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Photosynthetic metabolism

To date, the utility of ecosystem and Earth system models (EESMs) has been limited by poor spatial and temporal 
representation of critical input parameters. For example, EESMs often rely on leaf-scale or literature-derived 
estimates for a key determinant of canopy photosynthesis, the maximum velocity of RuBP carboxylation 
(Vcmax, pmol m-2 s-1). Our recent work (Ainsworth et al., 2014; Serbin et al., 2012) showed that reflectance 
spectroscopy could be used to estimate Vcmax at the leaf level. Here, we present evidence that imaging spectros­
copy data can be used to simultaneously predict Vcmax and its sensitivity to temperature (EV) at the canopy scale. 
In 2013 and 2014, high-altitude Airborne Visible/Infrared Imaging Spectroscopy (AVIRIS) imagery and contem­
poraneous ground-based assessments of canopy structure and leaf photosynthesis were acquired across an 
array of monospecific agroecosystems in central and southern California, USA. A partial least-squares regression 
(PLSR) modeling approach was employed to characterize the pixel-level variation in canopy Vcmax (at a 
standardized canopy temperature of 30 °C) and EV, based on visible and shortwave infrared AVIRIS spectra 
(414-2447 nm). Our approach yielded parsimonious models with strong predictive capability for Vcmax (at 
30 °C) and EV (R2 of withheld data = 0.94 and 0.92, respectively), both of which varied substantially in the 
field (> 1.7 fold) across the sampled crop types. The models were applied to additional AVIRIS imagery to generate 
maps of Vcmax and EV, as well as their uncertainties, for agricultural landscapes in California. The spatial patterns 
exhibited in the maps were consistent with our in-situ observations. These findings highlight the considerable 
promise of airborne and, by implication, space-borne imaging spectroscopy, such as the proposed HyspIRI 
mission, to map spatial and temporal variation in key drivers of photosynthetic metabolism in terrestrial 
vegetation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Modeling global change requires accurate representation of 
terrestrial carbon, energy and water fluxes. The current generation of 
Ecosystem and Earth System Models (EESMs) fail to adequately capture 
the magnitude, spatial variation, and seasonality of gross primary 
productivity (GPP), resulting in a critical uncertainty in the size and 
fate of the terrestrial carbon sink (Friedlingstein et al., 2014). At a funda­
mental level, EESMs rely on detailed parameterization of vegetation 
functional traits (e.g., those describing photosynthesis, Bernacchi et al., 
2013) to represent ecosystem processes of a given biome. These trait 
data are typically sourced from the literature or field campaigns 
(e.g. Dietze et al., 2014), often from a single site or study, and provide 
an incomplete spatial and temporal characterization of key vegetation
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properties. In application, literature- or field-derived estimates are 
partitioned into between five and sixteen discrete plant functional 
types (PFTs) that describe variation of these traits across the entire 
planet (Rogers, 2014; Wullschleger et al., 2014).

In response to the compromises that generalization by PFTs incurs, 
there is increasing interest in the development of novel approaches to 
use optical remote sensing to map variability in physiological function 
and biochemistry of terrestrial vegetation at broad spatial and temporal 
scales (e.g., Frankenberg et al., 2014; Guanter et al., 2014; Singh, Serbin, 
McNeil, Kingdon, & Townsend, in press; Zhang et al., 2014; Zhou et al., 
2014). Of critical importance is the ability to accurately estimate the 
spatial and temporal variability in the photosynthetic capacity of 
vegetation canopies, which is governed in large part by Vcmax, the 
maximum rate at which the enzyme rubisco catalyzes the carboxylation 
of RuBP in leaf chloroplasts (Bernacchi et al., 2013; Farquhar, von 
Caemmerer, & Berry, 1980). Vcmax is a key parameter in most models of 
land-atmosphere carbon, energy and water exchange (e.g., Kucharik 
et al., 2000; Medvigy, Wofsy, Munger, Hollinger, & Moorcroft, 2009;

http: //dx.doi.org/10.1016/j.rse.2015.05.024 
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Rogers, 2014; Schaefer et al., 2012). Moreover, on its own, Vcmax can 
serve as a useful bioindicator, given its pronounced responsiveness to 
a number of common biotic and abiotic stressors, such as insect 
or pathogen damage (Dungan, Turnbull, & Kelly, 2007), air pollution 
(e.g., Ainsworth et al., 2014), drought (e.g., Xu & Baldocchi, 2003) and 
climatic extremes (Weston & Bauerle, 2007).

Even in the absence of stress, Vcmax is known to display significant 
variation across species, seasons, functional groups and climates 
(Dillaway & Kruger, 2010; Kattge & Knorr, 2007; Sage, Way, & Kubien, 
2008; Wullschleger, 1993; Wilson, Baldocchi, & Hanson, 2000). Inaccu­
rate characterization of this variation limits the direct use of leaf-level 
Vcmax in modeling and other applications. One important source of 
Vcmax variation is leaf temperature (Leuning, 2002; Kattge & Knorr, 
2007; Medlyn, Dreyer, Ellsworth, et al., 2002a). Specifically, Vcmax ex­
hibits an exponential sensitivity to temperature that is typically quanti­
fied in terms of activation energy (EV), derived from the Arrhenius 
equation (e.g., Hikosaka, Ishikawa, Borjigidai, Muller, & Onoda, 2006; 
Leuning, 2002). As with Vcmax, EV has been shown to vary substantially 
across plant functional types (Dillaway & Kruger, 2010; Kattge & Knorr, 
2007; Sage et al., 2008). Presently, however, there is no compelling em­
pirical or theoretical model to account for this observed variation 
(Hikosaka et al., 2006; Sage et al., 2008), and EV therefore requires ex­
plicit parameterization within models for each PFT from the limited ob­
servations available.

