

## Final Technical Report

**Federal Agency to which Report is submitted: DOE EERE – Wind & Water Power Program**

**Recipient:** The University of Toledo, DUNS Number: 051623734

**Award Number:** DE-EE0003540

**Project Title:** Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

**Project Period:** 06/01/2010 through 05/31/2013

**Principle Investigator:** Dr. Abdollah Afjeh, Professor and Chair, Dept. of Mechanical, Industrial, Manufacturing Engineering, College of Engineering (419) 530-8205, [Abdollah.Afjeh@utoledo.edu](mailto:Abdollah.Afjeh@utoledo.edu)

**Date of Report:** August 29, 2013

**Working Partners:** The University of Toledo  
Dr. Abdollah Afjeh, Professor and Chair, Dept. of Mechanical, Industrial, Manufacturing Engineering, College of Engineering (419) 530-8205  
[Abdollah.Afjeh@utoledo.edu](mailto:Abdollah.Afjeh@utoledo.edu)

Nautica Windpower  
Dr. Larry Viterna, President, (440) 452-3732  
[viterna@gmail.com](mailto:viterna@gmail.com)

OCC|COWI  
Joseph Marrone, COWI Project Director, (203) 268-5007  
[joma@ocean-coastal.com](mailto:joma@ocean-coastal.com)

Nordic Windpower  
Thomas Wagner, Head of Engineering, (518) 852-4898  
[twagner@nordicwindpower.com](mailto:twagner@nordicwindpower.com)

**Cost-Sharing Partners:** The University of Toledo  
Nautica Windpower  
Nordic Windpower USA, Inc.

**DOE Project Team:** DOE HQ Program Manager - Jose Zayas  
DOE Field Contract Officer - Pamela Brodie  
DOE Field Grants Management Specialist - Michael P. Hahn  
DOE Field Project Officer – Laura Merrick  
DOE/CNVJ Project Monitor – Meghan Rodwell

**Signature of Submitting Official:** Dr. Abdollah Afjeh/electronic signature

## **Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes**

Mechanical, Industrial and Manufacturing Engineering Department

The University of Toledo

August 29, 2013

## Executive Summary

The availability of high, steady winds; vast real estate; and proximity to large shoreline population centers potentially make extracting offshore wind energy a highly lucrative enterprise. Although land-based wind turbines today largely employ 3-bladed rotor configurations, a 2-bladed rotor design offers significant inherent design advantages, which can be exploited to reduce the cost of offshore wind energy. Advantages include lower cost of the rotor with one less blade, lower torque on the turbine drivetrain, and lower transportation, maintenance and installation costs.

The objective of the project presented in this report was to investigate a conceptual 2-bladed rotor wind turbine design and to assess its feasibility for installation in the Great Lakes. The leveled cost of energy was used for this purpose.

Since wind turbine system design is site specific, a location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site in this study. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. This model predicts maximum loads more accurately than conventional models that assume independence. Loads from ice floes and ridges can be significant for the Great lakes sites and can drive the foundation design. These data were also obtained for and used in ice load analysis in this study.

The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design in this study. The cross sections of the baseline 5 MW wind turbine were selected using reference paper studies. The turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.

A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation with locally available equipment in Lake Erie. This semi-floating gravity base foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.

The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. More advanced load modeling tools such as Automatic Dynamic Analysis of Mechanical Systems (ADAMS) are available for modeling wind turbine loads; however, an initial set of studies of the dynamics of wind turbines demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for the purposes of this conceptual design study. For ice load calculations, a method was developed and implemented in FAST to extend its capability for ice load modeling.

A computer code was developed to efficiently manage computer simulations using FAST. This code interfaces with FAST to compute the response of a wind turbine to multiple load cases. For each case, this tool computes significant parameters, such as wind turbine annual energy production, blade deflection, maximum lifetime bending moments in the rotor blades, and forces and moments that are transmitted from the tower to the foundation. This information, together with the ice load data was used to design the turbine foundation.

Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. When compared with the NREL 5 MW baseline turbine, the new rotor has one rotor blade removed, the blade twist angle distribution modified and a new pitch control algorithm implemented. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.

## Conclusions

**Cost of Energy:** This study demonstrated that the levelized cost of energy of the 2-bladed downwind design is considerably lower than that of the baseline 3-bladed design. Specifically, the cost of the 2-bladed design with redesigned blades is \$0.1308/kWh and that of the optimized design is \$0.117/kWh, while the cost of the baseline is \$0.1453/kWh. The cost can be further reduced to \$0.0868 by replacing the gravity foundation with a floating one. Two main reasons for the cost reductions are:

- The decrease in the cost of one blade and the attendant increases in reliability and availability and the reduction of the transportation and installation costs
- The substitution of the gravity foundation with a floating foundation

Overall, the evidence from this study supports the conclusion that cost of energy from offshore wind turbines can be reduced considerably by removing a blade and redesigning the remaining two without compromising safety. Developing a floating foundation would create greater opportunities for further cost reduction.

**Annual Energy Production:** At the selected site the baseline NREL 5 MW design produces 16.9 GWh AEP, while the 2-bladed upwind and downwind designs produce between 2% to 7% less energy. However, factoring in the cost of the wind turbine itself, the predicted cost per kilowatt hour of the two-blade designs is lower than the baseline turbine. In addition, the lower torque on the 2-bladed turbine drive train is expected to reduce the maintenance costs and enhance reliability of that configuration. No significant difference in the cost of energy was found for the upwind and downwind 2-bladed turbine configurations.

**Ice Loads:** Loads due to ice floes and ridges are significant and can drive the foundation design. A methodology was developed and implemented to calculate ice loads and predict the response of a turbine foundation. To study the significance of ice impact, FAST simulations were performed to compare the loads on an offshore wind turbine exposure to (1) only wind loads and (2) combined wind and ice loads. For this study, the 50-year ice thickness for the site was applied to a simple circular cross-section foundation. The available data indicate that ice

thickness is 61.8 cm, and ice ridge is 92.7 cm with a 11.2 m deep rubble keel. Compared with wind only loads, a 61.8 cm ice sheet increases the shear force at the foundation base by 330% and 260% for upward and downward ice breaking cones, respectively. The foundation base bending moment increases by approximately 50% for either ice cone shape. Likewise, ice thickness of 92.7 cm with an ice keel of 11.2 m produces an increase in foundation base shear forces of 1180% and 1060%, and the foundation base bending moment increases by 150% for upward and 200% for downward ice breaking cones.

Accurately modeling ice loads is an important challenge for offshore wind energy in Lake Erie to design the wind turbine foundation that can sustain these loads.

**Structural Integrity:** The proposed 2-bladed downwind design is practically as safe as the baseline 3-bladed turbine. The 2-bladed design, however, is subjected to slightly higher loads. The predicted bending moments in the blades of the 2-bladed turbine configurations were higher than those in the NREL 5 MW baseline design. Additionally, shear forces, axial forces, root bending and torsional moments on the blades of the 2-bladed design was approximately 5% higher than the NREL baseline design. This was expected, because the rotor of the 2-bladed rotor turbines rotates faster than the NREL baseline turbine, and the blades of the former are more twisted than those of the latter design.

## Acknowledgement

The following graduate students in the department of Mechanical, Industrial and Manufacturing Engineering at the University of Toledo contributed to the work reported in this final technical report: Brett Andersen, Musarrat Jehan, Jin Woo Lee, Mahdi Norouzi, Adrian Sescu, and Quiying Zhao.

# Table of Contents

|                                                                       |            |
|-----------------------------------------------------------------------|------------|
| <b>Executive Summary.....</b>                                         | <b>iii</b> |
| <b>1 Objective.....</b>                                               | <b>1</b>   |
| <b>2 Introduction .....</b>                                           | <b>3</b>   |
| 2.1 Multi-megawatt Offshore Wind Turbines .....                       | 3          |
| 2.2 Review of the 3-bladed 5 MW wind turbine.....                     | 3          |
| 2.3 Comparison of Two-blade and Three-blade Wind Turbines .....       | 5          |
| 2.4 Offshore Foundation Types .....                                   | 6          |
| 2.5 Outline of This Report.....                                       | 6          |
| <b>3 Turbine Design Methodology .....</b>                             | <b>8</b>   |
| 3.1 Design Requirements and Procedure.....                            | 8          |
| 3.2 Optimization Formulation.....                                     | 11         |
| 3.3 Available Design Tools and Methods .....                          | 11         |
| 3.4 Overview of the Preliminary Design of Wind Turbine .....          | 13         |
| <b>4 Computational Design Tool Development .....</b>                  | <b>16</b>  |
| 4.1 Development of FAST Simulation Manager (FAST_SM) .....            | 16         |
| 4.2 DLC Post-processor .....                                          | 18         |
| 4.3 FAST_ICE .....                                                    | 18         |
| 4.4 Method for Fatigue Life Assessment.....                           | 26         |
| 4.5 Controller Generation Code .....                                  | 29         |
| 4.6 Simulation Based Annual Energy Production Estimation Method ..... | 30         |
| 4.7 Cost Estimation and System Modeling Code.....                     | 34         |
| <b>5 Modeling of Environment and Design Loads.....</b>                | <b>36</b>  |
| 5.1 Wind Turbine and Foundation Design Standards .....                | 36         |
| 5.2 Study Site.....                                                   | 37         |
| 5.3 Environmental Conditions .....                                    | 37         |
| 5.3.1 Wind & Wave.....                                                | 37         |
| 5.3.2 Ice Condition .....                                             | 53         |
| 5.3.3 Soil Condition.....                                             | 59         |
| 5.4 Definition of IEC Design Load Cases .....                         | 60         |
| <b>6 Design of 2-bladed Downwind Turbine .....</b>                    | <b>64</b>  |
| 6.1 Design Approach.....                                              | 64         |
| 6.2 Rotor Design .....                                                | 66         |
| 6.2.1 Blade Aerodynamic Design.....                                   | 66         |
| 6.2.2 Blade Structural Design .....                                   | 68         |
| 6.2.3 Shaft Tilt and Cone Angles .....                                | 71         |
| 6.2.4 Teeter Mechanism Properties .....                               | 73         |
| 6.3 Power Control Method .....                                        | 81         |
| 6.4 Tower Properties .....                                            | 83         |
| 6.5 Dynamic Characteristics of Tower and Blade.....                   | 84         |
| 6.6 Modeling Tower Shadow Effects .....                               | 87         |
| <b>7 Foundation Design.....</b>                                       | <b>92</b>  |
| 7.1 Importance of Modeling Tower and Foundation Interaction .....     | 92         |
| 7.2 Loads Transmitted From Monopole to Foundation .....               | 96         |
| 7.3 Foundation Design .....                                           | 98         |
| 7.4 Description of Foundation .....                                   | 105        |
| <b>8 Cost Model.....</b>                                              | <b>107</b> |
| 8.1 Model Descriptions .....                                          | 107        |
| 8.1.1 Baseline 3-Bladed Design (3B) .....                             | 108        |
| 8.1.2 UT Design (2BUT) .....                                          | 110        |

|                                                     |                                                         |            |
|-----------------------------------------------------|---------------------------------------------------------|------------|
| 8.1.3                                               | Optimized Design (2BOPT) .....                          | 112        |
| 8.2                                                 | Summary.....                                            | 114        |
| <b>9</b>                                            | <b>Results and Discussion .....</b>                     | <b>115</b> |
| 9.1                                                 | Analysis of Turbine Designs.....                        | 115        |
| 9.1.1                                               | Number of Blades .....                                  | 124        |
| 9.1.2                                               | Upwind/Downwind Configuration .....                     | 127        |
| 9.1.3                                               | Blade Design .....                                      | 129        |
| 9.1.4                                               | Shaft Tilt and Conning Angles .....                     | 133        |
| 9.1.5                                               | Teeter .....                                            | 135        |
| 9.1.6                                               | Brakes .....                                            | 138        |
| 9.1.7                                               | Summary of Simulation Results .....                     | 141        |
| 9.1.8                                               | Fatigue Life Estimation.....                            | 147        |
| 9.2                                                 | Loads Applied to the Foundation .....                   | 156        |
| 9.3                                                 | Analysis of System Performance and Cost .....           | 159        |
| 9.3.1                                               | Annual Energy Production in Lake Erie Environment ..... | 159        |
| 9.3.2                                               | Cost Model Results and Discussion.....                  | 161        |
| 9.3.3                                               | Proposed Final Design .....                             | 169        |
| 9.4                                                 | Summary.....                                            | 175        |
| <b>10</b>                                           | <b>Educational Program Development.....</b>             | <b>176</b> |
| 10.1                                                | Curriculum Development .....                            | 176        |
| 10.2                                                | Training and Outreach.....                              | 180        |
| <b>11</b>                                           | <b>Summary and Conclusion .....</b>                     | <b>181</b> |
| <b>References.....</b>                              |                                                         | <b>183</b> |
| <b>Appendix.....</b>                                |                                                         | <b>187</b> |
| Appendix 1: Wind Turbine Models .....               | 187                                                     |            |
| Appendix 2: Tower Structural Models .....           | 187                                                     |            |
| Appendix 3: NREL 5MW Baseline Blade Geometry .....  | 194                                                     |            |
| Appendix 4: Definition of Load Effects .....        | 197                                                     |            |
| Appendix 5: Safe Limit .....                        | 200                                                     |            |
| Appendix 6: Load Effect Graph.....                  | 201                                                     |            |
| Appendix 7: Weighted Percent Difference Graph ..... | 203                                                     |            |
| Appendix 8: Load Effect Results .....               | 207                                                     |            |
| Appendix 9: Publications .....                      | 233                                                     |            |

# List of Figures

|                                                                                                                                          |    |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 3.1. Computational tools used for wind turbine design .....                                                                       | 14 |
| Figure 4.1. FAST_SM simulation process.....                                                                                              | 17 |
| Figure 4.2. Sample Ice Properties Input File.....                                                                                        | 22 |
| Figure 4.3. Suggested Dynamic Horizontal Load Profile from [IEC 61400-3, 2009].....                                                      | 23 |
| Figure 4.4. Ice keel effective height .....                                                                                              | 24 |
| Figure 4.5. Foundation Base Bending Moment for a 61.8cm thick ice sheet, for the two ice breaking cones.....                             | 25 |
| Figure 4.6. Foundation Base Bending Moment for 92.7 cm thick ice sheet and 11.2 m deep keel, for the upward cone and downward cone. .... | 26 |
| Figure 4.7. Controller generation code block diagram. ....                                                                               | 29 |
| Figure 4.8. Histogram and PDF of wind speeds at buoy 45005 at 90m height. ....                                                           | 31 |
| Figure 4.9. Block Diagram of Cost Estimation Code. ....                                                                                  | 35 |
| Figure 5.1 Different wind load cases and the tools to generate them. ....                                                                | 37 |
| Figure 5.2 Cleveland water intake crib.....                                                                                              | 38 |
| Figure 5.3 Picture of the buoy.....                                                                                                      | 39 |
| Figure 5.4. Location of the reference buoy in Lake Erie. ....                                                                            | 39 |
| Figure 5.5. Scatter diagram of wind speed versus significant wave height for the data recorded in 2002.40                                |    |
| Figure 5.6. Wind rose from year 1980 to 1994 (measured at the NOAA buoy 45005).....                                                      | 42 |
| Figure 5.7. Wind rose from year 1995 to 2008 (measured at the NOAA buoy 45005).....                                                      | 42 |
| Figure 5.8. Wind rose for period of 1995-2008. ....                                                                                      | 43 |
| Figure 5.9. Frequency Rose for Crib data.....                                                                                            | 44 |
| Figure 5.10. The CDF of a) wind speed b) significant wave height (Hs).....                                                               | 45 |
| Figure 5.11. The PDF of wind speed and significant wave height.....                                                                      | 46 |
| Figure 5.12. Simulated and observed values of the wind speed and significant wave height (Hs) for the Lake Erie site. ....               | 47 |
| Figure 5.13. The PDF of significant wave height and period. ....                                                                         | 47 |
| Figure 5.14. Simulated and observed values of the wave period (Tp) and significant wave height (Hs) for Lake Erie site. ....             | 48 |
| Figure 5.15. Observed data along with 1000 pair simulated data. ....                                                                     | 49 |
| Figure 5.16. Ice coverage over winter in the Great Lakes. ....                                                                           | 53 |
| Figure 5.17. Ice floe in Lake Erie 2011. ....                                                                                            | 54 |
| Figure 5.18. Ice ridge.....                                                                                                              | 54 |
| Figure 5.19. Ice thickness over Lake Erie.....                                                                                           | 55 |
| Figure 5.20: Predicted Ice Thicknesses from Cumulative Freezing Degree Days. ....                                                        | 56 |
| Figure 5.21. Maximum value of cumulative FDDs for winter seasons 1984-2011 for two Lake Erie sites.....                                  | 57 |
| Figure 5.22. Calculated Ice Thickness from FDD data for winter seasons 1984-2011 for two Lake Erie sites.....                            | 57 |
| Figure 5.23. Weibull Distribution fit onto Cumulative FDD Data.....                                                                      | 58 |
| Figure 5.24. Substrates off the coast of Cleveland. ....                                                                                 | 59 |
| Figure 5.25. Soil condition at the site location.....                                                                                    | 60 |
| Figure 6.1. Flowchart for 2-bladed turbine design methodology. ....                                                                      | 65 |
| Figure 6.2. Chord length and twist distribution of baseline and 2BOPT blades. ....                                                       | 67 |
| Figure 6.3. Chord length and twist distribution of baseline and 2BUT blades. ....                                                        | 67 |

|                                                                                                                                                                                                                                                                                       |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 6.4. NREL 5MW reference blade chord distribution along pitch axis. ....                                                                                                                                                                                                        | 69  |
| Figure 6.5. Thickness-to-chord ratio distribution of NREL 5MW reference blade. ....                                                                                                                                                                                                   | 69  |
| Figure 6.6. Normalized airfoil coordinates of NREL 5MW reference blade near root. The “Transition” indicates the cross-sectional shape transitioning from an ellipse to DU-99-W-405 airfoil and the percentages are the percent thickness relative to cylindrical cross-section. .... | 70  |
| Figure 6.7. Normalized airfoil coordinates of NREL 5MW reference blade. ....                                                                                                                                                                                                          | 70  |
| Figure 6.8. Illustration of tilt and cone angles. ....                                                                                                                                                                                                                                | 71  |
| Figure 6.9. Schematic of a teetered rotor. ....                                                                                                                                                                                                                                       | 73  |
| Figure 6.10. Free vibration of 2-bladed rotor with only teeter DOF enabled for different cases as shown in Table 6.2. ....                                                                                                                                                            | 74  |
| Figure 6.11. Free vibration of 2-bladed rotor with all DOFs enabled for different cases as shown in Table 6.2. ....                                                                                                                                                                   | 75  |
| Figure 6.12. Free vibration of 2-bladed rotor with only teeter DOF enabled for different cases as shown in Table 6.4. ....                                                                                                                                                            | 76  |
| Figure 6.13. Free vibration of 2-bladed rotor with all DOFs enabled for different cases as shown in Table 6.4. ....                                                                                                                                                                   | 77  |
| Figure 6.14. Out-of-plane bending moment at the root of the blade with teeter on/off. ....                                                                                                                                                                                            | 78  |
| Figure 6.15. Hub-height wind speed. ....                                                                                                                                                                                                                                              | 78  |
| Figure 6.16. Teeter angle comparisons for various teeter parameters in normal operating condition, fault condition and parked condition. ....                                                                                                                                         | 80  |
| Figure 6.17. Minimum tower to blade clearance comparisons for various teeter parameters in normal operating condition and fault condition. ....                                                                                                                                       | 80  |
| Figure 6.18. Campbell diagram of 3-bladed upwind turbine. ....                                                                                                                                                                                                                        | 85  |
| Figure 6.19. Campbell diagram of 2-bladed upwind turbine. ....                                                                                                                                                                                                                        | 86  |
| Figure 6.20. Campbell diagram of 2-bladed downwind turbine. ....                                                                                                                                                                                                                      | 86  |
| Figure 6.21. Velocity deficit for tower diameter of 1.88 m and wind speed equal to 5 m/s. ....                                                                                                                                                                                        | 88  |
| Figure 6.22. Velocity deficit for tower diameter 1.88 m and wind speed equal to 10 m/s. ....                                                                                                                                                                                          | 88  |
| Figure 6.23. Velocity deficit for tower diameter 1.88 m and wind speed equal to 15 m/s. ....                                                                                                                                                                                          | 89  |
| Figure 6.24. Velocity deficit for tower diameter 1.88 m and wind speed equal to 20 m/s. ....                                                                                                                                                                                          | 89  |
| Figure 6.25. Velocity deficit for tower diameter 1.88 m and wind speed equal to 25 m/s. ....                                                                                                                                                                                          | 90  |
| Figure 7.1. Steps to characterize soil-tower stiffness matrix. ....                                                                                                                                                                                                                   | 93  |
| Figure 7.2. Tower top displacement in fore-aft direction under fault and normal condition. ....                                                                                                                                                                                       | 94  |
| Figure 7.3. Fore-aft bending moment at the base of tower under fault and normal condition. ....                                                                                                                                                                                       | 95  |
| Figure 7.4. Tower top side-to-side displacement under fault and normal condition. ....                                                                                                                                                                                                | 95  |
| Figure 7.5. Gravity base foundation. ....                                                                                                                                                                                                                                             | 96  |
| Figure 7.6. Wave conditions based on IEC 61400-3 standard. ....                                                                                                                                                                                                                       | 98  |
| Figure 7.7. Selecting suitable wave kinematic model based on water depth and wave height. ....                                                                                                                                                                                        | 100 |
| Figure 7.8. Location of hindcast data stations. ....                                                                                                                                                                                                                                  | 101 |
| Figure 7.9. Variation of horizontal forces and concrete volumes with ice cone angle. ....                                                                                                                                                                                             | 104 |
| Figure 7.10. GBF dimensions. ....                                                                                                                                                                                                                                                     | 106 |
| Figure 8.1. Transportation assumption 3 and 2 blades. ....                                                                                                                                                                                                                            | 111 |
| Figure 8.2. Installation assumption. ....                                                                                                                                                                                                                                             | 112 |
| Figure 9.1. Variations of wind turbine configuration models. ....                                                                                                                                                                                                                     | 116 |
| Figure 9.2. Weighted % difference of average load effects under normal operating, fault, and parked conditions. ....                                                                                                                                                                  | 121 |
| Figure 9.3. Weighted % difference of maximum load effects under normal operating, fault, and parked conditions. ....                                                                                                                                                                  | 121 |

|                                                                                                                                                                  |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 9.4. Torques in HSS under normal operating, fault, and parked conditions. ....                                                                            | 122 |
| Figure 9.5. Torques of generator under normal operating, and fault conditions. ....                                                                              | 122 |
| Figure 9.6. Minimum tower-to-blade clearances under normal operating, fault, and parked conditions. ....                                                         | 123 |
| Figure 9.7. Maximum and minimum teeter angles under normal operating, fault, and parked conditions. ....                                                         | 123 |
| Figure 9.8. Axial forces and torsional moments at blade root of the 5MW wind turbines under normal operating conditions. ....                                    | 125 |
| Figure 9.9. Axial forces and torsional moments at blade roots of the 5MW wind turbines under fault conditions. ....                                              | 126 |
| Figure 9.10. Comparison of the load effects at the blade roots of 3-bladed upwind, 2-bladed upwind and downwind turbines under normal operating conditions. .... | 128 |
| Figure 9.11. Comparisons of load effects at the tower base for different blade designs under normal operating conditions. ....                                   | 131 |
| Figure 9.12. Comparisons of load effects at the tower top for different blade designs under normal operating conditions. ....                                    | 131 |
| Figure 9.13. Comparisons of load effects at the blade roots for different blade designs under normal operating conditions. ....                                  | 132 |
| Figure 9.14. Tower base load effect comparisons for application of teeter mechanism under normal operating conditions. ....                                      | 136 |
| Figure 9.15. Tower top load effect comparisons for application of teeter mechanism under normal operating conditions. ....                                       | 136 |
| Figure 9.16. Torsional moments at tower base under fault conditions. ....                                                                                        | 137 |
| Figure 9.17. Tower top load effect comparisons for application of teeter mechanism under fault conditions. ....                                                  | 137 |
| Figure 9.18. Torsional moments at tower top under fault conditions. ....                                                                                         | 139 |
| Figure 9.19. Shear forces at blade roots under fault conditions. ....                                                                                            | 140 |
| Figure 9.20. Average damage accumulation at critical turbine location. ....                                                                                      | 147 |
| Figure 9.21. Relative damage accumulation at the critical turbine location of each turbine. ....                                                                 | 148 |
| Figure 9.22. Average damage at tower base. ....                                                                                                                  | 149 |
| Figure 9.23. Relative damage at tower base. ....                                                                                                                 | 150 |
| Figure 9.24. Average damage at tower top. ....                                                                                                                   | 150 |
| Figure 9.25. Relative damage at tower top. ....                                                                                                                  | 151 |
| Figure 9.26. Average damage at blade root. ....                                                                                                                  | 152 |
| Figure 9.27. Relative damage at blade root. ....                                                                                                                 | 152 |
| Figure 9.28. Average damage at LSS. ....                                                                                                                         | 153 |
| Figure 9.29. Relative damage at LSS. ....                                                                                                                        | 154 |
| Figure 9.30. Average damage due to bending moment at tower base, tower top, blade root, and LSS. ....                                                            | 154 |
| Figure 9.31. Average damage due to shear force at LSS, tower base, tower top, and blade root. ....                                                               | 155 |
| Figure 9.32. Average damage due to axial force at LSS, tower base, tower top, and blade root. ....                                                               | 155 |
| Figure 9.33. Average damage due to torsional moment at tower base, tower top, blade root, and LSS. ....                                                          | 156 |
| Figure 9.34. AEP comparisons of wind turbine models. ....                                                                                                        | 160 |
| Figure 9.35. Total mass to rotor. ....                                                                                                                           | 162 |
| Figure 9.36. Total mass to drivetrain. ....                                                                                                                      | 163 |
| Figure 9.37. Total cost to rotor. ....                                                                                                                           | 164 |
| Figure 9.38. Total cost to foundation. ....                                                                                                                      | 164 |
| Figure 9.39. Total BOS cost to installation cost. ....                                                                                                           | 165 |
| Figure 9.40. Replacement costs blade, gearbox, and generator. ....                                                                                               | 166 |
| Figure 9.41. Annual energy production and system availability. ....                                                                                              | 167 |
| Figure 9.42. Weighted % difference of average loads of final design. ....                                                                                        | 172 |
| Figure 9.43. Weighted % difference of maximum loads of final design. ....                                                                                        | 172 |
| Figure 9.44. Tower base load effects of final design under normal operating conditions. ....                                                                     | 173 |

|                                                                                                                                               |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 9.45. Blade root load effects of final design under normal operating conditions.....                                                   | 173 |
| Figure 9.46. Blade root load effects of final design under fault conditions.....                                                              | 174 |
| Figure 9.47. Torques of final design.....                                                                                                     | 174 |
| Figure 10.1. The Computer Controlled Wind Energy Unit with SCADA (Courtesy of EDIBON).....                                                    | 177 |
| Figure 10.2. Power produced by the wind turbine (W) as a function of the wind speed (m/s) for a six-bladed rotor at various pitch angles..... | 178 |
| Figure 10.3. Same data as in the previous figure shown in non-dimensional variables.....                                                      | 179 |

## List of Tables

|                                                                                                                                   |     |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2.1. Properties of NREL 5 MW baseline wind turbine.....                                                                     | 4   |
| Table 2.2. Nacelle and Hub properties.....                                                                                        | 4   |
| Table 2.3. Natural frequencies of the baseline NREL 5WM turbine.....                                                              | 5   |
| Table 3.1. NREL 5MW 3-bladed baseline wind turbine model description.....                                                         | 8   |
| Table 3.2. Main features of the 2-bladed concept wind turbine design.....                                                         | 10  |
| Table 3.3. Primary components and their subsystems of 2-bladed turbine system.....                                                | 10  |
| Table 4.1. Turbine input features required for damage calculation.....                                                            | 27  |
| Table 4.2. Ultimate loading on turbine components.....                                                                            | 27  |
| Table 4.3. Annual energy production comparison of theory and simulation values.....                                               | 34  |
| Table 5.1. Main buoy characteristics.....                                                                                         | 39  |
| Table 5.2. Extreme wind, wave and period.....                                                                                     | 41  |
| Table 5.3. Extreme 50-year wind and wave.....                                                                                     | 49  |
| Table 5.4. Extreme 50-year wind at hub height considering shear factor.....                                                       | 49  |
| Table 5.5. Spectral period.....                                                                                                   | 50  |
| Table 5.6. Extreme 50-year wind, wave with associated spectral period.....                                                        | 50  |
| Table 5.7. Extreme 50-year wind, wave with associated spectral period.....                                                        | 50  |
| Table 5.8. Conservative estimation of the thickness of the soil strata available for load bearing at the different locations..... | 60  |
| Table 5.9. Estimated wind and wave condition parameters.....                                                                      | 61  |
| Table 5.10. Selected subset DLCs wind conditions.....                                                                             | 62  |
| Table 6.1. TSR and Cp of various wind turbine configurations.....                                                                 | 67  |
| Table 6.2. Different teeter parameters with constant stiffness.....                                                               | 74  |
| Table 6.3. Damping ratios corresponding to Table 6.2.....                                                                         | 75  |
| Table 6.4. Different teeter parameters with constant damping.....                                                                 | 76  |
| Table 6.5. Damping ratio corresponding to Table 6.4.....                                                                          | 77  |
| Table 6.6. List of teeter parameter sets.....                                                                                     | 79  |
| Table 6.7. Tip-Speed-Ratio and Cp values.....                                                                                     | 81  |
| Table 6.8. Rated rpm and Rated Wind Speed.....                                                                                    | 82  |
| Table 6.9. Constant Inputs for .dll Controller.....                                                                               | 82  |
| Table 6.10. Tower natural frequencies.....                                                                                        | 84  |
| Table 6.11. Percent difference of tower natural frequencies.....                                                                  | 84  |
| Table 6.12. Blade natural frequencies at 0 RPM.....                                                                               | 85  |
| Table 6.13. Summary of the parameters to model tower shadow effects (ref distance 4 m).....                                       | 90  |
| Table 7.1. Summary of turbine loads at the base of the tower.....                                                                 | 97  |
| Table 7.2. Design Water Levels.....                                                                                               | 100 |
| Table 7.3. Water depth and design wave heights.....                                                                               | 101 |
| Table 7.4. Load Cases and corresponding results that are used to design the GBF.....                                              | 102 |
| Table 7.5. Ice properties.....                                                                                                    | 103 |
| Table 7.6. Summary of ice loads.....                                                                                              | 103 |
| Table 8.1. Baseline (3B) NREL 5 MW wind turbine.....                                                                              | 108 |
| Table 8.2. Baseline (3B) installation inputs.....                                                                                 | 109 |
| Table 8.3. University of Toledo design (2BUT).....                                                                                | 110 |

|                                                                                                  |     |
|--------------------------------------------------------------------------------------------------|-----|
| Table 8.4. University of Toledo design (2BUT) installation inputs.....                           | 111 |
| Table 8.5. University of Toledo design (2BUT) repair and maintenance assumptions.....            | 112 |
| Table 8.6. Optimized design (2BOPT).....                                                         | 113 |
| Table 8.7. Optimized design (2BOPT) repair and maintenance. ....                                 | 113 |
| Table 9.1. List of wind turbine models.....                                                      | 117 |
| Table 9.2. Wind turbine models used for upwind/downwind comparison. ....                         | 127 |
| Table 9.3. Wind turbine models used for effect of blade design comparison. ....                  | 130 |
| Table 9.4. Wind turbine models used for effects of shaft tilt and conning angle comparison. .... | 133 |
| Table 9.5. Wind turbine models used for effect of brakes comparison. ....                        | 138 |
| Table 9.6. Load effects at tower base under normal operating conditions. ....                    | 141 |
| Table 9.7. Load effects at tower base under fault conditions. ....                               | 141 |
| Table 9.8. Load effects at tower base under parked conditions. ....                              | 142 |
| Table 9.9. Load effects at tower top under normal operating conditions. ....                     | 142 |
| Table 9.10. Load effects at tower top under fault conditions. ....                               | 142 |
| Table 9.11. Load effects at tower top under parked conditions. ....                              | 143 |
| Table 9.12. Load effects at blade roots under normal operating conditions. ....                  | 143 |
| Table 9.13. Load effects at blade roots under fault conditions. ....                             | 143 |
| Table 9.14. Load effects at blade roots under parked conditions. ....                            | 144 |
| Table 9.15. Load effects at LSS under normal operating conditions. ....                          | 144 |
| Table 9.16. Load effects at LSS under fault conditions. ....                                     | 144 |
| Table 9.17. Load effects at LSS under parked conditions. ....                                    | 145 |
| Table 9.18. Torques under normal operating conditions. ....                                      | 145 |
| Table 9.19. Torques under fault conditions. ....                                                 | 145 |
| Table 9.20. Torques under parked conditions. ....                                                | 146 |
| Table 9.21. Minimum tower-to-blade clearance. ....                                               | 146 |
| Table 9.22. Maximum and minimum teeter angle.....                                                | 146 |
| Table 9.23. Lifetime damage at tower base. ....                                                  | 149 |
| Table 9.24. Lifetime damage at tower top. ....                                                   | 149 |
| Table 9.25. Lifetime damage at blade root. ....                                                  | 151 |
| Table 9.26. Lifetime damage at LSS. ....                                                         | 153 |
| Table 9.27. Result data at tower base under normal operating conditions. ....                    | 157 |
| Table 9.28. Result data at tower base under fault conditions. ....                               | 158 |
| Table 9.29. Result data at tower base under parked conditions. ....                              | 158 |
| Table 9.30. AEP comparisons of wind turbine models. ....                                         | 161 |
| Table 9.31. Levelized cost of energy (LCOE) \$/kWhr.....                                         | 161 |
| Table 9.32. Mass comparison (kg/kW).....                                                         | 162 |
| Table 9.33. Cost comparison (\$/kW).....                                                         | 163 |
| Table 9.34. Balance of system (BOS) cost comparison (\$/kW).....                                 | 165 |
| Table 9.35. Repair and maintenance cost comparison (\$/kW).....                                  | 165 |
| Table 9.36. Levelized replacement cost comparison (\$/kW).....                                   | 166 |
| Table 9.37. Annual energy production (AEP) comparison.....                                       | 167 |
| Table 9.38. Levelized cost of energy (LCOE) \$/kWhr.....                                         | 167 |
| Table 9.39. Wind turbine capital cost difference between models.....                             | 168 |
| Table 9.40. Installation capital cost difference between models.....                             | 168 |
| Table 9.41. Configuration of final design. ....                                                  | 169 |
| Table 9.42. Major attributes and responses of final design. ....                                 | 169 |
| Table 9.43. Load effects of final design. ....                                                   | 171 |
| Table 9.44. Torques of final design. ....                                                        | 171 |
| Table 9.45. Fatigue life result of final design. ....                                            | 171 |

## List of Acronyms

|          |                                                                                  |
|----------|----------------------------------------------------------------------------------|
| AEP      | Annual Energy Production                                                         |
| BOPT     | Blade OPTimized (Optimized blade)                                                |
| BOS      | Balance Of System                                                                |
| BUT      | Blade of the University of Toledo                                                |
| CAE      | Computer Aided Engineering                                                       |
| CDF      | Cumulative Density Function                                                      |
| CFD      | Computational Fluid Dynamics                                                     |
| CM       | Center of Mass                                                                   |
| DC       | Direct Current                                                                   |
| DLC      | Design Load Case                                                                 |
| DNV      | Det Norske Veritas                                                               |
| DOF      | Degree Of Freedom                                                                |
| DOWEC    | Dutch Offshore Wind Energy Converter                                             |
| DU       | Delft University                                                                 |
| ECD      | Extreme Coherent gust with Direction change                                      |
| EDC      | Extreme Direction Change                                                         |
| EOG      | Extreme Operating Gust                                                           |
| ESS      | Extreme Sea State                                                                |
| ETM      | Extreme Turbulence Model                                                         |
| EWM      | Extreme Wind speed Model                                                         |
| EWS      | Extreme Wind Shear                                                               |
| FAST     | Fatigue, Aerodynamics, Structures, and Turbulence (NWTC CAE code for HAWTs)      |
| FAST_ICE | Enhanced FAST to model ice loads                                                 |
| FAST_SM  | FAST Simulation Manager                                                          |
| FORTRAN  | FORmular TRANslation programming language                                        |
| GBF      | Gravity Base Foundation                                                          |
| HAWT     | Horizontal Axis Wind Turbine                                                     |
| HSS      | High-speed-shaft                                                                 |
| IEC      | International Electrotechnical Committee                                         |
| LEADERS  | Leadership for Educators: Academy for Driving Economic Revitalization in Science |
| LCOE     | Levelized Cost of Energy                                                         |
| LSS      | Low-speed-shaft                                                                  |
| MIME     | Mechanical, Industrial and Manufacturing Engineering                             |
| NACA     | National Advisory Committee for Aeronautics                                      |
| NAWEA    | North American Wind Energy Academy                                               |
| NDBC     | National Data Buoy Center                                                        |
| NOAA     | National Oceanic and Atmospheric Administration                                  |
| NREL     | National Renewable Energy Laboratory                                             |
| NSS      | Normal Sea State                                                                 |
| NTM      | Normal Turbulence Model                                                          |
| NWP      | Normal Wind Profile model                                                        |

|       |                                          |
|-------|------------------------------------------|
| NWTC  | National Wind Technology Center          |
| PDS   | Project-Based Science                    |
| PDF   | Probability Density Function             |
| RMS   | Root Mean Square                         |
| RPM   | Revolution Per Minute                    |
| SCADA | Supervisory Control And Data Acquisition |
| SNL   | Sandia National Lab                      |
| TAG   | Transfer Assurance Guides                |
| TSR   | Tip Speed Ratio                          |
| USACE | US Army Corps of Engineers               |
| UT    | University of Toledo                     |
| WIS   | Wave Information Studies                 |

# List of Symbols

|                      |                                                                           |
|----------------------|---------------------------------------------------------------------------|
| $A$                  | Swept area                                                                |
| $A_1, A_2, A_3, A_4$ | Dimensionless coefficients for cone angle of ice cone of foundation       |
| $B_1, B_2$           | Dimensionless ice to cone friction coefficients of ice cone of foundation |
| $a$                  | Acceleration                                                              |
| $b$                  | Baseline model                                                            |
| $C$                  | Copula function                                                           |
| $C_D$                | Drag coefficient                                                          |
| $C_M$                | Inertia coefficient                                                       |
| $C_p$                | Coefficient of power                                                      |
| $c$                  | Cohesion within the keel                                                  |
| $D$                  | Diameter                                                                  |
| $D_c$                | Cone diameter at the waterline                                            |
| $D_w$                | Diameter of the structure at the waterline                                |
| $d$                  | Water depth                                                               |
| $D_j^{Life}$         | Extrapolated lifetime damage due to $j^{\text{th}}$ time series           |
| $D_T$                | Diameter at the narrow end of the cone (same as the tower diameter)       |
| $E$                  | Module of elasticity                                                      |
| $E(v)$               | Mean value of $v$                                                         |
| $F$                  | Force                                                                     |
| $F(H_{s50})$         | Probability of not exceeding $H_{s50}$                                    |
| $F(V_{e50})$         | Probability of not exceeding $V_{e50}$                                    |
| $f(v)$               | Probability density function of the wind speed in one year                |
| $FDD$                | Cumulative Freezing Degree-days                                           |
| $F_U, F_V$           | Cumulative distribution functions of $U$ and $V$                          |
| $G$                  | Gravitational acceleration                                                |
| $g$                  | Gravitational acceleration                                                |
| $H$                  | Wave height                                                               |
| $H_d$                | Horizontal force                                                          |
| $H_s$                | Significant wave heights                                                  |
| $H_{s1}$             | 1-year extreme significant wave height                                    |
| $H_{s50}$            | 50-year extreme significant wave height                                   |
| $\bar{H}$            | Mean value of significant wave height                                     |
| $h$                  | Ice sheet thickness                                                       |
| $h_c$                | Consolidated layer thickness                                              |
| $h_{ice}$            | Ice thickness                                                             |
| $h_k$                | Total draft of the keel as measured from the waterline                    |
| $h_{keel}$           | Depth of the ice keel                                                     |
| $I$                  | Moment of inertia                                                         |

|                      |                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| $i$                  | Index of load effect for various load effect types at locations of interest for weighted percent difference calculation |
| $j$                  | Model number                                                                                                            |
| $K$                  | Stiffness matrix                                                                                                        |
| $K_p$                | Passive pressure coefficient of the rubble                                                                              |
| $k$                  | Shape parameter of Weibull distribution                                                                                 |
| $k_l$                | Shape factor of the structure where the ice is hitting it                                                               |
| $k_2$                | Contact factor between the ice and support structure                                                                    |
| $k_3$                | Aspect ratio factor, given as $\sqrt{1 + 5h/D_w}$ , where $h$ is the ice thickness                                      |
| $L$                  | Wave length                                                                                                             |
| $L_{ji}^R$           | Load range about mean $L_{ji}^M$ for $i^{\text{th}}$ cycle in $j^{\text{th}}$ time-series                               |
| $L^{MF}$             | Fixed load-mean                                                                                                         |
| $L^{ult}$            | Ultimate design load of the component                                                                                   |
| $M$                  | Moment                                                                                                                  |
| $m$                  | Wohler exponent of the component                                                                                        |
| $N$                  | Total number of kinds of load effects considered                                                                        |
| $N_{ij}$             | Cycles to failure                                                                                                       |
| $n$                  | Size of the population                                                                                                  |
| $n_{ij}^{Life}$      | Extrapolated cycle counts                                                                                               |
| $P(v)$               | Generated power at a given wind speed                                                                                   |
| $P_r$                | Rated power                                                                                                             |
| $P_w$                | Water density                                                                                                           |
| $(P v_{\text{bin}})$ | Power generated at the wind speed $v_{\text{bin}}$                                                                      |
| $p$                  | Exponent of weight term                                                                                                 |
| $q$                  | Factor that determines the importance of each load effect                                                               |
| $R$                  | Rotor radius                                                                                                            |
| $S$                  | Effect of any surcharge                                                                                                 |
| $s$                  | Scale for normalization                                                                                                 |
| $T$                  | Wave period                                                                                                             |
| $T_p$                | Wave period                                                                                                             |
| $Tp$                 | Power spectral period                                                                                                   |
| $T_p \text{ max}$    | Maximum wave period                                                                                                     |
| $T_p \text{ min}$    | Minimum wave period                                                                                                     |
| $t_c$                | 95% percentile value of the Student distribution                                                                        |
| $V$                  | Wind speed                                                                                                              |
| $V_{e1}$             | 1-year extreme wind speed                                                                                               |
| $V_{e50}$            | 50-year extreme wind speed                                                                                              |
| $V_{\text{hub}}$     | Wind speed at hub height                                                                                                |
| $V_{\text{in}}$      | Cut-in wind speed                                                                                                       |
| $V_{\text{max}}$     | Maximum wind speed                                                                                                      |

|                       |                                                                             |
|-----------------------|-----------------------------------------------------------------------------|
| $V_{\min}$            | Minimum wind speed                                                          |
| $V_{\text{out}}$      | Cut-out wind speed                                                          |
| $V_r$                 | Rated wind speed                                                            |
| $V_T$                 | Measured mean wind speed over period $T$                                    |
| $\bar{V}$             | Average value of the maximum annual speeds                                  |
| $v$                   | Wind speed                                                                  |
| $v_{\text{bin}}$      | Wind speed for a bin                                                        |
| $v_{\text{bin max}}$  | Upper bound of the wind speed of the bin                                    |
| $v_{\text{bin min}}$  | Lower bound of the wind speed of the bin                                    |
| $v_{\text{in}}$       | Cut-in speed                                                                |
| $v_{\text{out}}$      | Cut-out speed                                                               |
| $v_r$                 | Rated wind speed                                                            |
| $W_e$                 | Effective structure width                                                   |
| $X_{50}$              | 50-year extreme wind speed                                                  |
| $x$                   | Penetration distance of the foundation into the keel                        |
| $x_b$                 | x direction of blade root coordinate system                                 |
| $x_p$                 | x direction of tower top coordinate system                                  |
| $x_s$                 | x direction of LSS coordinate system                                        |
| $x_t$                 | x direction of tower base coordinate system                                 |
| $xy_b$                | xy plane of blade root coordinate system                                    |
| $xy_p$                | xy plane of tower top coordinate system                                     |
| $xy_s$                | xy plane of LSS coordinate system                                           |
| $xy_t$                | xy plane of tower base coordinate system                                    |
| $y_b$                 | y direction of blade root coordinate system                                 |
| $y_p$                 | y direction of tower top coordinate system                                  |
| $y_s$                 | y direction of LSS coordinate system                                        |
| $y_t$                 | y direction of tower base coordinate system                                 |
| $z$                   | Hub height                                                                  |
| $z_b$                 | z direction of blade root coordinate system                                 |
| $z_p$                 | z direction of tower top coordinate system                                  |
| $z_r$                 | Height at which the wind speed is measured                                  |
| $z_s$                 | z direction of LSS coordinate system                                        |
| $z_t$                 | z direction of tower base coordinate system                                 |
| $\alpha$              | Exponent of the power law (shear factor)                                    |
| $\beta$               | Wave direction                                                              |
| $\gamma$              | Threshold of 3-parameter lognormal distribution                             |
| $\gamma_{\text{eff}}$ | Effective buoyant density of the keel rubble, including effects of porosity |
| $\delta$              | Threshold of 3-parameter Weibull distribution                               |
| $\delta$              | Displacement                                                                |
| $\theta$              | Angular deformation                                                         |
| $\theta'$             | Dependence variable                                                         |
| $\theta_k$            | Angle that the keel rubble makes with the horizontal                        |
| $\eta_{DT}$           | Efficiency of drive train                                                   |

|            |                                                          |
|------------|----------------------------------------------------------|
| $\eta_m$   | Weighted percent difference                              |
| $\lambda$  | Scale parameter of Weibull distribution                  |
| $\mu$      | Location parameter of 3-parameter lognormal distribution |
| $\xi$      | Load effect value                                        |
| $\varrho$  | Scale parameter of 3-parameter lognormal distribution    |
| $\sigma$   | Standard deviation                                       |
| $\sigma_b$ | Ice bending strength                                     |
| $\sigma_c$ | Crushing strength of the ice                             |
| $\rho$     | Density of air                                           |
| $\rho_w$   | Water density                                            |
| $\phi$     | Cone angle                                               |
| $\phi_f$   | Internal friction angle of the rubble                    |
| $\psi$     | Shaft tilt angle                                         |

# 1 Objective

The objective of the project is to conduct a preliminary design of a downwind 2-bladed rotor turbine concept and to assess its feasibility for application in the Great Lakes. The leveledized cost of energy is used to measure the merit of the design.

The above objectives are achieved by comparing the safety and cost of the following configurations:

1. A 5 MW 3-bladed wind turbine design developed by NREL (NREL 5 MW)
2. 2-bladed upwind and downwind variants of the above turbine

The following tasks were to be completed to achieve the project objective:

1. Design a two-blade upwind, and downwind configuration for the Lake Erie environment. This involves the following steps:
  - o Design the rotor
  - o Develop a power control method. This involves the PI control for the 2-bladed downwind configuration.
  - o Define the blade properties
    - Geometry: blade geometry chord, thickness-to-chord-ratio and twist distribution for the two-blade rotor.
    - Structural properties: mass and stiffness distribution for new blade geometry.
    - Analyze natural frequencies of new blades
  - o Optimize cone and tilt angles to maximize energy production while minimizing the risk of a blade impact with the tower
  - o Define the teeter mechanism properties
  - o Model tower shadow effects
  - o Optimize the blades twist angle
2. Develop or collect the requisite tools to assess the safety and efficiency of the designs in this study. These include:
  - o A simulation manager code that enables the user to create input files for simulations of the turbine operation in an automated fashion
  - o Post processing tools
  - o Add to the FAST code the capability to model ice impact and determine the ice loads
  - o Tune the control algorithm for a 2-bladed rotor configuration
  - o Develop a cost model to compute the leveledized cost of turbine and its components
3. Select the most suitable foundation type and design it
  - o Optimize the dimensions to minimize the wave and ice load effects.

4. Review and model the loading environment at the location of the turbine. Consider the following loads for this purpose:

- Wind
- Wave
- Ice

This step involves estimation of the probability distributions of the wind speed and wave height, and the statistical dependence of these quantities.

5. Perform simulation to assess the load effects on the blades, the tower and the foundation. In this step, the investigators will quantify the risk of failure due to first excursion, fatigue damage accumulation and blade impact. They will compare these risks for the three alternative designs in this project.
6. Consider future opportunities for improving the offshore wind turbine concept. Make a plan to:
  - Optimize the blades, tower, teeter mechanism
  - Develop independent pitch control
  - Estimate the levelized cost of new concepts, which could be more suitable for the Lake Erie environment.

## 2 Introduction

### 2.1 Multi-megawatt Offshore Wind Turbines

This section will cover the following topics:

- Importance of wind energy as a potential renewable energy source
- Limitations of on-shore wind turbines, and potential advantages off-shore turbines
- Challenges in the development of large off-shore wind turbines

The need to harness energy from renewable sources is on the rise. Wind energy has already been recognized as a potential alternative option to traditional energy sources such as coal and nuclear power plants. However, the main challenge for wind energy to compete economically with other relatively cheap energy sources is the reduction of the cost per kWh.

In order to produce wind energy at a comparable cost to that from traditional sources, wind turbines need to produce more power, which demands bigger turbines. However, for onshore wind turbines, the size of the turbine is restricted by the noise concerns as well as their visual impact on the environment.

On the other hand, off-shore wind energy technology is more viable than the onshore wind technology as there are fewer limitations in terms of noise and visual concerns. Off-shore turbines are limited in size only by the availability of appropriate technology.

Yet, the installation and maintenance cost of a conventional large off-shore wind turbines is substantially greater than that of an onshore wind turbine with same power production capacity. Moreover, these turbines are subjected to significantly greater loads than their onshore counterparts. These include loads due to waves and ice impact, whose intensity increases with the turbine size.

Therefore, it is critical to develop new design concepts that are simpler and more economical than traditional designs. Examples include 2-bladed upwind and downwind configurations and flexible, floating designs. In order to study these designs we need accurate computational tools for modeling the loading environment, predicting the applied loads and their effects on an offshore wind turbine, and assessing their structural integrity.

### 2.2 Review of the 3-bladed 5 MW wind turbine

For the purposes of this study, the central basin of Lake Erie defined by a band three to five miles off the Cuyahoga County shore, close to the city of Cleveland, Ohio was considered as the wind turbine site. The water depth at this location varies between 13-17 m. The main sources of environmental data used here are from the National Oceanic and Atmospheric Administration (NOAA) buoy 45005, a wind resource report by Dykes et al., [2008], and a Great Lakes feasibility study document by Marshall et al., [2009]. Both Marshall's and Dykes' studies were

conducted for the same location. To define the load cases, the historical data from the buoy were used in conjunction with the report by Marschall et al., [2009].

To support the research and development in the field of wind energy, the National Renewable Energy Laboratory (NREL) has developed a 5-MW wind turbine concept [Jonkman et al., 2009]. This is a conventional three-bladed upwind variable-speed variable blade-pitch-to-feather-controlled turbine. The properties are summarized in Table 2.1.

**Table 2.1. Properties of NREL 5 MW baseline wind turbine.**

|                                   |                                  |
|-----------------------------------|----------------------------------|
| Rating                            | 5 MW                             |
| Rotor Orientation, Configuration  | Upwind, 3 Blades                 |
| Control                           | Variable Speed, Collective Pitch |
| Rotor, Hub Diameter               | 126 m, 3 m                       |
| Hub Height                        | 90 m                             |
| Cut-In, Rated, Cut-Out Wind Speed | 3, 11.4, 25 m/s                  |
| Rated Rotor Speed                 | 12.1 RPM                         |
| Rotor Mass                        | 110 tons                         |
| Nacelle Mass                      | 240 tons                         |
| Tower Mass                        | 347.5 tons                       |

The structural properties of the blades in the NREL concept are based on the properties of the blades from the Dutch Offshore Wind Energy Converter (DOWEC) concept project [Kooijman et al., 2003]. The rated power of the DOWEC project is 6 MW, so the blades were adjusted for 5 MW rated power. The structural properties of the blades at different sections are summarized in Jonkman et al., [2009]. The aerodynamic properties of the airfoils used in the blades are also based on the concept developed by DOWEC [Kooijman et al., 2003].

The Nacelle and the Hub properties of the NREL concept are summarized in Table 2.2.

**Table 2.2. Nacelle and Hub properties [Jonkman et al., 2009].**

|                                                            |                             |
|------------------------------------------------------------|-----------------------------|
| Elevation of Yaw Bearing above Ground                      | 87.6 m                      |
| Vertical Distance along Yaw Axis from Yaw Bearing to Shaft | 1.96256 m                   |
| Distance along Shaft from Hub Center to Yaw Axis           | 5.01910 m                   |
| Distance along Shaft from Hub Center to Main Bearing       | 1.912 m                     |
| Hub Mass                                                   | 56.780 kg                   |
| Hub Inertia about Low-Speed Shaft                          | 115,926 kg.m <sup>2</sup>   |
| Nacelle Mass                                               | 240,000 kg                  |
| Nacelle Inertia about Yaw Axis                             | 2,607,890 kg.m <sup>2</sup> |
| Nacelle CM Location Downwind of Yaw Axis                   | 1.9 m                       |
| Nacelle CM Location above Yaw Bearing                      | 1.75 m                      |
| Equivalent Nacelle-Yaw-Actuator Linear-Spring Constant     | 9,028,320,000 Nm/rad        |
| Equivalent Nacelle-Yaw-Actuator Linear-Damping Constant    | 19,160,000 Nm/(rad/s)       |
| Nominal Nacelle-Yaw Rate                                   | 0.3 °/s                     |

The tower structure of the land based NREL 5 MW concept consists of a tapering tube with the top diameter of 3.87 m and the thickness of 19 mm. The base diameter is circular with the diameter equal to 6 m and the thickness equal to 27 mm. The modulus of elasticity was assumed to be 210 GPa, the shear modulus was assumed to be 80.8 GPa, and the density of the steel was

considered to be  $8,500 \text{ kg/m}^3$  [Jonkman et al., 2009]. For more information about the tower distributed properties refer to Table 2.1,2 in Jonkman et al., [2009].

The NREL 5 MW baseline design consists of two major controllers. The blade-pitch controller regulates the generator speed above the rated operating point. Other controller acts below rated operating point and tries to maximize capturing energy by controlling the torque in the generator. More detail can be found in Section 7.3 as well as in Jonkman et al., [2009] and Jonkman [2007] with regards to developing those controllers.

The full system natural frequencies can be obtained either by FAST or by MSC ADAMS as shown in Table 2.3.

**Table 2.3. Natural frequencies of the baseline NREL 5WM turbine [Jonkman et al., 2009].**

| Mode | Description                                     | FAST   | ADAMS  |
|------|-------------------------------------------------|--------|--------|
| 1    | 1 <sup>st</sup> Tower fore-aft                  | 0.3240 | 0.3195 |
| 2    | 1 <sup>st</sup> Tower side-to-side              | 0.3120 | 0.3164 |
| 3    | 1 <sup>st</sup> Drivetrain torsional            | 0.6205 | 0.6094 |
| 4    | 1 <sup>st</sup> Blade asymmetric flapwise yaw   | 0.6664 | 0.6296 |
| 5    | 1 <sup>st</sup> Blade asymmetric flapwise pitch | 0.6675 | 0.6686 |
| 6    | 1 <sup>st</sup> Blade collective flap           | 0.6993 | 0.7019 |
| 7    | 1 <sup>st</sup> Blade asymmetric edgewise pitch | 1.0793 | 1.0740 |
| 8    | 1 <sup>st</sup> Blade asymmetric edgewise yaw   | 1.0898 | 1.0877 |
| 9    | 2 <sup>nd</sup> Blade asymmetric flapwise yaw   | 1.9337 | 1.6507 |
| 10   | 2 <sup>nd</sup> Blade asymmetric flapwise pitch | 1.9223 | 1.8558 |
| 11   | 2 <sup>nd</sup> Blade collective flap           | 2.0205 | 1.9601 |
| 12   | 2 <sup>nd</sup> Tower fore-aft                  | 2.9003 | 2.8590 |
| 13   | 2 <sup>nd</sup> Tower side-to-side              | 2.9361 | 2.9408 |

### 2.3 Comparison of Two-blade and Three-blade Wind Turbines

In turbine design, number of blade is a major consideration. While most modern wind turbines have three blades, the idea of reducing one blade arose primarily from cost reduction point of view. Ideally, one less blade means less weight and hence less overall cost. Also each blade causes wake for the other blades, in that respect 2-bladed turbines are advantageous over 3-bladed turbines. However in reality, number of blades on a wind turbine is a trade-off and both 2-bladed and 3-bladed turbines have their advantages and disadvantages.

Because of one less blade, a 2-bladed turbine has lower loads on the gear box and hence lower torque so lighter components such as tower, low speed shaft can be used for 2-bladed turbines. But, in order to produce the same amount of energy, a 2-bladed rotor has to rotate faster than a 3-bladed rotor which increases blade noise and causes more loads on blades. Downwind configuration of a rotor can be advantageous as the blades can be coned away from the tower and reduces chance of impact between the blade and the tower. Coning of rotor helps balancing the centrifugal forces on the blades with the thrust from the wind. On the other hand downwind turbines produce unpleasant noise as the blades rotate past the tower.

The pros and cons of 2-bladed vs. 3-bladed turbines is further discussed in Section 3.1

## 2.4 Offshore Foundation Types

There are three foundation categories for offshore wind:

- Shallow Water (up to 30 m depth)
- Transitional (between 30 and 60 m depth)
- Deep Water (beyond 60 m)

There are two main types of Shallow Water foundations:

- Monopole (steel is driven into sea floor)
- Gravity Foundation (uses concrete and gravity to keep it in place)

There are many different designs for transitional foundations. Transitional foundations are not commonly used. A few designs are:

- Tripod Tube Steel
- Guyed Tube (Guy wires are used to keep tower stable)
- Truss
- Suction Bucket

Deep Water foundations are also called floating foundations. This is the leading edge of wind turbine technology. There are two floating foundations in operation (Hywind in Norway, and WindFloat in Portugal). A floating foundation possibly offers the benefit of putting wind turbines out of site of the coast line.

Lake Erie is a shallow fresh water lake. It is known to freeze over during winter. For this reason, a gravity foundation is considered the best option. A gravity foundation offers the benefit of an ice cone. An ice cone is an angled structure that dissipates the load effects of ice impact. Similar technology was used in the fresh water lake wind turbine installation in Lake Vanern, Sweden.

## 2.5 Outline of This Report

The rest of this report is organized as follows. Chapter 3 first provides an overview of a general methodology for the preliminary design of an offshore wind turbine and the application of this methodology to develop a downwind 2-bladed wind turbine concept. Then it briefly describes the computational tools that are used for preliminary design of the wind turbine. These include a preprocessor and a postprocessor for performing FAST simulations, a code for calculation of ice loads, fatigue analysis software, blade pitch controllers and programs for estimation of the annual energy production and cost of annual energy. Chapter 4 provides detailed descriptions of these computational tools.

Chapter 5 describes the tentative site of the turbine, and provides an overview of the loading environment. Then it describes a methodology to estimate the probability distributions of the wind and waves using NOAA data. Ice loads are an important consideration in the design of the

foundation. A method for modeling these loads and estimating the applied forces on the foundation is presented in the same chapter. Chapter 5 explains the design load cases for both the foundation and the turbine. These are based on the DNV standards (foundation) and the IEC standards (turbine).

Chapter 6 explains the design of the 2-bladed downwind turbine. This process is applied to the rotor, power control method, tower and blades. Chapter 7 describes the design of the gravity foundation.

Cost of energy is the critical attribute of a turbine design, besides safety. Chapter 8 provides a methodology for cost estimation. Then it applies it to the estimation the cost of the proposed 2-bladed design, and optimized version thereof. It also estimates the cost of a tentative design on a floating foundation.

Chapter 9 presents and discusses the results of the assessment of safety and cost of the alternative designs in this project. The chapter has four sections. The performance of the wind turbines in this study is presented in Section 9.1. This includes analyses and comparisons of maximum forces and moments, fatigue life, tower-to-blade clearance and teeter angle of various wind turbine models. In addition, the effect of changes in the number of blades, rotor position relative to the tower (upwind and downwind), teeter parameters, rotor brake, shaft tilt and cone angles, and changes in the blade designs are discussed. Section 9.2 presents the forces and moments applied to the foundation for the three turbine configurations in the project. Section 9.3 presents and compares the annual energy production and cost of energy. Based on the results, a final 2-bladed downwind design is proposed. Chapter 10 presents the development of the wind energy educational program during the project, including the curriculum activities completed and hands-on laboratory experiments advanced. The chapter also discusses the academic and outreach activities conducted during the course of this project. Finally, Chapter 11 summarizes the main observations and conclusions.

## 3 Turbine Design Methodology

Wind turbines must compete with alternative systems for energy production such as fossil fuel and nuclear power plants. A wind turbine must be designed to produce energy at a low cost and operate safely over its lifetime. Therefore, it is critical for a designer to have a suite of accurate and efficient computational tools for prediction of turbine loads and estimation of the cost of energy.

This chapter consists of four sections. Section 3.1 is an overview of a general methodology for the preliminary design of an offshore wind turbine and the application of this methodology to develop a downwind 2-bladed wind turbine concept for this project. In Section 3.2, optimization formulation is outlined. Section 3.3 lists the computational tools that are used for preliminary design of the wind turbine. An overview of the preliminary design of wind turbine is outlined in Section 3.4 of this chapter.

### 3.1 Design Requirements and Procedure

Section 3.1 presents an overview of the preliminary design methodology in this project. Manwell et al., [2009], describe a wind turbine preliminary design methodology consisting of eight steps. The first is the selection of the site of the turbine. In this project, the turbine is designed to be installed at a location in Lake Erie approximately 10 miles off the coast of Cleveland, Ohio. The design rated power of the wind turbine is 5 MW.

**Table 3.1. NREL 5MW 3-bladed baseline wind turbine model description [Jonkman, 2009].**

| Feature                                | Description                                    |
|----------------------------------------|------------------------------------------------|
| Rating                                 | 5 MW                                           |
| Wind Regime                            | IEC 61400-3 (Offshore) Class 1B/ Class 6 winds |
| Rotor Orientation and Number of Blades | Upwind, 3 blades                               |
| Control                                | Variable Speed, Collective Pitch               |
| Drivetrain                             | High speed, Multiple-stage gearbox             |
| Rotor Diameter/ Hub Diameter           | 126m/ 3m                                       |
| Hub Height / Design                    | 90m / Rigid hub                                |
| Maximum Rotor/ Generator Speed         | 12.1 rpm / 1,173.7 rpm                         |
| Maximum Tip Speed                      | 80 m/s                                         |
| Overhang/ Shaft Tilt/ Precone          | - 5 m/ - 5 deg/ - 2.5 deg                      |
| Rotor Mass                             | 110,000 Kg                                     |
| Nacelle Mass                           | 240,000 Kg                                     |
| Tower Mass (Deep water)                | 347,460 kg                                     |
| Reference Site                         | National Data Buoy Center (NDBC) Buoy 44008    |
| Cut-in, rated, cut-out wind speed      | 3 m/s, 11.4 m/s, 25 m/s                        |
| Cut-in, rated rotor speed              | 6.9 rpm, 12.1 rpm                              |

Previous designs are identified and reviewed in the second step. The proposed design concept is developed by modifying the NREL 5 MW reference turbine [Jonkman, 2009]. This turbine has been studied extensively, and thus provides an excellent baseline design for comparative evaluation of the proposed downwind 2-bladed wind turbine concept. Table 3.1 shows the main characteristics of the NREL reference wind turbine.

In the third step, the overall layout of the design is defined. In this study, the rotor arrangement was selected to be a downwind configuration and the number of blades was specified as two. The bending moments in the blades of a downwind rotor are lower than those in an upwind rotor. This is because of the counteraction of the centrifugal and wind induced bending moments. Moreover, because the blades deform away from the tower under wind loads, they are less likely to hit the tower during the normal turbine operation. Reducing the number of blades from three to two has potential cost savings; however, 2-bladed rotor wind turbines are typically rotating faster than a 3-bladed counterpart in order to produce comparable power. This increases the blade loads. Also the cyclic rotor thrust variations are higher for 2-bladed machines because of their faster rotation. Finally, faster rotation of a 2-bladed turbine may appear more disturbing to an observer than the rotation of a 3-bladed turbine.

As will be shown later, a 2-bladed wind turbine, rigid-hub design does not provide significant performance benefits over a 3-bladed machine of the same rotor diameter. However, introducing a teeter mechanism between the rotor and the low-speed shaft can yield potential benefits. A teeter mechanism reduces the out-of-plane fatigue loading on the rotor blade. Also the teeter hinge prevents the out-of-plane rotor aerodynamic moments to transfer to the low speed shaft, resulting in large reductions in the operational loads on the shaft, nacelle and yaw drive.

The fatigue life of the components of a 2-bladed turbine must be carefully evaluated. The turbine blades and the low speed shaft are examples of such components. In preliminary design fatigue loading is quantified by the Damage Equivalent Load (DEL) which is defined as the equivalent constant-amplitude load that inflicts the same fatigue damage as the true random load.

The mass moment of inertia of a 2-bladed rotor depends on the rotor position, which leads to higher loads on the yaw system. Shaft tilt also causes unequal loads on the blades and therefore increases the risk of dynamic impact on a 2-bladed turbine compared to a 3-bladed turbine. The rotor symmetry in case of a 2-bladed turbine causes some additional dynamic load from wind shear. When the two blades are in the vertical position, the loading on the upper portion of the rotor is significantly higher than the lower portion. Therefore, nacelle nodding moment is moderately higher when the blades are in the vertical position than in the horizontal position, where there is unequal loading from wind shear. It should also be noted that for a rigid hub turbine, cyclic shaft moments due to gravity is cancelled out by the cyclic shaft moments due to wind shear, so the teeter mechanism adds no benefit considering those two loads. While introducing a teeter mechanism can reduce the load on the driveshaft and potentially reduce drivetrain maintenance and replace costs, additional costs will be incurred to acquire, install and maintain the teeter system. The teeter mechanism is further discussed in Section 6.7.

Table 3.2 summarizes the main features of the design in this study.

**Table 3.2. Main features of the 2-bladed concept wind turbine design.**

| Feature                                | Description                                 |
|----------------------------------------|---------------------------------------------|
| Rating                                 | 5 MW                                        |
| Rotor Orientation and Number of Blades | Downwind, 2 blades                          |
| Control                                | Variable Speed, Collective Pitch            |
| Drivetrain                             | High speed, Multiple-stage gearbox          |
| Rotor Diameter/ Hub Diameter           | 126m/ 3m                                    |
| Hub Height / Design                    | 90m / Teetering hub                         |
| Maximum Rotor/ Generator speed         | 16 rpm /                                    |
| Maximum Tip Speed                      | 105.78 m/s                                  |
| Overhang/ Shaft Tilt/ Precone          | 5 m / 5 deg / 2.5 deg                       |
| Rotor Mass                             | 92,260 Kg                                   |
| Nacelle Mass                           | 240,000 Kg                                  |
| Tower Mass (Deep water)                | 347,460 kg                                  |
| Reference Site                         | National Data Buoy Center (NDBC) Buoy 45005 |
| Cut-in, rated, cut-out wind speed      | 3 m/s, 11.4 m/s, 25 m/s                     |
| Cut-in, rated rotor speed              | 6.9 rpm, 12.1 rpm                           |

Design load cases are selected in step 4 to assess the safety of the turbine operation. A subset of the load cases used in [Jonkman & Matha, 2010] to evaluate the safety of the NREL 5 MW 3-bladed upwind design was adopted in this study.

A tentative design is developed in the next step (Step 5). This includes subsystems, and principal components as listed in Table 3.3.

**Table 3.3. Primary components and their subsystems of 2-bladed turbine system.**

| Principal component  | Major subsystems                                                         |
|----------------------|--------------------------------------------------------------------------|
| Rotor                | Blades, hub                                                              |
| Drive train          | Low speed shaft, high speed shaft, gearbox, generator, mechanical brakes |
| Nacelle & main frame |                                                                          |
| Yaw system           |                                                                          |
| Support system       | Tower, foundation                                                        |

For this study, as mentioned earlier in this chapter, the existing baseline NREL 5MW turbine was altered by removing one rotor blade and by changing the rotor configuration from upwind to downwind. A tower shadow model was used to take into account the influence of the tower shadow on the 2-bladed downwind rotor wind turbine. Drivetrain, generator and nacelle components were adopted unchanged from the NREL 5 MW baseline design. The yaw system of the concept turbine also remained unchanged from the baseline turbine. A semi-floating type gravity-based foundation with a compound downward ice cone was used for this study and is described in detail in Chapter 7.

The next two steps (steps 6 and 7) involve estimation of the generated power and evaluation of the safety of the design against two failure modes: 1) ultimate failure due to extreme loads, and 2) fatigue failure due to cyclic loads. In the latter step, steady loads, cyclic and transient loads are considered. In the last set, loads due to the tower shadow effect are considered. These effects are important for the downwind turbine design.

The last step (Step 8) is an assessment of the economic viability of the design by calculating the cost of energy per kWh. The national average residential electricity rate was 12¢/kWh in the U.S. in April 2012 (<http://www.eia.gov/electricity/monthly/>).

### 3.2 Optimization Formulation

The objective is to minimize the cost per KW energy produced by the wind turbine by changing the design variables so that the constraints are satisfied.

The design variables include the following items;

- Rating
- Number of blades
- Wind direction
- Blade model
- Application of tip-brake
- Shaft tilt angle
- Conning angle
- Teeter parameters
- Application of tower shadow effect

The constraints considered in this study are, blade to tower clearance should be larger than 3.5 m, the load effects such as bending moments should be less than the capacity of the turbine components, and damage should be less than. Finally the feasible design or designs are selected.

### 3.3 Available Design Tools and Methods

Computational tools that are important in wind turbine design can be classified into four categories according to their application:

#### *Turbulent Wind Modeling*

Turbulent winds are modeled by calculating aerodynamic forces and moments on blades. These include TurbSim, Airfoil Prep, WT\_perf, and AeroDyn

TurbSim uses a statistical model to numerically simulate time series of stochastic, full field, three-component turbulent wind. The wind files generated by TurbSim are used to model normal turbulent model (NTM) load case situations. [Kelley & Jonkman, 2006].

AirfoilPrep is a spreadsheet that is used to generate the airfoil data files needed for AeroDyn and WT\_Perf. The latter program predicts the performance of wind turbines using blade-element momentum theory. [Hansen, 2012]

AeroDyn is a plug-in type code that is used to generate aerodynamic loads on a wind turbine blade segment at a certain location and time [Laino & Hansen, 2001].

