _ Wy

9,5
v (%)2
an

i # j, no summation on ¢ or j. (6.38)

It can be shown that the various microscales are related to the slopes of the cor-
responding correlation functions [4, 57] (i.e., related to the second derivative of
the correlation function at zero separation distance). For isotropic turbulence all
three longitudinal microscales are equal, and all the lateral microscales are equal.
Also, for isotropic turbulence the lateral and longitudinal microscales are related by
Ay = \/5’\.%'._7’ [75].

Figure 6.36 is a plot of the longitudinal microscales for the two cases. The discon-
tinuity in slope at the early times is due to an insufficient number of output times to
obtain a continuous curve. The microscales in the vertical direction (i.e., the direction
of the acceleration) are larger than the microscales in the horizontal direction. For
these cases, the flows are highly nonisotropic. The effect of increasing initial density
fluctuations is to decrease the microscales at early times. By a time of 2, when the
density fluctuations have decayed to a small value, the microscales are nearly the
same for both cases. The vertical microscales are larger than the horizontal partly

because the vertical component of the kinetic energy is larger. This behavior is differ-
ent from the case of stably stratified flow where the horizontal microscales are larger
than the vertical microscales because the effect of stable stratification is to decrease
the vertical component of the kinetic energy (see, e.g., Riley et al. [72]) and increase
the scales in the horizontal.

Figure 6.37 is a plot of the lateral microscales for the two cases. Here, the horizon-
tal microscales are averaged, assuming planar isotropy. The lateral microscales in the
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Figure 6.36: Longitudinal microscales for the initial density ratio of 1.104 case (Run
Accla) and for the initial density ratio of 4 case (Run Acclc)

vertical direction are smaller at early times than and the microscales in the horizontal
direction. At later times, the microscales in the vertical direction are larger. Again,
the effect on increasing initial density fluctuation is to decrease the microscales at
early times. By a time of 2, when the density fluctuations have decayed to a small

value, the microscales are nearly the same for both cases.

6.5.8 Spectral Fvolution
One-dimensional spectra

In this section we present one-dimensional spectra for the fluctuating density and the
three components of velocity. The one-dimensional spectra is extracted [72] as, (e.g.,

for the u-velocity component transformed in the x-direction),

1 Nl
Ewu(k) = N,V Ak iJZ=1 w(k, yi, 2;)0" (K, vs, 25),

where NV, and N, are the number of grid points in the y and z directions, respectively.
Figure 6.38 shows the one-dimensional spectra for the u-velocity at T = 0.5 for all
three directions for the case with the initial density ratio of 4. E,,(k) is the longitudi-
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Figure 6.37: Lateral microscales for the initial density ratio of 1.104 case (Run Accla)
and for the initial density ratio of 4 case (Run Acclc)

nal spectrum of the u-velocity, E,,(k) is the lateral spectrum in the y-direction, and
E..(k) is the lateral spectrum in the z-direction. At this time, the length scales are
larger in the horizontal direction, as indicated by the larger low wavenumber values
for Eyy(k) compared to E,,(k). This is consistent with the results seen in Fig. 6.37
which shows that, at early times, the lateral microscale is larger in the horizontal
direction. It is observed (not plotted here) that E;,(k) and E,,(k) have the same
shape and E,,(k) and E;,(k) have the same shape, which is due to the isotropy
condition on the longitudinal and lateral correlation functions. Figure 6.39 shows
the one-dimensional spectra for the u-velocity at T° = 2.0 for all three directions for
this case. At this time, the lateral microscale is larger in the vertical direction. This
behavior is not as apparent in the spectra of these correlation functions.

Figure 6.40 shows the one-dimensional spectra for the fluctuating density field at
T = 0.0,1.0, and 3.0 for the case with an initial density ratio of 4. This shows that
initially the fluctuating density field is isotropic. As time evolves, the density field
becomes anisotropic. In the direction of the acceleration, the density field has more
small scales associated with it, while, in the horizontal direction, the density field is

planer isotropic. By a time of T = 3.0, when the density fluctuations have decayed
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Figure 6.39: One-dimensional spectra for the u-velocity for the initial density ratio
of 4 case (Run Acclc) at T=2.0
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Figure 6.40: One-dimensional spectra for the fluctuating density field for all three
directions for the initial density ratio of 4 case (Run Acclc) at T=0.0, 1.0, and 3.0

to small quantities, the density field has returned to a nearly isotropic state.

Three-dimensional spectra

This section is presents the evolution of the spectra for various quantities for the
case with the initial density ratio of 4 (Run Acclc). The binning procedure for
computing the spectra is discussed in Appendix E. The spectra for these simulations
are computed for wavenumbers up to 64. We begin by examining the evolution of the
spectrum of pu;u;, /2 for run Accle. Figure 6.41 shows the evolution for a sequence
of times from T = 0 to 3.75 by increments of 0.25. At T = 0 there very little
energy because the initial velocity field is nearly zero. At early times, the spectrum
increases at all wavenumbers shown, with a maximum at & = 3 which corresponds
to the wavenumber at which the initial density field has a maximum spectral value.
In this figure we see spectral values for the early times that do not range the entire
wavenumber span in the simulation. The reason the spectra are plotted in this manner
is because, at wavenumbers greater than those that are plotted, the spectrum has
small negative values and, therefore, cannot be plotted on a log-log plot. It is observed

that, as the flow develops, the cut-off for which the spectra become negative increases
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Figure 6.41: Spectral evolution of pul,u,/2 at R, = 256 for initial density ratio of 4

case (Run Acclc)

in wavenumber as energy is cascaded from low to high wavenumbers. After the
spectrum has built up at the large wavenumbers, and cascade has been established,
it begins to decay as the source of potential energy in this problem has been exhausted

and viscous effects become dominant.

Figure 6.42 shows the evolution of the spectra for pu, u;, /2 for the same times given
in Fig. 6.41. This shows that, during early times, the spectral energy for pulu; /2
is transferred to higher wavenumbers at a greater rate than the spectral energy for
pusur /2. The maximum also occurs at k£ = 3. At late times the spectrum is decaying
at all wavenumbers. The difference between the spectra of pu/,u;,/2 and puyu,, /2 are
due to the spectrum for p'u,u; /2. This is shown for early times in Fig. 6.43. At the
initial time the spectra of p'uu;, /2 is nearly zero because the initial velocity field is
nearly zero. As the flow develops, the magnitude grows to a maximum then decays
away as the density fluctuations decay. The spectrum of p'u]ul, /2 is negative since in
this case the largest velocities are associated with the negative density fluctuations.

Figure 6.44 shows the evolution of the spectra of the density field for T = 0.0
to 3.75 by increments of 0.25. At early times, during convective mixing, the high

wavenumber content increases rapidly. Once the density transfer has reached the
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Figure 6.44: Spectral evolution of p'p’ at R, = 256 for initial density ratio of 4 case
(Run Accle)

dissipation scale then the density fluctuations decay due to molecular mixing. Figure
6.45 shows the spectral evolution of (0u,,/0z,). This quantity is related to the density
through condition (2.11). Therefore, at early times the maximum is at a wavenumber
of 3. As the flow develops the maximum of this quantity shifts to a wavenumber of
14. The length scales associated with this wavenumber are the length scale where
dilatation effects are most prominent. At late times as the velocities in the flow decay,

so too does the spectrum of (uy,/0z,).

6.5.9 Summary of variable-density effects at R, = 256

This section has discussed variable-density effects on the behavior of buoyancy-driven

flow at R, = 256. It has been shown that an important parameter that characterizes
buoyancy driven flow is 6, [eq. (6.9)], a measure of the intensity of the initial density
fluctuations. A rule of thumb is suggested that, if 8, is less than about 0.10, then the
resulting buoyancy-driven flow is within the Boussinesq approximation. Likewise, if
6, is larger than about 0.10 then the resulting flow is non-Boussinesq.

As the initial density fluctuations are increased, the flow behavior deviated in-

creasingly away from the Boussinesq approximation limit. Also, the nondimensional
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Figure 6.45: Spectral evolution of (du;,/dz,) at R, = 256 for initial density ratio of
4 case (Run Acclc)

mean-squared velocity increases, while the nondimensional kinetic energy decreases.
The nondimensional time at which the mean-squared velocity reaches a maximum
decreases as the initial density fluctuations increase. It is conjectured that, in the
limit as the initial density ratio becomes very large (much larger than 4), the mean-
square velocity history will approach a limiting curve since this quantity must remain
bounded. This limiting case is not studied here due to resolution limitations in our
numerical scheme.

There are three terms that contribute to the evolution of the total turbulent

kinetic energy per unit mass, given by eq. (A.7):

— Ran(t) — Pl Uy, — Upln | P Ul _ OnGn
25 25 2 20 2

K()

These three terms are the mean-squared velocity, w4/ /2, a triple correlation term,
Pull /25, and a mass flux term, anan/2. Within the Boussinesq limit, this triple
correlation and the mass flux are very small compared to the first term. As the
initial density fluctuations are increased, these two terms grow to large values and
their effects become more important. These two terms are negative, resulting in
a lower nondimensional kinetic energy per unit mass. Negative values for the triple
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correlation term, pg'ulu!, /2p, correspond to larger velocity magnitude being associated
with negative density fluctuations and is a result of the conservation of momentum.

A consequence of the Boussinesq approximation is that the mean pressure gradient
(i.e., the gradient of the hydrostatic pressure) is uniform in time with the value pg;.
This approximation is accurate in the limit of small density fluctuations but, as the
initial density fluctuations increase, the mean pressure gradient becomes variable in

time and its value is given by eq. (3.19) and written here as

6112,' v

op 1 0T, ,0ul, ,Op/
{gz-i—’l)%:-i-uiaxn—v-a—i; .

In the limit as the density fluctuations tend to zero, eq. (3.19) gives the Boussinesq

approximation for the mean pressure gradient. In the absence of fluid motion (e.g.,

at time equal to zero) the mean pressure gradient is

217

i

Here, the correlation of the fluctuating specific volume-fluctuating pressure gradient
is a non-Boussinesq departure from the hydrostatic pressure gradient. As the initial
density fluctuations increase so also does this correlation. The presence of this corre-
lation acts to impeded the growth of the turbulence mass flux. In the absence of an
acceleration, this term is not present but immediately has a nonzero value the instant
that an acceleration is applied.

The enstrophy is initially zero, grows to a maximum and then decays through
viscous dissipation. The initial growth is due to a generation of vorticity in the
plane perpendicular to the direction of the acceleration through baroclinic torque.
The vorticity in this plane is much larger than the component in the direction of
the acceleration, which receives vorticity through turning which is then enhanced by
stretching. There is very little generation of this component due to baroclinic torque.
The destruction of vorticity in all three directions is through viscous dissipation. It
should be noted that, in the Boussinesq limit, the baroclinic torque only act in the
planes perpendicular to the acceleration.

It has been also shown that, for consistency with the Boussinesq approximation,
the quantity b(¢) = —p'v' should be equal to B(t) = p'p//p?. Also, as the initial

density fluctuations increase, the pdf of the density field has an increasingly larger
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skew (to the negative side of the mean density) associated with it. It is argued that
this skewness is attributed to larger entrainment rates of the lighter fluid than the
heavier fluid into the mixing region.

6.6 Reynolds number effects

This section describes the results of three simulations that differ only in the “pseudo-
Reynolds” number of buoyancy-driven flows, with values R, = 256 (Acclc), R, = 512
(Acc2c) and R, = 64 (Acc3c). The effect of different Reynolds numbers is studied
using an initially bimodal density field with an initial density ratio, pmez/Pmin, of 4
for each case. The case with R, = 512 is near the limit at which a density ratio of
4 can be computed accurately without losing numerical resolution. Higher Reynolds
numbers can be achieved by using subgrid modeling (i.e., large eddy simulations) to
resolve the small scales (as was done for the Boussinesq results of Batchelor et al. [7]).
As established in the previous section, at this initial density ratio, the flow is outside
the limits of validity of the Boussinesq approximation. Therefore, these simulations
were computed with the Navier-Stokes equations of motion without the Boussinesq
approximation. In these simulations g = 1 and o = 1. The grid size is 1282 in runs
Acclc and Acc2c and 643 in run Acc3c. A courser mesh size is used for the case at
R, = 64 case because at this mesh size the flow is well resolved.