Recent work (Ainsworth et al., 2014; Dillen, Op de Beeck, Hufkens, 
Buonanduci, & Phillips, 2012; Doughty et al., 2011; Serbin et al., 2012) 
highlighted that reflectance spectroscopy can be used to estimate leaf- 
level Vcmax. Importantly, Serbin et al. (2012) also showed that the spec­
troscopic approach could characterize variation in Vcmax related to 
growth environment (e.g., temperature) more effectively than the sim­
ple physiological scaling with leaf nitrogen concentration (%N), leaf 
mass per area (LMA), or the combination of the two (Narea, g m-2; 
Domingues et al., 2010; Kattge, Knorr, Raddatz, & Wirth, 2009; 
Niinemets, Cescatti, Rodeghiero, & Tosens, 2006). The findings by 
Serbin et al. (2012) provide the potential for real-time regional 
monitoring of photosynthetic metabolism through the use of portable 
spectrometers as well as imaging spectrometers like the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS; Green, Eastwood, 
Sarture, et al., 1998). NASA's proposed satellite-borne Hyperspectral 
Infrared Imager (HyspIRI, Roberts, Quattrochi, Hulley, Hook, & 
Green, 2012) — a two-sensor system with a 400-2500 nm imaging 
spectrometer plus a multi-spectral thermal instrument — would 
provide regular (19 day return interval) and global scale monitoring 
of these important time- and space-varying traits. Incorporation of 
such spatially and temporally rich datasets, in model initialization, 
parameterization, and evaluation of prognostic model outputs, could 
significantly improve the ability of EESMs to project vegetation carbon 
uptake and storage.

In this study, we evaluated the ability of imaging spectroscopy data 
from AVIRIS-Classic (Green et al., 1998; referred to as AVIRIS from this 
point forward) to estimate Vcmax, as well as its temperature sensitivity, 
EV, in managed crop canopies. In 2013 and 2014, high-altitude AVIRIS 
imagery and contemporaneous ground-based assessments of leaf 
photosynthesis were acquired on multiple dates across a diverse set of 
monospecific agroecosystems in central and southern California, USA. 
Partial least-squares regression (PLSR) modeling was employed to 
predict Vcmax (at a standardized canopy temperature of 30 °C) and EV 

from field measurements, estimates of canopy cover and 414­
2447 nm AVIRIS spectra. We estimated error and uncertainty through 
split-sample cross-validation of 500 permutations of the data (Singh 
et al., in press). To further assess the credibility and applicability 
of the resulting algorithms, we applied the models to additional 
AVIRIS images in agricultural areas of California to map Vcmax 

and EV, as well as their uncertainties, to examine whether the 
predictions fell within the range of expectations and produced coherent 
maps.

2. Methods

2.1. Description of vegetation sampling sites

This research was conducted during spring (March-April) and early 
summer (June) in 2013 and 2014. Our study region consisted of the 
complex agricultural matrix of the Imperial and San Joaquin Valleys of 
California (Fig. 1). Within this area, a number of economically important 
food crops are grown for domestic consumption and export. Given the 
global importance of this food-producing region, better approaches for 
monitoring crop health and status are critical in the face of continued 
global climate change and population growth (Ainsworth, Rogers, & 
Leakey, 2008).

Our sampling sites (Fig. 1) were located at three University of 
California agricultural research stations (Table 1). These stations fell 
within the footprint of NASA's HyspIRI prototyping airborne campaign 
in which more than 25% of California was imaged at three time points 
in each year of the study. At each site, we selected irrigated, monospecific 
C3 agroecosystems that were large enough to contain multiple 18 m 
AVIRIS pixels. Over two years, we sampled a total of 9 different crop 
species in 13 different agroecosystems, across four measurement 
campaigns. As a result, we obtained field data aligned with six AVIRIS 
images throughout our study period (Table 1).

2.2. Field data

Vegetation cover and physiological traits were generally collected 
within one week of AVIRIS overflights in the spring and early summer 
of 2013 and 2014. In cases with longer intervals between ground- 
based campaigns and overflights, we ensured that the following 
conditions were met: 1) the vegetation was mature (i.e. at peak 
biomass) at both the time of sampling and overflight, and 2) there 
was no obvious trend in either temperature or precipitation over the 
period between sampling and overflights that might have significantly 
altered vegetation structure or physiology. Moreover, this timeframe 
did not span any seasonal transitions. Because these agroecosystems 
were irrigated, delays between measurements and overflights likely 
had less of an impact on the ability to accurately characterize physiolog­
ical functioning (i.e. compared to natural vegetation in water-limited 
environments).

2.2.1. Ground-based measures of vegetation cover
At different sampling locations within each agroecosystem, we mea­

sured percent canopy cover and leaf area index (LAI) using a point- 
intercept method (Wilson, 2011). For taller canopies, we used the “rods 
as points” method, moving a fine diameter pole through the canopy. For 
shorter-stature vegetation, we utilized a traditional approach of dropping 
the rod into the canopy from above (Wilson, 2011). For taller orchard 
sites, we also used a densitometer to provide an additional estimate of 
canopy cover. Point intercept measurements were made at 1 m incre­
ments on two crossing, 30 m transects stretched at a random angle across 
the ecosystem. All sample locations were recorded using GPS.