### ***Dynamic Analysis of Turbine Structure and Drivetrain***

BModes, PreComp, FAST, and ADAMS are used for the analysis.

BModes is a finite-element code that uses the specified rotor speed, blade geometry, coning angle, pitch control setting and blade structural property distribution along the blade length as inputs and generates dynamically coupled modes for a blade or a tower [Bir, 2005]. The structural properties used as inputs can be produced by PreComp.

PreComp code computes the cross-coupled stiffness properties, inertia properties, and offsets of the blade shear center, tension center, and center of mass with respect to the blade pitch axis of a composite blade [Bir, 2005]. ProComp uses the blade external shape (such as airfoil geometry, chord and twist distribution along the blade length) and internal structural detail (such as laminates constituent properties, orientation of fibers in each laminate) as inputs. These properties produced by ProComp are then used as inputs for FAST, ADAMS to properly model the blades, tower and drivetrain shaft. [Damiani, 2012]

FAST is a comprehensive aero-elastic simulator that can predict both the extreme and fatigue loads of wind turbines. These are important for predicting the probabilities of ultimate and fatigue failure [Jonkman & Buhl, 2005].

ADAMS is the popular MSC software that is used for multibody dynamics analysis. ADAMS is used as an alternative solver for FAST.

### ***Assessment of Safety against First Excursion and Fatigue Failure***

MLife, MSC NASTRAN, ADAMS, FAST, FAST\_SM, and DLC post-processor are used for the assessment of safety.

MLife is a MatLab-based tool used to generate fatigue-life estimates for loads analysis [Hayman & Buhl, 2012].

NASTRAN is a program to solve stress-strain behavior, dynamic response and nonlinear behavior of components.

FAST\_SM is a user interface for automated analysis of the wind turbine responses operating under multiple design load cases (DLCs). This computer code is used to manage and perform a large number of simulations for this study. The output data are post-process with DLC post-

processor code. The FAST\_SM and DLC post-processor codes are introduced in Section 4.1 and Section 4.2, respectively.

### 3.4 Overview of the Preliminary Design of Wind Turbine

Primarily, the NREL 5 MW 3-bladed upwind turbine is considered as the baseline turbine design. Then various design options are explored. In this study, the number of blades, blade design, turbine configuration, type of hub, pre-cone and tilt angle, tip brake and tower design are considered as design variables and load effects at different turbine locations are analyzed.

Figure 3.1 shows the computational flow chart and the tools used in the preliminary design study of the proposed wind turbine concept. The role of each tool in the design process is explained below. In this figure, gray boxes present input information, blue boxes represent software, and yellow boxes correspond to calculation results.

First, wind resource data for the specific site is collected from the published buoy data and wind input data files are created using TurbSim or IEC wind. The designers use the airfoil description provided for the baseline design to generate airfoil coordinate files. Wind input files and airfoil coordinate files together are used to create AeroDyn input files. Similarly, blade input data files are generated by BModes using the distributed structural properties of the baseline turbine.

AeroDyn input files and blade input files are used to prepare FAST input files which are used to generate time history of load effects. Load effects are evaluated by analyzing FAST output files. Power production is also produced from the FAST output files and AEP (annual energy production) is estimated using this data and the wind resource. FAST output files are used as input files for MLife to predict damage.

Calculation of the wind energy cost per kWh requires calculation of the AEP. The AEP of a model is found using power production results from FAST simulation output files. The power production results are collected for various wind speeds. Steady winds are used for the AEP simulations. The power generation results are integrated with the PDF of the wind speed of Lake Erie site to estimate the AEP of a model. The details of this method are described in Section 4.6. Validation of the simulation based AEP prediction method and AEP results of each wind turbine model are shown in Section 9.3.1.

A design is considered feasible if the structural capacities of the turbine components are much higher than the corresponding load effects, and the average damage at any location is less than one. Another criterion for feasibility is that the blade tip to tower clearance should not be less than 3.5 m. Finally, the AEP and the cost per kWh are calculated. A new iteration is performed by changing the design variables if the design is infeasible or the cost per kWh is high.

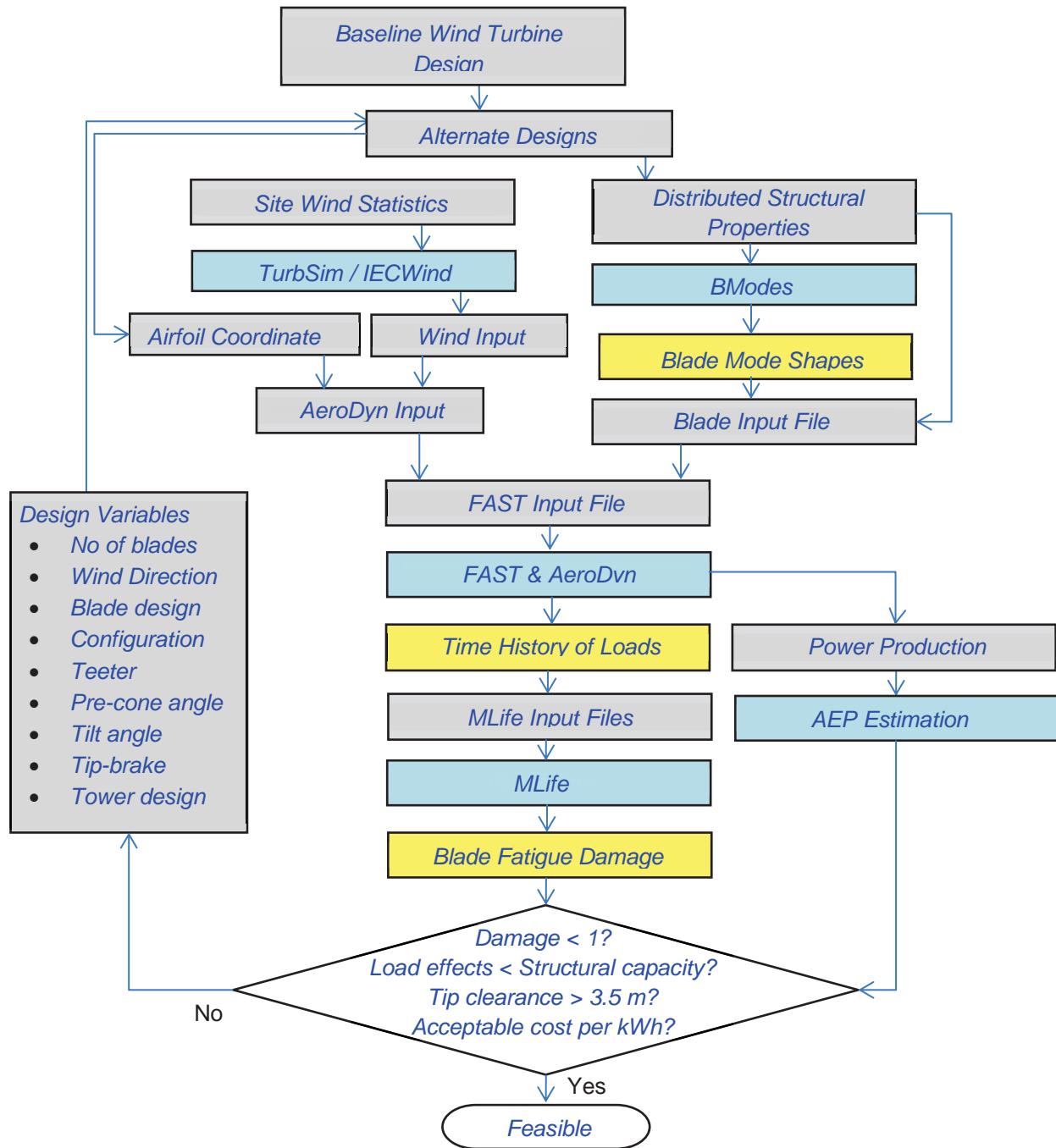



Figure 3.1. Computational tools used for wind turbine design.

The design iteration procedure starts with a preliminary baseline design as shown in Figure 3.1. Initially, a set of input files are prepared. This set includes a material input file, a structural lay-up input file and a set of aero-foil coordinate input files. The material file contains a list of commercially available materials and their properties.

The structural lay-up input file contains the description of the blade internal structural layup, such as the number of laminates, the number, sequence, and material of the laminas in each

laminate, the number of plies, the principal material direction, and the material type in each lamina. A ply is also described by its thickness, material type, and orientation of its principal material direction with respect to the blade axis.

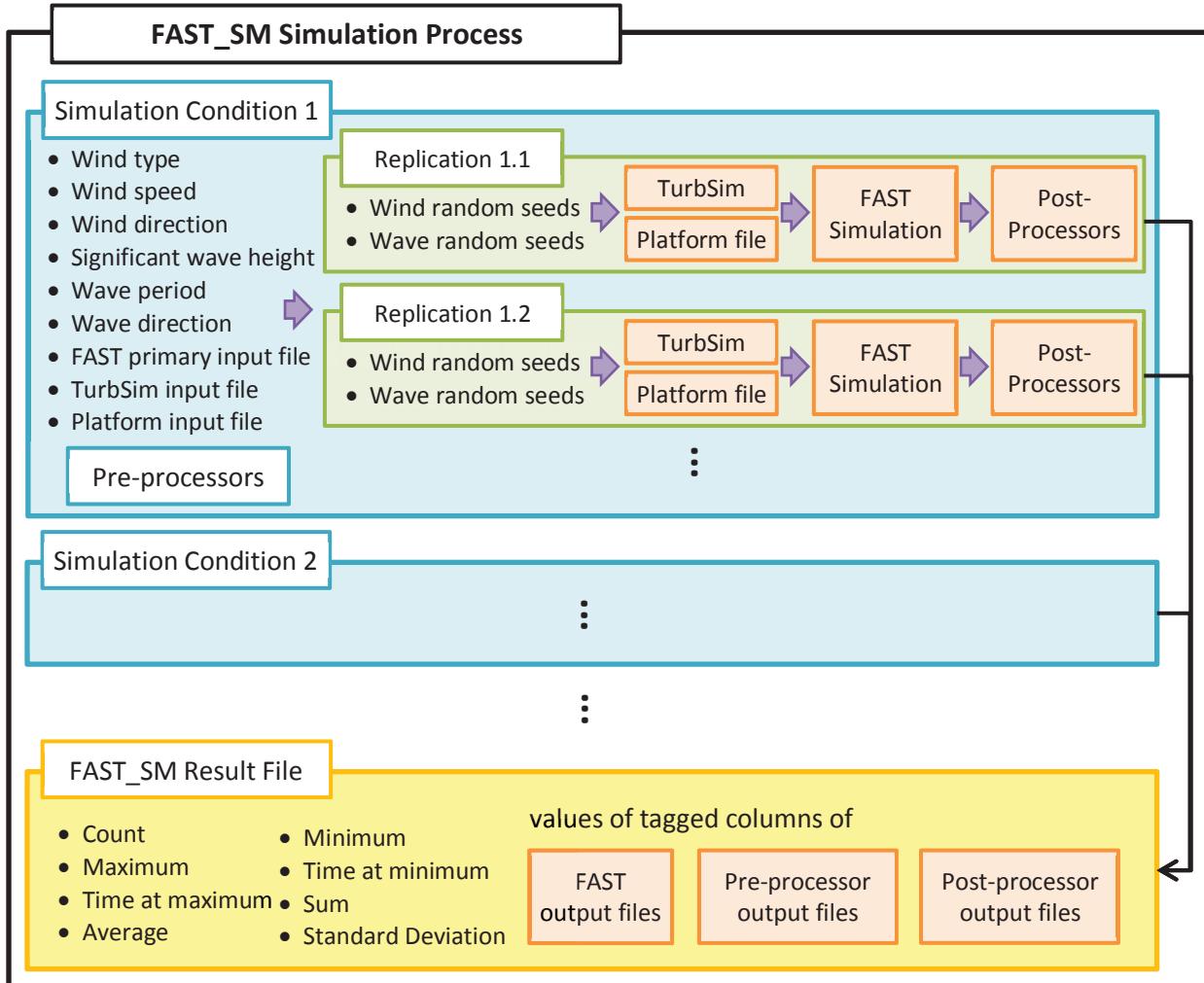
Airfoil data files contain the x- and y- coordinates of points describing the airfoil profile to completely describe the corresponding blade section.

The main input file for PreComp is created using the above airfoil data files. Then PreComp computes the blade's distributed stiffness properties along the blade length. The stiffness properties are used as input for BModes to calculate the blade mode shapes. The blade mode shape properties generated by BModes together with the blade distributed properties generated by PreComp completely define the blade input files required for FAST. The latter program also requires AeroDyne input files. To create these files, the airfoil distribution and wind input files are needed. There are two types of wind input files: (1) hub-height wind files and (2) files with simulated full-field wind data that represent all three components of the wind vector varying in space and time to model turbulence.

FAST computes the time histories of loads and bending moments at different locations of the turbine components. The time history data are then post-processed to determine the blades' fatigue damage. If the analysis shows that the concept blade design meets the specified expected life, then the design is final. Otherwise, the preliminary design will be updated and the above process is repeated for the refined design.

## 4 Computational Design Tool Development

In this chapter, the computational tools that are used in this report are described. Some of these tools are developed using the existing tools that are available from the NREL, and others are developed by the team at UT.


In Section 4.1, the FAST\_SM, a simulation manager, is explained. This tool enables running FAST under different parametric conditions. Section 4.2 introduces a post-processing tool that was used to process results from FAST. Section 4.3 explains the FAST\_ICE code which adds the ice impact modeling capability to FAST code. Section 4.4 discusses the tools and the methodologies to estimate the fatigue damage inflicted on the turbine structure. Section 4.5 describes a tool that can be used to tune the blades' pitch control for the new wind turbine design. Finally, Section 4.6 discusses a tool that can be used to calculate Annual Power Production (AEP).

### 4.1 Development of FAST Simulation Manager (FAST\_SM)

A simulation manager program (FORTRAN code) called FAST\_SM is developed to perform parametric simulations of wind turbine operations efficiently. FAST\_SM allows the user to conduct repetitive FAST simulations for a given set of wind and wave conditions without requiring manual user intervention. The code allows us to predict the wind turbine responses from recurrent random seeds for various wind and wave conditions. Also, FAST\_SM can provide post processing capability such as probing the FAST standard output results to organize the data in a desired form or compute needed supplementary parameters. This code allows efficient setup of FAST simulations and analysis of FAST-computed data. Moreover, FAST\_SM can manage files to systematically catalog simulation runs; users only need to specify a few key input files to perform the desired tasks consistently.

FAST\_SM is configured mainly in three parts: a pre-processor, a FAST simulation executive and a post-processor. The program functionality is readily expandable; it is designed to run any program for pre-processing or post-processing that can be executed in command prompt.

Figure 4.1 summarizes a system simulation process using FAST\_SM. A simulation is performed for a prescribed set of wind and wave conditions and wind turbine settings. The term *simulation condition* is used to denote this set. For each simulation condition, the user specifies the wind type, average wind speed, wind direction, significant wave height, wave period, and wave direction. In addition, the user specifies the number of replications needed in order to estimate the response of the turbine with acceptable confidence. The user also provides a set of seeds for each replication. FAST\_SM pre-processes the input data before running each replication. After completing the simulation, FAST post-processes the results from each replication and simulation condition.



**Figure 4.1. FAST\_SM simulation process.**

The FAST\_SM pre-processor implements functions that update the wind and wave input data for each simulation condition and random seed for each replication. If deterministic winds are used, FAST\_SM simply replaces the wind file referred to in the AeroDyn input file with the desired deterministic wind file specified in the FAST\_SM input file. When random winds are specified, FAST\_SM executes the TurbSim with random seeds and a given random wind condition. The generated random wind file is then connected to the AeroDyn input file. Similarly, the platform input file can be updated with wave condition parameters and random seeds when the platform module is enabled in the FAST primary input file. Moreover, FAST\_SM is capable of incorporating a custom baseline FAST primary input file, platform input file, and TurbSim input file for each simulation condition. This capability enables the user to control all parameters of a FAST simulation for each simulation condition.

Data columns of the FAST output files for each replication can be tagged for post-processing using FAST\_SM. The post-processor can perform a number of tasks including the following: sort or calculate count, maximum value, time at maximum value, minimum value, time at minimum value, average value, sum, and the standard deviation of values for the tagged columns.

Afterwards, the sorted data are saved in a single file. In short, the post-processor facilitates the analysis of the large amounts of computed data.

## 4.2 DLC Post-processor

Multiple simulations are performed for various DLCs using FAST\_SM. Because each DLC generates its own FAST\_SM post-processed data, a program is required to sort out data globally. Thus, a DLC post-processor FORTRAN code is developed to sort out result data globally and automatically. This code sorts locally post-processed data from various DLCs globally.

The sorting process is performed throughout four different levels: replication, simulation condition, DLC, and group, from the lower to upper level. A ranking system is imported in the DLC post-processor except at the replication level. One of the three different options can be selected in a level: ascending order, descending order, or averaged value. Therefore, the maximum value, minimum value, and averaged value can be found at each level. Consequently, the sorting processes are performed from the lower level to the upper level. DLCs can be grouped in normal operating, fault, or parked condition. Within a defined group, result values can be sorted.

The DLC post-processor also includes a function that can list corresponding outputs for the sorted result values. This function allows a user to track the corresponding output parameter results for the sorted result value from tagged columns. For example, if a user requests to sort out maximum bending moments at the blade root, the program can trace back the DLC and find the wind speed, tower base bending moment, teeter angle, and tower-to-tip clearance at the instant when the bending moment is a maximum. This is possible when the FAST\_SM post-processor tags these output parameters. This capability helps the user to understand what is happening in the wind turbine when the structural integrity is threatened.

## 4.3 FAST\_ICE

The FAST\_ICE code adds ice impact modeling capability to FAST. The modeling procedure implemented follows the [IEC 61400-3, 2009] recommendations. In this context, the ice loads exerted on the structure from a stationary ice sheet (due to the wind action on the ice sheet, or to the thermal ice pressure, or to the changes of the water level) are smaller than the loads imparted by a moving ice sheet and or a moving ice ridge. Therefore, stationary ice sheets were not covered in this implementation. The ice loads calculation was performed for a generic cylindrical structure fitted with an ice breaking cone at the water surface, such as monopile foundations. Based on the same general procedure, the program can be adapted to cover more complex geometries.

The calculation of the loads was applied in two steps:

- Calculation of the maximum loads and location using ice failure models;
- Generation of a dynamic load profile and application to the structure based on the previously determined loads.

Both steps are performed when running the FAST simulation.

### Implementation in FAST

The ice loads calculations were incorporated in FAST using the tower loading subroutine “UserTwrLd,” which is part of the FAST source code. UserTwrLd was adapted to calculate the loads and apply them to the tower during the time simulation. UserTwrLd limits the application of external loads to even load distributions over individual tower segments (which is synonymous to the application of the external loads in the central nodes of the tower elements). Because the ice loads are not necessarily uniformly distributed or centered at the tower nodes, the ice load distribution as calculated using the ice failure models had to be redistributed to satisfy the UserTwrLd limitations while preserving the load effects (shear and bending moments) on the structure at the resolution level limited by the tower discretization elements.

Consider a horizontal load acting on the tower at a location situated between two tower nodes. To preserve both the resulting bending moment and the total horizontal force while at the same time applying the force evenly over individual tower elements, two approaches were considered:

- Application of the load at the closest tower node location with an additional concentrated bending moment to account for the error in the bending moment due to the inaccuracy in the force location. Simulations showed that this method may introduce artificial (numerical) disturbances when the location of the load moves in time (such as when an ice ridge of non-uniform thickness advances against the tower).
- Distribution of the load between the two adjacent tower nodes. This method did not introduce disturbances so was preferred for moving ice ridges.

The magnitude of the ice load was determined using the procedure recommended in IEC 61400-3 (2009). The following equations were used to calculate the horizontal load from a moving ice sheet against a vertical cylindrical structure, horizontal load against a conical structure and vertical load against a conical structure, respectively [Ralston, 1977].

$$H_d = k_1 k_2 k_3 h D_w \sigma_c \quad (4.1)$$

$$H = A_4 [A_1 \sigma_b h^2 + A_2 \rho_w g h D_c^2 + A_3 \rho_w g h (D_c^2 - D_T^2)] \quad (4.2)$$

$$V = B_1 H + B_2 \rho_w g h (D_c^2 - D_T^2) \quad (4.3)$$

where,

$H_d$  = horizontal force

$D_w$  = the diameter of the structure at the waterline

$k_1$  = shape factor of the structure where the ice is hitting it

$k_2$  = contact factor between the ice and support structure

$k_3$  = aspect ratio factor, given as  $\sqrt{1+5h/D}$ , where  $h$  is the ice thickness

$\sigma_c$  = crushing strength of the ice

$A_1, A_2, A_3, A_4, B_1$  and  $B_2$  are dimensionless coefficients; these are functions of the cone angle and the ice to cone friction coefficient.

$\sigma_b$  = ice bending strength

$h$  = ice sheet thickness

$\rho_w$  = water density

$g$  = gravitational acceleration

$D_c$  = cone diameter at the waterline

$D_T$  = diameter at the narrow end of the cone (same as the tower diameter)

For downward breaking cones, the water density is replaced by  $\rho_w/9$ , which approximates the difference between the densities of water and ice. Coefficients  $A_i$  and  $B_i$  are calculated using a procedure from [Ralston, 1977] that is also described in [Wells, 2012].

The horizontal load from a keel is calculated following a procedure described in [C-Core, 2008] and [Timco et al., 1999]. The forces occurring from the local failure of the ice keel (crushing) and from the global failure of the ice keel along plug failure planes are calculated and compared. The acting load is then determined to be the minimum load between the two modes of failure. When the ice keel starts making contact with the cylindrical (submerged) structure, the force from the local failure mechanism is small compared to the global mechanism, and thus the keel is crushed against the structure. As the ice keel advances and becomes thicker, the local failure force increases while the global force decreases, because the plug planes become shorter. At some point the two forces become equal to each other and according to the model, the failure mechanism switches from local to global.

The local failure force is calculated as [C-Core, 2008] and [Timco et al., 1999]:

$$F_{local}(x) = W_e \left( 1 + \frac{2h_e}{3W_e} \right) \left( \frac{h_e^2 \gamma_{eff} K_p^2}{2} + 2ch_e K_p \right) \quad (4.4)$$

where,

$$h_e = x \tan \theta_k \left( 1 + \frac{SW_e}{h_k - h_c} \right) \quad (4.5)$$

and

$W_e$  = effective structure width

$x$  = penetration distance of the foundation into the keel

$c$  = cohesion within the keel (submerged portion of the ridge formed of ice rubble)

$S$  = effect of any surcharge; C-CORE Report does not specify what this is

$\theta_k$  = angle that the keel rubble makes with the horizontal

$h_k$  = total draft of the keel as measured from the waterline

$h_c$  = consolidated layer thickness

$\gamma_{eff}$  = effective buoyant density of the keel rubble, including effects of porosity

$K_p = \tan(45^\circ + \frac{\phi_f}{2})$  = passive pressure coefficient of the rubble

$\phi_f$  = internal friction angle of the rubble

The global failure force is calculated as the sum of two forces as [C-Core, 2008]

$$F_{global}(x) = F_{side}(x) + F_{top}(x) \quad (4.6)$$

$$F_{side}(x) = K\gamma_{eff} \tan(\phi) \left[ (h_k - h_c)^2 \left( \frac{w_k - w_b}{3} + w_b \right) - \frac{x(x \tan(\theta_k))^2}{3} \right] + c[(w_k - w_b)(h_k - h_c) - x^2 \tan(\theta_k)] \quad (4.7)$$

$$F_{top}(x) = W \left[ \gamma_{eff} \tan(\phi) [(w_k - w_b)(h_k - h_c) - x^2 \tan(\theta_k)] + c(w_k - x) \right] \quad (4.8)$$

More details about the procedure are presented in [Wells, 2012].

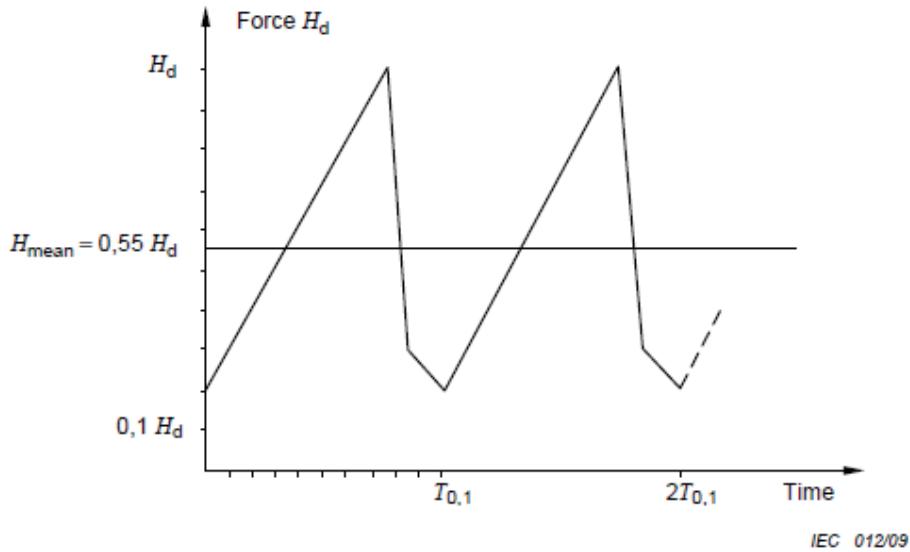
It should be noted that, according to [Brown & El Seify, 2005] who used the data from the Confederation Bridge Monitoring Program, the ice keel load calculated using the above procedure overestimates the observed loads on the Confederation Bridge Pier. Therefore, for a gravity foundation, the industrial partner decided to use the unified model proposed by Brown & El Seify [2005].

The step-by-step implementation procedure in FAST following the model presented in [C-Core, 2008] is described below.

For each time step of the simulation using FAST, the UserTwrLd subroutine is called to calculate the ice load occurring at each tower node. When the UserTwrLd is called for the first time, a data file is opened and case specific data are read from that file; these values are then retained in the memory such that the file is accessed only once. The data file is organized similarly to other data files used by FAST, using values related to ice sheet/ice keel geometry and properties. Figure 4.2. shows this data file. The significance of each value is self-explanatory inside the file, similarly to other data files used by FAST.

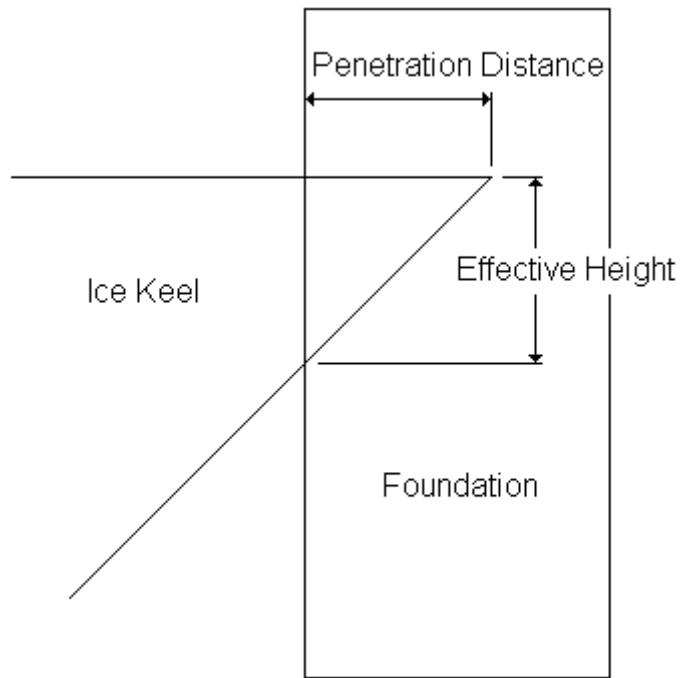
```

=====Tower Properties=====
107.6      tower height (meters) (found on line 87 of fst input file;
           includes tower draft on line 19 from platform dat file)
25         number of tower nodes (found on line 134 of fst input file)
11.04      D ! diameter (warterline)
6.0        DT ! diameter (tower)
0.8727     alpha!  cone angle (50 deg is 0.8727 radians)
=====Ice/Tower Properties=====
0          ConeType (0 is Cylinder; 1 is upward breaking Cone;
           2 is downward breaking cone)
20.0       targetH (meters) This is the distance from the base of
           the tower at which the ice sheet hits the tower
0.0        force angle (radians from x axis towards y axis)
0.15       mu !  ice/cone coefficient of friction
=====Ice Properties=====
0.927      t ! ice thickness (meters) (if ice keel is present,
           put the consolidated layer thickness as the ice thickness)
1770e3     sigmaF ! ice flexural strength, pascals
4400e3     sigmaC ! ice crushing strength, pascals
999.552    rhoW ! water density, kg/m3 (divide regular water by
           nine to get downward breaking cone)
916.0      rhoI ! ice density, kg/m3
60.0       startTime, seconds
9999.0     endTime, seconds
0.20       iceSpeed (meters per second)
0.7        rampPercent (fraction of the reptime during which the triangular load increases)
true       userRep (user specifies period of dynamic ice loading profile, true/false)
2.5        repTime, seconds (used only if UserRep is true)
=====Keel Properties=====
11.2       hk ! keel draft from waterline (meters)
43.301     wk ! total keel width (meters)
0.523598   thetaK ! keel angle (radians)
true       useKeelAngle (if true, hk and theta are used to determine keel size,
           wk is inferred; if false, hk and wk are used to determine keel size, theta is inferred)
6.0        We ! effective structure width (meters)
           (assuming the submerged structure is cylindrical,
           this is its diameter, used to find keel forces)
80.0       keelstart (seconds) (time for the onset of keel forces to begin)
0.7        phi ! internal friction angle (radians)
1.0        kSoil (unitless)
5000.0     c ! ice rubble cohesion (pascals)
0.25       nVoid ! ice void ratio


```

**Figure 4.2. Sample Ice Properties Input File [Wells, 2012].**

Some other calculations are also only performed at the first call of the UserTwrLd subroutine and then retained in memory for later use. These are the maximum force (horizontal and vertical components) imparted by the advancing ice sheet on the structure, the location of the force on the tower (this calculation is based on the water level depth), the bending moment excess or deficit because of the error in mapping the horizontal force from the ice sheet on the tower nodes, and the bending moment generated by the vertical component generated by the ice sheet on the ice cone. As shown above, these two force components and two bending moment components represent the peak loads from a moving ice sheet.


For subsequent calls of the UserTwrLd subroutine (time steps), based on the IEC recommendation (see Figure 4.3), the magnitude of the saw tooth function is calculated as a value between zero and one. For the saw tooth function the load increases from zero to one for the first 70% of the cycle and then decreases back to zero for the remaining 30% of the cycle; the 70% value is an input value in the ice data file. The saw tooth function is then used to scale the

peak load components calculated at the first call of the subroutine UserTwrl, thus generating the dynamic load from an ice sheet. The first cycle can start at an arbitrary time, which is user specified in the data file.



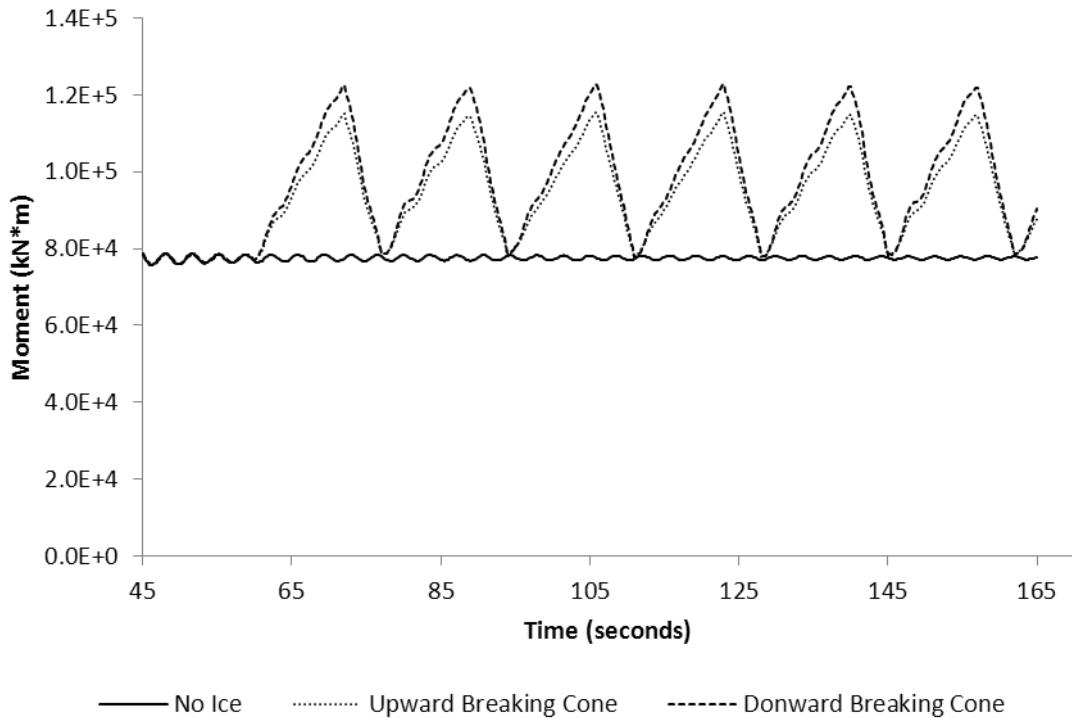
**Figure 4.3. Suggested Dynamic Horizontal Load Profile from [IEC 61400-3, 2009].**

The load generated by an ice ridge is also dynamic, not just because of the failure mechanism of the ice, but also because the ice keel is modeled as having some variable thickness. IEC suggests a triangular shape for the keel thickness. As a result, as the keel advances against the foundation and is penetrated by it, the contact height between the ice keel and the structure (effective height, as shown in Figure 4.4) changes over time – first it increases from zero to the maximum keel height, then it decreases. Thus at each time step, the effective height is recalculated knowing the penetration distance and the keel geometry (data regarding the keel geometry is included in the data file). Also, since the pressure from the keel is assumed to have a triangular shape (zero at the lower edge of the effective height and maximum at the water line) the force required to penetrate the keel is assumed to act at one third of the keel's effective height from the waterline. This location changes relative to the tower elements and is also recalculated at each time step using Eqs. (4.12) - (4.16). As mentioned before, when acting between tower nodes, the load imparted by the ice keel on the structure is divided among the adjacent nodes to preserve the resulting bending moment on the structure and to avoid artificial excitation of the tower as the location of this load moves along the tower/foundation height.



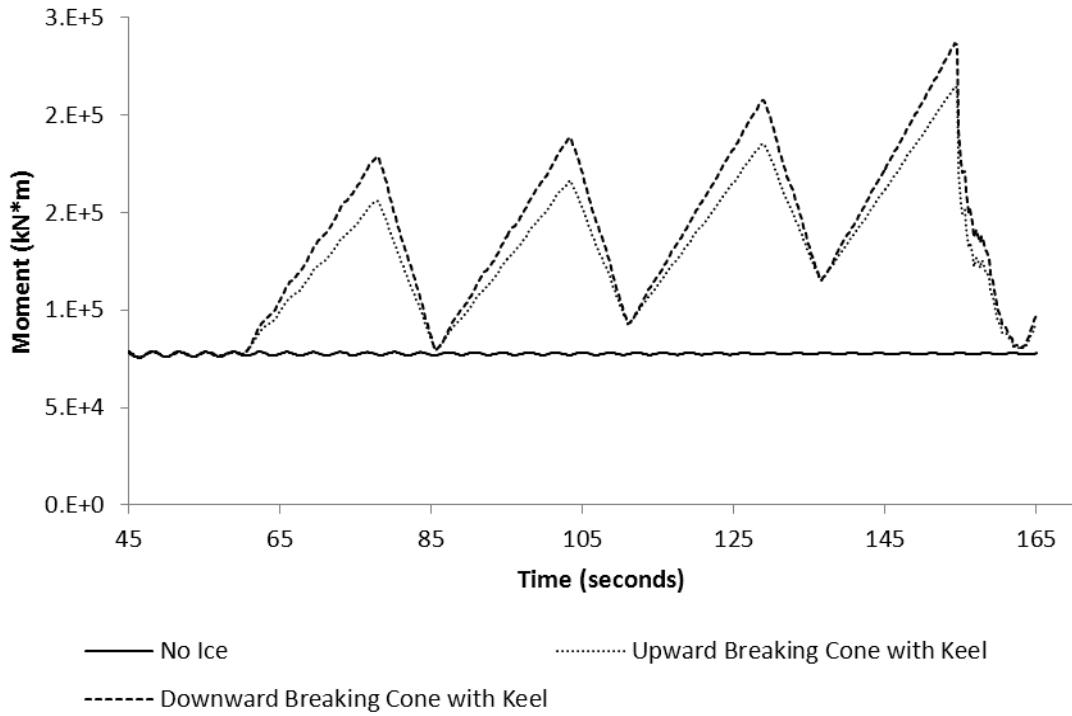
**Figure 4.4. Ice keel effective height [Wells, 2012].**

The failure mechanism of the ice ridge assumes that the load is calculated as the minimum between two local failure (crushing) and global failure (ridge breaking). Once the global failure becomes the prevalent mechanism, the load from the ice keel drops to zero and remains zero for subsequent time steps.


It should be noted that the ice ridge/keel does not occur alone, but together with the ice sheet; the implemented model reflects this reality. Therefore, when ice loads are included in the turbine simulations, it is assumed that either an ice sheet is present, or an ice sheet together with an ice ridge is present. Also note that when the ice ridge is present, a consolidated ice sheet must be used, which is thicker than the standard ice sheet; the consolidated ice typically has a 50% larger thickness than the ice sheet. The thickness of the ice sheet (either consolidated or normal), together with the triangular geometry of the ice keel, are provided in the ice loads data file.

### **Discussion**

The implementation described above was validated by comparing the simulation results with MSC Software ADAMS. ADAMS uses a finite element approach for the elastic structure and does not rely on mode shape functions as FAST does. Therefore, ADAMS is intrinsically more accurate (at least when using the same number of elements to discretize the tower). Therefore the comparison can provide a guideline on the possibility of using FAST to simulate foundation-tower ensembles as a continuous structure.


To exemplify the capabilities of the implementation, Figure 4.5 shows an example of a simulation using FAST for the 5MW NREL turbine. In this simulation, a sheet of freshwater ice with a thickness of 61.8 cm advances against a monopile structure with an upward or downward

breaking cone. The bending moment at the tower base (soil level) is shown compared with the case when no ice is present. In all cases, the turbine is subjected to a wind of 11.3 m/s (rated wind speed). The ice load is applied at a distance of 20 m from the base (water level), and the ice advances at a velocity of 0.2 m/s, which results in a breaking period of about 17.5 s. The waterline diameter of the ice cone is 11m and the cone has 50 degree angle from the horizontal. The downward breaking cone generates a slightly larger maximum load (bending moment) compared to the upward breaking cone. On the other hand, the upward breaking cone also provides a beneficial stabilizing vertical load, while the downward breaking cone results in a detrimental uplifting vertical load. The bending moment at the soil level is about 50% higher compared with wind alone (no ice).



**Figure 4.5. Foundation Base Bending Moment for a 61.8cm thick ice sheet, for the two ice breaking cones [Wells, E., 2012].**

A similar simulation result is shown in Figure 4.6. This is an extreme case where a consolidated ice sheet of 92.7 cm thickness with an ice keel of 11.2 m depth advance against the tower. All the other elements (geometry of the structure, ice properties, ice speed) are the same as before. The frequency of the ice breaking is lower (corresponding to about 25 seconds time period) because the ice is thicker. Also the keel increases the overall load because of its increased effective thickness. The keel makes contact with the structure at 80 seconds and then, because of its shape, the load from the keel increases the load because of the periodically breaking ice sheet. At about 155 seconds, the keel breaks and the ice load drops, generating a shudder in the tower.



**Figure 4.6. Foundation Base Bending Moment for 92.7 cm thick ice sheet and 11.2 m deep keel, for the upward cone and downward cone [Wells, 2012].**

A comparison of FAST with ADAMS shows good agreement between the two methods (within 10% difference for the top tower displacement). However, as the foundation becomes stiffer and heavier than the tower, the difference between the results from FAST and ADAMS increases. The reason is that mode shape functions cannot accurately describe the deformation pattern of a structure that has sections with dissimilar properties. For more details, the reader should consult [Wells, 2012].

#### 4.4 Method for Fatigue Life Assessment

Fatigue damage is calculated using MLife, a MatLab-based tool developed by NREL. FAST simulations were run at each mean wind speed to produce characteristic fluctuating load time histories. The fatigue damage caused by those fluctuating loads over the design life of the wind turbine is accumulated using the techniques defined in Annex G of IEC 61400-1 edition 3. These fluctuating loads are then counted by the rain flow algorithm [Downing & Socie, 1982] and the cycles are characterized by a load-mean and range and extrapolated to estimate turbine lifetime damages. Damage accumulation is assumed to be linear with each of these cycles according to Miner's Rule [Palmgren-Miner, 1945].

The following inputs listed in Table 4.1 needed to be provided to MLife in order to calculate damage.

**Table 4.1. Turbine input features required for damage calculation.**

| <b>Inputs for MLife</b>                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Load time histories output from FAST simulation                                                                                                   |
| Ultimate (static) loading of turbine components that causes failure in one cycle                                                                  |
| Weibull shape and scale factor for wind speed distribution                                                                                        |
| Design life of turbine ( 20 years)                                                                                                                |
| Availability: The percent time the turbine is online and producing power when the wind speed is in the range between cut-in and cut-out speed.    |
| Fixed Mean Load: The fixed mean load is the aggregated mean of the load channels across all input files using the specified Weibull distribution. |

Fatigue damage calculation requires detailed geometry and material properties of the turbine structure. However, when the detailed geometry of the turbine structure is not well defined and material properties are not known at conceptual design level, fatigue damage calculation may have major assumptions involved. Since the detail geometry and material properties are not well known for the proposed turbine components at this stage, they are calculated based on the limit loads calculated from the simulations.

Since the 5MW 3-bladed NREL turbine is a well-established design, it is used as a reference baseline design for this research. FAST simulations are run for different design load cases and maximum load effects are estimated for each load effect at critical locations of the turbine. The maximum loads on critical turbine locations found from the simulations are multiplied with safety factors to estimate the limit load (safe limits) on the turbine components for each corresponding load effect. These limit loads are used as a substitute of true, ultimate load in fatigue damage calculations for this research for comparison purposes only. Limit load calculations are described in Appendix 5 of this report and are listed in Table 4.2. For example, the ultimate shear force at the tower base is 1594 kN. This means that a lateral force at the tower base of 1594 kN will cause failure in one cycle.

**Table 4.2. Ultimate loading on turbine components.**

| <b>Turbine location</b> | <b>Description</b>            | <b>Ultimate Load Effect</b> |
|-------------------------|-------------------------------|-----------------------------|
| Tower base              | Shear force (kN)              | 1594                        |
|                         | Bending moment (kN m)         | 126821                      |
|                         | Axial force (kN)              | -7878                       |
|                         | Torsional moment (kN m)       | 18                          |
| Tower top               | Shear force (kN)              | 1594                        |
|                         | Bending moment (kN m)         | 17308                       |
|                         | Axial force (kN)              | - 4766                      |
|                         | Torsional moment (kN m)       | 12529                       |
| Blade root              | Shear force (kN)              | 672                         |
|                         | Bending moment (kN m)         | 24923                       |
|                         | Axial force (Max) (kN)        | 1367                        |
|                         | Axial force (Min) (kN)        | - 201                       |
|                         | Torsional moment (Max) (kN m) | 197                         |
|                         | Torsional moment (Max) (kN m) | -276                        |
| Low-speed-shaft         | Shear force (kN)              | 1556                        |
|                         | Bending moment (kN m)         | 19796                       |
|                         | Axial force (kN)              | 1473                        |
|                         | Torsional moment (kN m)       | 9641                        |

## Theory

Lifetime damage from all cycles,

$$D^{Life} = \sum_j D_j^{Life} \quad (4.9)$$

Accumulation of damage using one or more input time-series,

$$D_j^{Life} = \sum_i \frac{n_{ji}^{Life}}{N_{ji}} \quad (4.10)$$

where,

index  $i$  is used to specify the  $i$ th cycle

$D_j^{Life}$  is the extrapolated damage over the design lifetime due to the  $j^{\text{th}}$  time series

$n_{ji}^{Life}$  is the extrapolated cycle counts

$N_{ji}$  is the cycles to failure and

$$N_{ji} = \left( \frac{L^{ult} - |L^{MF}|}{\left( \frac{1}{2} L_{ji}^{RF} \right)} \right)^m$$

Goodman correction is considered to account for variable load means of the actual load cycles.

Goodman correction for a Goodman exponent equal to one is,

$$L_{ji}^{RF} = L_{ji}^R \left( \frac{L^{ult} - |L^{MF}|}{L^{ult} - |L_{ji}^M|} \right) \quad (4.11)$$

Where,

$L_{ji}^R$  is range about a load mean of  $L_{ji}^M$  for the  $i^{\text{th}}$  cycle in the  $j^{\text{th}}$  time-series,

$L^{ult}$  is the ultimate design load of the component,

$L^{MF}$  is the fixed load-mean,

$m$  is the Wohler exponent of the component.

The lifetime damage is then accumulated for all cycles and time-series,

$$D^{Life} = \sum_j \sum_i \frac{n_{ji}^{Life}}{N_{ji}} \quad (4.12)$$

The total damage from all cycles

$$D = \sum_i \frac{n_i}{N_i (L_i^{RF})} D^{Life} \quad (4.13)$$

Extrapolation of cycle counts depends on the design load cases (DLC). Three fatigue-related major classes of DLC from IEC 61400-1 [2005] are considered in MLife for damage calculation. These DLCs are

- Power production (DLC 1.2)
- Parked (DLC 6.4)
- Discrete events (DLCs 2.4, 3.1 and 4.1)

The fatigue cycle counting presented in this report only considers the power production DLC.

## 4.5 Controller Generation Code

The Control Generator is more an order of operations than a code. It uses the programs WT\_Perf, FAST\_Linear, Excel and a FORTRAN compiler. It is organized into three main objectives:

1. Find highest Cp and TSR for blade and “wind speed – pitch angle” couples for above rated power.
2. Find pitch sensitivity and best-fit line of pitch sensitivity results
3. Calculate values needed for controller and Compile .dll.

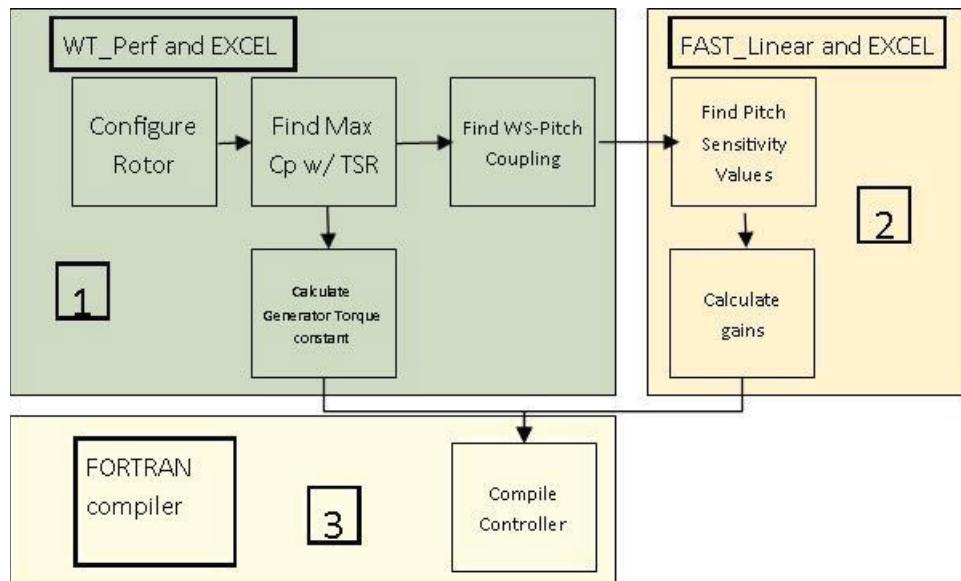



Figure 4.7. Controller generation code block diagram.

Looking at the order of operations as a list with corresponding subsection

- Remove one blade from the NREL baseline 5MW rotor
- Run WT\_Perf to find highest Coefficient of Power and corresponding tip-speed ratio (1)
- Calculate Generator-Torque Constant with  $C_p$  and TSR (1)
- Run WT\_Perf over a range of wind speeds and pitch angles (1)
- Determine pitch angle -wind speed couples for desired rated power (1)
- Generate files for FAST\_Linear at wind speed and pitch angle found in previous step (2)
- Run FAST\_Linear to find pitch sensitivity (2)
- If possible find linear approximation from FAST\_Linear pitch sensitivity results (2)
- Find minimum pitch angle, and generator rpm at rated power (2)
- Find proportional and integral gains based on linear approximation (2)
- Compile .dll controller with Generator-Torque Constant, and proportional and integral gains (3)

It is in development to bring all three main operations together into one code.

## 4.6 Simulation Based Annual Energy Production Estimation Method

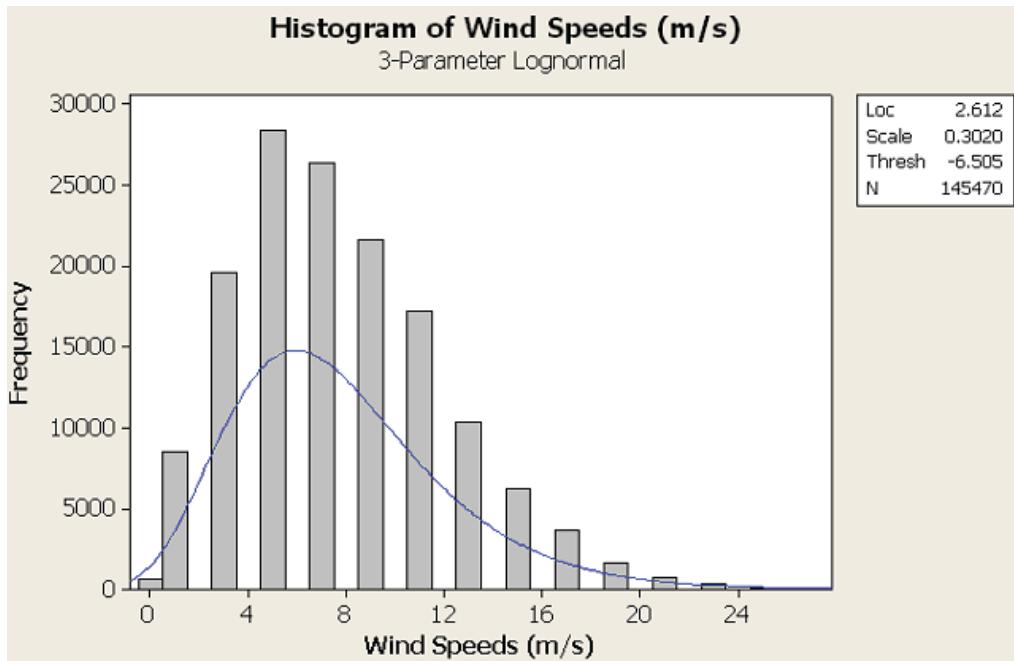
A method for estimating the annual energy production (AEP) from wind turbine simulation results is developed. The traditional theoretical AEP estimation method uses the coefficient of power,  $C_p$ , to characterize the power generated. However, it is challenging to find accurate coefficient of power values,  $C_p$ , for many alternative designs. Therefore, a method that can estimate AEP from simulation results that does not require coefficient of power value for the AEP estimation is required. This method directly accounts for any change in a wind turbine model. Using this method, a user can compare the AEPs of alternative wind turbine designs. In this section, a theoretical method for AEP estimation and an alternative method that uses simulation results are introduced and compared.

Theoretically, the AEP can be obtained using Eq. (4.14)

$$AEP = (24\text{hr/day})(365\text{day/yr}) \int_{v_{in}}^{v_{out}} P(v)f(v)dv \quad (4.14)$$

where,  $v_{in}$  is the cut-in speed,  $v_{out}$  is the cut-out speed,  $v$  is wind speed,  $P(v)$  is the generated power at a given wind speed, and  $f(v)$  is probability density function (PDF) of the wind speed in one year.

The generated theoretical power can be calculated from Eq. (4.15) for a speed greater than the cut-in speed,  $v_{in}$ , and less than the rated wind speed,  $v_r$ .


$$P(v) = \frac{1}{2} C_p \rho A v^3 \quad (4.15)$$

where,  $C_p$  is the coefficient of power,  $\rho$  is density of air which equals to  $1.22 \text{ kg/m}^3$ , and  $A$  is the swept area. Once the wind speed reaches the rated wind speed, the generated power becomes constant, equal to the power at cut-out wind speed,  $v_{\text{out}}$ . The swept area in Eq. (4.15) can be calculated as follows:

$$A = \pi (R \cos(\phi))^2 \cos(\psi) \quad (4.16)$$

where,  $R$  is rotor radius,  $\phi$  is cone angle, and  $\psi$  is shaft tilt angle. The swept area  $A$  used in Eq. (4.16) is the projected swept area on a vertical plane. Jonkman et al., [2009] used a swept area without the  $\cos(\psi)$  term in Eq. (4.16). However, the projected swept area is used in this study to account for the shaft tilt.

The wind speeds at NOAA Buoy 45005 at 90m height on Lake Erie are distributed according to the histogram in Figure 4.8. These wind data are collected from year 1980 to 2011. Although the wind speed data for 1986 and 1987 were excluded because the records are not reliable. Thus, wind speed data over 30 years are used. The wind speeds measured at 5m above the water level are converted to wind speeds at 90 m height using the power law with a shear factor of 0.14. The 3-parameter lognormal distribution fit best to the data. The location parameter,  $\mu$ , the scale parameter,  $\sigma$ , and the threshold,  $\gamma$ , are found equal to 2.612, 0.3020, and -6.505, respectively.



**Figure 4.8. Histogram and PDF of wind speeds at buoy 45005 at 90m height.**

The PDF of the 3-parameter lognormal is defined in Eq. (4.17). Its mean value can be found using Eq. (4.18). The mean value at the location of buoy 45005 at 90 m height is equal to 7.76 m/s.

$$f(v; \mu, \varrho, \gamma) = \frac{1}{(v - \gamma)\varrho\sqrt{2\pi}} \exp\left\{-\frac{[\ln(v - \gamma) - \mu]^2}{2\varrho^2}\right\} \quad (4.17)$$

$$\text{Mean}(V) = E(V) = \gamma + \exp\left(\mu + \frac{\varrho^2}{2}\right) \quad (4.18)$$

According to the specification of the NREL 5MW wind turbine in [Jonkman et al., 2009], a coefficient of power value  $C_p=0.482$  can be used for the AEP calculation of the baseline NREL 5MW wind turbine. The theoretical AEP of the baseline NREL 5MW wind turbine at buoy 45005 can be calculated by Eq. (4.19). Because the wind turbine will maintain rated power from the rated to the cut-out wind speed, the integral is divided in to two parts.

$$\begin{aligned} \text{AEP}_{\text{theory}} &= (8760\text{hr}) \left\{ \int_{v_{\text{in}}}^{v_r} \left( \frac{1}{2} C_p \eta_{DT} \rho A v^3 \right) f(v) dv + \int_{v_r}^{v_{\text{out}}} P_r f(v) dv \right\} \\ &= 17.1216 \text{ GWh} \end{aligned} \quad (4.19)$$

where, the  $v_r$  is the rated wind speed that is  $v_r=11.4$  m/s, the  $\eta_{DT}$  is the efficiency of drive train that is  $\eta_{DT}=0.944$ , and  $P_r$  is the rated power that is equal to 5MW. The drive train efficiency,  $\eta_{DT}$ , is added in the below rated wind speed term because the coefficient of power,  $C_p$ , does not include effects of drive train efficiency for the wind turbine model considered in this project.

The AEP is calculated using the power generation results from the FAST simulations. The operation of NREL 5MW 3-bladed upwind turbine in steady winds from 3 m/s to 25 m/s with 2 m/s intervals is simulated. The AEP is calculated by using Eq. (4.20). The difference between Eq. (4.14) and Eq. (4.20) is that the power generated term of Eq. (4.14) is replaced with the power generation results from simulations for the Eq. (4.20). Equation (4.14) is converted into a discretized form in Eq. (4.20). This is because, in most of cases, we can get discrete power generated results from simulations rather than continuous results for a wind speed region. Eq. (4.20) sums AEPs for each bin, that is product of power generation of each wind speed bin and the histogram of the wind speed and then multiplies by the sum of hours in a year, which is 8760 hours. On the other hand, Eq. (4.14) integrates the product of the PDF of the wind speed and power generated and then multiplies by number of hours in a year.

$$\text{AEP} = (24\text{hr/day})(365\text{day/yr}) \sum_{v_{\text{bin}}=v_{\text{in}}}^{v_{\text{out}}} (P|v_{\text{bin}}) \cdot \left( \int_{v_{\text{bin min}}}^{v_{\text{bin max}}} f(v) dv \right) \quad (4.20)$$

where, the  $v_{\text{bin}}$  is wind speed for a bin, the  $(P|v_{\text{bin}})$  is the power generated at the wind speed in the corresponding bin from simulations, the  $v_{\text{bin max}}$  is the upper bound of the wind speed of the bin, and the  $v_{\text{bin min}}$  is lower bound of the wind speed of the bin.

Generally, a power generated value at a wind speed bin,  $(P|v_{\text{bin}})$ , can be obtained by running FAST simulations with a steady wind profile for a wind speed in a wind speed bin. FAST generates electrical power production in time domain. The average value of the generated power

results of a wind speed bin can be used for the  $(P|v_{\text{bin}})$  value of a wind speed bin. By running multiple simulations,  $(P|v_{\text{bin}})$  values can be found for various wind speed bins.

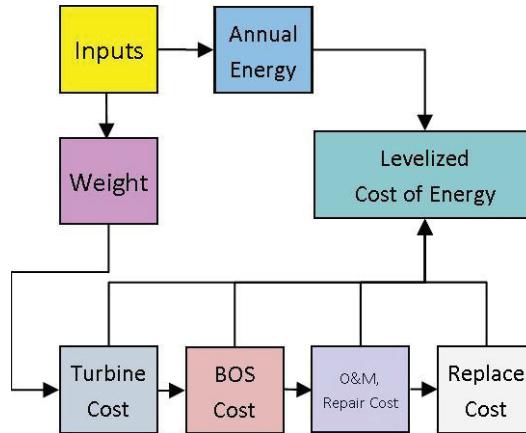
One of the advantages of the AEP estimation using simulation results is that the type of winds are not limited to steady wind. Because this method reflects any conditions applied on wind turbine simulation, any kind of wind profile can be used for AEP estimation for the wind condition. For example, if someone wants to estimate AEP of a wind turbine under a wind profile with random turbulence, by just plugging in the average value of generated power result from the wind turbine simulation into Eq. (4.20), AEP can be estimated.

The simulation-based AEP estimation method is validated by comparing its results with those from theory. The 5MW 3-bladed upwind baseline design (5MW3UB00) is used for this validation. The unconditional probability distribution of the wind speed in Lake Erie is presented in Table 4.3 for various wind speed bins. This table also compares the generated power and AEP estimated from both theory (Eq. (4.19)) and simulation (Eq. (4.20)).

The AEP estimated using simulation is 1.22% less than the theoretical AEP value. This difference may be because of the approximations in the wind turbine simulation model. Another reason may be that a constant coefficient of power value,  $C_p$ , from the cut-in to rated wind speed is used for the theoretical method. The actual coefficient of power value may vary with the wind speed. Finally, the coefficient of power value that is used for the theoretical method, which is  $C_p=0.482$  is approximate. If the theoretical power generated at the rated wind speed of 11.4 m/s is calculated using Eq. (4.15), then the power generated at the rated wind speed is  $P(v_r)=5.098$  MW, after a value of 0.944 for the drive train efficiency,  $\eta_{DT}$ , is applied. This value exceeds 5 MW. Thus, the coefficient of power given in [Jonkman, 2009] is approximate, and the error in the approximation could be about 1.96%. Moreover, it is reasonable that the AEP estimated from simulation is smaller than the theoretical value because the theoretical generated power at the rated wind speed is estimated to be larger than 5 MW. In addition, if the  $C_p$  value that has exactly 5 MW at rated wind speed is calculated, the coefficient of power value calculated equal to  $C_p=0.473$  for the case 0.944  $\eta_{DT}$  value is applied. In this case, the simulation based AEP value is only 0.19% less than the theoretical value.

Because the percent difference is relatively small, the AEP estimation from simulation is reasonable. Using the simulation method, the designer will be able to calculate the AEP for various wind turbine configurations without finding a new coefficient of power value for each new wind turbine design using the theoretical approach.

**Table 4.3. Annual energy production comparison of theory and simulation values.**


| $v_{\text{bin}}$ | $v_{\text{bin min}}$ | $v_{\text{bin max}}$ | Integrated<br>PDF | Hours | Power generation<br>(kW) |       | Annual Energy Production<br>(MWh) |      |      |        |            |                      |                          |
|------------------|----------------------|----------------------|-------------------|-------|--------------------------|-------|-----------------------------------|------|------|--------|------------|----------------------|--------------------------|
|                  |                      |                      |                   |       | (ms)                     | (m/s) | (m/s)                             | (-)  | (Hr) | Theory | Simulation | Theory<br>Eq. (4.19) | Simulation<br>Eq. (4.20) |
|                  | $-\infty$            | 0                    | 0.00717           | 63    |                          | 0     |                                   | 0    |      | 0      | 0          | 0                    | 0                        |
|                  | 0                    | 3                    | 0.10933           | 958   |                          | 0     |                                   | 0    |      | 0      | 0          | 0                    | 0                        |
| 3.5              | 3                    | 4                    | 0.07800           | 683   |                          | 148   |                                   | 95   |      | 105    |            | 65                   |                          |
| 5                | 4                    | 6                    | 0.19357           | 1696  |                          | 430   |                                   | 394  |      | 769    |            | 668                  |                          |
| 7                | 6                    | 8                    | 0.19389           | 1698  |                          | 1180  |                                   | 1160 |      | 2027   |            | 1970                 |                          |
| 9                | 8                    | 10                   | 0.15520           | 1360  |                          | 2509  |                                   | 2457 |      | 3394   |            | 3340                 |                          |
| 11               | 10                   | 12                   | 0.10739           | 941   |                          | 4580  |                                   | 4449 |      | 4139   |            | 4185                 |                          |
| 13               | 12                   | 14                   | 0.06744           | 591   |                          | 5000  |                                   | 4997 |      | 2954   |            | 2952                 |                          |
| 15               | 14                   | 16                   | 0.03968           | 348   |                          | 5000  |                                   | 4997 |      | 1738   |            | 1737                 |                          |
| 17               | 16                   | 18                   | 0.02233           | 196   |                          | 5000  |                                   | 4998 |      | 978    |            | 978                  |                          |
| 19               | 18                   | 20                   | 0.01220           | 107   |                          | 5000  |                                   | 4998 |      | 534    |            | 534                  |                          |
| 21               | 20                   | 22                   | 0.00653           | 57    |                          | 5000  |                                   | 4998 |      | 286    |            | 286                  |                          |
| 23               | 22                   | 24                   | 0.00345           | 30    |                          | 5000  |                                   | 5000 |      | 151    |            | 151                  |                          |
| 24.5             | 24                   | 25                   | 0.00105           | 9     |                          | 5000  |                                   | 5000 |      | 46     |            | 46                   |                          |
| 25               | $\infty$             |                      | 0.00276           | 24    |                          | 0     |                                   | 0    |      | 0      |            | 0                    |                          |
| Total            |                      |                      | 1                 | 8760  |                          |       |                                   |      |      | 17122  | 16912      |                      |                          |
| %Difference      |                      |                      |                   |       |                          |       |                                   |      |      | 0      | -1.22      |                      |                          |

## 4.7 Cost Estimation and System Modeling Code

### Purpose of Code

The purpose of the cost estimation code outlined here is to estimate the levelized cost of energy of the wind turbine system. A wind turbine system is a reference to not only the costs of the tangible components of the wind turbine, but the total costs involved in erecting, commissioning, operating and maintaining an offshore wind turbine.

The Levelized Cost of Energy (LCOE) is the total cost of the wind turbine system divided by the total net amount of the energy produced



**Figure 4.9. Block Diagram of Cost Estimation Code.**

### *Brief Description of Cost Estimation*

The cost code used in this report is divided into eight main categories:

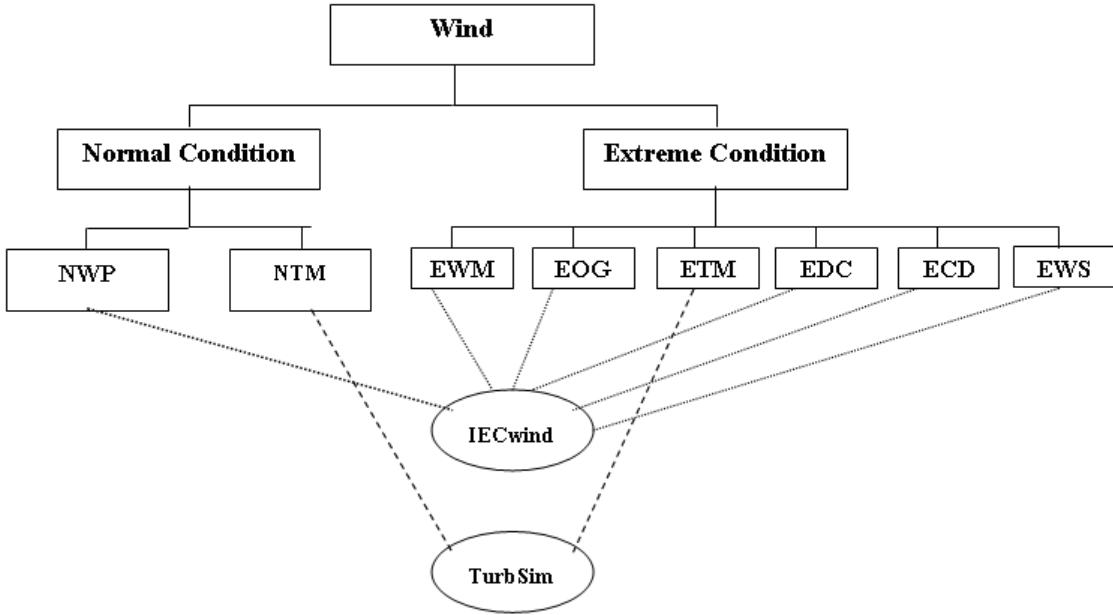
- Inputs
- Turbine Capital Costs
- Balance of Station (BOS) Capital Costs
- Operation and Maintenance & Repair Costs
- Replacement Costs
- Annual Energy Production
- Levelized Cost of Energy

Built in MATLAB, the estimates are largely based on equations from NREL (a list of references used in the analysis can be found in the cost portion of the report). The code needs, environmental (average wind speed, location, and etc., wind turbine (rotor diameter, rated power, and etc.), financial (size of farm, interest rates...), operation (time between repairs, days to repair, and etc.) and replacement (time to replacement, days to replace) data.

The code will return the costs associated with the main categories mentioned above, or by individual components, or tasks such as installation or repair. Please see a more detailed description of codes outputs in Chapter 8 of the report.

# 5 Modeling of Environment and Design Loads

This chapter describes the information and methods used to characterize the loading environment of the wind turbine site considered in this study. The scope of this discussion is limited to developing the information needed for offshore wind turbine design load case studies based on the IEC standards. Section 5.1 discusses the standards, Section 5.2 introduces the site of study and Section 5.3 reviews the available data. Finally, Section 5.4, using the available data, specifies the load cases that are to be used for the concept turbine design studies.


## 5.1 Wind Turbine and Foundation Design Standards

In order to perform wind turbine load analysis, the International Electrotechnical Commission (IEC) standards are used. IEC 61400-1 [2005] is used primarily to predict land-based wind turbine loads, and the IEC 61400-3 [2009] is used to determine the offshore wind turbine system loads. For the foundation, the DNV-OS-J101 standard was used to determine the loads. The IEC 61400-3 and DNV-OS-J101 standards have almost similar DLCs. The DLCs of DNV-OS-J101 standard correspond to DLCs of IEC61400-3 [2009] standard, and for each DLC in the first set of standards there is a corresponding one in the second.

Different wind conditions, including deterministic and turbulent are characterized in the IEC 61400-1 [2005] standard. The wind load cases are divided into “Normal” and “Extreme” conditions, and in each category several loading cases are specified as follows:

- 1) Normal wind conditions
  - a. Normal Wind Profile model (NWP)
  - b. Normal Turbulence Model (NTM)
- 2) Extreme wind conditions
  - a. Extreme Wind speed Model (EWM)
  - b. Extreme Operating Gust (EOG)
  - c. Extreme Turbulence Model (ETM)
  - d. Extreme Direction Change (EDC)
  - e. Extreme Coherent gust with Direction change (ECD)
  - f. Extreme Wind Shear (EWS)

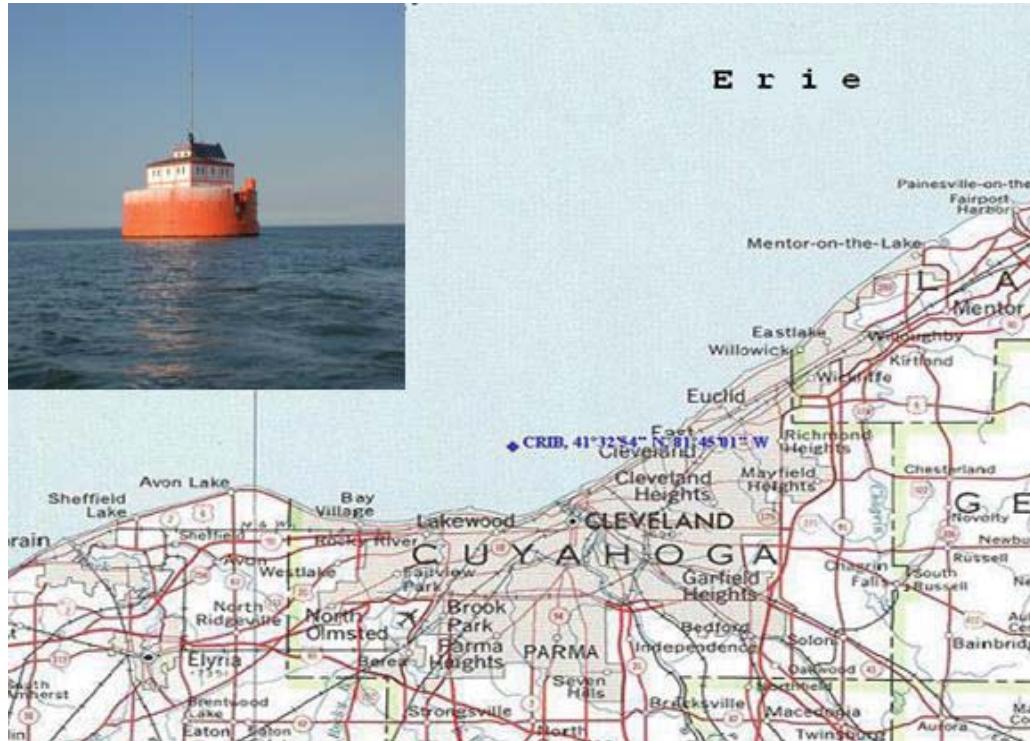
The mathematical formulation of the above wind cases are described in IEC 61400-1 [2005] standard. National Renewable Energy Laboratory (NREL) has developed computational tools to generate design load cases in accordance with the IEC standards for a wind farm. One code, IECWind, generates deterministic wind cases, and the other code, TurbSim [Jonkman & Kilcher, 2012] generates random wind load cases. Both codes are open source and can be downloaded from the NREL website. Figure 5.1 demonstrates the wind conditions and the tools that can be used to generate the IEC wind parameters.



