e

COVF—-35/0230
SPMOGE- /5L
Modal Test Optimization using the
Virtual Environment for Test Optimization

Scott E. Klenke, Garth M. Reese, Larry A. Schoof and Craig Shierling (RE/SPEC)
Sandia National Laboratories AECEN &
Albuquerque, New Mexico El 14 =D

Abstract: . '

We present a software environment integrating analysis and test-based modthdSu;d't
optimal modal test design through a Virtual Environment for Test Optimization (VETO).
The VETO assists analysis and test engineers to maximize the value of each modal test. It
is particularly advantageous for structural dynamics model reconciliation applications.

The VETO enables an engineer to interact with a finite element model of a test object to
optimally place sensors and exciters and to investigate the selection of data acquisition
parameters needed to conduct a complete modal survey. Additionally, the user can evaluate
the use of different types of instrumentation such as filters, amplifiers and transducers for
which models are available in the VETO. The dynamic response of most of the virtual
instruments (including the device under test) are modeled in the state space domain. Design
of modal excitation levels and appropriate test instrumentation are facilitated by the
VETO's ability to simulate such features as unmeasured external inputs, A/D quantization
effects, and electronic noise. Measures of the quality of the experimental design, including
the Modal Assurance Criterion, and the Normal Mode Indicator Function are available[1].
The VETO also integrates tools such as Effective Independence[2] and minamac{1] to

~ assist in selection of optimal sensor locations. The software is designed about three distinct
modules:

1. a main controller and GUI written in C++,

2. a visualization model, taken from FEAVR[3], running under AVS”, and
3. a state space model and time integration module built in SIMULINK 7.

These modules are designed to run as separate processes on interconnected machines.
MATLAB’s external interface library is used to provide transparent, bidirectional
communication between the controlling program and the computational engine where all
the time integration is performed. Data from the finite element model is downloaded to the
MATLAB engine where the SIMULINK model is automatically created and executed.
MATLAB GUI elements are used to simulate the data acquisition environment including
response traces, over-range indicators, and full scale voltage ranges.

Introduction:

This paper presents an innovative test/analysis tool, called the Virtual Environment for Test
Optimization (VETO), which is aimed at integrating testing earlier in the product design
cycle through experimental design optimization. Traditionally, the role of testing in the
product realization process has been limited to the end of the design cycle; after hardware
has already been produced. As a result, data analysis and test requirements for a component
have only been considered when the hardware is scheduled for testing. A goal in

*AVS is a trademark of Advanced Visual Systems, Inc., Waltham, MA.
TMATLAB and SIMULINK are trademarks of the Math Works, Inc., Natick, MA.

f-’x;‘? T This work was supporied by the United
Egg} Fios 9 E R States Department of Energy under
: s Contract DE-ACN4-94ALRE0N0,
DISTRIBUTION OF THiS DOCUMENT IS UNLIMITED

8

R R,

developing this software tool is to provide test and analysis organizations with a capability
of mathematically simulating the complete test environment within a computer. Derived

- models of test equipment, instrumentation and hardware can be combined within the VETO
to provide the user with a unique analysis and visualization capability to evaluate new and
existing test methods. By providing engineers with a tool that allows them to optimize an
experimental design within a computer environment, pre-test analysis can be performed
using analytical models to rapidly evaluate components before manufacturing has
occurred. The benefits of using this type of experimental design tool can be very extensive.
The user can evaluate the use of different types of test instrumentation and equipment as
well as investigating new testing techniques for system identification to be used in analysis/
experimental model validation.

The VETO also plays a crucial role in support of an on-going Sandia National Laboratories
program called Knowledge Based Testing. The Knowledge Based Testing program
incorporates aspects of design, analysis, and test with rapid prototyping to optimize test
based product information from an experiment. Combining the use of the VETO (to
optimally design an experiment) with the use of rapid prototyping techniques for
generating component parts makes the processes of model updating and validation much
more efficient. There is a critical need for providing test based information to produce
confidence in the predictive capabilities of computational models. A test design tool such
as the VETO can make a large impact on this need.

