

21
9-22-80
JRC
24 to NTIS
UCID-17530-Revision #1

MASTER

The Computational Physics Program
of the National MFE Computer Center

Arthur A. Mirin

August 1980

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore Laboratory under Contract W-7405-Eng-48.

 Lawrence
Livermore
Laboratory

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

THE
COMPUTATIONAL PHYSICS PROGRAM
OF THE
NATIONAL MFE COMPUTER CENTER

Arthur A. Mirin

August 1980

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

fly

I. INTRODUCTION

Since June 1974, the MFE Computer Center has been engaged in a significant computational physics effort. The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. In addition, the group interacts with the systems programming staff to improve services; it fills the roles of internal critic and advisor by representing a user viewpoint.

The group currently consists of six Ph.D. physicist/mathematicians - D.V. Anderson, M.G. McCoy, A.A. Mirin, D.D. Schnack, A.I. Shestakov and D.E. Shumaker. In addition, students in the Department of Applied Science (U.C. Davis) are engaged in fusion research under the guidance of senior group members. This year we have also had a participating guest, Yuan Li, from Rutgers University.

The computational physics group is involved in several areas of fusion research. One main area is the application of multidimensional Fokker-Planck, transport and combined Fokker-Planck/transport codes to both toroidal and mirror devices. Another major area is the investigation of linear and nonlinear resistive magnetohydrodynamics in two and three dimensions, with applications to all types of fusion devices. In addition to these computational physics studies, investigations of more efficient numerical algorithms are being carried out.

One of the principal objectives of the computational physics group is to provide support for experimental and theoretical work within the MFE community. At present, this support falls into the following areas:

Spheromak formation and stability	PPPL
Stability and evolution of RFP and stability of FRTP	LASL, LLL
Tearing mode stability of reversed field plasmas	LLL
Resistive stability of Doublet III	GA
Field reversed mirror transport	LLL

Fokker-Planck/transport calculations of PLT	PPPL
Fokker-Planck and transport analyses of Tandem Mirror systems	LLL
RF current drive and electron heat transport in tokamaks	GA

A summary of our program follows.

II. COMPUTATIONAL STUDIES

A. TIME DEPENDENT MAGNETOHYDRODYNAMICS

A principal technique for determining macroscopic plasma behavior is through the solution of the time dependent MHD equations. Of particular interest is the nonlinear evolution and saturation of fluid instabilities. Accurate simulation of such phenomena requires the solution of the full set of MHD equations, which comprises a coupled system of eight nonlinear partial differential equations. This is a formidable task for any computer system. In order to make these computations tractible, approximations have often been made, including reduction in dimensionality, linearization, restriction to a particular geometry and the assumptions of infinite conductivity and/or low "beta" ("beta" is the ratio of plasma pressure to magnetic pressure). The infinite conductivity assumption (called ideal MHD) greatly simplifies the numerics, since the MHD equations are then hyperbolic rather than parabolic. Moreover resistive MHD modes tend to grow more slowly, thereby requiring a much longer run time. The low beta assumption allows an ordering in which the problem is reduced to the solution of two scalar equations.

At the MFECC, the emphasis has been on constructing resistive MHD codes which are applicable to all plasmas, independent of beta. Both linear and nonlinear codes have been written which solve the full set of resistive, "finite-beta" MHD equations in two and three dimensions (see Table 1). Moreover, these codes use an implicit time discretization, so that there is no restrictive non-physical upper bound on the size of the timestep. Additionally, the nonlinear models are cast in general orthogonal curvilinear coordinates, making them applicable to a variety of geometries. These features make our MHD codes unique to the MFE community.

TABLE 1. MFECC MHD CODES

CODE	CONTACT	CHARACTERISTICS AND APPLICATIONS
MHD2D	D.D. SCHNACK	2D (x_1, x_2), Curvilinear Coordinates, Nonlinear, Implicit, Resistive; RFP, FRTP
IMP	C.H. FINAN*	3D (x_1, x_2, x_3), Curvilinear Coordinates, Nonlinear, Implicit, Resistive; RFP, Tokamaks
RIPPLE VI	A.I. SHESTAKOV	2D (R, Z), Linear, Nonaxisymmetric Perturbations, Implicit, Resistive; FRTP, Tokamaks
ALIMO	A.I. SHESTAKOV	2D (R, Z), Linear, Axisymmetric Perturbations, Implicit, Resistive; FRTP, Tokamaks
RIPPLE V	A.I. SHESTAKOV	1D (r), Linear, Implicit, Equilibrium Flow
RIPPLE IV	D.D. SCHNACK	1D (r), Linear, Implicit, Resistive; Tokamaks, RFP
RESTAB	D.D. SCHNACK	1D (r), Linear, Implicit, Resistive, Compressible, Viscous, Thermal Conductivity; Tokamaks, RFP

*Former D.A.S. student; currently in A Division at LLNL.

Our MHD research is in the following areas:

- o We are applying our linear and nonlinear two dimensional codes to the behavior of resistive modes in field reversed and toroidal configurations. These calculations are applicable to Tokamaks (D III "Big Dee"), the Field Reversed Theta Pinch, the Spheromak and the Field Reversed Mirror. We are also studying the formation phase of these plasmas.
- o We have been modeling the evolution and saturation of magnetic islands in both Cartesian (sheet pinch) and cylindrical (diffuse) geometries. We are currently studying the nonlinear evolution of the resistive interchange instability (or "q-mode") in the Reversed Field Z-Pinch.
- o Our three dimensional code has been effective in the study of the formation of the reversed field state in a square cross-sectional Z-pinch. Similar calculations are also being carried out in two dimensions. The object of this study is to find the final nonaxisymmetric "ohmic" states of the pinch and to determine which parameters lead to the reversed field state.

Our MHD publications are summarized in Appendix A.

B. PLASMA TRANSPORT

Transport codes are used to evaluate macroscopic plasma parameters (e.g. density, temperature) on a timescale comparable to the lifetime of the plasma. They differ from other fluid codes in that the fast timescale physics is integrated out of the problem.

At the MFECC, transport codes are being applied to Tandem Mirrors, Tokamaks and Field Reversed Mirrors. A list of our transport codes and their applications appears in Table 2.

Over the past year we have made a great deal of progress in the following areas:

- o Radial transport in tandem mirrors
- o Fokker-Planck/transport studies of tokamaks
- o Radial transport in field reversed mirrors
- o Anomalous electron transport in tokamaks

A brief summary follows.

TABLE 2. MFECC TRANSPORT CODES

CODE	CONTACT	CHARACTERISTICS AND APPLICATIONS
TMT	A.A. MIRIN	1D (R); Tandem Mirrors
FPT	A.A. MIRIN	Combined Fokker- Planck/Transport, 1D (R) plus 2D (V,θ); Tokamaks
FRT	D.E. SHUMAKER	1D (Poloidal Flux); Field Reversed Mirrors
TAT	D.E. SHUMAKER	1D (Toroidal Flux); Tokamaks
TRANSPORT	A.A. MIRIN	1D (R); Tokamaks
DDL	M.G. MCCOY	2D (R,V); Electron Transport; Tokamaks

- o Radial Transport in Tandem Mirrors

A tandem mirror machine consists of a long, solenoidal cell with minimum-B mirrors (plugs) at either end which act to electrostatically confine the central cell ions. The rate at which charged particles and heat diffuse in radius is of crucial importance. Of special significance is the expected enhanced transport of ions due to resonance between their azimuthal drift and axial bounce motions, which results from the presence of a non-axisymmetric magnetic field in the transition regions between the end plugs and the solenoid. A radial transport code, TMT, has been written in order to investigate this and other related phenomena. This multispecies code computes radial profiles of densities and temperatures in both the central solenoid and the end plugs along with a self-consistent electric field. Classical and neoclassical effects on transport are taken into account. This code is being used to study the Tandem Mirror Experiment (TMX) and to help design larger tandem mirror devices.