**Figure 5.1 Different wind load cases and the tools to generate them.**

## 5.2 Study Site

For the purposes of this study, the central basin of Lake Erie defined by a band three to five miles off the Cuyahoga County shore, close to the city of Cleveland, Ohio was considered as the wind turbine site. The water depth at this location varies between 13-17 m. The main sources of environmental data used here are from the National Oceanic and Atmospheric Administration (NOAA) buoy 45005, a wind resource report by Dykes et al., [2008], and a Great Lakes feasibility study document by Marshall et al., [2009]. Both Marshall's and Dykes' studies were conducted for the same location. To define the load cases, the historical data from the buoy were used in conjunction with the report by Marschall et al., [2009].


## 5.3 Environmental Conditions

### 5.3.1 Wind & Wave

The main source of the wind data in the Great Lakes feasibility study conducted by Marschall et. al., [2009] is the wind resource assessment study by Dykes et al., [2008]. The measurements were collected at the Cleveland water intake crib, which is located 3.5 miles from the shore. A picture of the structure is found in Figure 5.2. The crib is located at the Cleveland bay, which is sheltered by the natural depression of the shore. Thus, the accuracy of readings of wind speed should be evaluated for potential wind farms farther from shore in Lake Erie.

Since the raw data from either the wind resource assessment studies by Dykes et. al., [2008] or the study by Marchall et. al., [2009] were unavailable for this work, the wind and wave data collected at the buoy 45005 were used in order to calculate the environment loading condition

based on the IEC standards. Moreover, using data from buoy to model the dependence between wind and wave is advantageous as the data were collected at the same location and the wind and wave measurements were synchronized. The disadvantage of these data, however, is that the buoy does not operate during winter time; therefore, there are no wind data corresponding to the cold months. For those months, the wind data from the crib, summarized in Marchall et. al., [2009] were used..



**Figure 5.2 Cleveland water intake crib [Marchalls et. al, 2009].**

Figure 5.3 shows the buoy with the Data Acquisition and Control Telemetry payload, which is located at position 41.677 N 82.398 W (see Figure 5.4). Table 5.1 lists the main characteristics of this buoy.



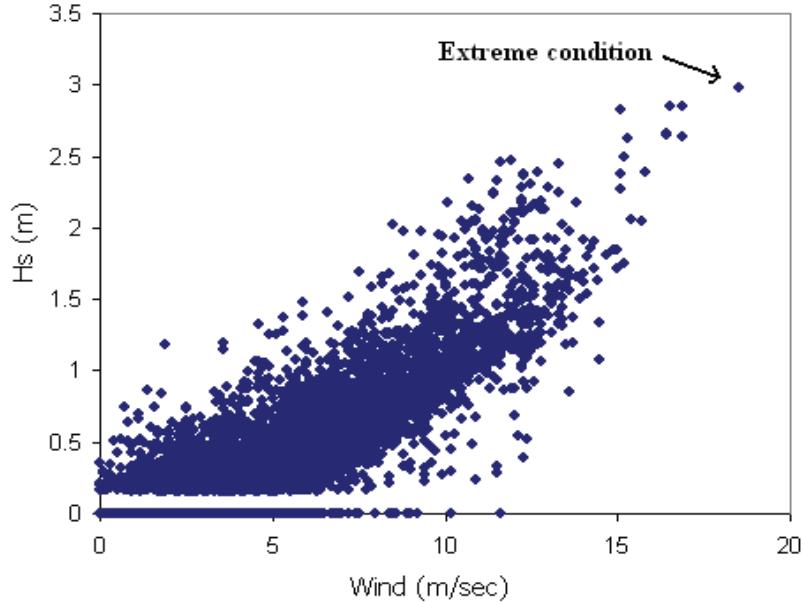
**Figure 5.3 Picture of the buoy.**  
[courtesy of NOAA website]



**Figure 5.4. Location of the reference buoy in Lake Erie.**  
[courtesy of Google Earth]

**Table 5.1. Main buoy characteristics.**

|                     |                              |
|---------------------|------------------------------|
| Site elevation      | 173.9 m above mean sea level |
| Air temp height     | 4 m above site elevation     |
| Anemometer height   | 5 m above site elevation     |
| Barometer elevation | 173.9 m above mean sea level |
| Sea temp depth      | 0.6 m below site elevation   |
| Water depth         | 12.6 m                       |
| Watch circle radius | 36 yards                     |


Thirty two years' historical data for wind speed, wave elevation, and dominant wave period are available in the NOAA website for the buoy 45005. However, the data for the following six years are ignored because they were not usable: 1986, 1987, 1996, 2007, 2008 and 2010. Therefore, information from the remaining 26 years was used in order to construct the probabilistic models of the wind speed and wave height. Note that since the buoy did not operate during the winter, the wind and wave data do not represent the environment conditions during winter.

The measured wind speed at the buoys is reported by averaging the speed data over an eight-minute period. Similarly, the significant wave height is calculated during a 20-minute sampling period. The dominant wave period is the period of the waves with maximum energy. In the wind industry ten-minute period wind speeds are typically used. In order to convert the eight-minute average wind speeds, the following equation can be used, which is based on DNV-OS-J101 [2007] standard.

$$V_{10} = V_T \left( 1 - 0.047 \ln \left( \frac{T}{10} \right) \right) \quad (5.1)$$

where  $V_T$  is the measured mean wind speed over period  $T$ . The averaging of the measurements from buoy is performed over 8 minutes. Therefore, to obtain the corresponding wind speeds over ten minutes or one hour the wind speeds should be adjusted by scaling them by 0.99 or 1.10, respectively.

A sample scatter diagram corresponding to year 2002 data is shown in Figure 5.5. Every dot represents a sample pair of wind speed and significant wave height taken during that year. The point at the rightmost corner is selected as the extreme condition for that year. This process was repeated to select the extreme pair for each year, as summarized in Table 5.2.



**Figure 5.5. Scatter diagram of wind speed versus significant wave height for the data recorded in 2002 [Norouzi, 2012].**

**Table 5.2. Extreme wind, wave and period.**

| Year | Wind speed (m/s) | Significant wave height (m) | Wave period (s) |
|------|------------------|-----------------------------|-----------------|
| 1980 | 14.7             | 2.20                        | 5.00            |
| 1981 | 17.4             | 2.50                        | 5.00            |
| 1982 | 15.7             | 2.30                        | 4.80            |
| 1983 | 13.8             | 2.30                        | 5.00            |
| 1984 | 16.1             | 1.90                        | 4.50            |
| 1985 | 12.9             | 2.10                        | 5.90            |
| 1988 | 18.4             | 1.00                        | 3.60            |
| 1989 | 13.4             | 1.10                        | 3.80            |
| 1990 | 16.9             | 2.40                        | 5.60            |
| 1991 | 15.3             | 2.50                        | 2.90            |
| 1992 | 18.0             | 2.70                        | 5.60            |
| 1993 | 17.3             | 2.50                        | 5.00            |
| 1994 | 16.8             | 2.00                        | 5.60            |
| 1995 | 17.1             | 3.40                        | 8.30            |
| 1997 | 18.0             | 2.60                        | 5.88            |
| 1998 | 19.0             | 2.85                        | 6.25            |
| 1999 | 16.4             | 2.11                        | 4.55            |
| 2000 | 16.6             | 2.26                        | 5.56            |
| 2001 | 18.3             | 2.45                        | 5.88            |
| 2002 | 18.5             | 2.98                        | 5.24            |
| 2003 | 18.8             | 2.97                        | 6.25            |
| 2004 | 17.6             | 2.54                        | 5.56            |
| 2005 | 17.6             | 2.72                        | 5.56            |
| 2006 | 17.4             | 2.29                        | 5.00            |
| 2009 | 17.7             | 2.70                        | 5.88            |
| 2011 | 19.4             | 3.23                        | 7.14            |

Figure 5.6 and Figure 5.7 show the wind roses corresponding to the periods of 1980-1994 and 1995-2008 respectively. These wind roses were constructed using the buoy data.

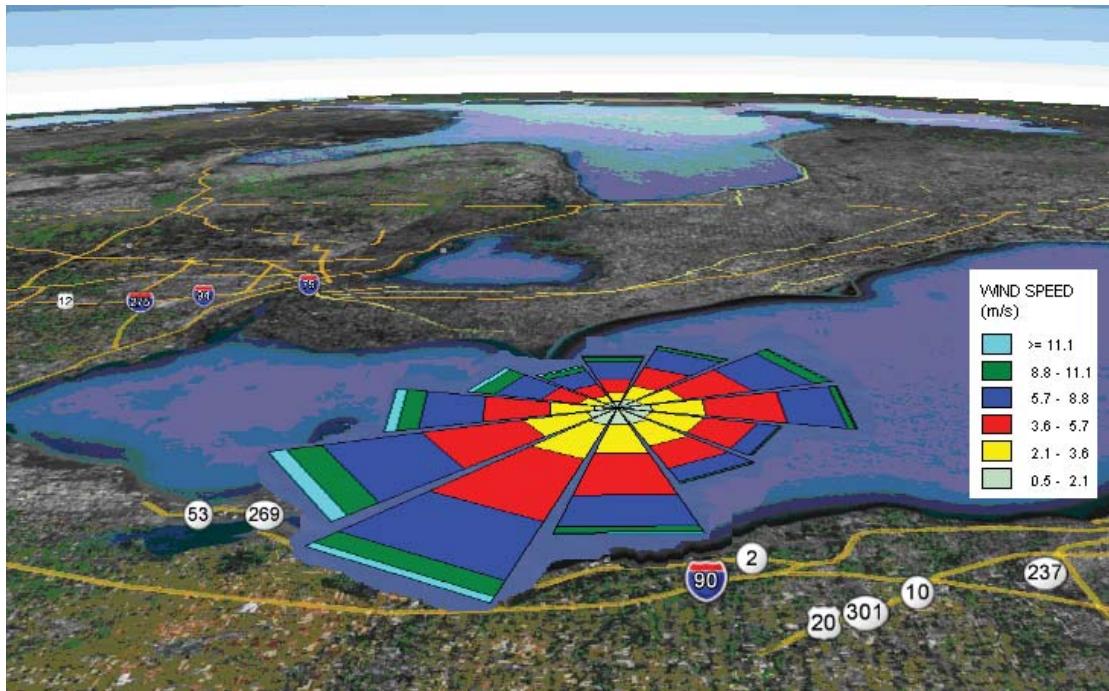



Figure 5.6. Wind rose from year 1980 to 1994 (measured at the NOAA buoy 45005).

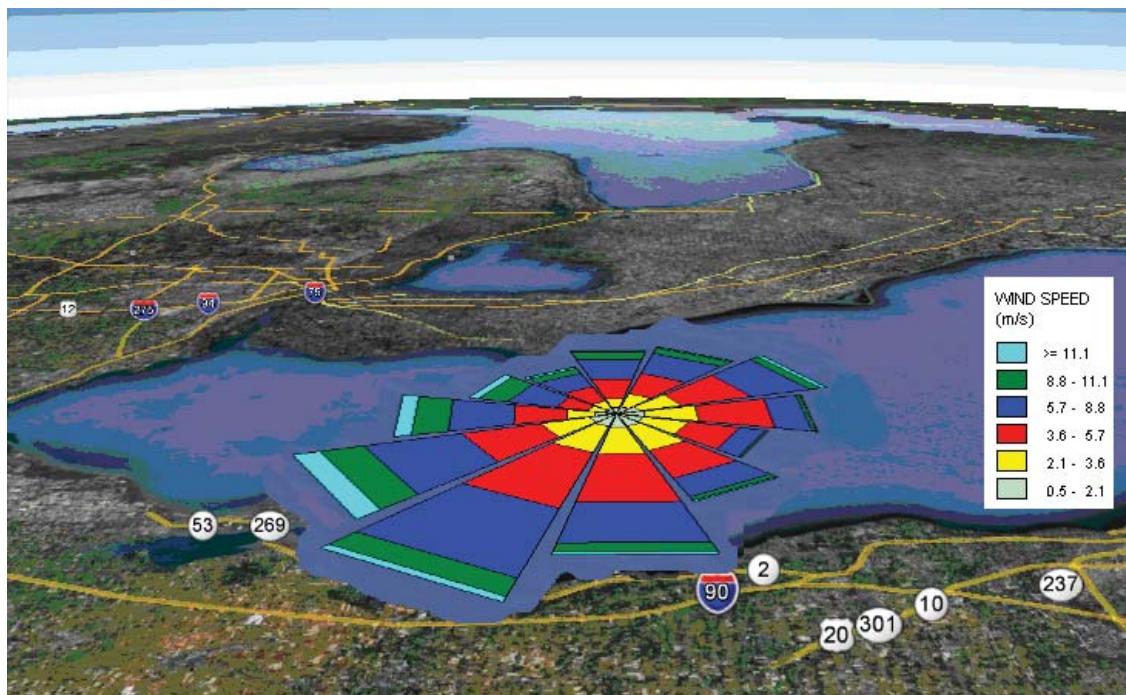
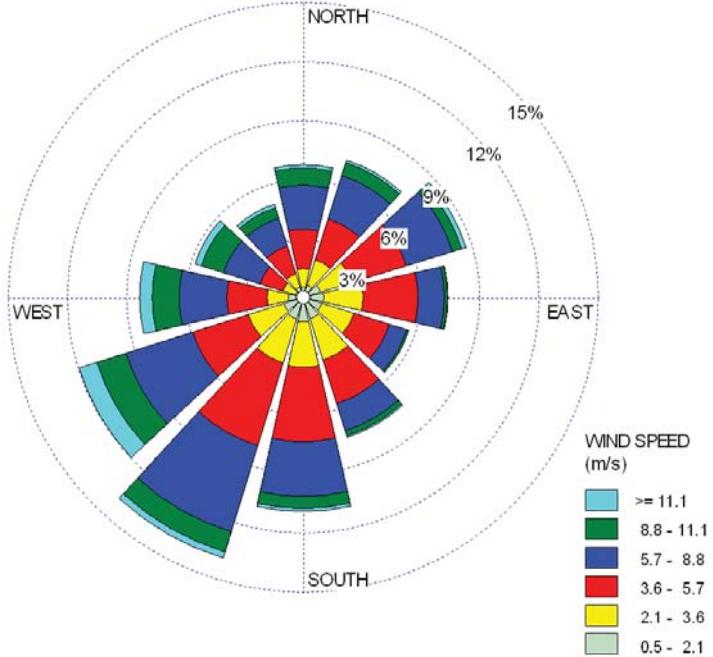
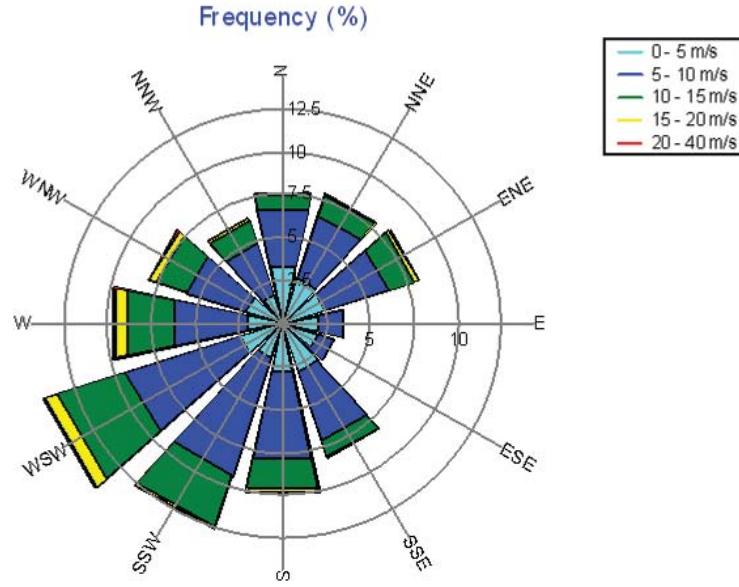




Figure 5.7. Wind rose from year 1995 to 2008 (measured at the NOAA buoy 45005).

Figure 5.8 presents the wind rose for the time period from 1995 to 2008.




**Figure 5.8. Wind rose for period of 1995-2008.**

The wind speeds at the buoy were measured at 5 m height, which corresponds to the top of the buoy. The power law, Eq. (5.2), was used to estimate the corresponding wind speed at the hub height.

$$V(z) = V(z_r) (z/z_r)^\alpha \quad (5.2)$$

where  $V$  is the wind speed,  $z$  is the hub height,  $z_r$  is the height at which the wind speed is measured, and  $\alpha$  is the exponent of the power law (shear factor).

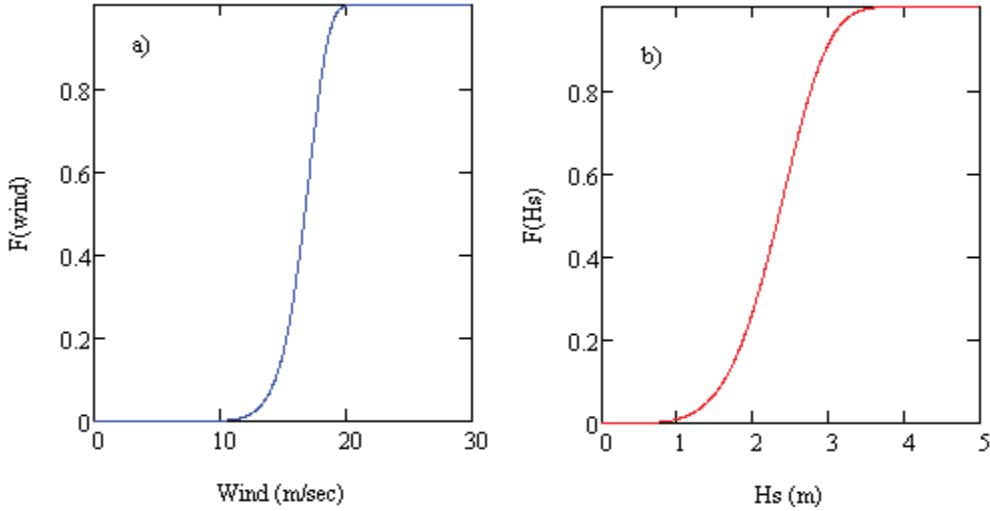
Figure 5.9. Frequency Rose for Crib data shows the wind rose from Marschall et al., [2009]. This rose was constructed from the data collected at the crib by Dykes et al., [2008]. Although the buoy is approximately 20 miles from the water crib, the data shows trends for dominant winds similar to those reported by Marschall et al., [2009]. The wind rose shown in Figure 5.9, presents the wind speed at 70 m hub height.



**Figure 5.9. Frequency Rose for Crib data [Marschall et al., 2009].**

### Approach 1: Characterization of Wind and Wave Dependency

Wind and wave are dependent as large waves are always associated with high winds. There are different methods to model this dependence in an offshore wind farm. Herein this work, a method was adopted based on copula functions. Copulas are functions that couple the one-dimensional marginal probability density functions of a set of random variables to the joint density of these variables [Nelsen, 2006]. Here copulas were applied to obtain the distribution of the joint wind speed and significant wave height utilizing data from buoy, which recorded wind speeds and wave heights simultaneously. For more details about this process refer to Norouzi [2012] or Nikolaidis et al., [2011].


Sklar's theorem builds the foundation for the application of copulas. Based on this theorem, for two dependent variables  $u$  and  $v$ , there is a copula function ( $C$ ) such that for all combinations of values of the cumulative probability distribution functions (CDF) of  $u$  and  $v$  the following relationship holds:

$$F_{UV}(u, v) = C(F_U(u), F_V(v)) \quad (5.3)$$

For continuous CDFs,  $F_U$  and  $F_V$ ,  $C$  will be unique. Conversely, if  $C$  is a copula and  $F_U$  and  $F_V$  are distribution functions, then function  $F$  defined by Eq. (5.3) is a joint distribution function with margins  $F_U$  and  $F_V$ .

In order to model the dependence between wind and waves using a copula, as a first step one needs to estimate the marginal PDFs of the wind speed and the significant wave height from the data. Well-known distributions such as Gumbel, Generalized Extreme and Weibull distributions can be good candidates for modeling marginal PDFs [Nikolaidis et al., 2011].

Using Weibull distribution, by considering the location parameter as zero, the shape and scale parameters would be 13.87 and 17.47, respectively. Similarly, if Weibull distribution is fitted to the wave data, the shape and scale parameters are estimated to be 5.63 and 2.57. Figure 5.10 shows the corresponding CDFs of the wind speed and significant wave height.



**Figure 5.10. The CDF of a) wind speed b) significant wave height (Hs) [Norouzi, 2012].**

The next step is to integrate the CDFs using a copula function. There are several copulas in the literature; in this study Frank's copula was selected to build the joint distribution [Nelsen, 2006]. In Frank's copula the dependence is measured by a single parameter,  $\theta'$ , as in Eq. (5.4)

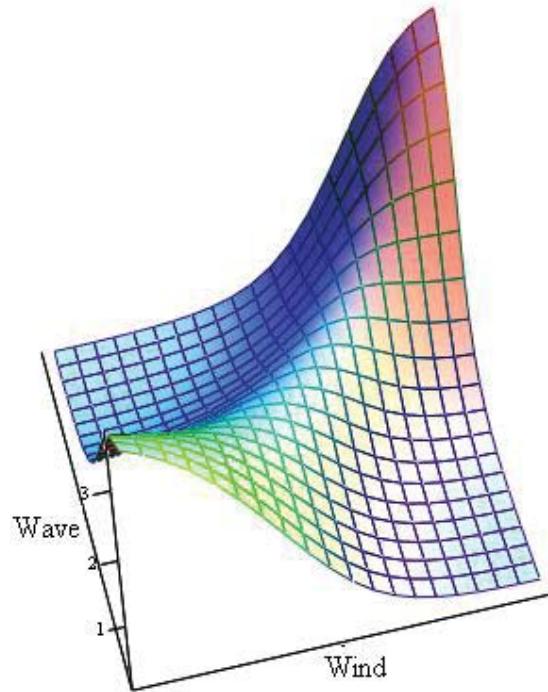
$$C_{\theta'}(u, v) = \log_{\theta'} \left\{ 1 + \frac{(\theta'^u - 1)(\theta'^v - 1)}{\theta' - 1} \right\} \quad (5.4)$$

where  $u$  and  $v$  are the values of the CDFs of the wind speed and significant wave height. Zero value for  $\theta'$  means perfect dependence while unit value means perfect independence.

The value of parameter  $\theta'$  can be estimated from data. The method based on maximizing the pseudo-likelihood function was used to estimate the dependence [Nikolaidis et al., 2011]. A pseudo-likelihood function is defined as follows,

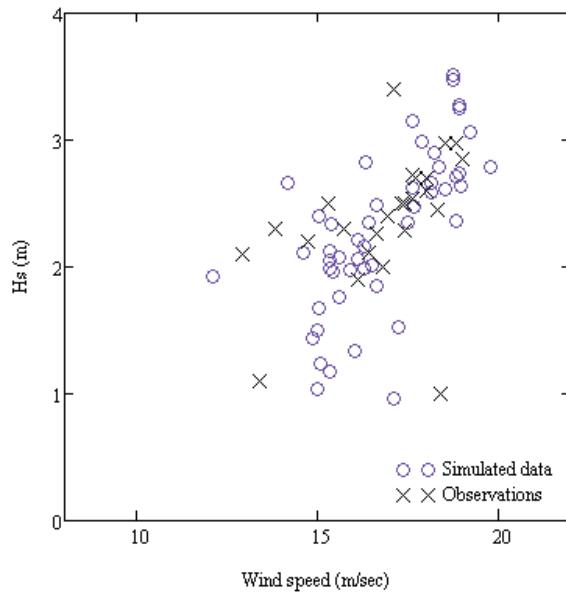
$$L(\theta') = \prod_{i=1}^n C_{\theta'}(u_i, v_i) \quad (5.5)$$

where,  $c_{\theta'}(u, v)$  is the joint PDF calculated by,


$$c_{\theta'}(u, v) = \frac{\partial^2 C_{\theta'}(u, v)}{\partial u \partial v} \quad (5.6)$$

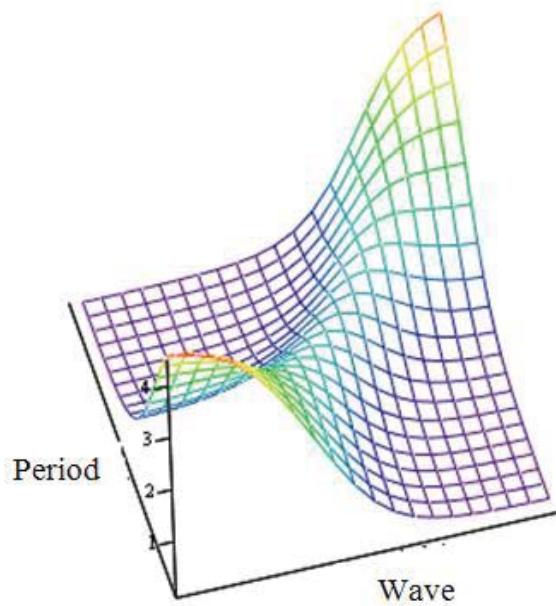
This function equals to 1 for unit  $\theta'$ , and

$$C_{\theta'}(u, v) = \frac{\theta'^{u+v} \ln(\theta')(\theta' - 1)}{(\theta' + \theta'^{u+v} - \theta'^u - \theta'^v)^2} \quad (5.7)$$


otherwise.

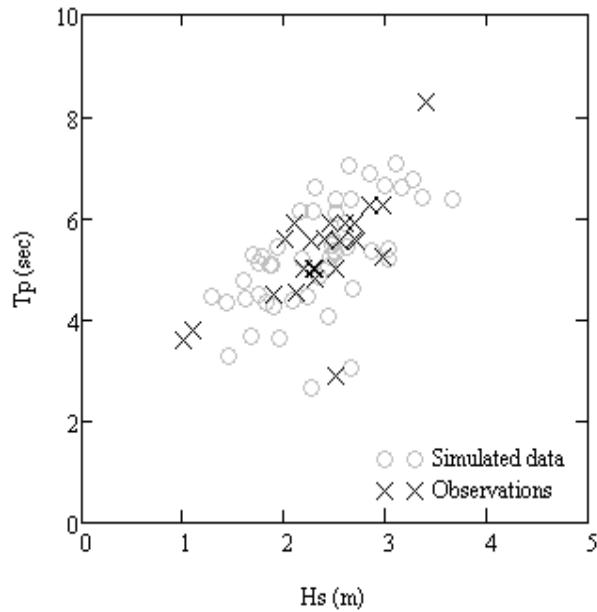
The value of  $\theta'$  is found by maximizing the logarithm of the likelihood function. For the copula corresponding to the wind and wave data from the buoy, a value of  $\theta'$  equal to 0.0087 was obtained. This means that there is a strong dependence between the wind speeds and the wave heights. Figure 5.11 shows the joint PDF of the wind speed and the significant wave height that was obtained using the copula function. This shows that it is more likely to observe large waves while the wind speeds are high and vice versa, as expected.




**Figure 5.11. The PDF of wind speed and significant wave height [Norouzi, 2012].**

In order to assess the quality of the model, 50 pairs of wind speeds and wave heights were simulated, which are shown in Figure 5.12. These pairs are compared with the 26 pairs of measurements from the Lake Erie site. This figure supports a conclusion that the copula model is accurate.

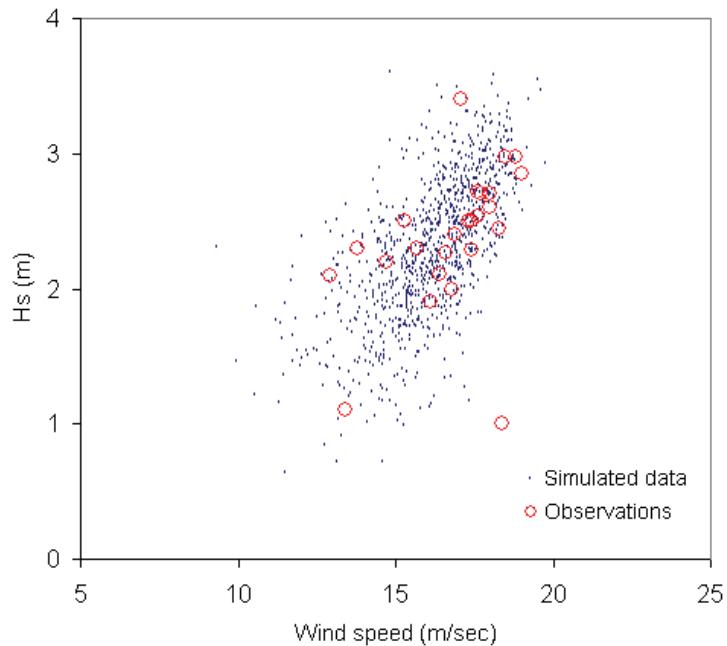



**Figure 5.12. Simulated and observed values of the wind speed and significant wave height (Hs) for the Lake Erie site [Norouzi, 2012].**

Similarly, the dependence between wave height and wave period is developed, as shown in Figure 5.13.



**Figure 5.13. The PDF of significant wave height and period [Norouzi, 2012].**


Again, a comparison of the simulated pairs of the wave period and the significant wave height with observations was used to validate the model's accuracy to predict measured data at the Lake Erie site Figure 5.14.



**Figure 5.14. Simulated and observed values of the wave period ( $T_p$ ) and significant wave height ( $H_s$ ) for Lake Erie site [Norouzi, 2012].**

#### *Approach 2: Statistical Extrapolation for Extreme Events*

Building the joint distribution of wind speed and significant wave height, as well as that of significant wave height and spectral period allows the extreme 1-year or 50-year wind and wave conditions with the desired confidence intervals be determined. Figure 5.15 shows 1,000 pairs of simulated data calculated using the copula models, and their comparison with the observations. Note that the wind speeds in Figure 5.15 are at the 5 m height.



**Figure 5.15. Observed data along with 1000 pair simulated data.**

Using the 1,000 simulated pairs of the wind speed and significant wave height, the extreme 50-year conditions were calculated based on 95% confidence intervals. The following technique was used: 50 samples were drawn from 1,000 simulated pairs that were already generated using the copula models. The maxima were then selected from every sample. Samples were drawn until the desired confidence in results was obtained.

**Table 5.3. Extreme 50-year wind and wave.**

|                              |           |
|------------------------------|-----------|
| Wind speed                   | 19.80 m/s |
| Significant wave height (Hs) | 3.64 m    |

The wind speed in Table 5.3 is at 5 m height. The corresponding wind speed at the tower height of 90 m was calculated using the shear power law (Eq. 5.2). The shear coefficient at a typical offshore wind turbine site is 0.14 while the extreme shear coefficient reported by Marschall et al., [2009] is 0.09. Estimated wind speeds using both shear factors are presented in Table 5.4. The estimated values are based on the shear factor of 0.14 were used in this work to be on the safe side.

**Table 5.4. Extreme 50-year wind at hub height considering shear factor.**

| Wind speed      |           |
|-----------------|-----------|
| Wind shear 0.14 | 29.68 m/s |
| Wind shear 0.09 | 25.68 m/s |

The spectral period of the dominant waves are shown in Table 5.5.

**Table 5.5. Spectral period.**

|                          | Low 95% CI | Average | High 95% CI |
|--------------------------|------------|---------|-------------|
| Mean spectral period (s) | 5.03       | 5.14    | 5.24        |

The selected values for all three quantities needed for the IEC design load cases are summarized in Table 5.6.

**Table 5.6. Extreme 50-year wind, wave with associated spectral period.**

| Wind speed | Significant wave height | Spectral period |
|------------|-------------------------|-----------------|
| 29.68 m/s  | 3.64 m                  | 5.14 s          |

Second approach to calculate 50-year extreme wind and wave condition is based on fitting distributions independently to the wind and wave data. In this approach, it is assumed that the wind and wave are independent and the data are independent between different years. After fitting an appropriate distribution, the 50-year wind speed and significant wave height can be estimated by solving Eq. (5.8) for  $X_{50}$ ,

$$1 - P(x < X_{50})^{50} = \frac{1}{50} \quad (5.8)$$

Using the available data from the buoy 45005, the extreme 50-year wind speed and significant wave height were calculated as shown in Table 5.7.

**Table 5.7. Extreme 50-year wind, wave with associated spectral period.**

| Wind speed | Significant wave height | Spectral period |
|------------|-------------------------|-----------------|
| 31.71 m/s  | 3.74 m                  | 5.14 s          |

Compared to the first approach, slightly larger values than those in Table 5.6 were estimated. This is because in the latter approach the wave and the wind are considered to be independent.

### *Approach 3: Combination of Confidence Interval, Statistical Extrapolation, and Standard*

Third approach to estimate the 1-year extreme wind speed,  $V_{e1}$ , and the 1-year significant wave height,  $H_{s1}$ , is using the 95% confidence interval for the mean value of the maximum annual wind speeds during each of the considered period of years. This approach is applicable here since there are sufficient data to achieve the desired confidence. Also, the 50-year extreme wind speed,  $V_{e50}$ , and the 50-year significant wave height,  $H_{s50}$ , can be found using the statistical extrapolation.

Information from a total of 26 years from Figure 5.2 was used in order to construct probabilistic models of wind speed and wave height.

The 1-year extreme wind speed,  $V_{e1}$ , is specified using the 95% confidence interval for the mean value of the maximum annual wind speeds recorded during each of the above 26 years.

$$V_{e1} = \bar{V} + t_c \frac{\sigma}{\sqrt{n}} \quad (5.9)$$

In the above equation,  $\bar{V}$  is the average value of the maximum annual speeds,  $t_c$  is the 95% percentile value of the Student distribution,  $\sigma$  is the estimated standard deviation of the maximum annual wind speed and  $n$  is the size of the population, which is 26.

In order to estimate the 50-year extreme wind speed  $V_{e50}$  several common probability density functions (PDF) were fitted to the maximum wind speeds data recorded each year from NOAA buoy 45005. These PDFs included Weibull, Lognormal and Gumbel distributions. Among the above PDFs, Weibull's distribution fitted the data best. Therefore, the cumulative distribution function (CDF) of the 50-year extreme wind speed  $V_{e50}$  can be calculated using Eq. (5.10).

$$F(V_{e50}) = 1 - e^{-\left(\frac{V_{e50}}{\lambda}\right)^k} \quad (5.10)$$

In the above equation  $F(V_{e50})$  is the probability of not exceeding  $V_{e50}$ ,  $\lambda$  is a scale parameter and  $k$  is a shape parameter.  $F(V_{e50})$  indicates the probability of wind speed being less than  $V_{e50}$ . Assuming independence between consecutive years, one can estimate the extreme 50-year wind speed by solving equation for  $F(V_{e50}) = 0.98$ .

The NOAA buoy wind speed data were measured at a height of 5 m which corresponds to the top of the buoy. The power law of Eq. (5.2) [IEC 61400-1 (2005)] was used to estimate the wind speed at the turbine hub height. The 90 m hub height,  $z_r$ , and the 0.14 shear factor,  $\alpha$ , are used for this approach.

The average 1-year maximum wind speed values is  $\bar{V} = 16.92$ , and the standard deviation is  $\sigma = 1.68$ . For a population size of  $n = 26$ , using Eq. (5.9), upper bound of 95 % confidence interval for the 1-year extreme wind speed at 5 m height,  $V_{e1@5m}$ , would be 17.60 m/s. Using the power law, Eq. (5.2), the 1-year extreme wind speed at the hub height is estimated as  $V_{e1@90m} = 26.38$  m/s, assuming the shear factor is  $\alpha=0.14$ . It is reasonable to use the upper bound value in order to evaluate the safety of the design.

The Weibull distribution to the 26 years of annual maximum wind speeds has a scale parameter of  $\lambda = 17.63$  and a shape parameter of  $k = 13.28$ . Using Eq. (5.10)  $V_{e50}$  is calculated as  $V_{e50@5m} = 19.54$  m/s at a height of 5 m above the water level. Using the power law from Eq. (5.2), and a shear factor of  $\alpha=0.14$  the 50-year extreme wind speed at the 90 m height would be  $V_{e50@90m} = 29.29$  m/s.

The 1-year extreme significant wave height  $H_{s1}$  was found using the 95% confidence interval of the maximum significant wave heights recorded in 26 years (Eq. (5.11))

$$H_{s1} = \bar{H} + t_c \frac{\sigma}{\sqrt{n}} \quad (5.11)$$

where,  $\bar{H}$  is the mean value,  $t_c$  is the 95 percentile value of the Student distribution,  $\sigma$  is the standard deviation and  $n$  is the population size.

The 50-year extreme significant wave height  $H_{s50}$  is estimated by fitting the annual maximum significant wave height PDF to the wave data collected at NOAA buoy 45005 in 26 years. The 3-parameter Weibull distribution fits best to the annual maximum values of the significant wave height.

$$F(H_{s50}) = 1 - e^{-\left(\frac{H_{s50}-\delta}{\lambda}\right)^k} \quad (5.12)$$

where  $F(H_{s50})$  is the probability of not exceeding  $H_{s50}$ ,  $\delta$  is the minimum value (threshold) of the significant wave height, and  $\lambda$  and  $k$  are scale and shape parameters.

The maximum, minimum and mean values of the wave period,  $T_p$ , corresponding to the significant wave height are found from Eq. (5.13) [IEC61400-3, 2009].

$$11.1\sqrt{H_s(V)/g} \leq T_p \leq 14.3\sqrt{H_s(V)/g} \quad (5.13)$$

where  $H_s(V)$  is the significant wave height as a function of the wind speed  $V$  and  $g$  is acceleration of gravity.

The conditional significant wave heights  $H_s$  for each wind speed bin were found from the distribution of the significant wave height  $H_s$  estimated from buoy data. Interpolation is used to find  $H_s$  values at  $V_r$  and  $V_r \pm 2$  m/s. The same technique was used to estimate  $H_s$  for  $V_{\text{hub}}$  values of 21, 23 and 25 m/s because there is no recorded wind speed higher than 20 m/s.

The 1-year extreme significant wave height  $H_{s1}$  was found using the 95% confidence interval of the mean value of this height that was estimated from 26 annual maximum values measured from the NOAA buoy 45005. The average value of the 26 values is  $\bar{H}=2.76$ . The percentile value of the Student distribution is  $t_c = 2.06$  for the 95% confidence interval because the size of the population is  $n = 26$ . The standard deviation is  $\sigma = 0.44$ . Using Eq. (5.11), the 1-year extreme significant wave height is estimated equal to 2.94 m.

The 50-year extreme significant wave height  $H_{s50}$  was estimated from the 3-parameter Weibull distribution that was obtained from the 26 annual maximum values of the significant wave heights. The cumulative distribution function  $F(H_{s50})$  in Eq. (5.12) is set to  $F(H_{s50}) = 1-(1/50)$ . The shape parameter  $k$  and the scale parameter  $\lambda$  are 1.543 and 0.7758, respectively. The threshold value is  $\delta = 2.956$ . The 50-year extreme significant wave height  $H_{s50}$  was estimated as  $H_{s50} = 3.939$  m by solving Eq. (5.12).

### 5.3.2 Ice Condition

#### Ice Coverage

Data from the National Oceanic and Atmospheric Administration (NOAA) suggests that the Great Lakes can freeze over quite often. More specifically, Lake Erie, due to its shallowness, can freeze over its entire surface during winter (Figure 5.16). This makes ice loads a serious concern for deployment of any offshore wind turbines into Lake Erie. During the coldest part of the winter in February, Lake Erie is covered with ice at least half the time.

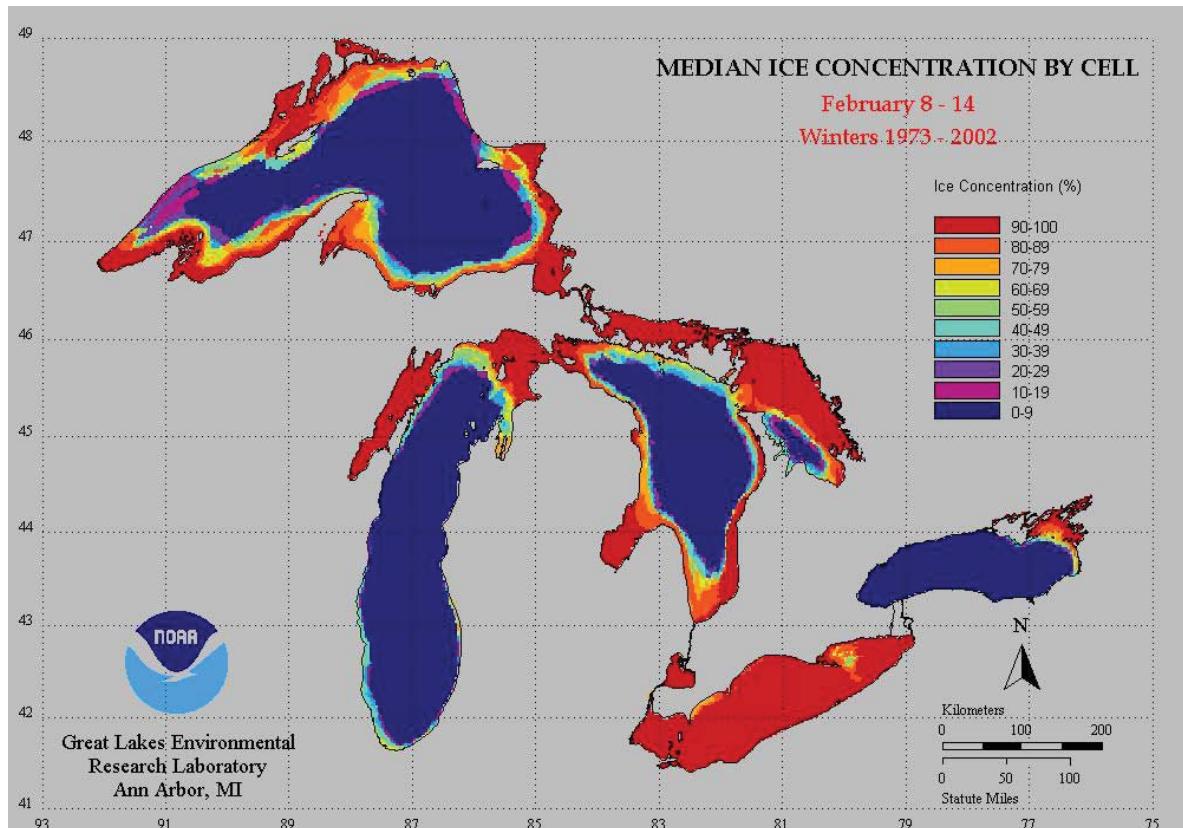
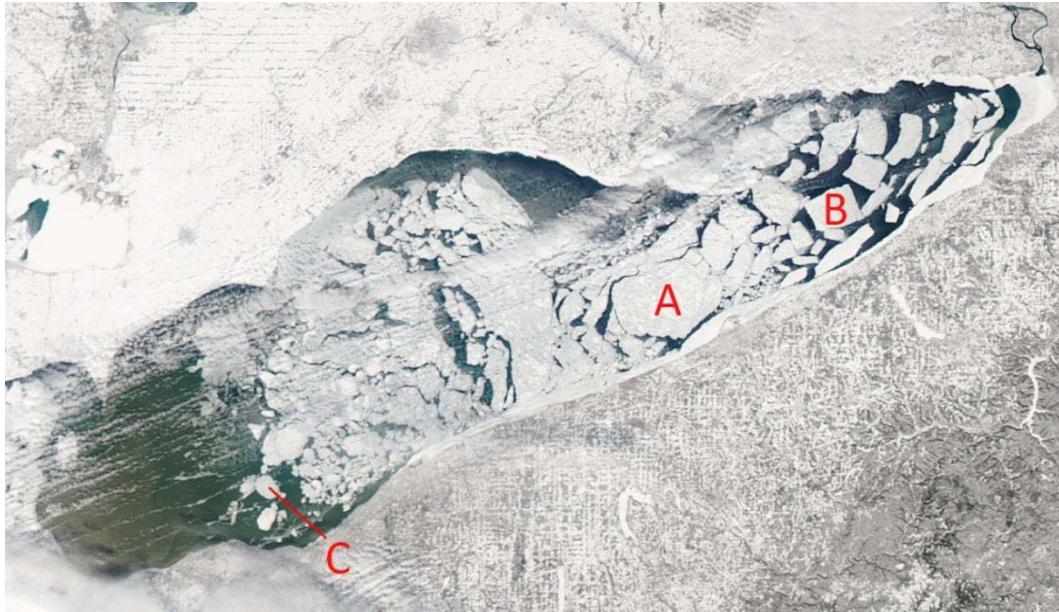
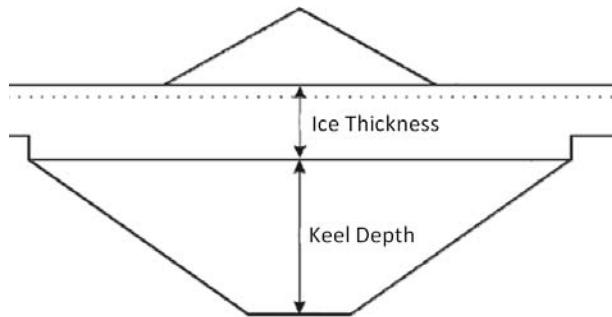




Figure 5.16. Ice coverage over winter in the Great Lakes.

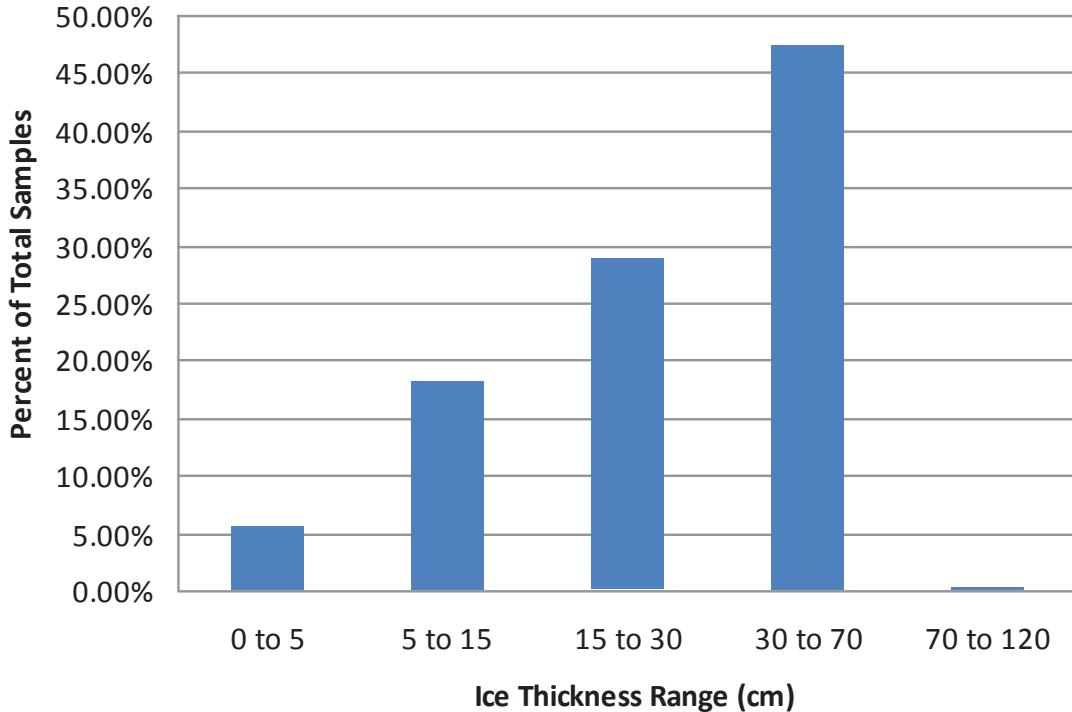
#### Ice Floe Size


The NOAA data indicates that ice floes can be very large. NASA satellite imagery from Feb 22, 2011 reveals how big ice floes can get. In Figure 5.17, ice floe A is 35 km across, B is 15 km across, and C is 7 km across. If such a large moving chunk of ice hits an offshore structure, the ice chunk isn't going to stop moving. This means the structure of the offshore structure must be able to crush through the ice.



**Figure 5.17. Ice floe in Lake Erie 2011 [Marschall et al., 2009].**

### *Ice Ridges*


When a flat ice sheet forms, it can buckle and crush together, refreezing into a thicker layer of ice accompanied by a mass of submerged ice rubble under the surface Figure 5.18. This formation is called an Ice Ridge, and the submerged rubble is called an Ice Keel. If an offshore structure encounters an ice ridge, it will be subjected to even greater loads than from a flat ice sheet, making ice ridges a significant concern for offshore structures.



**Figure 5.18. Ice ridge.**

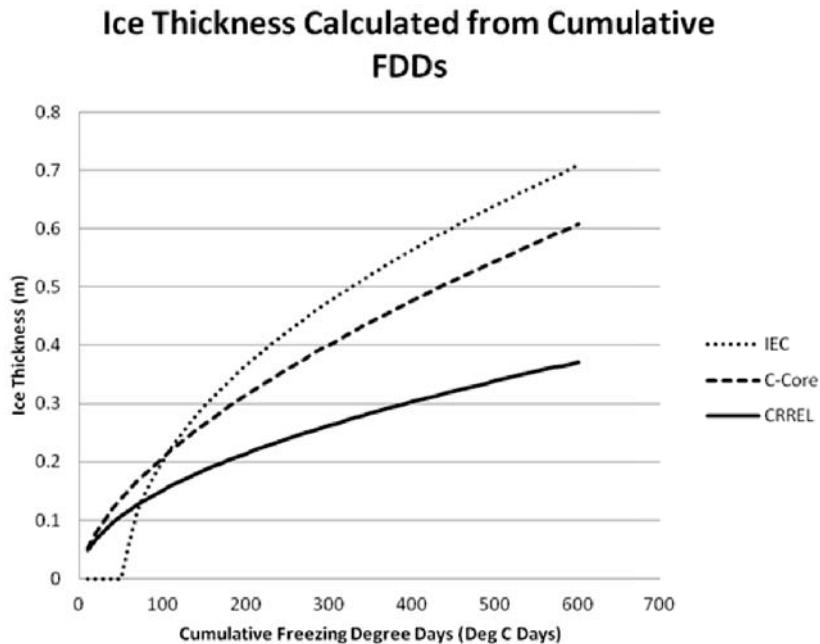
### *Ice Thickness*

The NOAA ice thickness data for Lake Erie shows that the ice thickness can easily reach the range of 30-70 cm (1 to 2.4 ft). Also ice thicknesses up to 120 cm (4 feet) have been observed Figure 5.19.



**Figure 5.19. Ice thickness over Lake Erie [Wells, 2012].**

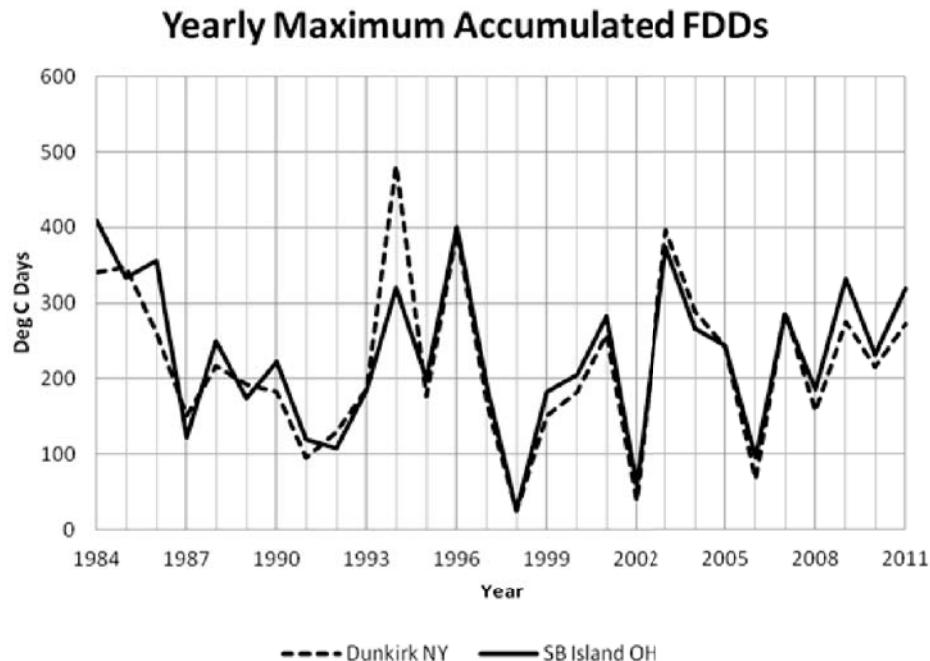
Several sources have proposed an expression to estimate ice thickness as a function of cumulative freezing degree-days (FDD). The IEC standard 61400-3 [2009] proposes Eq. (5.14),


$$h_{\text{ice}} = 0.032\sqrt{0.9\text{FDD} - 50} \quad (5.14)$$

where,  $h_{\text{ice}}$  is the ice thickness in meters and FDD denotes accumulated freezing degree-days (in  $^{\circ}\text{C}$ ). Alternatively, the ice thickness can be estimated using the following equations according to [C-CORE, 2008] and White [2004], respectively.

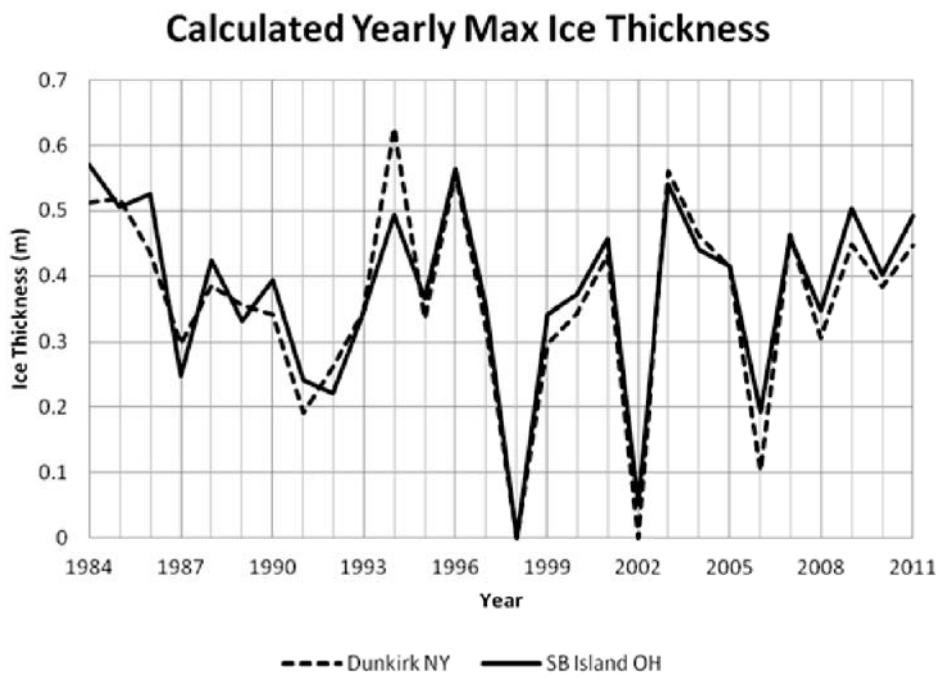
$$h_{\text{ice}} = 1.308(\text{FDD})^{0.6} \quad (5.15)$$

$$h_{\text{ice}} = 0.8\sqrt{\text{FDD}} \quad (5.16)$$


The ice thickness is expressed in meters in the above three equations. Figure 5.20 compares the estimate of the ice thickness using Eqs. (5.14), (5.15) and (5.16) as a function of cumulative FDDs.



**Figure 5.20: Predicted Ice Thicknesses from Cumulative Freezing Degree Days [Wells, 2012].**


Figure 5.20. shows that the estimates of the ice thickness using the IEC standard returns the most conservative estimates of ice thickness values for the cumulative FDDs greater than about 100 degree C-days.

The temperature database from the National Data Buoy Center includes sufficient data for two locations from the extreme east and west ends of Lake Erie from 1983-2011. These locations are South Bass Island, Ohio (National Data Buoy Center SBIO1, 2012), and Dunkirk New York (National Data Buoy Center DBLN6, 2012). Other sites in Lake Erie had periods of record too short to be sufficient for statistical analysis. Figure 5.21 demonstrates maximum accumulated FDDs for different years from 1984 to 2011.



**Figure 5.21. Maximum value of cumulative FDDs for winter seasons 1984-2011 for two Lake Erie sites [Wells, 2012].**

Figure 5.21 shows that the conditions are quite similar between these locations; therefore they should be representative of the condition over the entire lake. Using Eq. (5.14), the yearly maximum ice thicknesses as a function of FDD were estimated, as shown in Figure 5.22.



**Figure 5.22. Calculated Ice Thickness from FDD data for winter seasons 1984-2011 for two Lake Erie sites [Wells, 2012].**

The ice thickness values in Figure 5.22 represent the ice thickness by assuming that no ice ridges form. If the ice were to buckle and form ice ridges, a solid layer would refreeze in the middle of the ice ridges. The thickness of the consolidated layer would be about 1.5 times the level ice thickness [C-CORE, 2008].

### 50-year Return Period Ice Thickness

One of the IEC ice design load case requirements is estimation of 50-year return period ice thickness. Eq. (5.14) can be used to estimate 50-year return period ice thickness using the statistical data of one year. The 50-year return period thickness can be estimated from FDD data with the same return period. To do this, the Weibull distribution was found to fit well to the FDD data from the Dunkirk NY site, as shown in Figure 5.23. The conditions at this site are more severe than the South Bass Island site and thus a more conservative result is expected to using this site's data. From the Weibull distribution, the 50-year return period FDD is 469.3. Using this value and Eq. (5.14), the 50-year return period ice thickness is estimated 61.8 cm.

The above process was repeated using the Gumbel distribution and produced the 50-year return period FDD value for the Dunkirk site of 502.8 days and the ice thickness of 64 cm. This is consistent with the previously obtained value of 61.8 cm using the Weibull distribution.

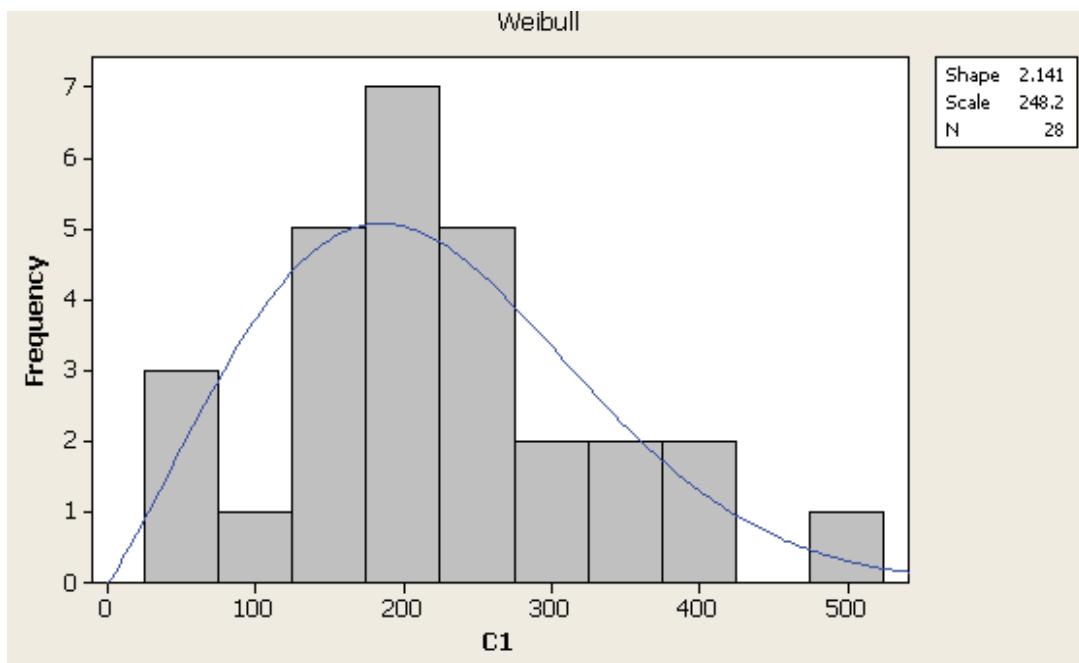
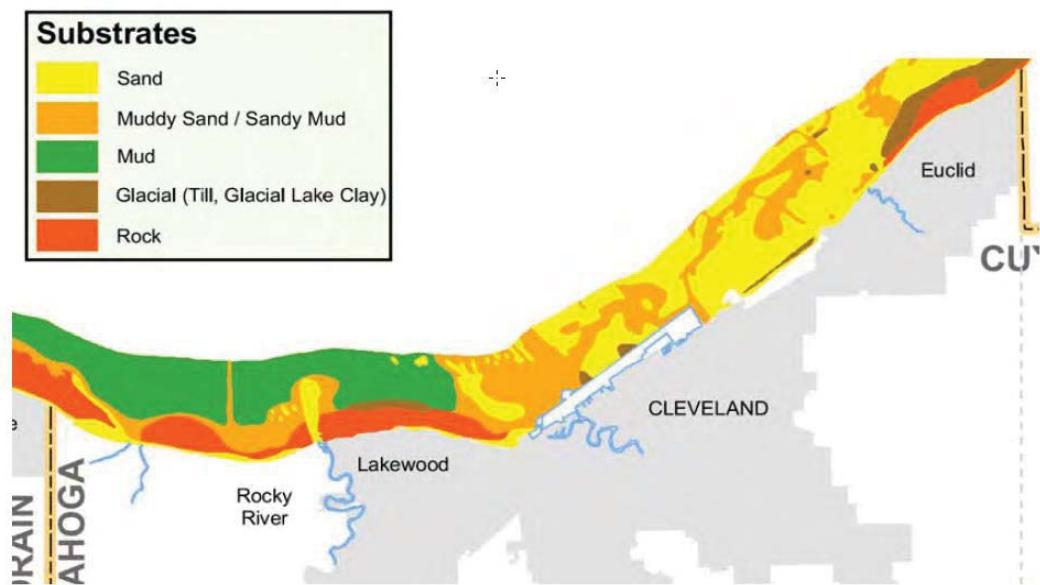



Figure 5.23. Weibull Distribution fit onto Cumulative FDD Data [Wells, 2012].

### 50-year Return Period Ice Ridge Keel Depth

From the ice scour data from [C-CORE, 2008] and [Lever, 2000], the 50-year return period ice ridge using Eq. (5.17) is 11.2 m.


$$h_{\text{keel}} = 1.954 \ln(T) + 3.501 \quad (5.17)$$

where  $h_{keel}$  is the depth of the ice keel in meters, and  $T$  is the desired return period in years.

### 5.3.3 Soil Condition

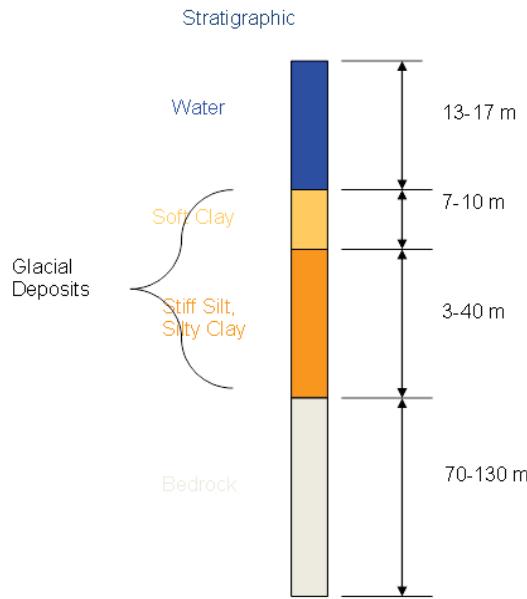

A thorough study of the soil condition at the exact location of installation is necessary prior to deployment of any offshore wind turbine. However, at the preliminary turbine design phase reviewing any soil data from the vicinity of the wind farm site should be sufficient. Hence, the soil data available from the Burke Airport Feasibility Study [Dames and Moore, 1974] were used.

Figure 5.24 displays the substrates 3-5 miles off Cuyahoga County shore line, inside Cleveland Bay.



**Figure 5.24. Substrates off the coast of Cleveland.**

The Burke Airport Feasibility Study [1974] contains soil profiles derived from deep borings. These sections show some regularity in the soil layers as in Figure 5.25. The top layer consists of soft clay which is 5 to 10 m deep. This layer cannot support any foundation. The top layer thickness increases from West to East, but does not change from South to North. The mid-layer consists of stiff silt and very stiff silty clay, which is able to support foundations. The lowest layer is from bed rock, which is very hard and would significantly increase the cost of drilling.



**Figure 5.25. Soil condition at the site location.**

In the Great Lakes Wind Energy Center Feasibility Study conducted by Marchall et. al., [2009] the soil condition for several sites have been reported. The thickness of soil strata are summarized in Table 5.8.

**Table 5.8. Conservative estimation of the thickness of the soil strata available for load bearing at the different locations (extracted from Marchalls et al., 2009).**

| Site no. | Lake Bed (Desktop study) (ft) | Bedrock horizon (Desktop study) (ft) | Thickness of glacial deposits (ft) | Thickness of soft clay, estimations taken from Airport Feasibility study (ft <sup>3</sup> ) | Available pile length for load bearing, est. (ft) |
|----------|-------------------------------|--------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1        | 510                           | 400                                  | 110                                | 20                                                                                          | 90                                                |
| 2        | 525                           | 380                                  | 145                                | 20                                                                                          | 125                                               |
| 3        | 510                           | 430                                  | 80                                 | 20                                                                                          | 60                                                |
| 4        | 500                           | 450                                  | 50                                 | 20                                                                                          | 30                                                |
| 5        | 510                           | 400                                  | 110                                | 20                                                                                          | 90                                                |
| 6        | 500                           | 410                                  | 90                                 | 20                                                                                          | 70                                                |
| 6A       | 480                           | 420                                  | 80                                 | 20                                                                                          | 60                                                |
| 7        | 510                           | 400                                  | 110                                | 20                                                                                          | 90                                                |
| 8        | 490                           | 460                                  | 3                                  | 20                                                                                          | 10                                                |

Available length for supporting the foundation would be soft clay thickness subtracted from glacial deposits. This length varies significantly with location based on Table 5.8.

## 5.4 Definition of IEC Design Load Cases

The offshore turbine loads analysis was based on IEC 61400-3 [2009] standard. Because this is a preliminary design study, a subset of the IEC design load cases (DLCs) is used to determine the loads and assess the safety of the turbine. These DLCs are listed in this section.

**Table 5.9. Estimated wind and wave condition parameters.**

| $V_{\text{hub}}$<br>(m/s)   | $V_{\text{min}}$<br>(m/s) | $V_{\text{max}}$<br>(m/s) | $H_s$<br>(m)    | $T_p \text{ min}$<br>(sec) | $T_p \text{ avg}$<br>(sec) | $T_p \text{ max}$<br>(sec) | Count |
|-----------------------------|---------------------------|---------------------------|-----------------|----------------------------|----------------------------|----------------------------|-------|
| $V_{\text{in}} = 3.00$      | 2                         | 4                         | 0.211           | 1.630                      | 1.865                      | 2.100                      | 32577 |
| 5.00                        | 4                         | 6                         | 0.393           | 2.220                      | 2.540                      | 2.860                      | 33283 |
| 7.00                        | 6                         | 8                         | 0.662           | 2.884                      | 3.300                      | 3.716                      | 23262 |
| 9.00                        | 8                         | 10                        | 0.961           | 3.475                      | 3.976                      | 4.477                      | 12450 |
| $V_r \text{ 5MW-2} = 9.40$  | -                         | -                         | 1.025           | 3.588                      | 4.105                      | 4.622                      | -     |
| 11.00                       | 10                        | 12                        | 1.280           | 4.009                      | 4.587                      | 5.165                      | 5310  |
| $V_r \text{ 5MW} = 11.40$   | -                         | -                         | 1.346           | 4.111                      | 4.704                      | 5.296                      | -     |
| 13.00                       | 12                        | 14                        | 1.608           | 4.494                      | 5.142                      | 5.790                      | 1916  |
| $V_r \text{ 5MW+2} = 13.40$ | -                         | -                         | 1.676           | 4.587                      | 5.249                      | 5.910                      | -     |
| 15.00                       | 14                        | 16                        | 1.946           | 4.944                      | 5.656                      | 6.369                      | 611   |
| 17.00                       | 16                        | 18                        | 2.341           | 5.422                      | 6.203                      | 6.985                      | 149   |
| 19.00                       | 18                        | 20                        | 2.620           | 5.736                      | 6.563                      | 7.389                      | 20    |
| 21.00                       | 20                        | 22                        | 2.707           | 5.831                      | 6.671                      | 7.511                      | 0     |
| 23.00                       | 22                        | 24                        | 2.793           | 5.923                      | 6.777                      | 7.631                      | 0     |
| $V_{\text{out}} = 25.00$    | 24                        | 26                        | 2.880           | 6.014                      | 6.881                      | 7.748                      | 0     |
| $V_{e1} = 26.38$            | -                         | -                         | $H_{s1} = 2.94$ | 6.077                      | 6.953                      | 7.828                      | -     |
| $V_{e50} = 39.36$           | -                         | -                         | $H_{s50} = 4.1$ | 7.176                      | 8.210                      | 9.245                      | -     |

To simulate wind turbine models under normal operating conditions, the hub height wind speed ( $V_{\text{hub}}$ ) of 3 m/s (the cut-in speed,  $V_{\text{in}}$ ) to 25 m/s (the cut-out speed,  $V_{\text{out}}$ ) with a 2 m/s interval are used. Based on the desired power rating of the turbine, the rated wind speeds are determined. The rated wind speed,  $V_r$ , of the 5 MW wind turbines is 11.4 m/s. Wind speed increments of 2 m/s are selected to predict the wind turbine performance. The corresponding significant wave heights for each wind speed are determined using conditional statistical extrapolation as explained in third approach of Section 5.3.1. The 1-year extreme wind speed  $V_{e1} = 26.38$  m/s and the 1-year extreme significant wave height  $H_{s1} = 2.94$  m estimated with third approach in Section 5.3.1 are used for this research. However, for the 50-year extreme wind speed and significant wave height, the 50-year extreme wind speed and significant wave height estimated in [Marschall et al., 2009] are used. Marschall et al., [2009] estimated that the 50-year wind speed is 38 m/s at 70 m height in the crib area. When this wind speed is converted to the wind speed at 90 m height, it becomes  $V_{e50} = 39.36$  m/s which is largest 50-year extreme wind speed than any other methods dealt in Section 5.3.1. To be conservative, 39.36 m/s 50-year extreme wind speed is selected to be used in this research. Similar to the 50-year wind speed, Marschall et al., [2009] reported that the 50-year significant wave height is  $H_{s50} = 4.1$  m which is higher than any other result values of methods in Section 5.3.1. This conservative value of 4.1 m is selected as the 50-year extreme significant wave height for this research. The maximum, minimum, and average wave periods are found according to Eq. (5.13) for each corresponding significant wave height.