The initial step in the Knowledge Based Testing program is generation of a computer aided
design model which represents the geometry of the component to be tested. This geometric
model is then used to assist component visualization, to generating a computational model
used for dynamic analysis, and to produce a rapid prototype component through a

stereolithography or fastcast process*. The developed computational model of the
component is combined with analytical and/or experimentally derived models of the test
instrumentation within the VETO to determine an optimal test design. The VETO is used
to simulate the experiment and to maximize the test based information for computational
model validation. The next step in the Knowledge Based Testing program is performance
of the experimental test on the rapid prototype component based on the VETO test design.
The results of this experiment are then be used to validate the computational model.

A major objective of this software development effort is flexibility. Because the virtual
environment is a prototype software system, a primary concern for its design is that the
code be easy to prototype. To minimize our effort, existing software tools are used
wherever possible, provided that the necessary functionality and flexibility are available.
Another significant design objective is to provide a final software system that can be used
by a variety of individuals who have not been involved in its development. As is described
below, our design integrates several commercial tools to meet these objectives.

The major tasks involved in our effort include: 1) database management, 2) visualization
of the device under test, 3) utility functions (such as those providing additional information
about any of the instruments, or interconnecting them), and 4) time integration of the
system. A key element within the VETO environment is the use of virtual instruments to
simulate dynamic behavior of real instruments. Each virtual instrument may require a
different data representation within the different VETO modules. For example, the device
under test requires a geometric definition under the visualization module, while the model

*Fastcast uses a stereolithography part as a mold for an automatic metal casting system.

is reduced to state space ABCD matrices for use in the time integration module. The
required data for the different analysis environments are shown in Table 1.

Environment
Virtual Instrument
visualization | database time integration
Structure Under Test geometry eigenvectors ABCD matrices
eigenvectors | eigenvalues
eigenvalues
sensors & actuators grid number | connections connections
orientation state model name state model name
parameters parameters
filters & amplifiers N/A connections connections
state model name state model name
parameters parameters '
Front End system N/A N/A constructed
based on other
instruments

Table 1. Data Requirements in Each Environment

Program Integratioh - Unix™ Socket Connected Modules:

The VETO program is divided into three main sections: 1) user interface, database and
utilities, 2) visualization, and 3) time integration. The user interface and utilities are written

in C++ with the database implemented using the netCDF library™. Visualization is
performed using previously developed custom AVS networks[3]. Use of existing
visualization software immediately made available a wealth of tools permitting
visualization of extensive finite element results, including modes of vibration, strain energy
densities and static response data. The time integration section uses MATLAB and its
SIMULINK toolkit. MATLAB was also used to construct the state space models for many
of the virtual instruments (such as amplifiers and filters). '

Communication between these different sections is performed using unix sockets.
MATLARB is released with a set of interprocess communication tools (the “external
interface™), by which data may be easily transferred between the programs. Data transfer
with AVS was more complicated but accomplished in a similar fashion. AVS is distributed
with example code permitting execution in a “server” mode. Commands and parameters
may be readily transferred to AVS, but only the results printed to standard output may be
retrieved. This was a significant limitation of the software, and limits its applicability in a
general purpose code. Most of the structural data was shared through EXODUS II [4] files
used by the AVS visualization software. The random access data features of this format was
quite important to implementation of many of the analysis tools discussed below.

In addition to permitting rapid implementation of the virtual environment concepts,
separation of the VETO software into these three sections had important side benefits. Unix
sockets are network transparent, permitting us to run the application segments on different

* netCDF is a public domain, machine independent data format available from the Unidata Program
Center in Boulder. unidata.ucar.edu

machines. For example, AVS could typically be run on an SGI machine specifically
designed for visualization problems, while MATLAB ran on a more general purpose
computer platform. Program development and debugging were also facilitated by the
complete separation of these processes.