2.2.2. Measurement ofVcmax and EV at the leaflevel
We measured leaf gas exchange on the target species in each of the 

13 agroecosystems (Table 1) using a LI-6400 portable photosynthesis 
system combined with the 6400-40 leaf chamber fluorometer (Li-Cor 
Biosciences, Lincoln, NE, USA). At representative plots distributed 
within each site, we measured gas exchange on attached, mature, sunlit 
foliage located in the upper third of the vegetation canopy. For taller 
orchard trees, we utilized tall tripods or platforms to reach the upper 
third of the canopies. Leaves were measured under high light intensities 
(photosynthetic photon flux = 2000 pmol m-2 s-1, provided by a 
red-blue LED array) at a cuvette CO2 partial pressure (pCO2) ranging 
from 7.5 to 25 Pa. At a particular cuvette reference pCO2, which was 
controlled using the LI-6400 CO2 injector system, leaves were allowed
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Fig. 1. Study area map. Location of agricultural sampling locations in California indicated 
by triangle symbols. KARE = Kearney Agricultural Extension and Research Center, Parlier, 
CA; SCREC = South Coast Research and Extension Center, Irvine, CA; CVARS = Coachella 
Valley Agricultural Research Station, Thermal, CA.

to acclimate for 2-10 min prior to measurement. We monitored, but did 
not control, vapor pressure deficit (VPD) between leaf and air in the 
cuvette, which ranged from 1.4 to 2.1 kPa.

Characterization of EV, the temperature response of Vcmax, 
requires data to model leaf photosynthetic pCO2 responses across 
the range of temperatures experienced by a plant at a location. We 
thus made measurements to calculate Vcmax at three reference 
cuvette temperatures (e.g., 20, 28 and 35 °C). The intent of this 
protocol was to generate photosynthetic pCO2 responses across a leaf 
temperature range of at least 10 °C, which facilitated an accurate 
estimate of EV (e.g. Medlyn, Loustau, & Delzon, 2002b). This approach 
allowed us to estimate Vcmax at a range of canopy temperatures 
that encompassed those observed during the time of AVIRIS overflights. 
At a given leaf temperature, the observed relationship between

photosynthesis (A) and intercellular pCO2 (Ci) was used to estimate 
Vcmax, employing a trend-fitting method that minimized the total 
sums of squares for differences between observed versus predicted A 
(Long & Bernacchi, 2003). Estimates incorporated Michaelis-Menten 
constants for CO2 (Kc) and oxygen (Ko), as well as photosynthetic 
compensation pCO2 (r*), derived using formulae from Long and 
Bernacchi (2003). Finally, our approach did not account for the 
influence of mesophyll conductance on CO2 diffusion into the chloro- 
plast (Dillaway & Kruger, 2010), thus our reported Vcmax values are 
“apparent” (Bernacchi et al., 2013) and based on Ci as opposed to 
chloroplastic pCO2 (Cc).

For each monospecific agroecosystem, EV was modeled based on 
data pooled across all sampled leaves and cuvette temperatures. Since 
the observed temperature response of Vcmax was exponential in all 
cases, EV was modeled using an Arrhenius equation (Dillaway & 
Kruger, 2010; Hikosaka et al., 2006; Medlyn, Dreyer, et al., 2002a; 
Serbin et al., 2012). The resulting models produced unbiased estimates 
of Vcmax for all target species and measurement dates. Namely, the 
slopes and intercepts of relationships between observed and predicted 
Vcmax did not differ significantly from 1 and 0, respectively (data not 
shown).

2.3. Image data and processing

AVIRIS images covering sites of our ground-based measures of 
canopy structure and leaf gas exchange were acquired from NASA's 
ER-2 aircraft flown at approximately 20 km altitude. The 18 m-pixel 
images were radiometrically calibrated to surface reflectance by NASA 
Jet Propulsion Laboratory using the modified ATREM atmospheric 
correction described by Thompson et al. (2015).For all ensuing analyses, 
we omitted the atmospheric water absorption bands (1313-1453 nm 
and 1782-2018 nm), as well as the five shortest and longest wavebands, 
which exhibited unacceptable levels of noise. Our analyses used 172 of 
the 224 channels of AVIRIS data over the 414-2447 nm range. Locations 
of ground measurements were identified within AVIRIS images using 
GPS data, and spectra were extracted only from pixels that fell entirely 
within the target agroecosystems. The total sample size for our analysis 
was 72.

AVIRIS imagery can exhibit between- and within-scene variations in 
brightness due to topography and bidirectional reflectance effects 
resulting from varying earth-sun-sensor geometry. We performed a 
brightness correction across all pixels on all images, following 
Feilhauer, Asner, Martin, and Schmidtlein (2010), to normalize 
between- and within-scene brightness offsets. This method preserves 
the overall shape of spectral vectors for individual pixels while removing 
whole-scene systematic brightness offsets.

We extracted brightness-normalized reflectance spectra for ground 
locations in which Vc30, EV and vegetation cover measurements

Table 1
All agroecosystems sampled in 2013 and 2014 were located on University of California research stations: Coachella Valley Agricultural Research Station (CVARS), Kearney Agricultural 
Research & Extension Center (KARE), South Coast Research & Extension Center (SCREC). Here we provide means (± standard deviation) for Vcmax at 30 °C (Vc30) and Ev based on leaf 
gas exchange measurements. We also provide the number of pixels extracted from a particular agroecosystem for AVIRIS image analysis.