The initial velocity field is set to zero then slightly modified to account for the
required divergence of the velocity field [eq. (2.11)] . An acceleration is be applied
in the vertical direction and the developing flow is statistically axisymmetric in the

horizontal planes.

6.6.1 FEnergy evolution

Consider the energetics of the flow. A quantity of interest is the time history of the
mean-squared velocity for different R,. Figure 6.46 shows the mean-squared velocity
as a function of time. Some of the trends that are seen in the Boussinesq results of
Batchelor et al., (see Fig. 6.1) are also observed in these non-Boussinesq cases. As the
Reynolds number is increased, the mean-squared velocity appears to be approaching
a limiting curve. As was discussed in Section 6.5.1, the mean-square velocity reaches
a maximum at T = 1.5, which is an earlier time than in the Boussinesq approximation
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Figure 6.46: U'U’ vs. T for non-Boussinesq cases with an initial density ratio of 4 at

various R,

limit. And for the case with R, = 512, the shape of this curve differs somewhat from
the corresponding curve in the Boussinesq approximation limit [Batchelor et al. [7]).

The progression of the limiting behavior would be more clear if the gap that exists
between the cases with R, = 64 and R, = 256 were filled with results from a case
with R, = 128.

A measure of large-scale anisotropy, v, [7] of the flow is given by eq. (6.26). Figure
6.47 contains plots of 7y for these three cases of different R,. As the Reynolds number
is increased the flow becomes more anisotropic at very early time and then becomes
less anisotropic at later times. This figure also shows that the degree of anisotropy
appears to asymptote to a constant value that is Reynolds number dependent. This
is not so surprising as the velocity field (from which the measure of anisotropy is de-
rived) evolution is dependent on R,. Note that the flow is initially very nonisotropic.
However, as the flows develop, they become more isotropic, as spectral energy trans-
fer occurs, especially at high wavenumbers. The higher R, cases allow more energy

at higher wave numbers and hence are more isotropic.

Figure 6.9 shows each term in the equation for the total energy per unit mass [eq.
(A.7)] for the initial density ratio of 4 case at R, = 256. Figures 6.48 and 6.49 show
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the corresponding information for the cases with R, = 64 and 512. Comparisons of

these three figures show several features that vary with the Reynolds number. As the
Reynolds number is increased, each term in the total turbulent kinetic energy equation
increases in value. This is due to an increase in the velocities that are generated
through buoyancy effects. The increases in the initial Reynolds number are achieved
by lowering the viscosity of the problem. With o = 1 held fixed for these cases, D
also changes. Thus, as R, increases, both viscosity (which slows the flow down) and
diffusion (which reduces the forcing) are weaker, so larger velocities are obtained. The
magnitude of triple correlation term, gulu! and the term associated with the mass
flux, pa,a,, are initially nearly zero, grow to maxima and then decay to zero. These
terms are decaying at times when the total turbulent kinetic energy is increasing (thus
the velocities are increasing) because the density fluctuations are decaying. Also, it
appears that, just as the mean-squared velocity is approaching a limiting curve as the
Reynolds number is increasing, p'ulu and pana, are approaching limiting curves.
Figure 6.50 shows the evolution of pu/ul for these three cases. As the Reynolds
number increases so also does the magnitude of this triple correlation term. As R,
increases, the magnitude reaches a peak value at a time of T = 1. For the case
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Figure 6.48: Terms of the total turbulent kinetic energy per unit mass for the initial
density ratio of 4 cases at R, = 64 (Run Acc3c)

with R, = 512 this quantity decays to a slightly positive nonzero value at late times.
Since 7 is constant in these problems, the behavior of pana, can be understood by
examining the behavior of a,.

The nondimensional turbulent mass flux per unit mass, A, (see section 6.5.2), is
plotted as a function of time for these three cases in Fig. 6.51. As R, increases, the
growth of the mass flux increases and appears to be approaching a limiting curve

with a maximum at about T'= 0.9.

6.6.2 Velocity derivative skewness

Figure 6.52 shows the evolution of the velocity derivative skewness averaged over all
three components for the three variable-density cases with an initial density ratio of
4. The early time behavior is a result of the initialization procedure. As R, increases,
the viscosity and diffusivity decrease (since the Schmidt number is fixed) resulting in
a smaller velocity divergence and smaller initial velocities. At late times the velocity
derivative skewnesses for the higher R, cases are nearly the same at a constant value of
0.5, whereas, for the case with R, = 64, the velocity derivative skewness has a nearly
constant value of 0.2. Thus, the spectral energy transfer (and vortex stretching) is
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density ratio of 4 cases at R, = 512 (Run Acc2c)
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Figure 6.51: Turbulent mass flux for initial density ratio of 4 cases at various R,

larger in the higher R, cases. The case with R, = 64 is not very turbulent because
the vortex stretching is small. The difference in the velocity derivative skewness
for the case with R, = 64 and the higher Reynolds number cases is understood by
observing the evolution of the isotropic Taylor Reynolds number, Ry = AMA /v, (i.e.,
the Reynolds number based on the isotropic Taylor scale) for these three cases shown
in Fig. 6.53. It has been shown that these problems are highly anisotropic; however,
the isotropic Taylor Reynolds number is used for the following discussions. For the

case with R, = 64, the Taylor Reynolds number increases to a maximum no larger
than Ry < 5.0. For the other two cases, Ry grows to values larger than 20. It has
been seen that, in numerical simulations of decaying, isotropic turbulence [66, 37, 60},
values of the velocity derivative skewness decrease as Ry decreases for Ry < 20. In
grid turbulence experiments [86] it is found that the velocity derivative skewness also
decreases for decreasing R, if Ry < 5. The velocity derivative skewness in these
accelerated cases exhibits this same dependence on R).

6.6.3 FEwvolution of the mean-pressure-gradient

The mean-pressure-gradient is given by eq. (3.19). Figure 6.18 shows each term of
this equation as a function of nondimensional time for the case in which the initial



(Sl+Sz+Ss) /3

T
PSTYVRY PR

0.8

0.6
0.4 |-

0.2 %

183

Figure 6.52: Average velocity derivative skewness for the density ratio of 4 cases at

various R,

Re r ——R_=64 ]
S N R,=256 ]

F S T e R =512 ]

0 F ; i

0 F e T .

20 -— /” ------------ ‘-:

i r

0 |, ]

Figure 6.53:
various R,

60 T[T T[T ———T—T

Taylor Reynolds number evolution for the density

3.5

ratio of 4 cases at

VAR LR N A e, S A MG O L ear e Gl A RONE



184

R e =

0.2 |- —

2.5 3 3.5 4

<)
e
St
-
—
W
©

Figure 6.54: Evolution of terms in the mean-pressure-gradient equation [eq. (6.32)]
for initial density ratio of 4 case at R, = 64 (Run Acclc)

density ratio is 4 and R, = 256. To understand Reynolds number effects on the mean-
pressure-gradient we also plot each term in the mean-pressure-gradient equation as a
function of time for the cases at R, = 64 and 512. These are shown in Figs. 6.54 and
6.55 respectively. Comparisons between these two figures and fig. 6.18 show that the
main contribution to the mean-pressure-gradient is through the acceleration term,

9/v. As R, increases, the contribution from v’ gﬂ% increases. The contributions from
the viscous and the dilatation terms are small in all three cases. This comparison
also shows that as R, increases the mean-pressure-gradient becomes more variable in
time which is due to the behavior of v’_g%. This increasing nonuniformity is seen more
clearly in Fig. 6.56 which shows the time histories of the mean-pressure-gradients
for these three cases. As R, increases, the early time growth of the mean-pressure-
gradient is reduced due to the buoyancy flux, and the maximum mean pressure that is

obtained (near a time of 1.4) increases. For the case with R, = 64 the mean-pressure-
gradient becomes nearly constant near the value of 1 (as given by the Boussinesq
approximation) at an earlier time than for the other two cases. For the higher R,
cases the mean-pressure-gradient has larger variations in time and, for times greater

than 3, decays quite slowly.
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Figure 6.55: Evolution of terms in the mean-pressure-gradient equation [eq. (6.32)]

for initial density ratio of 4 case at R, = 512 (Run Acclc)
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Figure 6.57: Evolution of g/ for initial density ratio of 4 cases at various R,

The main terms contributing to this variability are the acceleration term, ¢g/7, and

the v/ gﬁ—; correlation. Figure 6.57 shows the time history of the acceleration term,
g/v. As R, increases, the growth of g/ is slowed. This is due to the fact that the
mean specific volume, 7, follows the evolution of b = —p'v’ = 5T — 1 because 7 is a
constant. Figure 6.58 shows the evolution of the mean specific volume for the various
Reynolds number cases. As the density fluctuations decay away, the quantity b is
tending to zero so that the mean specific volume is tending to a constant value of
1. As R, increases the rate-of-decay of the mean specific volume decreases, which
in turn causes a slower growth of g/7. It will be shown below in the discussion

of the density fields that the variance of the density fluctuations and b(f) approach
limiting curves as the Reynolds number increases. Since the evolution of the mean
specific volume follows the evolution of b(t), it also approaches a limiting curve as the

Reynolds number increases. Likewise, so also does g/ since g is constant in time for

these problems.

The next largest term contributing to the mean pressure gradient in the direction
of the acceleration is the correlation between the fluctuating specific volume and the
fluctuating pressure gradient, i.e., —-’UTW. Figure 6.59 shows the evolution of
this term for these three cases with an initial density ratio of 4. For these cases,
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Figure 6.58: Evolution of the mean specific volume, 7, for initial density ratio of 4

cases at various R,

the correlation between the fluctuating specific volume and the fluctuating pressure
gradient has a value initially nearly 0.56. This correlation is nonzero the instant
that the density field feels an acceleration. At this instant, it is a “rapid” part that
impedes the growth of the turbulent mass flux. The term “rapid” is used because it
is an instantaneous response of the mean pressure. For the case with R, = 64 the
starting value of this correlation is slightly lower than for the other two cases, due
to the fact that the initial density field for that case is statistically similar but not
identical to the other two cases. The reason for this is because the the case with
R, = 64 is computed on a 64° grid and the other two cases (which have identical
initial density fields) are computed on a 1283 grid. As R, increases this correlation
grows and peaks at a time of approximately T = 1.1. The growth of this term is
due to the “slow” part, which behaves like a drag on the growth of the mass flux.
The decay behavior of this correlation after a time of 1.1 describes mostly the “slow”
part of this correlation. To see this behavior more clearly this correlation is plotted
in nondimensional form as a function of the nondimensional mass flux, shown in
Fig. 6.60. At early times this correlation is not proportional to the mass flux. The
early time behavior is what has been referred to above as the “rapid” part. As
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the flow develops, this correlation becomes proportional to the mass flux, behavior
which is termed the “slow” part. At late times in all three cases this correlation is
nearly linearly proportional to the mass flux as the “rapid” part has decayed and the

behavior is due mostly to the “slow” part.

6.6.4 Fuvolution of the Density field

This section discusses the evolution of the density fields as functions of R, for these
buoyancy-driven cases with an initial density ratio of 4. It has been seen that, in
the Boussinesq approximation results of Batchelor et al., the variance of the density
fluctuations approaches a limiting curve as the Reynolds number is increased. It has
also been shown, in the Boussinesq results, that the variance decays more slowly at
early times as R, is increased. Figure 6.61 shows the evolution of the variance of the
density fluctuations as a function of R, for the cases with the initial density ratio of 4.
For these cases with large initial density fluctuations this plot shows behavior similar
to that reported by Batchelor et al. [7] . The decay of the density fluctuations is
slower at early times as R, increases, and it appears that the variance is approaching
a limiting curve as the Reynolds number goes to infinity.