User Interface:
Database, integration, utility and user interface functions are performed in the vetomain
module, Figure 1. The “File” option of the vet omain menu bar allows users to load finite
element (FE) models into the VETO software as well as previously existing virtual test

files. This module also provides numerous tools to assist the engineer in understanding how
the various virtual instruments interact together.

RO RO AR

Figure 1. VETO Main User Interface

The user interface is implemented in C using Motif libraries. To provide access to AVS and
MATLAB, user interface widgets were constructed by which commands could be entered
and all output from the applications displayed. Vet omain acts as a controller, sending (or
retrieving) data from the other two applications. Some limitations in the event driven model
were introduced by the separation of the three application codes. Each section has its own
event loop - specific to the interface events of that application. However, some events, such
as communicating the node numbers from the visualized model, would be more natural if
clicking on the model directly communicated back to the database program in vetomain.
The single socket connection between programs makes this quite awkward. Action specific
code was written to deal with node numbering, however, a more elegant solution might
utilize an additional communication channel along with integrated event loops.

Vetomain is used to construct parametric models of the instruments, and to formulate
interconnections between the models. Each of the virtual instruments is constructed in
customized control panels. The useris able to interact with the Virtual Instruments Control
Panel, selected from the “Setup/Instruments” option, to provide and view information on
the devices in the simulation, Figure 2. A typical control panel used in the design of virtual
actuators and sensors, those instruments that are in contact with the device under test
(DUT), is shown in Figure 3.

*V

Instrument Type: ! Sensors =H

Figure 2. Virtual Instrument Control Panel for sensors

Figure 3. Instrument input panel for sensors

Before initiating a simulation run, the user also needs to set up instruments that do not
directly contact the device being tested such as filters, amplifiers and the Front End data
acquisition device. Two subpanes for providing parameters needed for sampling and
computation of post-simulation analysis measurements for the Front End model are shown
in Figures 4 and 5. There are additional subpanes to specify triggering, auto-ranging,
windowing, averaging and display parameters for the simulation of the Front End device.
Use of C++ classes for the instrument panels allows easier extension for new instruments.
A special instrument called a “wire” is used to connect multiple instruments together. The
DUT, selected virtual mstruments and wire connecuons form the v1rtua1 test environment.

Figure 4. VETO Front End Sampling Panel :

Once completed, the virtual instrument parameters and the structure of the test environment
are downloaded to MATLAB, the state space model of the structure or device under test is
constructed and the ABCD matrices are stored in the MATLAB workspace. SIMULINK
scripts are then called to orgamze the virtual instrument models and data into an mtegraﬂon
network from which the time histories of the system are computed.

Figure 5. VETO Front End Measurement Panel

The vetomain module also provides numerous evaluation tools to allow the test engineer
to determine the completeness of the virtual test environment. These tools can be accessed
through the “Pre-simulation” menu option from vet omain. The modal data used for
visualization is combined with selected virtual instruments to compute the Modal
Assurance Criterion (or MAC), normal mode indicator functions, and driving point
frequency response. The effects of the mass loading of the structure by the sensors may also
be computed using a perturbation method. These and other tools guide the engineerin
design of tests that will accurately identify all the desired modes of the structure.

Even with these tools, placement of sensors and actuators can be a difficult task. Tools such
as the effective independence method or the minamac are used to automatically place
sensors in locations which may help optimize the information available from the test. The
virtual test environment provides the engineer with immediate visual feedback to
determine the success of these methods, for which some engineering interaction is still
required. Methods for automatic selection of actuator locations are currently under
consideration.

Visualization with AVS Finite Element Analysis VieweR (FEAVR):

Since a finite element (FE) analysis is typically performed to predict the modes.of vibration
of a device, it was decided to utilize the FE model as the primary geometric representation
of the device for visualization purposes within VETO. A prototype environment, FEAVR,
which had been developed to provide a general purpose visualization capability for FE
analyses, was selected as the graphics tool. FEAVR is an interface to the broad FE
visualization functionality of AVS, incorporating networks and modules written or
customized at Sandia. By using FEAVR, a user is freed from knowing the details of AVS.
As an FE analysis visualization system, FEAVR provides the following capabilities:
» color the model with color fringes representing element-based (e.g., stress, strain,
etc.) or node-based (e.g., temperature, displacement) scalar values.)
* slice the model by showing an interior cutting plane or by removing a portion of the
model that lies on one side of a slice plane.

e create an isosurface which is a surface on which an element-based or node-based
scalar value is constant.