Species Location Measurement date Image date Vc30 ± Std Dev Ev ± Std Dev Number of pixels

Avocado SCREC 3/22/13 4/19/13 124.4 ± 5.4 67.4 ± 8.5 2
Grape CVARS 6/7/13 5/22/13 111.5±11.7 62.7 ± 11.8 5
Lemon CVARS 4/17/14 4/14/14 83.1 ± 5.2 103.7 ± 14.2 2
Oat (mature) KARE 4/10/14 4/7/14 219.7±10.1 86.0 ± 9.0 5
Oat (young) KARE 4/11/14 4/7/14 190.9±9.4 75.9 ± 9.2 4
Palm CVARS 4/16/14 4/14/14 83.1 ± 5.2 103.7 ± 14.2 4
Palm CVARS 6/5/14 6/13/14 93.1 ± 17.9 88.2 ± 17.9 5
Peach KARE 4/9/14 4/7/14 176.2±12.8 67.2 ± 12.1 5
Pistachio KARE 6/26/13 5/03/13 234.9 ± 15.3 79.2 ± 6.3 5
Pomegranate KARE 4/12/14 4/7/14 112.4 ± 5.5 105.1 ± 14.4 4
Red pepper CVARS 6/5/13 5/22/13 216.3±7.5 71.9±7.1 10
Red pepper CVARS 4/15/14 4/14/14 174.1 ± 5.9 78.0 ± 4.1 10
Red pepper CVARS 6/6/14 6/13/14 123.8 ± 5.9 78.0 ± 4.1 9
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had been acquired. The parameters Vc30 and EV refer to the metabolic 
capacity of vegetation within these pixels, but the pixels themselves 
include both vegetation and soil. From a pixel-based perspective, the 
Vc30 (or EV) that is “seen” in a pixel is for the top layer of leaves within 
that pixel, namely the foliage that is exposed to the sensor. Areas with 
no vegetation cover (i.e. exposed bare soil) have no Vc30 or EV. Since 
every pixel is mixed, we consequently must distinguish the Vc30 and 
EV of the vegetation canopy surface within a given pixel from the Vc30 

and EV of the pixel itself, referring to the latter as Vc30,pixei and Ev,pixei. 
For analysis, we modified ground-based measurements of Vc30 and Ev 

by fractional vegetation cover as:

1) Vc30,pixel = Vc30 * fractional cover;
2) EV,pixel = EV * fractional cover.

To map Vc30,pixel and EV,pixel, we needed accurate pixel-level 
estimates of fractional vegetation cover across several scenes. We used 
our vegetation sampling data as well as cover estimates derived from 
high-resolution Google Earth images (sourced variously January-May, 
2015; original image source: Digital Globe) to estimate cover as a func­
tion of the AVIRIS imagery. We randomly selected ~300 locations in 
each of the six AVIRIS images and overlaid a 7 x 7 sampling grid (3 m 
spacing) on high-resolution Google Earth imagery (dated within 
5 days of AVIRIS overflights). We visually interpreted each of the 49 
grid intersections as green vegetation, shadow, non-photosynthetic 
vegetation, bare soil/rock or other. We extracted the 49 spectra each 
from these 300 sampling locations, averaged ones that were maximally 
represented in each class at each sampling grid (>95% grid intersections 
of the class), and used them as ‘pure’ endmembers to generate maps 
of spectral angles (Kruse et al., 1993) using the spectral angle mapper 
utility in ENVI (v. 4.8, Exelis, McLean, VA).

To estimate fractional vegetation cover, we tested various combina­
tions of inputs (i.e. soil, green vegetation, shadow spectral angles) in a 
logistic regression framework. The most parsimonious model utilized 
only soil spectral angles and was able to explain over 90% of the 
variation in measured canopy cover (Fig. S1). The models involved 
500 permutations of the data with a 75%/25% split for calibration and 
validation. We mapped fractional cover as the median response of the 
500 permutations, and mapped the uncertainty in those estimates as 
the standard deviation of all permutations. This method for mapping a 
trait and its uncertainty, which is outlined in Singh et al. (in press), 
allowed us to account for error in our mapping and modeling, spatially, 
while performing error propagation as we integrated data for mapping 
our ultimate response variables, Vc30,pixel and EV,pixel.

2.4. Estimation ofVc30pixel and Ev,pixei with their uncertainties

We used the empirical partial least square regression (PLSR, see 
Geladi & Kowalski, 1986; Wold, Ruhe, Wold, & Dunn, 1984; Wold, 
Sjostrom, & Eriksson, 2001) modeling approach to build the relation­
ships between Vc30,pixel and EV,pixel and AVIRIS reflectance spectra. Our 
application of PLSR is described in detail by Singh et al. (in press), 
with other uses in imaging spectroscopy covered by a range of authors 
(e.g., Asner, Martin, Anderson, & Knapp, 2015; Dahlin, Asner, & Field, 
2013; Martin, Plourde, Ollinger, Smith, & McNeil, 2008). Briefly, PLSR 
iteratively transforms predictor (here: brightness-normalized spectra) 
and response variables (either Vc30,pixel or EV,pixel) to identify latent 
vectors and generate bandwise calibration factors used to create a 
predictive linear model. PLSR works to maximize covariance between 
independent and dependent variables, while maintaining orthogonality 
in the factors derived from spectra. PLSR is preferable to methods 
such as stepwise regression that yield spurious relationships or poor 
validation due to overfitting (Grossman et al., 1996). We implemented 
500 permutations of the PLSR analysis, with 25% of the data in each 
permutation randomly assigned to validation and the remaining 75% 
to calibration. For each permutation of the model, we perturbed the 
response variable (Vc30,pixel, EV,pixel), within 95% of its respective error

estimate, weighted this new estimate with a perturbed estimate of the 
vegetation fraction (obtained by a similarly randomized cover fraction 
model), and refit the PLSR model. This approach enabled us to propa­
gate errors from every preceding step of our analyses. Thus, we report 
the model coefficients of the 500 randomized (and perturbed) models 
as jackknifed 95% confidence intervals. From this analysis, we also 
report the median R2 obtained by applying coefficients from the 500 
models to image spectra, as well as the validation R2 of the 500 sets of 
withheld data. Additionally, we report the root mean square errors 
(RMSE) of each model fit statistic, as well as the RMSE as a proportion 
of the range of data.