The trend for the variance to decay slower, at early times, as R, increases, is due
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to the fact that the dissipation scales for the density decrease as R, increases. Figure
6.62 shows the dissipation rate histories for the density fluctuations for these three
cases. The dissipation rate for the case with R, = 64 has a maximum at T = 0
and then decreases with time. As R, increases, the initial dissipation rate decreases.

For these three cases the Schmidt number is a fixed value of 1. R, is varied by

changing the viscosity and thus the diffusivity also changes, resulting in changes
of the initial dissipation rate. For the higher R, cases, the dissipation rate slowly
increases, as the density is cascading to smaller scales through convective effects, and
reaches a maximum when the density has cascaded to the dissipation scale. After
this time the density is decaying through diffusion. In the limit as R, goes to infinity
it is conjectured that the mean-squared density is conserved for a small period of
time when dissipation effects are negligible (consistent with the results of Batchelor
et al.). During this short period of time the spectra of the density has increasing
values at higher wave numbers (smaller scales). After this short period of time the
spectrum of the density has reached the dissipation scales and dissipation effects
become important. This behavior is analogous to the enstrophy blow-up phenomenon
discussed by Lesieur [52] (Chapter 6, section 7.3).
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Figure 6.63: Evolution of the time scale of decay of the variance of the fluctuating
density field for initial density ratio of 4 case at various R,

Figure 6.63 shows the time scale of decay for the quantity, o'/, as a function of
time for the three values of R,. These plots show that the decay times are larger for
increased R, at early times, consistent with the slower decay behavior of the density
fluctuations. After a time of 1.5 the time scales for all three cases are nearly the same
and slowly growing linearly. This suggests, perhaps, that the variance of the density
fluctuations is decaying as a power-law at the late times.

Figure 6.64 shows the evolution of the quantities b(t) = —p’ and B t)=p0/p?
as functions of time for the three cases. Comparison of the behavior in this plot with
that seen in Fig. 6.50 (which shows the evolution of pu/u’ ) suggest that, in the limit
where b(t) ~ B(t), p'uuy, is approximately zero. Thus, when b() ~ B() the flow is
nearly “Boussinesq”.

Figure 6.32 shows the early time evolution of the pdf of the density field for the
case with an initial density ratio of 4 at R, = 256. Figures 6.65 and 6.66 show the same
kind of plot for the cases with R, = 64 and 512, respectively. This comparison shows
that the skewness seen in the pdf is stronger as the Reynolds number increases. This
behavior is expected since the velocity differences between the high and low density
fluids increase as the Reynolds number increases. Thus the entrainment rates of the
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3.5 4

Figure 6.64: Comparison of b(t) and B(t) evolution for initial density ratio of 4 case

at various R,

low density fluid also increase as the Reynolds number increases. The reason the
velocity ratio increases with increasing R, is two-fold. As R, increases there is less
reduction in forcing, due to less diffusion of the density and there is less dissipation of
kinetic energy, which acts to slow the flow down. This, in turn, allows the energy to
grow to larger values causing a larger velocity ratio between the high and low density.
The high velocities are associated with the negative density fluctuations, which is a

result of momentum conservation.

6.6.5 Effects of R, on spectral quantities

This section shows the spectra of the energy per unit mass, of the fluctuating density
and of the velocity divergence for different R, at T = 1.0. Figure 6.67 shows the

spectrum of the energy per unit mass, computed as

< unu, > _ 1 o
2 AEN; o

Epn(k,t) =

As R, increases, so also does the energy at high wavenumber values. Thus, the
energy has smaller scales associated with it. The low wavenumber content is also

larger, indicating that the flow is more energetic.
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Figure 6.65: PDF evolution, for T=0.0 to 1.75 by 0.125, of the density field at R, = 64
for initial density ratio of 4 case (Run Acc3c)

Figure 6.66: PDF evolution, for T=0.0 to 1.75 by 0.125, of the density field at
R, = 512 for initial density ratio of 4 case (Run Acc2c)
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Figure 6.67: Spectra of u,ul, at R, = 256 at T = 1.0 for different R,

Figure 6.68 shows the spectra of the density fluctuations at the same time for
various R,. As R, is increased, the density field has smaller scales. The dissipation
scales for the fluctuating density decreases with R,. Thus, the decay of the fluctuating
density is slower at early time (see Fig. 6.62) and the low wavenumber content is
larger for the higher R, cases.

Figure 6.69 shows the spectra of the velocity divergence. As R, is increased, the
scales at which the velocity divergence is more energetic are smaller as the spectral
peak shifts to higher wavenumbers. For the case with R, = 512, the peak is at a
wavenumber of 23 and there is a “tail-up” at the higher wavenumbers. These spectra

show that, as R, is increased, the velocity divergence becomes more difficult to resolve.

6.6.6 Summary of R, effects

This section has described the results of three simulations, Accle, Acc2c and Acc3c,
of a buoyancy-generated turbulent flow. These simulations initially have the same
statistical density distributions with an initial density ratio of 4. The method of
Eswaran and Pope is employed to obtain an initial bimodal density distribution. The
effects of varying Reynolds number, R,, are examined.

It appears that the effects of variable density increase with 8, and R,. These
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effects increase with R, since the Schmidt number is held fixed both the viscosity and
diffusivity decrease. This results in less reduction in forcing, due to less diffusion of
density fluctuations and there is less dissipation of kinetic energy, which acts to slow
the flow down. weaker, and thus have more of an effect on the flow.

It is seen that, for these cases, the time histories of the mean-squared velocity ex-
hibit Reynolds number behavior similar to the results of Batchelor et al. {7] employing
the Boussinesq approximation. As R, is increased, the mean-squared velocity appears
to approach a limiting curve. The peak value of the mean-squared velocity occurs at
a time of T = 1.5, which is less than the value of 1.8 obtained with the Boussinesq
approximation. This difference is due to differences in the intensity of the initial
density fluctuations. As the initial density fluctuations are increased, the time at
which the mean-squared velocity reaches a peak decreases. It is conjectured that this
time shift will reach a limiting value as the initial density fluctuations are increased

since this behavior must be bounded. This limiting behavior has not been examined

in this work because of the resolution limitations of our numerical scheme prevent
us from studying the effects of larger initial density fluctuations. The limiting curve,
towards which the mean-squared velocities are approaching, for the non-Boussinesq
case is different than that for the Boussinesq case. Not only is the time different
at which the maximum occurs is, but also so is the shape of the curve. Figure 6.46
shows the mean-squared velocity histories for different R, for the cases with the initial

density ratio of 4. At R, = 256 the decay of the mean-square velocity, just after the
peak, is slower up to T'= 2 than it is thereafter. This behavior is not present in the
Boussinesq case (see Fig. 6.1).

It is shown that the total turbulent kinetic energy and the terms that make up
this energy increase as R, is increased. The total turbulent kinetic energy per unit

mass is given as
oG 77
_ Ru(t) _ wu | puy il

K(t) = = 2 25 2

The first term on the right side is the contribution from the mean-squared velocity.
The second term is due to correlations between the fluctuating density and squared
fluctuating velocity. The third term is due to the turbulent mass flux, a; = —p'u; /P

As R, is increased each of these terms increases and also appears to be approaching

a limiting curve. The second term is negative, thus that term and the third act to
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decrease the total turbulent kinetic energy.

The mean pressure gradient becomes more variable in time as R, is increased. The
main contributions to the mean pressure gradient are from the acceleration term, g/7,
and —v/(0p'/0z;). As R, is increased, larger variations in g/¥ occur due to the mean
specific volume, 7, changing with time. The mean specific volume follows the behavior
of b = —p/v/ through the relation b = PT—1. It is seen that ——Wx—i is nonzero
the instant that the fluid feels an acceleration and its initial value is dependent on the
strength of the acceleration, g, and the initial density fluctuations. The initial value
is not Reynolds number dependent. At early times —W represents a “rapid”
part (i.e., an instantaneous response that is proportional to the mean pressure) in
the evolution of the turbulent mass flux, a;, and at later times behaves as a “slow” or
“drag-like” part (i.e., is proportional to the mass flux). This correlation thus impedes
the growth of the mass flux.

The variance of the fluctuating density appears to approach a limiting curve just
as for the Boussinesq results of Batchelor et el. [7]. It is seen that, when b(t) =~
B(t) = p’p’/p?, the flow is “Boussinesq” since p'u—:u: and a; are nearly zero and the
mean pressure gradient is approximately

o __
gx—i—!)gi-

Also, as R, increases, the skewness in the pdf of the density field also increases. It
is argued that this is due to a larger velocity ratio between the high and low density
fluid, which causes a larger entrainment rate for the low density fluid into the mixing
region than for the high density fluid. Thus, the low density fluid is entrained into
the mixing region at greater rates than is the high density fluid.



Chapter 7

MODEL COMPARISONS

In this chapter results of numerical simulations are compared to predictions of
two variable-density turbulence models. The first section discusses the objective of
this aspect of the study. The following section describes the models as applied to a
statistically homogeneous, variable-density fluid subjected to an acceleration. In the

last two sections the results and conclusions of this aspect of the study are discussed.

7.1 Object of Study

In the study we present in this chapter, we desire to isolate variable-density effects
from other fluid dynamical effects to as great a degree as possible. There are many
unanswered questions regarding constant-density turbulence which also apply in the
variable-density case. In this study it is desirable, however, to separate the variable
density effects from those of constant-density turbulence, which are more appropri-
ately studied using constant-density simulations. The objective of the work discussed
in this chapter is to investigate the effectiveness and suitability of the structure and
hierarchy of the modeled equations discussed below in Section 7.2. The DNS results
for accelerated turbulence are ideal for studying many of the major issues in modeling

variable-density turbulence.

We will attempt to elucidate, through DNS, modeling issues that are analytically
difficult or even intractable, such as the nature of the pressure correlations. Specif-
ically, we address (i) the effects of the v (8p//dz,) term in the equation for an; (ii)
the form of the “drag” term in this equation; and (iii) the efficacy of the extensions
of traditional k-¢ modeling ansatz to variable-density turbulence, e.g., using a single

e-equation.
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7.2 Models

7.2.1 BHR Model

The Besnard, Harlow and Rauenzahn model (BHR) [10] is an extension of one-point
k-e closures to variable-density turbulence. The intent of this model is to obtain
a tractable closure to solve practical engineering problems. The model is derived
from the usual equations of motion [egs. (2.1) and (2.2)] and includes an energy
and species equation. These equations are Favre averaged and, for the incompress-
ible case, equations for the one-point Reynolds stress tensor, the turbulent energy
dissipation rate, species concentrations, and correlations for the density-velocity and
specific volume-density fluctuations are derived. The higher-order unknowns in these
equations are closed using typical constant density assumptions (e.g., Launder, Reece
and Rodi [49]) which are extended to account for a variety of variable-density effects.
The details of the closure development can be found in Besnard et al. (1992) [10].
The BHR model equations, given as egs. (48)-(54) in [10], are derived for general
inhomogeneous, anisotropic flows in the limit of high Reynolds number. They are
rewritten here for the specific case of a statistically homogeneous, variable-density
fluid subjected to an acceleration. The evolution equation for the correlation between
the specific volume and the density fluctuations, i.e., b = —p'@/, [eq. (50) in [10]]

reduces to

% . (%) b, (7.1)

The right side is a dissipation term due to a turbulent, “cascade” analogous to the cas-
cade of energy, which is assumed to be independent of the diffusivity. The turbulent
mass flux model equation [eq. (49) in [10]] reduces to

Oa, bOP 2pe
= - — ) ap. 7.2

8  poz, ‘- <R,m) ¢ (7:2)
Note that, for consistency with the definitions used in this study, the sign of a; is

the negative of that given by Besnard et al. [10]. The second term on the right side

is a model of the correlation between the fluctuating specific volume and fluctuating
pressure gradient, which is modeled as a “slow-part” of this correlation, causing a
drag or “decay” of a,. Again this term is assumed to be independent of viscosity and
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diffusivity. Besnard et al. suggested that this could be modeled as a “rapid” term or
a combination of “rapid” and “slow” parts, but chose to incorporate only the “slow”
part. The kinetic energy equation [eq. (48)] reduces to

R, oP

The last term on the right side is the energy dissipation term and is again modeled
independent of viscosity. At this point it is appropriate to note that the time scales for
dissipation of a,, and b are “constructed” from a time scale associated with the energy
cascade, T ~ Ryn/(p€). This assumption is based on (1) turbulence characterized by
a “large” inertial range where the dissipation rate is independent of viscosity (or
diffusivity) and (2) that this cascade also dominates the dissipation of “a,” and “b”.
While this assumption may be suitable for well-developed, high Reynolds number
turbulence, it is clearly questionable for the case of accelerated turbulence. Thus our

DNS provides a stern test of the single-point model. Finally, the energy dissipation

equation [eq. (51)] becomes

Oe 2pe oP 2pe
— = — | — — e 7.4
ot C3¢ (Rn.n> Qn axn C2e¢ <Rnn> € ( )
The hierarchy of the generation of fluid motion is as follows: through the action of
an acceleration a pressure gradient is established. The presence of fluctuations in the
density, “b”, coupled to the pressure gradient generates a mass flux, “a;”. This mass
flux, coupled to the pressure gradient, produces the Reynolds stress, “R;;”. Finally,

the kinetic energy, “Rn,”, is dissipated into heat.