The results for wind speeds, significant wave heights and wave periods used in this research are provided in Table 5.9. For each bin, the count column presents the number of recorded wind speeds contained in that bin among from the data recorded in 26 years.

A selected subset of the IEC design load cases in Table 5.10 is considered in this study. This subset is the same as that is used in reference [Jonkman et al., 2010]. The selected DLCs that are listed in Table 5.10 are based on the study by Jonkman et al., 2010. The IEC 61400-1 [2005] and IEC 61400-3 [2009] standards explain in detail the DLCs and their corresponding nomenclature.

**Table 5.10. Selected subset DLCs wind conditions [Jonkman et al., 2010].**

| DLC                                                 | Winds                                             | Waves | Controls / Events           | Load Factor                    |                                                                       |      |
|-----------------------------------------------------|---------------------------------------------------|-------|-----------------------------|--------------------------------|-----------------------------------------------------------------------|------|
| Model                                               | Speed                                             | Model | Height                      | Direction                      |                                                                       |      |
| <b>1) Power Production</b>                          |                                                   |       |                             |                                |                                                                       |      |
| 1.1                                                 | NTM $V_{in} < V_{hub} < V_{out}$                  | NSS   | $H_s = E[H_s   V_{hub}]$    | $\beta = 0^\circ$              | Normal operation                                                      | 1.50 |
| 1.2                                                 | NTM $V_{in} < V_{hub} < V_{out}$                  | NSS   | $H_s = E[H_s   V_{hub}]$    | $\beta = 0^\circ$              | Normal operation, Fatigue                                             | 1.00 |
| 1.3                                                 | ETM $V_{in} < V_{hub} < V_{out}$                  | NSS   | $H_s = E[H_s   V_{hub}]$    | $\beta = 0^\circ$              | Normal operation                                                      | 1.35 |
| 1.4                                                 | ECD $V_{hub} = V_r, V_r \pm 2\text{m/s}$          | NSS   | $H_s = E[H_s   V_{hub}]$    | $\beta = 0^\circ$              | Normal operation $\pm \Delta$ wind direction                          | 1.35 |
| 1.5                                                 | EWS $V_{in} < V_{hub} < V_{out}$                  | NSS   | $H_s = E[H_s   V_{hub}]$    | $\beta = 0^\circ$              | Normal operation $\pm \Delta$ vertical & horizontal wind shear        | 1.35 |
| 1.6a                                                | NTM $V_{in} < V_{hub} < V_{out}$                  | ESS   | $H_s = 1.09 \times H_{s50}$ | $\beta = 0^\circ$              | Normal operation                                                      | 1.35 |
| <b>2) Power Production with Occurrence of Fault</b> |                                                   |       |                             |                                |                                                                       |      |
| 2.1                                                 | NTM $V_{hub} = V_r, V_{out}$                      | NSS   | $H_s = E[H_s   V_{hub}]$    | $\beta = 0^\circ$              | Pitch runaway $\rightarrow$ Shutdown                                  | 1.35 |
| 2.3                                                 | EOG $V_{hub} = V_r, V_r \pm 2\text{m/s}, V_{out}$ | NSS   | $H_s = E[H_s   V_{hub}]$    | $\beta = 0^\circ$              | Loss of load $\rightarrow$ Shutdown                                   | 1.10 |
| <b>6) Parked (Idling)</b>                           |                                                   |       |                             |                                |                                                                       |      |
| 6.1a                                                | EWM $V_{hub} = 0.95 \times V_{50}$                | ESS   | $H_s = 1.09 \times H_{s50}$ | $\beta = 0^\circ \pm 30^\circ$ | $\text{Yaw} = 0^\circ, \pm 8^\circ$                                   | 1.35 |
| 6.2a                                                | EWM $V_{hub} = 0.95 \times V_{50}$                | ESS   | $H_s = 1.09 \times H_{s50}$ | $\beta = 0^\circ \pm 30^\circ$ | $\text{Loss of grid} \rightarrow -180^\circ < \text{Yaw} < 180^\circ$ | 1.10 |
| 6.3a                                                | EWM $V_{hub} = 0.95 \times V_1$                   | ESS   | $H_s = 1.09 \times H_{s1}$  | $\beta = 0^\circ \pm 30^\circ$ | $\text{Yaw} = 0^\circ, \pm 20^\circ$                                  | 1.35 |
| <b>7) Parked (Idling) and Fault</b>                 |                                                   |       |                             |                                |                                                                       |      |
| 7.1a                                                | EWM $V_{hub} = 0.95 \times V_1$                   | ESS   | $H_s = 1.09 \times H_{s1}$  | $\beta = 0^\circ \pm 30^\circ$ | Seized blade: $\text{Yaw} = 0^\circ, \pm 8^\circ$                     | 1.10 |

As described in [Jonkman et al., 2010], the DLC1.x series power production under normal operation is selected. The DLC2.x series power production with fault occurrences that will trigger a shutdown of the turbine is also included in the subset. The parked condition DLC6.x series and parked condition with fault occurrences DLC7.x series are considered with 50-year and 1-year extreme winds. Other DLCs such as startup (DLC3.x), normal shutdown (DLC4.x), emergency shutdown (DLC5.x), and transport, assembly maintenance and repair (DLC8.x) are not critical in the concept design stage and therefore are not considered here.

The load factors follow the IEC61400-1 standard. Specially, DLC1.1 uses load factor of  $1.25 \times 1.2$  that is equal to 1.5. The extra factor of 1.2 is multiplied for the DLC1.1 with rule of thumb because IEC standard requires to use statistical extrapolation of the ultimate loads when the stochastic wind and wave conditions are used for the normal operating condition. The reference [Jonkman et al., 2007] includes details about the load factors for DLCs.

To account for the influence of wave and ice on the turbine loads, it was assumed that only the platform (the topmost part of the gravity base foundation) will experience the wave and ice loads. The rationale for this assumption is that the foundation is much stiffer than the tower and the rotor blades and thus this assumption is reasonable for a preliminary design study. Also, the wave heights are smaller than the height of the foundation. Therefore, the wave and ice loads

affect only the response of the foundation, and the wind loads affect only the wind turbine structure. The turbine loads are then transmitted to the foundation at the turbine-foundation interface. This quasi-static modeling approach allows simplifying the wind turbine-foundation interactions by treating the turbine-tower system as a structure supported by a rigid platform. As a result, the wave load conditions and DLC1.6a in Table 5.10 [Jonkman et al., 2010] are not considered in the wind turbine simulation. As explained in Jonkman et al., [2010], the stated design requirements are considered to be sufficient.

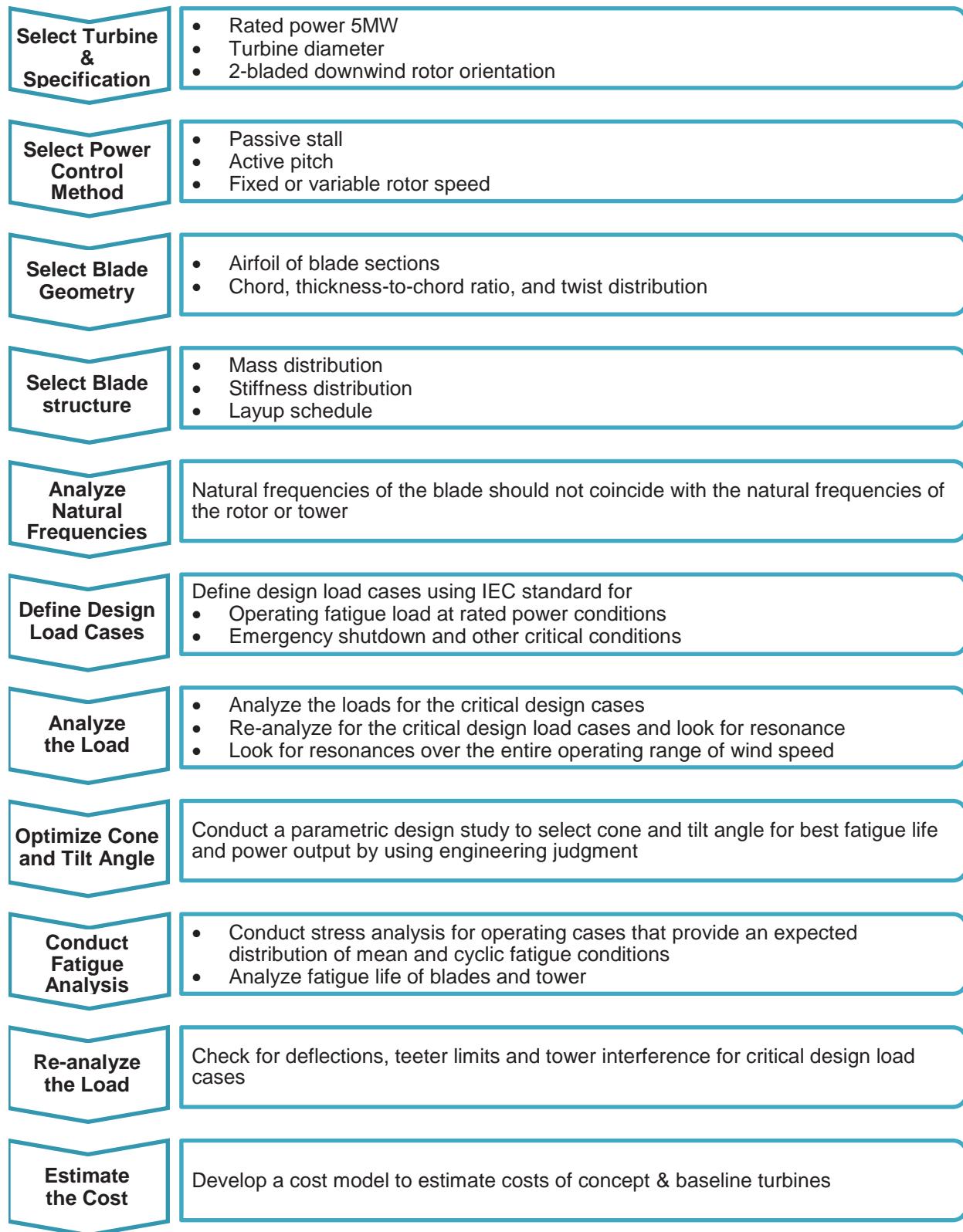
According to the IEC, six replications were performed for DLCs that involve stochastic winds (DLC1.1, 1.2 and 1.3). Different random seeds were used for each replication. Each replication has duration of 10-minute and 30 seconds. However, for DLC2.1 and 2.3, six replications of 2 minutes and 30 seconds were performed because a rotor shutdown procedure is included in these DLCs. The maximum loads occur after about 60 to 70 seconds from the beginning of the simulation, when the shutdown procedure is initiated. The rotor is parked after about 90 to 100 seconds. Thus, the part of the simulation after 150 seconds is omitted for fault conditions.

A single replication is performed for each DLC involving the deterministic wind. DLC1.4 and DLC1.5 are performed for 3 minutes and 30 seconds because the designed wind events occur at the 60th second. For all parking DLCs, simulations are performed for 2 minutes and 30 seconds. The length of this period is adequate because the turbine reaches the steady state conditions before the end of the simulation.

The IEC DLC2.1 includes situations of a control system fault or loss of electrical network. In this project, these situations were considered separately. The control system fault case corresponds to the failure of the pitch control system. This case represents the simulation of a shutdown situation when one of the blades is jammed at a pitch position. The loss of electrical network case is characterized by disabling the generator at a certain time during the simulation of wind turbine operation. The rotor is shutdown when the grid loss happens. DLC2.3 followed the same procedure of grid loss case of DLC2.1 with EOG wind condition. Both the pitch-to-feather brakes and a high-speed-shaft (HSS) brake are used for the shutdown procedures. Tip-brakes were used for the initial steps in the shutdown procedure for the turbine equipped with tip-brakes. The pitch-to-feather brakes are subsequently applied, when the rotor is stopped, to keep the rotor in the parked position.

Parked conditions (DLC6.x and DLC7.x) are implemented by applying pitch-to-feather brakes and a HSS brake. The initial rotor rotational speed is set to zero RPM. The yaw angles are set to various directions to simulate the misaligned cases. One of the blades is seized to zero degree pitch angle while other blades are set to the 90 degree parked position to simulate a situation where one blade seized for the DLC7.1a.

# 6 Design of 2-bladed Downwind Turbine


This chapter describes in six major sections the different aspects of the design parameters of a 2-bladed downwind turbine. The first Section 6.1 consists of an outline of the design approach for 2-bladed downwind turbine. An overview of rotor design is presented in Section 6.2. In Section 6.3 power control strategies are explained. Section 6.4 contains tower properties. Dynamic characteristics of tower and blade are discussed in Section 6.5. Finally, tower shadow effects are discussed in Section 6.6.

## 6.1 Design Approach

An overview of the preliminary design methodology of this project is presented in this section. Manwell et al., 2009, described a methodology consisting of eight steps. The steps were described earlier in section 3.1 and are also deliberated here to discuss the design of a 2-bladed downwind turbine, as outlined in Figure 6.1.

The NREL 5MW 3-bladed turbine was selected as a baseline design reference turbine. The rated power requirement is selected to be 5MW to match the power of the baseline turbine. A downwind rotor arrangement with two blades was selected. Similar to the reference turbine, a pitch controlled method was selected as the power control method. The blade geometry uses the series of airfoil profiles as the reference NREL turbine. Design tools developed by NREL were used to analyze the loads on the blade and to select the blade chord, thickness-to-chord ratio and twist distribution to optimize the concept blade design. The structural properties and the 3-bladed reference turbine blade lay-up were adopted for the 2-bladed concept turbine to allow a close comparison with the NREL 5 MW turbine. The blade internal structure was modeled based on the mass and stiffness distributions determined using NREL design tools (such as PreComp). The natural frequencies of the new blade were investigated using BModes for resonance. A teeter mechanism was considered for the concept 2-bladed turbine.

The IEC standards were used as guidance to select significant design load cases. For fatigue loads, normal operating conditions between cut-in and cut-out was selected. Loads at different location of major components of the turbine were analyzed using NREL tools. Blade deflections, tip to tower clearance, teeter limits and tower interference for critical design load cases were verified. Fatigue damage life is estimated using MLife code developed by NREL. A parametric study was conducted to select cone and tilt angle for optimum power production and enhanced fatigue life. Finally, a cost model is developed to minimize the cost of energy.



**Figure 6.1. Flowchart for 2-bladed turbine design methodology.**

## 6.2 Rotor Design

Removing one blade from the rotor is a simple concept. Realizing this simple concept is complicated. The work discussed here describes the designs changes made to transform the NREL 5MW 3-bladed rotor into a 2-bladed rotor. The blade twist angles were changed to accommodate a higher rotor rpm. The shaft tilt and blade cone angles were changed to take advantage of a downwind configuration. A teeter angle was added to alleviate blade loads. These changes are discussed further in this section.

### 6.2.1 Blade Aerodynamic Design

This analysis uses the NREL 5MW blade as a baseline blade for a 2-bladed rotor. The baseline was designed for a 3-bladed rotor. Airfoils, location of airfoil along the blade, and material properties were chosen for a three bladed rotor. This analysis adopts this design only to allow the use of the structural properties of NREL 5 MW turbine [Jonkman, et al., 2009] and thus enable a close comparative study of the 2-bladed turbine system with the reference NREL 5 MW system. Small changes to the chord and twist angles of the baseline blade were made only to construct the so-called ‘optimized’ blade in this report to better suit a 2-bladed rotor. It is noted that this blade geometry selection should not be regarded as an optimum design for the 2-bladed rotor and that ideal chord and twist distributions are only starting points for a larger design process that must incorporate the limitations of manufacturing and structural dynamics. For simplicity, engineering judgment was used to select the final twist distribution for the ‘optimized’ blade. The design steps described here therefore outline two designs: The University of Toledo (2BUT), and is the so-called optimized blade (2BOPT). The 2BOPT is used only in the Cost Analysis portion of this report to highlight the potential additional cost savings of the 2-bladed turbine concept.

#### Design Steps

The selection of values for the 2-bladed design were guided by optimum rotor theory, assuming Betz limit (axial induction=1/3) without wake effects. The following are the design steps used for the blades featured in this report.

- Used WT Perf [Buhl, 2004] to find the best Tip Speed Ratio (TSR) using the NREL baseline blade
- Once the TSR was found, the optimum rotor theory was used to find ideal chord length and twist angles
- Because the material properties would change if the chord length was changed, it was decided to keep the same chord length.
- It was assumed, due to manufacturing cost constraints, that the twist angles calculated by the ideal equations should not be used. A compromise was made to follow the twist angle slope of the NREL blade. This design is called the University of Toledo design or 2BUT. Note that the 2BUT design is not a blade designed optimally for a 2-bladed rotor.
- To obtain a more realistic optimal blade for a 2-blade rotor, a rule thumb was used, which considers that the performance difference between a 3 and 2-bladed rotor should be around 1-2%. Using the values from the ideal blade calculated earlier, the best TSR and performance was found at 9.5 TSR and 0.4792 Cp. This blade is called the Optimum Blade or 2BOPT.

Table 6.1. TSR and Cp of various wind turbine configurations.

|                  | Tip-Speed Ratio | Coefficient of Power |
|------------------|-----------------|----------------------|
| NREL 3B original | 7.5             | 0.4868               |
| NREL 2B original | 9.0             | 0.4670               |
| NREL 2BUT        | 9.2             | 0.4728               |
| NREL 2BOPT       | 9.5             | 0.4792               |

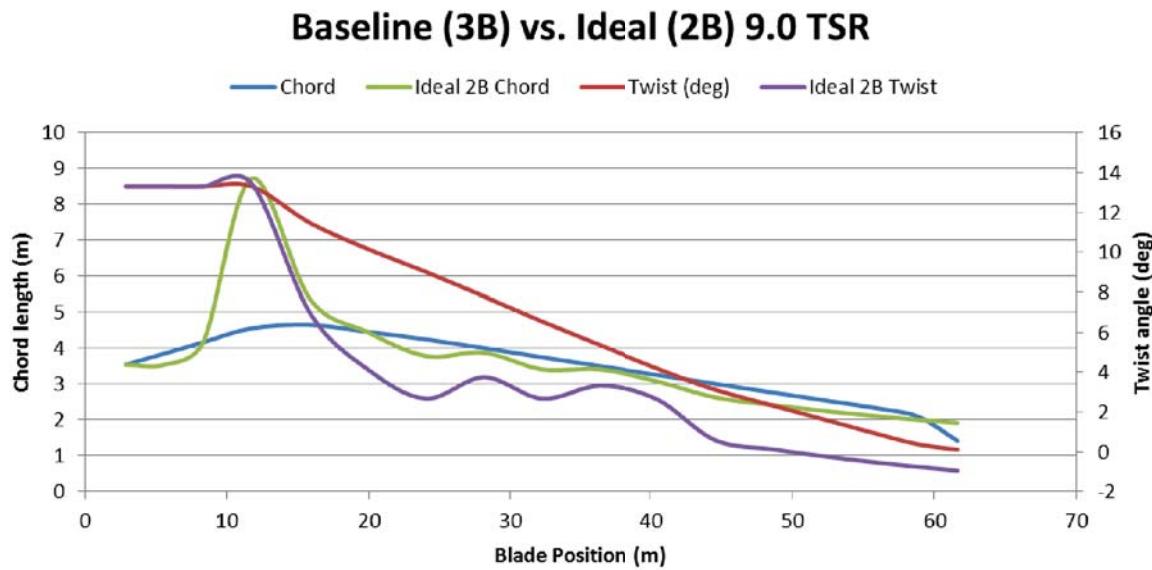



Figure 6.2. Chord length and twist distribution of baseline and 2BOPT blades.

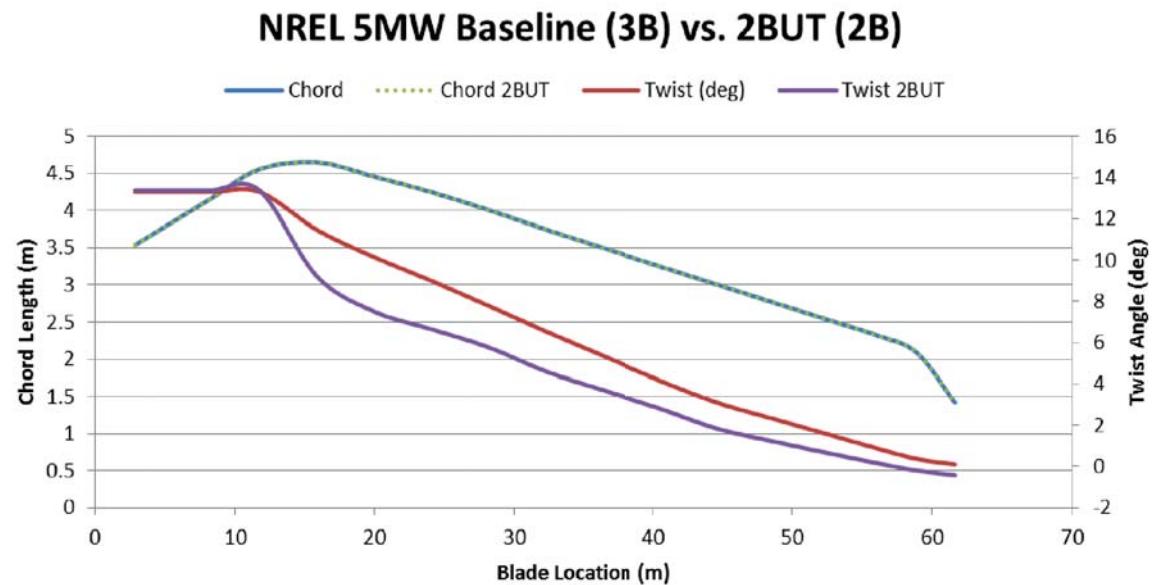
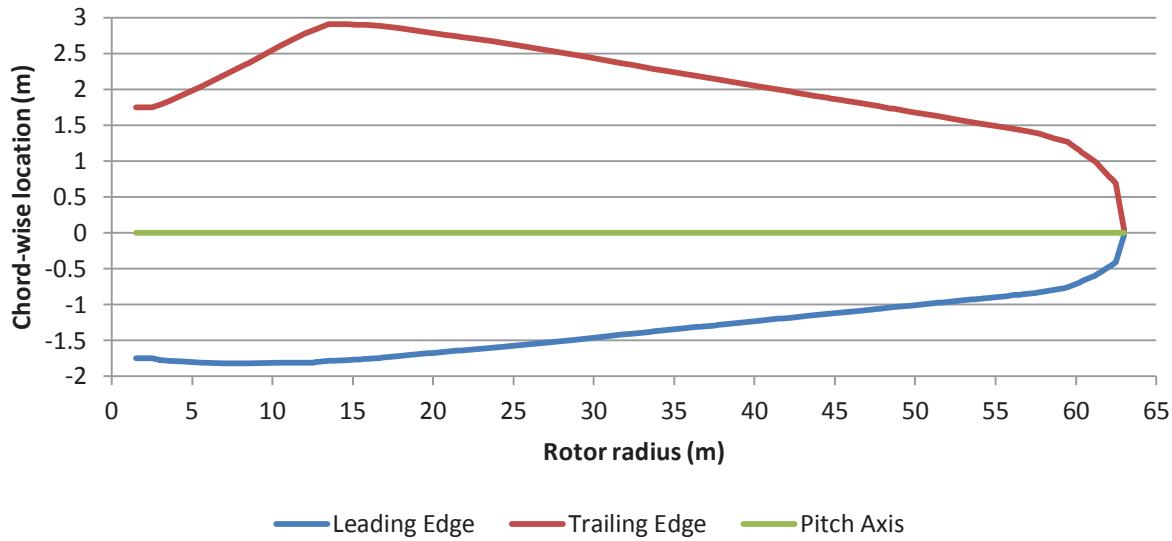


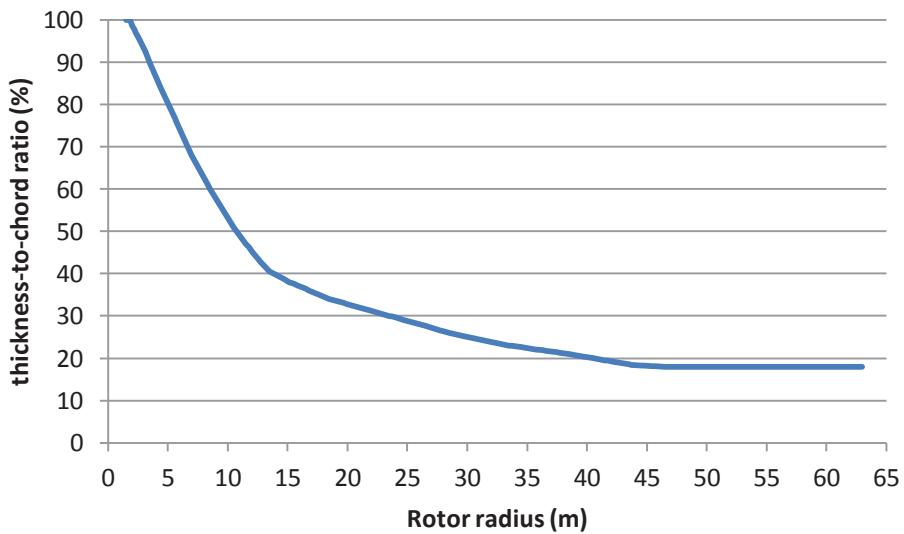

Figure 6.3. Chord length and twist distribution of baseline and 2BUT blades.

### 6.2.2 Blade Structural Design

The baseline blade design is developed using NREL 5MW wind turbine blade. Thus, the first step in the turbine blade design approach begins with a complete specification of the NREL 5 MW reference blade. This specification includes chord, twist, pitch axis, and airfoil profiles along the blade span. As stated earlier, the blade structural properties of the NREL 5MW reference offshore wind turbine model [Jonkman, et al., 2009] were selected for this research.


The released NREL 5MW reference offshore wind turbine model [Jonkman, et al., 2009] does not include detailed geometry information. This information, was obtained from [Lindenburg, 2002], [Kooijman, et al., 2003], and [Griffith, et al., 2011]. According to [Jonkman et al., 2009] the LMH64-5 blade of the DOWEC study [Lindenburg, 2002] is used to design the NREL 5MW reference wind turbine blade. The 1.1 m long end part of LMH64-5 blade is chopped to fit to the designed 63 m radius of the NREL 5MW reference wind turbine.

[Jonkman, et al., 2009] provides the chord lengths along the blade at 17 locations. In addition, 26 chord lengths at different locations are found from LMH64-5 blade paper [Lindenburg, 2002]. The last chord length at the tip side presented in [Lindenburg, 2002] was excluded because this chord is located beyond the NREL 5MW reference blade length. The chord length information from both sources was combined to determine a total of 42 chord lengths along the blade span.


The twist angles of the NREL 5MW reference blade are slightly different from the LMH64-5 blade. Thus, the twist angles only from the NREL 5MW reference blade were used.

Both [Jonkman et al., 2009] and the LMH64-5 blade [Lindenburg, 2002] did not include airfoil shape information; only the airfoil characteristics are provided in the references. However, the airfoil characteristics input file names used in both papers provide a hint to find the original airfoil shapes. The DOWEC 6 MW pre-design paper [Kooijman et al., 2003] has a table that links the airfoil characteristic input file names and airfoil shape names. Using the airfoil names, the normalized airfoil shape was found from the SNL100-00 blade paper [Griffith et al., 2011]. The SNL100-00 100m blade is made by scaling up the NREL 5MW reference blade. Thus, the airfoil shape, thickness-to-chord ratio, and pitch axis fractions of the SNL100-00 paper [Griffith et al., 2011] were used to define the geometry of NREL 5MW reference blade. Coordinates of the airfoil shapes are extracted from the graphical data provided in the SNL100-00 blade paper [Griffith et al., 2011]. The PreComp [Bir, 2005] airfoil input files were then generated using the airfoil coordinate information.

Using the collected data, the chord distribution of the NREL 5MW reference blade is shown in Figure 6.4 aligned along the pitch axis. The thickness-to-chord ratio distribution is plotted in Figure 6.5. The normalized airfoils are depicted in Figure 6.6 and Figure 6.7 using the airfoil coordinates extracted from SLN100-00 paper [Griffith et al., 2011]. The evolution of the shapes of the cross-sections from the circular airfoil to DU-99-W-405 airfoil is depicted in Figure 6.6. The assembled NREL 5MW reference blade geometry information is listed in Appendix 3.



**Figure 6.4. NREL 5MW reference blade chord distribution along pitch axis.**



**Figure 6.5. Thickness-to-chord ratio distribution of NREL 5MW reference blade.**



**Figure 6.6. Normalized airfoil coordinates of NREL 5MW reference blade near root.**

The “Transition” indicates the cross-sectional shape transitioning from an ellipse to DU-99-W-405 airfoil and the percentages are the percent thickness relative to cylindrical cross-section.



**Figure 6.7. Normalized airfoil coordinates of NREL 5MW reference blade.**

In addition to the baseline design, three other blade models were developed. One is the baseline blade with a tip-brake, and the other two models were constructed by optimizing the twist angle on the baseline blade for the 2-bladed machines, one with and the other without a tip-brake. The latter blade, the NREL 5 MW blade design with twist angles selected for a 2-bladed rotor configuration, is referred to as “BUT” in this report. Information about the twist distribution of BUT blade is described in section 6.2.1.

A tip-brake attached at the tip of each blade, with mass 77.8 kg, is considered based on the information in [Griffin, 1997]. The tip-brake is scaled up cubically for a 63 m radius rotor from a 6.4 kg tip-brake of a 27.4 m radius rotor. The  $20 \text{ m}^2$  TBDrConD parameter of FAST primary input file, which is the product of area and drag coefficient ( $C_d$ ), can effectively stop the rotor. The TBDrConD parameter is found from trial-error experiments. Here, it is assumed that tip-brakes are fully deployed in 1 second. In the FAST simulation, when the tip-brakes are deployed, they are modeled as forces that resist the rotation of the rotor at tip of the blades.

Using the above blade constructions, the blade mode shapes were found for the three new blade models. Modes 1 and 2 in flap-wise direction and mode 1 in edge-wise direction were calculated using the code BModes [Bir, 2005]. Using these data, the FAST blade input files were generated for the three additional blade designs.

### 6.2.3 Shaft Tilt and Cone Angles

In this section, the methodology to select proper tilt and cone angles to achieve the desired safety for a 2-bladed, downwind rotor configuration is presented in Figure 6.8.

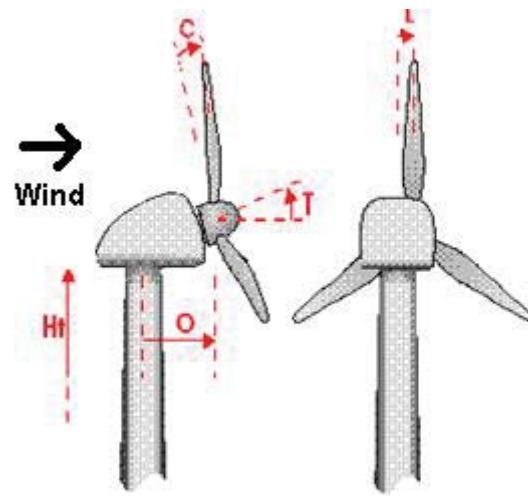



Figure 6.8. Illustration of tilt and cone angles (courtesy of GH Bladed).

The primary purpose of having tilt angles in upwind machines is to increase the clearance and reduce the risk of collision between the tower and the blades, but this is accomplished at the expense of reducing fatigue life, as it will be shown in Chapter 9 that a positive tilt angle can increase the fatigue damage inflicted on the blades. Moreover, in downwind machines tilt angle can introduce an extra yaw moment that is not desirable especially for free yaw machines. Therefore, whether or not a free yaw is used, small tilt angles should be used so long as they do not increase the risk of the tower and the blades collision.

Cone angles also reduce the risk of collision between the tower and the blades. As it will be shown in Chapter 9, although cone angles can decrease the mean stress of the cyclic loads at the blade root, they can result in power loss because the rotor swept area decreases with cone angle.

Based on simulation results, presented in Chapter 9, the risk of collision between the tower and the blades is highest under fault conditions. There are several fault conditions defined in the IEC 61400-1 standard. DLC 2.1 concerns with the occurrence of fault relating to control function or loss of electrical network connection when the wind turbine is operating normally. To model fault in the control mechanism, a scenario is considered in which pitch control in one blade fails and the system immediately triggers emergency shutdown. In another scenario, a case is considered in which the network is lost and the system immediately shuts down.

In DLC 2.2, rare events including faults relating to the protection functions or internal electrical systems should be considered as abnormal conditions. In DLC 2.3, Extreme Operating Gust (EOG) is combined with the loss of grid connection, and is considered as an abnormal event. In this case, the timing of these two events should be chosen to achieve the worst case loading. To model this case a Monte Carlo simulation with different timing was performed to find the worst timing condition.

Simulation studies conducted in this study show that the critical load case with highest likelihood of the blades hitting the tower occurs under DLC 2.1. In this fault condition, the power network is lost when the turbine is operating normally. The total probability of the blades hitting the tower under this fault condition would equal the probability of hitting the tower when the network is lost multiplied by the probability of losing the grid. This probability is calculated as follows,

$$P(C) = P(Grid_{Loss})P(C|Grid_{Loss}) \quad (6.1)$$

The designer's objective is to reduce the total probability represented on the left hand side of Eq. (6.1). A pair of large tilt and cone angles would decrease the second term on the right hand side and reduce the likelihood of this catastrophic failure. However, this is achieved at the expense of reduction in annual power production, because large tilt and cone angles would decrease the rotor swept area.

The value of the first term on the right hand side of Eq. (6.1) would depend on the quality of the grid connected to the wind turbine. This can vary throughout the country from one state to another state or even from one city to another city. To estimate the probability of the second term in Eq. (6.1) for a given tilt and cone angle a Monte Carlo simulation can be used. In this simulation, the combination of different wind speeds with different timing for the fault occurrence was considered.

As it will be shown in Chapter 9, the set of tilt and cone angles similar to the 3-bladed upwind turbine would be a conservative choice for the 2-bladed downwind configuration. Note that the total probability of failure was estimated by the product of the probability from Monte Carlo simulation with the probability of occurrence of losing the grid, which might be very low as well.

Using additional braking systems, such as tip brakes or generator brakes, can effectively reduce the probability of catastrophic failures, such as those described above. As shown in Chapter 9, a tilt angle equal to 2 degrees and cone equal to 0 degrees along with tip brake and teeter mechanism would be a good choice for the proposed concept design. However, a thorough

optimization analysis with considering all design factors, including alternative emergency shutdown strategies, should be performed in order to find optimum tilt and cone angles to maximize the annual power without sacrificing safety.

#### 6.2.4 Teeter Mechanism Properties

The out-of-plane bending moments are transmitted to the LSS if the rotor is rigidly connected to the shaft. For 2-bladed rotors, the teeter mechanism as shown in Figure 6.9, can effectively mitigate the loads that are applied to the blades as well as to the LSS. Free teetering is permitted until the spring and damper make contact with the hub.

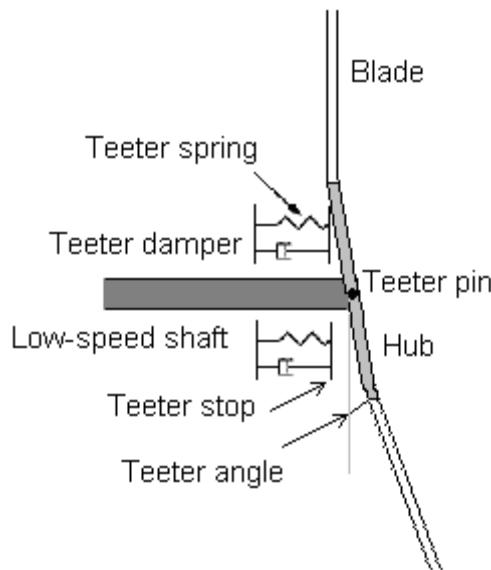
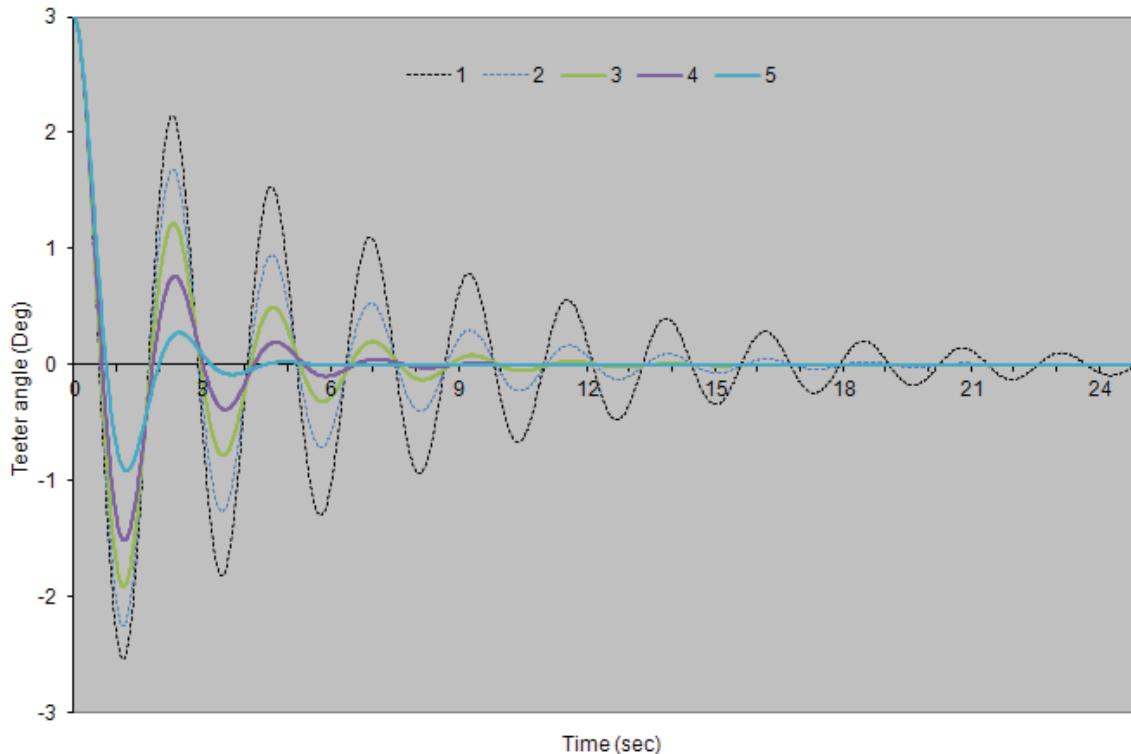



Figure 6.9. Schematic of a teetered rotor.

A standard model of a teeter restraint consists of a linear spring and a damper. The following parameters should be specified in order to model a linear teeter model using FAST.

- TeetMod: Enable teeter mechanism at value 1 and disable it at value 0
- TeetDmpP: Rotor-teeter damper position (degrees)
- TeetDmp: Rotor-teeter damping constant (N-m/(rad/s))
- TeetCDmp: Coulomb-friction damping moment resists teeter motion (N-m)
- TeetSStP: Rotor-teeter soft-stop position (degrees)
- TeetHStP: Rotor-teeter hard-stop position (degrees)
- TeetSSSp: Rotor-teeter soft-stop linear-spring constant (N-m/rad)
- TeetHSSp: Rotor-teeter hard-stop linear-spring constant (N-m/rad)


The spring rate in the teeter mechanism should be stiff enough to hold the rotor in its position under different loading conditions, including fault and park conditions, and soft enough to allow the rotor move in order to mitigate the loads on the blades and the LSS. The damping ratio should also be adjusted so that it dissipates the teetering motion appropriately.

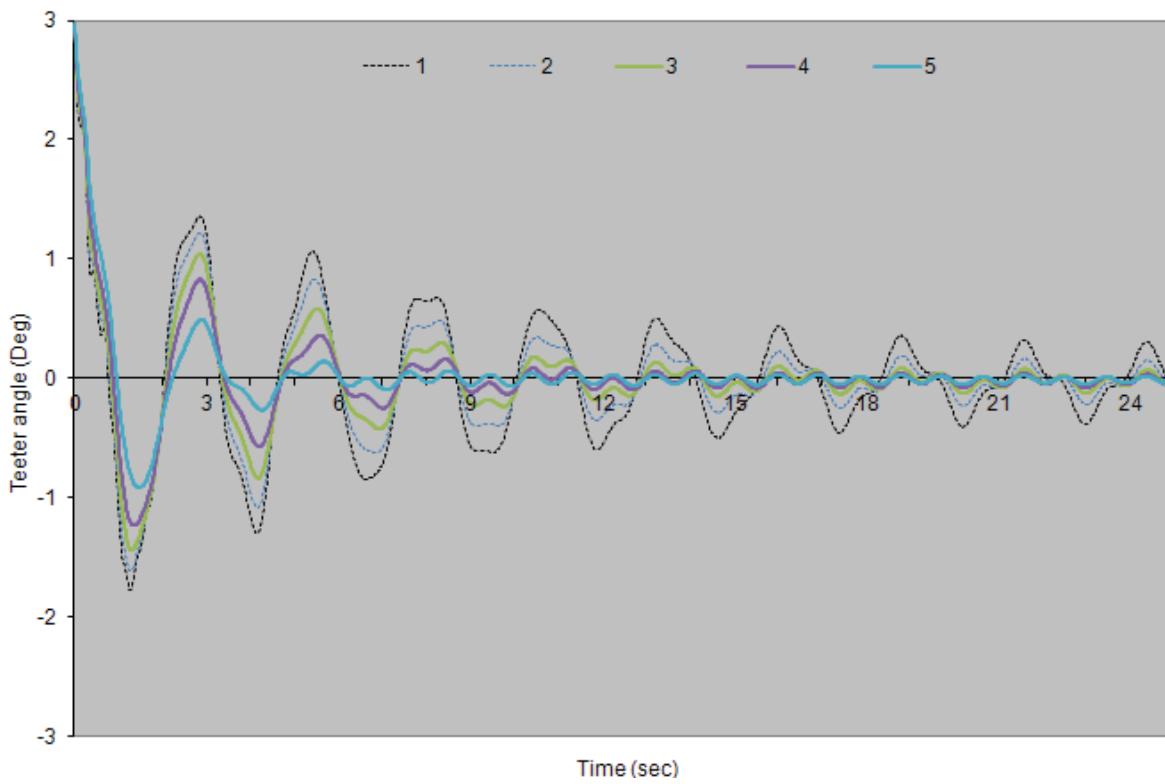
Finding an appropriate damping ratio to model large scale structures is a complicated task. Parametric studies by considering different damping ratios and coefficients were conducted to study the effect of the teeter mechanism parameters in reducing the loads on the rotor and the blades.

**Table 6.2. Different teeter parameters with constant stiffness.**

| Case | Rotor-teeter damping constant (N-m/(rad/s)) | Rotor-teeter hard-stop linear-spring constant (N-m/rad) |
|------|---------------------------------------------|---------------------------------------------------------|
| 1    | 7.50E+06                                    | 1.92E+08                                                |
| 2    | 1.29E+07                                    | 1.92E+08                                                |
| 3    | 2.00E+07                                    | 1.92E+08                                                |
| 4    | 3.00E+07                                    | 1.92E+08                                                |
| 5    | 5.00E+07                                    | 1.92E+08                                                |

Figure 6.10 demonstrates the free vibration of the rotor with an initial teeter equal to 3 degrees for different cases, as shown in Table 6.2. In this simulation all degrees of freedom other than the one related the teeter mechanism were disabled. Therefore, the energy dissipates only due to the damping in the teeter mechanism. In this situation the system behavior is represented by an 1-DOF system as shown in Figure 6.9 .




**Figure 6.10. Free vibration of 2-bladed rotor with only teeter DOF enabled for different cases as shown in Table 6.2.**

Using the value of the peaks in Figure 6.9 the damping ratios for cases in Table 6.2 are determined as summarized in Table 6.3.

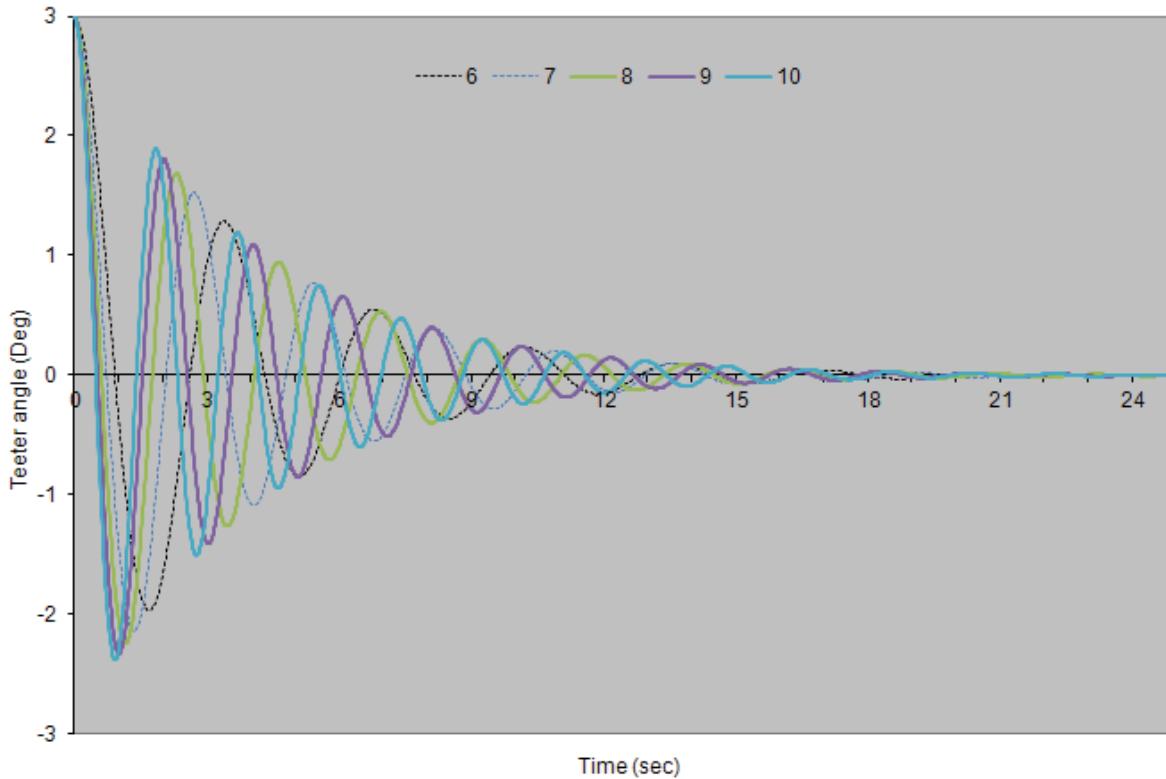
**Table 6.3. Damping ratios corresponding to Table 6.2.**

| Case | Damping ratio |
|------|---------------|
| 1    | 0.06          |
| 2    | 0.10          |
| 3    | 0.15          |
| 4    | 0.23          |
| 5    | 0.38          |

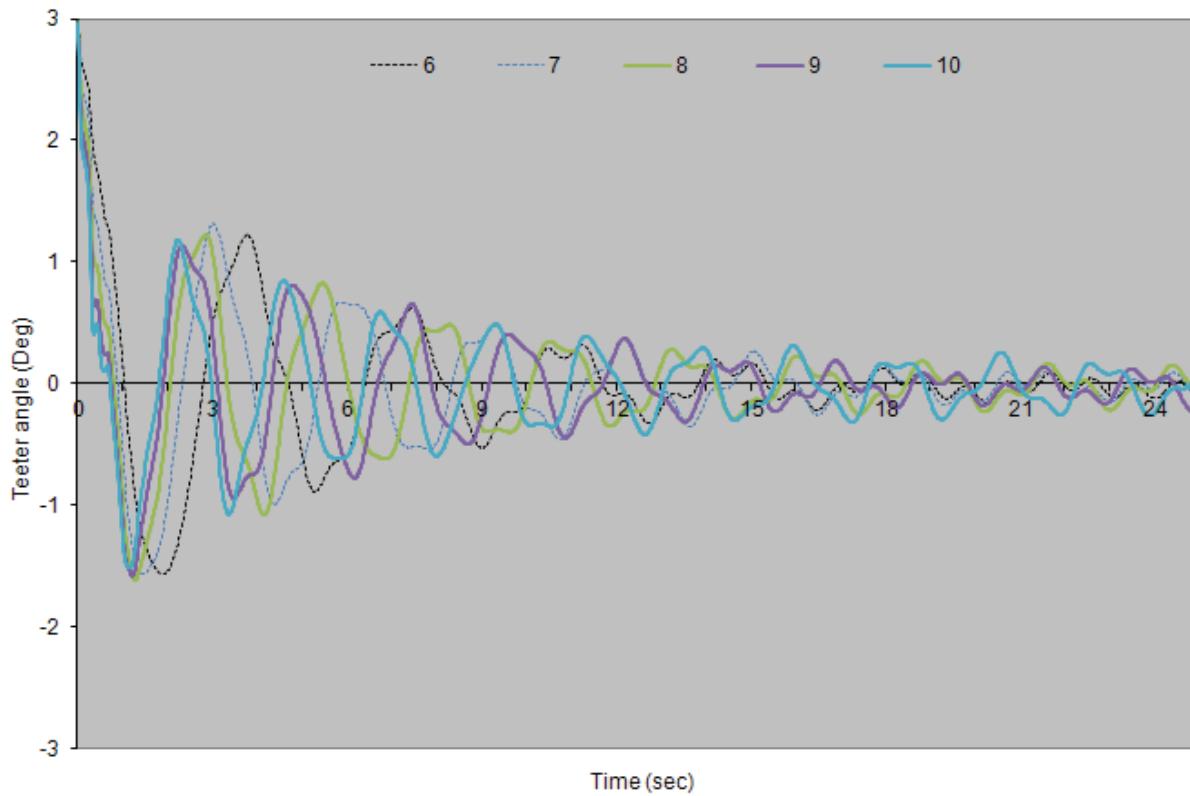
If all degrees of freedom were enabled, the energy would dissipate not only due to the damping in the teeter mechanism, but also due to the structural damping in the blades, the tower and other structural components. The system response due to initial 3 degree teeter is shown in Figure 6.11.



**Figure 6.11. Free vibration of 2-bladed rotor with all DOFs enabled for different cases as shown in Table 6.2.**


Note that since all cases considered in Table 6.2 have the same stiffness, all signals demonstrated in Figure 6.10 and Figure 6.11 show the same period.

To study the teeter system, additional cases were considered by altering the spring rate as shown in Table 6.4 .


**Table 6.4. Different teeter parameters with constant damping.**

| Case | Rotor-teeter damping constant (N-m/(rad/s)) | Rotor-teeter hard-stop linear-spring constant (N-m/rad) |
|------|---------------------------------------------|---------------------------------------------------------|
| 6    | 1.29E+07                                    | 9.00E+07                                                |
| 7    | 1.29E+07                                    | 1.40E+08                                                |
| 8    | 1.29E+07                                    | 1.92E+08                                                |
| 9    | 1.29E+07                                    | 2.50E+08                                                |
| 10   | 1.29E+07                                    | 3.00E+08                                                |

The counterpart of Figure 6.10 for teeter parameters given in Table 6.2 is shown in Figure 6.12 .

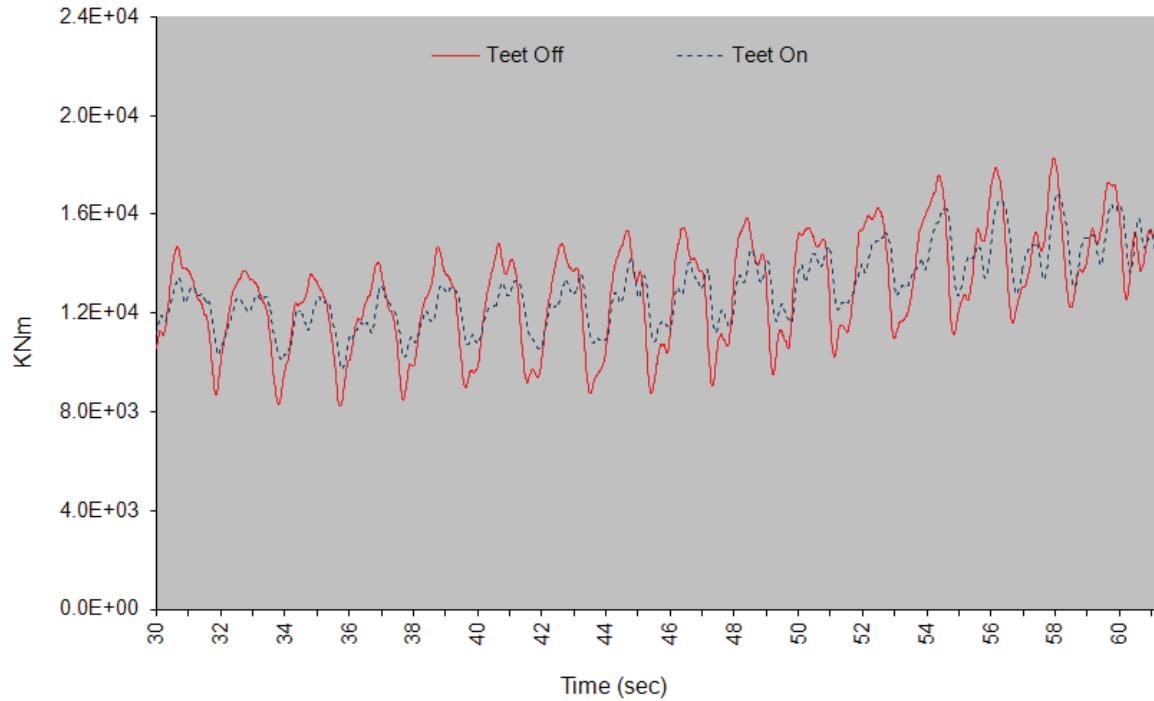


**Figure 6.12. Free vibration of 2-bladed rotor with only teeter DOF enabled for different cases as shown in Table 6.4.**



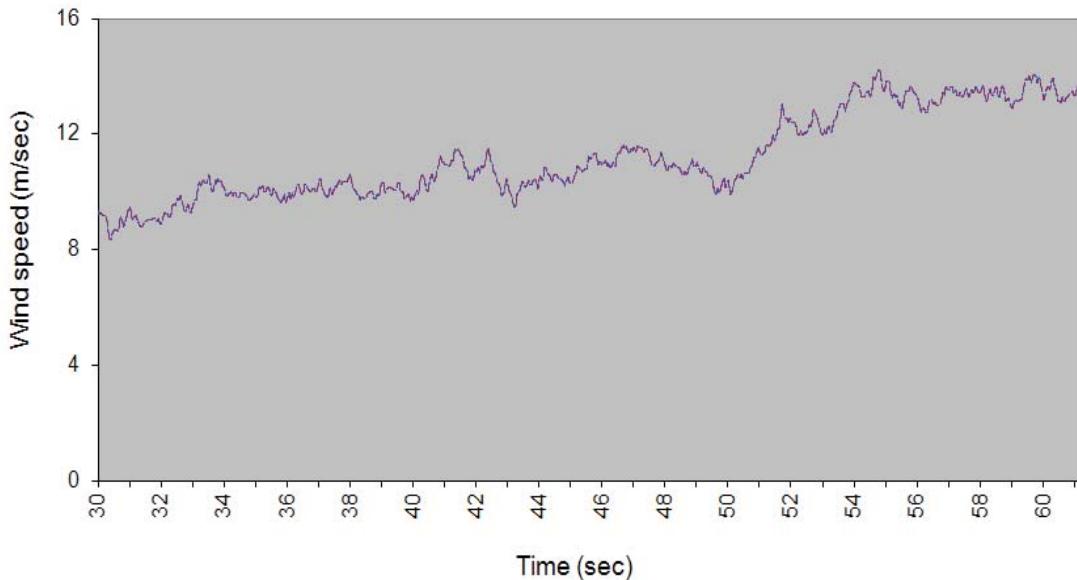
**Figure 6.13. Free vibration of 2-bladed rotor with all DOFs enabled for different cases as shown in Table 6.4.**

The damping ratios for cases in Table 6.4 are presented in Table 6.5.


**Table 6.5. Damping ratio corresponding to Table 6.4.**

| Case | Damping ratio |
|------|---------------|
| 6    | 0.08          |
| 7    | 0.08          |
| 8    | 0.10          |
| 9    | 0.11          |
| 10   | 0.14          |

The stiffness and damping coefficients of the teeter mechanism for the 2-bladed downwind machine were selected as  $1.92E+05$  kN-m/rad and  $1.29E+04$  kN-m/(rad/s), respectively. These values were arrived at by constraining the maximum teeter angle under normal conditions at approximately  $\pm 3$  degrees. For other conditions, including fault conditions, the teeter angle was constrained to vary between  $\pm 6$  degrees. It is assumed that the teeter stops are engaged from  $0^\circ$ , and the same stiffness applies for both the soft and the hard stops.


Figure 6.14 compares the out-of-plane bending moment at the root of the blade when the teeter mechanism is enabled and disabled. It can be seen that the teeter mechanism with the above setting effectively reduces the bending moment, especially close to the peaks. In Chapter 9, the

performance of the teeter mechanism in mitigating the loads applied to the blades are studied in detail.

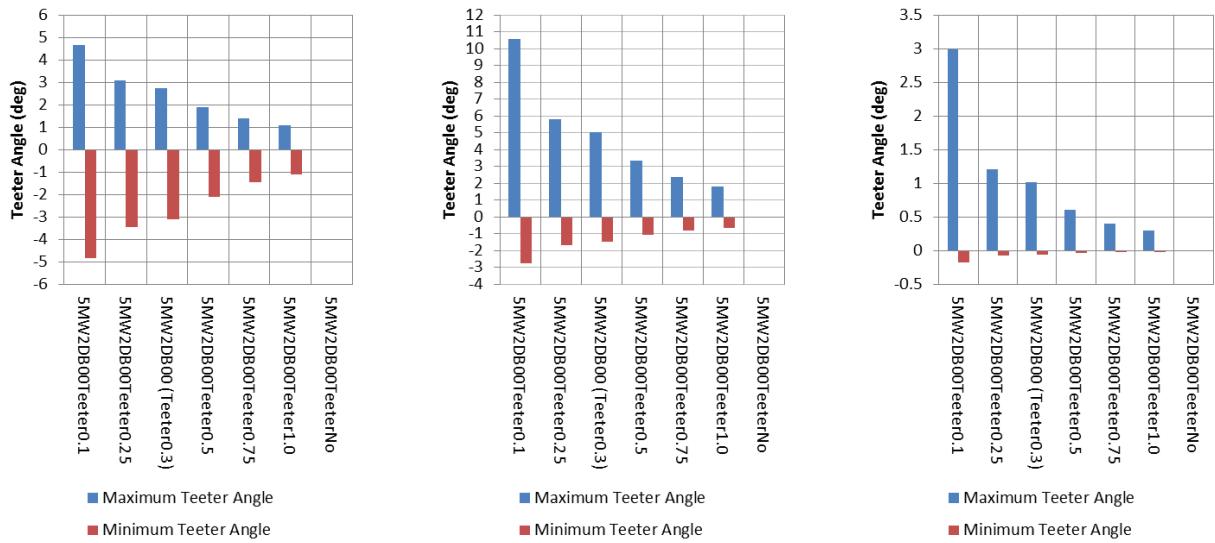


**Figure 6.14. Out-of-plane bending moment at the root of the blade with teeter on/off.**

Figure 6.15 demonstrates the hub height wind speed that was used to perform the above simulation.

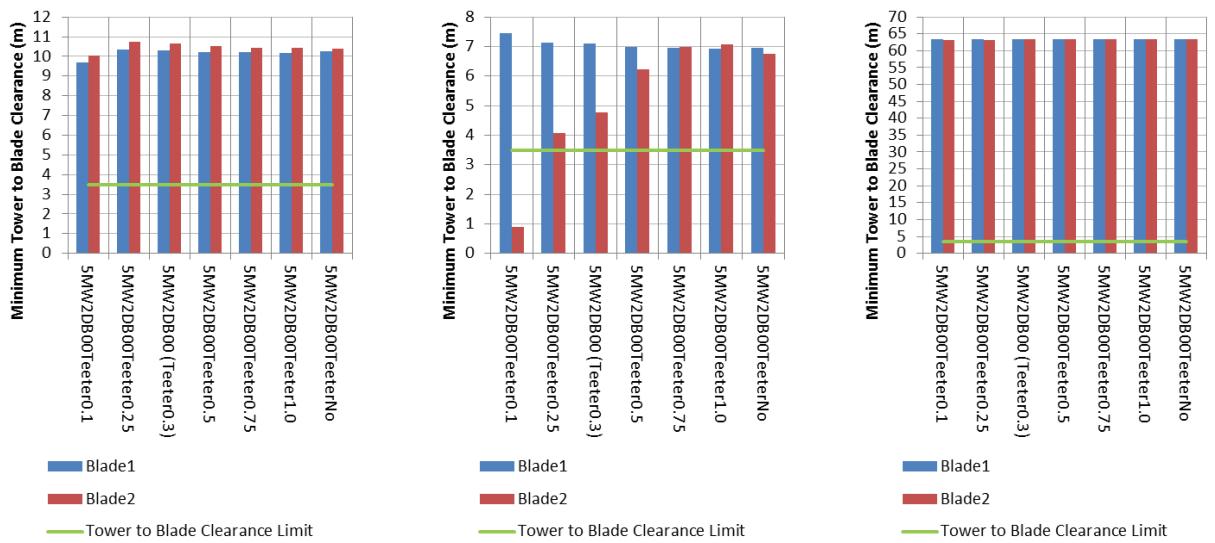


**Figure 6.15. Hub-height wind speed.**


The teeter parameters were selected so that the natural frequency of the teeter mechanism is far from the natural frequencies of excitation in order to avoid any resonance and cause catastrophic failure. However, finding optimum teeter parameters requires a thorough optimization analysis, considering all constraints and parameters. A more realistic model should include independent stiffness and damping rate for the soft and hard stops.

A series of teeter parameters was considered for a parametric study of teeter mechanism. These 7 different teeter parameter sets (teeter sets in short) were defined to compare the responses of load effects, tower-to-blade clearance, AEP, and teeter angles for each set. The teeter parameters of each set are defined in Table 6.6. The “TeeterNo” set was used to compare the wind turbine simulation responses of 2-bladed, teetered turbines with the corresponding turbine without a teeter mechanism. Also, the “TeeterNo” set is used for the 3-bladed machines because they do not have a teeter mechanism. The 6 teeter enabled sets are defined by scaling the hard teeter stop stiffness (TeetHSSp) to 10%, 25%, 30%, 50%, 75%, and 100% compared to the teeter set “Teeter1.0”. The hard teeter stop stiffness and the damping constant of the teeter parameter set “Teeter1.0” were defined by scaling from a commercial wind turbine of different power rating. The damping constants (TeetDmp) of all 6 teeter enabled teeter sets were assumed to have the same damping ratio. The soft teeter stop stiffness (TeetSSSp) is set to 0 because only the hard teeter stop is considered for the teeter mechanism. Consequently, the soft teeter stop position (TeetSStP) is set to 0 as a default. The hard teeter stop position (TeetHStP) and the teeter damper position (TeetDmpP) are both set to 0 assuming that the teeter stop is engaged at all time. The Coulomb-friction damping (TeetCDmp) is set to 0 because it is ignored in the teeter mechanism model considered in this research.

**Table 6.6. List of teeter parameter sets.**


| Teeter Sets           | Teeter0.1 | Teeter0.25 | Teeter0.3 | Teeter0.5 | Teeter0.75 | Teeter1.0 | TeeterNo |
|-----------------------|-----------|------------|-----------|-----------|------------|-----------|----------|
| Scale of TeetHSSp (-) | 0.1       | 0.25       | 0.3       | 0.5       | 0.75       | 1.0       | No       |
| TeetMod (-)           | 1         | 1          | 1         | 1         | 1          | 1         | 0        |
| TeetDmpP (deg)        | 0         | 0          | 0         | 0         | 0          | 0         | 0        |
| TeetDmp (N-m/(rad/s)) | 7.431E6   | 1.175E7    | 1.287E7   | 1.662E7   | 2.035E7    | 2.350E7   | 0.0      |
| TeetCDmp (N-m)        | 0         | 0          | 0         | 0         | 0          | 0         | 0        |
| TeetSStP (deg)        | 0         | 0          | 0         | 0         | 0          | 0         | 0        |
| TeetHStP (deg)        | 0         | 0          | 0         | 0         | 0          | 0         | 0        |
| TeetSSSp (N-m/rad)    | 0         | 0          | 0         | 0         | 0          | 0         | 0        |
| TeetHSSp (N-m/rad)    | 6.400E7   | 1.600E8    | 1.920E8   | 3.200E8   | 4.800E8    | 6.400E8   | 0.0      |

From the results of the parametric study using FAST simulations under various DLCs considered in section 5.4, the teeter set 0.3 was selected for the 2-bladed turbines. In Figure 6.16, the teeter angle for different teeter models under normal, fault and parked conditions are shown from left to right. Under normal operating condition, the maximum teeter angle for the third model results teeter angles around 3 deg which meets the design target (3 deg). Under fault condition, the maximum teeter angle of the third design is less than the design target (6 deg). Under park condition all models perform safely.



**Figure 6.16. Teeter angle comparisons for various teeter parameters in normal operating condition, fault condition and parked condition.**

The minimum tower to blade clearance is re-verified for these models with various teeter parameters. The minimum tower to blade clearances compared in Figure 6.17 are under normal operating, fault, and parked conditions. Under normal conditions, the clearance between the tower and the blades does not depend on the teeter parameters. This intuitively makes sense, because under normal operating condition the teeter mechanism does not engage and consequently does not affect the minimum clearance. However, under fault condition the teeter parameter with the least stiffness causes the second blade to collide with the tower. Considering minimum safe distance is 3.5 m, other cases are safe. As expected, as the teeter becomes stiffer, the response gets closer to those with a rigid hub rotor.



**Figure 6.17. Minimum tower to blade clearance comparisons for various teeter parameters in normal operating condition and fault condition.**

### 6.3 Power Control Method

The drivetrain performance controller is the brains of the wind turbine. It controls the power production of the wind turbine. There are other controllers used in a conventional wind turbine: yaw, start, stopping, safety and emergency controls. This section will focus on the operational or performance or power controller. The controller used in this analysis is a conventional variable-speed, pitch-to-feather controller. The information presented is the values of constants needed to build a dynamic link library used with FAST.

The drivetrain used in this analysis uses a conventional variable-speed, variable blade-pitch-to-feather control system. In English, this means the control system uses two controllers to regulate power production. One controller, generator-torque controller, is used in wind speeds below rated generator capacity. The purpose of this controller is to maximize power capture from the wind. Once the generator reaches its rated operational point, the second controller, blade-pitch controller, is used to maintain generator speed at the rated operational point. To maintain generator speed, it uses a gain-scheduled proportional integral (PI) control. Information in this section is based on research done for the NREL 5MW baseline offshore wind turbine [Jonkman et al., 2007, 2009].

Before continuing, it was found during the analysis that values for the coefficient of power ( $C_p$ ) published in [Jonkman et al., 2009] were different than the ones found using the program WT\_Perf. At this time, it is not known why the values do not match. One possible answer is the NREL baseline machine chose a rated rpm of 12.1 to keep the tip speed below 80 m/s. Keeping the tip-speed below 80 m/s is common practice to help eliminate noise in onland wind turbines. It may also be due to a difference in assumptions (air density of 1.225 kg/m<sup>3</sup>, rotor radius 63 m, and rated power 5,296.610 kW).

In addition, to the discrepancy in  $C_p$  values, the 2-bladed controller used with the NREL blade uses a rotational speed of 16 rpm at rated wind speed. An ideal value for the rotational speed, at rated power is 15.85 rpm. At the time the controller was made it was thought the 15.85 value should be rounded up to 16 rpm.

**Table 6.7. Tip-Speed-Ratio and  $C_p$  values.**

|                            | Tip-Speed Ratio<br>(TSR) | Coefficient of Power<br>( $C_p$ ) |
|----------------------------|--------------------------|-----------------------------------|
| NREL 3B published          | 7.55                     | 0.4820                            |
| NREL 3B original (WT_Perf) | 7.50                     | 0.4868                            |
| NREL 2B original           | 9.00                     | 0.4670                            |
| NREL 2B original (16 rpm)  | 9.50                     | 0.4656                            |
| NREL 2BUT                  | 9.20                     | 0.4728                            |

From this point forward in the description of the analysis done, the values for the tip-speed ratio and Coefficient of Power for the NREL baseline (3B) turbine were calculated by WT\_Perf. All the values for the 2-bladed analysis are based on results from WT\_Perf.

**Table 6.8. Rated rpm and Rated Wind Speed.**

|                            | <b>Rated<br/>(rpm)</b> | <b>Rated<br/>wind speed (m/s)</b> |
|----------------------------|------------------------|-----------------------------------|
| NREL 3B published          | 12.10                  | 11.40                             |
| NREL 3B original (WT_Perf) | 12.79                  | 11.25                             |
| NREL 2B original           | 15.56                  | 11.41                             |
| NREL 2B original (16 rpm)  | 16.45                  | 11.42                             |
| NREL 2BUT                  | 15.84                  | 11.36                             |

Typically, wind turbine control is based on the measurement of generator torque. The generator torque is a function of five different control regions: 1, 1 ½, 2, 2 ½, and 3. Region 1 is the region before the generator starts working. In this region the wind is used to start the rotor spinning. Region 1 ½ , is a transitional region to set a lower limit on when the wind turbine starts operation. Region 2 is a control region used to optimize power capture. In this region the generator torque is proportional to the square of the generator speed, to maintain a constant tip-speed ratio.

