

LA-UR-15-26694 (Accepted Manuscript)

An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

Ruedig, Elizabeth

Provided by the author(s) and the Los Alamos National Laboratory (0000-00-00).

To be published in: Journal of Environmental Radioactivity, Vol. 150, p. 170-178, December 2015.

DOI to publisher's version: 10.1016/j.jenvrad.2015.08.004

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-15-26694>

Disclaimer:

Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **An evaluation of health risk to the public as a consequence of *in situ* uranium mining in**
2 **Wyoming, USA**

3 Elizabeth Ruedig^a, Thomas E. Johnson^b

4 ^aLos Alamos National Laboratory
5 PO Box 1663
6 Los Alamos, NM 87544
7 USA

8 ^bColorado State University
9 Department of Environmental & Radiological Health Sciences
10 1618 Campus Delivery
11 Fort Collins, CO 80523
12 USA

13 *Corresponding author: elizarue@lanl.gov, +1-505-667-4970

14
15

16 **Highlights**

17 • Most groundwater constituents do not change as a result of alkali ISR mining
18 • After restoration, ^{226}Ra decreases by about one half, ^{nat}U increases by factor of about five
19 • Radiological risk decreases, nephrotoxic biomarkers increase, clinical significance unclear

20
21

22 **Abstract**

23 In the United States there is considerable public concern regarding the health effects of in situ
24 recovery uranium mining. These concerns focus principally on exposure to contaminants
25 mobilized in groundwater by the mining process. However, the risk arising as a result of mining
26 must be viewed in light of the presence of naturally occurring uranium ore and other
27 constituents which comprise a latent hazard. The United States Environmental Protection
28 agency recently proposed new guidelines for successful restoration of an in situ uranium mine
29 by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium,
30 chromium, lead, mercury, selenium, silver, nitrate (as nitrogen), molybdenum, radium, total
31 uranium, and gross α activity. We investigated the changes occurring to these constituents at an
32 ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline
33 measurement to that at stability (post-restoration) testing. Of the groundwater constituents
34 considered, only uranium and radium-226 showed significant ($p < 0.05$) deviation from site-
35 wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6
36 (95% CI 3.6-8.9 times greater) while radium-226 decreased by a factor of about one half (95%
37 CI 0.42-0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an
38 individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased
39 from pre- to post-mining by about 5.2 mSv y^{-1} . Higher concentrations of uranium correspond to
40 increased biomarkers of nephrotoxicity, however the clinical significance of this increase is
41 unclear.

42

43

44 1. **Introduction**

45 Approximately one eighth of the world's electricity (Nuclear Energy Institute 2014) is supplied
46 by 435 nuclear reactors (Nuclear Energy Agency and International Atomic Energy Agency 2014).
47 Over 58,000 tonnes of uranium ore were mined in 2014 to supply fuel for these reactors (Nuclear
48 Energy Institute 2014). In 2013, 47% of world-wide uranium production was the result of *in situ*
49 recovery (ISR) mining. In the United States, the fraction of uranium production attributable to
50 ISR is much higher (World Nuclear Association 2015a). Domestically, seven operational ISR
51 mines produce 2300 tonnes of uranium per year, approximately 11% of domestic uranium
52 consumption (United States Energy Information Administration 2014), which powdered 100
53 reactors generating one fifth of the nation's electricity (Nuclear Energy Institute 2014). ISR is the
54 most economically efficient method of uranium extraction in the United States and an important
55 generator of economic activity in rural parts of the country (e.g., Wyoming and South Dakota).
56 However, there are risks associated with ISR uranium mining, most notably the contamination of
57 a drinking-water aquifer with uranium or other heavy metals (United States Environmental
58 Protection Agency 2008).

59 The ISR process utilizes a series of injector and recovery wells to access, without excavation,
60 below-ground uranium orebodies. The chemistry of the ISR process varies with both geological
61 and regulatory conditions; in the United States groundwater is pumped from recovery wells to
62 the surface, where it is fortified with dissolved oxygen (or, less commonly hydrogen peroxide),
63 carbon dioxide, and/or sodium bicarbonate, and then re-injected. Following each subsurface
64 pass, the groundwater, now laden with uranium, is sent through ion-exchange resins for uranium
65 recovery and re-fortified/rejuvenated. The circulation is a closed loop except for a small "bleed"
66 (typically 0.5 to 1% of the total flow) maintained to prevent mine water from leaving the mining
67 zone. When the ion exchange bed is filled to capacity with uranium, it is taken off-line and eluted;
68 the resulting eluent is chemically treated to produce uranyl peroxide. A more detailed
69 description of the ISR process can be found in Davis and Curtis (2007).

70

71 The ISR mining process may be conducted with either an acid or alkali agent. Currently, only the
72 alkali process is used in the United States, although other countries such as Australia and
73 Kazakhstan employ acid leach processes. Here, we only consider the alkali processes as these are
74 the techniques used at our field site.

75

76 The goal of this study was to quantify the risk resulting from changes in groundwater, induced
77 by ISR at a uranium mine in Wyoming, USA. Our hypothesis was that post-restoration (stability)
78 conditions on-site represent either (1) a significant increase in groundwater constituents beyond
79 the range of conditions found naturally on-site prior to mining, and/or (2) a significant increase
80 in risk to a resident farmer.

81 **2. Material and Methods**

82 **2.1. Description of Site**

83 The Smith Ranch-Highlands ISR uranium mine is located in Converse County, Wyoming, USA
84 (Figure 1). The site is at 1500 m elevation and experiences a semi-arid climate, with an
85 average annual temperature of 7°C and average annual precipitation of 319 mm (National
86 Oceanic and Atmospheric Administration 2002). Wyoming is sparsely populated, with
87 584,000 inhabitants occupying 250,000 square kilometers, an area roughly the size of the
88 United Kingdom. The dominant ground cover is mixed grass prairie (State of Wyoming
89 2010). Pronghorn antelope (*Antilocapra americana*), mule deer (*Odocoileus hemionus*),
90 white tailed deer (*Odocoileus virginianus*), and game birds such as wild turkey (*Meleagris*
91 *gallopavo*), ducks, and Canadian geese (*Branta canadensis*), which are consumed by some
92 local residents, are frequently found on-site.

93
94 Borch et al (2012) provide a detailed description of subsurface conditions at Smith Ranch-
95 Highlands. Generally, uranium ore has been deposited in a sandy layer approximately 150-
96 200 m below ground. The ore bearing sands are bounded above and below by shale deposits.
97 Groundwater flow is estimated to be approximately 2-3 m per year. Uranium concentrations
98 in ore body solids vary from a few hundredths of a percent to about one percent, with the
99 bulk average typically being approximately 0.1%. Uranium ore deposits develop in
100 permeable formations that are generally sandy. Borch et al (2012) describe the
101 hydrogeological processes that deposit mineable uranium: within groundwater, soluble and
102 mobile ^{nat}U(VI) moves along a hydrologic gradient. If it encounters reducing conditions,
103 ^{nat}U(VI) precipitates to eventually form minerals such as uraninite, coffinite, and
104 uranophane. The zone of solid uranium within the aquifer is known as a roll front. Figure 2,
105 adapted from Davis and Curtis (2007), illustrates the formation of a uranium roll front.

106
107 Four well fields were considered for this study, each consisting of multiple wells in a set
108 pattern. The well fields were brought online asynchronously, and so are different stages of
109 their lifecycle. Because of the asynchronicity of the wells' life stages, and the fact that mining
110 is still ongoing at Smith Ranch Highlands, not all wells have been in each phase of operation.

111 **2.2. Source of Data**

112 Baseline groundwater quality data was provided by Cameco Resources for well fields 1, 3, 4,
113 and 4A. Stability (a regulatory phase wherein a post-production well field is monitored for
114 geochemical stability prior to being released) testing has only been conducted for a subset

115 of wells in well field 1; this data was also provided by Cameco Resources. The baseline and
116 stability samples were collected as part of site characterization and routine monitoring to
117 satisfy regulatory requirements. Samples were collected and analyzed over an
118 approximately eighteen-year period; the majority of these analyses were performed by
119 Energy Labs Inc., in Casper, Wyoming. More recently, Intermountain Laboratories in
120 Sheridan, Wyoming has been used for analysis.

121
122 We performed statistical analysis on thirteen groundwater constituents considered to be of
123 interest to the United States Environmental Protection Agency (USEPA), as well as a handful
124 of other indicators of groundwater quality (total dissolved solids, alkalinity, pH) to ascertain
125 the scope of the change induced to groundwater by the ISR process.

126
127 **2.3. Statistical Analysis**

128 Figure 3 shows our process for determining whether a statistically robust change occurred
129 in concentrations of a groundwater constituent between baseline and stability operational
130 phases. Detailed analysis has been conducted on ground water, as described in section 2.2.
131 Many of the constituents of interest to the USEPA are below minimum detectable
132 concentrations (MDCs) in the groundwater at the Smith Ranch-Highlands site. Others were
133 not tested for in the data provided to us by Cameco Resources. Those species with
134 concentrations below the experimental MDC, in addition to those species for which analysis
135 was not performed, were eliminated from consideration; table 1 details which constituents
136 were eliminated at this stage. It should be noted that all MDCs were below US Safe Water
137 Drinking Act (SWDA) concentrations except for Pb; SWDA concentrations are reported in
138 table 2. Because the Pb MDC was above the SWDA regulation, it is possible that
139 concentrations of Pb at Smith Ranch Highlands exceed regulatory limits for potable water.
140 However, we lacked data to make this determination and opted to exclude Pb from our
141 analysis.

142
143 A series of Welch's t-tests were run to examine whether stability (post-restoration)
144 conditions in well field 1 (the only well field for which stability testing has been conducted)
145 differed significantly from (1) baseline conditions in the same well field and (2) baseline
146 conditions throughout the site. The results of these tests indicate whether or not the
147 concentrations found in stability differ significantly from those at baseline, or from naturally

148 occurring variability throughout the Smith Ranch-Highlands site. In order to obtain a normal
149 distribution suitable for a parametric test, concentrations of ^{226}Ra and ^{nat}U were log
150 transformed prior to t-testing.

151
152 Finally, we retested those constituents that had a significant change from baseline to stability
153 using the subset of wells for which both baseline and stability concentration data were
154 available. We will refer to this subset of wells as matched wells.

155 R¹ version 3.1.2 was used for all statistical computations.

156
157 **2.4. Biosphere Transport Model**

158 Simply measuring the scope of groundwater change as a result of ISR mining is insufficient
159 for estimating the change in risk to humans. Food chain transfer as well as natural
160 environmental processes influence the quantity of a contaminant to which humans are
161 exposed.

162
163 A resident farmer scenario was modelled at Smith Ranch Highlands using the US Department
164 of Energy's RESRAD (onsite) code². A resident farmer is an individual who moves onto the
165 former mine site at some unspecified time in the future and engages in subsistence
166 agricultural practice using a groundwater well. This scenario is not implausible; there are a
167 handful of abandoned homes located on the Smith Ranch-Highland site used by
168 homesteaders during the 20th century. The former occupants of these homes were likely
169 engaged in activities similar to those selected for our model: ranching of livestock such as
170 cattle and gardening to produce vegetables for human consumption. We modeled the source
171 well as located within the uranium ore body in order to maximize the exposed resident
172 farmer's exposure to groundwater contaminants³.

173
174 The resident farmer was modeled as exposed through consumption of food, water and soil,
175 with food separately including dairy, meat, and plants. No aquatic foods were considered
176 due to the lack of natural surface water on or near Smith-Ranch Highland. All produce

¹ <http://www.r-project.org/>

² <https://web.evs.anl.gov/resrad/>

³ Input parameters for our model are available online as electronic supplement 1.