7.2.2 CS Model

The Clark and Spitz model (CS) [23] is a two-point (spectral) phenomenological
model. The advantage of a two-point (spectral) formulation is that it eliminates the
need for length-scale/dissipation equations and corollary assumptions which are em-
ployed in one-point modeling. The usual constant-density issues arise in the closure
as well as additional difficulties from variable-density effects. For example, the spec-
tral transfers occur not just as triadic interactions of velocity, but also as a quartic
interactions of velocity and density. Also, no simple “Poisson” equation for the pres-

sure can be found. There are also many more correlations and hence more closure
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assumptions to address. The CS model is not intended as a rigorous solution to these
problems, but as an attempt to relieve some of the limitations inherent in the one-
point k-¢, or R;j-€, formalism. It is not intended as a practical engineering closure, but
rather as a tool to study turbulence and turbulence closures. Issues of self-similarity,
length-scale, time-scale equilibrium and space-time scaling during rapid accelerations
can be addressed.

The model derivation is based on two-point correlation equations for variable-
density, incompressible turbulence, represented in mass-averaged (“Favre”-averaged)
variables. These equations are Fourier transformed with respect to the separation
distance between the two points. The equations are closed in a manner analogous
to the constant-density model of Besnard, Harlow, Rauenzahn and Zemach (BHRZ
model) [9]. That is, a modified “Leith diffusion” [51] closure is employed for the
k-space transfers and time scales. This variable-density model reduces to a modified
BHRZ model in the limit of constant-density, isotropic turbulence. The model is
derived specifically for homogeneous, accelerated turbulence and it reduces to a model
for a passive scalar in isotropic turbulence for vanishing density variations. The details
of the closure can be found in Clark and Spitz (1995) [23].

The derivation of the model gives a similar hierarchical structure (see Section
7.2.1) as the BHR model for the case of a statistically homogeneous turbulence sub-
jected to an acceleration. The model equations (used in this study) [23], are

db(k,t) _ 0 {(Cle 4 Gat _ Comr ) kb(k, t)}

0t~ Ok \\6a(k) " 8u(k)  Ga(k)
O (G | Caz , Chaz\ 20b(k,1) T
+6k{(93<k)+ea(k)+e,4<k>)’“ Ok } 2DKb(k, 1), (75)

aan(k,t) - _i C’aRl Caax _ C'aAl a
o~ ok {(eRw) k) eA(k)) : "(’“’t)}

6 Ca P) Caa2 Ca 2 28an(k, t)
*ﬁ{(ezﬁc) Bulh) 9A<7c>>’“ )

__ | Crr1BrP1 | Crp2Brp: bkt @ _ [E _] ,
{ 9 (k) + Or(h) }an(k,t) —ﬁ oz ﬁ+D k*an(k,t), (7.6)




202

and
ORm(kt) 0 [(Cm 9 [ Cra\ ,20Run(k:t)
ot "ak{<6a<k>>’“R""(k’t)}+6k{<ea(k)>’“ )
—Qan(k,t)gTP — 2%k2R,m(k,t) (7.7)
where
1 -1/2
0uti) = 2 [ PRontoll]

Ba(k) = [k2\/an(k, t)an(k,t)]—l :

0a(k) = [k\/an(t)an(t)]—l ,

where Bgrp; and Brpo are chosen to be 1/b(t), and

bx k) = — [ POy CR)e v, (7.8)
ai(x, k) = /000 ul (x1) p(1 )0 (kg )e ™ T, (7.9)
Ryl k) = [ 5To0e0) PGl o) e . (7.10)

The center coordinate, x, and a relative coordinate, r, are defined as
1

X = §[X1+X2], (7.11)
r =X; — Xo, (7.12)
so that
1
X; =X+ 3L (7.13)
1
Xz =X—or. (7.14)

With homogeneity, Ri;(x,k) = Ri;(k), ai(x,k) = ai(k) and b(x,k) = b(k). In the
single-point limit, a;(x,x) = uj (x).
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Figure 7.1: v/(0p’/0z,) term and models for Run Acclc

7.3 Results

7.3.1 BHR model comparisons

We begin our investigation of the BHR, model by first examining the closure of the

v'(0p'/0z,) term in the a, equation. This term in the BHR model represents the
dissipation of a, and is modeled as a “slow” (drag) term in eq. (30) in [10], i.e.,

.
7 = c1a <§) . (7.15)
n

It is postulated by Besnard et al. [10] that the model for this term may also include
a “rapid” term, i.e., eq. (32) in [10],

op
0z,
Both these models are plotted as a function of time for the DNS case Accle in F ig.
7.1. This shows that the “rapid” model [eq. (7.16)] give better early time agreement

with the DNS data than the “slow” model [eq. (7.15)].
It is also observed that, in the limit as b goes to zero, the equation for a, might

b
71'2 = —C3a5 (716)

not drive a, to zero. Physically, there should not be any mass flux when the den-
sity fluctuations are zero. To enforce this behavior, a possible modification to the
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dissipation term [eq. (7.15)] in eq. (7.2) might have the form

270“6) an
$=Clo | =— | —, 7.17
m=c (7 ) oo (r.17)
rather than that given by eq. (7.15). This is a “one-point” analogy to a closure
assumption of Clark and Spitz [23] and ensures that, when the density fluctuations
tend to zero (b tends to zero), a, also tends to zero.

With these model changes, it is proposed that a modified BHR model for the

turbulence mass flux equation [eq. (7.2)] is

Oan b OP 2p€\ an V/@nln an
—87 = (1 CSa)_ﬁamn Cia (qu> pm Claa K3/2 bm. (7.18)

This modified a, equation reduces to eq. (7.2) if c3s = C1oe =M = 0.

Comparisons are made between the DNS data for run Accle, the BHR model
[egs. (7.1)-(7.4)], and the modified BHR model [eq. (7.2) replaced by (7.18)]. For
this investigation the follow model coefficients are used in both the BHR model and
the modified BHR model: ¢, = 1.0, coe = 1.92, and c3e = 1.61. Equation (7.18)
is used for the BHR model calculation with ¢z = Ciae = Cab2 = 0.0, c1o = 2.2 and
cap1 = 1.0. For the modified BHR calculation, eq. (7.18) is also used with ¢34 = 0.0,
and ¢4, = 1.5. For both calculations the initial values are: Rpn(t = 0) = 3.006e™*,
b(t = 0) = 0.5, a(t = 0) = 0.0 and €(t = 0) = 8.7979¢™". The value for e(t = 0) is
chosen in order to give the correct length scale of b which in turn gives the correct
early time trajectory of a,.

Figure 7.2 shows the evolution of b for the DNS and the model results. The
BHR model and the modified model for the decay of b give the same results and are
somewhat different then the DNS result. The initial value for € is artificially small,
leading to an inadequate dissipation of b at the early times. This is a deficiency in
the methodology of one-point closures. In these closures, an equation for either the
energy dissipation, a length scale or a time scale is derived. In the BHR closure an
energy dissipation equation is chosen. There is an insufficient number of parameters
to define proper length and time scales for the various quantities. Thus, we can choose
€ to give either the correct energy dissipation or the correct length scale of b, but not
both. We chose € to match the initial scale of b and not the initial energy dissipation
because the scale of b is the only identifiable length scale at the initial time. This
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Figure 7.2: Evolution of b for Run Acclc DNS and BHR. models

gives a correct length scale for b but is a poor estimation of the time scale. Therefore,
b does not dissipate fast enough and, as a result, the subsequent behavior is incorrect.
Also, inherent in these types of models is the assumption of self-similarity in the flow
(i-e., there is a well defined inertial range in the limit of high Reynolds numbers). In
this buoyancy-generated problem, there is no identifiable inertial range at the early
times because the Reynolds number is low. The flows studied in the DNS simulations
are dominated by viscous diffusion, and is not accounted for in the BHR model. It
was seen that the behavior given by the BHR model is extremely sensitive to the

choice for ¢(t = 0).

Figure 7.3 shows the evolution of a, for the DNS and the model results. The
correct length scale for b is chosen, thus giving an early time match between the
models and the DNS. The late time behavior is not correct because of the over
predictions of b at late times. The modified BHR model matches the DNS only
slightly better than the original BHR model.

Figure 7.4 shows the evolution of R,, for the DNS and the model results. Again
the early time behavior of the models and the DNS agree well. This is due to the
agreement seen in the evolution of a,. The DNS results decay much more rapidly
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Figure 7.3: Evolution of a, for Run Acclc DNS and BHR models

after a time of 4 than do the model predictions. This can, perhaps, be attributed to
the fact that the models are for high Reynolds number flows while the DNS results
are at a low Reynolds number. One the other hand, the difference could be due to
the error in the prediction of b. Again, the modified BHR model gives slightly better
agreement with the DNS.

Figure 7.5 shows the evolution of 8p/dz, for the DNS and the model results.
The model comparisons show relatively good agreement with the DNS. Again, the
modified BHR result appears to have slightly better agreement. The early time
behavior is quite different and the time at which the mean pressure gradient reaches
a maximum is different for the models and the DNS.

7.8.2 CS model comparisons

We begin our comparison with the CS model and the DNS data by first modifying the
model. From the data comparison with the BHR model it was seen that a correction
to the b-coupling to the pressure term was needed to account for the “rapid” part of
v'(0p'/0z,) in order to properly model the early time behavior of a,. This correction
in the BHR model is given by eq. (7.16) and will also be made in the CS model. It

el e s — o PP
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Figure 7.5: Evolution of v'(8p'/8z,) for Run Acclc DNS and BHR models
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seem reasonable that a spectral model would have the form

, 00 op
Vo (k)] - (7.19)

There are infinite possibilities for the form of f[b(k)]; for simplicity we choose

, 9
0z,

9
0z,

V22 = Capb(k) (7.20)

Thus, the modified a, equation in the CS model becomes

Oan(k,t) _
ot

b(k,t) OP

(1“Cvdp) 7 —3?71

(7.21)

- { (s s - st

a CaRQ C’aa2 C10,A2 aa'n. (ka t)
*o% { (GR(k) AN QA(k)> 5k }

B {CRplﬁRpl Crp20Brp2
0a(k) Or(k)

} an(k,t) — [g + —D} k*a,(k,t), (7.22)

Using this modified a, equation we now compare the model predictions with the
DNS results for run Acclc. For this investigation the following model coefficients are
used: Crp1 = 0.125, Cygp = 0.35, Cpa1 = Conr = —-2424, Cr1 = Cor1 = Cor1 =
V6C, 3/2 /11, Cro = Corz = Cpr2 = 2v/6C,, 5/2 /11; all other coefficients being set to
zero. Cj is the Kolmogorov constant, chosen to be 1/2. The initial spectra for b(k)
and R (k) taken from the DNS are used for initial conditions in the CS model; in
addition p = 1 and T = D = 8.543¢™3. The comparison between the CS model and
the DNS is made by examining one-point statistics.