» represent a vector field (velocity, for instance) as arrows or streamlines (continuous
lines that are everywhere tangent to the vector field).

» create X-Y plots of variables as they vary through time or in distance (across or
through the model).

¢ deform the model according to a vector field, typically a displacement vector.

* create animations of mode shapes.

* “probe” the model to determine mesh-related values (i.e., nodal coordinates, node
ID, element ID) and values of state variables (temperature, stress, etc.) at locations
of interest.

As discussed previously, AVS is started and then connected to a Unix socket to
accommodate bidirectional communication between AVS and the vetomain program.
This allows vetomain to control the AVS process by issuing CLI (Command Line
Interpreter) commands and also by receiving information about the model (such as node
ID) from AVS. Via this mechanism, the FEAVR environment is initialized within AVS.

There were two fundamental extensions to FEAVR that were necessary for VETO. One
was the ability to “attach” a virtual instrument to the model at a user-selected (via a mouse
click) node point with a user-given orientation. For example, as an analyst or test engineer
reviews the deformations representing a particular mode as shown in Figure 6, a virtual
accelerometer can be placed at node 468 oriented parallel to the Z axis. The location and
orientation of the virtual instrument is then transferred back to vet omain for development

Figure 6. FEAVR display. Note virtual instrument at node 468.

The other extension to FEAVR was allowing the user to create “trace links™ which are lines
linking the virtual instruments on the model to create a simplified representation of the
device geometry in the absence of the FE model. These are used in visualizing the
simulated (or experimental) output of the virtual (or real) instruments. Figure 7 shows a
deformed FE model (top) and the same model represented with just trace links and virtual
instruments.

. DispZ

:V' Frequency 26.30

o R S

Frequency 26.30

Figure 7. Deformed FE model and trace lines from FEAVR.

Simulations with MATLAB and SIMULINK:

The VETO software tool simulates the dynamic response behavior of a user defined test
environment. The SIMULINK Dynamic System Simulation Software toolkit provided by
MATLARB is used as the environment to assemble and ultimately integrate mathematical
models of the test system. This same toolkit controls the simulation processing. Dynamic
response equations are integrated by SIMULINK to provide simulated system output time
histories. Within the VETO software, inputs such as type of device and interconnection of
instrumentation models are combined to facilitate the rapid connection of various models
(including models of test instrumentation, equipment and hardware) which comprise a
given testing process. In order to achieve rapid set up of this virtual environment, models
representing the instrumentation and equipment to perform the test simulation need to be
developed. These models consist of a mathematical description of the dynamic response of
the instruments derived either theoretically or experimentally. Most of the instruments
modeled to date have been modeled in the discrete state space domain. A number of system
identification tools, e.g. Power Polynomial [5] and Eigensystem Realization Algorithm
with Data Correlation II [6], were used in MATLAB to generate the mathematical models.
Development was based on an experimental frequency response function of the instrument
or equipment.

The models of the different types of instruments and equipment (transducers, amplifiers,
filters, etc.) needed to represent a complete testing environment are located in a
SIMULINK Virtual Test Equipment Library (VTELib). When preparing for a test
simulation, the selection of the desired test instrumentation from the vetomain is
performed with the assistance of a MATLAB M-file called 1ib_contents which
searches the VTELib for available instrument models. Optimal experimental design and
simulation of the complete test environment is further facilitated by the VETO's ability to
include models of external inputs and electronic instrumentation noise. In addition,
complex instrumentation models, such as the Front End data acquisition system, are
constructed by combining multiple submodels to simulate the dynamic response behavior
of the hardware.