177 consumed was assumed to have come from a garden within the mined area. Ingestion and
178 inhalation rates were set to the values recommended by the USEPA's exposure factor
179 handbook (United States Environmental Protection Agency 2011), with the exception of
180 meat consumption, which was increased to compensate for the lack of aquatic foods. Climate
181 data for Converse County, Wyoming was taken from the reports of the United States National
182 Oceanic and Atmospheric Administration (National Oceanic and Atmospheric
183 Administration 2002).

184
185 Our RESRAD (onsite) model took advantage of a source override procedure that allows a
186 radionuclide source to be placed directly in groundwater. The model then ignores any
187 below-ground geochemistry, holding the concentration of a contaminant in groundwater
188 constant over time by adjusting the distribution coefficient (K_D) to an appropriate value.
189 This is reasonable for our exposure scenario: before site release can occur, the operator must
190 establish that the belowground environment has reached chemical equilibrium, and that
191 concentrations of groundwater contaminants are constant. Horizontal and vertical transport
192 through the belowground environment were neglected, as these processes are unimportant
193 for our exposure scenario and, due to site hydrogeology, insignificantly small over a human's
194 lifespan. Direct external exposure and inhalation radiation dose were included in the model,
195 but these contributed negligibly to overall radiation dose.

196 3. **Results**

197 3.1. **Effect of ISR Mining on Groundwater Quality**

198 3.1.1. **Constituents Above the Experimental MDC**

199 Of the thirteen species considered to be of interest to USEPA, only As, Se, total N
200 ($\text{NO}_3 + \text{NO}_2$), ^{226}Ra (as total Ra), and ^{nat}U were detectable above analytic limits. We chose
201 to include TDS, alkalinity, and pH in this analysis as general indicators of change in
202 groundwater quality. Per the process depicted in Figure 3, all these constituents were
203 passed on to the next level of analysis.

204
205 3.1.2. **Same Well Field Comparison, Baseline to Stability**

206 Stability concentrations of As, Se, total N ($\text{NO}_3 + \text{NO}_2$), ^{226}Ra , and ^{nat}U , TDS, alkalinity, and
207 pH were compared to baseline concentrations in well field 1, to determine if
208 groundwater conditions after mining were within the baseline natural variation of well
209 field 1. Stability concentrations were significantly different ($p < 0.05$) from baseline

variability within well field 1, and all these constituents were passed on to the next level of analysis. The results of statistical testing are presented in table 3.

3.1.3. Well Field to Site Wide Comparison, Baseline to Stability

Stability concentrations of As, Se, total N ($\text{NO}_3 + \text{NO}_2$), ^{226}Ra , and ^{nat}U , TDS, alkalinity, and pH were compared to baseline concentrations across the Smith Ranch-Highlands site, to determine if changes in groundwater quality due to mining were within site-wide natural variation at baseline. The statistical tests demonstrated that only alkalinity, As, ^{226}Ra , TDS, and ^{nat}U in the stability well field differed significantly from the naturally occurring variation across the Smith Ranch-Highlands site at baseline. The results of the tests are presented in table 3. Boxplots of ^{nat}U and ^{226}Ra concentrations, in baseline and stability, are given in figure 4.

3.1.4. Matched Well Comparison, Baseline to Stability

Stability concentrations of As, Se, total N ($\text{NO}_3 + \text{NO}_2$), ^{226}Ra , and ^{nat}U , TDS, alkalinity, and pH were compared to baseline concentrations across the Smith Ranch-Highlands site, including only matched wells, that subset of wells for which both baseline and stability data was available.

Figure 5 depicts concentrations for matched wells at baseline and at stability. The t-test results were identical to those comparing stability to site-wide baseline: alkalinity, As, ^{226}Ra , TDS, and ^{nat}U showed significant variation. It should be noted that alkalinity is not regulated by the USEPA and median concentrations of As were well below the USEPA's regulatory limits for potable water. Only TDS, ^{nat}U , and ^{226}Ra exceeded USEPA's regulatory limits for potable water and showed variation between site-wide baseline and well field stability testing concentrations. As TDS is not one of the thirteen constituents of interest to USEPA, only ^{nat}U and ^{226}R were included in the risk assessment.

Table 4 presents the change in groundwater concentrations of ^{nat}U and ^{226}Ra from baseline to stability, as well as the results of the statistical test. As expected, the mining process oxidized $^{nat}\text{U}(\text{IV})$ to $^{nat}\text{U}(\text{VI})$, mobilizing the uranium in groundwater. More surprising was a dramatic reduction in ^{226}Ra in groundwater. We speculate that this may have occurred because radium is mobile in groundwater prior to the onset of mining, and

243 subsequently removed from groundwater by the ion exchange process. This is unlike
244 uranium, which is actively mobilized from ore by the mining process, thereby
245 introducing additional uranium into groundwater. However, it is difficult to propose a
246 mechanism of change that accounts for the totality of changes in the subsurface
247 environment as a result of mining, as changes in groundwater concentrations were not
248 consistent. At Smith Ranch Highlands, we found that after mining, As increased relative
249 to pre-mining (levels remained below regulatory limits for potable water, both before
250 and after mining), while TDS and alkalinity decreased. Median concentrations of Se
251 stayed approximately the same, but the distribution of concentrations spread
252 significantly⁴. Subsurface geochemistry is enormously complex, and influenced by both
253 physical and biological conditions (Campbell et al 2012), further obscuring the exact
254 mechanism by which geochemical changes occur. Such uncertainties underscore the
255 need for the detailed measurement and modelling of the ISR process on a site-specific
256 basis.

257 3.2. RESRAD (onsite) Results

258 Model results demonstrated that ^{226}Ra contributes far more to radiation dose than ^{238}U for
259 a resident farmer at the Smith Ranch-Highlands site. Given that uranium is understood to be
260 more chemically than radiologically toxic, this is expected. A detailed description of total
261 dose from each radionuclide, based on concentrations in matched-wells at baseline and
262 stability, is presented as table 4. The model unsurprisingly identified water as the primary
263 exposure pathway; a detailed description of total dose from each pathway is presented as
264 table 5.

265 3.3. Risk Analysis

266 Radium and uranium represent different types of risk to exposed populations. While
267 exposure to ^{226}Ra results in a radiological risk, uranium's toxic mechanism in the body is
268 principally chemical, not radiological (Wrenn et al 1985, Leggett 1989, Taylor and Taylor
269 1997, Guseva Canu et al 2011, Kurttio et al 2002). Biological endpoints for radiation
270 exposure are either stochastic (increased risk of cancer) at low doses or deterministic (direct
271 damage) at high doses. This is in contrast to uranium, which like many heavy metals, causes
272 kidney damage in exposed humans (Zamora et al 1998, Mao et al 1995, Thun et al 1985,
273

⁴ Detailed boxplots of groundwater concentrations are available as electronic supplement 2.

274 Russell et al 1996, Kurttio et al 2002). This damage occurs at uranium exposures far below
275 those necessary to induce stochastic or deterministic radiation effects due to radioactive
276 decay (Guseva Canu et al 2011).

277 Because of the chemotoxic mechanism of uranium, it is difficult to harmonize the risk arising
278 from increased exposure to uranium with the risk from decreased exposure to radium:
279 exposure to radium at the concentrations found at Smith Ranch Highlands confers a risk of
280 cancer years in the future, while exposure to uranium confers a risk of near-term kidney
281 damage. Thus, we have elected to consider each component of risk separately, commenting
282 on both the magnitude of the change in risk as well as expected public health outcomes.

283

284 3.3.1. Cancer risk following exposure to ^{nat}U and ²²⁶Ra

285 Table 6 summarizes radiation dose rate results, which were calculated with RESRAD
286 (onsite) using concentrations of ²²⁶Ra and ^{nat}U from groundwater in matched wells, at
287 baseline and in stability. Uranium concentrations increased from baseline to stability,
288 resulting in a 0.36 mSv y⁻¹ increase in radiation dose to the resident farmer. ²²⁶Ra
289 concentrations decreased from baseline to stability, resulting in a 5.6 mSv y⁻¹
290 decrease in radiation dose rate. Overall, mining resulted in a 5.2 mSv y⁻¹ decrease in
291 radiation dose to the resident farmer. This corresponds to a reduction of 260 mSv
292 over a 50 year adult lifetime. The BEIR VII report (2006) concludes that every
293 additional 100 mSv of radiation dose received corresponds to a 1% increase in cancer
294 (solid cancer or leukemia) incidence (Biological Effects of Ionizing Radiation VII
295 2006). Thus the reduction in dose rate as a result of mining corresponds to a 2.6%
296 decrease in cancer incidence compared to a resident farmer consuming water from
297 the pre-mining aquifer.

298

3.3.2. Nephrotoxicity of ^{nat}U

299 Guseva Canu et al (2011) undertook a review of available studies on uranium toxicity
300 as a result of consuming naturally contaminated water. In total they identified 27
301 “peer-reviewed published reports of original epidemiological studies, including
302 studies of uranium, radium, and radon” from the period of 1970-2011 (Guseva Canu
303 et al, 2011). Of these studies, seven assessed the incidence of renal damage as a
304 function of exposure to naturally occurring uranium (Mao et al 1995, Zamora et al
305 1998, Kurttio et al 2002, Kurttio et al 2005, Kurttio et al 2006, Seldén et al 2009,

306 Zamora et al 2009) with approximately 1500 subjects across all seven studies. The
307 average concentration of uranium consumed in water in these studies varied between
308 25 $\mu\text{gU L}^{-1}$ and 180 $\mu\text{gU L}^{-1}$; with this level of uranium exposure statistically correlated
309 with various biomarkers of renal damage. The values reported are comparable to our
310 study site's baseline median of 73 $\mu\text{gU L}^{-1}$ and stability median of 411 $\mu\text{gU L}^{-1}$ in
311 matched wells. In short, while an exact threshold for uranium nephrotoxicity has not
312 been established, it likely occurs somewhere around the baseline median value at
313 Smith Ranch-Highlands. Kurttio et al (2006) report a modest (on the order of 10%)
314 increase in biomarkers of kidney dysfunction as concentrations of uranium in water
315 increase from tens of $\mu\text{gU L}^{-1}$ to hundreds or thousands of $\mu\text{gU L}^{-1}$, but also note that:

316 The clinical significance of [our] results is not easily established... Tubular
317 dysfunction manifested within the normal physiological range, but occurred
318 without an apparent threshold. Excretion of calcium, phosphate, and glucose
319 remained within normal range in most subjects, even for persons with very
320 high and long-lasting exposure to uranium. These findings are consistent with
321 studies of occupational exposure to uranium failing to demonstrate overt
322 kidney disease among workers exposed to uranium. (Kurttio et al, 2006)

323 Additionally, the authors note that renal failure is associated with only very high (10-
324 25 mgU kg^{-1} body weight) acute exposures to uranium (Kurttio et al 2006). For an
325 adult human of 60 kg, this corresponds to a 0.6-1.5gU ingestion – the equivalent of
326 drinking, at a minimum, 1500 L of stability mine water in a single, acute exposure.

327

328 4. ***Discussion***

329 4.1. **Implications of Risk Analysis**

330 The results of this study indicate that it is possible that radiation dose (from radium) is
331 actually slightly decreased as a result of ISR uranium mining. The increased concentration
332 of uranium in groundwater due to ISR uranium mining would point to an increased risk of
333 nephrotoxicity, but not cancer, with no impact on mortality (Agency for Toxic Substances
334 and Disease Registry 2013). Since radium and uranium each have an independent biological
335 endpoint for risk, it difficult to harmonize the two changes in risk. We did not find that other
336 groundwater constituent concentrations changed significantly as a result of mining,

337 although they may have been present in sufficient quantities – before and/or after mining –
338 to impact human health.

339
340 It should be emphasized that this model was a “worst case” analysis of wellfield 1, based on
341 the most contaminated groundwater, which is found directly within the ore body. Due to
342 high site variability, drilling a well just tens of meters away from the ore body may
343 dramatically lower an individual’s risk.