We plot standardized PLSR coefficients and the Variable Importance 
of Projection statistic (VIP, Wold, 1994) to identify the direction of effect 
by wavelength (standardized coefficients) and relative importance 
(VIP) of different wavelengths to the PLSR predictions (e.g. Serbin, 
Singh, McNeil, Kingdon, & Townsend, 2014). The mean coefficients 
and variability in those coefficients across the 500 permutations 
facilitate interpretation of the PLSR results with respect to known spec­
tral associations at different wavelengths. We report the standardized 
coefficients (Fig. 3), as opposed to raw coefficients, to facilitate the 
comparison of the relative contribution to the PLSR across wavelengths; 
this was necessitated by the variability in average vegetation reflectance 
in different spectral ranges, e.g., with the visible being dark and having 
low average reflectance and the NIR comparatively bright. However, we 
utilized the raw coefficients with the brightness-normalized imagery 
for generating the maps of Vc30,pixel and Ey^el.

2.5. Mapping Vc3o,pbei and Ev^i

We mapped Vc30,pixel and EV,pixel as the mean of predictions obtained 
by applying the full set of 500 randomly permuted PLSR coefficients on 
each AVIRIS image on a pixel-wise basis. Uncertainties are presented 
here as the standard deviations of the 500 predictions. Higher uncer­
tainties indicate conditions that fall increasingly outside the realm of 
our measurements.

3. Results

Across agroecosystems in this study, the ground-based, leaf-level 
estimates of Vc30 and EV displayed a variation of 2.8 fold (83­
234 pmol m-2 s-1) and 1.7 fold (62-105 kJ mol-1 K-1), respectively 
(Table 1). Our observations of fractional vegetation cover ranged from 
0.04 to 0.94, with the lowest in areas of exposed soil or sand and the 
highest corresponding to areas with the greatest cover of different 
crop types. To derive our Vc30,pixel from the measured Vc30, a logistic 
model was used to estimate per-pixel vegetation cover. The resulting 
model displayed generally good results for unmixing, with a validation- 
R2 = 0.92 and a RMSE = 10% (cross-validated on withheld data) of the 
range in fractional cover (results and model coefficients shown in 
Supplemental Fig. S1). The resulting Vc30 adjusted by observed canopy 
cover (Vc30,pixel, downweighted to account for exposed soil fraction) 
ranged from 16 to 212 pmol m-2 (ground area) s-1. We followed the 
same approach to derive EV,pixel from EV, with a resulting EV,pixel range 
from 15 to 82 kJ mol-1 K-1.

Cross-validation from the PLSR modeling indicated that 94% of the 
variation in Vc30,pixel and 92% of the variation in EV,pixel were explained 
by algorithms derived from AVIRIS spectra (Table 2, Fig. 2). Moreover, 
AVIRIS-based PLSR models for Vc30,pixel and EV,pixel were reasonably pre­
cise and parsimonious, as their root mean square errors were roughly 
6% of the dependent variable data range (RMSE = 11.6 ^mol m-2 s-1 

for Vc30,pixel, and 4.4 kJ mol-1 K-1 for EV,pixel, Fig. 2), and they required 
only three and seven latent components, respectively, to achieve this 
predictive capability.

We analyzed the standardized PLSR coefficients and VIP statistics to 
assess possible relationships between canopy spectra and our measures 
of leaf physiology (Fig. 3). The analyses revealed that the Vc30,pixel and
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Ev.pixei models generally utilized all regions of the electromagnetic spec­
trum, but with key differences in important wavelengths as well as the 
direction (i.e. the sign) of the PLSR standardized coefficients. For exam­
ple, shortwave infrared (SWIR, > 1300 nm) reflectance was important to 
the estimation of both parameters, while visible (400-700 nm) and 
Near-infrared (NIR) wavelengths (1150-1300 nm) were especially in­
fluential in the Vc3o,pixel model. On the other hand the 1000-1150 nm 
and SWIR wavelengths around 1500-1700 nm appeared to be more im­
portant for the Ev,pixel model. Notably, relationships with physiological 
parameters are suggested by the PLSR coefficients and VIPs in the far- 
red region for both models. In the Vc30,pixel model, a strong local peak 
in standardized coefficient and VIP values occurred at 743 nm. In the 
EV,pixel model, a large negative coefficient coincided with a high VIP at 
a slightly shorter wavelength at the red-edge (~724 nm). The VIP statis­
tics indicate that, for the most part, the entire spectral range (especially 
the SWIR) is important to the prediction of Vc30,pixel and EV,pixel.

To further evaluate the credibility and general applicability of our 
Vc30,pixel and EV,pixel models, we made maps using the full suite of 
HyspIRI campaign AVIRIS images for our study region (Fig. 1), as 
illustrated for two 25-km2 agricultural mosaics in central and southern 
California (Fig. 4). The resulting maps of Vc30,pixel and EV,pixel 

estimates—when compared with AVIRIS false-color composites, our 
mapped fractional vegetation cover and NLCD land cover maps—show 
a broad range of spatiotemporal variation and are consistent with 
cover-weighted conversions of our canopy estimates. Of note, the 
resulting maps show marked variation in Vc30,pixel and EV,pixel (and frac­
tional cover), and the absence of any consistent relationship between 
canopy surface Vc30 and EV (Table 1). Uncertainty maps for Vc30,pixel 

and EV,pixel and fractional cover illustrate locations where the predictive 
equations likely yield the greatest errors. Areas of high uncertainties 
occur largely near field edges and areas of vegetation cover <30%. 
Spatial variations in uncertainty rarely exceeded 10% of the range of 
the input data.

