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Outline 

• Background/Motivation  

• Ni-based superalloy Rene N4 under irradiation 
(C. Sun et al., Acta Materialia, 95(2015):357-365 )

• Conclusions 
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4

S. J. Zinkle, et al., Mater. Today, 2009
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How to design irradiation tolerant materials? 

Materials challenges for Gen IV reactors

Fusion



U N C L A S S I F I E D

U N C L A S S I F I E D

Vacancy
Interstitial

PKA Secondary 
Collision

Incident 
Particle

5 5

Radiation damage in metals 
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Classic microstructure in neutron irradiated metals
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Ni-based superalloys

 (Ni-Fe-Cr),  '(Ni3Al,Ti),   ''(Ni3Nb)

Inconel 718

B. H Sencer, et al. J. Nucl. Mater., 2001
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Phase instability under irradiation 

8

N. Hashimoto, et al. J. Nucl. Mater., 2003

Fe ion irradiation/ In 718/ 200°C.
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Mechanical properties under irradiation

1.2 dpa

pristine

T. S. Byun, et al. J. Nucl. Mater., 2003

PH In718/ neutron radiation/60-100˚C

0.054 dpa
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Microstructure of pristine Rene N4 

• Cuboidal L12 structured ʹprecipitates.

Cr 9.8
Co 7.5
Ti 3.5
Al 4.2
Mo 1.5
W 6.0
Ta 4.8
Nb 0.5
Hf 0.15
Ni Bal.

Chemical composition (wt.%)dave=0.45μm
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In situ Kr ion irradiation 
(0-0.3 dpa)

Ex situ Ni ion irradiation 
(0.75, 18, 75dpa) 

Irradiation experiments

Source: Kr ions 
Energy: 1 MeV
Temperature: 30˚C
Fluence:1×1014 /cm2

Model: Non-rastering 

Source: Ni ions 
Energy: 3 MeV
Temperature: 20-37˚C
Fluence: 1 × 1017 /cm2

Model: Non-rastering 
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In situ Kr ion irradiation at low doses

• Dislocation loops are formed. 
• Complete disorder at 0.3 dpa. 
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Ex situ Ni ion irradiation to high doses 

• Density and size of the dislocation loop are saturated at 18 dpa. 
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Chemical intermixing under irradiation 

• Chemical intermixing-induced coalescence of cuboids. 
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Chemical intermixing under irradiation 
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is estimated to be ~ 30 Å5/eV.  

Dmix: intermixing coefficient, ~1.4 Å2/s
t:      irradiation time, 16200 s
Ф:     ion fluence, 10 ions/Å2

FD:    deposited ion energy, 75 eV/Å/ion 
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• Thermal spike is the major mixing mechanism.
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=1~7 Å5/eV. 

Binary collision theory: 
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• γ’ precipitates at RT dissolves much 
more slowly than it disorders. 

• Mixing efficiency  (     ) is ~ 20 Å5/eV 

[010]
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ʹ precipitate

Atomic modeling  
M.J. Demkowicz and T. Lee 
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Nanoindentation hardness
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• Intermixing does not influence hardness at high doses (>18 dpa).

disordering + slight intermixing intermixing

Defect clusters
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Nanoindentation hardness
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 Disordering-induced softening: 

: anti-phase boundary energy.  
: volume fraction of the precipitates.
: separation distance of  precipitates.
: line energy of dislocations.
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 Intermixing-induced softening: 

: misfit strain aa /
r : size of precipitates

N: loop density. d: loop size
b: Burgers vector. μ: shear modulus
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Conclusions 

• The ʹ precipitates become fully disordered at a dose of 0.3 dpa. 

• The ʹ precipitates partially dissolve after irradiation up to 75 dpa 
and the chemical intermixing mainly originates from thermal 
spike effects. 

• Combining effects of defect clusters, disordering and dissolution 
determine the evolution of hardness. 
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