344
345 **4.2. Limitations and Uncertainties**

346 Limitations to this analysis can be loosely grouped into three categories: dose/effects
347 relationships, characterization uncertainties, and uncertainties associated with
348 variability/heterogeneity.

349
350 *Dose/effects uncertainties* are those uncertainties that are present in epidemiologic or
351 toxicologic studies on the effects of a stressor on humans. For example, the BEIR VII (2006)
352 report dataset has some important confounders: acute exposures to radiation may be more
353 harmful than a continuous low dose exposure, which is the exposure scenario more
354 applicable to our resident farmer scenario. We have also not considered the increased
355 sensitivity associated with exposure to radiation or other stressors during sensitive life
356 stages, such as exposure to children or to the fetus *in utero*, principally because there is
357 limited data concerning uranium toxicity variability between life stages. Finally, the
358 interactions between multiple stressors may be important for understanding the net effect
359 of the consumption of uranium mine water on an individual. Multi-stressor theory holds that
360 the net effect of multiple, simultaneous exposures may be greater than the sum of exposures
361 given individually. Given the number of constituents in mine water, such analysis is relevant
362 to conducting risk analysis at an ISR mine.

363
364 *Characterization uncertainty* arises as a result of limitations in the sampling scheme or
365 analytic techniques used. In this study, well water samples were not continuously collected
366 and analyzed for their chemical content. Rather, well water was collected and analyzed at
367 discrete times, sometimes years apart; how groundwater quality varied between time points
368 is not known. Stability testing is meant occur over several years, in part to address this
369 concern by establishing that groundwater concentrations remain nearly-constant after

370 restoration is complete. Additionally, samples were not analyzed for the chemical speciation
371 of uranium; some uranium complexes are not cytotoxic, e.g. calcium-uranyl-carbonato
372 complexes (Prat et al, 2009). Depending upon the speciation of uranium in groundwater at
373 Smith Ranch-Highlands, the risk of groundwater consumption may be lower than estimated
374 here.

375

376 *Site wide variability* should also be considered when interpreting the results of this study. Our
377 results were for a single well field (the only well field for which stability testing has been
378 conducted). Given the variability of groundwater quality across the Smith Ranch Highlands
379 site (for e.g., uranium, as shown in Figure 4), it is likely that our result, or any single result, is
380 not generalizable between well fields or mine sites. To understand the changes to
381 groundwater resulting from ISR uranium mining requires a complete understanding of site-
382 conditions.

383

384 5. Conclusions

385 Our statistical analysis and risk-based impact assessment at an ISR mine in Wyoming, USA had
386 some unexpected results: chiefly, that ^{226}Ra concentrations in groundwater decreased
387 dramatically as a result of the mining process. This type of analysis may prove useful to regulators
388 and operators alike, providing a paradigm to arrive at site closure criteria that is more flexible
389 than the current approach, which requires adherence to rigid groundwater standards and does
390 not account for natural background or variability. Geoscience Australia (2010) recommends that
391 “For lease relinquishment, regulators should be confident that the rehabilitated site does not
392 present any significant radiation exposure risks, impacts on groundwater quality are as limited
393 as is practicable, and the site will be fit for agreed future land uses.” Risk analysis, such as that
394 undertaken here, would ideally be based on data coupled with geo- and biosphere transport
395 codes, as appropriate and should be used to assist in setting site closure criteria. A data-driven
396 approach is necessary at ISR uranium mines, where predictive modelling of changes to
397 subsurface geochemistry resulting from mining may not be reliable, and intra- and inter- site
398 variability is extremely high, making adherence to a generalized standard at sites with diverse
399 geochemical conditions impractical.

400

401 Finally, the USEPA notes that there is “only very limited data in the open literature” concerning
402 the stability of restored ISR well fields in the United States (USEPA 2014). This lack of data makes

403 it difficult to establish regulatory endpoints and is damaging both to both regulators and mining
404 operations. While it may be tempting to require mining companies to bear the financial burden
405 for generating this data, such work is better funded and conducted by impartial institutions, e.g.,
406 federal or state governments, universities, or other independent agencies. Such a separation
407 would ensure the integrity and pedigree of reported data by preventing conflicts of interest.

408 **6. Future Work**

409 The results of this study were unexpected and have underscored how poorly studied ISR uranium
410 operations are in the United States. Further work investigating the magnitude of impacts that ISR
411 uranium mining has on the geosphere and biosphere – both in the short and the long term – is
412 critical to the establishment of a reasonable regulatory structure and the protection of the public.

413
414 Within the next decade, additional data will become available as more ISR mine units near the
415 end of their life cycle: such data should be the subject of additional analysis, similar to the one
416 conducted as a part of this study, so that the impacts of ISR uranium mining on groundwater
417 quality may be better understood.

418
419 **7. Acknowledgements**

420 The authors thank Dr. James Clay of Cameco Resources for providing data related to
421 groundwater quality at Smith Ranch-Highlands and Dr. Peter Woods of the International Atomic
422 Energy Agency for furnishing literature concerning ISR best practices in Australia.
423 This study was funded by the State of Wyoming ISR Uranium Technologies Research Program,
424 with matching funds from Cameco Resources.

425
426 **8. Conflict of Interest**

427 This study was financed by the State of Wyoming. Cameco Resources provided no financial
428 assistance. The authors maintain technical and personal relationships with employees of Cameco
429 Resources but have never been employed by nor accepted any remuneration from that
430 organization.

432 **References**

433

434 Agency for Toxic Substances and Disease Registry (2013). Toxicological Profile For Uranium Agency
435 for Toxic Substances and Disease Registry, February, 2013

436

437 Biological Effects of Ionizing Radiation VII (2006). Health Risks from Exposure to Low Levels of
438 Ionizing Radiation.

439

440 Borch T, Roch N, Johnson TE (2012). Determination of contaminant levels and remediation efficacy
441 in groundwater at a former in situ recovery uranium mine. *J Environ Monit* 14(7):1814-23. doi:
442 10.1039/c2em30077j

443

444 Campbell KM, Kukkadapu RK, Qafoku NP, Peacock AD, Lesher E, Williams KH, Bargar JR, Wilkins MJ,
445 Figueroa L, Ranville J, Davis JA, Long PE (2012). Geochemical, mineralogical and microbiological
446 characteristics of sediments from a naturally reduced zone in a uranium-contaminated aquifer. *App
447 Geochem* 27(8):1499-1511. doi:10.1016/j.apgeochem.2012.04.013

448

449 Davis JA and Curtis GP (2007). Consideration of Geochemical Issues in Groundwater Restoration at
450 Uranium in-situ Leach Mining Facilities, NUREG/CR-6870.

451

452 Geoscience Australia (2010). Australia's In Situ Recovery Mining Best Practice Guide: Groundwaters,
453 Residues, and Radiation Protection, GA 10-4607.

454

455 Guseva Canu I, Laurent O, Pires N, Laurier D, Dublineau I (2011). Health Effects of Naturally
456 Radioactive Water Ingestion: The Need For Enhanced Studies. *Environ Health Perspect*
457 119(12):1676-80. doi: [10.1289/ehp.1003224](https://doi.org/10.1289/ehp.1003224)

458

459 Kurttio P, Auvinen A, Salonen L, Saha H, Pekkanen J, Makelainen I (2002). Renal effects of uranium
460 in drinking water. *Environ Health Perspect* 110:337-342.

461

462 Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, Auvinen A (2006). Kidney
463 toxicity of ingested uranium from drinking water. *Am J Kidney Dis* 47(6):972-82. Doi:
464 [10.1053/j.ajkd.2006.03.002](https://doi.org/10.1053/j.ajkd.2006.03.002)

465

466 Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005). Bone as a possible target of
467 chemical toxicity of natural uranium in drinking water. *Environ Health Perspect* 113:68-72.

468

469 Leggett RW (1989). The behavior and chemical toxicity of U in the kidney: a reassessment. *Health
470 Phys* 57:365-383.

471

472 Mao Y, Desmeules M, Schaubel D, Berube D, Dyck R, Brule D, Thomas B (1995). Inorganic
473 components of drinking water and microalbuminuria. *Environ Res* 71:135-140.

474

475 National Oceanic and Atmospheric Administration (2002). Monthly Station Normals of Temperature,
476 Precipitation, and Heating and Cooling Degree Days 1971-2000, Climatology of the United States
477 No. 81.

478

479 Nuclear Energy Agency and International Atomic Energy Agency (2014). Uranium 2014: Resources,
480 Production and Demand, NEA No. 7209.

481

482 Nuclear Energy Institute (2014). World Statistics: Nuclear Energy Around the World. Accessed 25
483 Mar 2015. <http://www.nei.org/Knowledge-Center/Nuclear-Statistics/World-Statistics>
484

485 Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009). Uranium speciation
486 in drinking water from drilled wells in southern Finland and its potential links to health effects.
487 Environ Sci Technol 43(10):3941-6. DOI:10.1021/es803658e
488

489 Pugliese JM and Larson WC (1989). In Situ Leaching of Uranium: Technical, Environmental and
490 Economic Aspects, IAEA-TECDOC-492.
491

492 Russell JJ, Kathren RL, Dietert SE (1996). A histological kidney study of uranium and non-uranium
493 workers. Health Phys 70:466-472.
494

495 Seldén AI, Lundholm C, Edlund B, Högdahl C, Ek BM, Bergström BE, Ohlson CG (2009).
496 Nephrotoxicity of uranium in drinking water from private drilled wells. Environ Res 109(4):486-94.
497 doi:10.1016/j.envres.2009.02.002
498

499 State of Wyoming (2010). Prairie Grasslands, Wyoming State Wildlife Action Plan – Prairie
500 Grasslands.
501

502 Taylor DM and Taylor SK (1997). Environmental uranium and human health. Rev Environ Health
503 12:147-157.
504

505 Thun MJ, Baker DB, Steenland K, Smith AB, Halperin W, Berl T (1985). Renal toxicity in uranium
506 mill workers. Scand J Work Environ Health 11:83-90.
507

508 Underhill DH (1998). In situ leach uranium mining – current practice, potential and environmental
509 aspects. ABARE Outlook 1998 Commodities Conf, Canberra, 3-5 February.
510

511 United States Energy Information Administration (2015). Domestic Uranium Production Report –
512 Quarterly. Accessed 25 Mar 2015.
513 <http://www.eia.gov/uranium/production/quarterly/quadtable1.cfm>
514

515 United States Environmental Protection Agency (2008). Technical Report on Technologically
516 Enhanced Naturally Occurring Radioactive Materials from Uranium Mining Volume 1: Mining and
517 Reclamation Background, EPA 402-R-08-005
518

519 United States Environmental Protection Agency (2011). Exposure Factors Handbook 2011 Edition
520 (Final), EPA-600-R-090-052F.
521