Figure 7.6 shows the evolution of b for the DNS (run Acclc) and the CS model.
The model prediction of the early time behavior is slightly incorrect. However, the
late time behavior from the model agrees well with the DNS. This comparison is
significantly better than that of the BHR model, illustrating that the added length
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Figure 7.6: Evolution of b for Run Acclc DNS and the CS model

scale information for b in the CS model allows for the behavior of b to be predicted
more accurately.

Figure 7.7 shows the evolution of a, for this comparison. Again, there is reasonable
agreement between the DNS and the CS model. The late time behavior is captured
more accurately using the CS model than the BHR model, because the late time
behavior for b is more accurately predicted.

Figure 7.8 shows the evolution of R,, and Fig. 7.9 the evolution of §p/8z, for
this comparison, both demonstrating good agreement at all times.

"These results show that the closure given by (7.20) provides a good representation
of the one-point statistics. This closure assumes that the spectrum of W/ax,,) can
be modeled from the spectrum of b. Figure 7.10 shows the spectrum of b from the
model and v/(8p'/0z,) from the DNS at an early time (¢ = 0.1). Using the spectrum
of b to model that of W is clearly inaccurate. The spectrum of v/(dp'/dz,)
is much broader and has a peak value at higher k than the spectrum for b. Given

that the CS model uses only assumptions of “local” transfer in k-space, it is difficult

to see how this spectrum can be produced from the CS methodology. These results,
however, indicate that the errors in the spectral representation, in the CS model do

not seem to irreparably harm the one-point statistics. The reason for this might be
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that the dominant effects in the flow studied may be at lower wavenumbers at this

low Reynolds number.

It is also noted here that the value of the drag coefficient used in the CS model is
Crp1 = 0.125. This value is considerably smaller than drag coefficients used in other
variable-density models and two-phase models. The reason for this is two-fold. First,
the drag terms of the CS model, the parameters Bgrp; and Brp2, are chosen to be
proportional to 1/b(t), which forces the drag to increase as b(t) vanishes. Second, the
length scale of b (i.e., determined from b(k)) is “independent” of the energy-containing
scales, thus permitting a large drag, even with small dissipation of energy. Thus, if
b = 0 (so that there are no density fluctuations) the mass flux is forced to be zero.
The question then arises: is Brp; = fgpy = 1 /b(t) the correct form for these drag
terms? Given the complexity of the exact equation (see Clark and Spitz [23]) and
the simplicity of model assumptions, it is not possible to provide a definite answer.
An effect such as # = F[1/b(k)] is probably necessary, but there is an infinite number
of possible forms. The form chosen (8 = 1/b) for this comparison seems to indicate
that the decays at late times for b, a, and R,, are reasonably modeled. Further
study is needed, perhaps including cases of an acceleration followed by free decay,
and acceleration reversal, in order to see if this form is correct.
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7.4 Conclusions

It is essential in the equation for a, in both the BHR model and the CS model that
the correction to the b-coupling to the mean pressure gradient term be modified to

account for the effects due to v'(0p'/0z,). Thus, the mean pressure gradient term

should have the form

The drag term in the equation for a, in the CS model, using Brpr = Brp2 = 1/b(t),
gives reasonable agreement between the one-point statistics and the DNS results. It
has also been seen that the inclusion of this effect in the BHR model slightly improves
the comparison between the BHR and the DNS results at late times.

The spectra of v'(8p'[0,,) shows some effects that are not accounted for in current
closures (e.g., broadening of the spectrum and a peak value at higher k than for the
b(k) spectra) . More detailed studies are needed to determine the effects and proper
modeling for them. Thus, further DNS study would be desirable to examine the
effects in the limit of small but finite (not infinitesimal) diffusivity to determine the

importance of dilatational effects. The spectral effects seen in this comparison are

e e e POV R JR S,
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probably not capturable in a genuine manner in a one-point closure (where everything
is lumped into simple scalings). These effects, however, may be capturable in an
“augmented” spectral closure where the diffusive effects of density are accounted for

in an energy equation for the dilatational part of the velocity field.




Chapter 8
CONCLUSIONS AND FUTURE WORK

Direct numerical simulations of incompressible, variable-density turbulence have
been carried out. We resort to numerical techniques to study variable-density flow
because of our desire to obtain a complete description of the flow field, so that detailed
information including detailed statistical information of interest can be obtained.
Also, the parameters of the problem can be easily varied. The numerical algorithm
used in this study is based on the algorithm first proposed by McMurtry [58] but
with three modifications:

(1) In the study of McMurtry, the velocity field is divergent due to heat release and
mass diffusion. In this study, the velocity field is divergent due only to the diffusion
of mass.

(2) A modification of the projection step is made which allows the treatment of
larger density fluctuations.

(3) A modification is made to the mean pressure gradient to account for large
density variations in the presence of gravity (or flow acceleration).

Two problems have been studied. The first is the decay of isotropic, variable-
density turbulence, and the second is statistically homogeneous buoyancy-generated
turbulence. In the latter case the density fluctuations are large enough that the
Boussinesq approximation is not always valid. The effects of large density fluctuations

were studied for both these problems.

8.1 Isotropic Decay of statistically independent initial fields

For the case where the initial velocity and density fields are statistically independent,
comparisons between a nearly constant-density case and a variable-density case are
reported. This comparison shows that the presence of variations of density has little
effect on the overall statistical decay of the flow. For example, the decay of the total
turbulent kinetic energy density closely follows the decay of the mean-square velocity.
This is due to the fact that puju} is initially zero and remains small so that it has
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little effect on the decay processes.
For these cases, the pdf’s of the density field, which are initially bimodal, evolve
to a nearly Gaussian form and are symmetric about the mean density.

8.2 Isotropic Decay of statistically dependent initial fields

Next, statistical dependence was initially imparted between the velocity and density
fields and the subsequent flow was examined. Two types of statistical dependence
were studied, one such that the larger velocity magnitudes are initially associated
with the positive density fluctuations, and the other such that the larger velocity
magnitudes are initially associated with the negative density fluctuations. The triple
correlation term, m, is initially nonzero, its sign dependent on the type of statis-
tical dependence. A positive sign indicates that the higher velocity magnitudes are
associated with larger densities, while a negative sign indicates that higher velocity
magnitudes are associated with the smaller densities.

Some conclusions can be drawn from this study of isotropic decay of variable-
density turbulence when compared with a decaying, isotropic constant-density tur-
bulent flow. If, for both cases, the initial total turbulent kinetic energy densities are
the same, the initial energy dissipation rates are different and depend on the sta-
tistical dependence between the velocity and density fields. If the triple correlation,
Pl is initially negative, the energy dissipation rate is the highest, while the case
where the triple correlation is positive has the smallest energy dissipation rate.

The pdf of the density field becomes asymmetrical about the mean density, and
it is argued that this is due to different entrainment rates of the high and low density
fluids into the mixing region (the mixed interface between the two fluids). This
conclusion is based on analogy to numerous shear layer results (see e.g., Dimotakis
(1986) [28]), the first of which are the results of Brown [16] in his study of the Brown
and Roshko [15] variable-density mixing layer experiments. These shear layer studies
showed that a spatially-growing shear layer entrains an unequal amount of fluid from
the two free streams, which results in a mixed fluid composition that favors the high-
speed fluid. It has been seen in the results presented in this dissertation that the sign
of the triple correlation, pul,ul, reflects this entrainment rate behavior.

Another important result has implications for passive scalar problems. If the
velocity field is statistically dependent on density field, but the density Aluctuations
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are small so that the density field is passive, the pdf of the density field still becomes

asymmetric.

8.3 Buoyancy-generated turbulence

Two types of studies were made for the buoyancy-generated turbulence case. First,
the effects of increasing the initial density fluctuations are studied at a fixed initial
Reynolds number, R, = 256. And second, the effects of increasing R, are studied at

an initial density ratio of 4.

8.3.1 Variable-density effects at R, = 256

An important parameter that characterizes buoyancy driven flow is 6,. This param-
eter is given by eq. (6.9) and is a statistical measure of the magnitude of the initial
density fluctuations of the fluid. If 6, is less than approximately 0.1 then the resulting
buoyancy-driven flow is within the Boussinesq approximation. Likewise, if 0, is larger
that 0.1 then the resulting flow is non-Boussinesq.

As the initial density fluctuations increase the flow behavior deviates more from
the Boussinesq limit and the nondimensional mean-squared velocity grows at a greater
rate. This is related to the fact that the buoyancy flux increases with increasing
initial density fluctuations. The nondimensional time at which the mean-squared
velocity reaches a maximum decreases as the initial density fluctuations increase. The
maximum peak value of the mean-squared velocity occurs at a nondimensional time
of T = 1.5 for the case with the initial density ratio of 4. This time is earlier than that
of the Boussinesq results, where the peak occurs at T = 1.8. It is anticipated that,
in the limit as the initial density ratio becomes very large (much larger than 4), the
mean-square velocity history will approach a limiting curve because its evolution must
be bounded. This is not studied here due to resolution limitations in the numerical
scheme, which limits the maximum initial density ratio to be around 4.

The total turbulent kinetic energy per unit mass consists of three terms given by
eq. (A.7):

Ronlt) _ P00, _ Wty | Pty _ ann )
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These three terms are the mean-squared velocity, uhul /2, a triple correlation term,
Pulul/2p, and a mass flux product term, ana, /2. Within the Boussinesq limit, this
triple correlation and mass flux are relatively small. As the initial density fluctuations
are increased, these terms increase, and their effects become a significant part of the
evolution of the total turbulent kinetic energy. The summation of these three terms
gives a nondimensional total turbulent kinetic energy that grows to a lower value as
the initial density fluctuations are increased. The triple correlation term, pul u! /2P,
becomes negative as a result of the conservation of momentum.

A consequence of the Boussinesq approximation is that the mean pressure gradient
is uniform in time and its value is pg;, i.e., the hydrostatic pressure gradient. This
approximation is good in the limit of small density fluctuations but, as the initial
density fluctuations increase, the mean pressure gradient becomes variable in time
and its value is given by eq. (3.19), written here as

b D 0T, ,Bu’ ap'
oz +1{g‘+”ax T Vg

In the limit as the density fluctuations tend to zero, eq. (3.19) gives the Boussinesq
approximation for the mean pressure gradient, i.e., the hydrostatic balance. In the
absence of fluid motion (e.g., at time equal to zero) the mean pressure gradient is

B 7 Op'
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Here, the correlation between the fluctuation specific volume and the fluctuating pres-
sure gradient is a non-Boussinesq departure from the hydrostatic pressure gradient.
This correlation increases with increasing initial density fluctuations. The presence
of this correlation acts to impeded the growth of the turbulence mass flux. In the
absence of an acceleration, this term is zero but immediately has a nonzero value the
instant that an acceleration is applied.

The mean-squared vorticity is initially zero, grows to a maximum and then decays
through viscous dissipation. The initial growth of the mean-squared vorticity is due
to a generation of vorticity, through baroclinic torque, in the plane perpendicular
to the direction of the acceleration. As a result, the vorticity in this plane is much
larger than in the direction of the acceleration. In the direction of the acceleration
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there is a generation of vorticity through vortex rearrangement, but there is very
little generation due to baroclinic torque.