- o Fokker-Planck/Transport Studies of Neutral Beam-Heated Tokamaks

Neutral beam-heated tokamaks are characterized by the presence of one or more energetic ion species which are quite non-Maxwellian along with a warm Maxwellian bulk plasma. For scenarios in which there is a large energetic ion population, it is very important to represent these energetic species by means of velocity space distribution functions and to follow their evolution in time by integrating the Fokker-Planck equations. It is essential to utilize the full nonlinear Fokker-Planck operator to assure that the slowing down and scattering of these energetic species is computed accurately and realistically.

Our Fokker-Planck/transport code (FPT), in addition to solving radial transport equations for the bulk plasma densities and temperatures, solves nonlinear Fokker-Planck equations in 2D velocity space for the energetic ion distribution functions. The FPT code is unique in that it is the only tokamak transport code which does not either linearize the Fokker-Planck operator or ignore it altogether. Also, neutral beam deposition and neutral transport are computed using appended Monte Carlo codes developed at Princeton.

During the past year, FPT has been applied principally to the Princeton Large Torus (PLT) and the Tokamak Fusion Test Reactor (TFTR).

o Radial Transport in Field Reversed Mirrors

The field reversed mirror differs from other mirror machines in that a current is induced in the plasma which produces a magnetic field structure having a reversed field. That is, the magnetic field in the center of the device is in the opposite direction from the applied field. The magnetic field structure has a toroidal region in which the magnetic field lines are confined. The confinement of the field lines gives better plasma confinement and a near Maxwellian plasma.

A transport code, FRT, has been written to describe the evolution of the toroidal region of the plasma. The code solves fluid equations on the slow diffusion time scale for ions and electrons. These equations advance the ion density, electron entropy, ion entropy, and toroidal magnetic flux. The code alternates between the solution of the four 1-D transport equations and the 2-D equilibrium equation. The 1-D transport equations are derived by integrating the equations of Braginskii over each flux surface. The equilibrium equation is the Grad-Shafranov equation. This code will be used to model the field-reversed experiment at LLNL, Beta II.

o Anomalous Electron Transport in Tokamaks

Recently, there has been considerable interest in the effects of anomalous electron transport due in part to magnetic surface destruction. Since this heat loss represents a major problem in toroidal confinement, there has been a need for a program which would simulate this loss and allow for credible estimates of the effects of electron transport on lower hybrid heating, D.C. conductivity and soft x-ray spectra.

The computer program (LDL) which has consequently been developed is 2-D with independent variables velocity magnitude and radial position. It combines a velocity and radially dependent heat source and a 1-D Fokker-Planck treatment of electron collisions with a loss operator simulating diffusion in velocity-radius. This program is in its initial stages of application to the Doublet experiments at General Atomic Corporation.

Our transport publications are summarized in Appendix B.

C. FOKKER-PLANCK

The Fokker-Planck equation is needed to treat plasmas in which the charged particle velocity space distribution functions are non-maxwellian. In a magnetic mirror device, charged particles will tend to leak out the ends of the device, resulting in a "loss cone" in velocity space. In tokamaks or mirrors where there is neutral beam injection, the ion distribution functions will be characterized by an energetic component (in addition to the maxwellian background). These are two situations which require the use of Fokker-Planck codes.

The MFECC has led the nation in the development and implementation of multispecies Fokker-Planck codes employing the complete nonlinear two-dimensional Fokker-Planck operator. Since our codes have been generalized to deal with toroidal and open-ended configurations, many physical effects have been incorporated in them and a variety of physical problems have been studied. A summary of our Fokker-Planck codes appears in Table 3.

TABLE 3. MFECC FOKKER-PLANCK CODES

CODE	CONTACT	CHARACTERISTICS AND APPLICATIONS
HYBRID II	A.A. MIRIN	2D (V, θ), Nonlinear, Multispecies Ions; Mirrors and Tokamaks
TDMFP	A.A. MIRIN	2D (V, θ), Nonlinear, Multispecies Ions and Electrons; Mirrors
FPRF	M.G. MCCOY	2D (V, θ), Nonlinear, Multispecies Ions and Electrons, RF Current Drive; Tokamaks
TDMSZ	A.A. MIRIN	3D (V, θ, z), Nonlinear, Multispecies Ions and Electrons
FPPAC	M.G. MCCOY	2D (V, θ), Nonlinear, Multispecies Ions; General Package
ISOTIONS	A.A. MIRIN	1D (V), Nonlinear, Multispecies Ions and Electrons; Mirrors and Tokamaks

One of our main achievements this year has been the development of a user-oriented package, FPPAC, which computes the coefficients of the complete nonlinear 2D velocity-space Fokker-Planck collision operator and time-integrates the corresponding finite difference equations. This package runs from 10 to 14 times as fast on the CRAY-1 as on the CDC 7600. The tremendous gain in speed is due not only to the vectorization efficiency of the CFT compiler, but also to the fact that on the CRAY, one does not have to constantly move data between small and large core. FPPAC has been made available to the MFE community.

Our Fokker-Planck publications are summarized in Appendix C.

D. OTHER AREAS

Although most of our research has dealt with time dependent MHD, transport, and Fokker-Planck equations, we have undertaken some projects in other areas -- in particular plasma equilibria, Vlasov and particle simulations, convergent neutral beam studies and general numerical methods.

A self-consistent guiding center particle model coupled with a fluid equilibrium code has been used to study ion beam motion in a toroidal geometry. Applications include the study of collisionless beam behavior including strong counterstreaming beams and the steady state modeling of a CIT reactor, in which steady state beam currents and energy reinjection rates are computed.

A general study of the Incomplete Cholesky Conjugate Gradient Method (ICCG) for solving sparse linear systems has been carried out. This technique has been shown to be considerably faster than other traditional linear solvers such as SOR and ADI. An ICCG solver applicable to general nine point two-dimensional difference operators has been written, and it is available to the MFE community.

A study has been made involving the creation of a very dense plasma by injecting convergent neutral beams into spherical or cylindrical chambers. Calculations of particle distribution functions, densities, ionization rate parameters and ionization probabilities have been carried out for both geometries.

A one-dimensional Vlasov finite difference code for ions and electrons has been written to study the formation of a plasma sheath and to compute steady state distribution functions along with a plasma potential.

A code has been developed to solve nonlinear elliptic equations on domains of very general shape. Its main application has been to solve the equilibrium fluid equations proposed for TORMAC.

Publications in these areas are summarized in Appendices D, E and F.

III. Future Goals

The above projects are considered to be quite relevant to the National MFE effort, and we plan on continuing them. We expect that our Field Reversed Mirror and Tandem Mirror Transport Codes will be of great value to the Livermore MFE program, and that the Electron Transport Code will be a great aid in understanding anomalous heat loss in tokamaks. We also anticipate that our 2D linear MHD codes will provide much needed insight into the properties of resistive instabilities and their effects on magnetic fusion devices. In fact we have just begun to develop a 3D finite-beta nonlinear MHD code which utilizes a Fourier expansion in the toroidal direction.

Appendix A - MHD References

Papers

J.A. Dibiase, J. Killeen, D.C. Robinson and D. Schnack, "Linear and Non-Linear Calculation of the Tearing Mode in Reversed Field Pinches," in Pulsed High Beta Plasmas (Pergamon Press, Oxford, 1976), 283.

J.A. Dibiase and J. Killeen, "A Numerical Model for Resistive Magnetohydrodynamic Instabilities," J. Comp. Phys. 24 (1977), 158.

J. Killeen and A.I. Shestakov, "Effect of Equilibrium Flow on the Resistive Tearing Mode," Phys. Fluids 21 (1978), 1745.

D. Schnack and J. Killeen, "Linear and Non-Linear Calculations of the Tearing Mode," in Theoretical and Computational Plasma Physics (IAEA, Vienna, 1978), 337.