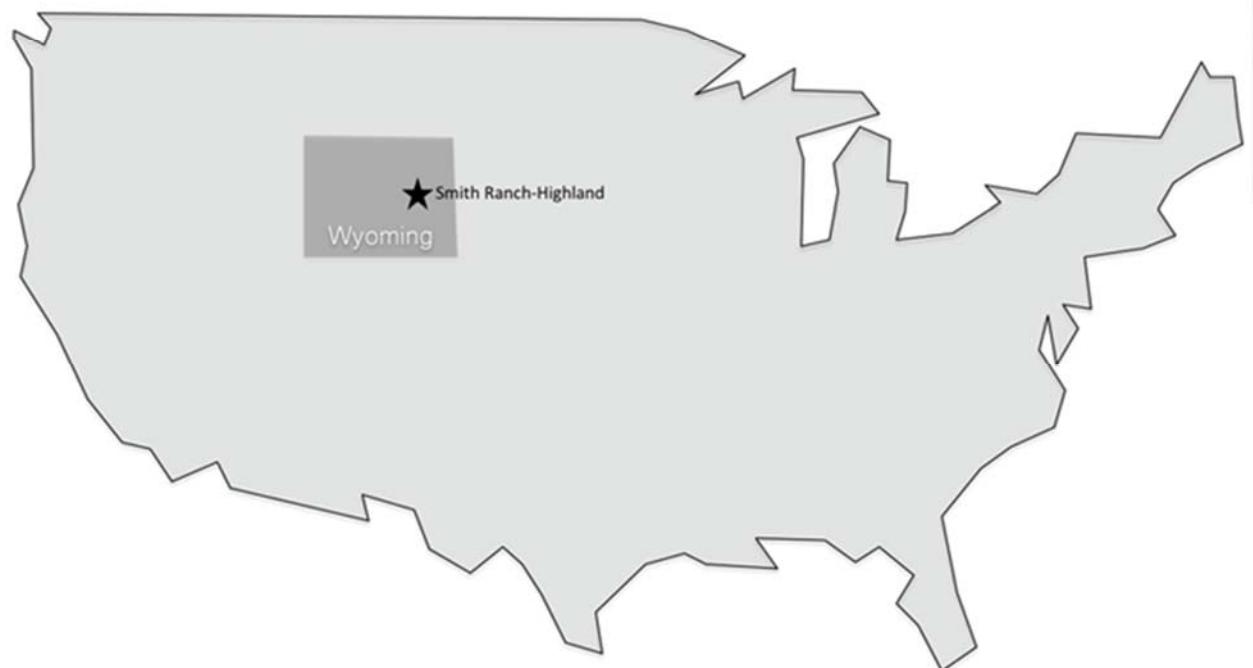
522 United States Environmental Protection Agency (2014). Health and Environmental Protection
523 Standards for Uranium and Thorium Mill Tailings - Notice of proposed rule making, EPA-402-F-12-
524 051.
525

526 World Nuclear Association (2015a). US Nuclear Fuel Cycle. Accessed 25 Mar 2015.
527 <http://www.world-nuclear.org/info/Country-Profiles/Countries-T-Z/USA--Nuclear-Fuel-Cycle/>
528

529 World Nuclear Association (2015b). Australia's Uranium Mines. Accessed 25 Mar 2015.
530 <http://www.world-nuclear.org/info/Country-Profiles/Countries-A-F/Appendices/Australia-s-Uranium-Mines/>
531

532

533 Wrenn ME, Durbin PW, Howard B, Lipsztein J, Rundo J, Still ET, Willis DL (1985). Metabolism of
534 ingested U and Ra. *Health Phys* 48:601–633.


535

536 Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA (1998). Chronic ingestion of uranium in
537 drinking water: a study of kidney bioeffects in humans. *Toxicol Sci* 43:68–77.

538

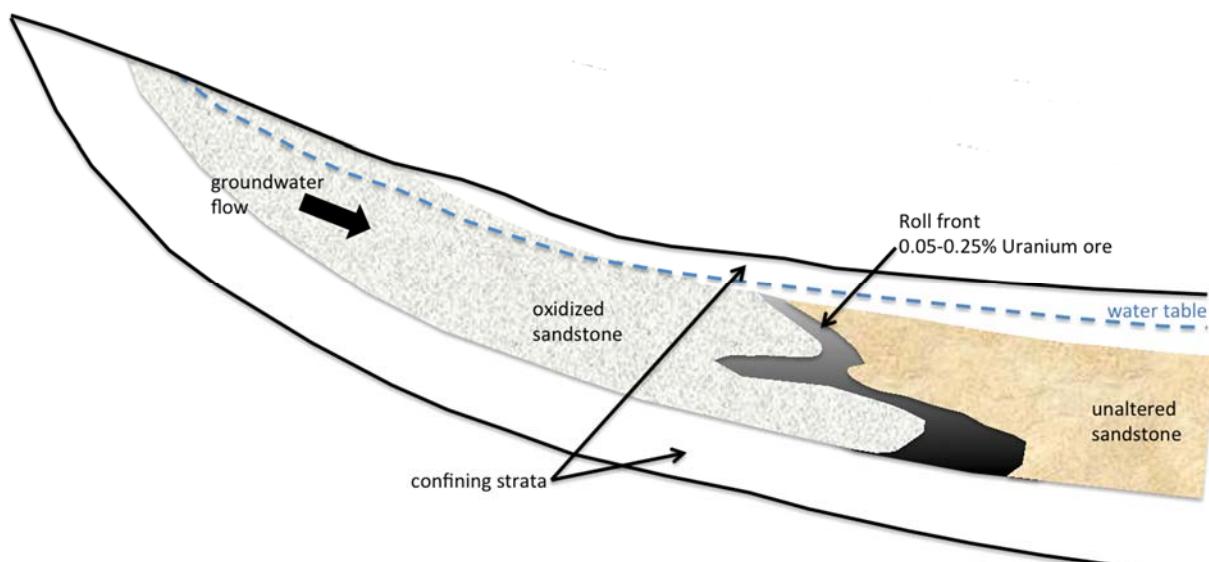
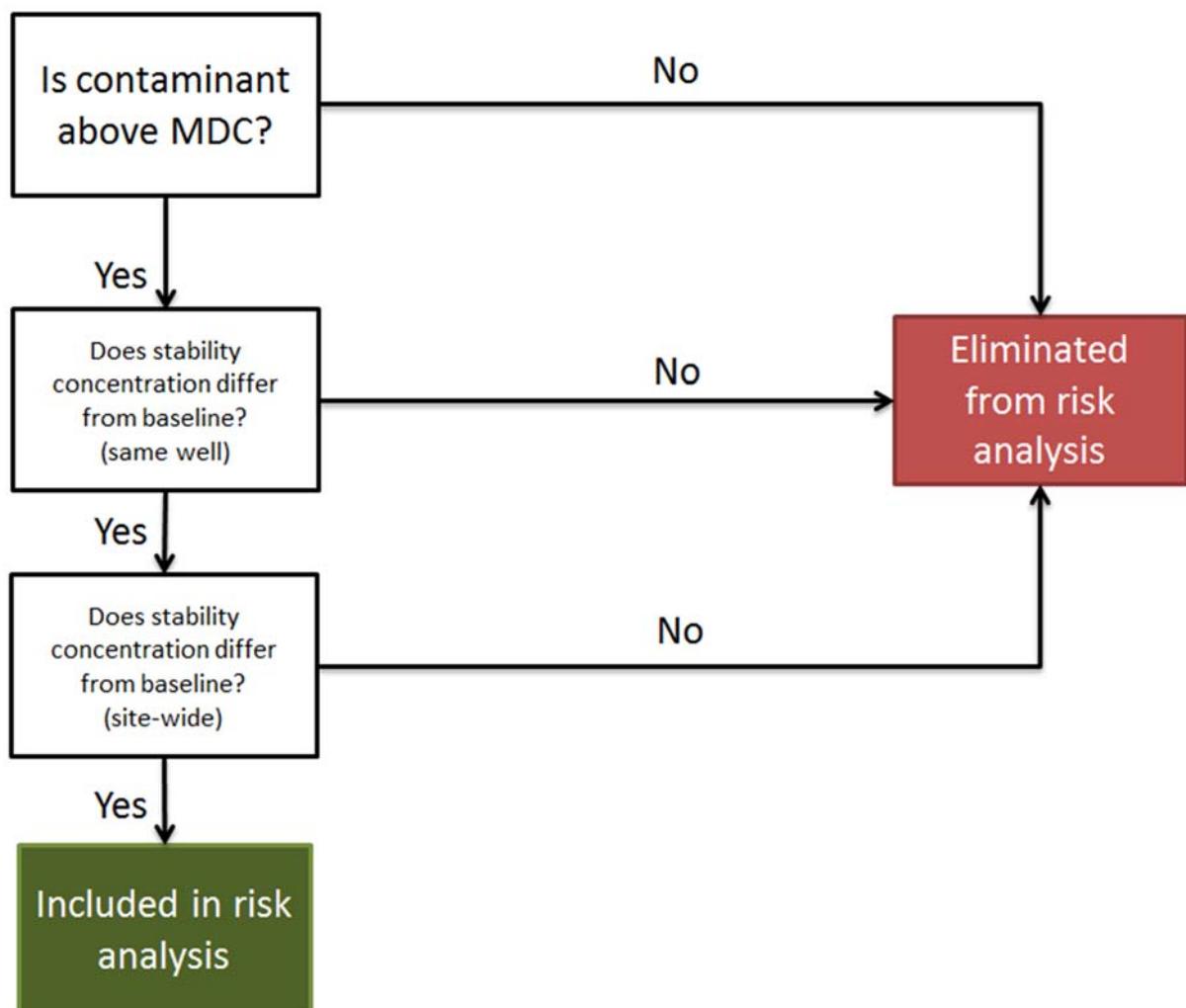

539
540
541

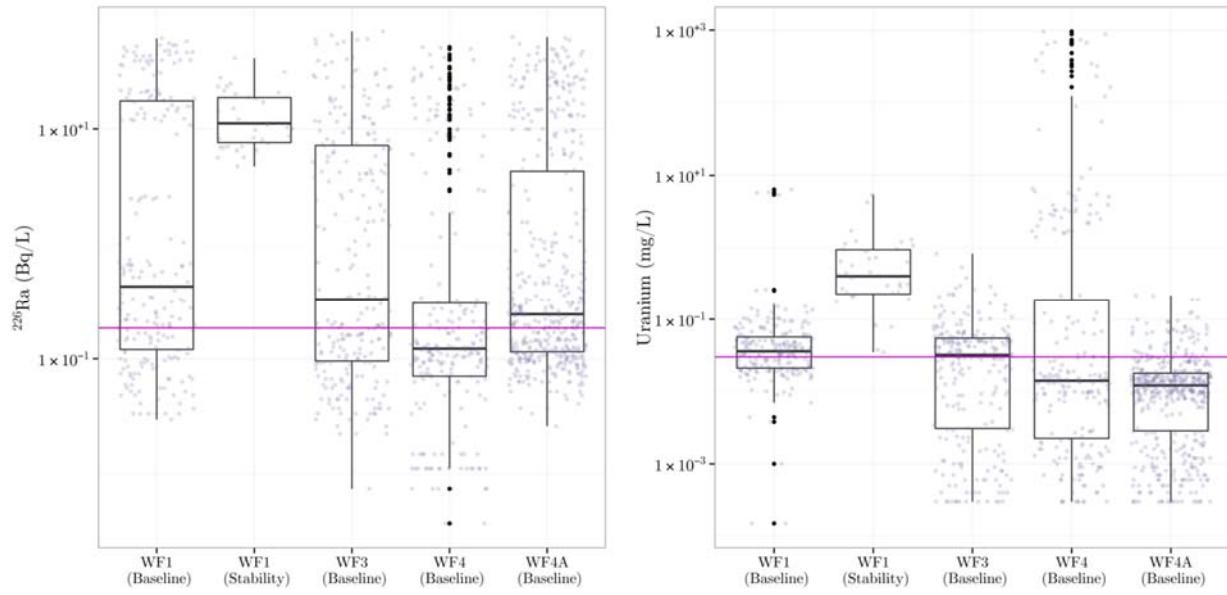
Figure 1: Map showing location of the Smith Ranch-Highlands site and photograph depicting site landscape and a typical well-field.