4. Discussion

Results of this study provide evidence that the PLSR-based spectro­
scopic approach for estimating Vcmax proposed by Serbin et al. (2012), 
and supported by Dillen et al. (2012) and Ainsworth et al. (2014), can 
be scaled from the leaf to the landscape scale. Moreover, this work 
suggests that this approach can effectively produce spatially and tempo­
rally rich and coherent maps of photosynthetic variation across a fairly 
diverse array of C3 agronomic plant taxa. Moreover, the current work 
points to the ability to remotely sense spatial variation in EV, the 
temperature sensitivity of Vcmax. This is critically important because, 
when leaf temperature varies temporally or spatially by more than a 
few °C, the magnitude of error resulting from uncertainty in EV can 
match or exceed that stemming from uncertainty in temperature- 
normalized Vcmax. The ability to map EV provides a basis to characterize 
the acclimation of photosynthesis through space and time, e.g. with 
respect to changing environmental conditions or across gradients, 
such as those in elevation, nutrient availability, or disturbance legacies.

Despite differences in the scale of inquiry (leaf spectroscopy vs. 
canopy/image), our findings share broad similarities with those of 
Serbin et al. (2012) and Ainsworth et al. (2014). For instance, in both 
leaf-level studies and this work, the PLSR coefficients and VIP statistics 
across wavelengths are consistent with our current understanding of 
how vegetation optical properties relate to foliar biochemistry and

Table 2
Results of the PLSR modeling and cross-validation for Ev,pixel and Vc30,pixel.

Property Number of PLSR Calibration Validation Model-averaged
components

R2 RMSE R2 RMSE R2 RMSE

Ev,pixel 3 0.93 4.14 0.90 5.02 0.92 4.38
Vc30,pixel 7 0.95 10.35 0.90 14.87 0.94 11.54

c30,pixel

CL) 150

_Q 100

R2 =0.94 
RMSE = 11.56

R2 =0.92 
RMSE =4.38 "

Predicted
O CVARS-Lemon □ KARE-Peach □ KARE-Pomegranate
O CVARS-Palm • CVARS-Grape <> SCREC-Avocado
■ KARE-Pistachio □ KARE-Oat O CVARS-Red pepper

Fig. 2. Observed vs. predicted values for the 500 PLSR permutations to predict Vc30,pixel 
(top, units pmol [m-2 ground area] s-1) and Ev,pixel (bottom, units kJ mol-1 K-1). 
Cross-validation results are for the 25% of the data withheld from each of the 500 
permutations, with error bars in the x-axis direction showing the range of prediction 
estimates for each data point across the 500 permutations, and error bars in the y-direction 
showing the range of the parameter estimate derived from the field data based on deriva­
tion of Vc30 following Long and Bernacchi (2003) and Ev using the Arrhenius equation. In 
each panel, the red dashed line represents the relationship between observed and predicted 
values, while the solid black line represents to the 1:1 line. For both Vc30,pixel and Ev,pixel, the 
slope and intercept of this trend did not differ significantly from 1 and 0, respectively. (For 
interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

physiology. Here, Vc30 and EV both appear to have strong relationships 
with reflectance at the red-edge (704 and 724 nm respectively), as 
does Vc30 at 740-743 nm. The negative relationship of Vc30 with the 
red-edge region points to the well-understood phenomenon that, 
compared to less vigorous vegetation, healthy green vegetation absorbs 
radiation at longer red wavelengths. This suggests that the red edge 
extends further into far-red wavelengths with increasing Vcmax, as 
indicated by Dillen et al. (2012). The positive relationship between 
Vc30 and reflectance around 743 nm is particularly intriguing, as this 
could indicate an association with chlorophyll fluorescence, which 
under ambient conditions would be expected to increase with higher 
photosynthetic capacity (Zhang et al., 2014). This relationship is 
speculative and requires further study, but may be relevant to current 
research on the use of solar-induced chlorophyll fluorescence (SIF) 
in the far-red region to characterize photosynthetic metabolism 
(Campbell, Middleton, Corp, & Kim, 2008; Guanter et al., 2014; Joiner,
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Fig. 3. Standardized PLSR coefficients (top) and Variable Importance of Projection (VIP, Wold, 1994) by wavelength to predict V^pixei and EViPixei. Gaps indicate atmospheric water 
absorption bands deleted from the statistical analyses. Solid lines indicate coefficients or VIP values of the mean model of the 500 permutations for each parameter, while the 
shaded areas indicate the 5% and 95% bounds of all 500 permutations. For standardized coefficients, shaded areas at wavelengths that bound zero indicate comparatively lower statistical 
contribution to the prediction for those wavelengths. Following Wold (1994), VIP values > 0.8 (solid horizontal black line) indicate high importance to the PLSR model.

Yoshida, Vasilkov, Corp, & Middleton, 2011; Rascher et al., 2009; Zhang 
etal., 2014).

Examining the patterns in Fig. 3 yields additional insights into the 
relationship between optical properties and photosynthetic functioning. 
For example, the strongly negative relationship of EV to red-edge reflec­
tance suggests that photosynthetic metabolism becomes less sensitive 
to temperature as vegetation vigor decreases and red-edge shifts to 
shorter wavelengths. Since higher EV for a plant means a more rapid 
increase in photosynthetic capacity as leaf temperature rises, a shift in 
red-edge to higher wavelengths corresponds with greater capacity to 
respond photosynthetically to increased temperatures.