When “Build Simulation” is chosen from the “Simulate” menu of vet omain, the analysis
data describing the DUT and other selected instrumentation parameters are downloaded to
the MATLAB workspace. Processing control is then passed to MATLAB to construct a
SIMULINK model of the test system. Construction begins with a SIMULINK
“new_system” operation specifying the user’s selected name for the test system. Into this
new system diagram, the procedure places the device model blocks, specified by the
vetomain data. There is a second level of block placement performed in the building
process specific to the data acquisition device called the “Front End”. When the

“Front End” model block is placed into the new system, additional submodel blocks that
simulate AC coupling and anti-alias filtering are placed within the “Front End” block based
on the desired number of data simulation channels. Figure 8 shows a partial Front End
block diagram as constructed by the VETO software tool.

As device blocks are added to the new system, interconnecting lines are placed between the
blocks. These lines represent the flow of signals in the actual test system and are specified
using the “wire” instrument in vetomain. Using these interconnecting lines, the input
signals from the actuator devices (e.g. impact hammers) are fed to both the DUT for
simulation of system excitation and to the “Front End” device for simulation of data
acquisition. The “Front End” device also receives the signals from the sensors that have
been attached to the DUT to simulate structural system response to the actuator input. Both

the simulated actuator and sensor signals are linked through amplifier and filtering blocks
to represent preconditioning of the signals.

i ing the build. the space below will have i rts.
tiplexers. AC couplers. and Anti-alias Filgggts poadded.
These will be connected to the backplane.

AC1 Alias 1

AC?2 Alias 2

v
AC3 Alias 3]c diriitizel 13-Bit A/D Converter

- r
AC4 Alias 4 ¢ trigger| Detect Trigger

ACS Alias S .
Strip Signals
¢ buffer] ang Bsier Data

ACSB Alias 6

r
I c filter]F!Iter and Decimate

AC7 Alias 7

A
@ @ E aSto Simuation
ACS Alias 8 0 P

In Demux 0

Figure 8. Partial Front End Block Diagram

The completed system is saved as a MATLAB “.m” and “.mat” file. Although it is possible
for the user to modify the system built by VETO, care needs to be taken when directly
modifying the SIMULINK simulation system. When changes are made to the test design
from within SIMULINK, there is no mechanism for reflecting those changes in vet omain
and in the FEAVR environment. ' '

SIMULINK provides a number of methods for solving the set of differential equations
which define the mathematical model of the test system constructed in the build phase of
VETO. The VETO tool uses a Runge-Kutta fifth order (“rk45” operation) method to
numerically integrate the equations for the test system. This method is considered to be a
good general purpose integrator applicable to a large range of problems. It is a variable step
size method with step size adjusted continuously to meet a specified relative error criterion.
However, the VETO overrides the variable step size character by providing equal minimum
and maximum step sizes as options when the simulation begins. The selected step size is
the reciprocal of 32768 Hz; the maximum sampling rate of the HP3565 Front End device
used for data acquisition and analysis. This forces SIMULINK to calculate the system
responses at a constant or uniform time interval during the simulation process.

The process of simulation begins when the user selects “Run” from the “Simulate” option
on vetomain. The data files which define the dynamics of the desired instrumentation are
loaded into the test simulation system and the “Simulation Monitor” is created and
displayed. This monitor allows the user to observe the estimated system response based on
the numerical integration. The Simulation Monitor represents the data acquisition
environment commonly used to gather data in a physical test and is a graphical interface
through which the user interacts with the test simulation system. It has a set of buttons to

control the progress of the simulation and several display areas to provide visual feedback
to the user. Figure 9 shows the Monitor in its initial state prior to auto-ranging. The VETO
tool automatically performs auto-ranging to simulate the setting of Front End data
acquisition voltage ranges on each analog-to-digital convertor required in the test
simulation.

Figure 9. Simulation Monitor in its initial state.