J. Killeen, D.D. Schnack, and A.I. Shestakov, "Linear and Non-Linear Calculations of Resistive Magnetohydrodynamic Instabilities", in Proc. Fourth IRIA International Symposium on Computing Methods in Applied Science and Engineering, Versailles (1979).

D. Schnack and J. Killeen, "Non-Linear Saturation of the Tearing Mode in a Reversed Field Pinch", Nucl. Fusion 19 (1979), 877.

D. Schnack and J. Killeen, "Non-Linear Two-Dimensional Magnetohydrodynamic Calculations", J. Comp. Phys. 35 (1980), 110.

D.D. Schnack, J. Killeen, and R.A. Gerwin, "The Non-Linear Evolution of Resistive Interchange Modes in Reversed-Field Pinches", submitted to Nucl. Fusion.

D.A. Baker, C.J. Buchenauer, L.C. Burkhardt, T.E. Cayton, E.J. Caramana, G.I. Chandler, R.S. Christian, R. Dagazian, J.N. DiMarco, J.N. Downing, J.P. Freidberg, R.F. Gribble, R.A. Gerwin, D.W. Hewett, R.B. Howell, A.R. Jacobson, F.C. Jahoda, J. Killeen, K.A. Klare, H.R. Lewis, E.M. Little, L.W. Mann, G. Miller, R.W. Moses, R.A. Nebel, S. Ortolani, R.B. Paris, J.A. Phillips, D.D. Schnack, A.E. Schofield, K.S. Thomas, R.C. Watt, P.G. Weber, J.A. Wesson, R. Wilkins, and Y. Yoshida, "Initial Reversed-Field Pinch Experiments on ZT-40 and Recent Advances in RFP Theory", Eighth Int'l. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Brussels (1980), IAEA-CN-38/R-3-1.

W.T. Armstrong, D.C. Barnes, R.R. Bartsch, R.J. Commisso, C.A. Ekdahl, I. Henins, D.W. Hewett, H.W. Hoida, T.R. Jarboe,

C.G. Lilliequist, R.K. Linford, J. Lipson, J. Marshall,
K.F. McKenna, J.P. Mondt, D.A. Platts, C.E. Seyler,
A.R. Sherwood, E.G. Sherwood, R.E. Siemon, D.V. Anderson,
R. Christian, E.H. Klevans, S. Hamasaki, D.D. Schnack,
J.M. Sayer, A.I. Shestakov, and J. Killeen, "Compact Toroid
Experiments and Theory," Eighth Int'l. Conference on Plasma
Physics and Controlled Nuclear Fusion Research, Brussels (1980),
IAEA-CN-38/L-2-1..

D.V. Anderson, S.P. Auerbach, H.L. Berk, J.K. Boyd, T.A. Brengle,
J.A. Byers, B.I. Cohen, W.C. Condit, J.C. Eddleman, R.P. Freis,
E.H.A. Granneman, J.H. Hammer C.W. Hartman, J. Killeen,
B. McNamara, W.A. Newcomb, L.D. Pearlstein, M.G. McCoy,
D.S. Prono, J.M. Sayer, D.D. Schnack, D. Shumaker, J.W. Shearer,
A.C. Smith, J. Taska, W.C. Turner, D.E. Driemeyer, G.H. Miley,
E.C. Morse, E. McColl and H. Weitzner, "Theory of Field-Reversed
Mirrors and Field-Reversed Plasma-Gun Experiments," Eighth
Int'l. Conference on Plasma Physics and Controlled Nuclear Fusion
Research, Brussels (1980), IAEA-CN-38/R-2.

Reports

D.D. Schnack, "Non-linear Numerical Studies of the Tearing Mode,"
Lawrence Livermore Laboratory Report UCRL-52399 (1977).

D.D. Schnack and J. Killeen, "Non-Linear Saturation of the
Tearing Mode in a Reversed Field Pinch," Reversed Field Pinch
Workshop, Padua (1978), UCRL-81218.

J. Killeen, D.D. Schnack, and A.I. Shestakov, "Linear Calculation
of Resistive Instabilities in Reversed Field Pinches," Reversed
Field Pinch Workshop, Padua (1978), UCRL-81266.

A.I. Shestakov, D.D. Schnack, and J. Killeen, "The Tilting Mode
in the Reversed-Field Theta Pinch," U.S.-Japan Joint Symposium on
Compact Toruses and Energetic Particle Injection, Princeton
(1979), UCRL-83698.

H.L. Berk, J. Sayer, and D.D. Schnack, "Tearing Mode Stability
Analysis of a Cylindrical Plasma," U.S.-Japan Joint Symposium on
Compact Toruses and Energetic Particle Injection, Princeton
(1979), UCRL-83504.

D.D. Schnack, "Dynamical Determination of Ohmic States of a
Cylindrical Pinch," Proc. RFP Theory Workshop, Los Alamos (1980),
UCRL-84202.

D.D. Schnack and J. Killeen, "The Nonlinear Evolution of

Resistive Interchange Modes in a Reversed Field Pinch," Proc. RFP Theory Workshop, Los Alamos (1980), UCRL-84301.

Abstracts

D.D. Schnack, J. Killeen, and C. Finan, "Nonlinear Evolution of the Tearing Mode in a Sheet Pinch," Bull. Am. Phys. Soc. 20, 1311 (1975); St. Petersburg.

D.D. Schnack, Jr. and J. Killeen, "The Non-Linear Tearing Mode," Bull. Am. Phys. Soc. 21, 1133 (1976); San Francisco.

D.D. Schnack and J. Killeen, "Linear and Non-Linear Numerical Studies of Resistive Instabilities in Cylindrical Geometry", Annual Controlled Fusion Theory Conf., San Diego (1977), A17.

C.H. Finan and J. Killeen, "3D Non-Linear Evolution of the Internal Kink Mode in a Resistive Plasma," Annual Controlled Fusion Theory Conf., San Diego (1977), A6.

C.H. Finan and J. Killeen, "Nonlinear Internal MHD Modes in 3-D Resistive Plasmas," Bull. Am. Phys. Soc. 22, 1154 (1977); Atlanta.

A.I. Shestakov and J. Killeen, "The Effect of Equilibrium Flow on the Resistive Tearing Mode," Bull. Am. Phys. Soc. 22, 1156 (1977); Atlanta.

D.D. Schnack and J. Killeen, "Growth and Saturation of the Tearing Mode in a Reversed Field Pinch," Bull. Am. Phys. Soc. 22, 1156 (1977); Atlanta.

J. Killeen and D. Schnack, "Non-Linear Saturation of the Tearing Mode," Bull. Am. Phys. Soc. 22, 1155 (1977); Atlanta.

D. Schnack and J. Killeen, "Nonlinear Evolution of Resistive Interchange Modes in a Reversed Field Pinch," Annual Controlled Fusion Theory Conference, Gatlinburg (1978), A25.

D. Schnack and J. Killeen, "General Non-linear Two-Dimensional MHD Calculations," Eighth Conference on Numerical Simulation of Plasmas, Monterey (1978), PA-5.

C.H. Finan and D.D. Schnack, "Multidimensional Magnetohydrodynamics Calculations," IEEE Int'l. Conf. on Plasma Science, Monterey (1978), 6B3.

C.H. Finan and J. Killeen, "IMP-A 3 Dimensional, Non-linear

Resistive Implicit MHD Program," Eighth Conference on Numerical Simulation of Plasmas, Monterey (1978), OA-3.

D.D. Schnack and J. Killeen, "Nonlinear Numerical Computations of Resistive Interchange Modes in a Reversed Field Pinch," Bull. Am. Phys. Soc. 23, 831 (1978); Colorado Springs.

A.I. Shestakov, J. Killeen, and D.D. Schnack, "Linear Calculations of Tearing Modes in High-Beta Toroidal Equilibria," Bull. Am. Phys. Soc. 23, 830 (1978); Colorado Springs.

C.H. Finan and J. Killeen, "3-D Resistive MHD Computations," Bull. Am. Phys. Soc. 23, 831 (1978); Colorado Springs.