542
543

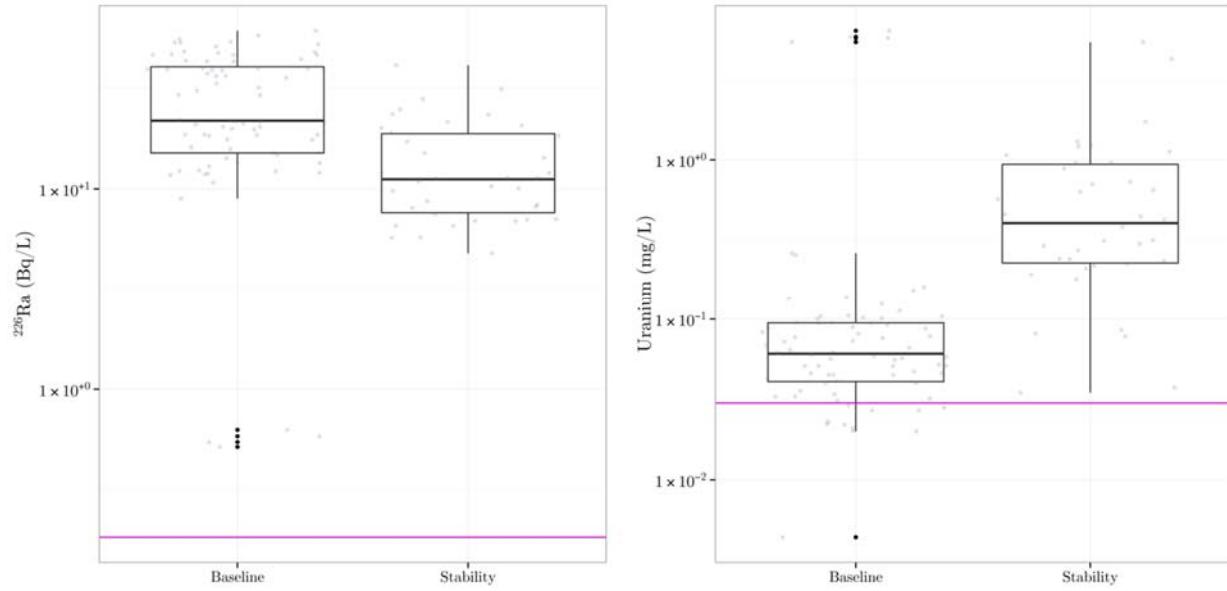
Figure 2: The formation of a uranium roll front. Adapted from Davis and Curtis (2007).

546 **Figure 3** Flowchart describing how contaminants were eliminated from risk analysis.



547

548


549

550 **Figure 4** Stability concentrations of ^{226}Ra and $^{\text{nat}}\text{U}$ in well field 1 compared to baseline conditions
551 site-wide. USEPA's limit appears as a pink horizontal line.

552

553 **Figure 5** Stability concentrations of ^{226}Ra and $^{\text{nat}}\text{U}$ in well field 1 compared to baseline concentrations
554 in well field 1. Only matched wells - tested both at baseline and in stability - are displayed. USEPA's
555 limit appears as a pink horizontal line.

556

557

558 **Table 1:** Abundance of groundwater constituents of interest to USEPA, and others selected for study
 559 by the authors. Underlined text indicates a constituent was present in multiple wells above the
 560 minimum detectable concentration (MDC) in groundwater from Smith Ranch-Highlands. We have
 561 also included data about the total number of wells sampled, and the total number of samples
 562 acquired. Note that these data describe the results of the first round of stability (post-mining) testing,
 563 completed in September 2014.

Constituent	Regulated by USEPA	Well Field 1 (stability)	Well Field 1 (baseline)	Well Field 3 (baseline)	Well Field 4 (baseline)	Well (ba
		n _{wells} =20 n _{measurement} =40	n _{wells} =66 n _{measurement} =275	n _{wells} =69 n _{measurement} =248	n _{wells} =72 n _{measurement} =220	n _{wells} =72 n _{measurement} =220
<u>As</u>	yes	> MDC	> MDC	> MDC	> MDC	> MDC
Ba	yes	< MDC	not analyzed	not analyzed	< MDC	not analyzed
Cd	yes	< MDC	< MDC	< MDC	< MDC	< MDC
Cr	yes	< MDC	< MDC	< MDC	< MDC	< MDC
Pb	yes	< MDC	not analyzed	not analyzed	< MDC	not analyzed
Hg	yes	not analyzed	not analyzed	not analyzed	> MDC	not analyzed
<u>Se</u>	yes	> MDC	> MDC	> MDC	> MDC	> MDC
Ag	yes	not analyzed	not analyzed	not analyzed	not analyzed	not analyzed
<u>NO₃+NO₂</u>	yes	> MDC	> MDC	> MDC	> MDC	> MDC
Mo	yes	< MDC	< MDC	< MDC	< MDC	< MDC
<u>²²⁶Ra</u>	yes (as total Ra)	> MDC	> MDC	> MDC	> MDC	> MDC
<u>U</u>	yes	> MDC	> MDC	> MDC	> MDC	> MDC
gross alpha	yes	not analyzed	not analyzed	not analyzed	not analyzed	not analyzed
<u>TDS</u>	no	> MDC	> MDC	> MDC	> MDC	> MDC
<u>Alkalinity</u>	no	> MDC	> MDC	> MDC	> MDC	> MDC
<u>pH</u>	no	> MDC	> MDC	> MDC	> MDC	> MDC

564
 565

566 **Table 2:** US Safe Water Drinking Act Standards for 13 groundwater constituents proposed by the
567 USEPA to be of interest at ISR mine facilities.

Constituent	SWDA Limit
Arsenic	0.010 mg L ⁻¹
Barium	2 mg L ⁻¹
Cadmium	0.005 mg L ⁻¹
Chromium	0.1 mg L ⁻¹
Lead	0.015 mg L ⁻¹
Mercury	0.002 mg L ⁻¹
Selenium	0.05 mg L ⁻¹
Silver	0.1 mg L ⁻¹
Nitrate (as nitrogen)	10 mg L ⁻¹
Molybdenum	Unregulated contaminant
Radium (226+228)	0.185 Bq L ⁻¹
Uranium	0.030 mg L ⁻¹
Gross- α	0.555 Bq L ⁻¹

568

569
570

571 **Table 3:** Comparison of stability (post-restoration) conditions in well field 1 with baseline conditions
572 in well field 1 and site-wide baseline conditions.

Groundwater constituent	Stability conditions differ from MU1 baseline?	Stability conditions differ from site-wide baseline?
Alkalinity	Yes p<0.001	Yes p<0.001
As	Yes p<0.001	Yes p<0.001
NO ₃ +NO ₂	Yes p=0.02	No
pH	Yes p<0.001	No
²²⁶ Ra	Yes p<0.001	Yes p<0.001
Se	Yes p=0.02	No
TDS	Yes p<0.001	Yes p<0.001
^{nat} U	Yes p<0.001	Yes p<0.001

573
574

575 **Table 4:** Magnitude and significance of change from baseline to stability in groundwater
576 concentrations of ^{226}Ra and $^{\text{nat}}\text{U}$ for matched well measurements. Twenty matched wells were
577 measured. In total, 40 measurements were made at baseline (December 1996 – January 1997), and
578 40 have been made so far in stability (January 2014 – September 2014).

Constituent	Change in median concentration, baseline to stability	95% Confidence Interval	p-value
^{226}Ra	0.56 times less	0.42-0.75 times less	<0.001
$^{\text{nat}}\text{U}$	5.61 times greater	3.6-8.9 times greater	<0.001

579
580

581 **Table 5:** Sources of total radiation dose, as a fraction of total dose and by pathway, calculated by
582 RESRAD. Note that this is per nuclide, as nuclide concentrations (and therefore contribution to total
583 dose) change between baseline and stability.

Species	Ground	Inhalation	Water	Plants	Meat	Milk
Shine						
^{238}U	0	0	0.60	0.35	0.01	0.04
^{226}Ra	0	0	0.57	0.34	0.03	0.06

584

585

586 **Table 6:** RESRAD calculated radiation dose rates to resident farmer based on concentrations of
587 radionuclides in groundwater at baseline and stability, for matched wells.

Species	Baseline median concentration (Bq L ⁻¹)	Baseline median dose rate (mSv y ⁻¹)	Stability median concentration (Bq L ⁻¹)	Stability median dose rate (mSv y ⁻¹)	Δdose rate (mSv y ⁻¹)
²³⁸ U	0.9	0.08	5.1	0.44	0.36
²²⁶ Ra	21.4	12.6	11.9	7.0	-5.6

588
589

590 **Electronic supplement 1: RESRAD parameters for risk model.**

591 All parameters not detailed here were left as RESRAD defaults.

Contaminated Zone

Not considered in model. Our model scenario considered groundwater contamination only, with no contaminated zone near the surface.

Cover / Hydrology

Evapotranspiration coefficient	0.2	National Oceanic and Atmospheric Administration Technical report NWS-33. http://www.wrds.uwyo.edu/sco/climateatlas/evaporation.html
Wind speed	4.5 m/s	https://weatherspark.com/averages/30046/Douglas-Wyoming-United-States
Precipitation	0.012 m/yr	National Oceanic and Atmospheric Administration Climatology of the United States No. 81 http://cdo.ncdc.noaa.gov/climate normals/clim81/WYnorm.pdf
Irrigation	0.65 m/yr	Enough to grow corn, minus natural precipitation http://www.extension.org/pages/14080/corn-water-requirements#.VCSCho_F-5I
Runoff coefficient	0.2	RESRAD user manual table E.1, for "rolling land"

Saturated Zone

Groundwater transport not considered; only pumping from groundwater to the biosphere. These parameters were left as default and do not affect the outcome of the model.

Unsaturated Zone

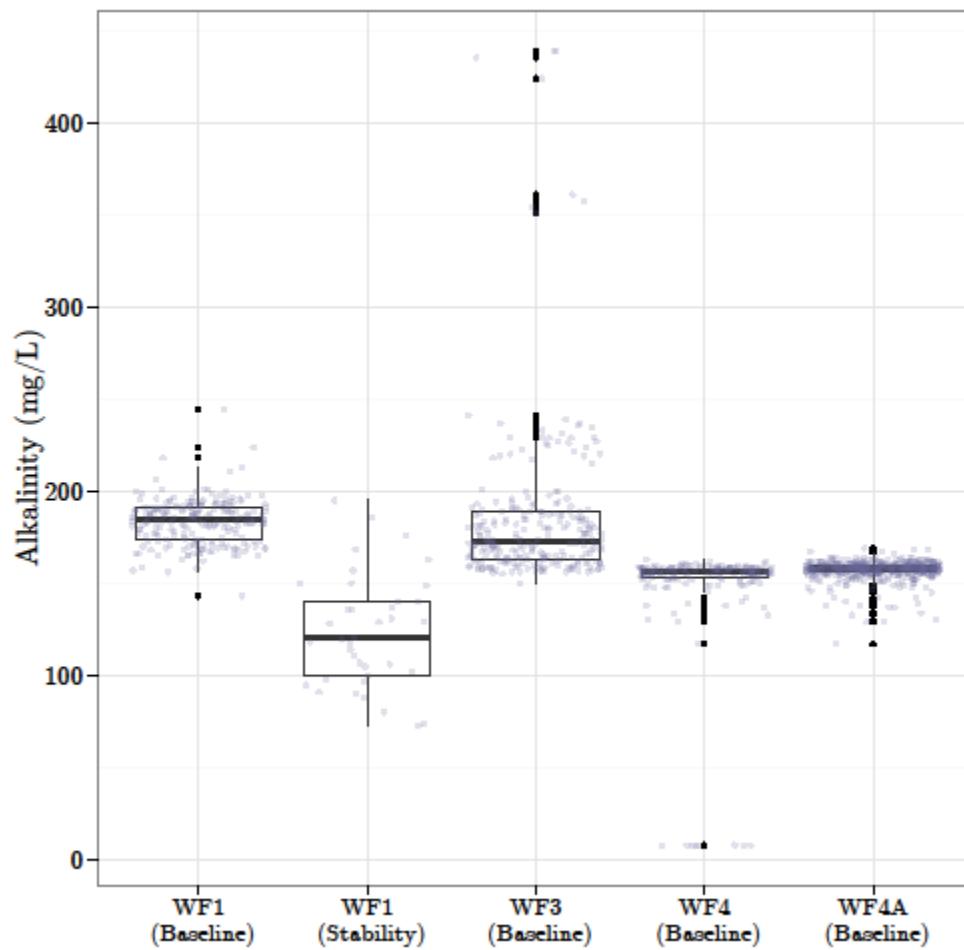
Left as default

Occupancy

Inhalation rate	2591 m ³ /yr	USEPA Exposure Factors Handbook http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf
Indoor dust filtration	0.4	Alzona et al. 1979 : Alzona, J., et al., 1979, "Indoor-Outdoor Relationships for Airborne Particulate Matter of Outdoor Origin," Atmospheric Environment 13:55-60.
External gamma shielding	0.68	Dickson, Elijah. Experimental shielding evaluation of the radiation protection provided by residential structures. Dissertation, Oregon State University 2013. https://ir.library.oregonstate.edu/xmlui/handle/1957/38431
Indoor time fraction	0.5	Consistent with farmer
Outdoor time fraction	0.5	Consistent with farmer