During the simulation, the user has the option to halt the run using a button on the Monitor.
Also as each frame of data is collected, the simulated response is displayed on the Monitor
and the user is provided visual feedback on the test simulation results. Voltage ranges for
each channel can be varied in order to maximize the signal’s dynamic range before
performing post-simulation analysis. Each frame can be accepted or rejected as a valid set
of data using control buttons found at the bottom of the Monitor. A second set of buttons
will accept or reject and also end the data collection phase. These buttons will also display
a window which will provide an interface to analysis routines for computing desired
measures such as frequency response functions, power spectral densities and coherences.

Application of the VETO to Structural Dynamics Test Simulation:

The VETO software environment currently integrates analysis and test-based models to
support optimal modal or structural dynamic test design. The structural dynamics testing
environment was selected as the initial VETO environment to enable the project team to
prototype this tool to investigate areas of design/analysis/test interfaces, visualization,
versatility and repeatability. This initial VETO effort has focused on assisting engineers
through the development of a test design tool to maximize the value of modal tests. As was
mentioned earlier, this environment plays a very critical role in the Knowledge Based
Testing program particularly for structural dynamics model validation problems.

A weapon component housing was selected as the test case hardware for application in the
VETO environment. The VETO software simulation tool was used to design an optimal
experiment for the housing component. The goals of performing this test design -
optimization were to select an appropriate set of instrumentation (including sensors and

actuators) to perform a modal experiment within the VETO environment, to simulate a
modal test on the housing component, and then to compare the results of the simulation to
actual experimental data. A finite element model of the housing structure was loaded into
the VETO environment for use in the modal test simulation. The test design was performed
over a frequency band which included the first five vibration modes of the housing
structure. The experimental test was performed on a steel component housing based on the
VETO test design.

The outcome of the VETO test design “Setup” was to excite the structure at a single
location using an impact hammer and to measure 51 acceleration responses on the housing
component to characterize the dynamic behavior of the component, Figure 10. Small
accelerometers, Endevco 2250s, were selected in the test design in order to minimize the
mass loading effects during the experimentation. A large number of accelerometer
locations were selected in the test design to make the process of analytical/experimental
mode comparison more feasible. Other instrumentation such as the signal conditioning
amplifiers and the Front End data acquisition system were also set up with the use of
vetomain in preparation for the test simulation. Data acquisition parameters for sampling,
averaging and desired analysis measurements were also selected for use in the post-
simulation analysis.

Figure 10. VETO test design for the housing.

A number of “Pre-simulation” tools were used to determine the completeness of the test
design. First, the effects of mass loading the component housing were calculated given the
test design sensor set, Figure 11. This figure showed that small changes in the frequencies
of vibration would be experienced during the experimental test, based on the number of
Endevco 2250 accelerometers chosen in the test design. Second, a normal mode indicator
function and a driving point frequency response function were viewed before conducting
the test simulation in order to assess whether the selected sensor and actuator (selected
impact location) set would accurately identify all the desired modes of interest on the
component housing, Figures 12 and 13. Initially, a location near the center of the housing,

o
(1]
4

™ ~N €k}
[} ul [

frequency change
w

10

vl
(]

1 z 3

mode # 4

Figure 11. Estimated frequency shifts due to mass loading the housing.

1 T Y Y](T j(\r

09} -

07F -

£
o
>

NMI

ast .

0.3}F 4

-

0.2

0.1

0 200 400 600 800 1000 1200
Frequéncy

Figure 12. Normal Mode Indicator Function for the housing

on the top of the dome, was selected for the excitation of the structure. By using the normal
mode indicator function, it was determined that an input location at the edge of the housing
would excite the first two modes of the structure more strongly than exciting at the center
of the housing. Finally, the Modal Assurance Criterion (MAC) was calculated for the test
design to determine if the modes of vibration of the structure could easily be distinguished

Actuator DOF:1.