D. Schnack and J. Killeen, "The Nonlinear Evolution of Resistive Instabilities in Finite-Beta Reversed Field Pinches," Annual Controlled Fusion Theory Conference, Mount Pocono (1979), 3B31.

C.H. Finan, "Three-Dimensional MHD Calculations," 1979 IEEE International Conf. on Plasma Science, Montreal (1979), 3Q4.

D. Schnack and J. Killeen, "Nonlinear Studies of Resistive Interchange Instabilities in a Reversed Field Pinch," 1979 IEEE International Conf. on Plasma Science, Montreal (1979), 5B2.

J. Killeen, A.I. Shestakov, and D.D. Schnack, "2-D Linear Resistive MHD Calculations", Bull. Am. Phys. Soc. 24, 952 (1979); Boston.

A.I. Shestakov and J. Killeen, "Axisymmetric Linearized Resistive MHD Calculations," Bull. Am. Phys. Soc. 24, 952 (1979); Boston.

D.D. Schnack and J. Killeen, "Nonlinear Resistive Calculations for Reversed Field Pinches", Bull. Am. Phys. Soc. 24, 1023, (1979); Boston.

C.H. Finan, J. Killeen, and D.D. Schnack, "Three Dimensional Simulation of Spontaneous Field Reversal", Bull. Am. Phys. Soc. 24, 1024 (1979); Boston.

J.M. Sayer, D.D. Schnack, and A.I. Shestakov, "Resistive Calculations for the Reversed-Field Theta Pinch", Bull. Am. Phys. Soc. 24, 1081 (1979); Boston.

J.M. Sayer, D.D. Schnack and H.L. Berk, "Tearing Mode Stability of a Long-Thin Reversed-Field Theta Pinch," Annual Controlled Fusion Theory Conf., Tucson (1980), 2B24.

D.D. Schnack, "Dynamical Determination of Ohmic States of a

Cylindrical Pinch," Annual Controlled Fusion Theory Conf., Tucson (1980), 2A5.

Y. Li and D.D. Schnack, "Simulation of the Formation Phase of Spheromak," Annual Controlled Fusion Theory Conf., Tucson (1980), 1C25.

A.I. Shestakov, D.D. Schnack and J. Killeen, "Numerical Study of Low Toroidal Mode Number Instability in a Compact Torus," Annual Controlled Fusion Theory Conf., Tucson (1980), 2B1.

A.I. Shestakov, D.D. Schnack and J. Killeen, "Ripple VI and Alimo--Two-Dimensional Linearized Resistive MHD Stability Codes," Ninth Conf. on Numerical Simulation of Plasmas, Evanston (1980), OA-6.

A.I. Shestakov, G. Chandler, D. Nguyen and J. Killeen, "Resistive MHD Calculations for Tokamaks with Elongated Cross Sections", Bull. Am. Phys. Soc. 25 (1980); San Diego.

D.V. Anderson, H.L. Berk and J.H. Hammer, "MHD Growth Rate Dependence on Separatrix Shape of a Field Reversed Theta Pinch", Bull. Am. Phys. Soc. 25 (1980); San Diego.

D.D. Schnack and D.W. Hewett, "Particle and Fluid Simulations of the $m=0$ g-Mode", Bull. Am. Phys. Soc. 25 (1980); San Diego.

D.C. Barnes, A.Y. Aydemir, D.V. Anderson and D.D. Schnack, "Nonlinear Simulation of the Ideal MHD Tilting Mode in a Prolate Field Reversed Configuration", Bull. Am. Phys. Soc. 25 (1980); San Diego.

R.Y. Dagazian and D.D. Schnack, "Helical Ohmic States for Reversed Field Pinches", Bull. Am. Phys. Soc. 25 (1980); San Diego.

Appendix B - Transport References

Papers

D.E. Shumaker and I.B. Bernstein, "Improved Variational Method for Axisymmetric Plasmas," *Phys. Fluids* 18 (1975), 1487.

A.A. Mirin, J. Killeen, K.D. Marx and M.E. Rensink, "A Radial Transport/Fokker-Planck Model for a Tokamak Plasma," *J. Comp. Physics*, 23, No. 1 (1977), 23.

M.L. Watkins, M.H. Hughes, K.V. Roberts, P.M. Keeping and J. Killeen, "ICARUS-A One-Dimensional Plasma Diffusion Code," in *Methods in Computational Physics* 16 (1976), Academic Press, New York, 166.

D.L. Jassby, R.M. Kulsrud, F.W. Perkins, J. Killeen, K.D. Marx, M.G. McCoy, A.A. Mirin, M.E. Rensink and C.G. Tull, "Counterstreaming-Ion Tokamak Fusion Reactors," *Sixth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, FRG (1976)*, (IAEA, Vienna) II, 435.

D.E. Post, R.J. Goldston, R.C. Grimm, R.J. Hawryluk, S.P. Hirshman, D. Hsieh, R.A. Hulse, D.L. Jassby, R.V. Jensen, A. McKenney, D.M. Meade, D.R. Mikkelsen, J.M. Ogden, M. Okabayashi, P.H. Rutherford, J.A. Schmidt, F.G.P. Seidl, S. Suckewer, F. Tenney, A.A. Mirin, M.G. McCoy, J. Killeen, M.E. Rensink, D.E. Shumaker and C.B. Tarter, "Computational Study of Impurity Effects, Impurity Control, and Neutral Beam Injection in Large Tokamaks," *Seventh International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Innsbruck (1978)*, (IAEA, Vienna), I, 471.

A.A. Mirin, M.G. McCoy, J. Killeen, M.E. Rensink, D.E. Shumaker, D.L. Jassby and D.E. Post, "Fokker-Planck/Transport Analyses of Fusion Plasmas in Contemporary Beam-Driven Tokamaks," *Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, Grenoble (1978)*, 13.

R.D. Gill, K.B. Axon, G.A. Baxter, W.H.M. Clark, R.S. Hemsworth, J. Hugill, J.W.M. Paul, J.B.B. Percival, R. Prentice, B.A. Powell and A.A. Mirin, "Neutral Injection Heating in DITE," *Ninth European Conf. on Controlled Fusion and Plasma Physics, Oxford (1979)*, 150.

P.L. Colestock, S. Davis, P.C. Efthimion, H.P. Eubank, R.J. Goldston, L.R. Grisham, R.J. Hawryluk, J. Hovey, D.L. Jassby, D.W. Johnson, A.A. Mirin, G. Schilling, R. Stoopsberry, L.D. Stewart, J.D. Strachan and H.H. Towner,

"Fusion Neutron Production during Deuterium Neutral Beam Injection into PLT," Ninth European Conf. on Controlled Fusion and Plasma Physics, Oxford (1979), 45.

J. Killeen, A.A. Mirin, and M.G. McCoy, "A Fokker-Planck/Transport Model for Neutral Beam Driven Tokamaks," (IAEA) Autumn College on Plasma Physics, Trieste (1979).

D.V. Anderson, S.P. Auerbach, H.L. Berk, J.K. Boyd, T.A. Brengle, J.A. Byers, B.I. Cohen, W.C. Condit, J.C. Eddleman, R.P. Freis, E.H.A. Granneman, J.H. Hammer, C.W. Hartman, J. Killeen, B. McNamara, W.A. Newcomb, L.D. Pearlstein, M.G. McCoy, D.S. Prono, J.M. Sayer, D.D. Schnack, D. Shumaker, J.W. Shearer, A.C. Smith, J. Taska, W.C. Turner, D.E. Driemeyer, G.H. Miley, E.C. Morse, E. McColl and H. Weitzner, "Theory of Field-Reversed Mirrors and Field-Reversed Plasma Gun Experiments," Eighth Int'l. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Brussels (1980), IAEA-CN-38/R-2.