Some of the specific wavelength regions that we found to be related 
to these physiological parameters correspond to regions also found to 
be important to biochemical and structural foliar traits (e.g., Singh 
et al., in press) known to influence photosynthetic mechanism. The 
shape and direction of our standardized coefficients for Vc30 generally 
track those of %N in the SWIR reported by Singh et al. (in press), 
especially in the shorter SWIR wavelengths (1463-1772 nm), with par­
ticular emphasis on a feature at 1722-1732 nm that has been identified 
as important in other studies (e.g., Martin et al., 2008; Serbin et al., 2012, 
2014). The general importance of SWIR wavelengths to the estimation 
of key physiological traits in previous studies (Ainsworth et al., 2014; 
Serbin et al., 2012) is consistent with our mapping of Vc30 shown here 
(e.g., Fig. 3 here, Fig. 4 in Serbin et al., 2012).

Coordination in leaf properties (Wright et al., 2004) and metabolic 
biochemistry (Curran, 1989; Elvidge, 1990;Serbin et al., 2012, 2014) 
also supports a mechanistic interpretation of our derived relationships 
for Vc30. For example, specific leaf area (or its inverse, leaf mass per 
area, LMA) and nitrogen concentration (%N) together broadly correlate 
with Vcmax (Kattge et al., 2009; Niinemets et al., 2006; Serbin et al., 
2012). Higher %N can be interpreted as conferring a greater photosyn­
thetic capacity due to its importance as a component of the enzyme 
rubisco, while lower LMA (thinner leaves) corresponds to greater leaf 
investment in photosynthetic productivity relative to leaf longevity 
(Wright et al., 2004). The VIP and standardized coefficients we report 
(Fig. 3) identify wavelength regions that Singh et al. (in press) also 
showed as important to mapping %N and LMA using comparable 
AVIRIS data. For example, Singh et al. (in press) demonstrated a strong 
negative relationship with %N at the red-edge (Singh et al., in press, 
Figs. 5 and 6). Similarly, high VIP and standardized coefficients for %N 
and LMA around 1158-1168 nm correspond to important wavelengths 
identified here (Fig. 3).

Whereas our ability to map Vc3o is partly a function of its relationship 
to LMA and %N, which are mappable using imaging spectroscopy (Singh 
et al., in press), the potential to map EV has no demonstrated mechanis­
tic basis or empirical link with other leaf traits (Dillaway & Kruger, 
2010). As a consequence, relationships between reflectance and EV are 
more difficult to interpret. While correlations between EV and red-

Fig. 4. Maps derived from the analyses for three images in 2013, showing Kearney (KARE, image date 12 June) and two dates at Coachella Valley (CVARS, image dates 19 April and 24 
September). Left column shows false color AVIRIS image for each date and NLCD land cover, followed by Vc30,pixel, Ev,pixel and fractional canopy cover. Rows are labeled either “Mean” 
for the mean parameter prediction of the 500 permutations or “S.D.” for the uncertainty of the prediction, expressed as the standard deviation of the 500 permutations. Dark blue areas 
in the Vc30,pixel, Ev,pixel and canopy cover maps (far right, fourth column) have zero vegetation cover, but are not masked; however for clarity, these areas are masked out to white in the 
Vc30,pixel and Ev,pixel uncertainty maps because these areas would not be expected to exhibit any photosynthetic metabolism due to the absence of vegetation. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
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edge position lend themselves to broad inference, other relationships 
clearly suggest the need for new, targeted studies. For example, the 
importance of the SWIR wavelengths matches our general expectations 
based on previous work (e.g. Ainsworth et al., 2014; Doughty, Asner, & 
Martin, 2011; Serbin et al., 2012), but the generally negative standard­
ized coefficients for SWIR wavebands differs from the relationships 
with Vc3o (this study) and %N (Singh et al., in press).

We believe that the work summarized in this study represents a 
significant step in the development of a unique remote-sensing capability, 
but it also contains a few important caveats. Specifically, the spectral 
response of a vegetated pixel is a function not just of plant tissue optical 
properties (i.e., chemistry, intercellular structure and physiology), but 
also vegetation water content, leaf area index and morphology, canopy 
structure, species composition, phenology and pixel soil properties. The 
effects of these contributors to vegetation spectra also vary across the 
electromagnetic spectrum, as, for example, canopy structure has a 
very strong effect in the NIR compared to other wavelengths. Thus, we 
acknowledge that the inference space of our study is confined to 
comparatively simple, monospecific agroecosystems comprising C3 

broadleaf species. In addition to lacking some of the challenges brought 
about by canopy structural complexity (e.g., Knyazkhin et al., 2013), 
these ecosystems are managed to minimize biotic and abiotic stresses 
(e.g., insect and pathogen damage, drought, nutrient deficiencies) that 
might otherwise confound the interpretation of reflectance spectra 
(e.g., Close & Beadle, 2003; Stone, Chisholm, & Coops, 2001). Accordingly, 
our next goal is to broaden the analysis by including data collected in 
2013-14 from natural ecosystems arrayed along pronounced elevation 
and climatic gradients, namely desert, pinyon-juniper, coastal sage, 
oak-pine savanna, and low-, mid- and high-elevation, conifer- 
dominated forest. Notably, all of these compositionally and structurally 
complex ecosystems had been subjected to protracted drought stress 
at the time of our sampling campaigns. Moreover, we are continuing to 
explore and contrast the role of biochemistry and leaf morphology and 
spectra in the ability to capture variation in Vcmax.