Ingestion - Dietary

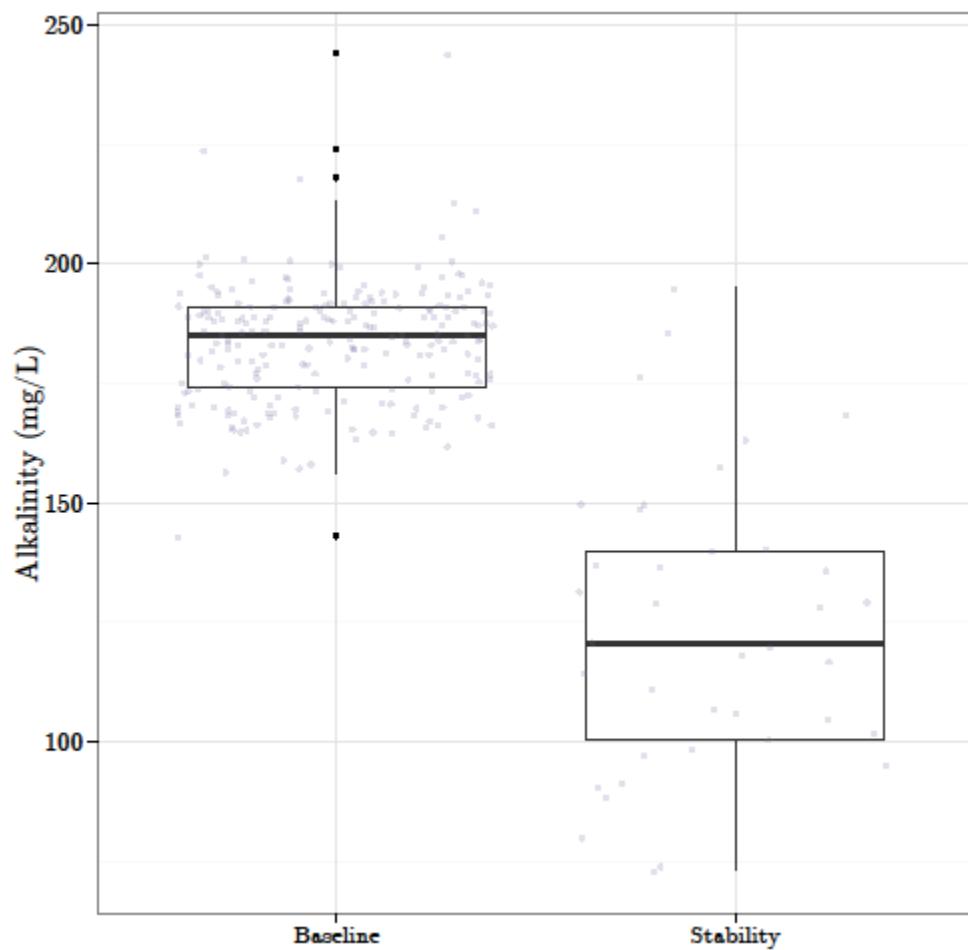
Fruit, veg, grain	330 kg/yr	USEPA Exposure Factors Handbook http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf ; 70kg adult
Leafy veg	50 kg/yr	USEPA Exposure Factors Handbook http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf ; 70kg adult
Milk	250 L/yr	USEPA Exposure Factors Handbook http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf ; 70kg adult
Meat and poultry	150 kg/yr	USEPA Exposure Factors Handbook http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf ; 70kg adult
Fish	0	No surface water - no source of fish, take assumed poundage instead to be beef
Other seafood	0	No surface water - no source of fish, take assumed poundage instead to be beef
Soil	7.3 g/yr	USEPA Exposure Factors Handbook http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf ; 70kg adult
Drinking water	1095 L/yr	USEPA Exposure Factors Handbook http://www.epa.gov/ncea/efh/pdfs/efh-complete.pdf ; 70kg adult
Contaminated fraction	1	No other source for food, all food comes from areas/foods irrigated with mine water


Storage Times		
Fruit, veg, grain	14d	RESRAD Default
Leafy veg	1d	RESRAD Default
Milk	1d	RESRAD Default
Meat and poultry	20d	RESRAD Default
fish	n/a	No seafood consumption
Crustacean and mollusks	n/a	No seafood consumption
Well water	1d	RESRAD Default
Surface water	1d	RESRAD Default
Livestock fodder	140d	Roughly half the time (winter), livestock are on fodder that has been stored from the summer harvest.

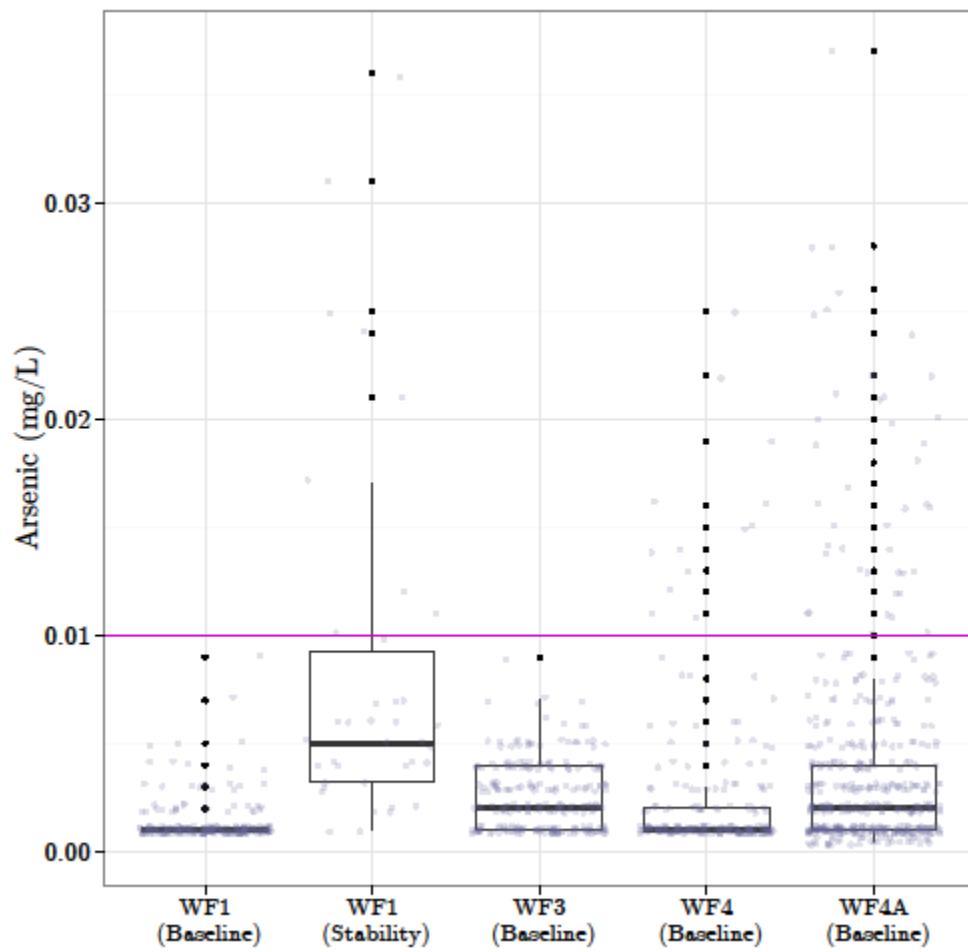
594 **Electronic supplement 2: All boxplot data**

595 The first boxplot displayed for each constituent includes all data points, the second boxplot is
596 matched wells – those wells that have entered the stability phase and been characterized. The pink
597 line represents the US EPA's potable water limit – where it is not displayed, no regulatory limit
598 exists.