D.E. Baldwin, R.H. Cohen, T.A. Cutler, T.B. Kaiser, B.G. Logan, Y. Matsuda, A.A. Mirin, L.D. Pearlstein, M.E. Rensink and T.D. Rognlien, "Studies in Tandem Mirror Theory," Eighth Int'l. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Brussels (1980), IAEA-CN-38-F4.

A.A. Mirin and D.L. Jassby, "Fokker-Planck/Transport Studies of the Tokamak Fusion Test Reactor," accepted for publication in IEEE Transactions on Plasma Science (1980).

P.L. Colestock, S. Davis, P.C. Efthimion, H.P. Eubank, R.J. Goldston, L.R. Grisham, R.J. Hawryluk, J. Hovey, D.L. Jassby, D.W. Johnson, A.A. Mirin, G. Schilling, R. Stoopsberry, L.D. Stewart, J.D. Strachan and H.H. Towner, "Fusion Neutron Production during Deuterium Neutral Beam Injection into PLT," submitted to Nuclear Fusion (1979).

Reports

D.E. Shumaker, "Calculation of Transport Coefficients in an Axisymmetric Torus," Lawrence Livermore Laboratory Report UCRL-52218 (1977).

A.A. Mirin, D.L. Jassby, and M.G. McCoy, "Should Operation of the TFTR as a CIT be Considered," presented to Ad Hoc Committee on TFTR Review, Germantown, (Oct. 1978).

P.L. Colestock, S. Davis, P.C. Efthimion, H.P. Eubank, R.J. Goldston, L.R. Grisham, R.J. Hawryluk, J. Hovey, D.L. Jassby, D.W. Johnson, A.A. Mirin, G. Schilling, R. Stoopsberry, L.D. Stewart, J.D. Strachan and H.H. Towner,

"Fusion Neutron Production during Deuterium Neutral Beam Injection into PLT," Princeton Plasma Physics Laboratory Report PPPL-TM-325 (1979).

S.P. Auerbach, H.L. Berk, J.K. Boyd, B. McNamara and D.E. Shumaker, "Two Dimensional Time-Dependent Transport in Field Reversed Equilibria," US-Japan Joint Symposium on Compact Toruses and Energetic Particle Injection, Princeton (1979), UCRL-83714.

Abstracts

K.D. Marx, B. Kelly, J. Killeen, A.A. Mirin and M.E. Rensink, "A Two-Dimensional Transport Code for Toroidal Plasmas," Seventh Conference on Numerical Simulation of Plasmas, New York (1975), 19.

A.A. Mirin, J. Killeen, K.D. Marx and M.E. Rensink, "A Radial Transport/Fokker-Planck Model for a Tokamak Plasma," Seventh Conference on Numerical Simulation of Plasmas, New York (1975), 15.

A.A. Mirin, J. Killeen, K.D. Marx, and M.E. Rensink, Computational Study of the Toroidal Fusion Test Reactor," Bull. Am. Phys. Soc. 20, 1257 (1975); St. Petersburg.

M.G. McCoy, A.A. Mirin, M.E. Rensink, D.L. Jassby, J. Killeen and K.D. Marx, "Computational Study of the Counterstreaming Ion Torus," Bull. Am. Phys. Soc. 21, 1064 (1976); San Francisco.

A.A. Mirin, M.G. McCoy, D.L. Jassby and J. Killeen, "Fokker-Planck/ Transport Simulations of Counterstreaming Ion Plasmas in the PDX Experiment," Annual Controlled Fusion Theory Conference, San Diego (1977), B15.

M.G. McCoy, J. Killeen, A.A. Mirin, M.E. Rensink and D. Shumaker "Fokker-Planck/Transport Model of Non-Circular Axisymmetric Devices," Bull. Am. Phys. Soc. 22, 1116 (1977); Atlanta.

A.A. Mirin and D.L. Jassby, "Fokker-Planck/Transport Studies of the PDX using a Self-Consistent Neutrals Package," Bull. Am. Phys. Soc. 22, 1116 (1977); Atlanta.

A.A. Mirin and D.L. Jassby, "Fokker-Planck/Transport Studies of the PDX, PLT and TFTR Incorporating a Self Consistent Neutrals Treatment," Annual Controlled Fusion Theory Conference, Gatlinburg (1978), C10.

A.A. Mirin, M.G. McCoy, J. Killeen and D.E. Shumaker, "FPTE - a Super-Hybrid Fokker-Planck/Transport/Equilibrium/Monte Carlo

Neutrals Code for Non-Circular Tokamaks," Eighth Conference on Numerical Simulation of Plasmas, Monterey (1978), PD-1.

A.A. Mirin, M.G. McCoy and D.L. Jassby, "Fokker-Planck/Transport Studies of the TFTR," Bull. Am. Phys. Soc. 23, 865 (1978); Colorado Springs.

D.L. Jassby, P.L. Colestock, R.J. Goldston, H.P. Eubank, J. Hovey, J.S. Strachan, H.H. Towner and A.A. Mirin, "Fusion-Neutron Production in PLT Plasmas Heated by Deuterium Beams," Bull. Am. Phys. Soc. 23, 796 (1978); Colorado Springs. (A.A. Mirin added to author list subsequent to publication in Bulletin)

A.A. Mirin and D.L. Jassby, "Modeling of Reacting Tokamak Plasmas with a Fokker-Planck/Transport Code," 1979 IEEE Int'l. Conf. on Plasma Science, Montreal (1979), 5B8.

D.L. Jassby, P.L. Colestock, S. Davis, P.C. Efthimion, H.P. Eubank, R.J. Goldston, L.R. Grisham, R.J. Hawryluk, J. Hovey, D.W. Johnson, A.A. Mirin, G. Schilling, R. Stoopsberry, L.D. Stewart, J.D. Strachan and H.H. Towner, "Fusion Neutron Production during Deuterium Neutral Beam Injection into Deuterium Plasmas in the PLT Tokamak," 1979 IEEE Int'l. Conf. on Plasma Science, Montreal (1979), 2B9.

D.E. Shumaker, M.G. McCoy, J. Killeen and A.A. Mirin, "Two Transport Models for Noncircular Axisymmetric Devices," Annual Controlled Fusion Theory Conference, Mount Pocono (1979), 2C21.

D.E. Shumaker, B. McNamara and J.K. Boyd, "Field Reversed Mirror Transport Code," Bull. Am. Phys. Soc. 24, 955 (1979); Boston.

M.E. Rensink, A.A. Mirin, R.H. Cohen and J. Killeen, "A Radial Transport Model for TMX," Bull. Am. Phys. Soc. 24, 1059 (1979); Boston.

A.A. Mirin and D.L. Jassby, "Nonlinear Transport Simulations of Neutral Beam-Heated Plasmas in PLT and PDX," Bull. Am. Phys. Soc. 24, 941, (1979); Boston.

M.E. Rensink and A.A. Mirin, "Some Factors Influencing the Structure of Tandem Mirror Plasma," Annual Controlled Fusion Theory Conf., Tucson (1980), 1B18

M.G. McCoy, A.A. Mirin and R.W. Harvey, "Numerical Modeling of Electron Diffusion due to Disturbed Flux Surfaces," Annual Controlled Fusion Theory Conf., Tucson (1980), 2B5.

D.E. Shumaker, J.K. Boyd, S.P. Auerbach, H.L. Berk and

B. McNamara, "Field-Reversed Mirror Transport Code," Annual Controlled Fusion Theory Conf., Tucson (1980), 2C17; and Ninth Conf. on Numerical Simulation of Plasmas, Evanston (1980), PB-17.

A.A. Mirin, J. Killeen and M.E. Rensink, "A Transport Code for Tandem Mirror Devices", Ninth Conf. on Numerical Simulation of Plasmas, Evanston (1980), PA-8.

A.A. Mirin and M.E. Rensink, "Radial Transport in Tandem Mirrors", Bull. Am. Phys. Soc. 25 (1980); San Diego.