In our work, Vc30 and EV were scaled to the pixel level by proportion­
ally modifying our estimates of these parameters using fractional 
vegetation cover (i.e., they are cover invariant). As such, our maps 
(Fig. 4) may show differences in pixel-level Vc30 or EV that, in fact, 
correspond to similar values of canopy-level Vc30 and EV once fractional 
vegetation cover is divided out of the estimate. Our results, and in 
particular the relationships between standardized coefficients/VIP and 
the physiological parameters that we interpret from Fig. 3, should thus 
be viewed with the caveat that the soil signal is an inherent component 
or source of uncertainty of the predictive equation (i.e. higher 
uncertainties in low-cover areas). On this point, we note that the PLSR 
method is well suited for our application because it is designed to 
handle noise in the predictor matrix (spectral observations) that is 
unrelated to the dependent trait of interest (Wold et al., 2001). Because 
leaf-level estimates of Vc30 and EV are of greater utility for modeling 
applications, these values can be retrieved using maps of proportional 
vegetation cover that we also demonstrate can be efficiently derived 
from hyperspectral imagery.

Our ability to map pixel-level Vc30 and EV—as well all as their 
uncertainties—represents a potentially important capacity to analyze 
spatial (and temporal) patterns of photosynthetic metabolism across 
landscapes using remote sensing. Importantly, this approach may 
allow us to step away from relying on mapping the determinants of 
photosynthetic capacity (e.g., %N and LMA) to mapping actual physio­
logical parameters of interest, thus greatly reducing the dependence 
on ecological or physiological scaling functions. This capability would 
enable many opportunities for using imagery to test hypotheses about 
the fundamental controls and constraints on the spatial variation in 
photosynthetic processes. In addition, it would open up the potential 
for more explicit parameterization of EESMs. The potential to map EV 

could also enable the prediction of dynamic or acclimatory responses 
of photosynthesis that are less tractable using the relationships between

biochemistry and physiology (Kattge etal., 2009). Finally, the novelty of 
our findings and the as yet unknown mechanisms underlying our PLSR 
mapping results for EV opens new opportunities to explore relationships 
among leaf optics, physiology and photosynthetic acclimation.

The patterns shown in Fig. 4 illustrate a number of important points, 
namely that Vc30 and EV do not fully track each other, and that these 
parameters can differ within agroecosystems and through time. We 
feel reasonably confident in our estimates, because areas with low 
vegetation cover (e.g., bare fields and the adjacent desert in CVARS) 
were predicted by the PLSR equations to have Vc30 and EV estimates 
close to zero (Fig. 4). This suggests that the PLSR models and AVIRIS 
spectra do capture inherent properties of vegetation physiology and 
biochemistry, since areas with no vegetation would not be expected to 
exhibit physiological capacity. Our use of uncertainty maps (Fig. 4) 
also illustrates the domain of our interpretations. Areas of vegetation 
mapped with higher uncertainties indicate those locations where the 
AVIRIS-retrieved spectra deviate from the domain of measurement in 
the field, either in terms of the physiological parameters Vc30 and EV, 
vegetation cover, or, potentially, the crop species. We believe the utility 
of our PLSR models will be enhanced when a more diverse range of spe­
cies (both crops and natural vegetation) is included in expanded 
analyses.

Finally, we should note that the present study does not utilize avail­
able data on pixel surface temperature acquired simultaneously with 
AVIRIS imagery using the MODIS/ASTER airborne simulator (MASTER). 
These data provide an opportunity to estimate canopy surface temper­
ature, which could then be readily combined with simultaneous 
estimates of canopy Vc30 and EV to characterize spatial and temporal 
dynamics in Vcmax under ambient environmental conditions. It is 
important to emphasize that knowledge of Vc30 (i.e., Vcmax at 30 °C leaf 
temperature) and EV (the temperature sensitivity of Vcmax) facilitates 
estimation of Vcmax at any leaf temperature; leaf or canopy surface 
temperatures can potentially be derived from thermal IR imagery, 
suggesting that concurrent hyperspectral and thermal IR imagery may 
offer a tremendous opportunity to capture both vegetation metabolic 
capacity and instantaneous vegetation metabolism. Ultimately, with 
an expanded data set across a larger diversity of plant species and 
sites, we will be able to explore the capacity to remotely characterize 
Vcmax and its temperature sensitivity for the entire canopy, rather than 
just its surface, using radiative transfer models (e.g., Zhang et al., 2014).

5. Conclusion

Our proposed method for predicting canopy surface Vcmax and its 
temperature sensitivity (EV) complements, rather than supplants, the 
existing suite of approaches that employ remote sensing to characterize 
various aspects of canopy photosynthetic performance (e.g., Anderson 
et al., 2008; Carter, 1998; Gamon, Serrano, & Surfus, 1997; Grace et al., 
2007; Hilker et al., 2008; Sims, Rahman, Cordova, et al., 2008; Zarco- 
Tejada, Pushnik, Dobrowski, & Ustin, 2003). Indeed, ours is one of 
several emerging strategies that use remotely sensed data to address 
current difficulties in accurately characterizing Vcmax variation at 
broad spatiotemporal scales (e.g., Zhang et al., 2014; Zhou et al., 
2014). The work presented here was conducted in agricultural land­
scapes, and we can readily envision the potential of our method to 
improve yield forecasting and facilitate real-time monitoring of crop 
physiological status. On the whole, though restricted to broadleaf 
agricultural crops in terms of inference space, our findings point to the 
considerable promise of airborne and, by implication, space-borne 
imaging spectroscopy from the proposed HyspIRI mission as a tool to 
accurately estimate a key driver of canopy photosynthetic metabolism, 
and its sensitivity to climate variation, in terrestrial vegetation. Our 
results suggest that a global imaging spectrometer such as HyspIRI 
would offer the opportunity to characterize variations in photosynthetic 
capacity in space and time and learn how that capacity changes with 
environment. The specific prospect for agricultural monitoring and
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management in response to environmental drivers is considerable, 
and—if transferrable to other ecosystems—will facilitate greater under­
standing and characterization of vegetation function at a global scale.

Supplementary data to this article can be found online at http://dx. 
doi.org/10.1016/j.rse.2015.05.024.
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