**Table 6.9. Constant Inputs for .dll Controller.**

|                           | <b>Generator Torque<br/>Constant<br/>(Nm/rpm<sup>2</sup>)</b> | <b>Kp<br/>(Theata=0)<br/>(sec)</b> | <b>Ki<br/>(Theata=0)</b> | <b>Theata<br/>(rad)</b> |
|---------------------------|---------------------------------------------------------------|------------------------------------|--------------------------|-------------------------|
| NREL 3B published         | 0.0255764                                                     | 0.0188268                          | 0.0080686                | 0.1099965               |
| NREL 2B original (16 rpm) | 0.0146991                                                     | 0.0087811                          | 0.0037633                | 0.1073581               |
| NREL 2BUT                 | 0.0139320                                                     | 0.0112085                          | 0.0048036                | 0.0886778               |

Region 2 ½ is a linear transition between Region 2 and 3. Region 2 ½ is typically needed to limit tip speed that can cause noise at rated power. At above rated wind speed, region 3, the generator power is held constant (5 MW). In order to achieve constant generator power the blade pitch angles (angle of attack) are changed to produce the appropriate torque. This is done because at high wind speeds there is more power in the wind than the generator can convert into electricity. A gain-scheduled proportional integral (PI) control is used to maintain generator speed.

This section provided the constants, Generator Torque Constant, Proportional and Integral gain, needed to build a dynamic link library used with FAST to control performance.

## 6.4 Tower Properties

Because a gravity foundation is used for the turbine and the wind turbine configuration is changed from the NREL 5 MW, the tower properties of the NREL 5MW wind turbine tower design [Jonkman, 2006] had to be modified to fit the new system. In this section, the tower structural properties, top mass properties and mode shapes are presented.

The bottom part of the tower from the water level to the platform (11 m) elevation is assumed rigid. According to the platform design described in Chapter 7, the platform is placed sufficiently high above the water level so that the gravity foundation will support all wave and ice loads. The platform is assumed to be clamped to the bottom part. This assumption essentially decouples the transmission of wave and ice loads from the platform to the wind turbine. The tower rigid body height parameter (TwrRBHt) and platform model parameter (PtfmModel) of the FAST primary input file are set to 11 and 0, respectively, to account for these the design constraints.

Accordingly, the tower model in this work is a modification of the monopile tower in [Jonkman, 2006], and only the upper part, above the 11 m elevation, is used to represent the flexible part of tower. The calculated tower structural properties for the present tower model are presented in Table A2.1 in Appendix 2 and were applied from tower elevations of 11 m to 87.6 m. Therefore, only 76.6 m of tower length is considered flexible. The outer diameter of the tower at 11 m elevation is 5.973 m and at the top of the tower is 3.87 m. The thickness at 11 m elevation is 0.0269 m, and at top of the tower is 0.019 m. The tower is linearly tapered from bottom to top.

The mode shapes of the tower were calculated, accounting for the change in the structural properties and the top mass distribution. Only the flexible part of the tower was used for the mode shape calculations. A total of twelve different tower models were developed to account for changes in the top mass distribution. These six tower models were generated consisting of 3-bladed upwind, 2-bladed upwind, and 2-bladed downwind configurations, each with and without tip-brakes. Moreover, six 2-bladed downwind models with different shaft tilt, cone angles, and use of tip-brakes were developed. Depending on the number of blades, up and downwind configuration, use of tip-brake, shaft tilt angle, and cone angle, the tower top mass and moment of inertia were changed resulting in twelve different tower models being developed. The first and second mode shapes, fore-aft and side-to-side directions, were calculated using BModes and the polynomial coefficients were found by fitting to a sixth order polynomial.

To find the tower mode shapes, the tower top mass, center of mass (CM), and mass moment of inertia are required. The masses and CM information of the tower top components are listed in Table A2.2 in Appendix 1. Using the data from Table A2.2, the total tower top mass, center of mass locations, and mass moment of inertia were calculated as presented in Table A2.3. These data were used to estimate the mode shapes of the tower models using BModes. The tower structure input files for FAST simulation were generated using these structural properties and mode shapes for the various tower models.

## 6.5 Dynamic Characteristics of Tower and Blade

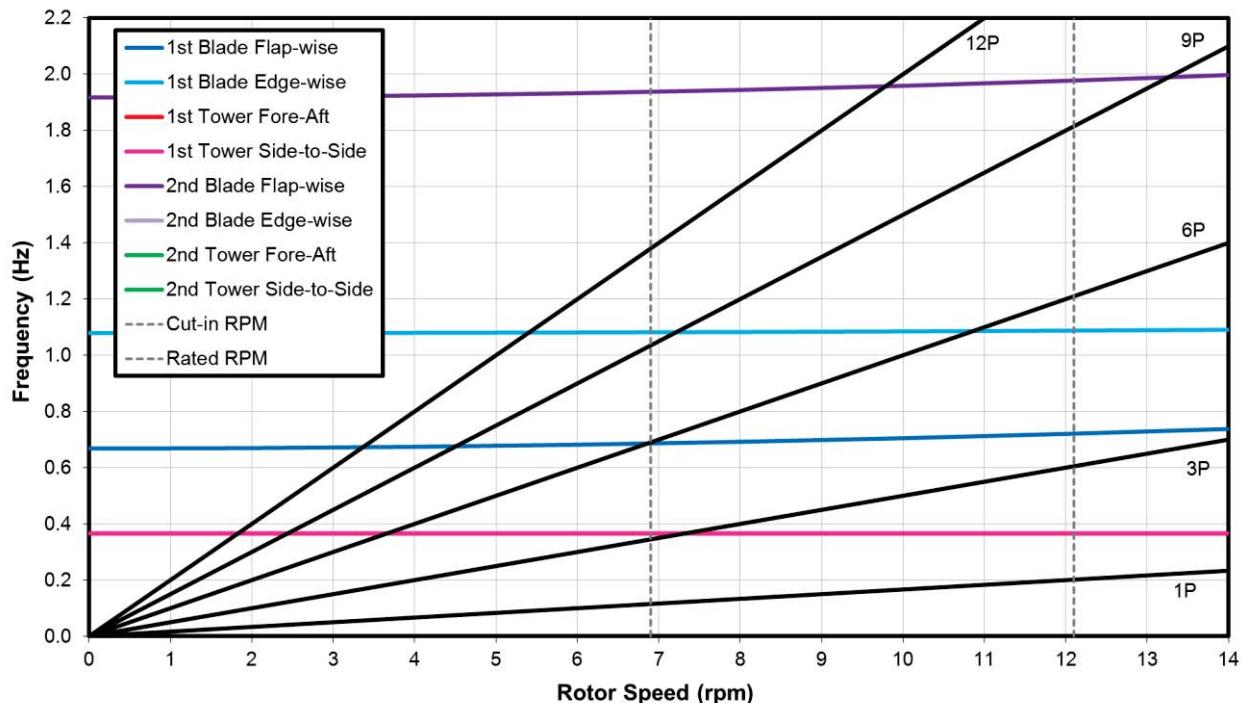
The natural frequencies of the tower and blades were computed using the BModes code in order to examine the dynamic characteristics of these structures. The natural frequencies of the towers for different configurations are listed in Table 6.10. The natural frequencies of 3-bladed models and 2-bladed models have some differences. However, wind direction configuration, shaft tilt angle, conning angle, and application of tip-brake do not produce significant changes for natural frequencies except with mode 2, side-to-side natural frequencies. The percent differences of tower natural frequencies for different configurations are listed in Table 6.11.

**Table 6.10. Tower natural frequencies.**

| Num. of Blade | Wind Direction | Tilt (deg) | Conning (deg) | Tip-brake | Mode1 Fore-Aft | Mode1 Side-to-Side | Mode2 Fore-Aft | Mode2 Side-to-Side |
|---------------|----------------|------------|---------------|-----------|----------------|--------------------|----------------|--------------------|
| 3             | Up             | 5          | 2.5           | No        | 0.3658         | 0.3665             | 3.3349         | 3.2125             |
| 3             | Up             | 5          | 2.5           | Yes       | 0.3657         | 0.3664             | 3.3335         | 3.2085             |
| 2             | Up             | 5          | 2.5           | No        | 0.3746         | 0.3752             | 3.4080         | 3.4218             |
| 2             | Up             | 5          | 2.5           | Yes       | 0.3745         | 0.3751             | 3.4071         | 3.4189             |
| 2             | Down           | 5          | 2.5           | No        | 0.3746         | 0.3752             | 3.4080         | 3.5138             |
| 2             | Down           | 5          | 2.5           | Yes       | 0.3745         | 0.3752             | 3.4071         | 3.5106             |
| 2             | Down           | 5          | 0             | No        | 0.3747         | 0.3752             | 3.4404         | 3.6343             |
| 2             | Down           | 5          | 0             | Yes       | 0.3746         | 0.3752             | 3.4399         | 3.6333             |
| 2             | Down           | 0          | 2.5           | No        | 0.3747         | 0.3753             | 3.4365         | 3.5027             |
| 2             | Down           | 0          | 2.5           | Yes       | 0.3746         | 0.3753             | 3.4356         | 3.4997             |
| 2             | Down           | 0          | 0             | No        | 0.3748         | 0.3753             | 3.4693         | 3.6189             |
| 2             | Down           | 0          | 0             | Yes       | 0.3747         | 0.3753             | 3.4688         | 3.6179             |

**Table 6.11. Percent difference of tower natural frequencies.**

| Models Compared   |                   | % Difference   |                    |                |                    |
|-------------------|-------------------|----------------|--------------------|----------------|--------------------|
| % Difference of.. | Relative to..     | Mode1 Fore-Aft | Mode1 Side-to-Side | Mode2 Fore-Aft | Mode2 Side-to-Side |
| 2-bladed Upwind   | 3-bladed Upwind   | 2.41           | 2.37               | 2.20           | 6.54               |
| 2-bladed Downwind | 3-bladed Upwind   | 2.41           | 2.39               | 2.20           | 9.40               |
| 2-bladed Downwind | 2-bladed Upwind   | 0.00           | 0.01               | 0.00           | 2.69               |
| Shaft Tilt 0 deg  | Shaft Tilt 5 deg  | 0.03           | 0.03               | 0.84           | -0.37              |
| Cone 0 deg        | Cone 2.5 deg      | 0.03           | 0.00               | 0.96           | 3.40               |
| With Tip-brake    | Without Tip-brake | -0.03          | -0.01              | -0.02          | -0.07              |


The blade natural frequencies for different blade models and configurations are listed in Table 6.12. Adding a tip-brake to a blade reduces its natural frequency by 4.45% on average for the mode shapes considered. Because the NREL 5MW baseline blade and BUT blade only differ in their twist angles, these blades have almost identical natural frequencies.

**Table 6.12. Blade natural frequencies at 0 RPM.**

| Blade    | Tip-brake | Mode1<br>Flap-wise | Mode1<br>Edge-wise | Mode2<br>Flap-wise | Mode2<br>Edge-wise |
|----------|-----------|--------------------|--------------------|--------------------|--------------------|
| Baseline | No        | 0.6698             | 1.0791             | 1.9193             | 3.9493             |
| Baseline | Yes       | 0.6401             | 1.0499             | 1.8090             | 3.7547             |
| BUT      | No        | 0.6683             | 1.0788             | 1.9177             | 3.9553             |
| BUT      | Yes       | 0.6401             | 1.0500             | 1.8089             | 3.7625             |

The Campbell diagrams for the following three different configurations are presented below: 3-bladed upwind, 2-bladed upwind, and 2-bladed downwind. Wind turbines with the same number of blades and wind direction, have very similar Campbell diagrams. Thus, only the Campbell diagrams for 3 models are listed here.

The excitation lines 1P, which are related to the rotation of the rotor, for all configurations do not cross any natural frequency under the rated rpm. However, the 3P or 2P lines, which are related to the blade passing rate, cross both the 1st natural frequency lines corresponding to the tower fore-aft and side-to-side modes around 7.4 rpm for 3-bladed turbines and 11.3 rpm for 2-bladed turbines. These rotational speeds need to be avoided during normal operation using a controller in order to avoid resonances. Other excitation lines will not affect significantly the tower and blade structure based on the information available at this point. These excitation lines may be considered at a later stage of the design.



**Figure 6.18. Campbell diagram of 3-bladed upwind turbine.**

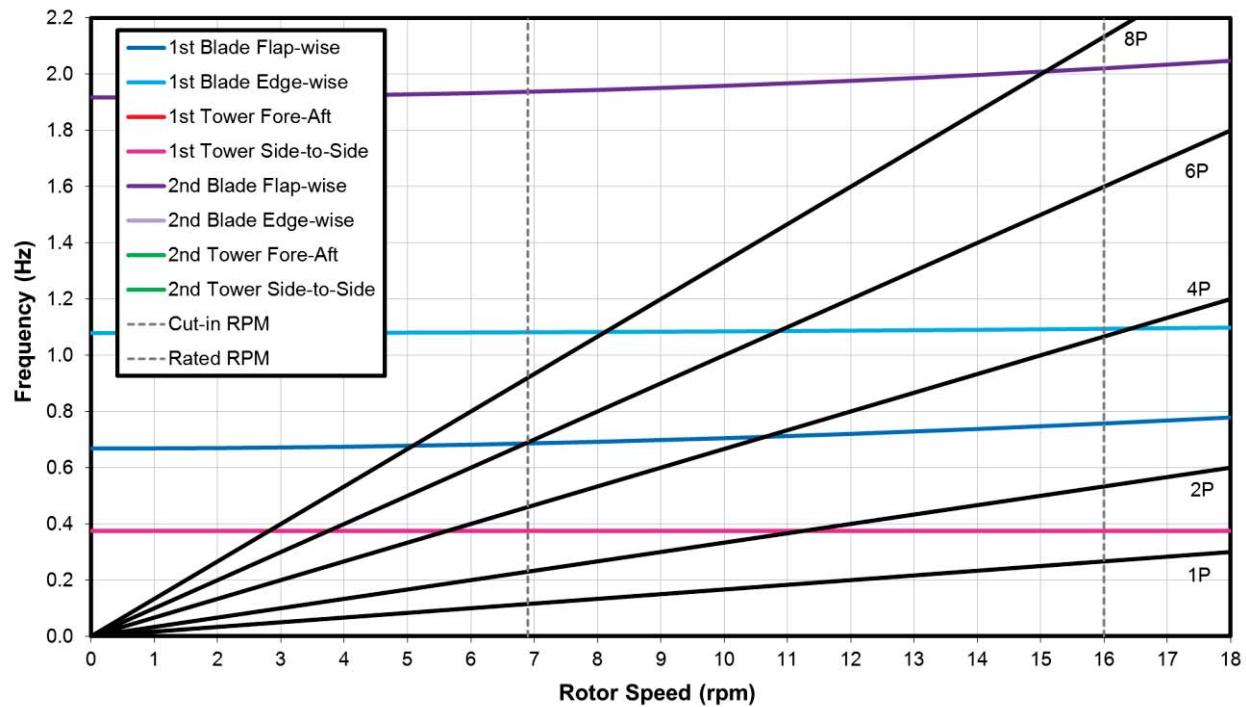



Figure 6.19. Campbell diagram of 2-bladed upwind turbine.

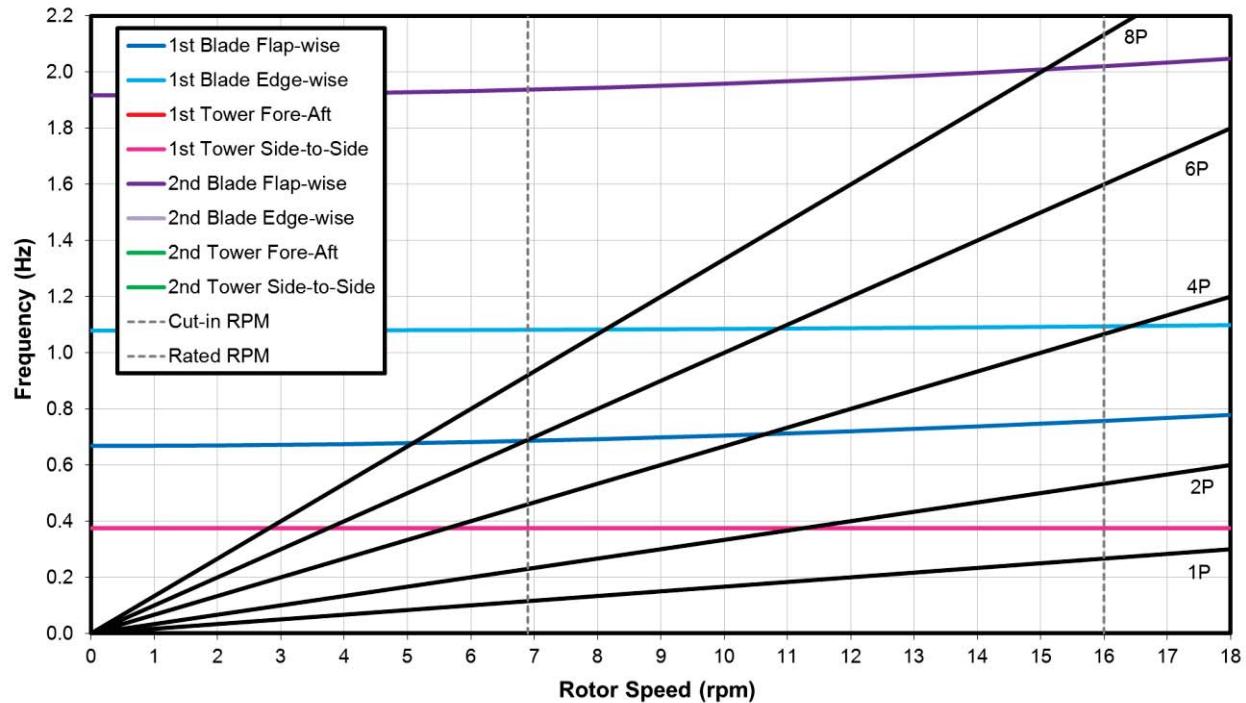
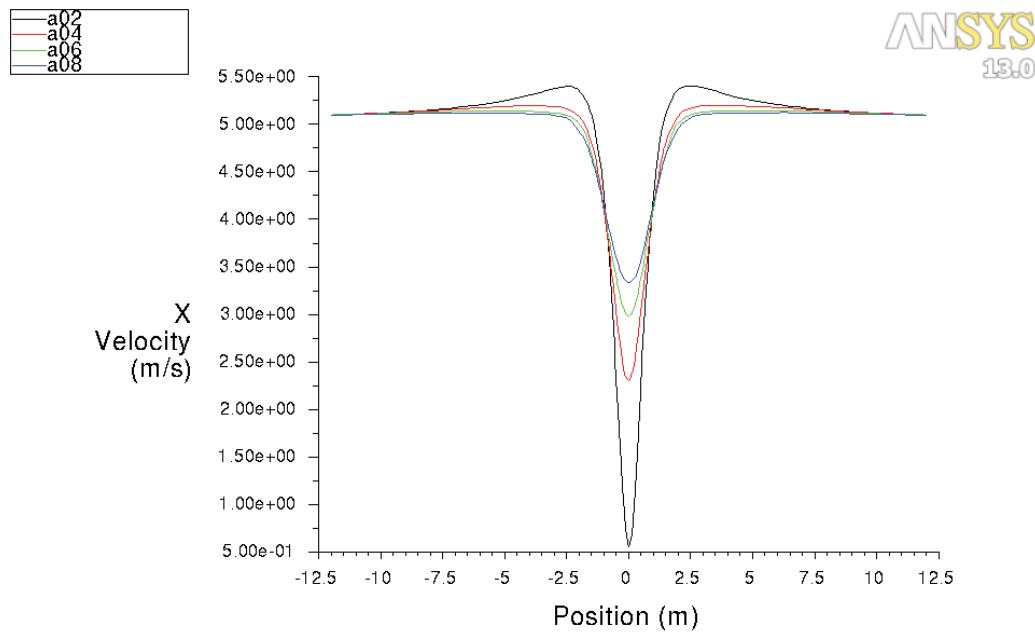


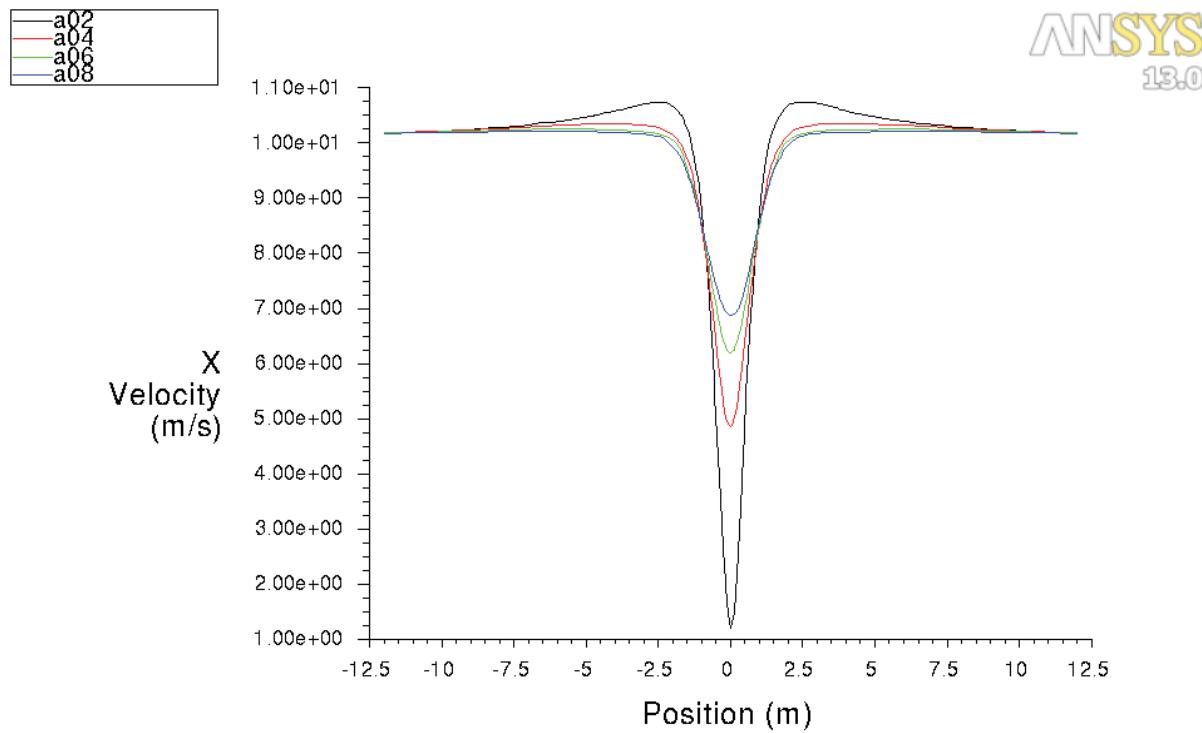

Figure 6.20. Campbell diagram of 2-bladed downwind turbine.

## 6.6 Modeling Tower Shadow Effects

Tower shadow is the distortion of the steady-state mean wind field due to the presence of the tower. For downwind configurations, the empirical model, which uses a cosine bell-shaped tower wake, can be used to model tower shadow effects. This model, which is based on the work of [Powles, 1983], is characterized using three parameters as follows:


- Maximum velocity deficit at the center of the wake
- Width of the tower shadow
- The reference downwind distance where the above parameters are defined.

The shadow width increases and the velocity deficit decreases with the square root of the distance from the tower. In this model, the wind speed perpendicular to the tower axis is calculated by Eq. (6.1),


$$V(x, y) = \left( 1 - \Delta \cos^2 \left( \frac{\pi y}{DW_{ts}} \right) \right) U_\infty \quad (6.1)$$

where  $\Delta$  is the maximum velocity deficit as a fraction of the local wind speed, and  $W$  is the width of the tower shadow normalized by the tower diameter ( $D$ ). The tower shadow width increases while velocity deficit decreases with the square root of the distance from the tower.

This model has been implemented in AeroDyn code [Laino & Hansen, 2002], which is used by FAST to calculate tower shadow effects. However, the required parameters should be estimated using a CFD analysis or experimental measurement. In this study an ANSYS FLUENT CFD simulation was carried out to estimate the required parameters to account for tower shadow effects with tower diameter equal to 1.88 m. Simulations were conducted using different wind speeds and for different reference distances from 2 m to 8 m behind the tower. The results are illustrated in Figure 6.21 to 6.25.



**Figure 6.21. Velocity deficit for tower diameter of 1.88 m and wind speed equal to 5 m/s.**



**Figure 6.22. Velocity deficit for tower diameter 1.88 m and wind speed equal to 10 m/s.**

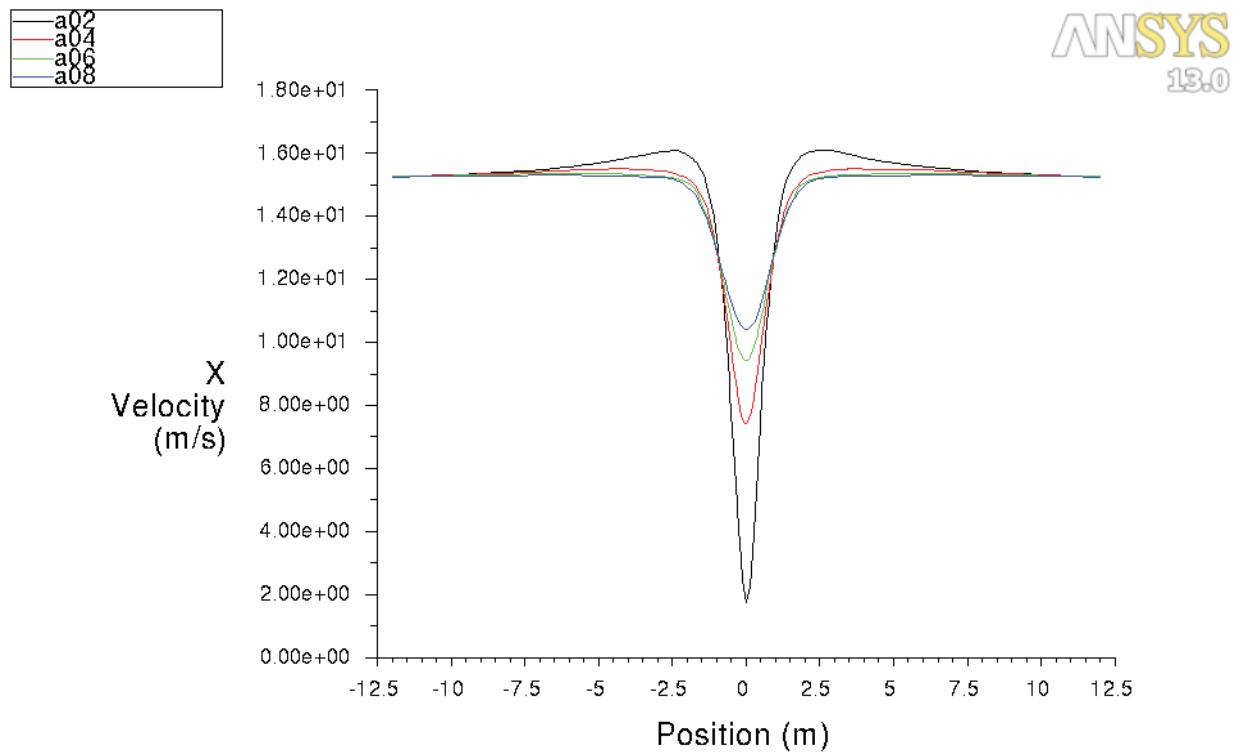



Figure 6.23. Velocity deficit for tower diameter 1.88 m and wind speed equal to 15 m/s.

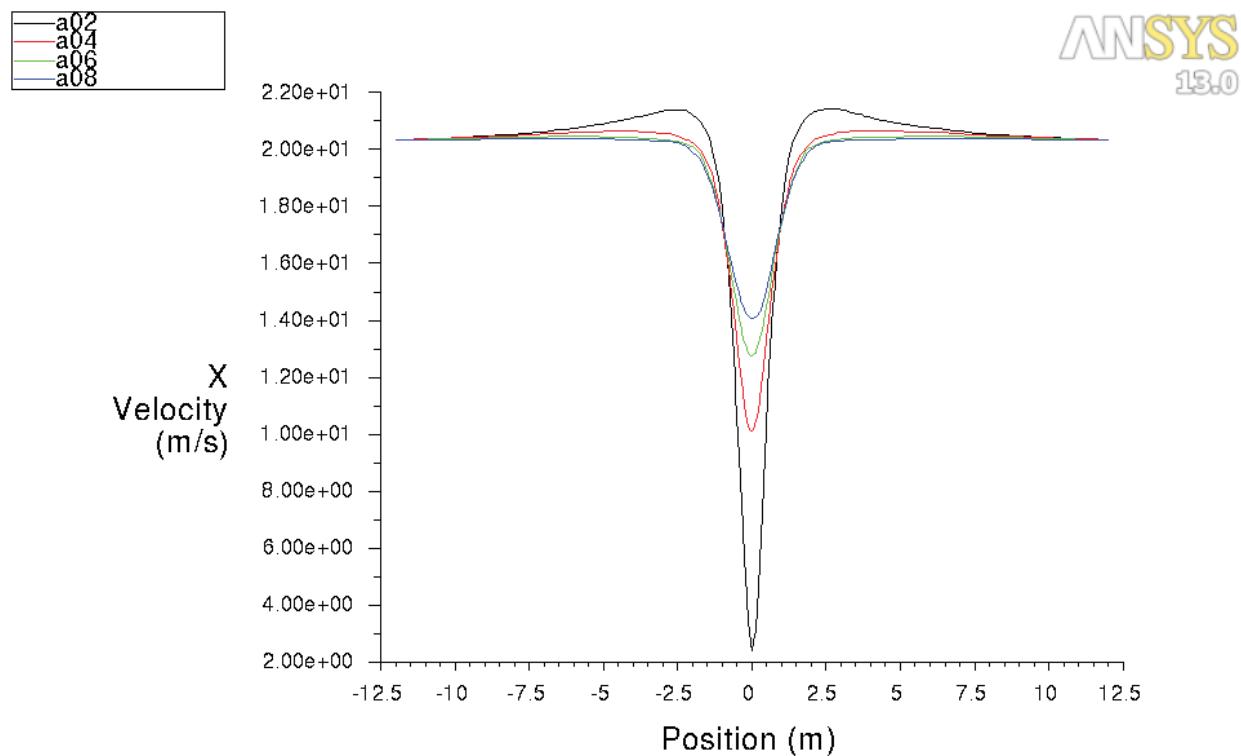
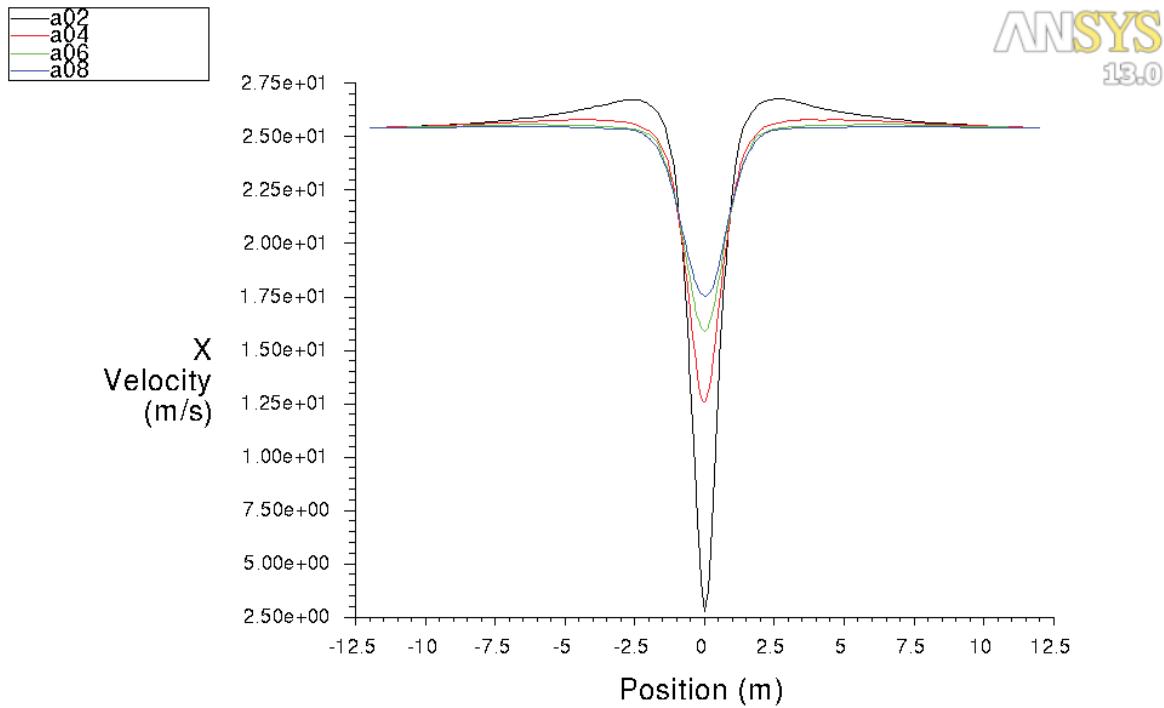




Figure 6.24. Velocity deficit for tower diameter 1.88 m and wind speed equal to 20 m/s.



**Figure 6.25. Velocity deficit for tower diameter 1.88 m and wind speed equal to 25 m/s.**

The results of the CFD simulation at 4 m reference point for different wind speeds are summarized in Table 6.13. It is observed that at the reference point the width of the tower shadow remains almost constant as wind speed changes. The maximum velocity deficit is also approximately constant, as expected.

**Table 6.13. Summary of the parameters to model tower shadow effects (ref distance 4 m).**

| $U_\infty$ | $V/U_\infty$ | $W_{ts}/D$ |
|------------|--------------|------------|
| 5          | 0.54         | 2.66       |
| 10         | 0.51         | 2.66       |
| 15         | 0.5          | 2.66       |
| 20         | 0.5          | 2.66       |
| 25         | 0.5          | 2.66       |

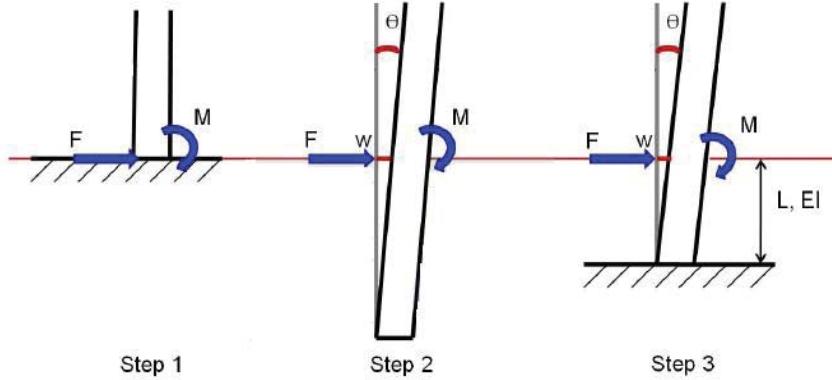
The above parameters were used to model the tower shadow effects in this study.

The tower shadow parameters are recalculated so that they can be applied to the proposed wind turbine designs. The tower shadow parameters are calculated at the 43.154 m tower height location. This is the location where a point on the blade at a distance of 75% of the rotor radius from its center is passing behind the tower for the wind turbine configuration with 5° shaft tilt angle and 2.5° pre-cone angle. Because the rated wind speeds are 11.4 m/s for the 5MW turbines, 0.51 value is selected for parameter TwrShad ( $V/U_\infty$ ) of the AeroDyn input file. The diameter at the 43.154m tower height location is 4.951 m. Thus, the ShadHWid ( $W_{ts}/2$ ) parameter of

AeroDyn input file value is calculated to be 6.584 m. The T\_Shad\_Refpt parameter of AeroDyn input file is determined by linearly scaling the reference distance relative to the tower diameter. As a result, the value of parameter T\_Shad\_Refpt is estimated to be 10.533 m.

## 7 Foundation Design

The objective of this chapter is to describe the gravity base foundation (GBF) designed to support this project's downwind, 2-bladed wind turbine concept. Using engineering judgment reasoned in Section 7.1 a rigid connection was found to be adequate for operation of the wind turbine under normal conditions. However, for this preliminary study, the foundation-tower interaction was modeled as a rigid connection for all design load cases. This approach was reasonable since in Lake Erie wave and ice loads are dominant loads for the foundation design. Accordingly, the computed wind turbine loads determined using a rigid tower base were used to design the GBF. The design methodology was based on the ultimate wind turbine loads; the effects of wave and ice were limited to the foundation and not transmitted to the turbine


The subsections of this chapter are organized as follows. Section 7.1 is a stand-alone section included to demonstrate the limitations on the validity of the static coupling assumption between the foundation and turbine and how modeling of the turbine and foundation interaction affects estimating limit state loads. Section 7.2 summarizes the loads that are transmitted to the foundation due to the turbine operating under different design load cases. Section 7.3 explains the design process, and Section 7.4 describes the final design.

### 7.1 Importance of Modeling Tower and Foundation Interaction

To demonstrate aspects of decoupling the foundation and turbine that impact design considerations, a simple model is used in this section to show how the interaction of the foundation and turbine could affect structural integrity of a wind turbine under different loading conditions. The NREL 5 MW turbine was used for this purpose.

The simplest model of soil-structure interaction is characterized by a stiffness matrix only. In this model for every loading condition at the base of a tower, the elements of the stiffness matrix from soil mechanics need to be specified. Using this model (Figure 7.1), three steps are involved. In the first step, by assuming a clamped base, FAST is run for a given load case, and the loads are calculated at the tower base. In the second step, using the loads estimated from the first step, a soil mechanics software is used to calculate the displacements for a virtual beam inside the soil. Lastly, in the third step, the elements of the stiffness matrix for the virtual beam are calculated using the displacements obtained in the second step.

The stiffness matrix obtained from the above process would be load case dependent. As was mentioned earlier this model is the simplest way to model the soil-tower interaction. In reality, the soil behavior is complex and nonlinear, dependent on the magnitude of the loads.



**Figure 7.1. Steps to characterize soil-tower stiffness matrix [Bush, 2009].**

For a cantilever beam under a shear load and a bending moment, the deflection is calculated using Eq. (7.1),

$$[\delta] = \begin{bmatrix} \frac{L^3}{3EI} & \frac{L^2}{2EI} \\ \frac{L^2}{2EI} & \frac{L}{EI} \end{bmatrix} \begin{bmatrix} F \\ M \end{bmatrix} \quad (7.1)$$

Then the stiffness matrix would be as follows,

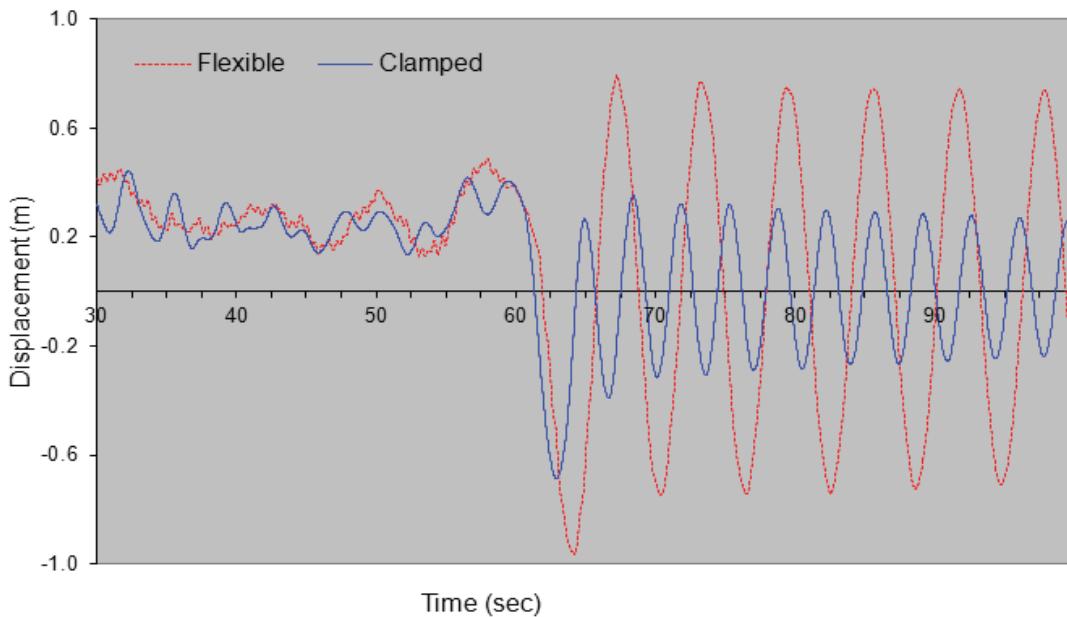
$$K = \begin{bmatrix} 12EI & -6EI \\ -6EI & 4EI \end{bmatrix} \quad (7.2)$$

Figure 7.1. and Eq. (7.1) correspond to a two-dimensional model. The three dimensional counter part of Eq. (7.2) would have  $6 \times 6$  elements.

Using the mass properties of the NREL 5 MW machine, the following stiffness matrix was found to be representative of the model based on DNV-OS-J101 standard.

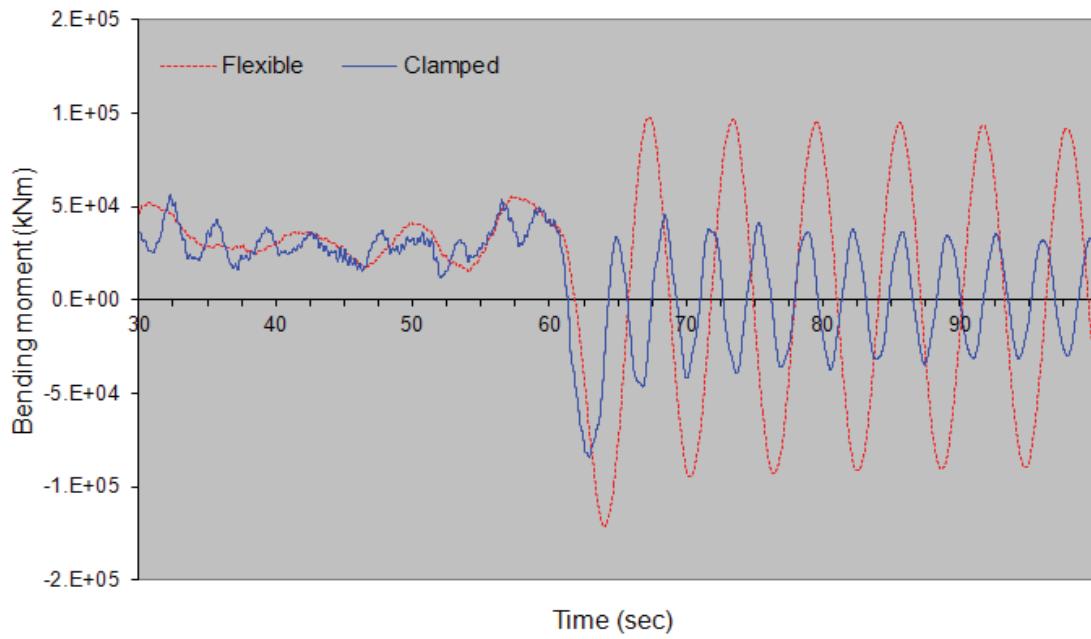
$$K = \begin{bmatrix} 1.6GN/m & 0 & 0 & 0 & -5.49GN/m & 0 \\ 0 & 1.6GN/m & 0 & 5.49GN/rad & 0 & 0 \\ 0 & 0 & 2.5GN/m & 0 & 0 & 0 \\ 0 & 5.49GN/rad & 0 & 25GNm/rad & 0 & 0 \\ -5.49GN/m & 0 & 0 & 0 & 25GN/rad & 0 \\ 0 & 0 & 0 & 0 & 0 & 25GNm/rad \end{bmatrix} \quad (7.3)$$

First, using simple calculations the range of deflections are estimated for a normal operating condition. Consider the following loads to estimate the deflections.

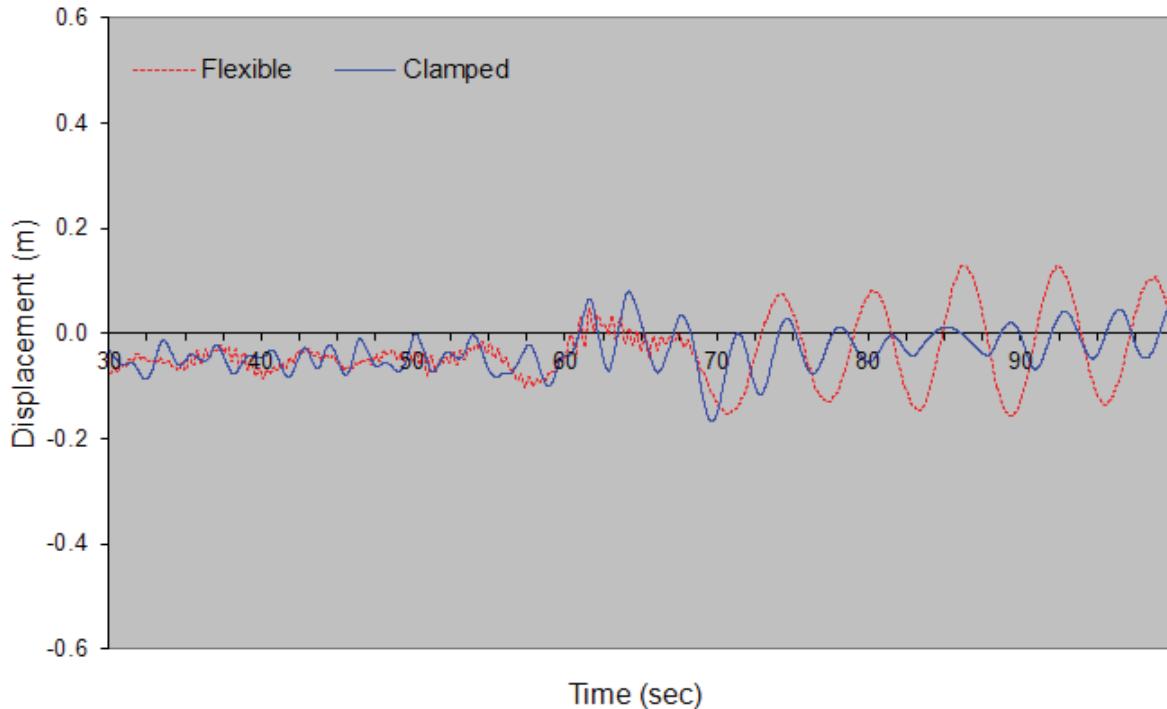

|                               |              |
|-------------------------------|--------------|
| Largest horizontal shear load | : 2160 kN    |
| Largest Lateral               | : 853 kN     |
| Largest vertical load         | : 5581 kN    |
| $M_x$                         | : 65840 kNm  |
| $M_y$                         | : 188900 kNm |
| $M_z$                         | : 5118 kNm   |

Assume that the above loads are applied statically and individually to the structure. The corresponding deflections would be as follows,

Surge = 0.14 cm  
 Sway = 0.05 cm  
 Heave = 0.2 cm  
 Roll =  $0.15^\circ$ , this translates into approximately 0.25 m displacement at the top of the tower  
 Pitch =  $0.43^\circ$ , this means that the displacement at the top of the tower would be approximately 0.75 m  
 Yaw = 0.0002 rad


This means that as intuitively expected the pitch and roll DOFs should be the most critical.

FAST was recompiled to include flexibility as shown in Eq. (7.3). Figure 7.2, Figure 7.3 and Figure 7.4 demonstrate a simulation with wind speed 20 m/sec and normal turbulence when the grid is lost at 60 seconds and the turbine is shut down immediately. Figure 7.2 shows the tower top displacement in the fore-aft direction.




**Figure 7.2. Tower top displacement in fore-aft direction under fault and normal condition.**

Figure 7.3 illustrates the fore-aft bending moment at the base of tower, and Figure 7.4. demonstrates the side-to-side displacement at the tower top.



**Figure 7.3. Fore-aft bending moment at the base of tower under fault and normal condition.**



**Figure 7.4. Tower top side-to-side displacement under fault and normal condition.**

This test case demonstrates that for normal operating conditions, there is not a significant difference between the clamped model and the flexible foundation, but for fault conditions, the difference can be significant. This means that to design the wind turbine for fatigue loads using a clamped model or using a simple model as described above could be sufficient, but to estimate the loads due to ultimate loads for fault conditions accurate modeling of tower and soil interaction is necessary.

## 7.2 Loads Transmitted From Monopole to Foundation

In order to design a GBF, one needs to estimate the loads applied to the foundation at the tower and foundation interface due to the wind turbine operation under different conditions. For the foundation concept that is considered in this study Figure 7.5, the wave and ice loads are applied to the gravity foundation, as the tower is installed on the top of foundation above the sea level.



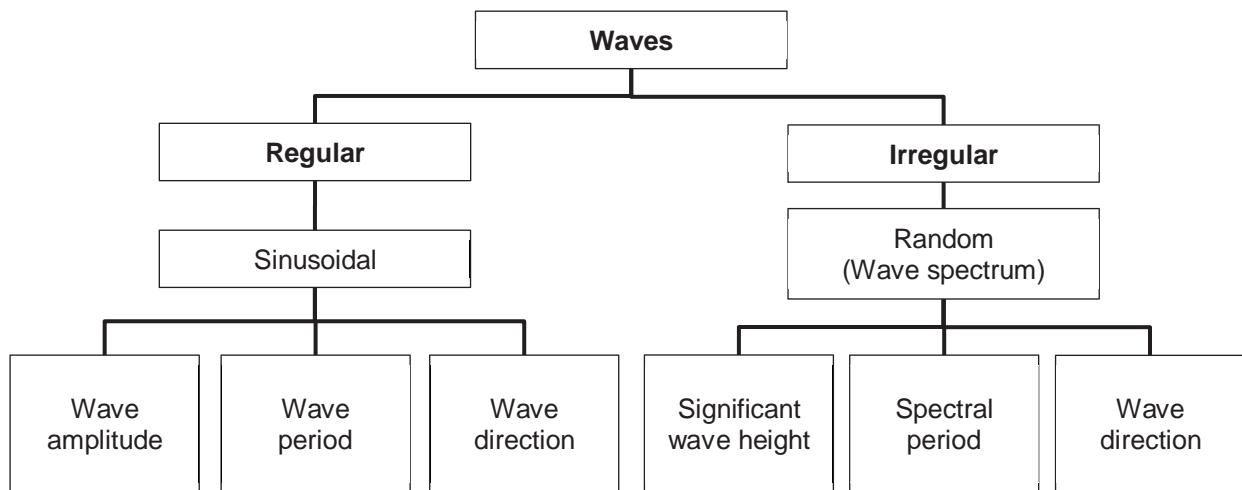
**Figure 7.5. Gravity base foundation.**

The load cases that were used in this study are similar to those used by Jonkman & Buhl [2007] to estimate the loads applied to the top of the foundation due to the operation of a wind turbine.

The load cases used here are identical to those listed in Table 5.10. The metrological conditions described in Chapters 5 were used to determine the environmental loads for these design load cases.

Table 7.1 summarizes the maximum loads that are calculated at the base of the tower corresponding to the load cases in Table 5.10. In Chapter 9 more details on the calculation of these loads are presented. Refer to Appendix 4 for the definitions of nomenclatures used in Table 7.1.

**Table 7.1. Summary of turbine loads at the base of the tower.**


| Normal Operation  |        |                   |          |                   |           |                  |              |                  |               |
|-------------------|--------|-------------------|----------|-------------------|-----------|------------------|--------------|------------------|---------------|
|                   |        | When $F_{xyt}$ is |          | When $M_{xyt}$ is |           | When $F_{zt}$ is |              | When $M_{zt}$ is |               |
| Loads             | Units  | Max               | Min      | Max               | Min       | Max              | Min          | Max              | Min           |
| $F_{xyt}$         | (kN)   | <b>1270</b>       | <b>0</b> | 1267              | 18        | 353              | 327          | 301              | 250           |
| $F_{zt}$          | (kN)   | -5513             | -5550    | -5513             | -5550     | <b>-5420</b>     | <b>-5690</b> | -5662            | -5426         |
| $M_{xyt}$         | (kN-m) | 101517            | 2347     | <b>101533</b>     | <b>13</b> | 30190            | 27549        | 28844            | 24238         |
| $M_{zt}$          | (kN-m) | 1215              | -113     | 1362              | -15       | -9598            | 5959         | <b>7155</b>      | <b>-10240</b> |
| Fault Conditions  |        |                   |          |                   |           |                  |              |                  |               |
|                   |        | When $F_{xyt}$ is |          | When $M_{xyt}$ is |           | When $F_{zt}$ is |              | When $M_{zt}$ is |               |
| Loads             | Units  | Max               | Min      | Max               | Min       | Max              | Min          | Max              | Min           |
| $F_{xyt}$         | (kN)   | <b>1289</b>       | <b>0</b> | 1226              | 6         | 281              | 228          | 310              | 385           |
| $F_{zt}$          | (kN)   | -5643             | -5561    | -5481             | -5561     | <b>-5289</b>     | <b>-5839</b> | -5780            | -5321         |
| $M_{xyt}$         | (kN-m) | 96830             | 497      | <b>97635</b>      | <b>32</b> | 22557            | 19752        | 25417            | 29382         |
| $M_{zt}$          | (kN-m) | -32               | -60      | 117               | -69       | -13248           | 10533        | <b>11969</b>     | <b>-14647</b> |
| Parked Conditions |        |                   |          |                   |           |                  |              |                  |               |
|                   |        | When $F_{xyt}$ is |          | When $M_{xyt}$ is |           | When $F_{zt}$ is |              | When $M_{zt}$ is |               |
| Loads             | Units  | Max               | Min      | Max               | Min       | Max              | Min          | Max              | Min           |
| $F_{xyt}$         | (kN)   | <b>602</b>        | <b>0</b> | 601               | 5         | 134              | 21           | 580              | 522           |
| $F_{zt}$          | (kN)   | -5530             | -5605    | -5533             | -5552     | <b>-5517</b>     | <b>-5670</b> | -5545            | -5543         |
| $M_{xyt}$         | (kN-m) | 45719             | 863      | <b>45842</b>      | <b>2</b>  | 9057             | 3113         | 44823            | 40672         |
| $M_{zt}$          | (kN-m) | 1216              | -11      | 1408              | -1        | -542             | 30           | <b>1760</b>      | <b>-1640</b>  |

In the calculation of the above loads no wave or ice loads were applied to the wind turbine tower, because the foundation design extends about 11.5 m above the sea level. This height was selected so that waves and ice would be limited to the foundation and not reach the tower.

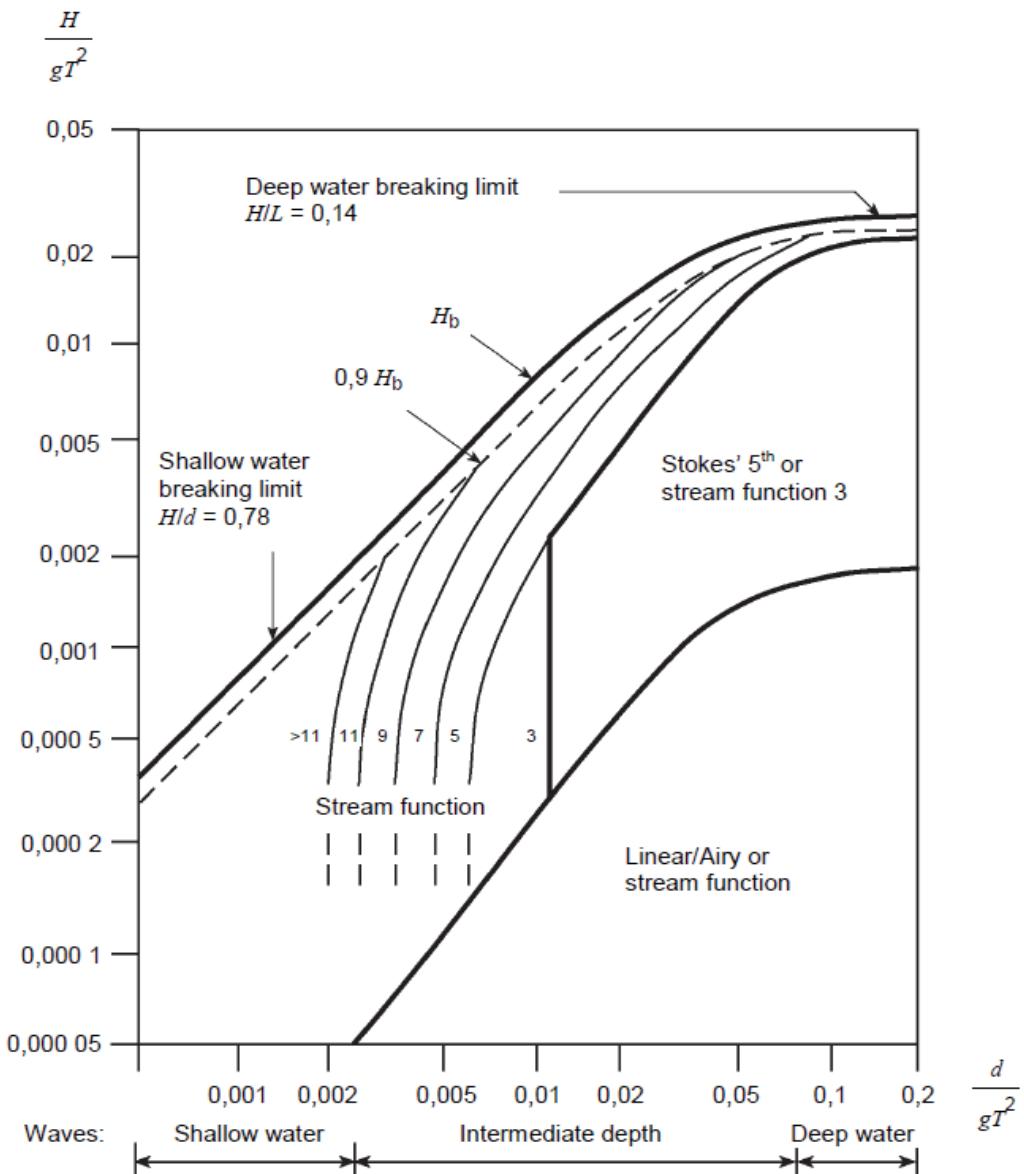
### 7.3 Foundation Design

In order to develop the GBF, the DNV-OS-J101 standard was used to estimate Ultimate Limit State loads, assuming that the design of the GBF will primarily be determined by ultimate loads [Marrone et al., 2013]. In this preliminary study Fatigue Limit State and Serviceability Limit States were not considered; however, these loads are important concerns and should be taken into account in the detailed design stage. Furthermore, the transportation and installation loads were also neglected at this preliminary stage.

Wave conditions are defined based on the IEC-61400-3 [2009] standard. Wave load cases are either deterministic or random. Figure 7.6 lists the parameters that are required to define regular or irregular wave conditions.



**Figure 7.6. Wave conditions based on IEC 61400-3 standard.**


For the deterministic waves the amplitude, the period, and the direction of approach of the waves should be specified.

Pierson-Moskowitz and JONSWAP spectra should be used in order to generate wave load cases to analyze loads on an offshore wind turbine according to the IEC standards. The two-parameter Pierson-Moskowitz spectrum is characterized by significant wave height and peak spectral period. The first parameter specifies the energy content of the waves and the latter specifies the frequency of the waves. Random waves are specified by selecting an appropriate wave spectrum, the probability distribution of wave direction and spectral period based on the environmental condition of a potential wind turbine site.

Below is a list of the load cases for each type of waves to consider based on the IEC standards for an offshore wind turbine:

- 1) Deterministic waves
  - a. Normal wave height (NWH)
  - b. Severe wave height (SWH)
  - c. Extreme wave height (EWH)
  - d. Reduced wave height (RWH)
- 2) Irregular waves
  - a. Normal sea state (NSS)
  - b. Severe sea state (SSS)
  - c. Extreme sea state (ESS)
  - d. Breaking wave

Depending on the location of an offshore wind turbine and the environment conditions, an appropriate wave theory should be used to model the hydrodynamic forces. IEC standard 61400–3 ed. 1 (2009) provides guidance on the selection of a suitable wave theory based on the environmental conditions at a given site (Figure 7.7). In this figure,  $H$ ,  $L$ ,  $T$ ,  $d$ , and  $g$  denote the wave height, wave length, wave period, water depth, and gravitational acceleration, respectively. For more information regarding the wave theories and their ranges of application, refer to ISO19901-1 standard.



**Figure 7.7. Selecting suitable wave kinematic model based on water depth and wave height [IEC 61400-3, 2009].**

DNV-OS-J101 is the primary standard for wind turbine foundation design. This standard is a stand-alone document that covers design, construction, installation and inspection of offshore wind turbine structures.

For the foundation design in this study, the water level is listed in Table 7.2.

**Table 7.2. Design Water Levels.**

|                                       |         |
|---------------------------------------|---------|
| Water depth (chart datum)             | 17.0 m  |
| 50 year water level variation (surge) | ± 2.4 m |
| 1 year water level variation          | ± 1.0 m |

The US Army Corps of Engineers (USACE) collects data at multiple Wave Information Study (WIS) stations in Lake Erie<sup>1</sup> as shown in Figure 7.8.



**Figure 7.8. Location of hindcast data stations [Marone et al., 2013].**

The metrological data that are available through NOAA buoy 45005 were reviewed and the 50-year return period significant wave height was determined to be 4.1 m. Table 7.3 summarizes the water depth and the 50-year return period wave heights from different hindcast locations and compares them with the data from buoy 45005.

**Table 7.3. Water depth and design wave heights [Marrone et al., 2013].**

| Station    | Water Depth (m) | H 50-year (m) |
|------------|-----------------|---------------|
| WIS 92105  | 8               | 2.6           |
| WIS 92092  | 12              | 4.0           |
| WIS 92134  | 11              | 3.5           |
| NDBC 45005 | 12              | 4.1           |
| WIS 92082  | 14              | 4.4           |
| WIS 92070  | 16              | 5.1           |
| WIS 92053  | 20              | 6.0           |

Using the hindcast data is advantageous over using those from the buoy because it includes data from winter time when the buoy is not operational. To be more conservative, the 50-year return

<sup>1</sup> <http://wis.usace.army.mil/hindcasts.shtml>

period wave was estimated from WIS 92070 station, which is 1 m higher (5.1 m) than that from the buoy 45005. It is noted that WIS 92070 is closer to the site of study than the buoy.

Based on the DNV standard and the wind turbine simulation results from Table 7.1, the load cases and the corresponding loads that were used for the design purpose are summarized in Table 7.4.

**Table 7.4. Load Cases and corresponding results that are used to design the GBF**  
[Marrone et al., 2013].

| Operating Conditions           | Normal                                 |                                       | Fault                                                |                                                      |                                      |
|--------------------------------|----------------------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------|
| Equivalent DNV load case       | DLC 1.6                                | DLC 1.6                               | DLC 2.1                                              | DLC 2.3                                              | DLC 7.1                              |
| Horizontal Load (kN)           | 1270                                   | 301                                   | 1289                                                 | 385                                                  | 602                                  |
| Overturning Moment (kNm)       | 101533                                 | 2884                                  | 97635                                                | 29382                                                | 45842                                |
| Torsional Moment (kNm)         | 1362                                   | 10240                                 | 117                                                  | 14647                                                | 1760                                 |
| Weight of Turbine + Tower (kN) | 5416                                   | 5416                                  | 5416                                                 | 5416                                                 | 5416                                 |
| Wave Condition                 | SSS<br>Hs,50yr =5.1<br>m<br>Tp = 7.2 s | SSS<br>Hs,50yr =5.1<br>m<br>Tp = 7.2s | NSS<br>Hs=E[Hs U10,<br>hub]<br>= 2.5 m<br>Tp = 6.5 s | NSS<br>Hs=E[Hs U1<br>0,hub]<br>= 2.5 m<br>Tp = 6.5 s | ESS<br>Hs,1yr = 3.5<br>m<br>Tp = 6 s |
| Still Water Level              | 1 year water level = +1.0m             | 1 year water level = +1.0m            | Mean water level = 0.0 m                             | Mean water level = 0.0 m                             | 1 year water level = +1.0m           |
| Load Factor                    | 1.35                                   | 1.35                                  | 1.35                                                 | 1.1                                                  | 1.1                                  |

The main assumptions made to calculate the hydrodynamic loads are as follows [Marrone et al., 2013]:

- Stream function wave theory and Morison's equation [Ochi, 2005] were used to calculate hydrodynamic loads. Wave loads consist of two components, one is due to drag force which depends on the velocity of water particles and an inertia, which is a function of acceleration.
- The design wave height ( $H_{max}$ ) was considered to be 1.86 times the significant wave height ( $H_s$ ) according to DNV-OS-J101. This is similar to the IEC 61400-3 [2009] standard.
- The friction coefficient was selected for a structure with a rough surface due to marine growth. Marine growth was assumed to be 40 mm thick over the full height of the foundation structure above the mudline.
- The effect of breaking waves was not considered because the maximum wave height is less than the depth-limited wave height (approximately 0.78 times water depth [DNV-OS-J101, section 308]).
- Current forces acting on the foundation were assumed negligible.
- The interface elevation is assumed +11.5 m above the sea level to avoid waves slamming onto the service platform.

Ice forces on structures can be very significant in offshore wind farms. Ice force calculation is dependent on ice mechanical properties, structural characteristics of the ice and calculation methods. Ice strength characteristics vary based on temperature, salt content, density and other parameters.

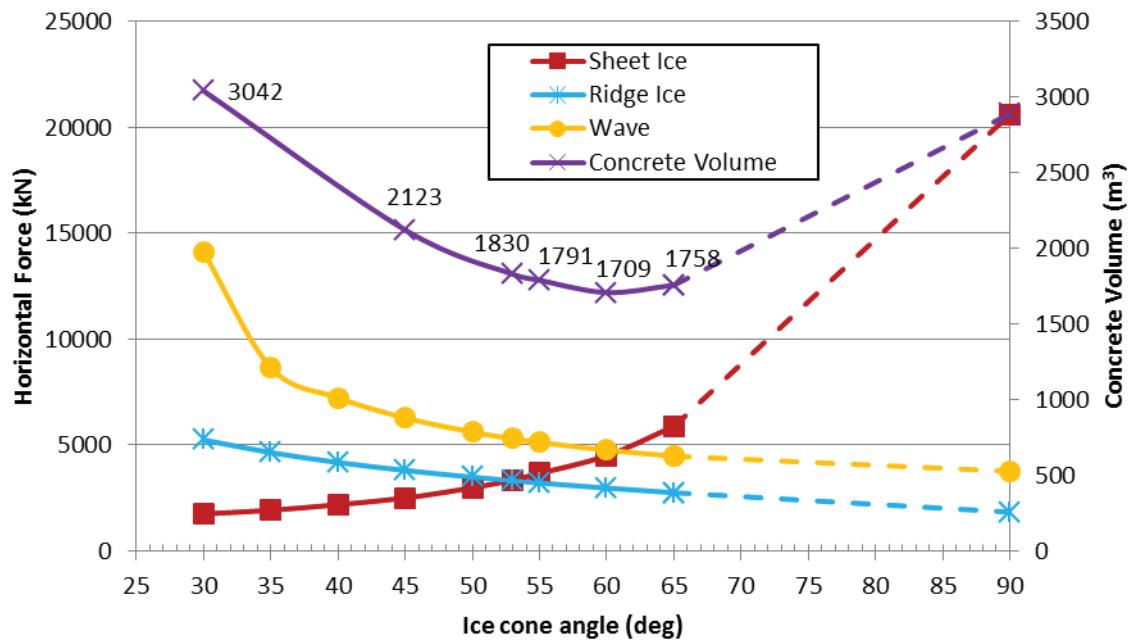
Table 7.5 shows the ice parameters used for the concept design work.

**Table 7.5. Ice properties [Marrone et. al., 2013].**

| Property                                    | Value (SI)                                       | Source                                  |
|---------------------------------------------|--------------------------------------------------|-----------------------------------------|
| Density (kg/cu.m)                           | 999.8 (Horz./Vert. Force) /<br>916 (Ridge Force) |                                         |
| Ice-concrete dynamic frictional coefficient | 0.15                                             | IEC 61400-3, 2009                       |
| Compressive strength (MPa)                  | 4.4                                              | C-CORE, 2008                            |
| Flexural strength (MPa)                     | 1.76                                             | Timco, G.W. and O'Brien, S. 1994        |
| Level of ice thickness (m)                  | 0.618                                            | IEC 61400-3, 2009<br>NDBC Station DBLN6 |
| Consolidated ice layer thickness (m)        | 0.927                                            | C-CORE, 2008                            |
| Sail thickness (m)                          | N/A                                              |                                         |
| Keel thickness (m)                          | 11.2                                             | C-CORE, 2008                            |

Ice loads can occur due to a number of mechanisms as discussed in Chapter 5 and in [Wells, 2012]. In the Great Lakes, loads from both sheet ice and ridge ice should be considered.

Sheet ice loading is well documented in a number of design standards, including DNV-OS-J101 and IEC 61400-3. However, ice ridges are not well understood with significant uncertainty in theoretical approaches and experimental data, as mentioned in Chapter 5. There are several design methods to determine ridge ice loads, but in this preliminary design stage the method proposed by Brown & Seify [2005] was selected. The Brown & Seify [2005] method is based on an empirical formula derived from full scale field measurements on a structure with an upward breaking ice cone. Because an upward breaking ice cone was also incorporated in the GBF, this method was appropriate for the concept design.


Table 7.6 summarizes the results of the ice load calculations.

**Table 7.6. Summary of ice loads [Marrone et al., 2013].**

| Ice Force                  | Value (MN) | Value (kips) | Reference                          |
|----------------------------|------------|--------------|------------------------------------|
| Horizontal sheet ice force | 1.6        | 359.7        | DNV-OS-J101                        |
| Vertical sheet ice force   | 0.7        | 157.4        | DNV-OS-J101                        |
| Horizontal ridge ice force | 3.0        | 374.4        | Brown T.G. and Seify, M. El., 2005 |

Prior to finalizing the foundation design, however, site-specific ice research should be conducted to better understand ice loads. This could include scale model testing to confirm the Brown & Seify [2005] model.

Given the anticipated design ice parameters, a preliminary sensitivity analysis of the ice cone size and angle was conducted (Figure 7.9). Assuming a constant column diameter, the outer diameter of the ice cone grows as the angle increases. This growth is necessary to maintain a constant height of the ice cone, so the ice will contact the cone in the range of site water levels. As the ice cone angle increases (reference: 0 degrees being horizontal and 90 degrees being vertical, or the absence of an ice cone), a number of effects are observed, wave load decreases, ridge ice force decreases, sheet ice forces increase.