D.E. Shumaker, J.K. Boyd, S.P. Auerbach and B. McNamara, "Transport in Field-Reversed Mirror", Bull. Am. Phys. Soc. 25 (1980); San Diego.

M.G. McCoy, A.A. Mirin, R.W. Harvey and J.-Y. Hsu, "Numerical Studies of Electron Diffusion due to Disturbed Flux Surfaces in Tokamaks", Bull. Am. Phys. Soc. 25 (1980); San Diego.

Appendix C - Fokker-Planck References

Papers

M.E. Rensink, T.K. Fowler, R.P. Freis, J. Killeen, A.A. Mirin, R.W. Moir, L.D. Pearlstein, R.F. Post, C.G. Tull, L.S. Hall, B. McNamara, J.K. Boyd, C.H. Finan, III, D. Fuss, and C.A. Wilgus, "Theoretical Studies of Plasma Confinement in Magnetic Mirrors," Fifth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo (1974), (IAEA, Vienna), 311.

H.L. Berk, H.P. Furth, D.L. Jassby, R.M. Kulsrud, C.S. Lui, M.N. Rosenbluth, P.H. Rutherford, F.H. Tenney, T. Johnson, J. Killeen, A.A. Mirin and M.E. Rensink, "Two Energy Component Toroidal Fusion Devices," Fifth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo (1974), (IAEA, Vienna), 569.

J.A. Byers, R.P. Freis, J. Killeen, E. Lee, B. McNamara, A.A. Mirin, and M.E. Rensink, "Computational Studies of Two Component Mirror Reactors," Fifth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo (1974), (IAEA, Vienna), 551.

J. Killeen, K.D. Marx, A.A. Mirin, and M.E. Rensink, "Energy Multiplication and Transport in a Two-Component Torus," Seventh European Conference on Controlled Fusion and Plasma Physics, Lausanne (1975), 22.

K.D. Marx, A.A. Mirin, M.G. McCoy, M.E. Rensink and J. Killeen, "Calculation of $(\Sigma V - DT)$ for Anisotropic Mirror and Toroidal Distributions," Nucl. Fusion 16, No. 4 (1976), 702.

J.G. Cordey, K.D. Marx, M.G. McCoy, A.A. Mirin, M.E. Rensink and J. Killeen, "A New Expansion Method for Computing (ΣV) for Reactant Distribution Functions," J. Comp. Physics 23 (1977), 115.

D.L. Jassby, R.M. Kulsrud, F.W. Perkins, J. Killeen, K.D. Marx, M.G. McCoy, A.A. Mirin, M.E. Rensink and C.G. Tull, "Counterstreaming- Ion Tokamak Fusion Reactors," Sixth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, FRG (1976), (IAEA, Vienna) II, 435.

A.A. Mirin, J. Killeen and C.J.H. Watson, "Some Preliminary 2

Calculations for Toroidally Linked Mirror Reactors," Nucl. Fusion 17, No. 1 (1977), 47.

J. Killeen, A.A. Mirin and M.E. Rensink, "The Solution of the Kinetic Equations for a Multispecies Plasma," in Methods in Computational Physics 16 (1976), (Academic Press, New York), 389.

J. Killeen and A.A. Mirin, "Numerical Solution of the Fokker-Planck Equations for a Multispecies Plasma," College in Theoretical and Computational Plasma Physics, Trieste (1977), (IAEA, Vienna).

R.H. Cohen, M.E. Rensink, T.A. Cutler and A.A. Mirin, "Collisional Loss of Electrostatically Confined Species in a Magnetic Mirror," Nucl. Fusion 18 (1978), 1229.

B.G. Logan, W.L. Barr, D.J. Bender, G.A. Carlson, W.L. Dexter, J.N. Doggett, R.S. Devoto, J.F. Fink, T.K. Fowler, G.W. Hamilton, D. Lappa, J.D. Lee, W.D. Neef, Jr., A.A. Mirin, R.W. Moir, M.A. Peterson and M.E. Rensink, "Tandem Mirror Reactors," Seventh International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Innsbruck (1978), (IAEA, Vienna), III, 401.

B.G. Logan, A.A. Mirin, M.E. Rensink and T.K. Fowler, "Calculation of the Fusion Power Gain for a DD Tandem Mirror Reactor," Fizika Plasmy 4 (1978), 542.

R.W. Harvey, K.D. Marx, M.G. McCoy, "Nonlinear Fokker-Planck Studies of RF Current Drive Efficiency," submitted to Nuclear Fusion (1980).

Reports

A.A. Mirin, "Isotions, A One-Dimensional Multispecies Fokker-Planck Computer Code," Lawrence Livermore Laboratory Report UCRL-51515 (1974).

A.A. Mirin, "Hybrid I, a Two-Dimensional Fokker-Planck Code", Lawrence Livermore Laboratory Report UCRL-51598 (1974).

A.A. Mirin, "Hybrid II, A Two-Dimensional Multispecies Fokker-Planck Computer Code," Lawrence Livermore Laboratory Report UCRL-51615, Rev. 1 (1975).

K.D. Marx, M.G. McCoy, A.A. Mirin, M.E. Rensink and J. Killeen, "A Legendre Expansion Method for Computing (Sigma-V) for Reactant Distribution Functions, "Lawrence Livermore Laboratory Report UCRL-78362 (1976).

R.L. Berger, "Fokker-Planck Calculations of Runaway Particle

Effects in Plasmas," PhD. thesis, University of California at Davis (1978).

M.G. McCoy, A.A. Mirin and J. Killeen, "A Vectorized Fokker-Planck Package for the CRAY-1," Scientific Computer Exchange Meeting, Livermore (1979), UCRL-83206.

Abstracts

J. Killeen, A.A. Mirin and M.E. Rensink, "Energy Multiplication Studies of the Two Component Torus with Major Radius Compression," Bull. Am. Phys. Soc. 19, 974 (1974); Albuquerque.

A.A. Mirin, J. Killeen and M.E. Rensink, "Multi-Species Fokker-Planck Calculations for the Two Component Torus," Bull. Am. Phys. Soc. 19, 974 (1974); Albuquerque.

M.E. Rensink, J. Killeen and A.A. Mirin, "Computational Studies of Mirror Confinement," Bull. Am. Phys. Soc. 19, 920 (1974); Albuquerque.

T. Cutler, J.A. Byers, D. Freeman, B. McNamara, A.A. Mirin, and M.E. Rensink, "Buildup of Two Component Mirror Plasmas," Bull. Am. Phys. Soc. 19, 921 (1974); Albuquerque.

A.A. Mirin, J. Killeen, K.D. Marx and M.E. Rensink, "Energy Multiplication Studies for a Pulsed Two Component Torus," Annual Meeting on Theoretical Aspects of Controlled Thermonuclear Research, Rosslyn (1975), 68.

K.D. Marx, J. Killeen, A.A. Mirin and M.E. Rensink, "Energy Multiplication Studies for a Steady State Two Component Torus," Annual Meeting on Theoretical Aspects of Controlled Thermonuclear Research, Rosslyn (1975), 64.

M.E. Rensink, A.A. Mirin and J. Killeen, "Computational Studies on Mirror Confined Plasma," Annual Meeting on Theoretical Aspects of Controlled Thermonuclear Research, Rosslyn (1975), 80.

A.A. Mirin, M.E. Rensink and D.L. Jassby, "Fokker-Planck Studies of the Counterstreaming Ion Torus," Annual Meeting on Theoretical Aspects of Controlled Thermonuclear Research, Madison (1976), 2A-15.

A.A. Mirin, M.E. Rensink and D.L. Jassby, "Fokker-Planck Studies of the C.I.T.," Bull. Am. Phys. Soc. 21, 1064 (1976); San Francisco.

K.D. Marx, W.L. Barr, R.W. Moir and C.E. McDowell, "A Monte Carlo Calculation of Collisional Effects in a Mirror-Confining Plasma,"

Annual Meeting on Theoretical Aspects of Controlled Thermonuclear Research, Madison (1976), 1C-11.