A measure of the validity of the Boussinesq approximation is found by comparing
the two terms b(t) = —p'v’ and B(t) = gp’/p?. If the quantity b(t) is approximately
equal to the quantity B(t) then the mean flow is adequately described by the Boussi-
nesq approximation. Also, as the initial density fluctuations increase, the pdf of the
density field develops a larger skewness (to the negative side of the mean density). It
is argued that this skewness is attributed to larger entrainment rates of the light fluid
into the mixing region than the heavier fluid. For these accelerated cases, the triple
correlation term, pu,ul, /2P, becomes negative, indicating that the largest velocites
in the flow are associated with the negative density fluctuations. As a result, the pdf
of the density field is skewed to the negative of the mean density. This behavior is
also seen in the isotropic decay results for the case which has the initial velocity and
density fields statistically dependent such that the large velocities are associated with

the negative density flucutations.

8.3.2 Effects of varying R,

The time histories of the mean-squared velocity exhibit the same Reynolds number
behavior as the results of Batchelor et al. [7], which assumed the Boussinesq approx-
imation. As R, increases, the nondimensional mean-squared velocity approaches a
limiting curve. However, the limiting curve is different from that for the Boussinesq
case. Not only is the time where the maximum occurs different, but also the shape of
the curve. Figure 6.46 shows the histories of the mean-squared velocity as functions
of R, for the cases with the density ratio of 4. At R, = 256 the decay of the mean-
square velocity, just after the peak, is slower up to T = 2 than it is thereafter. This
behavior is not present in the Boussinesq case (see Fig. 6.1).

The total turbulent kinetic energy and the terms that make up this energy [see eq.
(8.1)] increase with increasing R,. As R, increases each of the terms in this equation

appear to be approaching limiting curves.

The mean pressure gradient becomes more variable in time as R, increases. The
main contributions to the mean pressure gradient are from the acceleration term,
g/T, and the negative of the correlation between the fluctuating specific volume and

gradient of the fluctuation pressure, —v' Op'[0xz;. As R, is increased, larger variations
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in g/ occur. The correlation —-1737’/—5:;,- is nonzero the instant that the fluid feels an
acceleration, and its initial value is dependent on the strength of the acceleration and
the magnitude of the initial density fluctuations. The initial value is not Reynolds
number dependent. At early times —W/@xi represents a “rapid” part (i.e., not
proportional to the mass flux) in the evolution of the turbulent mass flux, a;, and at
later times behaves as a “slow” drag-like part (i.e., is proportional to the mass flux).
"The presence of this correlation impedes the growth of the mass flux.

The variance of the fluctuating density appears to approach a limiting curve.
When b(¢) ~ B(t) the flow is within the Boussinesq limit since p'uju, and a; are
nearly zero and the mean pressure gradient is approximately

P _ 2
axi = pgi-

Also, as R, increases, the skewness in the pdf of the density field increases.

8.4 Model comparisons

It has been shown that, in the equation for a, in both the BHR and the CS models, it
is essential that the b coupling to the mean pressure gradient be modified to account
for the effects due to v'(T/amn) Thus, the mean pressure gradient term should have
the form
(-2 L,
p 0zy,

where the coefficient ¢ is approximately 0.4. The drag term in the equation for a,
for the CS model, using Bp1 = Bp2 = 1/b(t), gives reasonable agreement with the
one-point statistics of the DNS results. It has also been seen that the inclusion of
this effect in the BHR model only slightly improves the comparison between the BHR.
and the DNS results at late times. Overall, late time behavior of the BHR, results

do not agree well with the DNS data. The are several reasons for this. First, the
simple time and length scales used in the one-point model are such that the density
field and the energy field have the same scales. As a result, the evolution of b is not
correct, causing late time differences in the evolution of a, and R,, between the BHR.
model predictions and the DNS results. Secondly, the BHR model assumes spectral
equilibrium (i.e., a high Reynolds number flow). Clearly, the DNS results are not in
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spectral equilibrium because the Reynolds number is small. There is good qualitative
agreement between the DNS and the CS model. The late time behavior is captured
more accurately using the CS model than the BHR model, because the late time
behavior for b is more accurately predicted.

The spectra of W shows some effects (broadening of the spectrum, dila-
tion effect, and a shift in k& where the spectrum of v'(0p'[0z,) is a maximum) that are
not accounted for in current closures. More detailed studies are needed to determine
these effects and their proper modeling. The dilatation effects are analogous to “low-

Reynolds” number effects: as the diffusivity becomes small, these effects also become
small. Thus, further DNS study would be desirable in order to examine dilatational
effects in the limit of finite (not infinitesimal) diffusivity. These spectral effects seen
in this comparison are probably not capturable in a genuine manner in a one-point
closure (where everything is lumped into simple scalings). These effects, however,
may be capturable in an “augmented” spectral closure where the diffusive effects of
density are accounted for in an energy equation for the diffusive part of the velocity
field.

8.5 Future Work

Based on the results of this dissertation, the following two directions of research are
recommended: (1) the continued use of numerical methods to gain further funda-
mental understanding of such flows and (2) bridging the gap between the theoretical
understanding and engineering applications of variable-density flows by comparison
of simulation results to model predictions. These issues are addressed below:

(1) A continued use of numerical simulations is essential to help advance the
fundamental understanding of these flows. Two physical problems, in addition to
those addressed in this dissertation, can be addressed. The first is the case of the
“return-to-isotropy” in a variable-density turbulent fluid (case a). To address this
problem a variation of the acceleration case can be used. An acceleration can act to
convert the initially motionless fluid to a statistically axisymmetric, nonisotropic flow.
Once the flow is in motion, the acceleration can then be “turned-off” in the numerical
simulation and the nonisotropic flow will then return to isotropy. It has been seen in
constant-density flows that the evolution of the various components of the anisotropy

tensor and the Reynolds tensor are governed by the action of the triple correlation of
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the fluctuating velocities. Also, the decay rate of the anisotropy is strongly dependent
on the spectral locations of the anisotropy. In the variable-density case, the question
is: does the triple correlation of the fluctuating density and velocities contribute
to the evolution of the anisotropy tensor, and does the variable-density fluid affect
the spectral locations of the anisotropy? The second additional flow of interest that
should be addressed is the case of a variable-density flow sub jected to a de-acceleration

(case b). Again, a variation of the acceleration case will be used. Here, after the flow
is developed, the de-acceleration of the flow is achieved by “changing the direction of
acceleration”. The flow will then de-accelerate and reverse direction. Changes in the
rate of mixing due to these physical processes could be studied.

(2) To bridge the gap between the theoretical understanding of such flows and their
engineering applications, the numerical data of problems (a), (b), and the results of
this dissertation should be compared to a variety of one-point (“engineering”) and
two-point (“spectral”) models of variable-density turbulent flow. These comparisons
will help to validate and identify deficiencies in these models and, wherever possible,
improvements to these models could be made. In particular, the spectral character
of these flows can be studied and compared with an existing two-point, “spectral”
model (e.g., the CS model). Once the model has been compared with numerical
data, and some degree of confidence in the model has been achieved, it could then be
spectrally integrated to obtain a one-point engineering model. This integrated model
could be compared to other existing one-point models (e.g., the BHR model). This

comparison will be valuable in understanding and improving one-point engineering

models.
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Appendix A
AVERAGING

The most common approach in the study of turbulence involves the use of the
Reynolds-averaged equations [38]. These equations are used to model the effects of
turbulence in various applications. The Reynolds-averaged equations are derived from
the conservation equations of motion by, first, separating the dependent variables into

mean and fluctuating components, and then averaging the equations. There are two
types of decompositions of the dependent variables, a Reynolds decomposition and a

Favre decomposition [21, 31].

A.1 Reynolds averaging

For the study of constant-density turbulence a Reynolds decomposition is typically
used. A Reynolds decomposition of the dependent variable is

f=Ff+f (A.1)

where f is the average of f and f' is the Auctuation about the average. There are three
types of averages used in studying turbulent flows. Time averages are appropriate
for statistically stationary turbulence. Space averages appropriate for statistically
homogeneous turbulence. And ensemble averages, taken over a number of identical

realizations of the flow, are utilized if neither space nor time averages are appropriate.

The average of the fluctuation is zero by definition,

whereas the product of two fluctuating quantities is, in general, nonzero,
Ff#o0.
The average of two dependent variables reduces to

fo=73+7y.
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If f and g are the two components of velocity then,
WU = U+ ’LL;U;

In constant-density turbulence, uju} is often modeled in the Reynolds-averaged Navier-

Stokes equations.

A.2 Favre averaging

For the study of variable-density flows it is common to use mass-weighted averaging
due to Favre [31]. The Favre decomposition of the velocity is

where the mass-weighted average velocity, 4;, is defined as
%=
p

Here p is the density of the fluid. In this case the average of the fluctuation is not

equal to zero. It can be shown that this average is

Tl
— Uu;

a; = ;"—“—-—:—, A2
F (A-2)

where a; is the negative of the turbulent mass flux divided by the mean density.

However, the density-weighted average of u] is zero, i.e.,
P = pil =0, (a3

The mass-weighted averaged velocity is

— = U; — ;.
p

In variable-density flow, the density-velocity-velocity correlation is

1"y

;= p(a; + uf ) (U + uf) = plstly + Gupuj + Gjpui + puiug.
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Using condition (A.3) this becomes

P = Plisdl; + puju). (A.4)

Here, puj'uj is the generalized Reynolds stress tensor for variable-density turbulence:

non

Ri;(t) = pu;u; -
Using eq. (A.4) this can be written as
Rij(t) = ool = P05 — Pilsy. (A.5)
Recall that
u =T U=+,
Density-weighted averaging of this leads to

U =TU; — U ; = TU; — G;.

Substituting this for #; and w; = T; + v} into (A.5) leads to

Ryi(t) = pusui = P wu; + pugu; — pasa;. (A.6)

This is another form of the generalized Reynolds stress tensor for variable-density
turbulent flow. The density-weighted turbulent kinetic energy per unit mass is

1 -— 1 [ (R 7 —
K(t) = _éﬁ— = 2__p- {p unun =+ P unun - pa‘nan} . (A'7)

Finally, the total fluid kinetic energy is half the trace of eq. (A.4), or

1 1__ . 1—
KE(t) = o PUnTn = 5 Plintin + SpURU. (A.8)




Appendix B
EVOLUTION EQUATIONS

In this appendix, the averaging procedures discussed in Appendix A are used to
derive evolution equations for the variance of the density, the fluctuating density-
fluctuating specific volume correlation, the density-weighted average kinetic energy
and the components of this energy. The assumption of statistical homogeneity will
be made as well as the assumption that spatial gradients of mean quantities, except

pressure, are zero, l.e.,

—==0. (B.1)

Statistical homogeneity applies to all quantities except pressure whose gradient is
assumed homogeneous (see section 3.1.3). In this study the mean density has a

constant value (i.e., it does not vary in time) of unity,
=1, (B.2)
and the flow will have zero mean velocity,

7 = 0. (B.3)

The () is a volume average over the entire flow field (computational domain).

B.1 Density variance equation

The variance of the density field is o’¢’. The derivation of its evolution equation starts

with the equation for the conservation of mass, eq. (2.1),

op 3P’Uz‘_
ot on O

which can be rewritten as

ap dp Ju;

E&"f'ui-éz?i‘i-pa—mi:().
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Substituting the Reynolds decomposition for the velocity and density into this equa-
tion and using conditions (B.2) and (B.3) leads to
o | 00 | _Oup Oy

8t+ a—-+'p'6 +p a$z=0.

Multiply this by 20’ to get

ap/p/ au:p/p/ o’ _
% T om +(2pp+p,0)5£—-0.

Finally, volume averaging this equation and using condition (B.1) gives, with rear-

rangement

op'p z_p,c?

o =~ 7, am; (B4)

This is the evolution equation for the variance of the fluctuating density.