**Figure 7.9. Variation of horizontal forces and concrete volumes with ice cone angle**  
[Marone et al., 2013].

Note that as the ice cone angle decreases to improve the performance against the sheet ice, the wave and ridge ice effect is greater on the larger structure because of its larger cross section. A 53 degree ice cone angle provides a reasonable overall structure weight while maintaining a factor of safety appropriate for the concept level design and assumptions [Marone et al., 2013]. Lower foundation weight is anticipated to result in a lower foundation fabrication cost, which will ultimately result in an overall lower cost of energy.

Here, the effects of wave and ice loads on a monopile platform are compared with those on a GBF. Based on Morison's equation for a cylinder, the fluid force per unit length can be written as follows [Ochi, 2005],

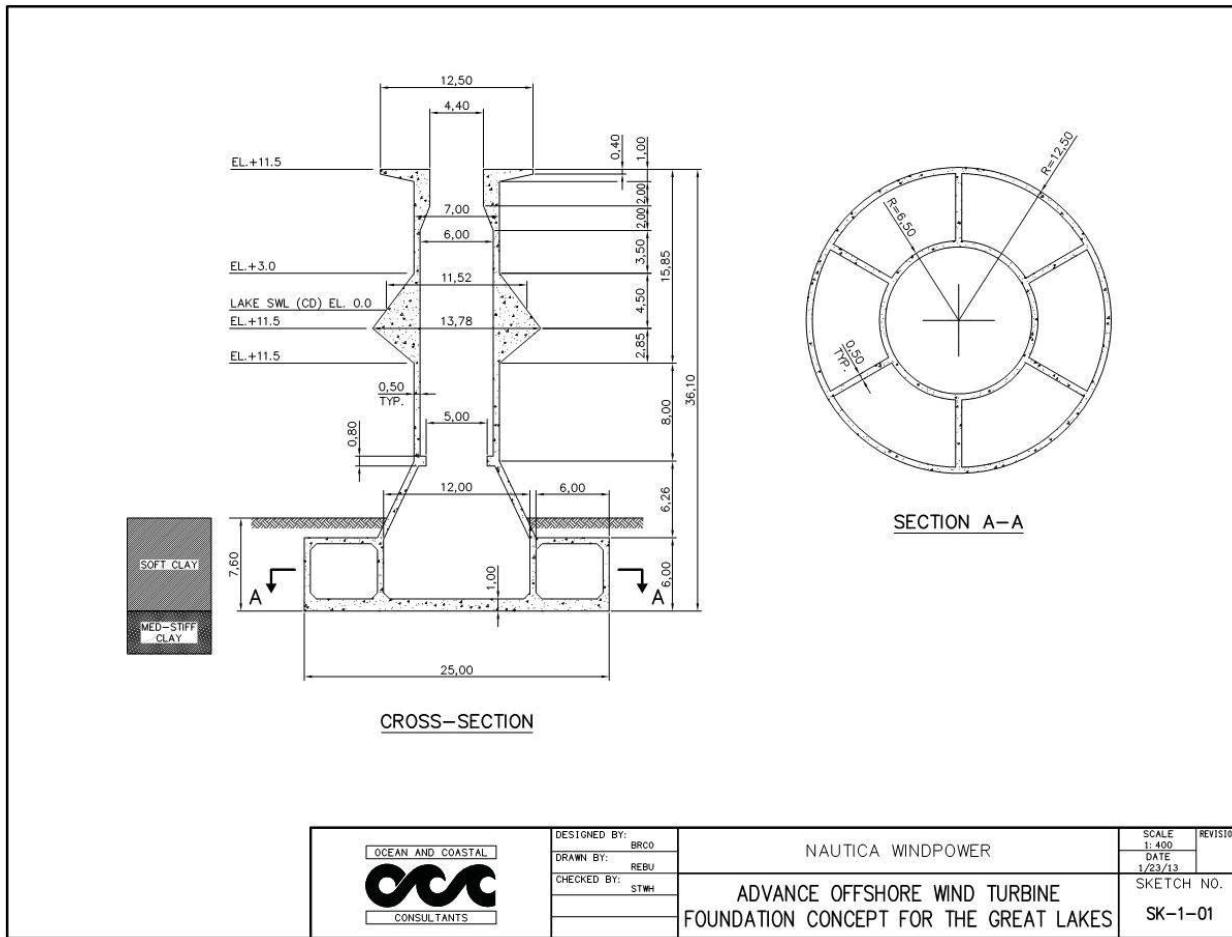
$$F(t) = C_D \rho \frac{D}{2} v(t)^2 + C_M \rho \pi \frac{D^2}{4} a(t) \quad (7.4)$$

The first term in the above equation is the drag force, and the second term represents inertia force. The inertia force is the force exerted by the fluid while it accelerates and decelerates as it passes the structure. The drag force is a function of velocity ( $v$ ) while the inertia force depends on acceleration ( $a$ ). In Eq. (7.4), the diameter of the cylinder is denoted by  $D$ , and density, drag and inertia coefficients are denoted by  $\rho$ ,  $C_D$  and  $C_M$ , respectively.

Inertia and drag coefficients are functions of the Reynolds number, surface roughness, and Keulegan-Carpenter number [Ochi, 2005]. Both velocity and acceleration of the incident waves vary with time, and their maxima do not occur at the same instant, because there is a phase difference between them.

The diameter for the monopile platform developed by the NREL is approximately 6 m, while the diameter of the GBF would be in the range of 12 m, as shown in the next section. Therefore, based on Eq. (7.4), the drag force for the gravity foundation should be 2 times that for the monopile, and the inertia force would be 4 times of that for the monopile. However, the maximum drag force does not occur when maximum inertia force occurs. Still, the maximum difference would be significant.

For ice loads, a gravity foundation design using an upward ice cone reduces the loads dramatically. However, the large diameter of the column increases the wave loads significantly compared with a monopile design. In the monopile concept, wave loads are smaller but ice loads without ice cones would be extremely high.


## 7.4 Description of Foundation

The GBF designed to support the downwind, 2-bladed rotor wind turbine for this project is a semi-floating type. The semi-floating GBF consists of, from bottom to top: a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. The semi-floating GBF was selected primarily due to regional logistical constraints to install the GBF with locally available construction equipment.

### *Weights and Dimensions*

As shown in Figure 7.10, the overall GBF height is 36.1 m. The base plate is 1 m thick by 25 m in diameter and forms the floor of the buoyancy chamber. The buoyancy chamber is 6 m tall. The main column is 7 m in diameter. The GBF will be filled with ballast sand to 5 m from the interface elevation.

The unballasted reinforced concrete GBF weighs approximately 4400 tonnes. Transporting and maneuvering a fully-fabricated, 4400 tonne GBF require specialized equipment and vessels. The floating-type structure weighs considerably less once the buoyancy chambers are floated, allowing transportation and placement with available vessels and equipment in the region. Ballast accounts for an additional 4990 tonnes when filled at the site. For further information on construction and installation methods, refer to Marrone, et al. [2013].



**Figure 7.10. GBF dimensions [Marone et al., 2013].**

## 8 Cost Model

This chapter presents the cost analysis conducted to assess potential economic advantages of the downwind, 2-bladed wind turbine design concept. This analysis is necessary in order to draw credible conclusions on the designs since, although reducing the number of blades from 3 to 2 (i.e., the idea of removing one blade for the rotor) is simple conceptually, the effects cascade throughout the system. The complexity of these changes to components such as the gearbox, generator and tower were not examined rigorously in this work, but they have an impact on the cost offshore wind energy.

This chapter discusses the methods and the rationale used to estimate the cost of energy of three wind turbine designs, the description of models considered and cost analysis. The three turbine models considered were:

1. A Baseline 3-bladed wind turbine, based on the NREL Offshore 5MW wind turbine (3B)
2. The University of Toledo 2-bladed rotor design (2BUT), based on the design studies presented throughout this report
3. An optimized 2-bladed wind turbine that takes into account further improvements expected when a 2-bladed rotor is used, but not rigorously analyzed in this work

The analysis is grouped into two main areas:

1. Foundations
2. System Availability

The foundation cost is the largest single component of the total cost for an offshore wind turbine. The drivetrain has the largest capital cost, but is comprised of 11 components. The foundation is the second most expensive component behind the drivetrain, but is comprised of only one component. In addition, the foundation has its own installation cost. Its installation is only slightly less costly than that of the entire wind turbine. Even small decreases in the foundation cost, can have a large effect on the overall cost of the wind turbine system.

System availability increases using a 2-bladed rotor. As a rule of thumb, there is a 1-2 percent energy production difference between a 3- and 2- bladed wind turbine rotor. This percent difference is only based on the rotor aerodynamic energy production. It does not account for system losses, or down-time due to failures or maintenance of the system. When the failure rates and days down due to failure are taken into account the difference between the energy productions from 3- and 2-bladed is reduced.

### 8.1 Model Descriptions

This section briefly describes the three models used in the cost analysis.

## 8.1.1 Baseline 3-Bladed Design (3B)

### 8.1.1.1 Basic Characteristics

The Baseline wind turbine used in this model is created using the NREL 5MW Offshore Wind Turbine [Jonkman, et al., 2009]. As the exact location of the wind turbine has not been chosen, “best judgment” values for the principal parameters were selected. The published value of Coefficient of Power (Cp) is 0.482. For this study, a Cp of 0.4867 was used. This value was obtained from the program WT\_Perf, which was used to determine the Cp values for the blades used in the 2-bladed rotor wind turbines. The increased Cp value for the Baseline was used to maintain consistency.

**Table 8.1. Baseline (3B) NREL 5 MW wind turbine.**

| <b>Baseline 3B</b>                  |   |                        |
|-------------------------------------|---|------------------------|
| Rotor Radius (m)                    | - | 63                     |
| Hub Height (m)                      | - | 100                    |
| System Life (years)                 | - | 20                     |
| Foundation                          | - | NREL estimate Monopole |
| Distance to Shore (m)               | - | 15                     |
| Anemometer Average Wind Speed (m/s) | - | 7.2                    |
| Anemometer Height (m)               | - | 50                     |
| Wind Shear Factor                   | - | 0.14                   |
| Average Wind Speed at Hub (m/s)     | - | 7.93                   |
| Control                             | - | Pitch-to-Feather       |
| Generator                           | - | High-Speed             |

### 8.1.1.2 Balance of System (BOS)

Balance of System includes everything that is needed to operate a wind turbine, other than the wind turbine. This includes: hardware needed to connect the turbine to the grid, transportation, installation and other requirements such as permits, and decommissioning.

#### *Hardware*

Cost estimates for the BOS hardware were based on information in the NREL cost scaling study [Fingersh et al., 2006].

#### *Transportation*

Transportation costs were estimated based on the delivery of the components to the port staging and assembly area. There is transportation cost associated with getting the components to the offshore installation site. The cost of offshore transportation is calculated in the installation estimate. For simplicity, it was assumed that the turbine would be transported in 8 sections: 3 blades, 1 hub, 1 nacelle, 3 tower sections.

#### *Installation*

The installation estimate used in this analysis is based on the engineering approach in the “Offshore Wind Energy Installation and Decommissioning Cost Estimation in the U.S. Outer

Continental Shelf" report. The estimate is broken into two parts, foundation and turbine installation. An estimate for cable laying is currently not included, but that cost is the same regardless of the turbine design and does not influence the comparative cost of energy. The values for foundation and turbine installation are added together to provide an estimated cost for turbine installation. Values chosen for the analysis were:

**Table 8.2. Baseline (3B) installation inputs.**

| <b>Installation Values (3B)</b>          |   |                              |
|------------------------------------------|---|------------------------------|
| Main Installation Vessel Type            | - | Self-Transport Jack-up Barge |
| Number of Tugs                           | - | 2                            |
| Number of Barge                          | - | 0                            |
| Number of Crew                           | - | 3                            |
| Installation Time Foundation (hrs)       | - | 96                           |
| Vessel Capacity (turbines)               | - | 2                            |
| Installation Time Turbine (hrs)          | - | 120                          |
| Number of Lifts for Turbine Installation | - | 4                            |

### *Other*

Cost estimates for the BOS were based on information in the NREL cost scaling study.

#### *8.1.1.3 Repair and Maintenance*

The repair and maintenance cost of the analysis is divided into 6 different parts:

1. General Scheduled Maintenance – This includes visual inspection of major components and joints, inspection/test of electrical connections, lubrication services, and operating tests including emergency shutdown. To estimate the cost of these actions, the number of days the turbine is “down” or not operational is estimated. Then the day rate of a support/engineering vessel needed for the action is multiplied by the number of days down to determine a cost.
2. Bottom Lease – Based on annual energy production
3. Plant Operation – Based on annual energy production
- 4-5. Unscheduled Turbine Maintenance and BOS Maintenance – Uses a logic similar to the General Maintenance. However, unlike the General Maintenance, which occurs at a scheduled time, values of the Annual Fail Rate from UpWind and Faulstich reports were used to determine the maintenance frequency. Like the General Maintenance cost the number of days down is used to estimate a cost based on vessel day rates. Unlike General Maintenance, the cost of the component multiplied by a “repair costs factor” was used to determine the amount of money spent on labor instead of replacing the component.
6. Administrative and Support – Based on annual energy production

#### **8.1.1.4 Levelized Replacement Cost**

Levelized Replacement/Overhaul Cost calculates the cost of major component replacements or overhauls over the lifetime of the turbine. For this analysis, three components were used to calculate replacement costs in the future: blades, gearbox, and generator. For this analysis, the method outlined in the United States Department of Energy FOA 0000415 (Appendix E) was used for calculating the Levelized Cost of Energy (LCOE).

The time for replacement was chosen using values from Faulstich's paper. These values were chosen as 8 years for blades, gearbox, and generator. Also included in the cost of replacement is the number of days the turbine is unavailable. This affects both the upfront capital expense and the availability of the wind turbine.

#### **8.1.2 UT Design (2BUT)**

##### **8.1.2.1 Basic Characteristics University of Toledo Design (2BUT)**

For the purpose of the cost analysis, the simple design changes of removing one blade and changing the orientation from upwind to downwind was considered for the UT Design (2BUT).

The design changes to the baseline wind turbine performed by the University of Toledo (UT) are listed below:

**Table 8.3. University of Toledo design (2BUT).**

| <b>2BUT</b>                | <b>Scaling Logic</b>             |
|----------------------------|----------------------------------|
| Blades (Total All)         | - Removed one Blade              |
| Pitch mechanism & bearings | - Removed one Pitching mechanism |

Completed but not included this analysis:

- Added Teeter Mechanism
- Reduced Shaft Tilt
- Added Tip-Brakes

##### ***Removal of One Blade***

Removal of one blade also means the removal of one pitch control mechanism. The blade used in this cost analysis is representative of the blade used in the engineering design (2BUT). The NREL 5 MW blade was designed for a 3-bladed rotor. When a blade designed for a 3-bladed rotor is used in a 2-bladed rotor the efficiency decreases. Blade design is complicated and dependent not just on aerodynamics and structural mechanics, but also the limitations of materials and construction. Use of the 2BUT blade is the first step towards improving efficiency of the NREL 5MW blade for a 2-bladed rotor. For the 2BUT blade the twist angle was changed to somewhere between the existing NREL blade twist and a more optimal twist angle for a 2-bladed rotor. As mentioned earlier, the  $C_p$  for the 2BUT blade was found equal to 0.4728, using

WT\_Perf. The NREL blade has a published Cp value of 0.4820. It was found during analysis, using WT\_Perf in the same way as was done for the 2BUT blade, that the NREL blade has a Cp value of 0.4867. This discrepancy should be taken into account when assessing the results.

### 8.1.2.2 Balance of System (BOS) University of Toledo Design (2BUT) Transportation

Transportation costs were reduced by the scaling factor of 7/8. By removing one blade, one-less component needs to be transported. This is a conservative estimate. Transporting blades is complicated. Indeed, unlike other components, blade size limits the routes and types of vehicles or vessels and personnel needed for transportation.

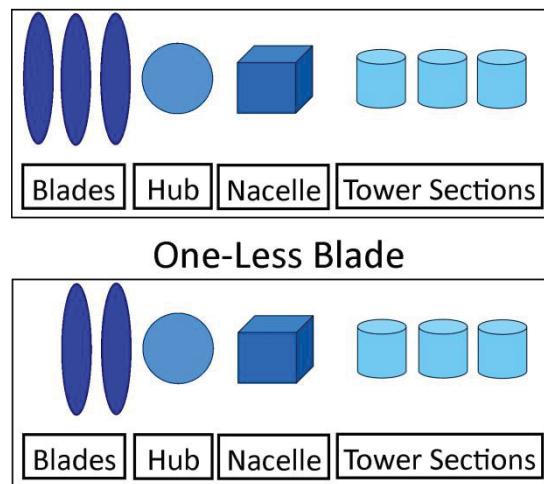
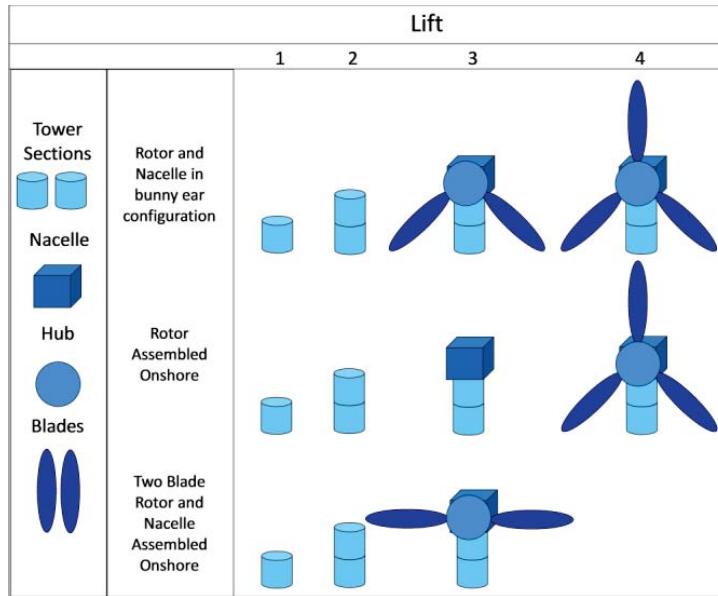



Figure 8.1. Transportation assumption 3 and 2 blades.

### Installation


Installation costs were estimated similarly as the baseline with two changes:

Vessel capacity was increased by 12.5%, because if one less blade was needed for the rotor, there would be two extra blades left on the vessel after installation of the turbine.

Installation time was decreased by 25%, because of having to perform one-less lift to install the turbine. See Figure 8.2.

Table 8.4. University of Toledo design (2BUT) installation inputs.

| Installation Values (2BUT)               |   |      |
|------------------------------------------|---|------|
| Vessel Capacity (turbines)               | - | 2.25 |
| Installation Time Turbine (hrs)          | - | 90   |
| Number of Lifts for Turbine Installation | - | 3    |



**Figure 8.2. Installation assumption.**

#### 8.1.2.3 Repair and Maintenance University of Toledo Design (2BUT)

The repair and maintenance estimate changed the annual failure rates of two component; blades and pitch mechanism. The other 5 parts of the operation and maintenance cost estimates remained the same as those of the baseline.

It was assumed that with one-less blade the annual failure rate would decrease by a third.

**Table 8.5. University of Toledo design (2BUT) repair and maintenance assumptions.**

| 2BUT   | Unscheduled Scaling Factor                                |
|--------|-----------------------------------------------------------|
| Blades | - One-Less Blade reduces annual failure rate by one third |
| Pitch  | - One-Less Blade reduces annual failure rate by one third |

#### 8.1.2.4 Levelized Replacement Cost University of Toledo Design (2BUT)

The leveled replacement costs for the gearbox and generator remained the same as the baseline (3B). The blade replacement time was increased from 8 years to 12.

### 8.1.3 Optimized Design (2BOPT)

#### 8.1.3.1 Basic Characteristics Optimized Design (2BOPT)

For this analysis, the model builds on the changes of the UT design that removed one blade and pitch mechanism. In addition, blade efficiency was raised and changes to other components were made.

**Table 8.6. Optimized design (2BOPT).**

| <b>2BOPT</b>               | <b>Scaling Logic</b>                                                          |
|----------------------------|-------------------------------------------------------------------------------|
| Blades (Total All)         | - Removed one Blade                                                           |
| Pitch mechanism & bearings | - Removed one Pitching mechanism                                              |
| Low speed shaft            | - Reduced by Ratio of Rotor Costs                                             |
| Bearings                   | - Reduced by Ratio of Rotor Costs                                             |
| Gearbox                    | - Reduced based on lower Torque - Cost reduced based on Ratio of Gearbox Mass |
| Yaw drive & bearing        | - Reduced 20% Teeter alleviates Yaw Moment                                    |
| Main frame                 | - Reduced by Ratio of Rotor Costs                                             |
| Marinization               | - (10.00% of Turbine and Tower System)                                        |

### *Increased Blade Efficiency*

In addition to removing one blade from the rotor, the blade's efficiency was increased from a  $C_p$  of 0.4728 to 0.4791. The changes to efficiency of the rotor were based on improving the chord and twist distributions using blade momentum theory. Changes to the other components on top of the turbine were based on the reduction of mass of the rotor, or the increase of rotor speed reducing torque delivered to drivetrain, and the use of a teeter mechanism (in the case of the yaw control mechanism).

### *8.1.3.2 Balance of System (BOS) Optimized Design (2BOPT) Transportation*

Remained the same as that of the UT Design (2BUT).

### *Installation*

Remained the same as that of the UT Design (2BUT).

### *8.1.3.3 Repair and Maintenance Optimized Design (2BOPT)*

In addition to the changes to the annual failure rates for the blade and pitch mechanism for the 2BUT design, the following changes were made for the 2BOPT design:

**Table 8.7. Optimized design (2BOPT) repair and maintenance.**

| <b>2BOPT</b>              | <b>Unscheduled Scaling Factor</b>                                             |
|---------------------------|-------------------------------------------------------------------------------|
| Blades                    | - One-Less Blade reduces annual failure rate by one third                     |
| Gearbox                   | - Higher RPM lowers torque and gear ratio Improving System Life; reduced 20%  |
| Drivetrain                | - Higher RPM lowers torque; one less blade reduces mass of rotor; reduced 20% |
| Mainframe & Nacelle Cover | - Reduced based on capital cost of Mainframe                                  |
| Yaw system                | - Yaw Moment decreased with addition of teeter mechanism; reduced 20%         |
| Pitch                     | - One-Less Blade reduces annual failure rate by one third                     |

#### **8.1.3.4 Levelized Replacement Cost Optimized Design (2BOPT)**

The Levelized replacement cost added increased the gearbox life similarly to the changes of the 2BUT design. The gearbox replacement time increased from 8 years to 10. This reduced the number of times the gearbox needed to be replaced from 2 to 1.

## **8.2 Summary**

As will be shown in Chapter 9, using cost of energy as the suitable measure of merit, this report shows that there is a 9.9% decrease in Levelized Cost of Energy (LCOE) by simply removing one blade from the rotor. Additional cost benefits are possible with other improvements. These decreases in cost form a strong case to consider using two blades in an offshore environment.

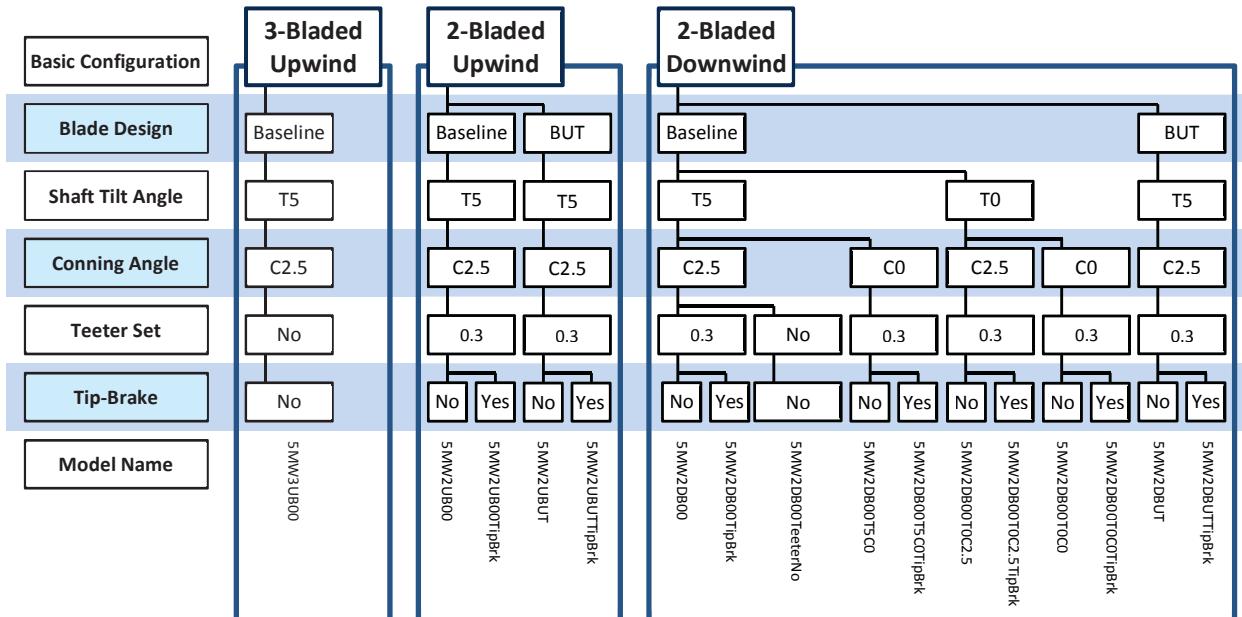
## 9 Results and Discussion

The objectives of this chapter are to assess the safety, annual energy production and cost of 2-bladed upwind and downwind turbine designs and compare them with those of the baseline 5MW 3-bladed turbine. For this purpose, the responses of the baseline and the proposed 2-bladed designs to the environmental loads prescribed by IEC, and the annual energy production were calculated using the computational tools and methods presented in Chapter 4. Finally, the cost of energy for the above three basic design configurations was calculated in order to assess the economic viability of the proposed 2-bladed downwind design.

Chapter 9 consists of four sections. The performance of the wind turbines in this study is presented in Section 9.1. This includes analyses and comparisons of maximum forces and moments, fatigue life, tower-to-blade clearance and teeter angle of 16 wind turbine models in Figure 9.1 and Table 9.1. In addition, the effect of changes in the number of blades, rotor position relative to the tower (upwind and downwind), teeter parameters, rotor brake, shaft tilt and cone angles, and changes in the blade designs are discussed. Section 9.2 presents the forces and moments applied to the foundation for the three configurations in this project. Section 9.3 presents and compares the annual energy production and cost. Based on the results, a final 2-bladed downwind design is proposed. Finally, Section 9.4 summarizes the main observations.

### 9.1 Analysis of Turbine Designs

This section analyses the performance of the three alternative basic turbine designs in this project along with parametric studies used to select the final design. The results include maximum forces and moments, fatigue life, tower-to-blade clearance and teeter angle.


A series of FAST simulations were performed for the wind turbine models for the selected design load cases (DLCs). The FAST\_SM code, which is introduced in Section 4.1, was used to manage all FAST simulations. The DLC for normal operation, fault, and parked conditions were explained in Section 5.4. The wind turbine designs used in the simulations were explained in detail in Chapter 6. Because of the large number of simulations, only important results are presented. The complete set of results is in Appendix 8.

#### *Wind Turbine Configuration Models*

Using the three basic wind turbine configurations (3-bladed upwind, 2-bladed upwind and 2-bladed downwind), various wind turbine models are made by considering different combinations of the following attributes:

- Number of blades
- Upwind/downwind position of the rotor
- Blade design (baseline and BUT blades)
- Shaft tilt angle
- Conning angle
- Teeter parameters
- Use of tip-brake

Figure 9.1 defines the wind turbine configurations considered in this study. A total of 16 different wind turbine models were compared in this section in order to investigate the effects of the above design attributes on the performance and safety. Table 9.1 describes the wind turbine models employed in this investigation. The effects of the design parameters of the wind turbine models in Table 9.1 were studied by changing these parameters and calculating the resulting changes in the forces and moments, fatigue life, tower-to-blade clearance, and teeter angle. However, the effect of different types of brakes on fatigue life was not investigated because this effect is small. The 3-bladed upwind turbine model (5MW3UB00) is the baseline model. The responses of the alternative models are compared with the baseline. Appendix 1 provides details about the design attributes of all 16 wind turbine models in this study.



**Figure 9.1. Variations of wind turbine configuration models.**

**Table 9.1. List of wind turbine models.**

| #  | Model                | Rating | Num. of Blades | Wind Direction | Blade Model | Tilt (deg) | Cone (deg) | Teeter Set | Tip Brake | Tower Shadow |
|----|----------------------|--------|----------------|----------------|-------------|------------|------------|------------|-----------|--------------|
| 1  | 5MW3UB00             | 5MW    | 3              | Up             | Baseline    | 5          | 2.5        | No         | No        | No           |
| 2  | 5MW2UB00             | 5MW    | 2              | Up             | Baseline    | 5          | 2.5        | 0.3        | No        | No           |
| 3  | 5MW2UB00TipBrk       | 5MW    | 2              | Up             | Baseline    | 5          | 2.5        | 0.3        | Yes       | No           |
| 4  | 5MW2UBUT             | 5MW    | 2              | Up             | BUT         | 5          | 2.5        | 0.3        | No        | No           |
| 5  | 5MW2UBUTTipBrk       | 5MW    | 2              | Up             | BUT         | 5          | 2.5        | 0.3        | Yes       | No           |
| 6  | 5MW2DB00             | 5MW    | 2              | Down           | Baseline    | 5          | 2.5        | 0.3        | No        | Yes          |
| 7  | 5MW2DB00TipBrk       | 5MW    | 2              | Down           | Baseline    | 5          | 2.5        | 0.3        | Yes       | Yes          |
| 8  | 5MW2DBUT             | 5MW    | 2              | Down           | BUT         | 5          | 2.5        | 0.3        | No        | Yes          |
| 9  | 5MW2DBUTTipBrk       | 5MW    | 2              | Down           | BUT         | 5          | 2.5        | 0.3        | Yes       | Yes          |
| 10 | 5MW2DB00T5C0         | 5MW    | 2              | Down           | Baseline    | 5          | 0          | 0.3        | No        | Yes          |
| 11 | 5MW2DB00T5C0TipBrk   | 5MW    | 2              | Down           | Baseline    | 5          | 0          | 0.3        | Yes       | Yes          |
| 12 | 5MW2DB00T0C2.5       | 5MW    | 2              | Down           | Baseline    | 0          | 2.5        | 0.3        | No        | Yes          |
| 13 | 5MW2DB00T0C2.5TipBrk | 5MW    | 2              | Down           | Baseline    | 0          | 2.5        | 0.3        | Yes       | Yes          |
| 14 | 5MW2DB00T0C0         | 5MW    | 2              | Down           | Baseline    | 0          | 0          | 0.3        | No        | Yes          |
| 15 | 5MW2DB00T0C0TipBrk   | 5MW    | 2              | Down           | Baseline    | 0          | 0          | 0.3        | Yes       | Yes          |
| 16 | 5MW2DB00TeeterNo     | 5MW    | 2              | Down           | Baseline    | 5          | 2.5        | No         | No        | Yes          |

### Design Load Cases

Twelve DLCs are considered in this study as defined in Section 5.4. These are organized into three groups:

- 1) **Normal operating conditions:**  
DLC1.1, DLC1.3, DLC1.4, DLC1.5H (horizontal wind shear), and DLC1.5V (vertical wind shear)
- 2) **Fault conditions:**  
DLC2.1G (grid fault), DLC2.1P (pitch controller fault of one blade), and DLC2.3
- 3) **Parked conditions:**  
DLC6.1a, DLC6.2a, DLC6.3a, and DLC7.1a

### Locations of Interest

There are six locations of interest:

- Tower base
- Tower top
- Blade roots (Blade 1 and Blade 2)
- Shafts
  - Low-speed shaft (LSS)
  - High-speed shaft (HSS)
  - Generator

Forces and moments are computed at the four different locations of interest; tower base, tower top, blade roots, and LSS. The tower base is located 11m above the water surface, which is co-located with the top of the foundation. Torque values at the LSS and HSS, and generator are recorded. The terms “LSS torsional moment” and “LSS torque (rotor torque)” refer to the same quantity and are used interchangeably in this report.

DLC2.1 and DLC7.1a include failure of the pitch controller of one blade, and require checking the loads on both blades. Therefore, simulation results for two blades are collected because the load effect at the roots in all blades of a turbine are considered together by selecting the maxima and the minima between the two blades. This is because the structural design of rotor blades is assumed identical and a blade can be at any azimuth position.

### *Definition of Load Effects*

In a FAST simulation, the tower, blades and shafts are modeled as beams. Three forces and three moments are calculated at each location along a beam at the tower base, tower top, blade roots, and LSS. In this research, these six internal loads are converted into four *load effects* (Appendix 4). The term *load effect* refers collectively to the following four types of internal loads in this report:

- Shear forces
- Bending moments
- Axial forces
- Torsional moments

These load effects are calculated at the tower base, tower top, blade roots, and LSS. The root mean squared (RMS) values are used for shear forces and bending moments to combine shear forces or bending moments in two different directions. This calculation is valid because the cross-sections at the locations of interest are circular and the structural properties are homogeneous. Although composite materials are used in the blades, the structural properties are assumed homogeneous at the blade root. The complete definitions of the load effects are described in Appendix 4.

A total of 18 different load effects and torques are collected from the FAST simulations. These are the axial and shear forces, and the bending and torsional moments at the four locations of interest, and the torques at the HSS and generator. These 18 load effects are compared to the ultimate load to assess the structural safety of the turbine. In fatigue life estimation, the same load effects are considered except for the torques.

In many parametric studies, shear and axial forces, and bending and torsional moments change in the same direction. In these cases, we only discuss the collective effect of this change on these all of these load effects.

### *Ultimate Load Effects and Torques*

Maximum load effect and torque data are placed for the 16 models in Table 9.1. These results were used to examine the extreme load effect on the wind turbine structure under various conditions. The most vulnerable state of a wind turbine model can be found by analyzing these quantities. The FAST results were sorted using the DLC post-processor code, which was

introduced in Section 4.2. Maximum, minimum, maximum of average values and minimum of average values were sorted from the FAST simulation results. A total of 13,824 maximum, minimum, maximum of average, and minimum of average values were obtained from 18 different load effects and torques, 16 models, and 12 DLCs ( $4 \times 18 \times 16 \times 12 = 13,824$ ).

The maximum and the minimum load effects are the maximum and minimum load effect values in a time marching output of a FAST simulation. If there are multiple *replications* for a particular *simulation condition*, the corresponding maximum and the minimum values are averaged. A *simulation condition* is defined by a set of a wind condition, a wave condition, and wind turbine settings within a DLC as described in Figure 4.1 in Section 4.1. A simulation condition can have one or multiple *replications*. The only difference among the different replications of a simulation condition is in the random seeds that are used for generating time histories of the wind and wave inputs. Also, the average load effect is estimated from a time marching output of a FAST simulation. Similar to the maximum and minimum load effects, if there are multiple replications for a simulation condition, the average loads are averaged within a simulation condition. Within a DLC, the maximum and the minimum load effects, and the maximum and the minimum average load effect are sorted. Again, among the sorted load effects in a DLC, the four types of load effects are sorted for the normal operating, fault, and parked conditions groups respectively. Because the maximum and the minimum load effects are sorted using data from various simulation conditions, the average load effects also have ranges for each average load effect for the various DLCs. All of these processes are completed using the DLC post-process code using the outputs from FAST\_SM code (Sections 4.1 and 4.2). These maximum, minimum, maximum of average, and minimum of average load effects are used for the ultimate load effect analyses.

### *Fatigue Life*

To perform the fatigue life estimation analysis load effect data from 9 wind turbine models were used. These include models 1, 2, 4, 6, 8, 10, 12, 14, and 16 in Table 9.1. In the fatigue analysis the time marching data from the FAST simulations corresponding to the DLC2.1 only were considered. Time marching data of 4 types of load effects at 5 locations of interest were input into MLife to estimate the fatigue life of the selected wind turbine models. The effect of torsional moment is neglected in the fatigue life estimation.

### *Minimum Tower-to-Blade Clearance and Maximum and Minimum Teeter Angles*

The minimum tower-to-blade clearance and maximum and minimum teeter angles in all 12 DLCs were computed from the selected 16 different wind turbine models. These are the same as the models used for the ultimate load effect analyses. The results were prepared with the DLC post-processor code of Section 4.2 using the FAST simulation time marching outputs. The DLC post-processor code was used to process data for minimum tower-to-blade clearances and the maximum and minimum teeter angles.

### *Data Presentation*

Weighted percent difference graphs are employed in this report in order to easily compare the aggregate change in the load effects for different designs. This type of graphs shows the trends of load effects at the locations of interest in a given condition. Appendix 7 explains in detail the weighted percent difference graphs. Load effect graphs are also used for the cases where detailed load effect results need to be presented. The load effect graph shows the range of maximum and

minimum, and the average load effects. It also shows the *safe limit*, which denotes the maximum load effect for the baseline design scaled by the corresponding load factor. The details of the derivation of the safe limit and the construction of this type of graphs are described in Appendices 5 and 6, respectively.

Figure 9.2 and Figure 9.3 show the weighted percent difference for the load effects. Figure 9.2 is for the maximum and minimum average load effects (average load effects in short expression), and Figure 9.3 is for the maximum and minimum load effects (maximum load effects in short expression). Each figure depicts data for three different conditions; normal operating, fault, and parked conditions. Using these graphs, the difference in load effects and trends for the various design changes will be illustrated and discussed in the following subsections.

Figure 9.4 and Figure 9.5 show torques at the HSS and generator respectively. The generator torque under parked conditions is zero because the generator is off in this condition.

Figure 9.6 shows the minimum tower-to-blade clearance. The green horizontal line of the minimum tower-to-blade clearance in these graphs is the minimum required clearance, which is 3.5 m. If the minimum tower-to-blade clearance becomes less than 3.5m, then the blade is considered very likely to crash into the tower. The maximum and minimum teeter angles of various models are presented in Figure 9.7. The effect on fatigue life will be discussed in a separate subsection for the various wind turbine models.

The comparison studies are presented throughout Sections 9.1.1 to 9.1.6. Each Section discusses and compares the average load effects, maximum load effects, torques, minimum tower-to-blade clearance, and maximum and minimum teeter angles. For each response, normal operating, fault, and parked conditions are considered and discussed in Figure 9.2 to Figure 9.7. When average load effects and maximum load effects are discussed, the load effects at the tower base, tower top, blade roots, and LSS are presented sequentially within a condition. Moreover, in each section, the torques of HSS, and generator are discussed.

Finally, the tabulated simulation results on load effects, tower-to-blade clearance, and teeter angle are listed in Section 9.1.7. The tabulated values exactly match the magnitude of either maximum or minimum, and maximum of average or minimum of average values of the load effect graphs. Also the tables in Section 9.1.7 include percent differences relative to the baseline model results. Moreover, detailed results that include the corresponding DLC and wind speed information are listed in Appendix 8.

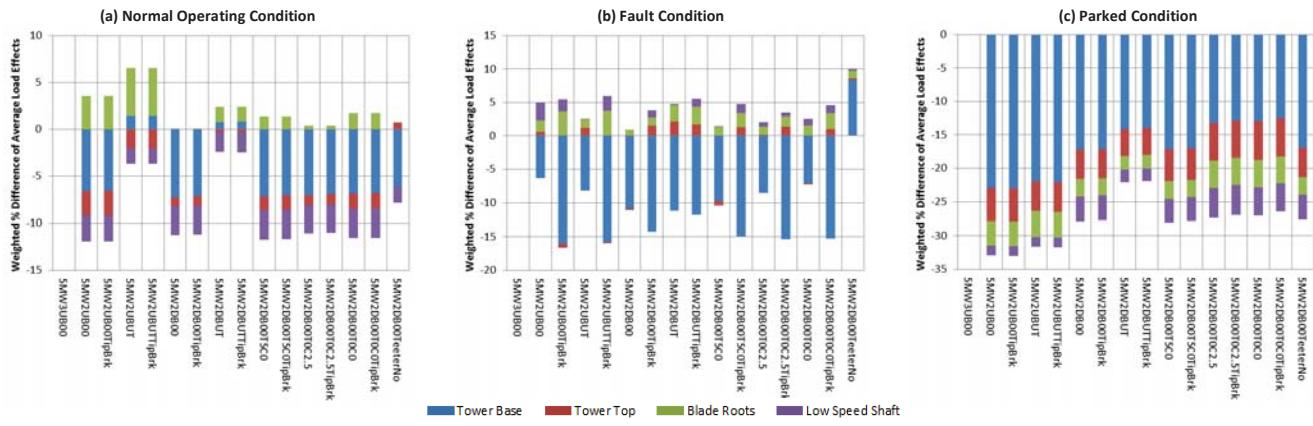



Figure 9.2. Weighted % difference of average load effects under normal operating, fault, and parked conditions.

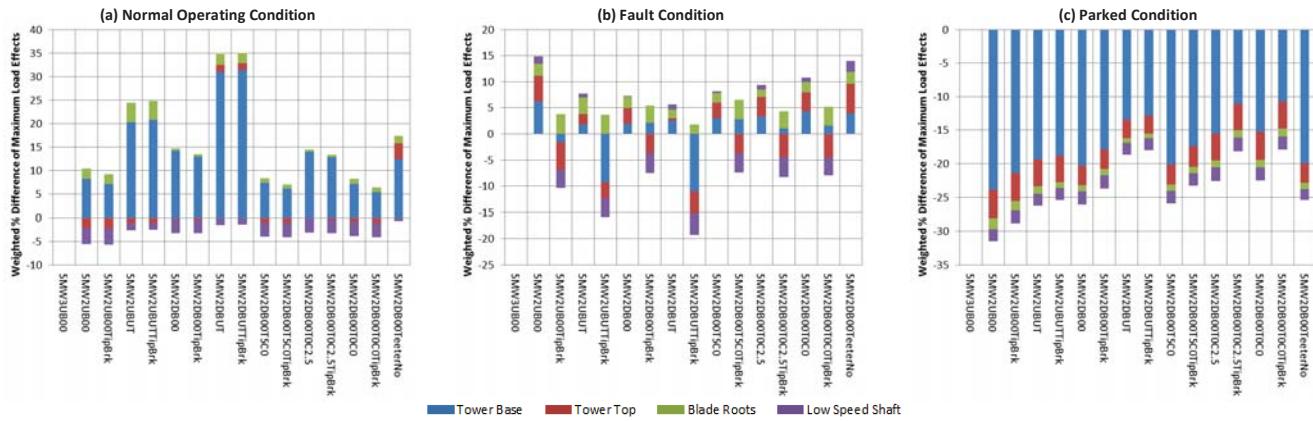



Figure 9.3. Weighted % difference of maximum load effects under normal operating, fault, and parked conditions.

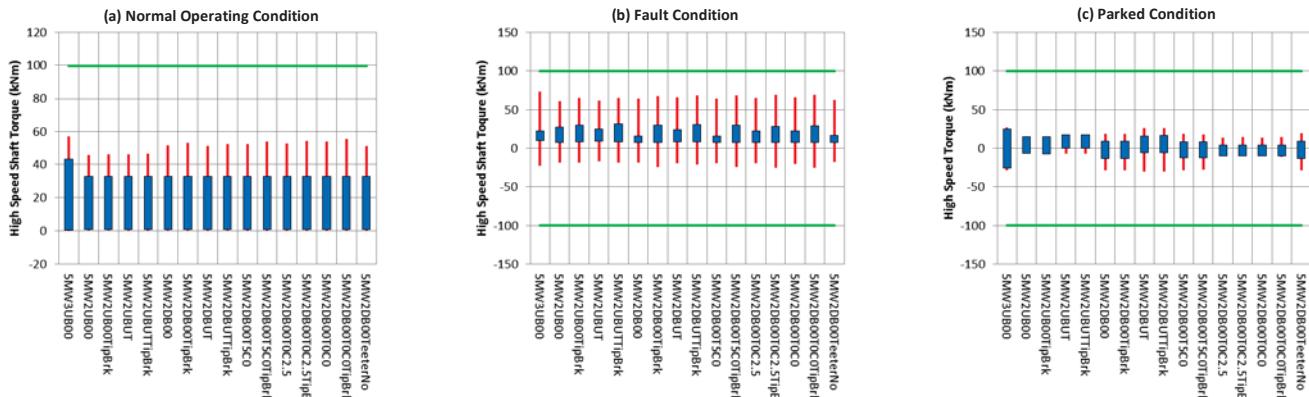



Figure 9.4. Torques in HSS under normal operating, fault, and parked conditions.

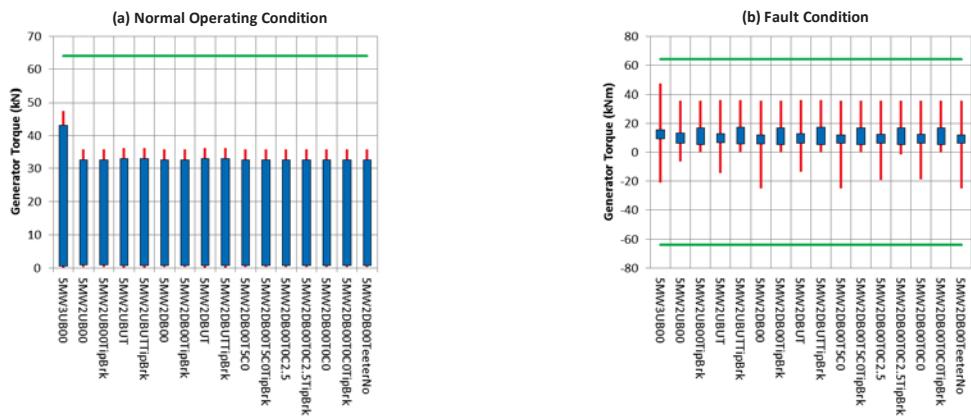



Figure 9.5. Torques of generator under normal operating, and fault conditions.

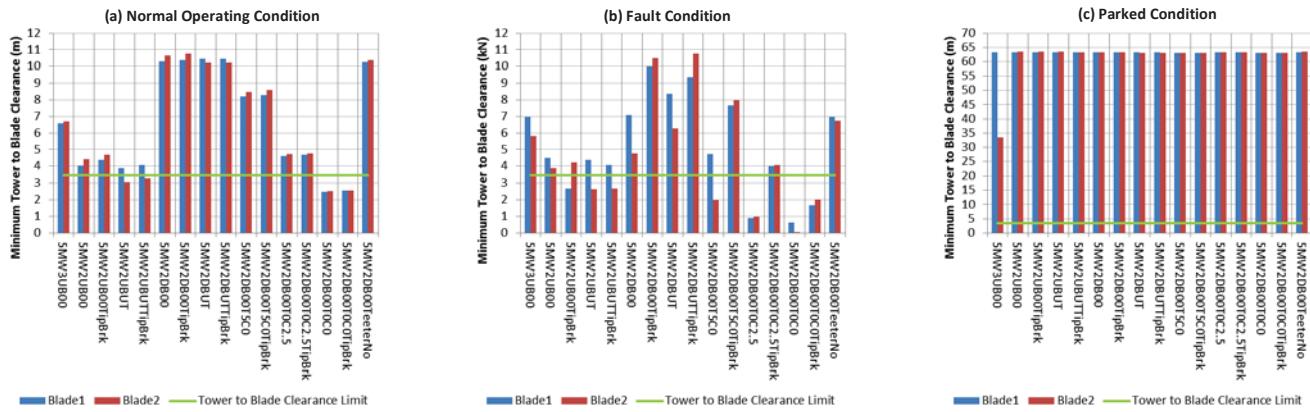
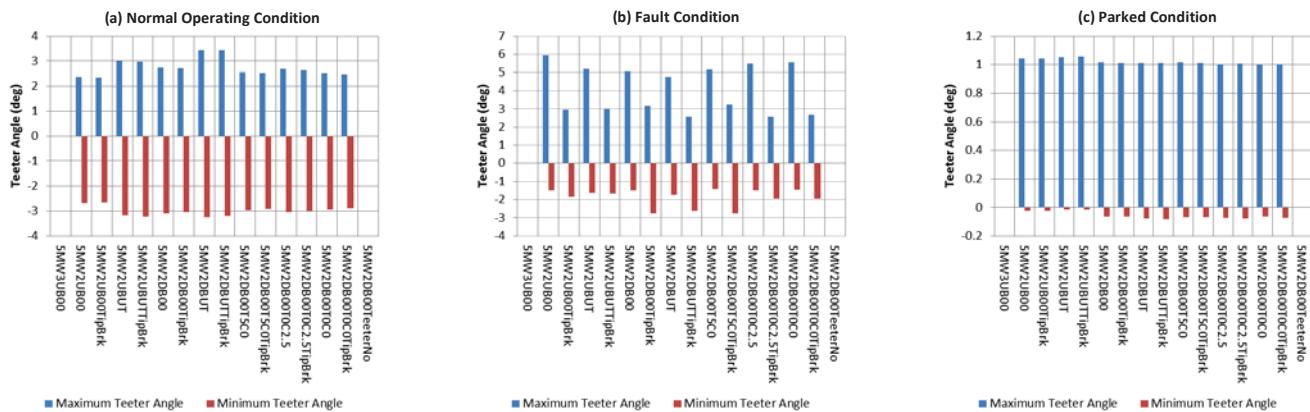




Figure 9.6. Minimum tower-to-blade clearances under normal operating, fault, and parked conditions.



**Figure 9.7. Maximum and minimum teeter angles under normal operating, fault, and parked conditions.**

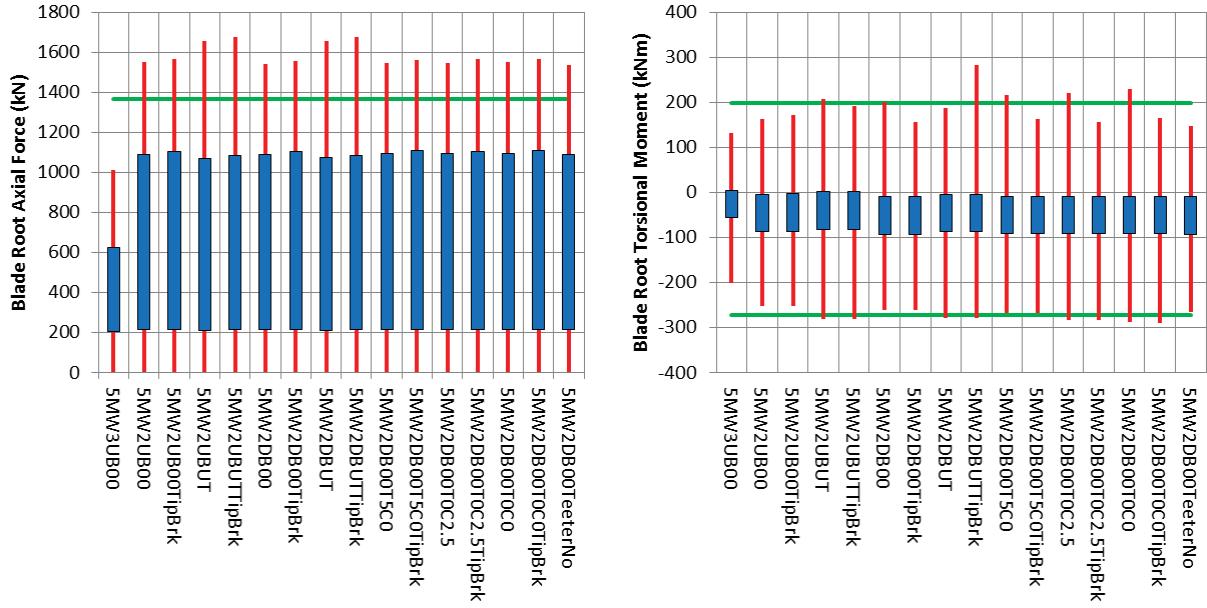
### 9.1.1 Number of Blades

This section investigates the effects of the number of blades on the structural integrity of a turbine. For this purpose, the responses of the 3-bladed baseline model and the 2-bladed wind turbine models are studied. The average load effects, maximum load effects, torques, minimum tower-to-blade clearance, and maximum and minimum teeter angles in normal operating, fault, and parked conditions are presented and compared below.

#### Average Load Effects

The weighted percent difference of the average load effects in Figure 9.2 (a) shows the effect of changes in the turbine configuration under normal operating conditions. The average load effects at the tower base of 2-bladed machines with baseline blades are lower than those of the 3-bladed baseline model. Under normal operating conditions, all 2-bladed wind turbine models, other than the one with disabled teeter mechanism, have lower average load effects at the tower top than the baseline model. At the blade roots, on the other hand, when only the upwind machines are compared, 2-bladed machines have larger average load effects than the 3-bladed baseline machine. The average load effects at the LSS of all 2-bladed machines are lower under normal operating conditions than the corresponding load effects of the 3-bladed baseline machine. This is because the shaft is rotating faster in the former machines.

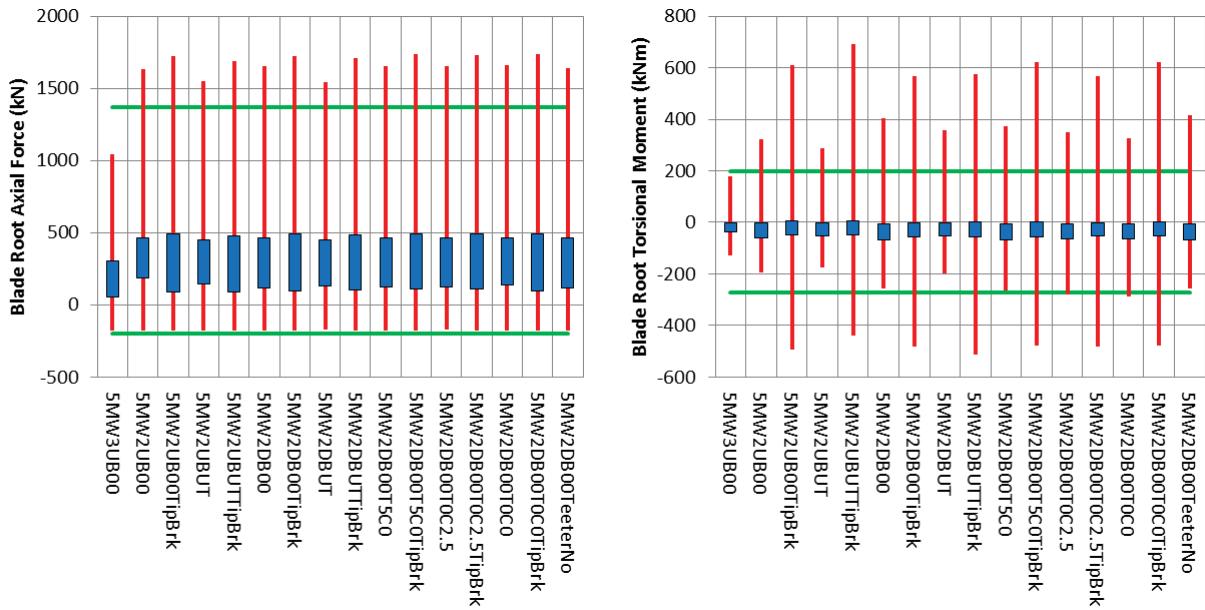
Figure 9.2 (b) shows the weighted percent differences of the average load effects under fault conditions. Most of the average load effects at the tower base of the 2-bladed machines are lower than those in the baseline model. If only the 2-bladed upwind model without tip-brake (5MW2UB00) is compared with the baseline model (5MW3UB00), the 5MW2UB00 model has larger average load effects at the tower top under fault conditions. The average load effects at the blade roots of the 2-bladed machines under fault conditions exceed those in the baseline model. This is expected because the rotor spins faster. Overall, the average load effects at the LSS of the 2-bladed machines under fault conditions exceed the load effects of the baseline model.


The weighted percent differences of the average and maximum load effects under parked conditions are shown in Figure 9.2 (c). All 2-bladed machines have lower average load effects for all locations of interest under parked conditions.

#### Maximum Load Effects

The weighted percent differences of maximum load effects under normal operating conditions are shown in Figure 9.3 (a). In contrast to the average load effects at the tower base, the maximum load effects at the tower base of the 2-bladed machines exceed those in the baseline model. The maximum load effects at the tower top of the 2-bladed models under normal operating conditions are usually lower than those in the baseline model. The maximum load effects at the blade roots for all 2-bladed machines under normal operating conditions exceed those of the baseline model with 3 blades.

As shown in Figure 9.8, all maximum axial forces (vertical red lines) at the blade roots of the 2-bladed machines exceed the safe limit marked by the green line. This is because the rotor of the 2-bladed machines rotates faster than the rotor of 3-bladed machines. The blade should be reinforced so that it can sustain the maximum axial force at its root. Moreover, the maximum and minimum torsional moments in many designs exceed or are close to the safe limit at the blade


roots for the 2-bladed machines as shown in Figure 9.8. The blade root of the 2-bladed models need be reinforced in order to sustain the higher torsional moments of the 2-bladed machines. On the other hand, the maximum load effects for all 2-bladed models are lower at the LSS compared to the baseline model.



**Figure 9.8. Axial forces and torsional moments at blade root of the 5MW wind turbines under normal operating conditions.**

The maximum load effects of various models under fault conditions are shown in Figure 9.3 (b). Without tip-brakes, the 2-bladed models have larger maximum load effects at both the tower base and top under fault conditions. However, use of tip-brakes reduces the load effects at the tower top so that these effects become lower for the 2-bladed models than their 3-bladed counterparts. The maximum load effects at the blade roots increase for all models under fault conditions for the 2-bladed machines compared to the baseline model with three blades.

All maximum axial forces, and maximum or minimum torsional moments in the blades of the 2-bladed machines exceed the safe limits as shown in Figure 9.9. On the other hand, all load effects at the LSS are within the safe limits.



**Figure 9.9. Axial forces and torsional moments at blade roots of the 5MW wind turbines under fault conditions.**

The weighted percent differences of the maximum load effects under parked conditions are shown in Figure 9.3 (c). Similar to the average load effects, all 2-bladed machines have less maximum load effects at all locations of interest.

### Torques

The results in Figure 9.4 show that the average torques of the HSSs of all 2-bladed machines are almost equal under normal operating conditions. The 2-bladed machines have less HSS torque than the 3-bladed baseline machine under normal operating conditions. The maximum torque values of 2-bladed machines are also lower than those of the 3-bladed baseline machine under normal operating conditions. However, under fault conditions, the maximum average torques values of most 2-bladed machines exceed those of the 3-bladed machine. The range of maximum and minimum torque values of 2-bladed machines without tip-brakes are smaller than those of the 3-bladed machine in most of cases under fault conditions. All average torque values of 2-bladed machines are within the range of their counterparts of the 3-bladed baseline machines under parked conditions. Except for the 2-bladed downwind machines with shaft tilt angle equal to 5 degrees, the maximum and minimum torques under parked conditions are comparable to the maximum torques of the 3-bladed baseline machine.

The generator torque values are shown in Figure 9.5. The average generator torque values are almost equal and depend on the number of blades under normal operating conditions. The same is true for the maximum values. The 2-bladed upwind machines have lower average and maximum generator torques under fault conditions than the 3-bladed upwind machine.

### *Minimum Tower-to-Blade Clearance*

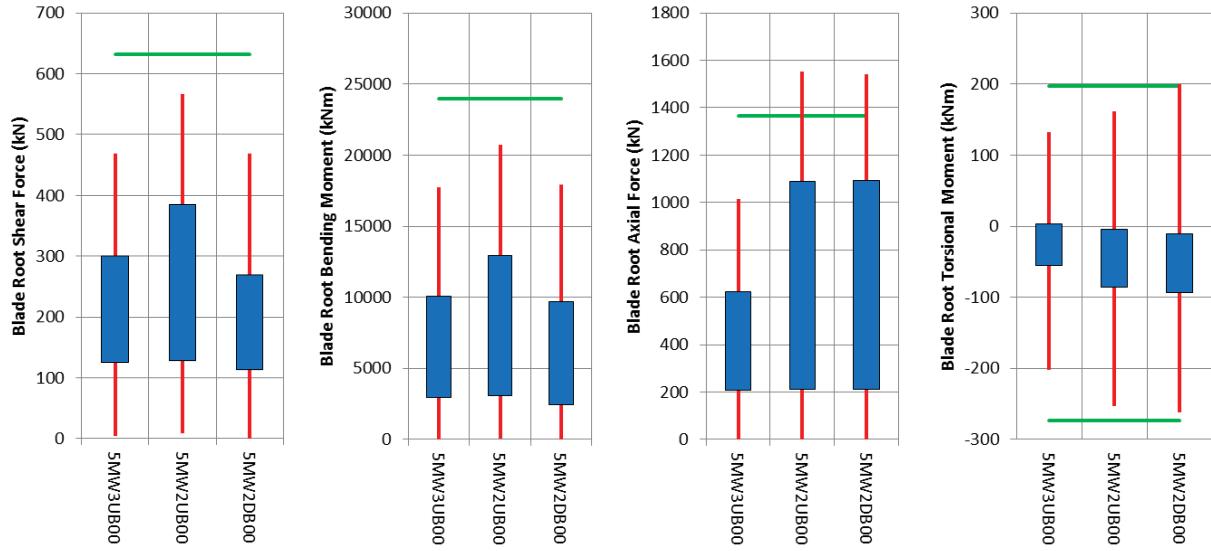
The 2-bladed upwind machines have significantly less minimum tower-to-blade clearances than the 3-bladed upwind machine under both normal operating and fault conditions (Figure 9.6). Under parked conditions, because the rotors of the 2-bladed machines are parked at 90° azimuth position, the tower-to-blade clearance of both blades is very large and the risk of impact is practically zero. The same is true for the 3-bladed machine. These are parked at 0° azimuth angle. Blade 2 of 3-bladed machines has clearance approximately equal to half of the rotor radius because the second blade of the 3-bladed machines is located at 120° azimuth angle.

### *Maximum and Minimum Teeter Angle*

The 3-bladed machine has a zero teeter angle because it does not have a teeter mechanism. On the other hand, 2-bladed machines with the teeter mechanism have teeter angles as shown in Figure 9.7. Because the teeter parameters are selected according to the criteria discussed in Section 6.2.5, the teeter angle of 2-bladed machines varies approximately from -3° to 3° under the normal operating conditions, and from -3° to 6° angle under the fault conditions. Also under parked conditions the maximum teeter angle is approximately 1° for the models with teeter mechanism.

### **9.1.2 Upwind/Downwind Configuration**

Upwind machines are compared with their downwind counterparts in this section. Turbines with and without a tip brake are considered (Table 9.2). The average and maximum load effects, minimum tower-to-blade clearance, and maximum and minimum teeter angles are examined and compared for these configurations.


**Table 9.2. Wind turbine models used for upwind/downwind comparison.**

| <b>Upwind Turbines</b> | <b>Downwind Turbines</b> |
|------------------------|--------------------------|
| 5MW2UB00               | 5MW2DB00                 |
| 5MW2UB00TipBrk         | 5MW2DB00TipBrk           |
| 5MW2UBUT               | 5MW2DBUT                 |
| 5MW2UBUTTipBrk         | 5MW2DBUTTipBrk           |

### *Average Load Effects*

The weighted percent difference of average load effects are presented in Figure 9.2 (a) for normal operating conditions. The downwind configuration has lower load effects at the tower base than the upwind configuration. On the other hand, the upwind machines have lower load effects at the tower top than the downwind machines. Figure 9.2 (a) shows that the 2-bladed upwind machines are experiencing the highest average load effects at the blade roots. The load effects at the blade root of the 2-bladed downwind turbines with the baseline blade (5MW2DB00) are almost equal to those of the baseline model. However, this should be interpreted carefully. As shown in Figure 9.10, the maximum average shear force and the maximum average bending moment at blade root, which are indicated by the blue bars, decrease compared to the baseline model for the 2-bladed downwind models. However, the maximum average axial force and the minimum average torsional moments are higher and they cancel the reduction of weighted

percent difference from the shear force and the bending moment. For the 2-bladed machines, the load effects at the LSS of the downwind machines decrease more than the corresponding load effects of the upwind machines.



**Figure 9.10. Comparison of the load effects at the blade roots of 3-bladed upwind, 2-bladed upwind and downwind turbines under normal operating conditions.**

Figure 9.2 (b) shows weighted percent differences of the average load effects under fault conditions. The 2-bladed downwind machines without the tip-brakes have less average load effects at the tower base than the 2-bladed upwind machines without the tip-brakes. The 2-bladed upwind machines without the tip-brakes have higher average load effects at the tower top relative to the baseline model. On the other hand, the 2-bladed downwind machines without the tip-brakes have lower average load effects at the tower top compared to the baseline model. Usually the 2-bladed downwind machines have less average load effects at the blade roots than the 2-bladed upwind machines. The 2-bladed upwind machines usually have larger average load effects at the LSS than the 2-bladed downwind machines.

Figure 9.2 (c) shows that the average load effects of the 2-bladed upwind machines are reduced more than those of the 2-bladed downwind machines under parked conditions.

### Maximum Load Effects

The weighted percent differences of maximum load effects under normal operating conditions are shown in Figure 9.3 (a). The load effects at the tower base of the downwind configuration models exceed those of the upwind configuration models. The 2-bladed upwind machines have lower maximum load effects at the tower top than the 2-bladed downwind machines. At the blade roots, the 2-bladed upwind turbines have larger maximum load effects than the 2-bladed downwind turbines. The 2-bladed upwind machines have lower maximum load effects at the LSS compared to the 2-bladed downwind machines.

The maximum load effects under fault conditions of various models are shown in Figure 9.3 (b). In general, the maximum load effects at all locations of interest of 2-bladed downwind machines are lower than those in 2-bladed upwind machines.

As shown in Figure 9.3 (c), the maximum load effects of 2-bladed upwind machines decrease more than those of 2-bladed downwind machines under parked conditions.

### **Torques**

Figure 9.4 shows that the maximum HSS torque of the 2-bladed downwind machines are higher than those of the 2-bladed upwind machines under normal operating conditions. Under fault conditions, if the 5MW2UB00 and 5MW2DB00 models are compared, then the downwind turbine has smaller average HSS torque than its upwind counterpart. However, the maximum HSS torque values of these two models are comparable. Overall, the average HSS torque values of 2-bladed downwind turbines are slightly smaller than those of the 2-bladed upwind turbines under parked conditions. Also the range of the maximum and minimum HSS torque of 2-bladed downwind machines is wider than that of their upwind counterparts.

The generator torque of upwind and downwind machines under both normal operating and fault conditions are comparable (Figure 9.5). The only remarkable difference is in the minimum generator torque of 5MW2UB00 and 5MW2DB00 models under normal conditions, where torque of the former is much higher than that of the later.

### **Minimum Tower-to-Blade Clearance**

There are dramatic differences in the minimum tower-to-blade clearance of 2-bladed upwind and downwind machines as shown in Figure 9.6. In general, downwind turbines have higher clearance than upwind ones. Under normal operating conditions, the 2-bladed downwind machines have more than twice larger tower-to-blade clearance than the 2-bladed upwind machines. Moreover, the 2-bladed downwind machines have much larger tower-to-blade clearance than the 3-bladed baseline machine under normal operating conditions. Under fault conditions, the tower-to-blade clearance of 2-bladed downwind machines is larger than that of the 2-bladed upwind machines. However, the differences are smaller than in those under normal operating conditions.

### **Maximum and Minimum Teeter Angle**

As shown in Figure 9.7, the 2-bladed downwind machines have larger maximum and minimum teeter angles than the 2-bladed upwind machines under normal operating conditions. However, the order is reversed under fault conditions.

### **9.1.3 Blade Design**

Wind turbine models with the baseline blades are compared with their counterparts with the BUT blades, in this subsection. The effects of these two different blades on the average and maximum load effects, minimum tower-to-blade clearance, and maximum and minimum teeter angles of the wind turbine models are studied.