M.G. McCoy, J. Killeen, K.D. Marx, A.A. Mirin and M.E. Rensink, "Calculations of (Sigma-V--DT) for Anisotropic Mirror and Toroidal Distributions," Annual Meeting on Theoretical Aspects of Controlled Thermonuclear Research, Madison (1976), 2B-11.

A.H. Futch, R.P. Freis and A.A. Mirin, "Plasma Build-up Calculations of Neutral Beam Injection with a Radially Dependent Fokker-Planck Code," Bull. Am. Phys. Soc. 21, 1182 (1976); San Francisco.

T.A. Cutler, A.A. Mirin, L.D. Pearlstein and M.E. Rensink, "Bounce Average Code Mirror Plasma Studies," Bull. Am. Phys. Soc. 21, 1187 (1976); San Francisco.

K.D. Marx, T.J. Dolan, R.W. Moir and C.E. McDowell, "Trapping Rates and Loss Rates for Electrons in an Electrostatically Plugged Cusp," Bull. Am. Phys. Soc. 21, 1044 (1976); San Francisco.

B.G. Logan, T.K. Fowler, A.H. Futch, A.A. Mirin and M.E. Rensink, "The Tandem Mirror Concept," 18th Annual Meeting of the Division of Plasma Physics of the Amer. Phys. Soc., San Francisco (1976) (post-deadline paper).

M.E. Rensink, R.H. Cohen, T.A. Cutler and A.A. Mirin, "Particle Confinement by Ambipolar Potentials in Mirror Machines," Annual Controlled Fusion Theory Conference, San Diego (1977), B16.

R.H. Cohen, M.E. Rensink and A.A. Mirin, "Tandem Mirror Confinement Studies," Annual Controlled Fusion Theory Conference, San Diego (1977), I4.

T.A. Cutler, R.H. Cohen, M.E. Rensink and A.A. Mirin, "Ambipolar Potential-Aided Mirror Confinement," Bull. Am. Phys. Soc. 22, 1066 (1977); Atlanta.

K.D. Marx and R.L. Berger, "Numerical Computation of Runaway Particle Effects," Bull. Am. Phys. Soc. 22, 1137 (1977); Atlanta.

K.D. Marx, R.W. Harvey and J.M. Rawls, "Fokker-Planck Studies of Plasma Heating and Current Generation due to RF Induced Quasilinear Diffusion," Annual Controlled Fusion Theory Conference, Gatlinburg (1978), C9.

K.D. Marx, R.W. Harvey and J.M. Rawls, "Numerical Studies of Current Generation by RF-Induced Quasilinear Diffusion of

Electrons," Bull. Am. Phys. Soc. 23, 765 (1978); Colorado Springs.

K.D. Marx, R.W. Harvey, V.S. Chan and J.M. Rawls, "Lower Hybrid Electron Landau Damping and Current Drive in the Presence of an Applied DC Electric Field and Transport Losses," Annual Controlled Fusion Theory Conference, Mount Pocono (1979), 1B5.

R.W. Harvey, J.C. Riordan J.L. Luxon and K.D. Marx, "Studies of Current Due to RF-Induced Runaway in the DIIA Lower Hybrid Experiment," Annual Controlled Fusion Theory Conference, Mount Pocono (1979), 1C43.

A.A. Mirin, R.H. Cohen, M.E. Rensink and J. Killeen, "Preliminary Results of a Tandem Mirror Transport Code," Annual Controlled Fusion Theory Conference, Mount Pocono (1979), 2B25.

R.H. Cohen, M.E. Rensink, A.A. Mirin and J.A. Dorning, "Plug Fluxes in Thermal Barrier Tandem Mirrors," Bull. Am. Phys. Soc. 24, 1060 (1979); Boston

A.A. Mirin, I.B. Bernstein, R.H. Cohen and M.E. Rensink, "Fokker-Planck Studies of the Interaction between Trapped and Untrapped Electrons in Magnetic Mirrors," Annual Controlled Fusion Theory Conf., Tucson (1980), 2A2.

M.G. McCoy, A.A. Mirin, A.I. Shestakov and J. Killeen, "Two CRAY-Optimized Computer Packages: A Nonlinear Fokker-Planck Equation Solver and an Asymmetric Banded Linear Systems Solver," Ninth Conf. on Numerical Simulation of Plasmas, Evanston (1980), PC-8.

Appendix D - Particle/Vlasov and Equilibrium References

Papers

D.L. Jassby, R.M. Kulsrud, F.W. Perkins, J. Killeen, K.D. Marx, M.G. McCoy, A.A. Mirin, M.E. Rensink and C.G. Tull, "Counterstreaming Ion Tokamak Fusion Reactors", Sixth Int'l. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, FRG (1976), (IAEA, Vienna), II, 435.

T.H. Johnson, J. Killeen, O.A. Anderson and M.E. Rensink, "Guiding Center Simulation of Toroidal Plasmas," J. Comp. Physics 23, No. 3 (1977), 219.

H.L. Berk, H.P. Furth, D.L. Jassby, R.M. Kulsrud, C.S. Liu, M.N. Rosenbluth, P.H. Rutherford, F.H. Tenney, T. Johnson, J. Killeen, A.A. Mirin and M.E. Rensink, "Two Energy Component Toroidal Fusion Devices," Fifth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo (1974), (IAEA, Vienna), 569.

Reports

J.C. Taylor and J.V. Taylor, "The Elipti Code-Part 1", Lawrence Livermore Laboratory Report UCRL-79328 (1977).

C.G. Tull, "Guiding Center Simulations of Strong Counterstreaming Ion Currents with Applications to the Counterstreaming Ion Torus," Lawrence Livermore Laboratory Report UCRL-52436 (1978).

Abstracts

T. Johnson, J. Killeen and M.E. Rensink "Guiding Center Simulaton of the Two Component Torus", Bull. Am. Phys. Soc. 19, 974 (1974); Albuquerque.

J.A. Byers and A.A. Mirin, "Formation of Reversed Field Equilibria during Large Current Neutral Injection into Magnetic Mirror Target Plasma," Bull. Am. Phys. Soc. 19, 921 (1974); Albuquerque.

C.G. Tull, T.H. Johnson, M.E. Rensink and J. Killeen, "Guiding Center Particle and Plasma Equilibrium Simulation in Toroidal Systems with Azimuthal Symmetry," Seventh Conference on Numerical Simulation of Plasmas, New York (1975), 131.

C.G. Tull, D.L. Jassby, T.H. Johnson, J. Killeen and M.E. Rensink, "Steady State Simulations of the Counterstreaming Ion Torus (CIT) Fusion Reactor," Bull. Am. Phys. Soc. 21, 1064 (1976); San Francisco.

T.H. Johnson, J. Killeen, M.E. Rensink and C.G. Tull,
"Diversification of Guiding Center Simulation Methods,"
Bull. Am. Phys. Soc. 21, 1038 (1976); San Francisco.

C.G. Tull, J. Killeen and M.E. Rensink, "A Steady State Guiding
Center Model for the Counterstreaming Ion Torus (CIT)", Annual
Controlled Fusion Theory Conf., San Diego (1977), II3.

J.A. Byers, A.A. Mirin and D.R. Schnabel, "Simulation of
Self-Consistent Magnetic Fields in 2XIIIB", Annual Meeting on
Theoretical Aspects of Controlled Thermonuclear Research, Rosslyn
(1975), 12.

J.C. Taylor and J.V. Taylor, "ELIPTI-TORMAC: A Code for the
Solution of General Non-linear Elliptic Problems over 2-D Regions
of Arbitrary Shape," Proc. 2nd IMACS Int'l. Symposium on Computer
Methods for Partial Differential Equations, Bethlehem (1977).

M.G. McCoy, M.E. Rensink, A.A. Mirin and J. Killeen, "The Role of
Equilibria in Noncircular Transport Calculations," Annual
Controlled Fusion Theory Conference, Gatlinburg (1978), D2.