B.2 Equation for b= —¢'(1/p)’

The quantity, b, is the negative of the correlation between the fluctuating density and

the fluctuating specific volume:

Because p = p + ¢/, this can be written as
b(t) =P/ — =771 (B.5)
where v = 1/p is the specific volume, or as [10]
1 4
bt) = —p/ [ —— — =] = .
0= (717-3) = (%)

Clearly, b(t) is nonnegative and in the limit as the density fluctuations tend to zero
b(t) = p'p'[p* — P00 /B° + ... The derivation of the evolution equation for b(t) starts
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with the equation for the conservation of mass, eq. (2.1). Substituting for the specific

volume, v = 1/p, into this equation gives
o(1 10y, (1
(/o) 10w 8(1/2)

ot v Ox; Ui or; 0

Rewriting this as
10v 10u; wu; Ov
TR0t vom  viom
multiplying by —v?, adding
vé‘ui
Oxz;
to each side of the equation, and rearranging leads to

Ov _3_1& _ 2U3u,~

8t ' Oz 0x;

This is the evolution equation for the specific volume. Substituting the Reynolds

2

(B.6)

decomposition for the velocity and specific volume into this equation and using con-

dition (B.3) leads to
6_ﬁ + QEI + ovu; + _8’0'14 = 25_8;“_:'. + Qv'a_u;
ot ot a.’IIi 3:1:,- - 8517{ 851711'

Volume averaging this equation and using condition (B.1) gives

o _ ou
v _ ZU,aul

(3‘t &vi'
This is the evolution equation for the mean specific volume. Multiply eq. (B.7) by 7,

(B.7)

and noting that,

_ov _dpv_o(pv—1) _ b
Pot ™ ot ~~ & ot
and
ap
5{—0
gives
ob _ ,8u§

This is the evolution equation for b(t).
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B.3 Equation for the Total Kinetic Energy Density
The total kinetic energy density is given by eq. (A.8), written here for a case with
zero mean flow, ; = 0, as

T 1_/'1— 1— T a0 1
Puntn = §punun = ’2‘[7 UnUp + Eplu;zuiz (B.9)

1
KE(t) ==
2
Note that for the case of isotropic decay, where a; = 0, the total kinetic energy density
divided by the mean density is the same as the total turbulent kinetic energy per unit
mass (see eq. (A.7)). An evolution equation for (B.9) is now derived. The starting
point is the momentum equation, eq. (2.2),

apui Bpu,-uj _ __ai 67-1,]

5 " oz | 6z ' 0w

+ pg:

with the viscous stress tensor defined by

om0 OU 20 Oun
=H0z; " 0z 3°90m, [

Multiplying the momentum equation by u; gives
0 0 Op omj
Ui 10U } + Uim— {puiti} = —ui7— + u; + B.10
lat {p’u‘l} lamj {pul J} laml ‘Lamj puigl ( )

The momentum equation can be rewritten as

5‘u,- aui 1 ap 1 aTz]
- j—— i B.11
ot +u’6xj p&‘x,+p3x]+g (B11)
Multiplying this by pu; gives
aui au,- 8]) 87'1;_7'
i Uj— = —Uj—=— i iJi- B.12

Adding egs. (B.10) and (B.12) together

0 0 Oti;
{pu,u,} + {p’u,]u,u,} = 2u,-—ap + 2u;—2 + 2pu;0;.
Ti Zj
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Substituting u; = u} (using condition (B.3)) and p = 5+’ (in the acceleration term),
then averaging and dividing by 2 leads to

8{1 }+i{l 'u’u’}— u,@p a”+ U
at pu‘t 1 a _7 2pu_7 iami a p zgz

This is the evolution equation for the total kinetic energy density. Assuming statistical
homogeneity and applying condition (B.1) gives

01— ou} B'rz]
62&{ puiu } ;D(9 Bz, + pulg:. (B.13)

This is the evolution equation for the total kinetic energy density for a statistically
homogeneous flow. The first term on the right side is the pressure work term and
represents changes in the total kinetic energy due to dilatation effects. The second
term is viscous dissipation and the third term is work due to gravitational acceleration.

For isotropic decay, this equation reduces to

0 (1— ou! oT;
8t{ Pl }_pax,— Yo (B.14)

For isotropic decay, the evolution of the total kinetic energy density (which is the
same as the turbulent kinetic energy density) is due only to pressure work and viscous

dissipation.

B.4 The equation for p uju;

We will now write equations for the two terms that make up the total kinetic energy
density, given in eq. (B.9). The evolution equation for 7 ulu! is derived in this
section. The starting point for this derivation is the equation for the momentum per

unit mass, eq. (B.11). Multiplying this equation by u; one obtains

0 (1 Ou; Y 0 u; 07y
{ uzu1}+u1 O R AL R,

.u . —
at 19z, p oz | p Oz
Then multiplying by 7 and substituting u; = u} gives

d (1 , Ouj _uidp  _u0TytTh) o,
i 137 vid} +7 vy ios; . P pom P am P
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Finally, averaging and rearranging leads to

d (1 p o, ,0u; _wiOP  _ ujoT]
at{ puu} g % 'oz; p@mi+p p 0z;’ (B.15)

This is the evolution equation for 7 u/ul. This is the mean squared velocity contri-
bution to the total kinetic energy density (for isotropic decay, the turbulent kinetic
energy density). The first term on the right side is due to dilatation effects. The
second term is a modified pressure work term and the third term is the loss of energy
due to viscous dissipation. The pressure gradient is discussed in more detail in section
3.1.3.

B.5 The equation for p'uju;

In this section is derived an equation for the second term of the evolution of the total
kinetic energy density, eq. (B.9). Note that

1 ’u’u’—1 U T lswd UU;.

With this relationship, it is clear that an evolution equation for p/ufu! can be found

by subtracting eq. (B.15) from eq. (B.13) to give

9 1%} ., 9 pudp P’“ o7 | =
O [ o\ _ P i .. B.16
ot {2pu,u, 2 “’“’az] P 8&:, p Oz; g ( )

The first term on the right side represents changes due to dilatational effects. The
second term is a modified pressure work term and the third term is the loss of energy
due to viscous dissipation. The pressure gradient is discussed in more detail in section
3.1.3.

For isotropic decay, eq. (B.16) can be simplified to

0 P, 0w puOp | plufdr;
= L= 43 B.1
{ pui } 2 uius ‘0z; p Oz + p Oz; (B17)

B.6 Equation for a, = —p'ul,/p

The turbulent kinetic energy per unit mass can be written as [eq. (A.7)]

K(t) = l{puu + p'u ﬁanan}.

%



240

The third term on the right side is a contribution due to the turbulent mass flux, a,.

The definition of a, is given by eq, (A.2) and shown here as

plug,
5

Qn = —

For decaying isotropic turbulence a, is zero and, if @; = 0, then the total fluid kinetic
energy per unit mass is equal to the total turbulent kinetic energy per unit mass.
However, for the case with a gravitational acceleration the turbulent mass flux is not
zero. An equation for the evolution of this turbulence mass flux is derived in this
section. The starting point is the momentum equation, eq. (2.2). Substituting the

Favre decomposition for the velocity into this equation gives

"

dpt;  Opu;
o ot

~ ~ - 80‘i
+ 5 1Pt + plauy + pllau + puitiy} = = " +pgi.  (B.18)
Tn In

Averaging and recalling that pul = 0 gives

0l 0 1. 8 (= OFm
6t + axn {pulu‘n-} + axn {puiu’n} - axn +pg1-, (Blg)

the equation for the Favre-averaged mean velocity. Starting with the conservation
of mass [eq, (2.1)], substituting the Favre decomposition for the velocity and the
Reynolds decomposition for the density, and averaging gives

0p | Opin

+

ot ' oz, =0

Using this form of the conservation of mass, the Favre averaged mean flow equation

can be rewritten as

_0u; -
g+ Pl i} = 5 {0 R} + 7 (B.20)

where, R;, = pulu” is the generalized Reynolds stress tensor. Substituting the Favre
decomposnnon for the velocity into the equation for the momentum per unit mass

leq. (B.11)] and multiplying by 7 leads to

ot ou! 0t . ouf » OU; 20Ul P00
Pt + Pk + 7 7 7 7 =£ P (B.21
th P ot +,o'un3$n+pu Ba:n+pu"6$n ”u"axn p Oz, +7g:. )



241

Subtracting eq. (B.20) from eq. (B.21) and rearranging the result gives

au// o { +u”} g au// — (7 }_ OTin +v,65"in n 30','-71 + laer
ot "Ba:n - 7/ Oz, 0z, ”axn p Oz,

Finally, averaging and recalling that a; = u, gives

Oa; Ay ou” da; _ (ﬁ 3 é) OFin + vaam 1 BRm (B.22)

—_— n__*t —

5t T %o, T Unag, T ey, oz, Yoz, T 5oz,
This is the evolution equation for the turbulent mass flux. Assuming statistical
homogeneity, this equation reduces to

da; ouf
- +u

n=t _ _

b
5t " %3g, -~ p0m Vo,

where

and b = p v — 1. For the case of zero mean velocity, v} = u] — ;. Substituting «!
into this equation and exploiting homogeneity gives

6a,_ Oul, bOp 003y,

__n_ /

5~ Y5, 20z; | Ozy

(B.23)

This is the evolution equation for the turbulence mass flux for a statistically homo-
geneous, variable-density flow with zero mean velocity. The first term on the right
side represents changes in the mass flux due to dilatation effects. The second term
represents changes due to the mean pressure gradient. In this term is the buoyancy
flux. The third term represents changes due to a correlation between the fluctuating
specific volume and the gradient of the fluctuating stress.




Appendix C
VELOCITY INITIALIZATION PROCEDURE

There are two types of velocity fields used in this study. The first is the velocity
field used by Mell [60], which has an initial Taylor Reynolds number of 55. This
velocity field is initially in full spectrum decay, i.e., the velocity field is decaying at
all wavenumbers (at all scales) in the spectrum, and is used in the study where the
initial velocity and density fields are statistically independent. The initialization for
these fields is a two step process described in section C.2. The second initial velocity
field uses the same initial energy spectrum that is obtained from Mell’s initial velocity
field. A random velocity field is initialized using this energy spectrum, and it is not
in full spectrum decay. This is used in the case where the initial velocity and density
fields are statistically dependent.

The first section in this appendix describes how an initial velocity is computed
from a given energy spectrum. The following sections then describe the initializations
for the statistically independent and the statistically dependent velocity fields.

C.1 Computing the velocity field from a predefined initial energy spectrum

In the study of isotropic turbulence using direct numerical simulations, the mean
velocity, %; is constant in space and time and therefore it is common to use a Galilean
transformation to choose a coordinate system such that the mean velocity u; = 0.
The fluctuating velocity field is initialized using the method of Orszag and Patterson
[65] suitably modified to account for the non-solenoidal aspect of the velocity [eq.
(2.11)].

We define the initial velocity as the curl of a random vector potential (see below),

5, and the gradient of a scalar, 7, that is

T=V X ¢+ V. (C.1)
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Taking the divergence of the velocity leads to
V-i=V%
since V- V x ¢ = 0. If we define ¥ = —DIn p such that
V.-%=-DV?p, (C.2)

then the condition given by eq. (2.11) is satisfied, assuming the molecular diffusivity
D is constant. Equation (C.2) is obtained from the initial density field.

The components of the random vector potential J; are computed using the method
of Box and Muller [70] to create a pair of random deviates from the same normal
distribution, starting from a pair of uniformly distributed random numbers. Using
this method, the Fourier amplitude of the random vector potential is written as

A(E) =z, +1zp for i=1,2,3 (C.3)
where z; and z, is (from Box and Muller)

z; = a(—2log, Ul)% cos 2Us

zo = a(—2log, Ul)% sin 27Us.

U: and U, are independent random variables which are uniformly distributed on the
interval (0,1), and a is the rms of the velocity potential field that arises from using
the energy spectrum E(k). Assuming ergodicity, the total (volume averaged) kinetic
energy per unit mass is related to the energy spectrum in isotropic turbulence [52] as

—-u’ 7 = / (C.4)

In this spectrum we define the shell between wavenumbers kg and kg + Ak as shell

B. The energy in shell B is approximated as:

/ (k)dk = S | a(k) 2 Np | ak) |2

keB
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where Np is the number of discrete modes in shell B, and the approximate equality
used here is based on the assumption that the shell is thin enough that the values of
| @(k) | for every mode in the shell are, on average, the same. Thus the mean square

of the Fourier amplitudes defined in the shell is

|amn=[§;LEwm4%. (C.5)

Defining the incompressibility part of the velocity as @ = V x A (where A = ¢,
the random vector potential) and transforming to Fourier space gives =1k x A
From this, using isotropy of the velocity field, the mean of the square of the velocity

amplitudes becomes

[GP=2a2 k2.