599

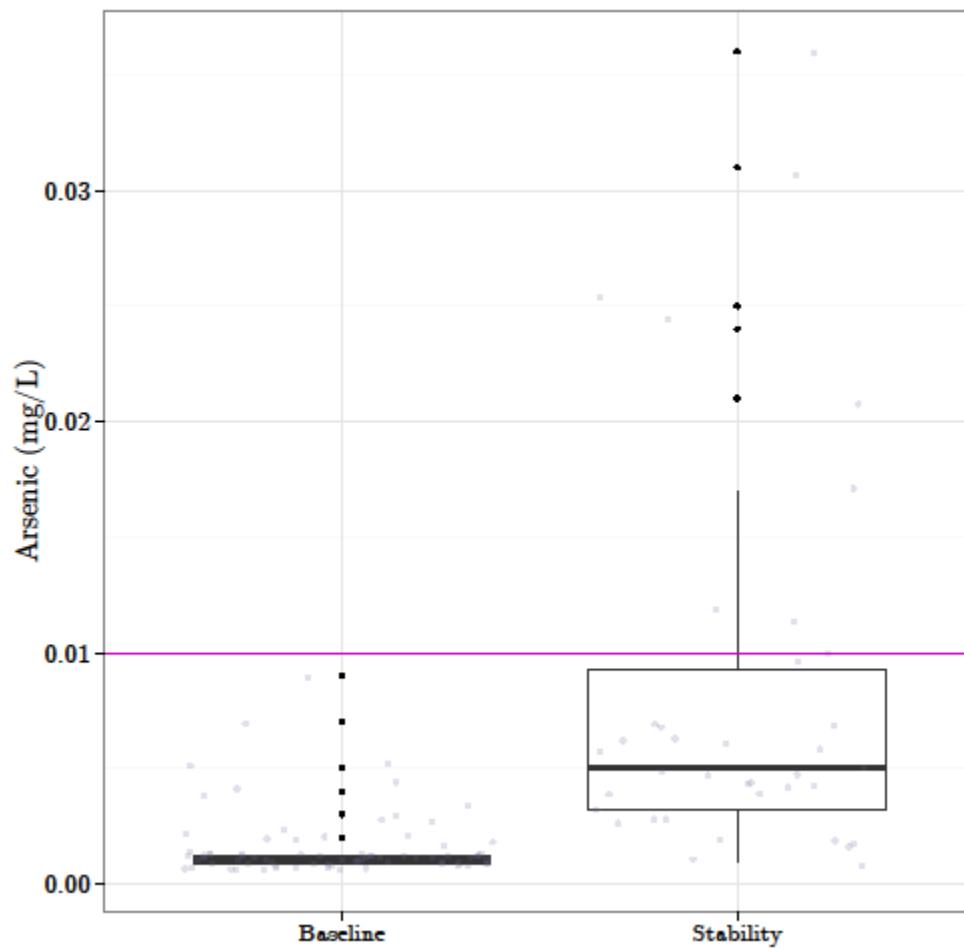

600 Alkalinity - all wells

601


602

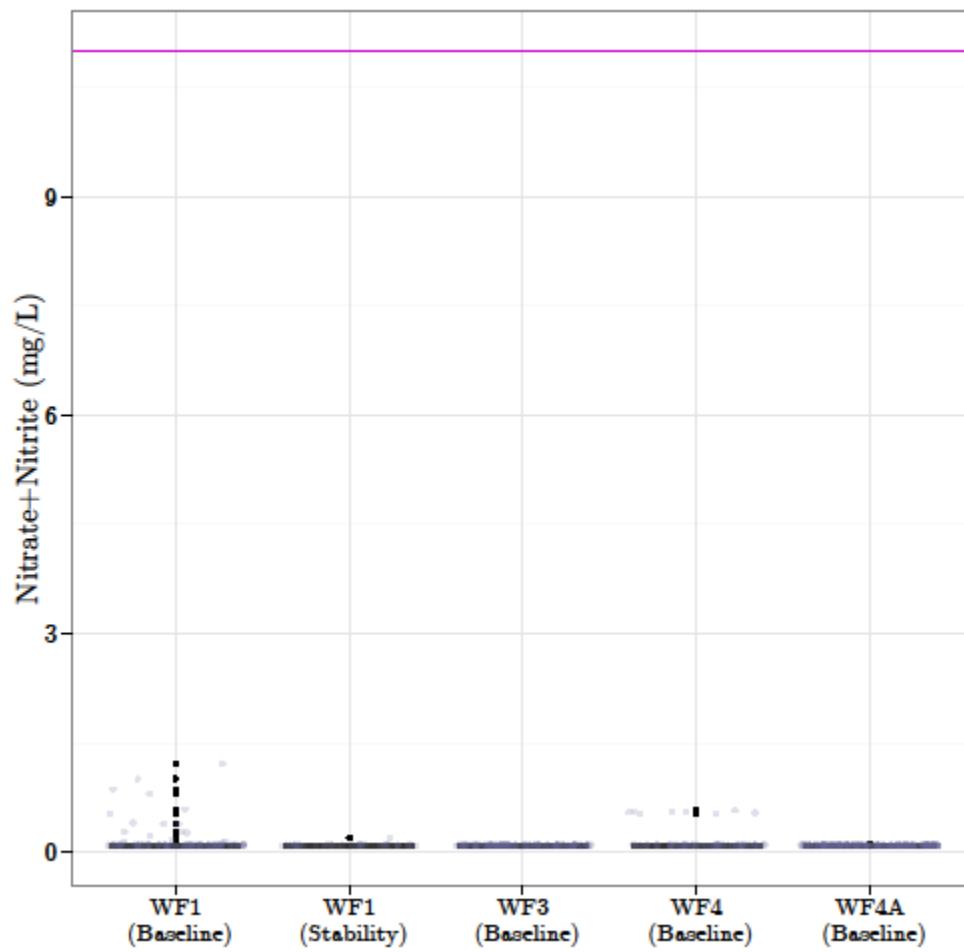
603 Alkalinity - matched wells

604
605

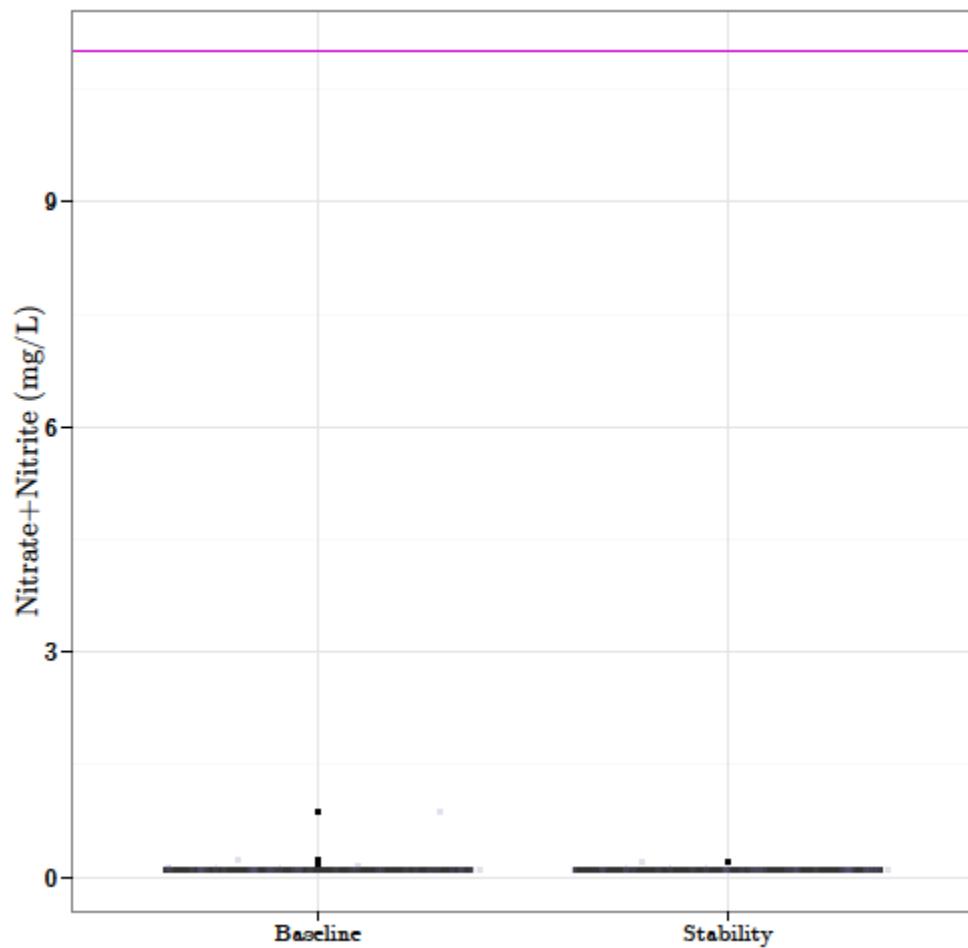

606 Arsenic – all wells

607

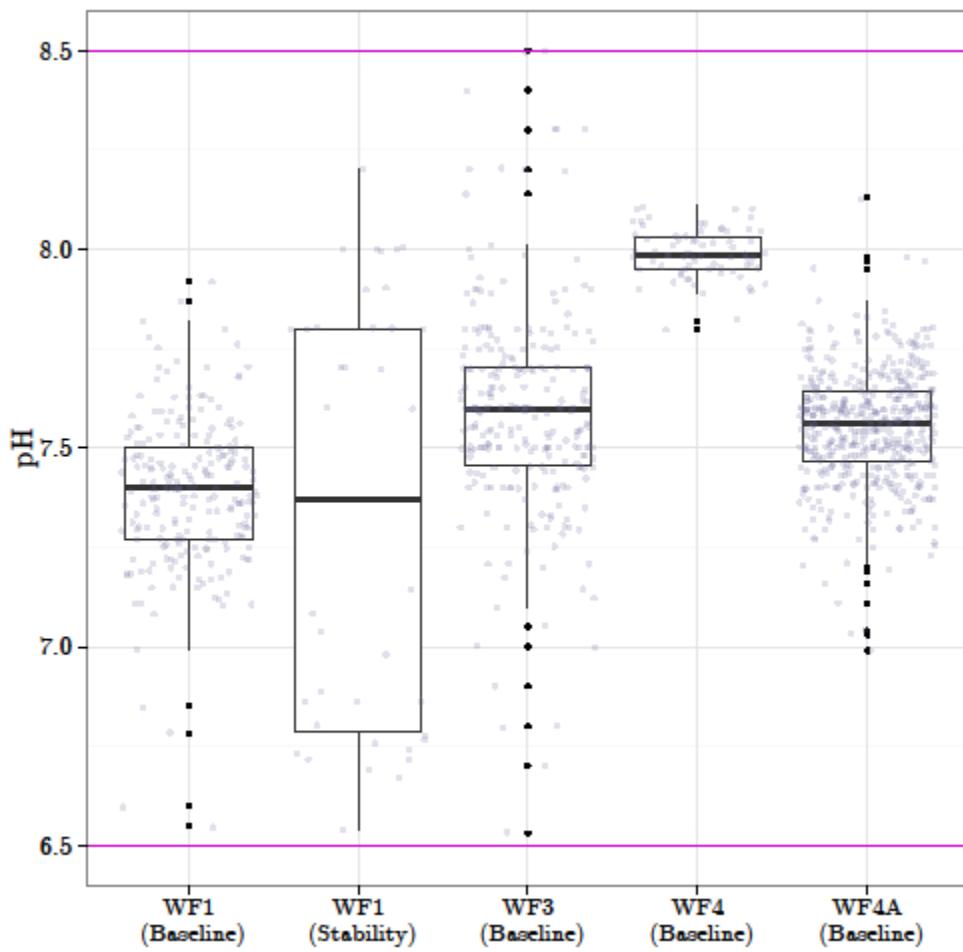
608


609 Arsenic - matched wells

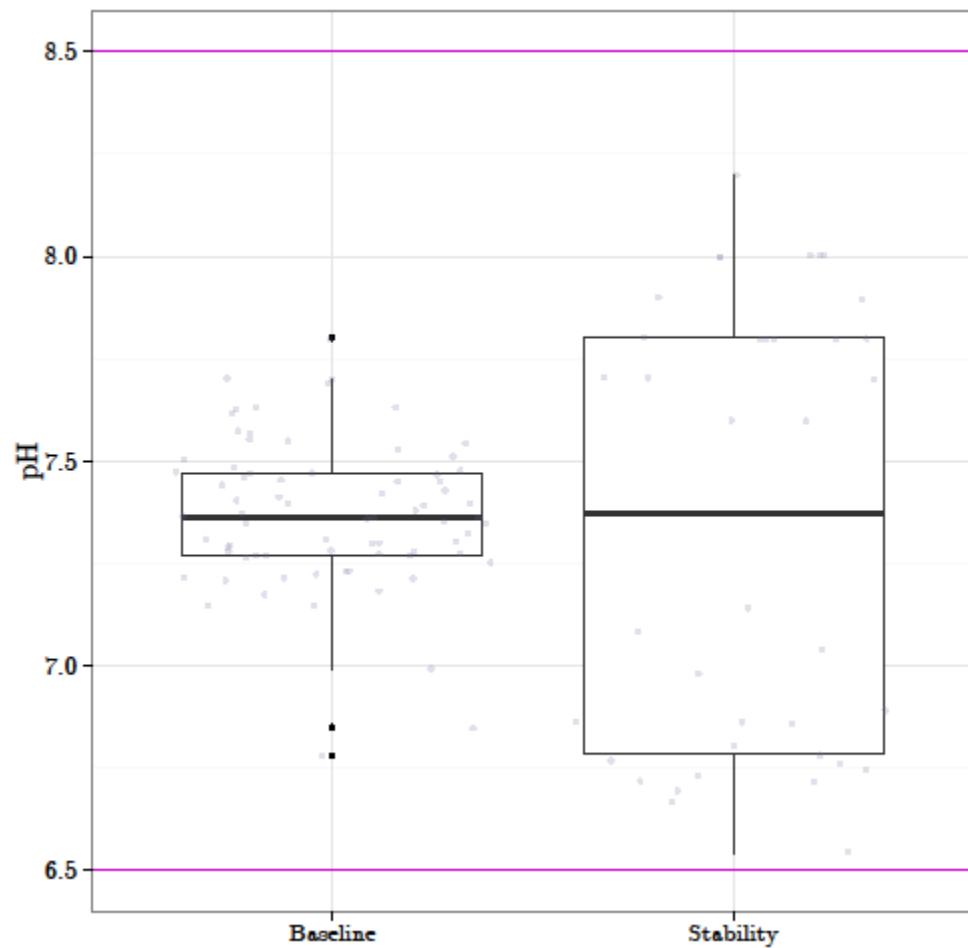
610


611

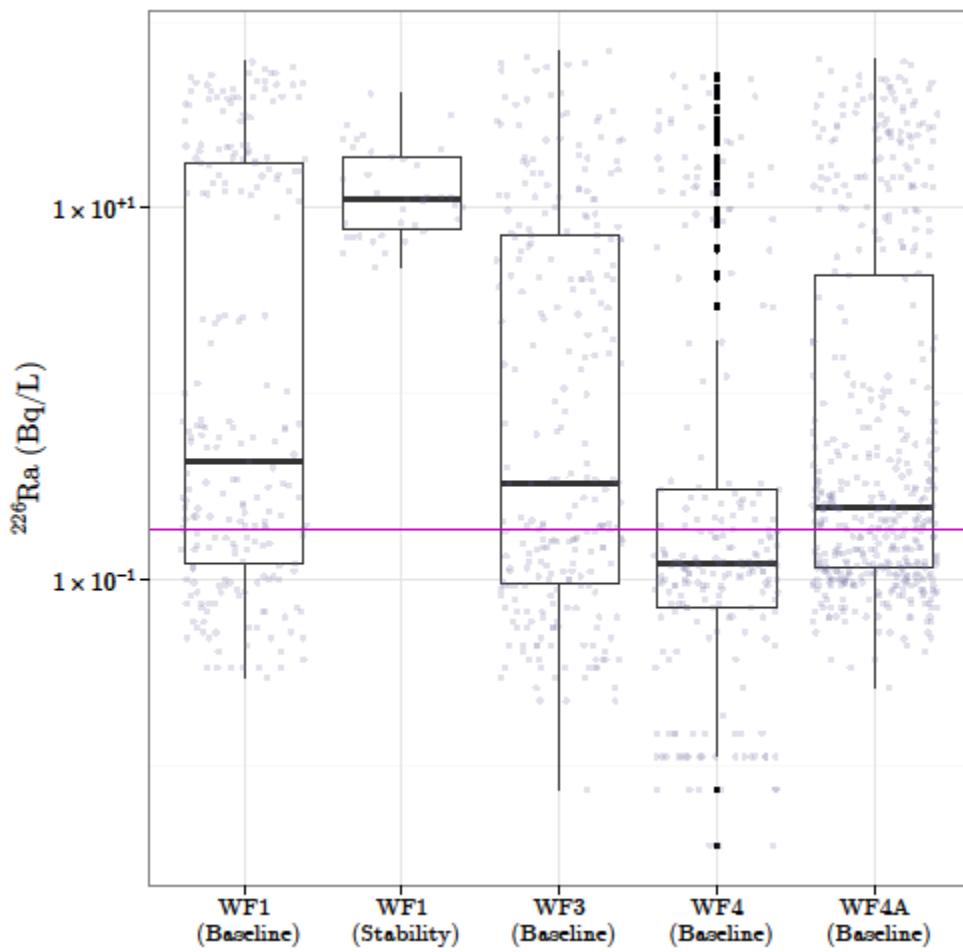