200 : :
) AN
% -~
100}]
a
- Yyl -
10' 10° 10° 10*
10° : .
[4}]
S. 0
10 .
s
<
-5
1D 1 1
2 3 104

10' 10
Frequency

Figure 13. Driving point frequency response for housing.
from one another given the selected sensor set. Small values on the off-diagonal terms of

this MAC matrix, Figure 14, indicate the relative independence of the modes of vibration
thus making correlation with analysis data more attainable.

Modal Assurance Criteria

Made #

Figure 14. Modal Assurance Criterion (MAC) of the housing

Once the test design had been completed within the VETO environment, a SIMULINK
block model of the test environment was automatically generated to support the simulation

of the modal test. Flgure 15 shows a part1al block model of thlS SIMULIN K env1ronment

Stot0_0

Amplmer
Channel 1

l Mux Input Mux

Dut Endevco 2250 P 1
Uniaxi Amplifier Low Pass
Stot1_o Channet 2 Channel 2

End?Jvco 2250

sessssesssaled e s
Fxgure 15 Partxal Block Model of SIMULINK environment.

The next step in the modal test simulation is the numerical integration of the mathematical
models within SIMULINK to estimate the 51 system responses. Using the Simulation
Monitor, these responses are observed for each set or frame of data to be collected,
Figure 16. Once the required amount of data is gathered to support the desired

0% B BUR

Figure 16. Collected Responses from Simulation Monitor

measurement set, the test simulation within SIMULINK is concluded. A window which

provides an interface to the post-simulation analysis routines is then used to download the
data for measurement analysis. A comparison of frequency response functions for the
simulated data and the experimental data for this test case is shown the following figures,
Figures 17. The results of the comparison between the simulated and the actual
experimental data show the need for computational model validation. The simulated data,
which is based on the FE dynamic analysis, has lower modal frequencies than does the
experimental results. By using this experimental data in conjunction with the FE model, the
computational model can be updated and used as a predictive tool. However, even with an
inaccurate finite element model, the test was complete and well designed. Placement and
sensors and actuators, as specified in the VETO, resulted in data from which the required

modes could be extracted unambiguously.
.)

1 0 T L 1 T 1 L
5
10 R
?
=]
§ 10‘ k|
o]
°]
g 3
=]
rY ‘ ' 5
o 3
£ ‘ 3
g |) o
3 / Y. -
= (¥
0@ i i 1 F
o ' 1
]
1 00 ul 3 1 1 L
200 400 600 800 1000 1200
Frequency (Hz)

Figure 17. Comparison of Frequency Response Functions at node 3563

Conclusions:

The results of this weapon housing modal test design using the VETO environment clearly
shows the benefit of this software tool. Within this software environment, engineers were
able to investigate the testing of this component without the existence of any hardware. The
effects that different instrumentation or equipment had on the results of the experiment
were observed and the selection of appropriate analysis parameters were also studied. An-
other benefit to this VETO software was the optimal design of the experiment within the
computer in order to provide experimental modal data for analysis model reconciliation.
This tool assisted the engineers in the selection, placement and orientation of the instru-
mentation to maximize the information to be gathered from the experiment. Also, this tool
allowed the visualization of results while iterating the test set up before committing to the
actual test series. This test simulation tool, as previously described, plays an important part
in the design of experiments for the purpose of computational model validation. -

References:
[1] T. G. Carne and C. R. Dohrman, “A Modal Test Design Strategy for Model Correla-
tion”, Proceedings of the 13th International Modal Analysis Conference, 1995.

{21 D. C. Kammer, “Sensor Placements for On-Orbit Modal Identification and Correlation
of Large Space Structures”, Journal of Guidance, Control, and Dynamics, V14(2),
1991.

[31 L. A. Schoof, “Finite Element Analysis VieweR (FEAVR)”. unpublished.

[4] L. A. Schoof and V. R. Yarberry, “EXODUS II: A Finite Element Data Model”, Sandia
Report SAND92-2137.

[5]P. S. Barney, “Power Polynomial Analysis Code”. unpublished.

[6] J. P. Lauffer, “Eigensystem Realization Algorithm with Data Correlation II””. unpub-
lished.