**Table 9.3. Wind turbine models used for effect of blade design comparison.**

| <b>Models with Baseline Blades</b> | <b>Models with BUT Blades</b> |
|------------------------------------|-------------------------------|
| 5MW2UB00                           | 5MW2UBUT                      |
| 5MW2UB00TipBrk                     | 5MW2UBUTTipBrk                |
| 5MW2DB00                           | 5MW2DBUT                      |
| 5MW2DB00TipBrk                     | 5MW2DBUTTipBrk                |

### *Average Load Effects*

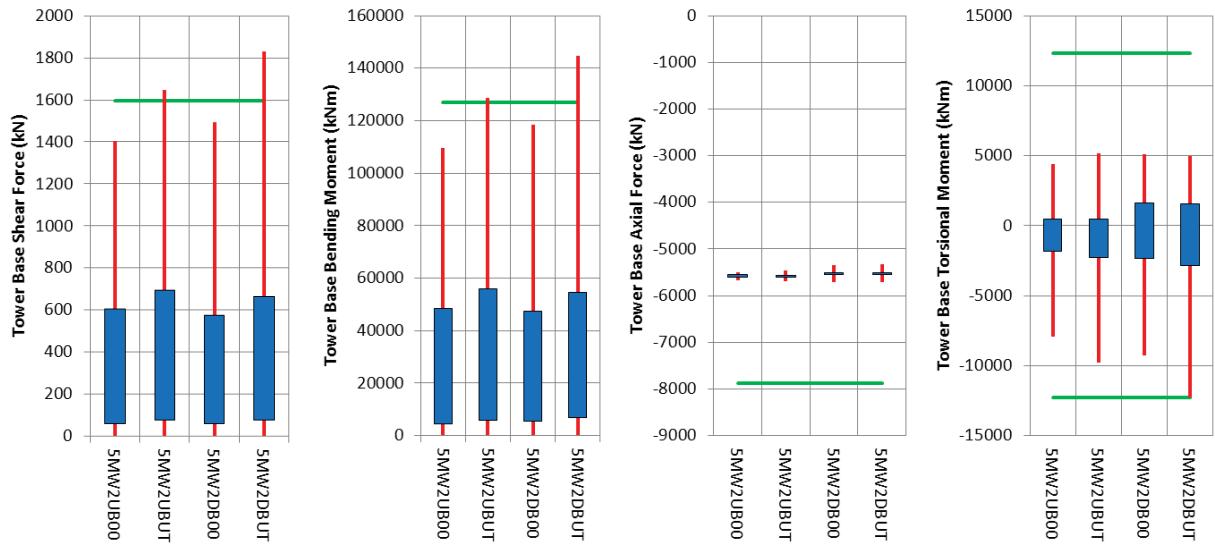
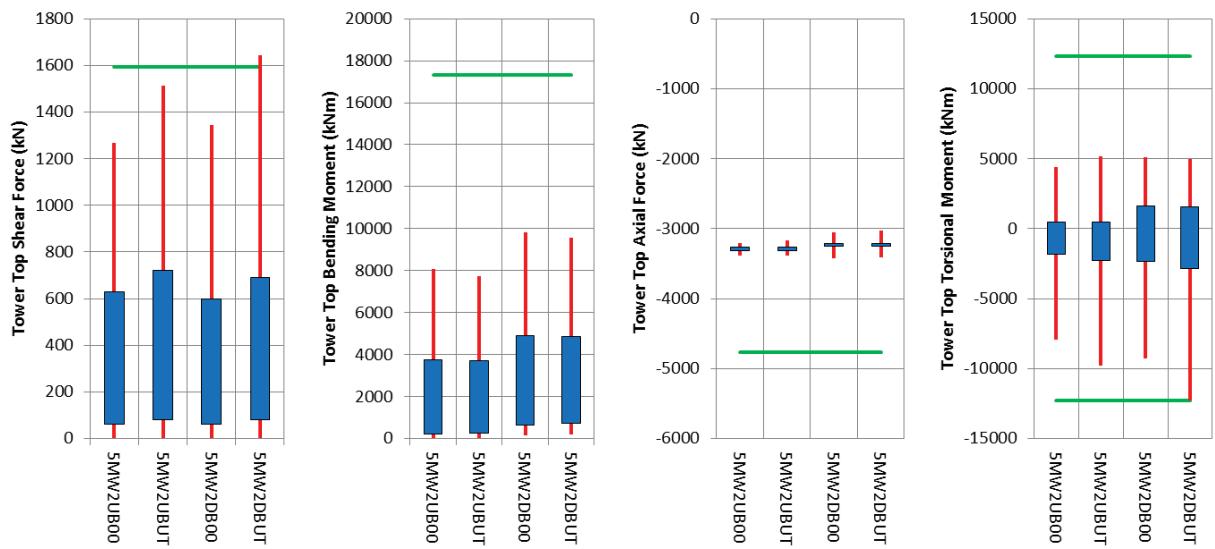
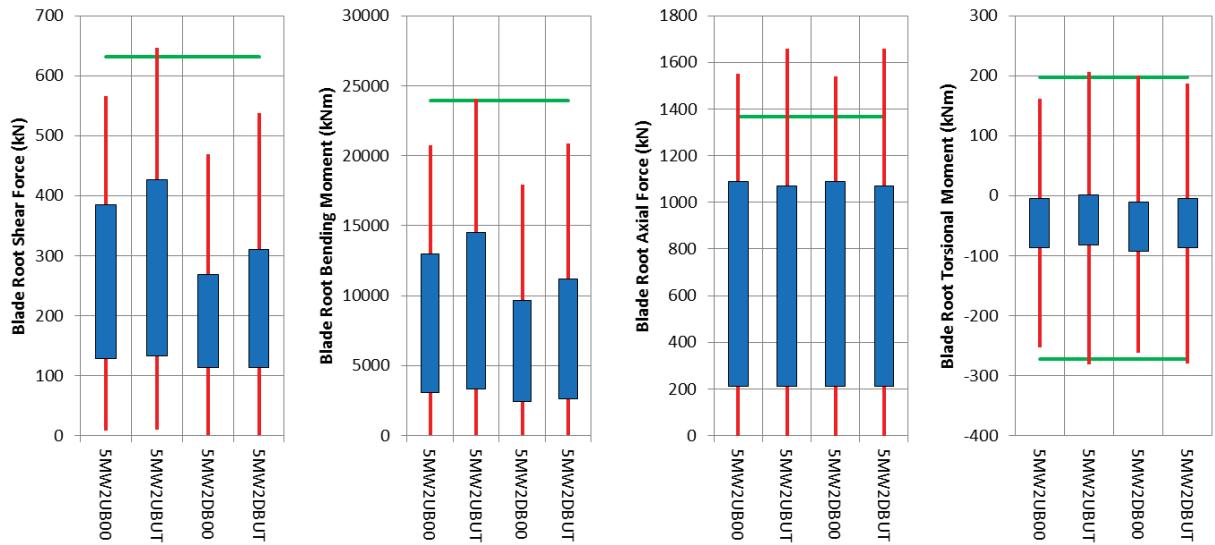

The weighted percent difference of average load effects under normal operating conditions is shown in Figure 9.2 (a). Overall, for 2-bladed machines, replacing the baseline blades with BUT blades increases the load effects. Turbine designs with BUT blades have higher load effects both at the base and top of the tower than with baseline blades. Use of the BUT blades increases the average load effects at the blade roots for both upwind and downwind machines. The wind turbines with the baseline blades have lower load effects at the LSS than the wind turbines with the BUT blades.

Figure 9.2 (b) shows the weighted percent difference of the average load effects under fault conditions. In general, the average load effects at tower top, blade roots, and LSS increased when the BUT blades are used compared to the load effects when the baseline blades are used. The average tower base load effects for models without tip-brakes are lower for models with BUT blades than for models with baseline blades. However, if tip-brakes are used, the tower base load effects are higher for the models with BUT blades than their counterparts with baseline blades.


The weighted percent difference of the average load effects under parked conditions of wind turbine models are shown in Figure 9.2 (c). The wind turbines with the baseline blades have lower average load effects than the wind turbines with the BUT blade.

### *Maximum Load Effects*


The weighted percent differences of maximum load effects under normal operating conditions are shown in Figure 9.3 (a). It is observed that designs with BUT blades have higher load effects than their counterparts with baseline blades. According to Figure 9.11, to Figure 9.13, the maximum shear forces and the maximum bending moments at the tower base and the top, and the blade roots of the models with the BUT blades exceeded the safe limit. Moreover, the minimum torsional moments at the tower base and the top, and the blade roots of the 2-bladed downwind models with the BUT blades are very close to the safe limit. Thus, these maximum load effects at the tower base must be carefully investigated in the detailed design for these models.



**Figure 9.11. Comparisons of load effects at the tower base for different blade designs under normal operating conditions.**



**Figure 9.12. Comparisons of load effects at the tower top for different blade designs under normal operating conditions.**



**Figure 9.13. Comparisons of load effects at the blade roots for different blade designs under normal operating conditions.**

The maximum load effects under fault conditions for various models are shown in Figure 9.3 (b). In general, the BUT blades decrease the load effects of wind turbines compared to the baseline blades. Figure 9.3 (c) presents the same information under parked conditions. In general, maximum load effects are larger with the BUT blades than with the baseline blades under both fault and parked conditions.

### Torques

In general, the design of blades does not have a significant effect on torque on the HSS under normal operating and fault conditions as shown in Figure 9.4. Under parked conditions, the models with the BUT blades have higher average torque on the HSS. Moreover, the difference between the maximum and minimum HSS torque increases under parked conditions when the BUT blades are used.

Overall, as shown in Figure 9.5, the torque of the generator under both normal and fault conditions is insensitive to the design of the blades. The only remarkable observation is that the minimum generator torque of the models with the BUT blades have similar generator torques for both upwind and downwind configurations under fault conditions. On the other hand, the models with the baseline blades have different torques.

### Minimum Tower-to-Blade Clearance

The use of BUT blades reduces the minimum tower-to-blade clearance as shown in Figure 9.6. The minimum tower-to-blade clearance of the 2-bladed upwind turbine with the BUT blades is less than the minimum required clearance under normal operating and fault conditions. Use of the BUT blades reduces the minimum tower-to-blade clearance more for the 2-bladed upwind machine than for the 2-bladed downwind machine under normal operating conditions. However, the trend under fault conditions is not consistent. When the BUT blades are used for the 2-bladed upwind machine without the tip-brakes, the minimum tower-to-blade clearance is reduced.

However, the minimum tower-to-blade clearance increases when the BUT blades are used for the 2-bladed downwind machine without the tip-brake model under fault conditions.

### **Maximum and Minimum Teeter Angle**

Figure 9.7 shows that use of the BUT blades increases the maximum and minimum teeter angles of the 2-bladed machines under normal operating conditions. However, under fault conditions, 2-bladed wind turbines without tip-brakes, and with the BUT blades have lower maximum and minimum teeter angles than their counterparts with the baseline blades.

#### **9.1.4 Shaft Tilt and Conning Angles**

The following cases are considered to examine the combined effects of the shaft tilt and conning angles on 2-bladed downwind turbine models.

**Table 9.4. Wind turbine models used for effects of shaft tilt and conning angle comparison.**

| Shaft Tilt Angle (deg) | Conning Angle (deg) | Wind Turbine Models |                      |
|------------------------|---------------------|---------------------|----------------------|
| 5                      | 2.5                 | 5MW2DB00,           | 5MW2DB00TipBrk       |
| 5                      | 0                   | 5MW2DB00T5C0,       | 5MW2DB00T5C0TipBrk   |
| 0                      | 2.5                 | 5MW2DB00T0C2.5,     | 5MW2DB00T0C2.5TipBrk |
| 0                      | 0                   | 5MW2DB00T0C0,       | 5MW2DB00T0C0TipBrk   |

The average and maximum load effects, torques, minimum tower-to-blade clearance, and maximum and minimum teeter angles for the above models are compared under normal operating, fault, and parked conditions.

#### **Average Load Effects**

Figure 9.2 (a) shows that average load effects under normal operating conditions depend on the wind turbine configuration. In general, the average load effects at the tower base and the tower top are insensitive to the shaft tilt and conning angle. The only considerable observation is that the bending moment at the tower top is lower when the conning angle is zero as tabulated in Table 9.9. The change of the shaft tilt and the conning angle to zero increase the average load effects at the blade roots and the LSS. The effect of the conning angle is larger than the effect of the shaft tilt angle for the average load effects at the blade roots and the LSS. Shear forces and bending moments contribute the most to this effect as shown in Table 9.12 and Table 9.15.

Figure 9.2 (b) shows the weighted percent difference of the average load effects under fault conditions. When the tip-brakes are not used, the average load effects at the tower base increase as shaft tilt and conning angles change to zero. The average load effects at the tower top increase as the shaft tilt changes to zero when the tip-brakes are not used. The opposite happens when the conning angle changes to zero. On the other hand, when the tip-brakes are used, the average load effects at the tower base and the top become insensitive to the change of shaft tilt and conning angles. If the shaft tilt or conning angles are set to zero, the average load effects at the blade roots and the LSS increase.

Overall, when the shaft tilt angle or the conning angles are changed to zero, the load effects increase as shown in Figure 9.2 (c).

### Maximum Load Effects

The weighted percent differences of the maximum load effects under normal operating conditions are shown in Figure 9.3 (a). When the conning angle becomes zero the maximum load effects at the tower base and top decrease. Maximum load effects at the tower base and the top are insensitive to changes in the shaft tilt angle. On the other hand, changing both the conning and the shaft tilt angles to the zero increases the maximum load effects at the blade roots. This increase is primarily due to the change in the conning angle. Although changing the shaft tilt and the conning angle to the zero angles reduces the maximum load effects at the LSS, this change is small.

The maximum load effects under fault conditions for various models are shown in Figure 9.3 (b). The changes of conning angle and shaft tilt angle to zero increase the maximum load effects at all locations of interest if there are no tip-brakes. If the tip-brakes are used, the maximum load effects at the tower base, blade roots, and LSS increase when the conning angle is changed to zero. However, when the shaft tilt angle is changed to zero, the maximum load effects at the tower base and the blade roots decrease when the tip-brakes are used.

The weighted percent difference of the maximum load effects under parked conditions are shown in Figure 9.3 (c). Overall similar to the average load effects when the shaft tilt angle or the conning angles become zero the maximum load effects increase.

### Torques

As shown in Figure 9.4, a change of the shaft tilt or conning angle to zero increases maximum HSS torque slightly under normal operating conditions. The maximum HSS torques for different shaft tilt and conning angles are comparable under fault conditions. The maximum of the average HSS torque for zero shaft tilt angle exceeds that for 5° shaft tilt angle under fault conditions when the tip-brakes are not applied. The change in the shaft tilt angle to zero degrees reduces the range of the HSS torque more than for the 5° shaft tilt angle under parked conditions. However, the change of the conning angle has almost no effect on the HSS torque under parked conditions.

The average generator torques are similar for different shaft tilt and conning angle cases as shown in Figure 9.5 under normal operating and fault conditions. However, the zero degree shaft tilt angle reduces the range of minimum generator torque under fault conditions. Changing the conning angle makes insignificant changes on generator torque.

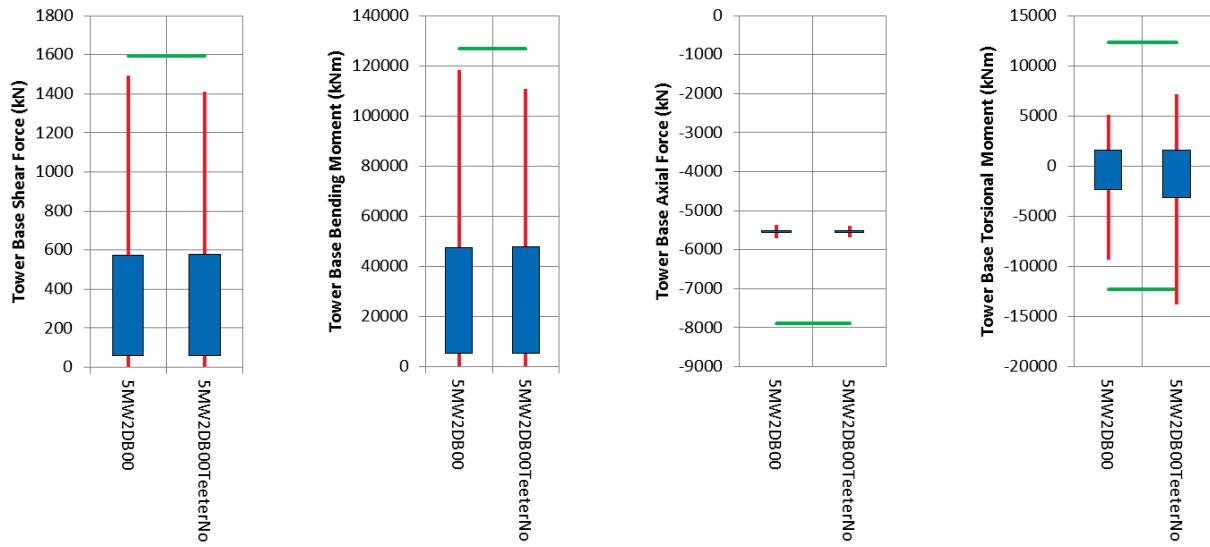
### Minimum Tower-to-Blade Clearance

Figure 9.6 shows that as the shaft tilt and conning angles approach zero, the tower-to-blade clearance decreases under normal operating conditions. The models with both zero shaft tilt and conning angles crash into the tower. Thus, the wind turbine should have the proper shaft tilt or conning angles to prevent collision of the blades with the tower. As suggested in Section 9.3.1, setting the shaft tilt angle to 2° and the conning angle to 0° is a good configuration to produce more AEP safely for the 5MW 2-bladed downwind turbine. As the tilt and cone angles approach zero degree, the tower-to-blade clearance reduces significantly under the fault conditions.

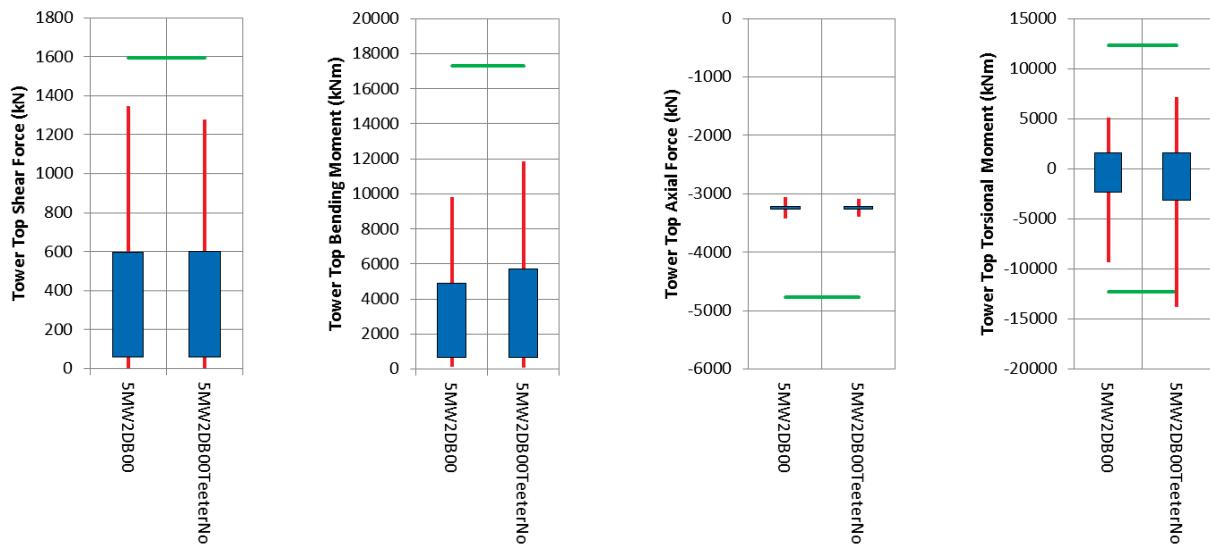
### *Maximum and Minimum Teeter Angle*

As shown in Figure 9.7, as the shaft tilt or conning angles are changed to zero, this reduces the maximum and minimum teeter angles. The reduction is larger when the conning angle is changed under normal operating conditions. However, under fault conditions, the range of teeter angle increases as the shaft tilt or conning angle is set to  $0^\circ$ . The effect of a change in the shaft tilt angle is larger than that of the conning angle under fault conditions.

#### **9.1.5 Teeter**


In this section, the effect of teeter mechanism on the responses of the 2-bladed downwind turbine is studied. The average and maximum load effects, torques, minimum tower-to-blade clearance, and maximum and minimum teeter angles are compared between the 5MW2DB00 and 5MW2DB00TeeterNo wind turbine models.

##### *Average Load Effects*


The weighted percent difference of average load effects in Figure 9.2 (a) shows that the average load effects at the tower base, blade roots, and LSS decrease when teeter mechanism is used for the 2-bladed downwind machine under normal operating conditions. Moreover, Figure 9.2 (b) shows that the average load effects under fault conditions of all locations of interest decrease when the teeter mechanism is used. In parked conditions, the use of teeter mechanism does not change significantly the average load effects as shown in Figure 9.2 (c).

##### *Maximum Load Effects*

The weighted percent differences of maximum load effects under normal operating conditions are shown in Figure 9.3 (a). Except the tower base, the maximum load effects at all locations of interest decrease when the teeter mechanism is used under normal operating conditions. As shown in Figure 9.14, the minimum torsional moment of 2-bladed downwind machine without teeter mechanism exceeds the safe limit. Thus, the 2-bladed machine requires having proper teeter parameter setting to operate safely. When the teeter mechanism is not used, the maximum load effects at the tower top increases considerably while the case without the teeter mechanism reduces the load effects at the tower base. As shown in Figure 9.15, the minimum torsional moment at the tower top of the 2-bladed downwind machine without teeter exceeds the safe limit.



**Figure 9.14. Tower base load effect comparisons for application of teeter mechanism under normal operating conditions.**



**Figure 9.15. Tower top load effect comparisons for application of teeter mechanism under normal operating conditions.**

Under fault conditions, maximum load effects at all locations interest are reduced when the teeter mechanism is applied as shown in Figure 9.3 (b). The maximum torsional moments at the tower base are larger for the wind turbines without tip-brakes as shown in Figure 9.16. The maximum load effects at the tower top increase significantly when the teeter mechanism is not used. As shown in Figure 9.17, the maximum bending moment at the tower top of the 2-bladed downwind model without teeter mechanism model is very close to the safe limit.

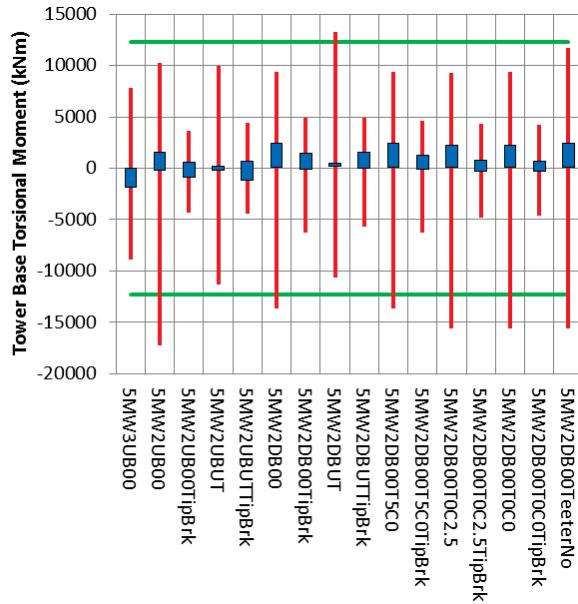
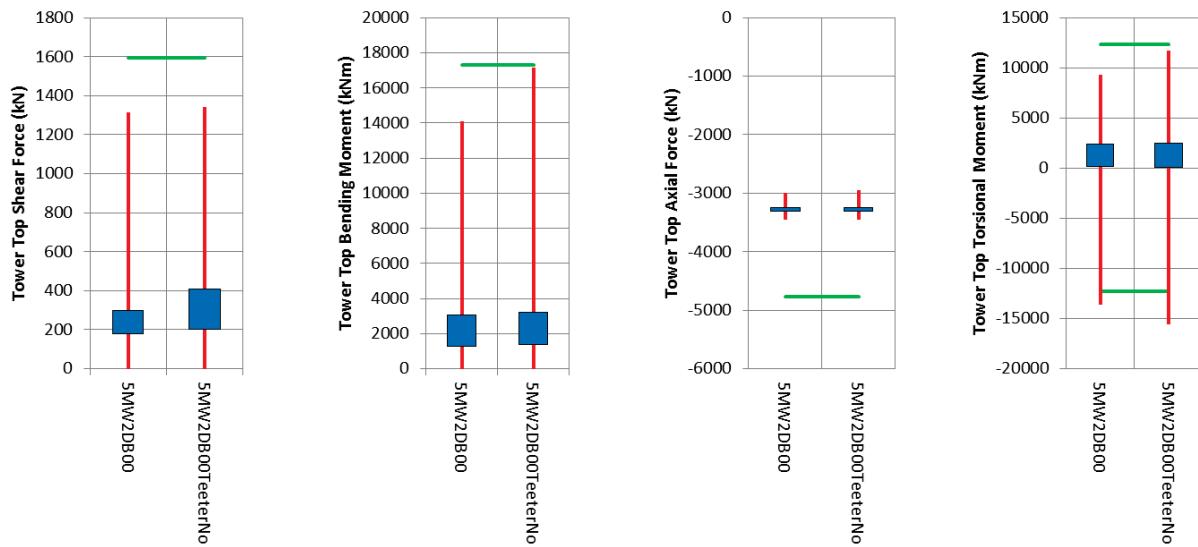




Figure 9.16. Torsional moments at tower base under fault conditions.



**Figure 9.17. Tower top load effect comparisons for application of teeter mechanism under fault conditions.**

The model without the teeter mechanism has slightly larger maximum load effects under parked conditions. However the effect is small as shown in Figure 9.3 (c).

## Torques

The maximum HSS torque of the model with teeter mechanism is slightly higher than that of the model without teeter mechanism under both normal operating and fault conditions as shown in Figure 9.4. However, the opposite happens opposite under parked conditions. There is almost no difference in the average HSS torques for the models with different teeter mechanisms under all conditions.

As shown in Figure 9.5, the generator torques are almost equal under both normal operating and fault conditions for different teeter cases.

### *Minimum Tower-to-Blade Clearance*

The 2-bladed downwind model without teeter mechanism has slightly less minimum tower-to-blade clearance than the model with teeter mechanism, under normal operating conditions (Figure 9.6). Under fault conditions, the minimum tower-to-blade clearance drops much more for the case with teeter mechanism than the case without teeter mechanism.

### *Maximum and Minimum Teeter Angle*

The model without teeter mechanism does not have teeter angle as shown in Figure 9.7, while other case have.

### **9.1.6 Brakes**

This section covers responses of 2-bladed wind turbine models using tip-brakes. The details of the tip-brake are explained in Section 6.2.3. The wind turbine models without tip-brakes use the pitch-to-feather method to shut down the turbine. The differences of turbine responses to different shutdown procedures using different brakes under fault conditions are examined in this section. Moreover, the additional mass at the tip of the blades representing the tip-brakes are compared under normal operating and parked conditions. The models are compared with and without tip-brakes cases.

**Table 9.5. Wind turbine models used for effect of brakes comparison.**

| <b>Models without Tip-brakes</b> | <b>Models with Tip-brakes</b> |
|----------------------------------|-------------------------------|
| 5MW2UB00                         | 5MW2UB00TipBrk                |
| 5MW2UBUT                         | 5MW2UBUTTipBrk                |
| 5MW2DB00                         | 5MW2DB00TipBrk                |
| 5MW2DBUT                         | 5MW2DBUTTipBrk                |
| 5MW2DB00T5C0                     | 5MW2DB00T5C0TipBrk            |
| 5MW2DB00T0C2.5                   | 5MW2DB00T0C2.5TipBrk          |
| 5MW2DB00T0C0                     | 5MW2DB00T0C0TipBrk            |

### *Average Load Effects*

The weighted percent differences of the average load effects under normal operating conditions are shown in Figure 9.2 (a). The use of tip-brakes did not cause significant changes to the average load effects at any location of interest under normal operating conditions.

Figure 9.2 (b) shows weighted percent difference of the average load effects under fault conditions. Using tip-brakes significantly reduced the average load effects at the tower base for all turbine configurations. In general, the tip-brakes reduce the average load effects at the tower top, except for the 2-bladed downwind turbine with the baseline blade model. However, the average load effects at the blade roots are larger when tip-brakes are used. In most of cases, the tip-brakes increase average load effects at the LSS under fault conditions.

As shown in Figure 9.2 (c) the tip-brakes do not affect the average load effects considerably under parked conditions.

### Maximum Load Effects

The weighted percent differences of the maximum load effects under normal operating conditions are shown in Figure 9.3 (a). The tip-brakes help to reduce the maximum load effects at the tower base under normal operating conditions except for the wind turbines with the BUT blades. The tip-brakes make a considerable difference for the maximum load effects at the tower top under normal operating conditions. The tip-brakes help to reduce the maximum load effects at the blade roots, but their effects very small. The wind turbine models with tip-brakes have slightly larger maximum load effects at the LSS.

The maximum load effects under fault conditions for various models are shown in Figure 9.3 (b). This graph shows the advantages of using tip-brakes. Overall, the maximum load effects decrease when the tip-brakes are used under fault conditions. The maximum torsional moments at the tower base and the tower top exceed the safe limit for models having no the tip-brakes, as shown in Figure 9.16 and Figure 9.18. The maximum load effects at the blade roots increase more when the tip-brakes are used. As shown in Figure 9.19, the maximum shear forces at the blade roots for most of wind turbines with the tip-brakes exceed or come close to the safe limit.

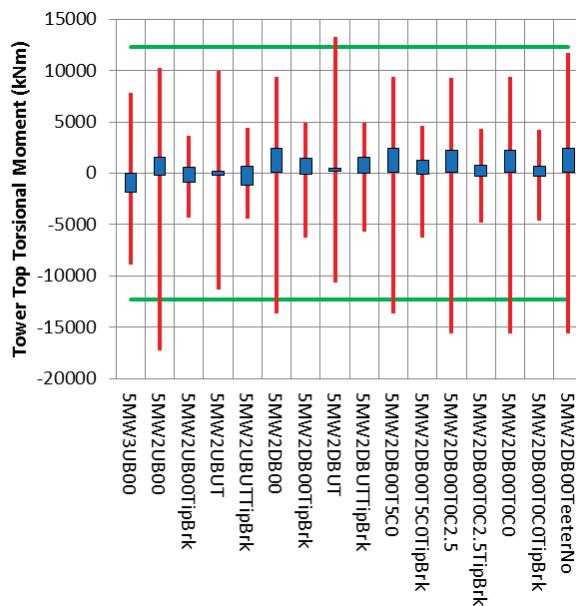
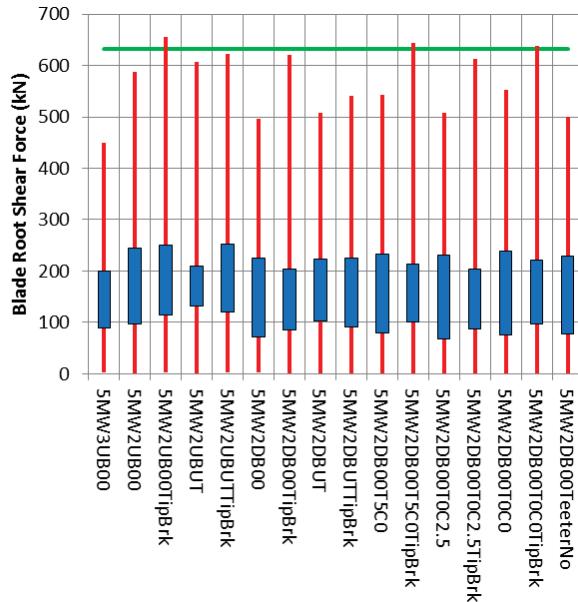




Figure 9.18. Torsional moments at tower top under fault conditions.



**Figure 9.19. Shear forces at blade roots under fault conditions.**

As shown in Figure 9.3 (c), the maximum load effects under parked conditions increase when tip-brakes are used.

## Torques

In Figure 9.4, the models with the tip-brakes have a slightly higher maximum HSS torque than the models without tip-brakes for 2-bladed downwind machines under normal operating conditions, while 2-bladed upwind machines show almost no difference. However, under fault conditions, the ranges of maximum and average HSS torque for all 2-bladed machines with the tip-brake are larger than those of models without the tip-brakes. Virtually no differences were observed between the models with and without the tip-brakes under parked conditions.

As shown in Figure 9.5, the range of the average generator torque of turbine models with the tip-brakes is larger than that in the models without tip-brakes under fault conditions. However, tip brakes have the opposite effect on the ranges of the maximum and minimum generator torque.

## *Minimum Tower-to-Blade Clearance*

Figure 9.6 shows that the tip-brakes do not affect significantly the minimum tower-to-blade clearance under normal operating conditions. However, the tip-brakes increase the clearance significantly for the 2-bladed downwind machines under fault conditions. However, the tip-brakes are ineffective for the 2-bladed upwind turbines.

### Maximum and Minimum Teeter Angle

As shown in Figure 9.7, maximum and minimum teeter angles are unaffected when using tip-brakes under normal operating conditions. However, the application of the tip-brakes reduces the maximum teeter angle significantly under fault conditions. On the other hand, the the minimum teeter angles for 2-bladed downwind machines increase but stays within a range from  $-3^\circ$  to  $3^\circ$ .

### 9.1.7 Summary of Simulation Results

The load effects at the tower base, tower top, blade roots, and LSS are presented in Table 9.6 to Table 9.17. The percent differences with the baseline design are also listed. Except for the axial force, only the magnitude of shear force, bending moment, and torsional moment are listed, because signs are not meaningful for these quantities. However, the signs of axial forces are shown to distinguish between tension and compression. The largest magnitude of torque results at LSS, HSS and generator are presented in Table 9.18 to Table 9.20. The minimum tower-to-blade clearance and maximum and minimum teeter angle are listed in Table 9.21 and Table 9.22 respectively. Refer to Appendix 8 for the DLC and wind speed information corresponding to the results.

**Table 9.6. Load effects at tower base under normal operating conditions.**

| Model                | Shear Force |           | Bending Moment |           | Axial Force  |           | Torsional Moment |           |            |           |              |           |
|----------------------|-------------|-----------|----------------|-----------|--------------|-----------|------------------|-----------|------------|-----------|--------------|-----------|
|                      | Maximum     | Average   | Maximum        | Average   | Maximum      | Average   | Maximum          | Average   |            |           |              |           |
|                      | Value (kN)  | %diff (%) | Value (kN)     | %diff (%) | Value (kN m) | %diff (%) | Value (kN)       | %diff (%) | Value (kN) | %diff (%) | Value (kN m) | %diff (%) |
| 5MW3UB00             | 1181        | 0.0       | 685            | 0.0       | 93942        | 0.0       | 53934            | 0.0       | -5836      | 0.0       | -5788        | 0.0       |
| 5MW2UB00             | 1405        | 18.9      | 606            | -11.6     | 109496       | 16.6      | 48577            | -9.9      | -5679      | -2.7      | -5608        | -3.1      |
| 5MW2UB00TipBrk       | 1379        | 16.7      | 607            | -11.4     | 107410       | 14.3      | 48674            | -9.8      | -5681      | -2.7      | -5610        | -3.1      |
| 5MW2UBUT             | 1645        | 39.3      | 696            | 1.5       | 128540       | 36.8      | 55820            | 3.5       | -5684      | -2.6      | -5615        | -3.0      |
| 5MW2UBUTTipBrk       | 1664        | 40.8      | 696            | 1.6       | 129283       | 37.6      | 55852            | 3.6       | -5684      | -2.6      | -5616        | -3.0      |
| 5MW2DB00             | 1495        | 26.5      | 576            | -16.0     | 118349       | 26.0      | 47465            | -12.0     | -5718      | -2.0      | -5551        | -4.1      |
| 5MW2DB00TipBrk       | 1469        | 24.4      | 578            | -15.7     | 116337       | 23.8      | 47619            | -11.7     | -5720      | -2.0      | -5552        | -4.1      |
| 5MW2DBUT             | 1831        | 55.0      | 663            | -3.2      | 144619       | 53.9      | 54675            | 1.4       | -5710      | -2.2      | -5550        | -4.1      |
| 5MW2DBUTTipBrk       | 1836        | 55.4      | 664            | -3.1      | 145193       | 54.6      | 54761            | 1.5       | -5716      | -2.1      | -5552        | -4.1      |
| 5MW2DB00T5C0         | 1400        | 18.5      | 584            | -14.8     | 106981       | 13.9      | 47828            | -11.3     | -5724      | -1.9      | -5549        | -4.1      |
| 5MW2DB00T5C0TipBrk   | 1371        | 16.1      | 585            | -14.6     | 104812       | 11.6      | 47954            | -11.1     | -5727      | -1.9      | -5551        | -4.1      |
| 5MW2DB00T0C2.5       | 1492        | 26.3      | 580            | -15.4     | 117768       | 25.4      | 47584            | -11.8     | -5714      | -2.1      | -5568        | -3.8      |
| 5MW2DB00T0C2.5TipBrk | 1467        | 24.1      | 582            | -15.1     | 115986       | 23.5      | 47736            | -11.5     | -5716      | -2.1      | -5569        | -3.8      |
| 5MW2DB00T0C0         | 1399        | 18.4      | 588            | -14.2     | 106416       | 13.3      | 47974            | -11.1     | -5720      | -2.0      | -5568        | -3.8      |
| 5MW2DB00T0C0TipBrk   | 1365        | 15.5      | 590            | -14.0     | 103507       | 10.2      | 48105            | -10.8     | -5725      | -1.9      | -5570        | -3.8      |
| 5MW2DB00TeeterNo     | 1412        | 19.5      | 577            | -15.9     | 110809       | 18.0      | 47891            | -11.2     | -5686      | -2.6      | -5552        | -4.1      |
|                      |             |           |                |           |              |           |                  |           |            |           |              |           |

**Table 9.7. Load effects at tower base under fault conditions.**

| Model                | Shear Force |           | Bending Moment |           | Axial Force  |           | Torsional Moment |           |            |           |              |           |
|----------------------|-------------|-----------|----------------|-----------|--------------|-----------|------------------|-----------|------------|-----------|--------------|-----------|
|                      | Maximum     | Average   | Maximum        | Average   | Maximum      | Average   | Maximum          | Average   |            |           |              |           |
|                      | Value (kN)  | %diff (%) | Value (kN)     | %diff (%) | Value (kN m) | %diff (%) | Value (kN)       | %diff (%) | Value (kN) | %diff (%) | Value (kN m) | %diff (%) |
| 5MW3UB00             | 1386        | 0.0       | 392            | 0.0       | 111495       | 0.0       | 30759            | 0.0       | -5828      | 0.0       | -5737        | 0.0       |
| 5MW2UB00             | 1498        | 8.1       | 347            | -11.6     | 115128       | 3.3       | 27228            | -11.5     | -5750      | -1.3      | -5596        | -2.5      |
| 5MW2UB00TipBrk       | 1443        | 4.1       | 284            | -27.7     | 112975       | 1.3       | 22503            | -26.8     | -5686      | -2.4      | -5583        | -2.7      |
| 5MW2UBUT             | 1451        | 4.7       | 332            | -15.3     | 112531       | 0.9       | 26145            | -15.0     | -5761      | -1.2      | -5571        | -2.9      |
| 5MW2UBUTTipBrk       | 1179        | -14.9     | 281            | -28.4     | 93868        | -15.8     | 22415            | -27.1     | -5693      | -2.3      | -5584        | -2.7      |
| 5MW2DB00             | 1380        | -0.4      | 309            | -21.3     | 110466       | -0.9      | 24630            | -19.9     | -5745      | -1.4      | -5610        | -2.2      |
| 5MW2DB00TipBrk       | 1466        | 5.8       | 262            | -33.2     | 118227       | 6.0       | 22606            | -26.5     | -5718      | -1.9      | -5570        | -2.9      |
| 5MW2DBUT             | 1517        | 9.4       | 301            | -23.1     | 116346       | 4.4       | 24412            | -20.6     | -5812      | -0.3      | -5585        | -2.7      |
| 5MW2DBUTTipBrk       | 1178        | -15.0     | 295            | -24.8     | 93647        | -16.0     | 24059            | -21.8     | -5717      | -1.9      | -5570        | -2.9      |
| 5MW2DB00T5C0         | 1405        | 1.3       | 318            | -19.0     | 112574       | 1.0       | 25220            | -18.0     | -5744      | -1.4      | -5609        | -2.2      |
| 5MW2DB00T5C0TipBrk   | 1488        | 7.4       | 259            | -33.9     | 119434       | 7.1       | 22240            | -27.7     | -5720      | -1.9      | -5570        | -2.9      |
| 5MW2DB00T0C2.5       | 1416        | 2.2       | 326            | -16.9     | 111228       | -0.2      | 25890            | -15.8     | -5742      | -1.5      | -5606        | -2.3      |
| 5MW2DB00T0C2.5TipBrk | 1491        | 7.6       | 258            | -34.3     | 117709       | 5.6       | 21970            | -28.6     | -5691      | -2.4      | -5573        | -2.9      |
| 5MW2DB00T0C0         | 1438        | 3.8       | 338            | -13.7     | 113130       | 1.5       | 26757            | -13.0     | -5742      | -1.5      | -5606        | -2.3      |
| 5MW2DB00T0C0TipBrk   | 1509        | 8.9       | 260            | -33.8     | 118812       | 6.6       | 22030            | -28.4     | -5694      | -2.3      | -5570        | -2.9      |
| 5MW2DB00TeeterNo     | 1407        | 1.5       | 449            | 14.3      | 112319       | 0.7       | 35761            | 16.3      | -5751      | -1.3      | -5610        | -2.2      |
|                      |             |           |                |           |              |           |                  |           |            |           |              |           |

**Table 9.8. Load effects at tower base under parked conditions.**

| Model                | Shear Force |         | Bending Moment |         | Axial Force |         | Torsional Moment |         |
|----------------------|-------------|---------|----------------|---------|-------------|---------|------------------|---------|
|                      | Maximum     | Average | Maximum        | Average | Maximum     | Average | Maximum          | Average |
| 5MW3UB00             | 877         | 0.0     | 342            | 0.0     | 67766       | 0.0     | 28359            | 0.0     |
| 5MW2UB00             | 539         | -38.6   | 181            | -47.2   | 41614       | -38.6   | 13970            | -50.7   |
| 5MW2UB00TipBrk       | 581         | -33.7   | 179            | -47.7   | 44334       | -34.6   | 13886            | -51.0   |
| 5MW2UBUT             | 611         | -30.4   | 189            | -44.7   | 46547       | -31.3   | 14629            | -48.4   |
| 5MW2UBUTTipBrk       | 619         | -29.4   | 187            | -45.3   | 47130       | -30.5   | 14537            | -48.7   |
| 5MW2DB00             | 596         | -32.0   | 228            | -33.4   | 45467       | -32.9   | 17594            | -38.0   |
| 5MW2DB00TipBrk       | 637         | -27.3   | 228            | -33.3   | 48102       | -29.0   | 17644            | -37.8   |
| 5MW2DBUT             | 704         | -19.7   | 255            | -25.6   | 53004       | -21.8   | 19632            | -30.8   |
| 5MW2DBUTTipBrk       | 714         | -18.6   | 255            | -25.4   | 53672       | -20.8   | 19728            | -30.4   |
| 5MW2DB00T5C0         | 594         | -32.2   | 229            | -33.1   | 45672       | -32.6   | 17664            | -37.7   |
| 5MW2DB00T5C0TipBrk   | 640         | -27.1   | 230            | -32.9   | 48636       | -28.2   | 17751            | -37.4   |
| 5MW2DB00T0C2.5       | 668         | -23.9   | 264            | -23.0   | 50814       | -25.0   | 20312            | -28.4   |
| 5MW2DB00T0C2.5TipBrk | 746         | -15.0   | 267            | -22.2   | 55724       | -17.8   | 20533            | -27.6   |
| 5MW2DB00T0C0         | 665         | -24.2   | 266            | -22.2   | 51096       | -24.6   | 20507            | -27.7   |
| 5MW2DB00T0C0TipBrk   | 740         | -15.6   | 270            | -21.2   | 56083       | -17.2   | 20790            | -26.7   |
| 5MW2DB00TeeterNo     | 602         | -31.3   | 231            | -32.6   | 45857       | -32.3   | 17786            | -37.3   |

**Table 9.9. Load effects at tower top under normal operating conditions.**

| Model                | Shear Force |         | Bending Moment |         | Axial Force |         | Torsional Moment |         |
|----------------------|-------------|---------|----------------|---------|-------------|---------|------------------|---------|
|                      | Maximum     | Average | Maximum        | Average | Maximum     | Average | Maximum          | Average |
| 5MW3UB00             | 1181        | 0.0     | 712            | 0.0     | 10492       | 0.0     | 5180             | 0.0     |
| 5MW2UB00             | 1269        | 7.4     | 629            | -11.6   | 8068        | -23.1   | 3768             | -27.3   |
| 5MW2UB00TipBrk       | 1246        | 5.4     | 630            | -11.5   | 7952        | -24.2   | 3750             | -27.6   |
| 5MW2UBUT             | 1513        | 28.1    | 722            | 1.5     | 7718        | -26.4   | 3725             | -28.1   |
| 5MW2UBUTTipBrk       | 1528        | 29.3    | 723            | 1.6     | 7811        | -25.6   | 3720             | -28.2   |
| 5MW2DB00             | 1344        | 13.8    | 598            | -15.9   | 9830        | -6.3    | 4881             | -5.8    |
| 5MW2DB00TipBrk       | 1323        | 12.0    | 600            | -15.7   | 9572        | -8.8    | 4860             | -6.2    |
| 5MW2DBUT             | 1644        | 39.1    | 689            | -3.1    | 9570        | -8.8    | 4870             | -6.0    |
| 5MW2DBUTTipBrk       | 1651        | 39.7    | 690            | -3.0    | 9609        | -8.4    | 4864             | -6.1    |
| 5MW2DB00T5C0         | 1295        | 9.7     | 606            | -14.8   | 9182        | -12.5   | 4587             | -11.5   |
| 5MW2DB00T5C0TipBrk   | 1272        | 7.7     | 608            | -14.6   | 9018        | -14.0   | 4567             | -11.8   |
| 5MW2DB00T0C2.5       | 1344        | 13.7    | 603            | -15.3   | 9828        | -6.3    | 4672             | -9.8    |
| 5MW2DB00T0C2.5TipBrk | 1323        | 12.0    | 605            | -15.0   | 9434        | -10.1   | 4653             | -10.2   |
| 5MW2DB00T0C0         | 1281        | 8.4     | 611            | -14.1   | 9170        | -12.6   | 4375             | -15.5   |
| 5MW2DB00T0C0TipBrk   | 1249        | 5.7     | 613            | -13.9   | 8827        | -15.9   | 4355             | -15.9   |
| 5MW2DB00TeeterNo     | 1277        | 8.1     | 600            | -15.7   | 11831       | -12.8   | 5696             | 10.0    |

**Table 9.10. Load effects at tower top under fault conditions.**

| Model                | Shear Force |         | Bending Moment |         | Axial Force |         | Torsional Moment |         |
|----------------------|-------------|---------|----------------|---------|-------------|---------|------------------|---------|
|                      | Maximum     | Average | Maximum        | Average | Maximum     | Average | Maximum          | Average |
| 5MW3UB00             | 1318        | 0.0     | 363            | 0.0     | 12821       | 0.0     | 2974             | 0.0     |
| 5MW2UB00             | 1414        | 7.3     | 331            | -8.8    | 13935       | 8.7     | 3507             | 17.9    |
| 5MW2UB00TipBrk       | 1434        | 8.8     | 283            | -22.1   | 7162        | -44.1   | 3878             | 30.4    |
| 5MW2UBUT             | 1367        | 3.7     | 306            | -15.5   | 14300       | 11.5    | 3887             | 30.7    |
| 5MW2UBUTTipBrk       | 1207        | -8.4    | 287            | -20.8   | 7100        | -44.6   | 3864             | 29.9    |
| 5MW2DB00             | 1313        | -0.4    | 298            | -17.8   | 14113       | 10.1    | 3066             | 3.1     |
| 5MW2DB00TipBrk       | 1460        | 10.7    | 257            | -29.1   | 8339        | -35.0   | 4142             | 39.3    |
| 5MW2DBUT             | 1398        | 6.0     | 301            | -17.0   | 13616       | 6.2     | 4432             | 49.0    |
| 5MW2DBUTTipBrk       | 1185        | -10.1   | 299            | -17.5   | 8156        | -36.4   | 4195             | 41.1    |
| 5MW2DB00T5C0         | 1336        | 1.4     | 306            | -15.7   | 13949       | 8.8     | 2763             | -7.1    |
| 5MW2DB00T5C0TipBrk   | 1476        | 11.9    | 257            | -29.2   | 8151        | -36.4   | 3978             | 33.8    |
| 5MW2DB00T0C2.5       | 1343        | 1.8     | 313            | -13.7   | 13370       | 4.3     | 3270             | 10.0    |
| 5MW2DB00T0C2.5TipBrk | 1472        | 11.7    | 259            | -28.6   | 8226        | -35.8   | 4066             | 36.7    |
| 5MW2DB00T0C0         | 1363        | 3.4     | 324            | -10.7   | 13312       | 3.8     | 3065             | 3.1     |
| 5MW2DB00T0C0TipBrk   | 1486        | 12.7    | 264            | -27.2   | 8246        | -35.7   | 3823             | 28.6    |
| 5MW2DB00TeeterNo     | 1344        | 1.9     | 409            | 12.9    | 17167       | 33.9    | 3212             | 8.0     |

**Table 9.11. Load effects at tower top under parked conditions.**

| Model                | Shear Force |         | Bending Moment |         | Axial Force |         | Torsional Moment |         |
|----------------------|-------------|---------|----------------|---------|-------------|---------|------------------|---------|
|                      | Maximum     | Average | Maximum        | Average | Maximum     | Average | Maximum          | Average |
| 5MW3UB00             | 748         | 0.0     | 355            | 0.0     | 6040        | 0.0     | 4036             | 0.0     |
| 5MW2UB00             | 474         | -36.7   | 160            | -55.1   | 1787        | -70.4   | 1708             | -57.7   |
| 5MW2UB00TipBrk       | 480         | -35.8   | 160            | -55.1   | 1830        | -69.7   | 1722             | -57.3   |
| 5MW2UBUT             | 503         | -32.8   | 167            | -53.0   | 2067        | -65.8   | 1972             | -51.1   |
| 5MW2UBUTTipBrk       | 507         | -32.2   | 167            | -52.9   | 2060        | -65.9   | 1971             | -51.2   |
| 5MW2DB00             | 520         | -30.5   | 201            | -43.3   | 3105        | -48.6   | 1921             | -52.4   |
| 5MW2DB00TipBrk       | 529         | -29.3   | 203            | -42.8   | 3107        | -48.6   | 1931             | -52.2   |
| 5MW2DBUT             | 578         | -22.8   | 224            | -36.8   | 3237        | -46.4   | 2079             | -48.5   |
| 5MW2DBUTTipBrk       | 584         | -22.0   | 227            | -36.1   | 3255        | -46.1   | 2062             | -48.9   |
| 5MW2DB00T5C0         | 522         | -30.2   | 202            | -43.1   | 3041        | -49.7   | 1675             | -58.4   |
| 5MW2DB00T5C0TipBrk   | 533         | -28.8   | 204            | -42.6   | 2974        | -50.8   | 1677             | -58.4   |
| 5MW2DB00T0C2.5       | 603         | -19.5   | 232            | -34.6   | 1906        | -68.4   | 1070             | -73.5   |
| 5MW2DB00T0C2.5TipBrk | 612         | -18.2   | 235            | -33.7   | 1890        | -68.7   | 1093             | -72.9   |
| 5MW2DB00T0C0         | 606         | -19.0   | 234            | -34.0   | 1699        | -71.9   | 981              | -75.7   |
| 5MW2DB00T0C0TipBrk   | 619         | -17.3   | 238            | -33.0   | 1863        | -69.1   | 1011             | -75.0   |
| 5MW2DB00TeeterNo     | 525         | -29.9   | 204            | -42.7   | 3137        | -48.1   | 1944             | -51.8   |

**Table 9.12. Load effects at blade roots under normal operating conditions.**

| Model                | Shear Force |         | Bending Moment |         | Axial Force |         | Torsional Moment |         |
|----------------------|-------------|---------|----------------|---------|-------------|---------|------------------|---------|
|                      | Maximum     | Average | Maximum        | Average | Maximum     | Average | Maximum          | Average |
| 5MW3UB00             | 468         | 0.0     | 300            | 0.0     | 17734       | 0.0     | 10101            | 0.0     |
| 5MW2UB00             | 566         | 20.9    | 385            | 28.6    | 20723       | 16.9    | 12963            | 28.3    |
| 5MW2UB00TipBrk       | 569         | 21.6    | 387            | 29.1    | 20672       | 16.6    | 12978            | 28.5    |
| 5MW2UBUT             | 646         | 38.1    | 427            | 42.5    | 24036       | 35.5    | 14479            | 43.3    |
| 5MW2UBUTTipBrk       | 644         | 37.7    | 428            | 42.8    | 23987       | 35.3    | 14460            | 43.2    |
| 5MW2DB00             | 469         | 0.2     | 269            | -10.4   | 17953       | 1.2     | 9672             | -4.2    |
| 5MW2DB00TipBrk       | 473         | 1.0     | 269            | -10.3   | 17827       | 0.5     | 9638             | -4.6    |
| 5MW2DBUT             | 538         | 14.9    | 310            | 3.3     | 20880       | 17.7    | 11207            | 11.0    |
| 5MW2DBUTTipBrk       | 534         | 14.0    | 310            | 3.4     | 20700       | 16.7    | 11147            | 10.4    |
| 5MW2DB00T5C0         | 514         | 9.7     | 308            | 2.9     | 18891       | 6.5     | 10913            | 8.0     |
| 5MW2DB00T5C0TipBrk   | 518         | 10.6    | 309            | 3.2     | 18763       | 5.8     | 10899            | 7.9     |
| 5MW2DB00T0C2.5       | 481         | 2.7     | 283            | -5.7    | 18030       | 1.7     | 9979             | -1.2    |
| 5MW2DB00T0C2.5TipBrk | 484         | 3.4     | 283            | -5.6    | 17912       | 1.0     | 9947             | -1.5    |
| 5MW2DB00T0C0         | 526         | 12.3    | 323            | 7.9     | 18940       | 6.8     | 11236            | 11.2    |
| 5MW2DB00T0C0TipBrk   | 530         | 13.1    | 324            | 8.2     | 18850       | 6.3     | 11227            | 11.1    |
| 5MW2DB00TeeterNo     | 508         | 8.4     | 268            | -10.5   | 19770       | 11.5    | 9675             | -4.2    |

**Table 9.13. Load effects at blade roots under fault conditions.**

| Model                | Shear Force |         | Bending Moment |         | Axial Force |         | Torsional Moment |         |
|----------------------|-------------|---------|----------------|---------|-------------|---------|------------------|---------|
|                      | Maximum     | Average | Maximum        | Average | Maximum     | Average | Maximum          | Average |
| 5MW3UB00             | 450         | 0.0     | 200            | 0.0     | 15045       | 0.0     | 5084             | 0.0     |
| 5MW2UB00             | 588         | 30.7    | 245            | 22.7    | 18580       | 23.5    | 5862             | 15.3    |
| 5MW2UB00TipBrk       | 655         | 45.7    | 249            | 24.8    | 20930       | 39.1    | 6997             | 37.6    |
| 5MW2UBUT             | 607         | 34.9    | 210            | 4.9     | 20435       | 35.8    | 5667             | 11.5    |
| 5MW2UBUTTipBrk       | 622         | 38.3    | 251            | 25.8    | 20842       | 38.5    | 7066             | 39.0    |
| 5MW2DB00             | 497         | 10.5    | 226            | 12.8    | 18397       | 22.3    | 5427             | 6.7     |
| 5MW2DB00TipBrk       | 621         | 38.0    | 205            | 2.4     | 20249       | 34.6    | 5586             | 9.9     |
| 5MW2DBUT             | 508         | 12.9    | 223            | 11.7    | 17522       | 16.5    | 6349             | 24.9    |
| 5MW2DBUTTipBrk       | 540         | 20.1    | 224            | 12.2    | 17291       | 14.9    | 6443             | 26.7    |
| 5MW2DB00T5C0         | 542         | 20.5    | 232            | 16.2    | 17727       | 17.8    | 5665             | 11.4    |
| 5MW2DB00T5C0TipBrk   | 644         | 43.2    | 213            | 6.3     | 21083       | 40.1    | 6143             | 20.8    |
| 5MW2DB00T0C2.5       | 508         | 12.9    | 232            | 15.8    | 17114       | 13.8    | 5540             | 9.0     |
| 5MW2DB00T0C2.5TipBrk | 613         | 36.3    | 203            | 1.5     | 19989       | 32.9    | 5743             | 13.0    |
| 5MW2DB00T0C0         | 554         | 23.1    | 239            | 19.7    | 17892       | 18.9    | 5746             | 13.0    |
| 5MW2DB00T0C0TipBrk   | 637         | 41.7    | 221            | 10.5    | 20831       | 38.5    | 6290             | 23.7    |
| 5MW2DB00TeeterNo     | 500         | 11.2    | 229            | 14.3    | 18744       | 24.6    | 5521             | 8.6     |

Table 9.14. Load effects at blade roots under parked conditions.

|                      | Shear Force |           |            |           | Bending Moment |           |              |           | Axial Force |           |            |           | Torsional Moment |           |              |           |
|----------------------|-------------|-----------|------------|-----------|----------------|-----------|--------------|-----------|-------------|-----------|------------|-----------|------------------|-----------|--------------|-----------|
|                      | Maximum     |           | Average    |           | Maximum        |           | Average      |           | Maximum     |           | Average    |           | Maximum          |           | Average      |           |
| Model                | Value (kN)  | %diff (%) | Value (kN) | %diff (%) | Value (kN m)   | %diff (%) | Value (kN m) | %diff (%) | Value (kN)  | %diff (%) | Value (kN) | %diff (%) | Value (kN m)     | %diff (%) | Value (kN m) | %diff (%) |
| 5MW3UB00             | 288         | 0.0       | 282        | 0.0       | 7696           | 0.0       | 7514         | 0.0       | -183        | 0.0       | -183       | 0.0       | 202              | 0.0       | 194          | 0.0       |
| 5MW2UB00             | 233         | -19.0     | 232        | -17.6     | 6204           | -19.4     | 5329         | -29.1     | -10         | -94.8     | -4         | -97.7     | 185              | -8.5      | 147          | -24.5     |
| 5MW2UB00TipBrk       | 234         | -18.6     | 233        | -17.2     | 6390           | -17.0     | 5377         | -28.4     | -9          | -95.1     | -3         | -98.1     | 188              | -7.0      | 146          | -24.7     |
| 5MW2UBUT             | 230         | -19.9     | 229        | -18.6     | 6711           | -12.8     | 5266         | -29.9     | -8          | -95.8     | -3         | -98.6     | 178              | -11.9     | 135          | -30.7     |
| 5MW2UBUTTipBrk       | 234         | -18.5     | 230        | -18.4     | 7011           | -8.9      | 5303         | -29.4     | -9          | -95.3     | -2         | -98.7     | 182              | -9.9      | 134          | -30.8     |
| 5MW2DB00             | 268         | -6.9      | 265        | -5.8      | 6868           | -10.8     | 5957         | -20.7     | -10         | -94.7     | -5         | -97.1     | 178              | -11.6     | 148          | -23.9     |
| 5MW2DB00TipBrk       | 267         | -7.3      | 266        | -5.5      | 6832           | -11.2     | 6006         | -20.1     | -10         | -94.6     | -5         | -97.1     | 182              | -10.1     | 148          | -24.1     |
| 5MW2DBUT             | 273         | -5.2      | 247        | -12.4     | 7149           | -7.1      | 6382         | -15.1     | -19         | -89.8     | -10        | -94.6     | 173              | -14.5     | 135          | -30.3     |
| 5MW2DBUTTipBrk       | 272         | -5.4      | 247        | -12.2     | 7177           | -6.8      | 6432         | -14.4     | -19         | -89.5     | -10        | -94.5     | 177              | -12.4     | 135          | -30.3     |
| 5MW2DB00T5C0         | 266         | -7.4      | 266        | -5.6      | 6804           | -11.6     | 5994         | -20.2     | -9          | -95.2     | -5         | -97.5     | 178              | -11.7     | 148          | -23.8     |
| 5MW2DB00T5C0TipBrk   | 267         | -7.0      | 267        | -5.3      | 6806           | -11.6     | 6044         | -19.6     | -9          | -95.0     | -5         | -97.5     | 182              | -9.9      | 148          | -23.9     |
| 5MW2DB00T0C2.5       | 234         | -18.7     | 222        | -21.1     | 6630           | -13.9     | 5102         | -32.1     | 6           | -103.5    | -2         | -98.8     | 188              | -7.0      | 110          | -43.4     |
| 5MW2DB00T0C2.5TipBrk | 228         | -20.6     | 223        | -20.9     | 6610           | -14.1     | 5139         | -31.6     | 6           | -103.3    | -3         | -98.6     | 194              | -3.8      | 110          | -43.5     |
| 5MW2DB00T0C0         | 235         | -18.2     | 222        | -21.1     | 6651           | -13.6     | 5103         | -32.1     | -6          | -97.0     | -2         | -98.8     | 186              | -8.1      | 110          | -43.2     |
| 5MW2DB00T0C0TipBrk   | 229         | -20.5     | 223        | -20.9     | 6597           | -14.3     | 5141         | -31.6     | -6          | -96.7     | -3         | -98.6     | 194              | -4.0      | 110          | -43.3     |
| 5MW2DB00TeeterNo     | 267         | -7.2      | 265        | -5.8      | 6855           | -10.9     | 5957         | -20.7     | -10         | -94.7     | -5         | -97.2     | 180              | -11.0     | 148          | -24.0     |

Table 9.15. Load effects at LSS under normal operating conditions.

|                      | Shear Force   |              | Bending Moment |              | Axial Force     |              | Torsional Moment |              |                 |              |                 |       |
|----------------------|---------------|--------------|----------------|--------------|-----------------|--------------|------------------|--------------|-----------------|--------------|-----------------|-------|
|                      | Maximum       | Average      | Maximum        | Average      | Maximum         | Average      | Maximum          | Average      | Maximum         | Average      | Maximum         |       |
| Model                | Value<br>(kN) | %diff<br>(%) | Value<br>(kN)  | %diff<br>(%) | Value<br>(kN m) | %diff<br>(%) | Value<br>(kN)    | %diff<br>(%) | Value<br>(kN m) | %diff<br>(%) | Value<br>(kN m) |       |
| 5MW3UB00             | 1128          | 0.0          | 1085           | 0.0          | 13417           | 0.0          | 4924             | 0.0          | 1091            | 0.0          | 790             | 0.0   |
| 5MW2UB00             | 1005          | -10.9        | 914            | -15.7        | 8572            | -36.1        | 3537             | -28.2        | 1023            | -6.3         | 693             | -12.3 |
| 5MW2UB00TipBrk       | 1007          | -10.8        | 916            | -15.6        | 8581            | -36.0        | 3508             | -28.7        | 1028            | -5.8         | 694             | -12.1 |
| 5MW2UBUT             | 1001          | -11.3        | 914            | -15.8        | 11852           | -11.7        | 4496             | -8.7         | 1114            | 2.1          | 784             | -0.7  |
| 5MW2UBUTTipBrk       | 1004          | -11.0        | 915            | -15.6        | 11988           | -10.7        | 4477             | -9.1         | 1117            | 2.4          | 785             | -0.7  |
| 5MW2DB00             | 1081          | -4.2         | 922            | -14.9        | 9083            | -32.3        | 3472             | -29.5        | 842             | -22.8        | 504             | -36.2 |
| 5MW2DB00TipBrk       | 1080          | -4.3         | 924            | -14.8        | 9052            | -32.5        | 3432             | -30.3        | 847             | -22.4        | 506             | -36.0 |
| 5MW2DBUT             | 1074          | -4.8         | 922            | -15.0        | 11532           | -14.0        | 4237             | -13.9        | 935             | -14.3        | 593             | -25.0 |
| 5MW2DBUTTipBrk       | 1081          | -4.2         | 924            | -14.8        | 11526           | -14.1        | 4220             | -14.3        | 938             | -14.1        | 594             | -24.9 |
| 5MW2DB00T5C0         | 1086          | -3.7         | 921            | -15.1        | 8742            | -34.8        | 3360             | -31.8        | 856             | -21.6        | 512             | -35.2 |
| 5MW2DB00T5C0TipBrk   | 1086          | -3.7         | 922            | -15.0        | 8710            | -35.1        | 3328             | -32.4        | 861             | -21.1        | 513             | -35.0 |
| 5MW2DB00T0C2.5       | 1064          | -5.7         | 920            | -15.2        | 8839            | -34.1        | 3420             | -30.5        | 925             | -15.2        | 586             | -25.9 |
| 5MW2DB00T0C2.5TipBrk | 1063          | -5.8         | 921            | -15.1        | 8857            | -34.0        | 3381             | -31.3        | 930             | -14.7        | 587             | -25.6 |
| 5MW2DB00T0C0         | 1069          | -5.2         | 921            | -15.1        | 8590            | -36.0        | 3308             | -32.8        | 937             | -14.2        | 594             | -24.8 |
| 5MW2DB00T0C0TipBrk   | 1072          | -5.0         | 922            | -15.0        | 8602            | -35.9        | 3278             | -33.4        | 942             | -13.7        | 596             | -24.6 |
| 5MW2DB00TeeterNo     | 1073          | -4.9         | 924            | -14.8        | 13073           | -2.6         | 4674             | -5.1         | 847             | -22.4        | 505             | -36.1 |

**Table 9.16. Load effects at LSS under fault conditions.**

|                      | Shear Force |           |            |           | Bending Moment |           |              |           | Axial Force |           |            |           | Torsional Moment |           |              |           |
|----------------------|-------------|-----------|------------|-----------|----------------|-----------|--------------|-----------|-------------|-----------|------------|-----------|------------------|-----------|--------------|-----------|
|                      | Maximum     |           | Average    |           | Maximum        |           | Average      |           | Maximum     |           | Average    |           | Maximum          |           | Average      |           |
| Model                | Value (kN)  | %diff (%) | Value (kN) | %diff (%) | Value (kN m)   | %diff (%) | Value (kN m) | %diff (%) | Value (kN)  | %diff (%) | Value (kN) | %diff (%) | Value (kN m)     | %diff (%) | Value (kN m) | %diff (%) |
| 5MW3UB00             | 1153        | 0.0       | 1070       | 0.0       | 13018          | 0.0       | 2581         | 0.0       | 1219        | 0.0       | 278        | 0.0       | 7142             | 0.0       | 2149         | 0.0       |
| 5MW2UB00             | 1103        | -4.4      | 933        | -12.8     | 17106          | 31.4      | 3786         | 46.7      | 1066        | -12.6     | 267        | -4.2      | 5924             | -17.1     | 2639         | 22.8      |
| 5MW2UB00TipBrk       | 1009        | -12.5     | 915        | -14.4     | 7310           | -43.8     | 3034         | 17.5      | 1266        | 3.9       | 318        | 14.3      | 6337             | -11.3     | 2880         | 34.0      |
| 5MW2UBUT             | 1100        | -4.6      | 900        | -15.8     | 15613          | 19.9      | 2556         | -1.0      | 1161        | -4.8      | 297        | 6.8       | 6009             | -15.9     | 2384         | 11.0      |
| 5MW2UBUTTipBrk       | 1028        | -10.8     | 916        | -14.4     | 7194           | -44.7     | 3085         | 19.5      | 1187        | -2.6      | 350        | 25.8      | 6357             | -11.0     | 3022         | 40.7      |
| 5MW2DB00             | 1117        | -3.2      | 974        | -8.9      | 14296          | 9.8       | 3331         | 29.0      | 974         | -179.9    | 100        | -64.0     | 6214             | -13.0     | 1553         | -27.7     |
| 5MW2DB00TipBrk       | 1073        | -6.9      | 937        | -12.4     | 6349           | -51.2     | 2708         | 4.9       | 1100        | -9.8      | 154        | -44.6     | 6584             | -7.8      | 2922         | 36.0      |
| 5MW2DBUT             | 1175        | 1.9       | 941        | -12.1     | 15931          | 22.4      | 2786         | 7.9       | 966         | -20.7     | 129        | -53.6     | 6365             | -10.9     | 2331         | 8.5       |
| 5MW2DBUTTipBrk       | 1079        | -6.4      | 937        | -12.4     | 5884           | -54.8     | 2662         | 3.1       | 995         | -18.4     | 184        | -33.8     | 6644             | -7.0      | 2973         | 38.4      |
| 5MW2DB00T5C0         | 1115        | -3.3      | 974        | -9.0      | 14530          | 11.6      | 3510         | 36.0      | -986        | -180.9    | 102        | -63.2     | 6269             | -12.2     | 1550         | -27.9     |
| 5MW2DB00T5C0TipBrk   | 1074        | -6.8      | 936        | -12.5     | 6495           | -50.1     | 2913         | 12.9      | 1121        | -8.0      | 156        | -44.0     | 6641             | -7.0      | 2882         | 34.1      |
| 5MW2DB00T0C2.5       | 1097        | -4.8      | 960        | -10.2     | 15661          | 20.3      | 3223         | 24.9      | 989         | -18.9     | 180        | -35.3     | 6307             | -11.7     | 2134         | -0.7      |
| 5MW2DB00T0C2.5TipBrk | 1044        | -9.5      | 926        | -13.4     | 6151           | -52.8     | 2562         | -0.7      | 1191        | -2.3      | 234        | -15.9     | 6698             | -6.2      | 2750         | 28.0      |
| 5MW2DB00T0C0         | 1097        | -4.9      | 960        | -10.3     | 15851          | 21.8      | 3407         | 32.0      | 1004        | -17.6     | 182        | -34.6     | 6433             | -9.9      | 2144         | -0.2      |
| 5MW2DB00T0C0TipBrk   | 1048        | -9.2      | 924        | -13.7     | 6888           | -47.1     | 2799         | 8.4       | 1211        | -0.7      | 236        | -15.3     | 6742             | -5.6      | 2803         | 30.5      |
| 5MW2DB00TeeterNo     | 1128        | -2.2      | 974        | -8.9      | 18026          | 38.5      | 3608         | 39.8      | -971        | -179.6    | 101        | -63.9     | 6101             | -14.6     | 1557         | -27.5     |

**Table 9.17. Load effects at LSS under parked conditions.**

| Model                | Shear Force |            | Bending Moment |            | Axial Force |             | Torsional Moment |            |
|----------------------|-------------|------------|----------------|------------|-------------|-------------|------------------|------------|
|                      | Maximum     | Average    | Maximum        | Average    | Maximum     | Average     | Maximum          | Average    |
| 5MW3UB00             | 1147 0.0    | 1140 0.0   | 5723 0.0       | 4671 0.0   | 450 0.0     | 222 0.0     | 2840 0.0         | 2508 0.0   |
| 5MW2UB00             | 945 -17.6   | 912 -20.0  | 4036 -29.5     | 3952 -15.4 | 308 -31.4   | 199 -10.7   | 1455 -48.8       | 1409 -43.8 |
| 5MW2UB00TipBrk       | 950 -17.2   | 914 -19.8  | 4039 -29.4     | 3955 -15.3 | 278 -38.1   | 199 -10.6   | 1477 -48.0       | 1423 -43.2 |
| 5MW2UBUT             | 951 -17.1   | 911 -20.1  | 4040 -29.4     | 3952 -15.4 | 302 -33.0   | 197 -11.4   | 1734 -38.9       | 1675 -33.2 |
| 5MW2UBUTTipBrk       | 952 -17.0   | 913 -19.9  | 4044 -29.3     | 3955 -15.3 | 319 -29.0   | 197 -11.3   | 1728 -39.2       | 1674 -33.2 |
| 5MW2DB00             | 1023 -10.8  | 1021 -10.4 | 3655 -36.1     | 3554 -23.9 | 391 -187.0  | -107 -148.1 | 2826 -0.5        | 1300 -48.2 |
| 5MW2DB00TipBrk       | 1024 -10.7  | 1022 -10.3 | 3684 -35.6     | 3553 -23.9 | -342 -176.1 | -107 -148.2 | 2826 -0.5        | 1320 -47.3 |
| 5MW2DBUT             | 1030 -10.2  | 1028 -9.8  | 3661 -36.0     | 3518 -24.7 | -392 -187.1 | -107 -147.9 | 2972 4.6         | 1546 -38.3 |
| 5MW2DBUTTipBrk       | 1031 -10.1  | 1030 -9.7  | 3663 -36.0     | 3516 -24.7 | -397 -188.3 | -107 -147.9 | 2975 4.8         | 1579 -37.0 |
| 5MW2DB00T5C0         | 1025 -10.6  | 1024 -10.2 | 3837 -33.0     | 3738 -20.0 | -394 -187.5 | -107 -148.2 | 2813 -1.0        | 1216 -51.5 |
| 5MW2DB00T5C0TipBrk   | 1027 -10.4  | 1025 -10.0 | 3828 -33.1     | 3738 -20.0 | -343 -176.2 | -107 -148.3 | 2745 -3.3        | 1236 -50.7 |
| 5MW2DB00T0C2.5       | 939 -18.1   | 938 -17.7  | 3625 -36.7     | 3536 -24.3 | -364 -180.9 | 116 -47.7   | 1291 -54.5       | 971 -61.3  |
| 5MW2DB00T0C2.5TipBrk | 942 -17.9   | 939 -17.6  | 3631 -36.6     | 3535 -24.3 | -318 -170.8 | 116 -47.7   | 1429 -49.7       | 992 -60.4  |
| 5MW2DB00T0C0         | 940 -18.0   | 938 -17.7  | 3774 -34.1     | 3698 -20.8 | -365 -181.1 | 117 -47.4   | 1327 -53.3       | 975 -61.1  |
| 5MW2DB00T0C0TipBrk   | 942 -17.9   | 940 -17.5  | 3780 -33.9     | 3699 -20.8 | -320 -171.2 | 117 -47.4   | 1416 -50.1       | 1004 -60.0 |
| 5MW2DB00TeeterNo     | 1022 -10.9  | 1021 -10.4 | 4004 -30.0     | 3548 -24.0 | -394 -187.7 | -107 -148.1 | 2845 0.2         | 1300 -48.2 |