Solving for a gives

Substituting eq. (C.5) into this gives

_ [ JeEwa]?
| k| ’

using in the definitions for z; and z, above. Substituting z; and z, into eq. (C.3),
then @ = V x A is known. Adding the affect due to the divergent velocity condition,
the total initial velocity is then

=V xA—-DVinp. (C.6)

For the studies presented here we also enforce the condition that the mass flux,
p'ul, be initially zero. In the case of isotropic decay this correlation between the
velocity field and the density field should always remain zero. In the case of an
accelerated field the correlation, which is initially zero, will quickly become non-zero
as the high density part of the field is set in motion in the direction of the acceleration
and the low-density fluid is set in motion in the opposite direction. Thus a strong

correlation develops between density and velocity fields in the accelerated case.
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C.2 Statistically independent initial velocity field

This section describes the initialization procedure developed by Mell [60] to create
an initial velocity field that is in full spectrum decay with the maximum initial Tay-
lor Reynolds number that can be obtained with the given mesh resolution. At the
start of a simulation the velocity field and density field are statistically independent.
Following Mell [60], the two stages for this procedure are:

(I) An initial energy spectrum function, E(k,0), is defined using an analytical
function that is expressed by an exponential. In this case that function is, from

Orszag and Patterson [65)]
E(k,0) = a(k/c)*e” 2®/ (C.7)

which is the energy spectrum from Batchelor’s final stage of turbulence decay [5, 6].
Here (from Mell [60]) the shape parameter is

_ (em)Y2Ak
=72

and that scale parameter is
L5 (2)1/2 2 (k)
T 15\n/ B3\B) "

The energy spectrum in this stage (and in stage(II)) must be such that the follow-
ing constraints [30] imposed by the numerical implementation are satisfied: (a) the
smallest scales are well resolved, i.e., Ngkmez = B > 1, and (b) the integral length
scale is sufficiently small compared the periodic mesh, Ak = A < O(1). From
these constraints A and B are known. The only unknown is then v which is im-
posed by choosing an initial Taylor Reynolds number. This value is set by choosing
Rey, = (trmsA)/v = 50, which for the simulations here gives v = 0.005.

The initial velocity is computed from E(k, 0) using the method described in section
C.1. The simulation with this initial velocity field ran until E(k,t) has developed to
the point of self-similar decay.

(I) In the second stage of the initialization the self-similar spectrum obtained
from stage (I) is rescaled to obtain a new spectrum that has higher initial Taylor
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Reynolds numbers associated with it. Once the velocity field in stage (I) has reached

self-similar decay, i.e.,
E(k,t) = %%F(kl,t),
a new scaled energy spectrum can be defined as
E'(k,t) = d'F(kl',t) = dF(KI[l'/1],t) = i—zlllE(k[l’/l],t). (C.8)
The integral length scale, I’, and Kolmogorov scale, 7;, are

V=1,

NG o 1/4
(e
In this stage, @ = u?l/2 = Wu; 1/2. Again A and B are chosen to satisfy the

constraints (a) and (b) above. Using eq. (C.8) the scaled energy spectrum is found
(with some curve fitting) by choosing o/. With E’(k,0) found the new velocity field

and

M

is obtained using the method described in section C.1. This new scaled velocity field
will reach full spectrum decay more rapidly than that from stage (I) and will have a
large Taylor Reynolds number when it reaches full spectrum decay.

C.3 Statistically dependent initial velocity field

This section describes an initialization scheme that is based on that given in section
C.1 but is modified so that the initial velocity field is statistically dependent on the
initial density field. From section C.1 the initial velocity field is given in eq. (C.1).
The Fourier transform of this initial velocity field gives

~ o A -
u=1kx A —1Dki.
In this scheme A’ (in real space) is defined such that

A =fp)A
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where A is the random vector potential computed from the method described in
section C.1 and f(p) is some function of density. There are two functions used in this

study.

A. Large density corresponds to low velocity magnitude

In this case the function f(p) is defined such that the density and velocity magnitude
are inversely correlated. Therefore, where the density has a negative fluctuation about
its mean (low density) the velocity magnitude is high. This is achieved by defining

f(p) as
1
f(p) =;

so that
i-4
p
With this definition, the initial random vector potential, .;1,-, corresponds to an initial
random momentum field. Clearly, where the density is large the velocity magnitude

will be small.

B. Large density corresponds to high velocity magnitude

In this case the function f(p) is defined such that the density and velocity are pos-
itively correlated. Therefore, where the density has a positive fluctuation about its
mean (high density) the velocity magnitude is high. This is achieved by defining f(p)
as

so that

With this definition, the initial random vector potential, A, corresponds to (something
like) an initial random velocity per unit mass field. Clearly, where the density is large

the velocity magnitude will be large also.
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Once A/ has been determined the energy spectrum, E 4 (k), associated with it
is computed. Then the initial velocity potential, fi;, is properly scaled so that this
potential corresponds with the desired initial energy spectrum, F(k). The scaling

used is

A= E®) 4

Y EBalk)
With this scaling, the initial velocity field has the initial desired spectral shape. It
is also desired that the total initial kinetic energy, Rn, = pulul,/2, for a variable-
density case using either velocity initialization (A) or (B) is the same as that for a
nearly constant-density case. In order to achieve this the initial velocity field must
be rescaled (similar to the spectral scaling). The scaling parameter is the initial Ry,

for a nearly constant-density case divided by the initial R,, for the variable-density

case.



Appendix D
DENSITY INITIALIZATION PROCEDURE

The majority of the results presented in this dissertation used the bimodal prob-
ability density for the initial density field. This is the method of Eswaran and Pope
[30] (see also Mell [60]). Some of the results discussed in this dissertation also used an
initial density field with a Gaussian probability density. The initialization procedure
for this Gaussian distribution of the initial density field is a method analogous to that
described in section C.1 for the initial velocity field. Two different Gaussian spectra
were used for the initializations of the density field. In the study of isotropic decay of
variable-density fluid the initial spectral function was Batchelor’s final stage of decay
spectrum, eq. (C.7). For the buoyancy driven case which was used to compare with
the results of Batchelor et al., the initial spectral distribution could be approximated
by a delta function. This chapter described these two methods.

D.1 Method of Eswaran and Pope

In this method the density field was set up similar to that of Eswaran and Pope [30].
The initial density field conforms approximately to a double-delta-function pdf which
has peaks at pmer and pmin. In order for the field to be well resolved the density field
is smoothed to avoid sharp gradients. This produces a pdf that has a nonzero value
between the peaks. This method is set up in three stages.

(a) In this first stage a discrete density energy spectrum is defined as
By(nky) = S 3B (), D)
Kn
where K, is the set of all wavenumbers that satisfy (n — %)ko <k<L(n+ %)ko. Here

. 1/2 .
H(k) = {ﬁﬁg} exp(2mid(k)). (D.2)
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The function f;(k) is defined to be the “top-hat” function

) (D.3)
0 otherwise

1 ifks—ko/2 < k<ks+k/2
fe(k) = { / /2
Here 0(k) are uniformly distributed random numbers between 0 and 1 and k is the

magnitude of k. The initial integral length scale of the density field is determined by

the value of k,.

Using eq. (D.2) the Fourier phases of the initial density field are randomly chosen.
The Fourier amplitudes of the density field are assigned random values such that the
resulting density-energy spectrum is equal to the specified function f3(%).

(b) The second stage in this initialization procedure is the inverse-Fourier trans-
form of é(l-c‘) to physical space. In real space, the density value at each grid point is
reset t0 pPmae if the value at that grid point is positive, and to pmin if it is negative.
This procedure gives approximately a “double-delta” pdf for ¢(Z).

(c) The final stage removes the steep spatial gradients in the density field that were
set up in stage (b) and also sets the mean value for the density field to . To accom-
plish these, ¢(Z) is Fourier transformed to Fourier space and the high wavenumber

components are filter out using the following filter:

(k) = F(k)(k) (D4)
where
oy )1 if k<k
folb) = { (/) if bk (D)

The mean density value is fixed by setting the <f>(l_c' = 0) component to p. The mean
density in the simulations used in this study, 7 = (omaez + Pmin)/2 = 1.0. Also for
this study, ks = 2.89, k, = 4 and k. = 5.6. These parameters produce large “blobs”
of density in the field.

D.2 Initial density field from an prescribed initial spectral function

The method described in this section is used to set up an initial density field that has

an initial Gaussian pdf. This method is analogous to that for setting up an initial
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velocity field. In Fourier space the initial density field is defined as
p(k) = 21 + 135 (D.6)
where z; and z, is (from Box and Muller)

T = a,(—2log, Ul)% cos 2rU;

zy = a,(—2log, Uy)% sin 2xUs.

U; and U, are independent random variables which are uniformly distributed on the

interval (0,1) and a, is the rms of the random field that arises from using initially

defined density energy spectrum, E,(k). From section C.1, a, is solved to be

(a5 Js BoR)H]*
TR

There two types of initial density spectral functions used in this study. For the case
of isotropic decaying, variable-density turbulence, Batchelor’s final stage of decay

energy spectrum was chosen:
E,(k,0) = a(k/c)le"2*/,

For the buoyancy driven case used for comparison with the Boussinesq results of
Batchelor et al., the initial random density field is generated from the initial density
spectrum E,(k,0) = 6(k—2r) [7], where 6 is the Dirac delta-function. This spectrum

can be approximated by

A [ E\" 1 L\?
500 = 52 (55) = [_5" (5) ] (0.7
where n = 64 and A, is given as
212 n3@+)
A”_[Jr‘] 13- (n—1) (D.8)

Here, A, is a normalization such that the E,(k,0) properly approximates the Dirac
function. The mean density value is set by setting the [)(75 = 0) component to P.




Appendix E
SPECTRA COMPUTATION

In this appendix is described the method of computing spectra in this dissertation
(see, e.g., Riley et al. [72]). For isotropic flows it is useful to compute a three
dimensional spectrum. This is defined by splitting up the Fourier space into a series

of concentric shells such that

Ak - Ak
e — < < k. ——
k- S <R <kt S

where k; is the center of the ith shell and Ak is the width of the shell. In our study
here Ak = 1. The spectrum of 413, the three-dimensional Fourier transform of ¢, is
defined as

Ey(ks) Ak = % S d(R) (), (E.1)

where N; is the number of points in the ith shell, and ¢* is the complex conjugate of
#. With this definition, the energy spectrum discussed in Chapter 4 is defined as

< u;lu‘ln > — 1 Z,&I ,&l*
2 AEkN; non

Enn(k,t) =

Likewise, the density spectra is defined as

<pdpp>_ 1 o1 At
2 _AkN,-pr"'

Ey(k,t) =

The velocity divergence spectra is defined using eq. (E.1), where ¢ = du,,/0x,.
For the spectra of other quantities, such as (p'v'), (pu,u;,) and (p'ulu;,) it is useful

to define the spectrum as
Egy(ks) Ok = — 3" [$(E)d"(K) + " (R)P(k)] (E.2)

where, for the quantity (p'v'), ¢ = p’ and ¥ = o'; for (pulul), ¢ = pu), and P = u],
and for (p'ulu,), ¢ = p'u;, and Y = u,.
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For anisotropic flows it is useful to compute a one-dimensional spectrum (e.g., in
the z-direction),

2

Ez¢(k)

-'L'nyj’ ¢* Z:i, Y5, k) (E3)

where ¢3 is the one-dimensional Fourier transform of ¢ in the z-direction, and N, and
N, are the number of grid points in the x and y directions, respectively.