612 Total N - all wells


613
614

615 Total N - matched wells

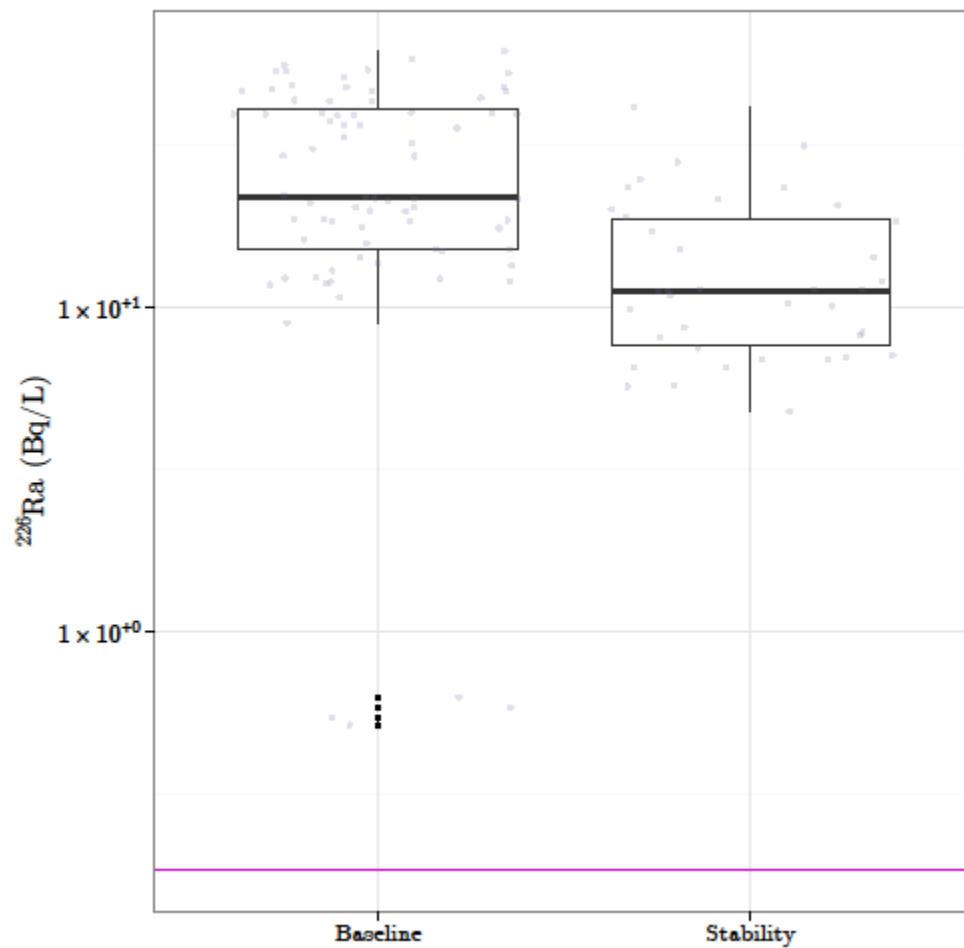

616
617

618 pH - all wells


619
620

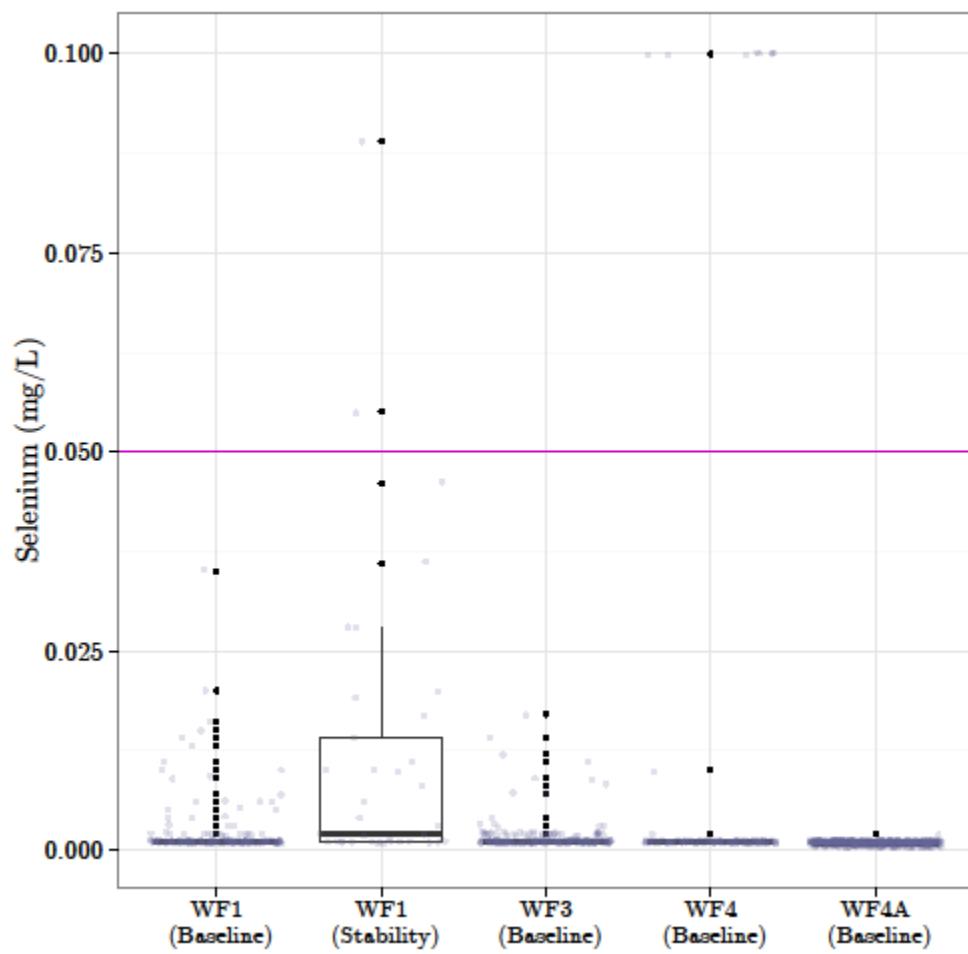
621 pH - matched wells

622
623


624 ^{226}Ra - all wells

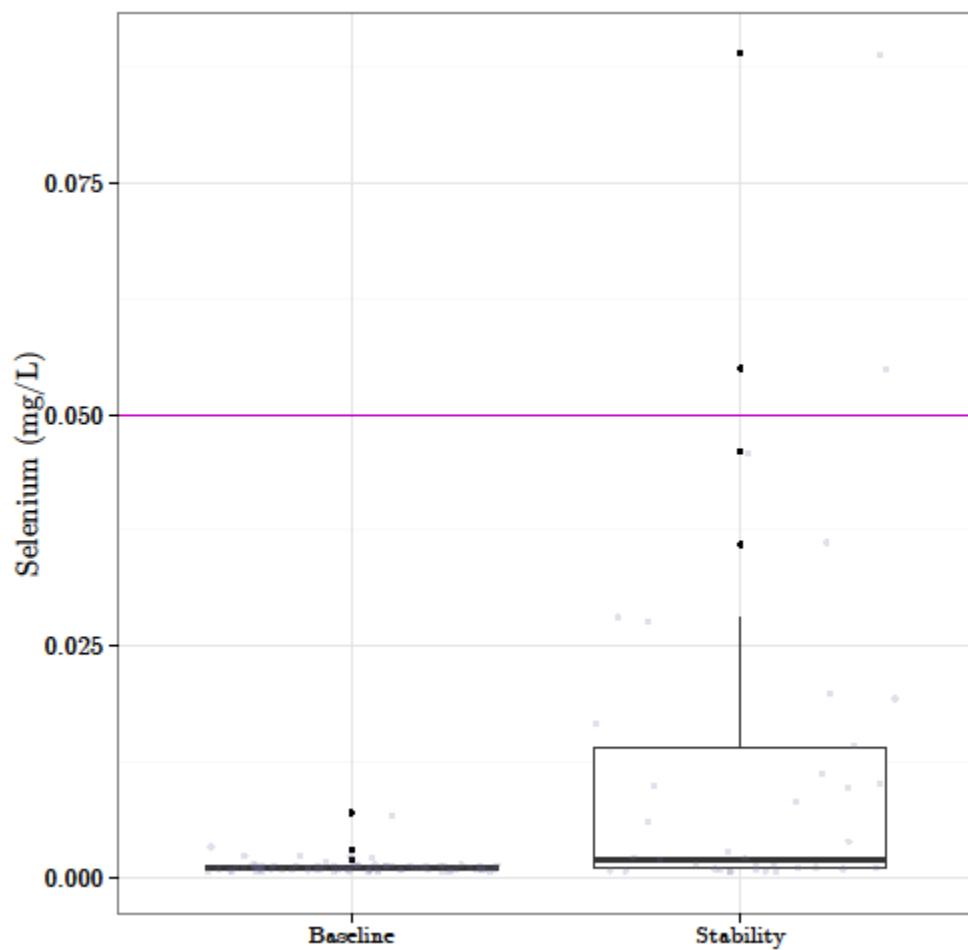
625

626


627 **^{226}Ra - matched wells**

628

629


630 Se - all wells

631


632

633 Se - matched wells

634
635

636 TDS – all wells

637