Appendix E - Convergent Neutral Beam References

Papers

R.F. Post, K.D. Marx and C.J. Eggens, "Creation of Transient High-Density Plasmas by Convergent Neutral Beams," *Nucl. Fusion* 15, No. 4 (1975), 701.

K.D. Marx, C.J. Eggens and R.F. Post, "Particle Distributions and Early Phases of Ionization in Proposed Convergent Neutral Beam Experiments," *Journal of Applied Physics* 48 (1977), 4215.

Abstracts

R.F. Post, K.D. Marx and C.J. Eggens, "The Use of Convergent Neutral Beams to Create Transient High Density Plasmas," *Bull. Am. Phys. Soc.* 19, 912 (1974); Albuquerque.

K.D. Marx, C.J. Hartman and R.F. Post, "Approximate Analytical Formulas for Systems which Employ Convergent Neutral Beams," *Bull. Am. Phys. Soc.* 20, 1364 (1975); St. Petersburg.

C.J. Hartman, K.D. Marx and R.F. Post, "Numerical Calculations of Processes in Convergent Neutral Beams," *Bull. Am. Phys. Soc.* 20, 1365 (1975); St. Petersburg.

Appendix F - Miscellaneous References

A. Review Publications

Papers

J. Killeen, "Computer Applications in Controlled Fusion Research," *Nucl. Tech.* 27 (1975), 107.

J. Killeen, "Computational Plasma Physics," 3rd National Computational Physics Conference on Partial Differential Equations in Physics, Glasgow (1975), and Computational Methods in Classical and Quantum Physics (1976), (Advance Publications Ltd., London), 83.

John Killeen, "Computer Models of Magnetically Confined Plasmas," *Nucl. Fusion* 16, No. 5 (1976), 841.

J. Killeen, "Numerical Methods in Fusion Research," Third Int'l. Symposium on Computing Methods in Applied Sciences and Engineering, Versailles (1977).

Abstracts

J. Killeen, "National CTR Computer Center," Seventh Conference on Numerical Simulation of Plasmas, New York (1975).

J. Killeen, "Computer Models of Magnetically Confined Plasmas," *Bull. Am. Phys. Soc.* 20, 1358 (1975); St. Petersburg.

J. Killeen, "Activities and Plans of the the National MFE Computer Center," IEEE Int'l. Conf. on Plasma Science, Monterey (1978), 292.

B. Other publications of group members

Papers

J.A. Byers, J.P. Holdren, J. Killeen, A.B. Langdon, A.A. Mirin, M. Rensink and C.G. Tull, "Computer Simulation of Pulse Trapping and Pulse Stacking of Relativistic Electron Layers in Astron," *Phys. Fluids* 17, No. 11 (1974), 2061.

R.P. Freis, C.W. Hartman, J. Killeen, A.A. Mirin and M.F. Uman, "Calculations of Combined Stellarator-Multipole Toroidal Magnetic Field Configurations," *Nucl. Fusion* 17, No. 2 (1977), 281.

K.D. Marx, "Reply to Comments by Y.Y. Sun," IEEE Trans. Microwave Theory Tech. 26 (1978).

Reports

C.H. Finan, III, "SIGHDT-Atomic and Molecular Cross Sections for Hydrogen Isotopes," Lawrence Livermore Laboratory Report UCRL-51805 (1975).

C.H. Finan, III, and B. McNamara, "MAFJ-Some Simple Additions to MAFCO," Lawrence Livermore Laboratory Report UCRL-51806 (1975).

C.H. Finan, III, "MAFC076-Magnetic Field Code," Lawrence Livermore Laboratory Report UCRL-51804 (1975).

R.P. Freis, C.W. Hartman, J. Killeen, A.A. Mirin and M.F. Uman, "Numerical Studies of Toroidal Magnetic Field Configurations," Lawrence Livermore Laboratory Report UCRL-78041 (1976).

A.A. Mirin, M.F. Uman, C.W. Hartman and J. Killeen, "An Analytic Representation of Fields Resulting from Currents on a Torus," Lawrence Livermore Laboratory Report UCRL-52069 (1976).

D.V. Anderson, J. Breazeal, C.H. Finan and R.M. Johnston, "ABCXYZ: Vector Potential (A) and Magnetic Field (B) Code (C) for Cartesian (XYZ) Geometry using General Current Elements," Lawrence Livermore Laboratory Report UCRL-52029 (1976).

A.A. Mirin, "The Computational Physics Program of the National MFE Computer Center," Lawrence Livermore Laboratory Internal Document UCID-17530 (1977).

A.I. Shestakov, "Users Manual for ILUCG," Lawrence Livermore Laboratory Internal Document UCID-18560 (1980).

A.A. Mirin, "A Note on Normalization of Variables and Equations," Lawrence Livermore Laboratory Internal Document UCID-18083 (1979).

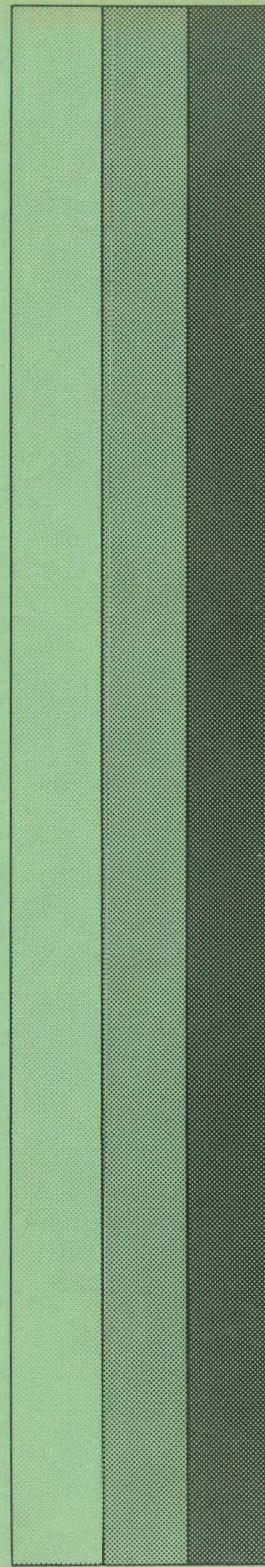
Abstracts

C.G. Tull, D.V. Anderson and J.H. Foote, "Equilibrium Adiabaticity and Confinement Time Studies for Minimum-B Mirror Devices," Bull. Am. Phys. Soc. 19, 921 (1974); Albuquerque.

R.P. Freis, M.E. Fensink, J. Killeen and A.A. Mirin, "Mulflu, a 1-D Multifluid Code," Bull. Am. Phys. Soc. 19, 922 (1974); Albuquerque.

M.G. McCoy, A.A. Mirin, A.I. Shestakov and J. Killeen, "Two CRAY-Optimized Computer Packages: A Nonlinear Fokker-Planck Equation Solver and an Asymmetric Banded Linear Systems Solver," Ninth Conf. on Numerical Simulation of Plasmas, Evanston (1980), PC-8.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.


Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy \$;Microfiche \$3.50

<u>Page Range</u>	<u>Domestic Price</u>	<u>Page Range</u>	<u>Domestic Price</u>
001-025	\$ 5.00	326-250	\$18.00
026-050	6.00	351-375	19.00
051-075	7.00	376-400	20.00
076-100	8.00	401-425	21.00
101-125	9.00	426-450	22.00
126-150	10.00	451-475	23.00
151-175	11.00	476-500	24.00
176-200	12.00	501-525	25.00
201-225	13.00	526-550	26.00
226-250	14.00	551-575	27.00
251-275	15.00	576-600	28.00
276-300	16.00	601-up ¹	
301-325	17.00		

¹ Add 2.00 for each additional 25 page increment from 601 pages up.

Technical Information Department • Lawrence Livermore Laboratory
University of California • Livermore, California 94550