**Table 9.18. Torques under normal operating conditions.**

| Model                | LSS        |            | HSS      |          | Generator |          |
|----------------------|------------|------------|----------|----------|-----------|----------|
|                      | Maximum    | Average    | Maximum  | Average  | Maximum   | Average  |
| 5MW3UB00             | 5549 0.0   | 4189 0.0   | 57 0.0   | 43 0.0   | 47 0.0    | 43 0.0   |
| 5MW2UB00             | 4458 -19.7 | 3168 -24.4 | 46 -19.7 | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2UB00TipBrk       | 4471 -19.4 | 3168 -24.4 | 46 -19.4 | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2UBUT             | 4489 -19.1 | 3198 -23.6 | 46 -19.1 | 33 -23.6 | 36 -23.6  | 33 -23.6 |
| 5MW2BUTTipBrk        | 4519 -18.6 | 3198 -23.6 | 47 -18.6 | 33 -23.6 | 36 -23.6  | 33 -23.6 |
| 5MW2DB00             | 5005 -9.8  | 3167 -24.4 | 52 -9.8  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DB00TipBrk       | 5145 -7.3  | 3167 -24.4 | 53 -7.3  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DBUT             | 4983 -10.2 | 3199 -23.6 | 51 -10.2 | 33 -23.6 | 36 -23.6  | 33 -23.6 |
| 5MW2DBUTTipBrk       | 5089 -8.3  | 3199 -23.6 | 52 -8.3  | 33 -23.6 | 36 -23.6  | 33 -23.6 |
| 5MW2DB00T5C0         | 5091 -8.2  | 3167 -24.4 | 52 -8.3  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DB00T5C0TipBrk   | 5228 -5.8  | 3167 -24.4 | 54 -5.8  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DB00T0C2.5       | 5106 -8.0  | 3167 -24.4 | 53 -8.0  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DB00T0C2.5TipBrk | 5269 -5.0  | 3167 -24.4 | 54 -5.0  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DB00T0C0         | 5235 -5.6  | 3167 -24.4 | 54 -5.6  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DB00T0C0TipBrk   | 5391 -2.8  | 3167 -24.4 | 56 -2.8  | 33 -24.4 | 36 -24.4  | 33 -24.4 |
| 5MW2DB00TeeterNo     | 4956 -10.7 | 3167 -24.4 | 51 -10.7 | 33 -24.4 | 36 -24.4  | 33 -24.4 |

**Table 9.19. Torques under fault conditions.**

| Model                | LSS        |            | HSS      |          | Generator |          |
|----------------------|------------|------------|----------|----------|-----------|----------|
|                      | Maximum    | Average    | Maximum  | Average  | Maximum   | Average  |
| 5MW3UB00             | 7142 0.0   | 2149 0.0   | 74 0.0   | 22 0.0   | 47 0.0    | 15 0.0   |
| 5MW2UB00             | 5924 -17.1 | 2639 22.8  | 61 -17.1 | 27 22.8  | 36 -24.4  | 13 -12.8 |
| 5MW2UB00TipBrk       | 6337 -11.3 | 2880 34.0  | 65 -11.3 | 30 34.0  | 36 -24.4  | 17 9.5   |
| 5MW2UBUT             | 6009 -15.9 | 2384 11.0  | 62 -15.9 | 25 11.0  | 36 -23.6  | 13 -16.8 |
| 5MW2BUTTipBrk        | 6357 -11.0 | 3022 40.7  | 66 -11.0 | 31 40.7  | 36 -23.6  | 17 10.6  |
| 5MW2DB00             | 6214 -13.0 | 1553 -27.7 | 64 -13.0 | 16 -27.7 | 36 -24.4  | 12 -23.8 |
| 5MW2DB00TipBrk       | 6584 -7.8  | 2922 36.0  | 68 -7.8  | 30 36.0  | 36 -24.4  | 17 9.5   |
| 5MW2DBUT             | 6365 -10.9 | 2331 8.5   | 66 -10.9 | 24 8.5   | 36 -23.6  | 13 -16.2 |
| 5MW2DBUTTipBrk       | 6644 -7.0  | 2973 38.4  | 68 -7.0  | 31 38.3  | 36 -23.6  | 17 10.6  |
| 5MW2DB00T5C0         | 6269 -12.2 | 1550 -27.9 | 65 -12.2 | 16 -27.9 | 36 -24.4  | 12 -23.8 |
| 5MW2DB00T5C0TipBrk   | 6641 -7.0  | 2882 34.1  | 68 -7.0  | 30 34.1  | 36 -24.4  | 17 9.5   |
| 5MW2DB00T0C2.5       | 6307 -11.7 | 2134 -0.7  | 65 -11.7 | 22 -0.7  | 36 -24.4  | 12 -20.3 |
| 5MW2DB00T0C2.5TipBrk | 6698 -6.2  | 2750 28.0  | 69 -6.2  | 28 28.0  | 36 -24.4  | 17 9.5   |
| 5MW2DB00T0C0         | 6433 -9.9  | 2144 -0.2  | 66 -9.9  | 22 -0.2  | 36 -24.4  | 12 -20.0 |
| 5MW2DB00T0C0TipBrk   | 6742 -5.6  | 2803 30.5  | 70 -5.6  | 29 30.5  | 36 -24.4  | 17 9.5   |
| 5MW2DB00TeeterNo     | 6101 -14.6 | 1557 -27.5 | 63 -14.6 | 16 -27.5 | 36 -24.4  | 12 -23.5 |

**Table 9.20. Torques under parked conditions.**

| Model                | LSS        |              |           |              | HSS       |              |           |         |
|----------------------|------------|--------------|-----------|--------------|-----------|--------------|-----------|---------|
|                      | Maximum    | Average      | Maximum   | Average      | Maximum   | Average      | Maximum   | Average |
| Value (kN m)         | %diff (%)  | Value (kN m) | %diff (%) | Value (kN m) | %diff (%) | Value (kN m) | %diff (%) |         |
| 5MW3UB00             | 2840 0.0   | 2508 0.0     | 29 0.0    | 26 0.0       |           |              |           |         |
| 5MW2UB00             | 1455 -48.8 | 1409 -43.8   | 15 -48.8  | 15 -43.8     |           |              |           |         |
| 5MW2UB00TipBrk       | 1477 -48.0 | 1423 -43.2   | 15 -48.0  | 15 -43.2     |           |              |           |         |
| 5MW2UBUT             | 1734 -38.9 | 1675 -33.2   | 18 -38.9  | 17 -33.2     |           |              |           |         |
| 5MW2UBUTTipBrk       | 1728 -39.2 | 1674 -33.2   | 18 -39.2  | 17 -33.2     |           |              |           |         |
| 5MW2DB00             | 2826 -0.5  | 1300 -48.2   | 29 -0.5   | 13 -48.2     |           |              |           |         |
| 5MW2DB00TipBrk       | 2826 -0.5  | 1320 -47.3   | 29 -0.5   | 14 -47.3     |           |              |           |         |
| 5MW2DBUT             | 2972 4.6   | 1546 -38.3   | 31 4.6    | 16 -38.3     |           |              |           |         |
| 5MW2DBUTTipBrk       | 2975 4.8   | 1579 -37.0   | 31 4.7    | 16 -37.0     |           |              |           |         |
| 5MW2DB00T5C0         | 2813 -1.0  | 1216 -51.5   | 29 -1.0   | 13 -51.5     |           |              |           |         |
| 5MW2DB00T5C0TipBrk   | 2745 -3.3  | 1236 -50.7   | 28 -3.3   | 13 -50.7     |           |              |           |         |
| 5MW2DB00T0C2.5       | 1291 -54.5 | 971 -61.3    | 13 -54.5  | 10 -61.3     |           |              |           |         |
| 5MW2DB00T0C2.5TipBrk | 1429 -49.7 | 992 -60.4    | 15 -49.7  | 10 -60.5     |           |              |           |         |
| 5MW2DB00T0C0         | 1327 -53.3 | 975 -61.1    | 14 -53.3  | 10 -61.1     |           |              |           |         |
| 5MW2DB00T0C0TipBrk   | 1416 -50.1 | 1004 -60.0   | 15 -50.1  | 10 -60.0     |           |              |           |         |
| 5MW2DB00TeeterNo     | 2845 0.2   | 1300 -48.2   | 29 0.2    | 13 -48.2     |           |              |           |         |

**Table 9.21. Minimum tower-to-blade clearance.**

| Condition            | Normal operating |            | Fault      |           | Parked    |           |
|----------------------|------------------|------------|------------|-----------|-----------|-----------|
|                      | Value (m)        | %diff (%)  | Value (m)  | %diff (%) | Value (m) | %diff (%) |
| Model                | Value (m)        | %diff (%)  | Value (m)  | %diff (%) | Value (m) | %diff (%) |
| 5MW3UB00             | 6.59 0.0         | 5.82 0.0   | 33.47 0.0  |           |           |           |
| 5MW2UB00             | 4.04 -38.7       | 3.89 -33.0 | 63.21 -0.2 |           |           |           |
| 5MW2UB00TipBrk       | 4.36 -33.8       | 2.66 -61.9 | 63.21 -0.2 |           |           |           |
| 5MW2UBUT             | 3.08 -54.1       | 2.65 -54.4 | 63.21 -0.2 |           |           |           |
| 5MW2UBUTTipBrk       | 3.29 -50.9       | 2.66 -54.2 | 63.21 -0.2 |           |           |           |
| 5MW2DB00             | 10.30 56.3       | 4.76 -18.2 | 63.29 89.1 |           |           |           |
| 5MW2DB00TipBrk       | 10.37 57.3       | 10.01 43.5 | 63.29 89.1 |           |           |           |
| 5MW2DBUT             | 10.24 52.7       | 6.28 8.0   | 63.12 88.6 |           |           |           |
| 5MW2DBUTTipBrk       | 10.24 52.7       | 9.38 34.6  | 63.10 88.5 |           |           |           |
| 5MW2DB00T5C0         | 8.19 24.3        | 2.00 -65.7 | 63.06 88.4 |           |           |           |
| 5MW2DB00T5C0TipBrk   | 8.28 25.6        | 7.65 9.8   | 63.06 88.4 |           |           |           |
| 5MW2DB00T0C2.5       | 4.62 -29.9       | 0.88 -87.4 | 63.31 0.0  |           |           |           |
| 5MW2DB00T0C2.5TipBrk | 4.69 -28.9       | 3.99 -42.8 | 63.29 0.0  |           |           |           |
| 5MW2DB00T0C0         | 2.48 -62.4       | 0.02 -99.7 | 63.09 -0.3 |           |           |           |
| 5MW2DB00T0C0TipBrk   | 2.54 -61.4       | 1.67 -76.1 | 63.08 -0.4 |           |           |           |
| 5MW2DB00TeeterNo     | 10.26 55.6       | 6.75 16.1  | 63.33 0.0  |           |           |           |

**Table 9.22. Maximum and minimum teeter angle.**

| Condition            | Normal operating |            | Fault      |           | Parked    |           |
|----------------------|------------------|------------|------------|-----------|-----------|-----------|
|                      | Max (deg)        | Min (deg)  | Max (deg)  | Min (deg) | Max (deg) | Min (deg) |
| Model                | Max (deg)        | Min (deg)  | Max (deg)  | Min (deg) | Max (deg) | Min (deg) |
| 5MW3UB00             | 0.00 0.00        | 0.00 0.00  | 0.00 0.00  | 0.00 0.00 |           |           |
| 5MW2UB00             | 2.38 -2.69       | 5.94 -1.49 | 1.04 -0.02 |           |           |           |
| 5MW2UB00TipBrk       | 2.36 -2.65       | 2.97 -1.82 | 1.04 -0.02 |           |           |           |
| 5MW2UBUT             | 2.99 -3.17       | 5.20 -1.63 | 1.05 -0.02 |           |           |           |
| 5MW2UBUTTipBrk       | 2.97 -3.22       | 3.00 -1.65 | 1.05 -0.02 |           |           |           |
| 5MW2DB00             | 2.74 -3.09       | 5.05 -1.49 | 1.01 -0.06 |           |           |           |
| 5MW2DB00TipBrk       | 2.71 -3.04       | 3.19 -2.75 | 1.01 -0.06 |           |           |           |
| 5MW2DBUT             | 3.44 -3.24       | 4.77 -1.71 | 1.01 -0.08 |           |           |           |
| 5MW2DBUTTipBrk       | 3.44 -3.19       | 2.58 -2.62 | 1.01 -0.08 |           |           |           |
| 5MW2DB00T5C0         | 2.57 -2.96       | 5.14 -1.41 | 1.02 -0.07 |           |           |           |
| 5MW2DB00T5C0TipBrk   | 2.54 -2.91       | 3.26 -2.77 | 1.01 -0.07 |           |           |           |
| 5MW2DB00T0C2.5       | 2.68 -3.04       | 5.47 -1.48 | 1.00 -0.07 |           |           |           |
| 5MW2DB00T0C2.5TipBrk | 2.64 -2.99       | 2.58 -1.95 | 1.01 -0.08 |           |           |           |
| 5MW2DB00T0C0         | 2.52 -2.93       | 5.55 -1.45 | 1.00 -0.07 |           |           |           |
| 5MW2DB00T0C0TipBrk   | 2.48 -2.89       | 2.67 -1.93 | 1.00 -0.07 |           |           |           |
| 5MW2DB00TeeterNo     | 0.00 0.00        | 0.00 0.00  | 0.00 0.00  |           |           |           |

### 9.1.8 Fatigue Life Estimation

Cumulative fatigue damage values at four critical wind turbine locations are calculated for different turbine designs using the NREL MLife code. Wind turbine responses to external forces are determined by the FAST code. The output files of load time histories generated by FAST are used as input files in MLife in order to extrapolate fatigue damage over the turbine lifetime. Six 10-minute FAST simulations were run at each mean wind speed to generate load time histories at normal operating conditions. Simulations were run for 12 different mean wind speeds of 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 25 m/s. See Section 4.4 for the methodology used for estimating the fatigue damage.

As mentioned earlier in Section 9.1, fatigue damaged is investigated at four critical turbine locations the blade root, tower base, tower top and LSS. Four types of load effects used for this purpose include shear forces, bending moments, axial forces, and torsional moments. Damage values that these four load effects cause were calculated at all four locations. The results are then compared with those of the baseline 5MW 3-bladed upwind turbine. Descriptions of various turbine models are in Appendix 1.

The analysis of the results show that the 2-bladed downwind turbine has average fatigue damage values considerably less than one in all four critical locations under study. A value of damage equal to one indicates failure. Also, damage accumulation at critical locations of the 2-bladed downwind turbine is comparable to the damage accumulation of the baseline 3-bladed upwind turbine.

In Figure 9.20 the average fatigue damage accumulation due to the most critical loads, such as the blade root shear force and bending moment, tower base shear force and bending moment, and tower top shear force are compared across the three turbine designs. While all of the turbine designs considered here have average damage less than 0.15, 5MW2UBUT and 5MW2DBUT designs incur more damage than the other designs due to the bending moment and the shear forces at the blade root.

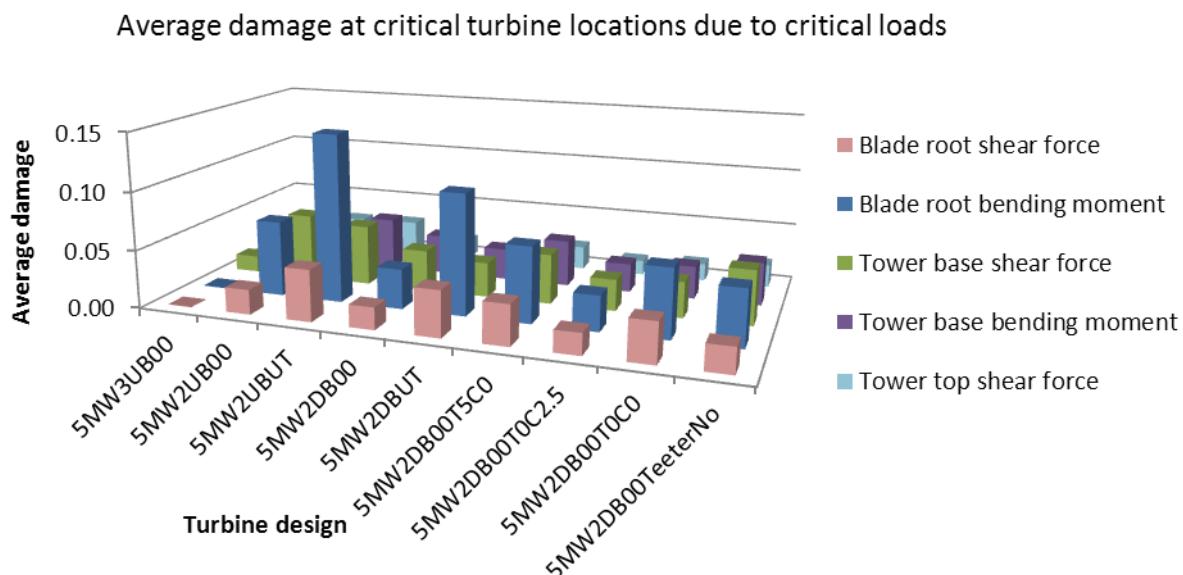
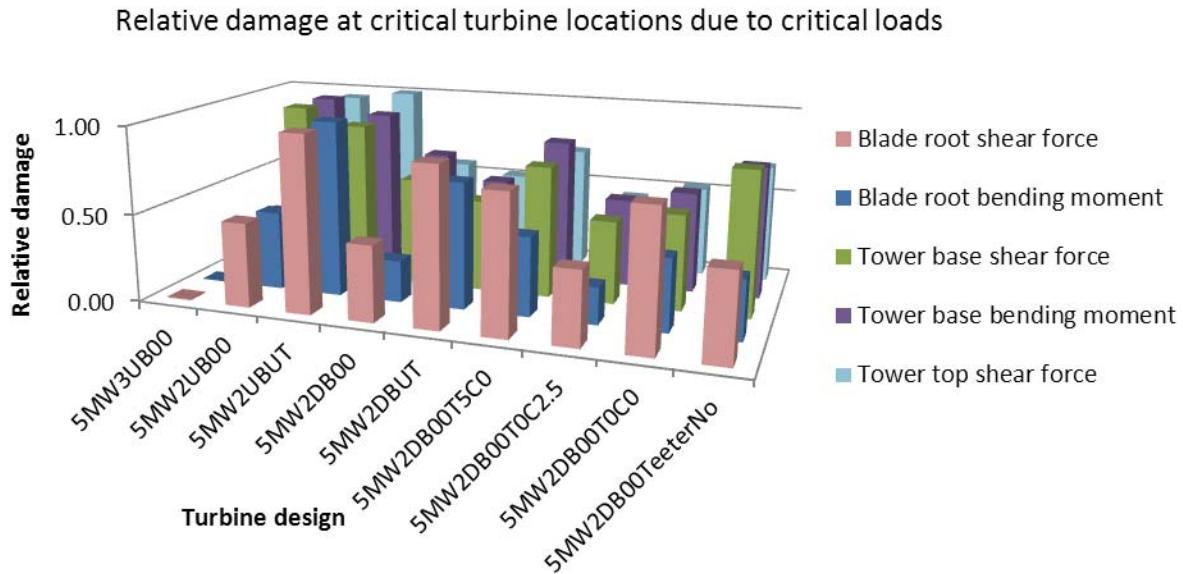




Figure 9.20. Average damage accumulation at critical turbine location.

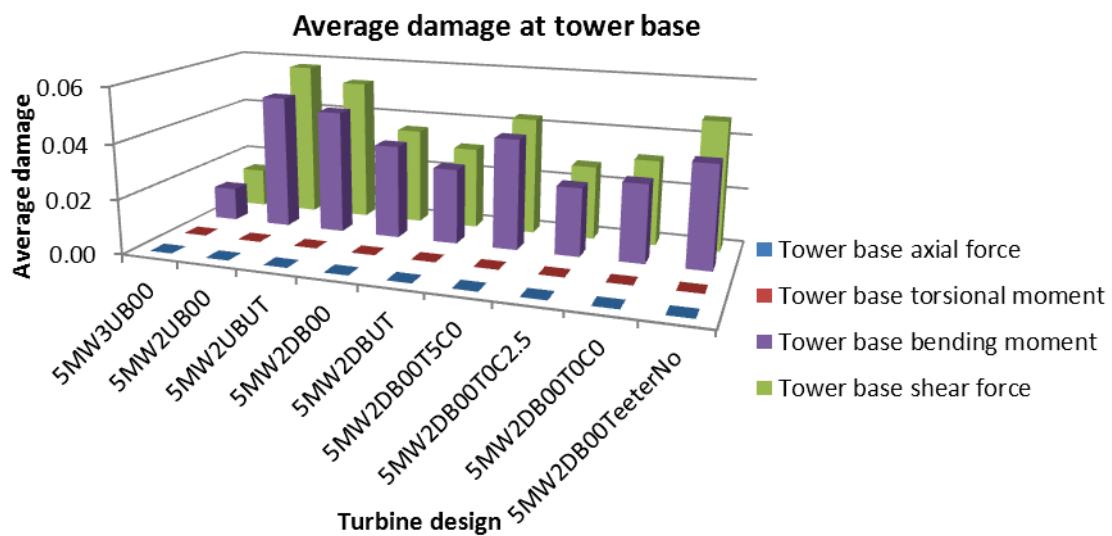
Figure 9.21 compares the relative damage due to the most critical loads for the turbine designs. The design with most damage was considered to have relative damage of one and the rest of the designs were ranked accordingly. For example, from Figure 9.21, it is observed that design 5MW3UB00 experiences the least damage caused by the blade root bending moment among all other designs. Likewise, 5MW2DB00 turbine experiences relatively lower damage due to blade root bending moment than the other designs. 5MW2DB00 turbine experiences the most damage caused by the tower base bending moment. Tower top shear force causes most damage in 5MW2DBUT turbine.



**Figure 9.21. Relative damage accumulation at the critical turbine location of each turbine.**

The relative damage at each location is discussed below:

#### *Damage at Tower Base and Tower Top*


Figure 9.22 to Figure 9.25 illustrate the damage at the tower base and the tower top. Shear forces and bending moments dominate at the tower base in terms of damage accumulation. Adding a teeter mechanism reduces significantly the fatigue loading due to the bending moment at the tower top, whereas this effect is insignificant at the tower base where thrust loads dominate the moments. In relative comparison, the 2-bladed downwind turbine with baseline blades having zero tilt angle and  $2.5^\circ$  coning angle incurs less damage at the tower base than other two bladed turbines. The 2-bladed upwind turbine with baseline blades experiences most damage due to shear force and bending moment. The average damage accumulation at the tower base and tower top due to different load effects is listed in Table 9.23 and Table 9.24, respectively. Figure 9.24 and Figure 9.25 depict the same results for the tower top.

**Table 9.23. Lifetime damage at tower base.**

| Turbine design   | Shear force | Bending moment | Axial force | Torsional moment |
|------------------|-------------|----------------|-------------|------------------|
| 5MW3UB00         | 1.4277E-02  | 1.2199E-02     | 6.3623E-25  | 3.0116E-12       |
| 5MW2UB00         | 5.7550E-02  | 4.9290E-02     | 1.6840E-23  | 1.6244E-11       |
| 5MW2UBUT         | 5.2446E-02  | 4.5283E-02     | 1.8498E-23  | 1.5223E-11       |
| 5MW2DB00         | 3.5496E-02  | 3.4299E-02     | 1.4951E-21  | 1.3957E-10       |
| 5MW2DBUT         | 3.0143E-02  | 2.7582E-02     | 4.4547E-21  | 3.7905E-10       |
| 5MW2DB00T5C0     | 4.3164E-02  | 4.0436E-02     | 1.2337E-21  | 1.0677E-10       |
| 5MW2DB00T0C2.5   | 2.7140E-02  | 2.4956E-02     | 1.5365E-21  | 4.9833E-11       |
| 5MW2DB00T0C0     | 3.1286E-02  | 2.8473E-02     | 4.3420E-22  | 4.1915E-11       |
| 5MW2DB00TeeterNo | 4.7185E-02  | 3.7426E-02     | 1.7048E-22  | 3.0414E-09       |

**Table 9.24. Lifetime damage at tower top.**

| Turbine design   | Shear force | Bending moment | Axial force | Torsional moment |
|------------------|-------------|----------------|-------------|------------------|
| 5MW3UB00         | 7.9408E-03  | 4.0846E-10     | 5.6596E-23  | 3.0132E-12       |
| 5MW2UB00         | 2.7979E-02  | 5.0298E-10     | 2.0364E-21  | 1.6242E-11       |
| 5MW2UBUT         | 2.9275E-02  | 7.7331E-10     | 1.9557E-21  | 1.5223E-11       |
| 5MW2DB00         | 1.6597E-02  | 9.6986E-08     | 2.5073E-19  | 1.3965E-10       |
| 5MW2DBUT         | 1.5124E-02  | 1.8128E-07     | 7.3457E-19  | 3.7902E-10       |
| 5MW2DB00T5C0     | 2.0464E-02  | 5.3171E-08     | 2.1331E-19  | 1.0679E-10       |
| 5MW2DB00T0C2.5   | 1.2764E-02  | 8.5464E-08     | 2.5074E-19  | 4.9859E-11       |
| 5MW2DB00T0C0     | 1.5257E-02  | 6.1773E-08     | 7.0512E-20  | 4.1931E-11       |
| 5MW2DB00TeeterNo | 1.9935E-02  | 5.3762E-05     | 3.0132E-20  | 3.0415E-09       |



**Figure 9.22. Average damage at tower base.**

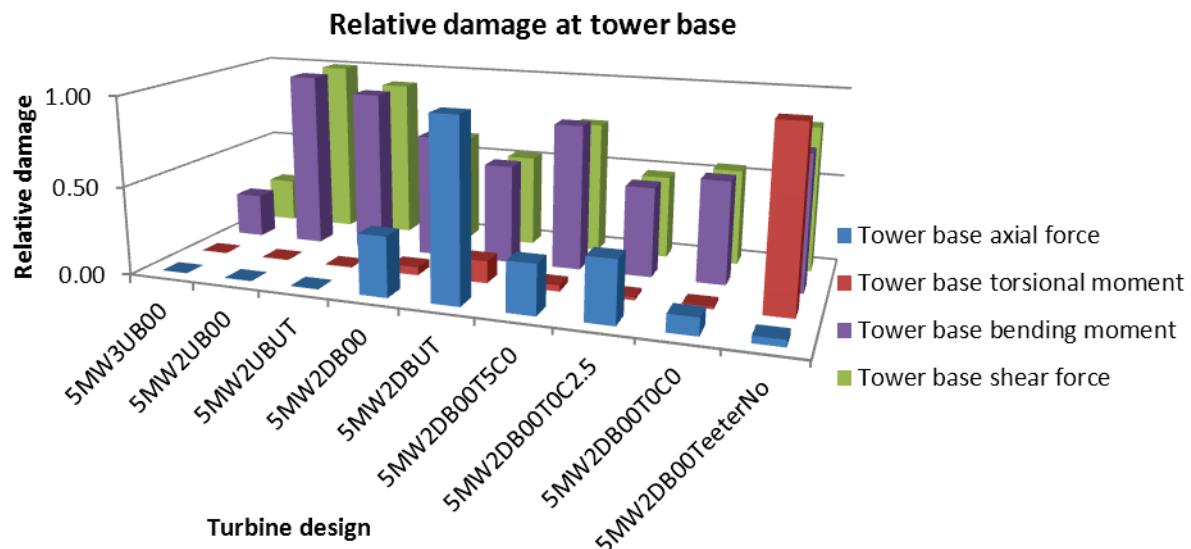



Figure 9.23. Relative damage at tower base.

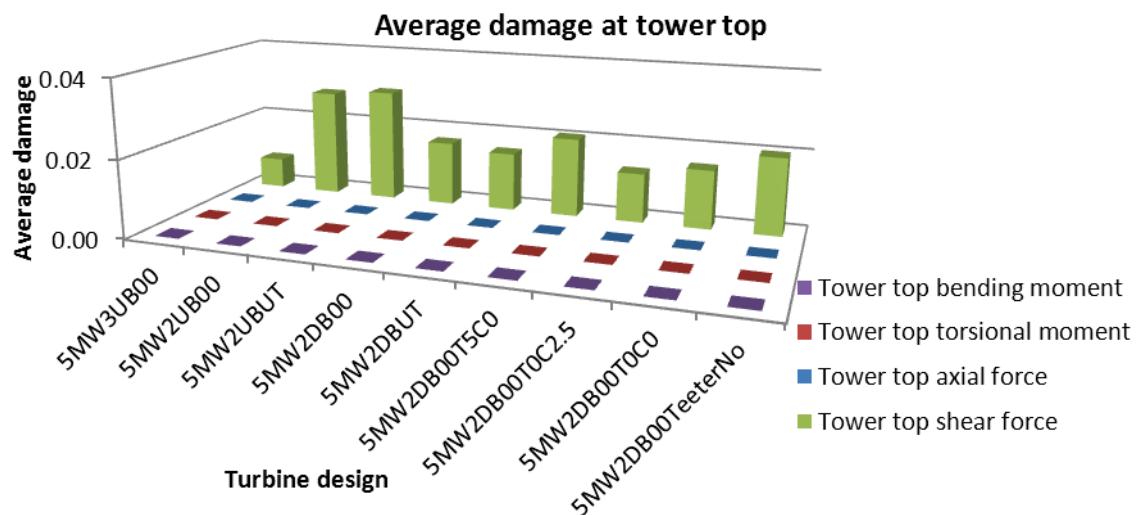



Figure 9.24. Average damage at tower top.

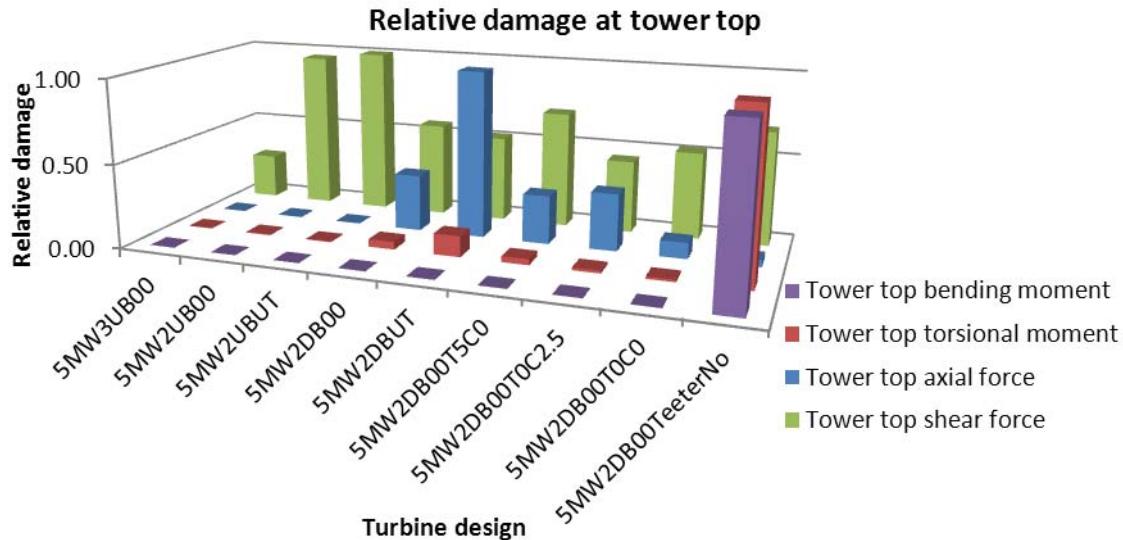



Figure 9.25. Relative damage at tower top.

### Damage at Blade Root

Table 9.25 compares the damage at the blade root across all the turbine designs. The 2-bladed upwind and downwind blade designs with the BUT blade are the most vulnerable to fatigue failure. The 2-bladed downwind turbine with baseline blades is safe having comparable fatigue damage to the baseline reference 3-bladed upwind turbine at the blade root.

These results in Figure 9.26 suggest that the blade root is more vulnerable to fatigue due to the bending moment than other turbine components.

Table 9.25. Lifetime damage at blade root.

| Turbine design   | Shear force | Bending moment | Axial force | Torsional moment |
|------------------|-------------|----------------|-------------|------------------|
| 5MW3UB00         | 2.9347E-04  | 8.1039E-04     | 3.4951E-06  | 4.4155E-08       |
| 5MW2UB00         | 2.1350E-02  | 6.5222E-02     | 9.7910E-05  | 1.7440E-06       |
| 5MW2UBUT         | 4.4421E-02  | 1.4524E-01     | 4.2582E-04  | 3.3670E-06       |
| 5MW2DB00         | 1.9088E-02  | 3.4523E-02     | 1.1141E-04  | 6.7553E-07       |
| 5MW2DBUT         | 3.9693E-02  | 1.0416E-01     | 3.9767E-04  | 3.0143E-06       |
| 5MW2DB00T5C0     | 3.4721E-02  | 6.5354E-02     | 1.0144E-04  | 1.5607E-06       |
| 5MW2DB00T0C2.5   | 1.8456E-02  | 3.0595E-02     | 1.1077E-04  | 1.2343E-06       |
| 5MW2DB00T0C0     | 3.4433E-02  | 5.9418E-02     | 9.2329E-05  | 3.1834E-06       |
| 5MW2DB00TeeterNo | 2.1916E-02  | 4.8876E-02     | 8.7312E-05  | 7.5430E-07       |

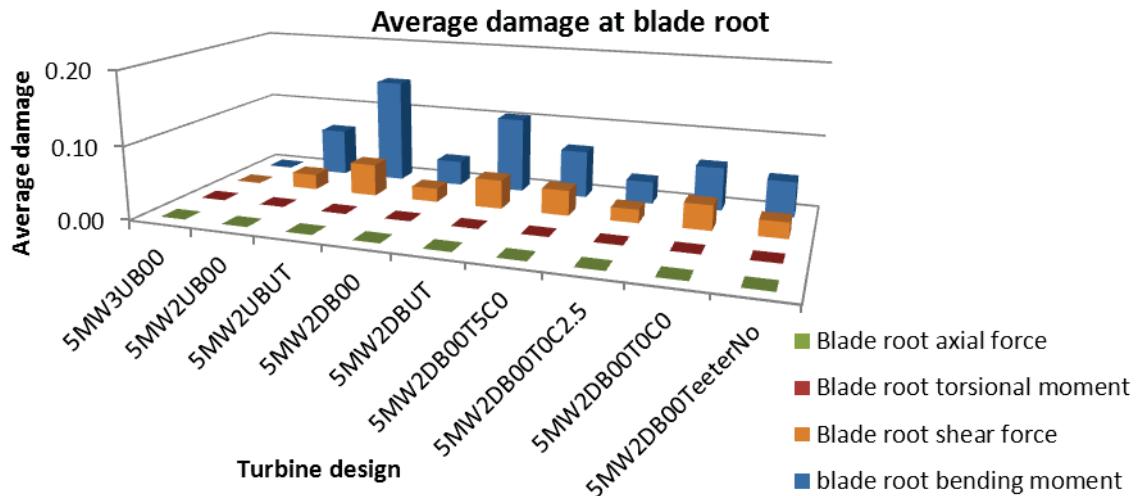



Figure 9.26. Average damage at blade root.

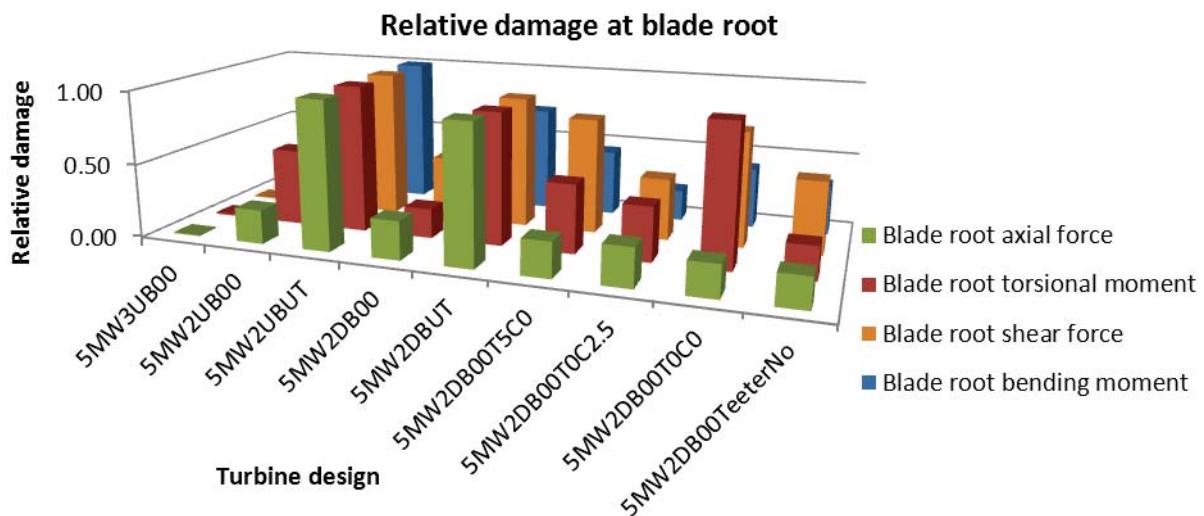
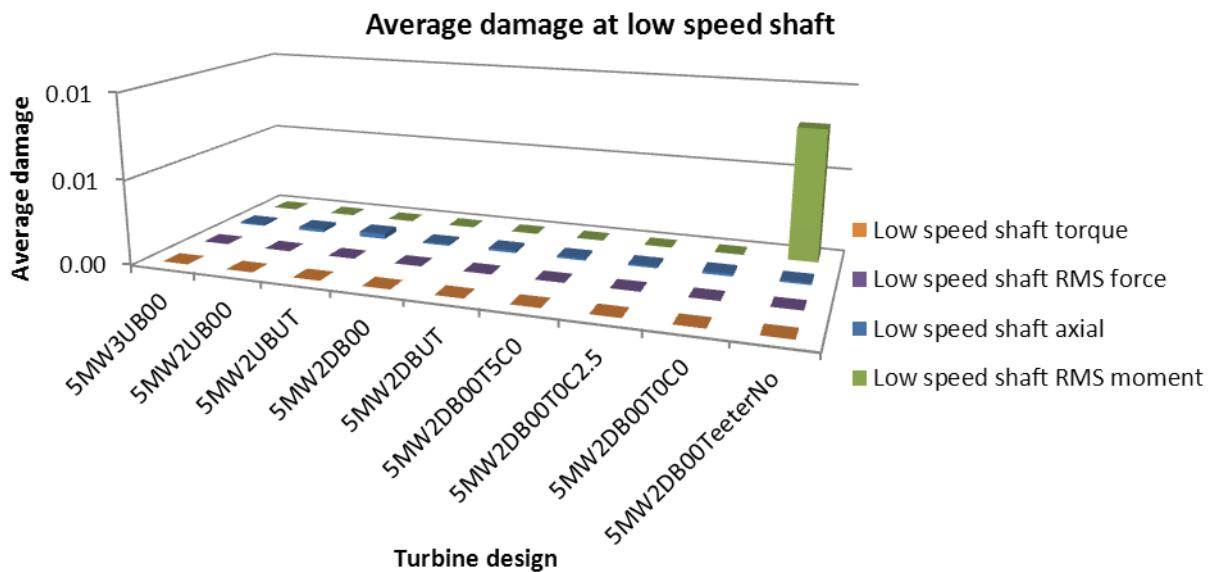
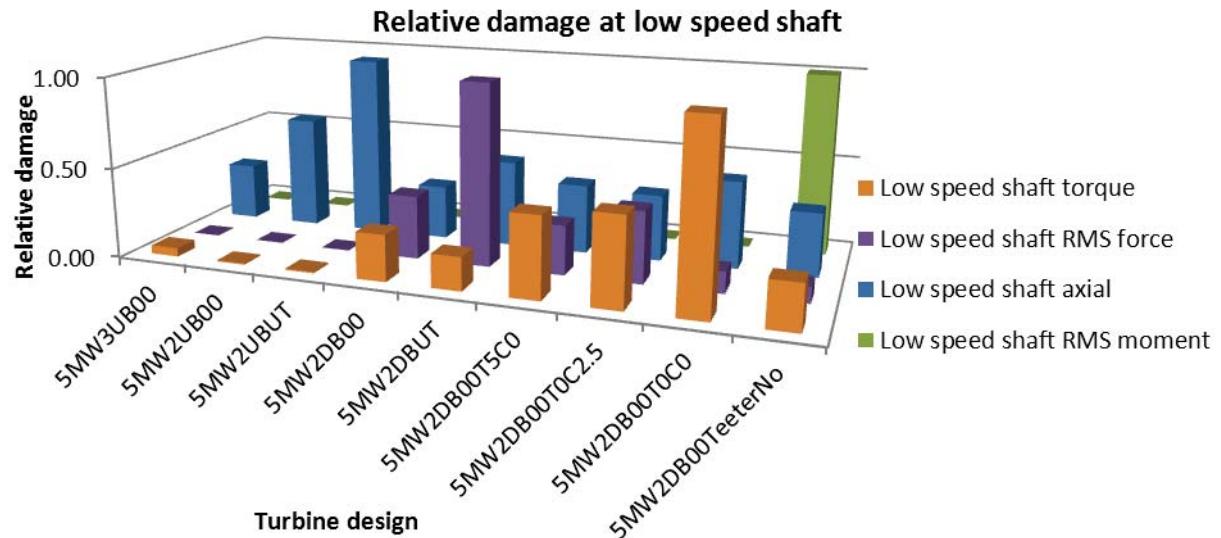



Figure 9.27. Relative damage at blade root.

Figure 9.27 shows that, among all turbine designs considered in this study, 5MW2UBUT design accumulates more damage at the blade root than any other design. It is also observed that increasing the coning angle from 0 to 2.5° reduces the torsional moment, shear force as well as bending moment. However, damage caused by axial force is minimum for the turbine with zero coning angle. Reducing tilt angle from 5 to 0° increases the damage due to the torsional moment.

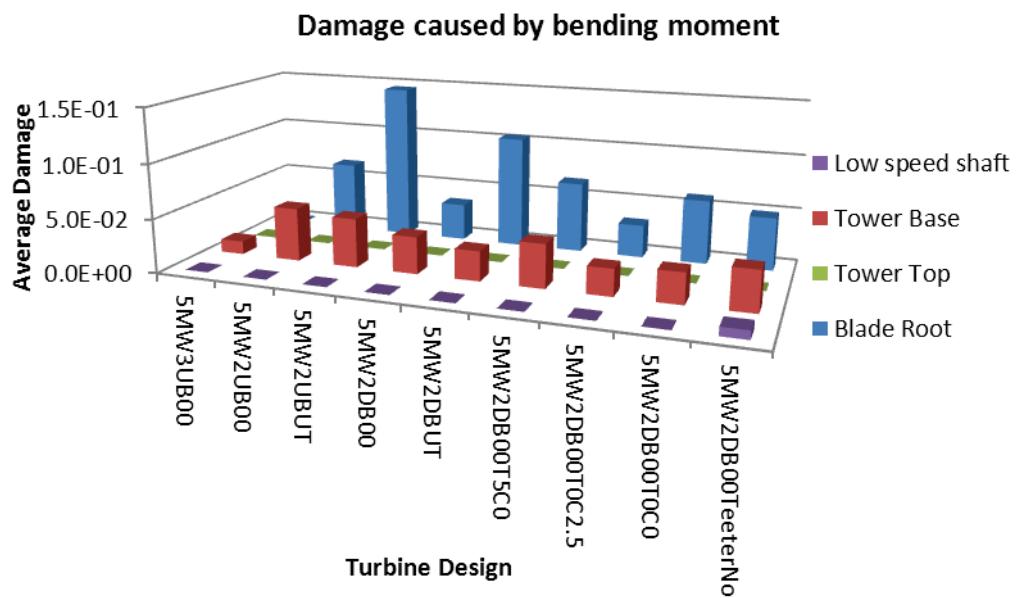

### Damage at Low Speed Shaft

Introducing a teeter mechanism reduces the LSS bending moments significantly as shown in Figure 9.28. The relative damage comparison in Figure 9.29 shows that increasing the tilt angle from zero degrees to five degrees considerably reduces the damage inflicted to the LSS by torsional moment. Also, increasing coning angle from zero degrees to 2.5 degrees has the similar effect on the design.


The lifetime cumulative damage inflicted to the LSS due to different load effects is listed in Table 9.26.

**Table 9.26. Lifetime damage at LSS.**

| Turbine design   | Shear force | Bending moment | Axial force | Torsional moment |
|------------------|-------------|----------------|-------------|------------------|
| 5MW3UB00         | 1.5453E-18  | 1.3805E-07     | 1.0231E-04  | 1.0886E-08       |
| 5MW2UB00         | 8.1575E-17  | 8.3091E-07     | 2.0157E-04  | 1.8108E-09       |
| 5MW2UBUT         | 7.6770E-17  | 1.1795E-06     | 3.2269E-04  | 1.8571E-09       |
| 5MW2DB00         | 2.7042E-14  | 1.0142E-05     | 9.6315E-05  | 5.8518E-08       |
| 5MW2DBUT         | 7.7535E-14  | 1.1017E-05     | 1.5381E-04  | 4.2132E-08       |
| 5MW2DB00T5C0     | 2.1046E-14  | 1.0868E-05     | 1.2291E-04  | 1.0179E-07       |
| 5MW2DB00T0C2.5   | 3.0401E-14  | 3.9987E-06     | 1.1719E-04  | 1.1194E-07       |
| 5MW2DB00T0C0     | 9.2225E-15  | 4.9234E-06     | 1.5460E-04  | 2.2945E-07       |
| 5MW2DB00TeeterNo | 7.0115E-15  | 7.8443E-03     | 1.1258E-04  | 5.6861E-08       |




**Figure 9.28. Average damage at LSS**



**Figure 9.29. Relative damage at LSS.**

The average damage accumulation at critical turbine locations caused by bending moment, shear force, axial force and torsional moment are summarized for different turbine designs in Figure 9.30 to Figure 9.33.



**Figure 9.30. Average damage due to bending moment at tower base, tower top, blade root, and LSS.**

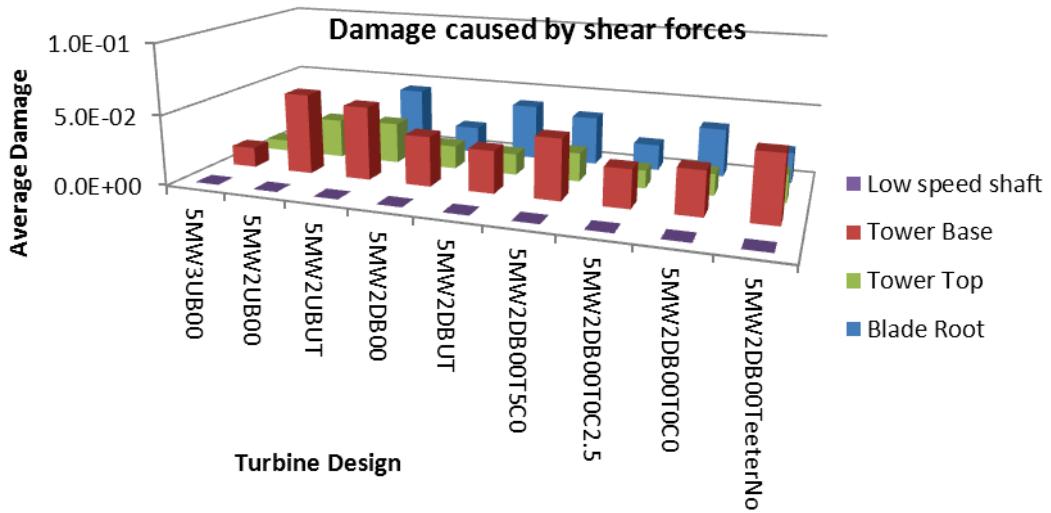



Figure 9.31. Average damage due to shear force at LSS, tower base, tower top, and blade root.

Figure 9.31 shows that blade shear force inflicts more damage at the tower base than at other locations.

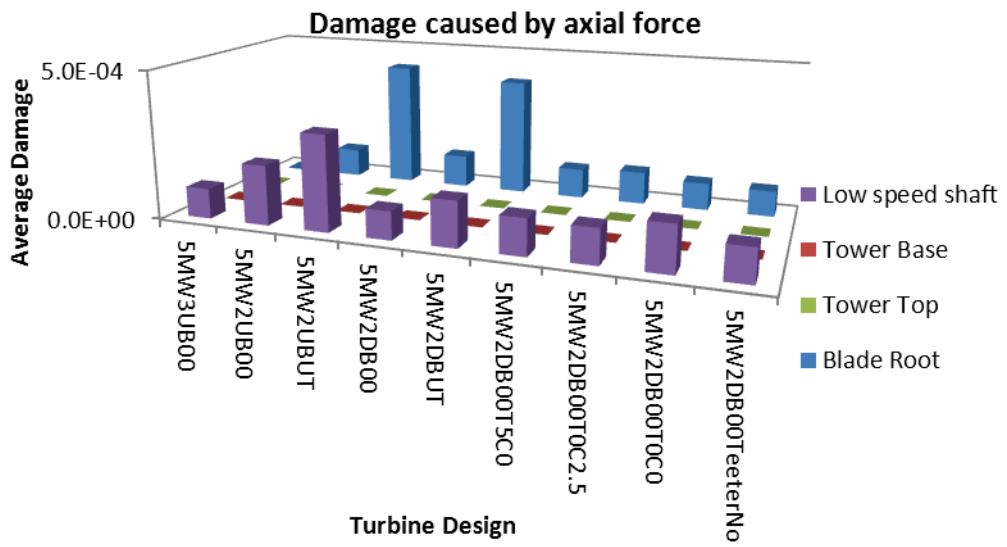
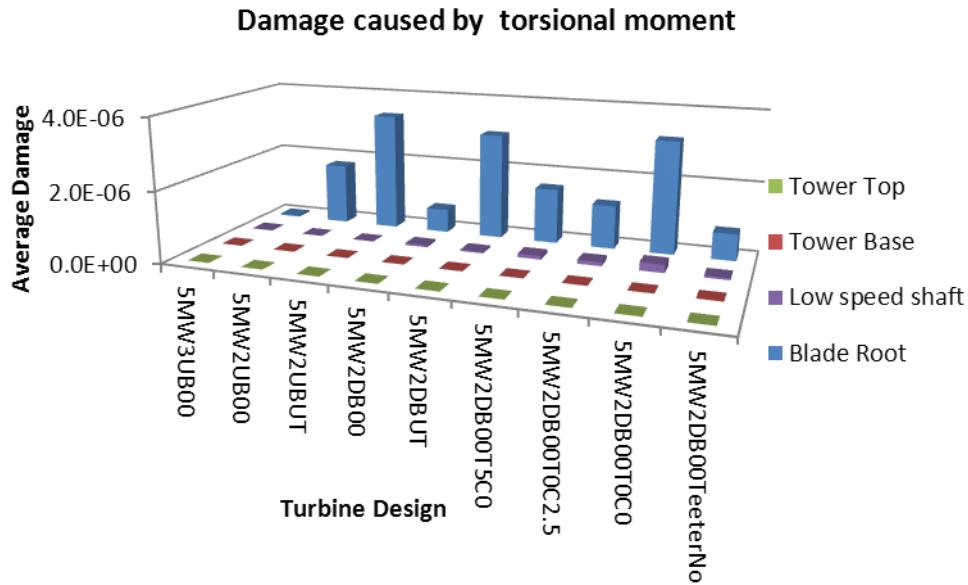




Figure 9.32. Average damage due to axial force at LSS, tower base, tower top, and blade root.



**Figure 9.33. Average damage due to torsional moment at tower base, tower top, blade root, and LSS.**

### Conclusions

The results of fatigue analysis suggest that the 3-bladed baseline NREL turbine has relatively less damage at the four critical locations than the 2-bladed upwind and downwind turbine designs in this study. The 2-bladed upwind and downwind turbines with the BUT blade are the most vulnerable to fatigue failure. In addition, the results indicate that the damage due to bending moment on the blade root often dominates. Utilization of a teeter mechanism in a turbine system can effectively decrease the fatigue damage. Increasing the coning angle also decreases damage caused by bending moments, shear forces and torsional moments at a blade root. Increasing the tilt angle reduces the damage associated with torsional moment at the blade root and damage caused by the LSS torsional moment.

## 9.2 Loads Applied to the Foundation

In this section, the loads that are transferred from the turbine to the foundation for different configurations are compared. For this purpose, 3- and 2-bladed upwind and 2-bladed downwind configurations were considered. It should be noted that the wave and ice loads are driving the foundation design as it was shown in Chapter 7. Although the loads due to the operation of the turbine are not dominating the foundation design, the comparison of these loads would be beneficial and is presented here.

Table 9.27 compares the load effects at the base of the tower under normal operating conditions for different configurations.

In general, 2-bladed designs are subjected to higher shear forces and bending moments than the 3-bladed design. The largest maximum shear force is observed for the 2-bladed downwind

configuration, but it is almost equal to the shear force for the 2-bladed upwind configuration. The same trend is observed for the bending moments. As expected, the axial forces for the 2-bladed configurations are slightly smaller than those of the design with three blades. The torsional moment at the base of the tower for 2-bladed downwind configuration is comparable with that for the 3-bladed one. However, the torsional moment for the 2-bladed upwind configuration is considerably smaller than that for the other two concepts.

Different trends are observed for average load effects. The 3-bladed concept has the maximum average shear force. This could be because average thrust load is larger for this concept. For the same reason, the average bending moments are smaller for the 2-bladed downwind configuration. Average axial force is smaller for the 2-bladed concepts as the turbine weight is smaller. However, the torsional moment for the 2-bladed downwind configuration is the largest among the three concepts.

**Table 9.27. Result data at tower base under normal operating conditions.**

| Load Effects    |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                 |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 1181          | DLC1.3     | 15.0        | 93942           | DLC1.3     | 15.0        | -5654         | DLC1.3     | 25.0        | 5090             | DLC1.4     | 13.4        |
|                 | Min | 1             | DLC1.3     | 21.0        | 100             | DLC1.3     | 25.0        | -5836         | DLC1.3     | 17.0        | -9119            | DLC1.4     | 11.4        |
| Averages        | Max | 685           | DLC1.5H    | 11.0        | 53934           | DLC1.5V    | 11.0        | -5730         | DLC1.5H    | 25.0        | 827              | DLC1.4     | 13.4        |
|                 | Min | 77            | DLC1.3     | 3.0         | 4816            | DLC1.3     | 3.0         | -5788         | DLC1.5V    | 11.0        | -2625            | DLC1.4     | 9.4         |
| <b>5MW2UB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 1405          | DLC1.4     | 9.4         | 109496          | DLC1.4     | 9.4         | -5498         | DLC1.3     | 25.0        | 4418             | DLC1.4     | 13.4        |
|                 | Min | 1             | DLC1.3     | 21.0        | 95              | DLC1.3     | 25.0        | -5679         | DLC1.3     | 25.0        | -7922            | DLC1.4     | 11.4        |
| Averages        | Max | 606           | DLC1.5H    | 11.0        | 48577           | DLC1.5V    | 11.0        | -5556         | DLC1.3     | 3.0         | 453              | DLC1.4     | 13.4        |
|                 | Min | 61            | DLC1.3     | 3.0         | 4595            | DLC1.3     | 3.0         | -5608         | DLC1.3     | 11.0        | -1802            | DLC1.4     | 9.4         |
| <b>5MW2DB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 1495          | DLC1.4     | 9.4         | 118349          | DLC1.4     | 9.4         | -5353         | DLC1.4     | 9.4         | 5079             | DLC1.3     | 25.0        |
|                 | Min | 1             | DLC1.3     | 25.0        | 84              | DLC1.3     | 21.0        | -5718         | DLC1.3     | 25.0        | -9307            | DLC1.4     | 11.4        |
| Averages        | Max | 576           | DLC1.5V    | 11.0        | 47465           | DLC1.5V    | 11.0        | -5514         | DLC1.5H    | 11.0        | 1588             | DLC1.3     | 25.0        |
|                 | Min | 59            | DLC1.3     | 3.0         | 5374            | DLC1.5H    | 3.0         | -5551         | DLC1.3     | 25.0        | -2354            | DLC1.4     | 9.4         |

Table 9.28 is the counterpart of Table 9.27 for fault conditions.

Maximum shear forces are largest for the 2-bladed upwind configuration. The shear force for 3-bladed design and the 2-bladed downwind configuration are lower. The maximum bending moments of the three configurations are almost equal but the one for the 2-bladed upwind design is slightly larger than the other two. For axial forces, similar to normal operating conditions the loads are smaller for 2-bladed concepts. Torsional moments under fault conditions are considerably larger than those under normal operating conditions. The torsional moments are larger for 2-bladed configurations. The smaller of the two is for the downwind configuration. Similar to maximum loads, the average shear force is the smallest for 2-bladed downwind configuration. The maximum average bending moments are smallest for the 2-bladed downwind configuration. For average axial forces, similar trends to normal operating conditions are observed under fault conditions. Average torsional moments are largest for the 2-bladed downwind configuration among the three concepts.

**Table 9.28. Result data at tower base under fault conditions.**

| Load Effects    |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                 |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 1386          | DLC2.3     | 25.0        | 111495          | DLC2.3     | 25.0        | -5526         | DLC2.1P    | 25.0        | 7782             | DLC2.1P    | 11.4        |
|                 | Min | 0             | DLC2.3     | 11.4        | 38              | DLC2.3     | 9.4         | -5828         | DLC2.3     | 11.4        | -8876            | DLC2.1P    | 25.0        |
| Averages        | Max | 392           | DLC2.3     | 25.0        | 30759           | DLC2.3     | 25.0        | -5671         | DLC2.1P    | 25.0        | 27               | DLC2.1G    | 11.4        |
|                 | Min | 222           | DLC2.1P    | 11.4        | 17788           | DLC2.1P    | 11.4        | -5737         | DLC2.1P    | 11.4        | -1868            | DLC2.1P    | 25.0        |
| <b>5MW2UB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 1498          | DLC2.3     | 25.0        | 115128          | DLC2.3     | 25.0        | -5211         | DLC2.1P    | 25.0        | 10261            | DLC2.1P    | 11.4        |
|                 | Min | 0             | DLC2.3     | 11.4        | 40              | DLC2.3     | 25.0        | -5750         | DLC2.1P    | 25.0        | -17278           | DLC2.1P    | 25.0        |
| Averages        | Max | 347           | DLC2.3     | 13.4        | 27228           | DLC2.3     | 13.4        | -5552         | DLC2.1G    | 25.0        | 1576             | DLC2.1P    | 25.0        |
|                 | Min | 192           | DLC2.1G    | 11.4        | 15465           | DLC2.1G    | 11.4        | -5596         | DLC2.1P    | 25.0        | -238             | DLC2.3     | 25.0        |
| <b>5MW2DB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 1380          | DLC2.3     | 25.0        | 110466          | DLC2.3     | 25.0        | -5291         | DLC2.1P    | 25.0        | 9330             | DLC2.1P    | 11.4        |
|                 | Min | 1             | DLC2.3     | 13.4        | 37              | DLC2.3     | 13.4        | -5745         | DLC2.1P    | 25.0        | -13638           | DLC2.1P    | 25.0        |
| Averages        | Max | 309           | DLC2.3     | 13.4        | 24630           | DLC2.3     | 13.4        | -5544         | DLC2.3     | 11.4        | 2431             | DLC2.1P    | 25.0        |
|                 | Min | 177           | DLC2.3     | 9.4         | 14527           | DLC2.3     | 9.4         | -5610         | DLC2.1P    | 25.0        | 142              | DLC2.3     | 9.4         |

Table 9.29 demonstrates the load effects that are applied to the foundation under parked conditions.

The shear forces applied to the base are the largest for the 3-bladed design. This intuitively makes sense as the drag loads for three blades would be larger than that for two blades. Similar trends are observed for average shear forces. For the same reason the bending moments that are observed for the 3-bladed design are the largest among the three concepts. The differences that are observed between the results of 2-bladed downwind and upwind are mostly due to the different tilt and coning angles.

The axial forces, similar to normal operating and fault conditions are smaller for 2-bladed concepts. Maximum and average torsional moments are smaller for the 2-bladed concepts. They are slightly smaller for 2-bladed upwind case. This could be due to different tilt and cone angle settings.

**Table 9.29. Result data at tower base under parked conditions.**

| Load Effects    |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                 |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 877           | DLC6.2a    | 37.4        | 67766           | DLC6.2a    | 37.4        | -5636         | DLC6.1a    | 37.4        | 3901             | DLC7.1a    | 25.0        |
|                 | Min | 0             | DLC6.2a    | 37.4        | 41              | DLC6.2a    | 37.4        | -5758         | DLC6.2a    | 37.4        | -4250            | DLC6.2a    | 37.4        |
| Averages        | Max | 342           | DLC6.2a    | 37.4        | 28359           | DLC6.2a    | 37.4        | -5636         | DLC6.1a    | 37.4        | 3800             | DLC7.1a    | 25.0        |
|                 | Min | 24            | DLC6.3a    | 25.0        | 959             | DLC6.3a    | 25.0        | -5756         | DLC7.1a    | 25.0        | -1989            | DLC6.2a    | 37.4        |
| <b>5MW2UB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 539           | DLC6.2a    | 37.4        | 41614           | DLC6.2a    | 37.4        | -5429         | DLC6.2a    | 37.4        | 3354             | DLC7.1a    | 25.0        |
|                 | Min | 0             | DLC6.2a    | 37.4        | 6               | DLC6.2a    | 37.4        | -5583         | DLC6.2a    | 37.4        | -186             | DLC6.2a    | 37.4        |
| Averages        | Max | 181           | DLC6.2a    | 37.4        | 13970           | DLC6.2a    | 37.4        | -5431         | DLC6.2a    | 37.4        | 3265             | DLC7.1a    | 25.0        |
|                 | Min | 8             | DLC6.2a    | 37.4        | 658             | DLC6.2a    | 37.4        | -5568         | DLC7.1a    | 25.0        | -51              | DLC6.2a    | 37.4        |
| <b>5MW2DB00</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums        | Max | 596           | DLC6.2a    | 37.4        | 45467           | DLC6.2a    | 37.4        | -5519         | DLC6.2a    | 37.4        | 3565             | DLC7.1a    | 25.0        |
|                 | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -5671         | DLC6.2a    | 37.4        | -153             | DLC6.2a    | 37.4        |
| Averages        | Max | 228           | DLC6.2a    | 37.4        | 17594           | DLC6.2a    | 37.4        | -5544         | DLC6.2a    | 37.4        | 3280             | DLC7.1a    | 25.0        |
|                 | Min | 4             | DLC6.2a    | 37.4        | 462             | DLC6.2a    | 37.4        | -5669         | DLC6.2a    | 37.4        | -118             | DLC6.1a    | 37.4        |

Overall, the load effects applied to the foundation are larger for the 2-bladed concepts. The torsional moments under fault conditions increase by 97% and 54% for 2-bladed upwind and downwind configurations, respectively. However, as it was mentioned in Chapter 7, these loads are not significant compared to the wave and ice loads that are applied to the foundation. Therefore, they would not dominate the foundation design.

## 9.3 Analysis of System Performance and Cost

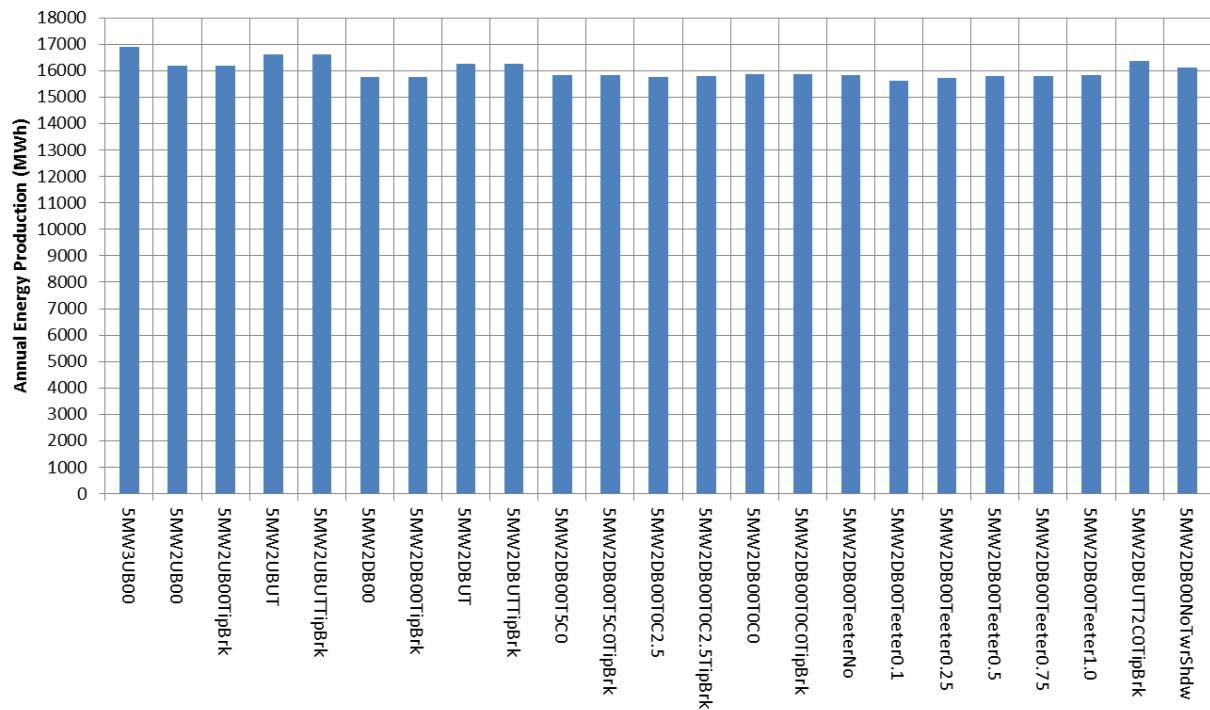
In this section, a comparison of the annual power production, and cost of the wind turbine designs in this project is presented. Recommendations for increasing power production are provided. Moreover, a final 2-bladed downwind design is proposed.

### 9.3.1 Annual Energy Production in Lake Erie Environment

The predicted AEP results for wind turbine models considered in this project are listed in Table 9.30, and are compared in Figure 9.34. These AEP results are calculated according to the simulation based annual energy production estimation method of Section 4.6. These AEP values include the efficiency of the drivetrain.

Overall, 2-bladed upwind and downwind turbines produce slightly less AEP than their 3-bladed upwind counterparts. Compared to 5MW 3-bladed turbines, the 5MW 2-bladed upwind turbines with the baseline blade produce about 4.3% less AEP, and 2-bladed downwind machines produce 6.8% less AEP. On the other hand, these differences are reduced by about 2.7% and 3%, respectively, for the upwind and downwind machines by using BUT blades.

To quantify how the tower shadow affects AEP, the AEP of two 5MW 2-bladed downwind models with and without tower shadow effect are compared. The model without the tower shadow effect produces 2.26% more AEP than the model that accounts for it. From this comparison, it can be concluded that about 70% of the AEP loss in the downwind configuration is due to the tower shadow effect.


As the shaft tilt and conning angles approach zero degrees, the AEP increases. Comparing the model having a  $5^\circ$  shaft tilt angle and zero degree conning angle, with the model having zero degree shaft tilt angle and  $2.5^\circ$  conning angle, reducing the conning angle to zero degrees is more effective than reducing the shaft tilt angle to zero in order to increase AEP. For example, a  $2.5^\circ$  decrease in conning angle improved the AEP by approximately 0.51%, whereas a  $5^\circ$  shaft tilt angle change increased the AEP by only 0.15% (for the models without tip-brakes).

The stiffness of the teeter also affects the AEP. Generally, as the teeter stiffness decreases so does the AEP. Thus, using stiffer teeter stop is more beneficial as long as they do not increase the load on the wind turbine structure.

Tip-brakes reduce the natural frequency of the blades because of their mass. The natural frequency results listed in Section 6.5 show that attaching a tip-brake reduces the natural frequencies of the tower and the blades. The attachment of the tip-brake changes the mode shapes, and the corresponding mode shape data are used for the FAST simulation for the cases with and without tip-brakes. Because adding a tip brake reduces the natural frequency, blades

with a tip brake may vibrate more smoothly than without. Rotor blades may produce higher AEP but detailed investigations are necessary to determine whether tip-brakes help to harvest more AEP than the turbines that do not use tip-brakes. One suggested concept to improve AEP can be a merged winglet type tip-brake. Installing tip-brakes to reduce load effects and increase minimum tower-to-blade clearance in emergency shutdown procedure under fault conditions can potentially help increase AEP. In conclusion, to maximize AEP for the 2-bladed downwind machine, the following design changes are recommended in the order of their effectiveness:

- Choose appropriate blade length for the desired rating considering the wind resource at the installation site.
- Optimize the twist distribution for the 2-bladed machine.
- Minimize the tower shadow effect.
- Use stiffer teeter as long as it does not increase the loads considerably on the wind turbine structure.
- Use zero degree conning angle first and then adjust the shaft tilt angle to near zero degree while maintaining an acceptable minimum tower-to-blade clearance.
- Use tip-brakes. Although this change is listed last, attaching a tip-brake to the blade is recommended because of its other advantages, such as larger tower-to-blade clearance during an emergency shutdown procedure.



**Figure 9.34. AEP comparisons of wind turbine models.**

**Table 9.30. AEP comparisons of wind turbine models.**

| #  | Model                | AEP (MWh) | %Difference |
|----|----------------------|-----------|-------------|
| 1  | 5MW3UB00             | 16912     | 0.00        |
| 2  | 5MW2UB00             | 16180     | -4.33       |
| 3  | 5MW2UB00TipBrk       | 16193     | -4.25       |
| 4  | 5MW2UBUT             | 16627     | -1.69       |
| 5  | 5MW2UBUTTipBrk       | 16630     | -1.67       |
| 6  | 5MW2DB00             | 15755     | -6.84       |
| 7  | 5MW2DB00TipBrk       | 15768     | -6.76       |
| 8  | 5MW2DBUT             | 16242     | -3.96       |
| 9  | 5MW2DBUTTipBrk       | 16245     | -3.94       |
| 10 | 5MW2DB00T5C0         | 15835     | -6.37       |
| 11 | 5MW2DB00T5C0TipBrk   | 15844     | -6.31       |
| 12 | 5MW2DB00T0C2.5       | 15778     | -6.70       |
| 13 | 5MW2DB00T0C2.5TipBrk | 15789     | -6.64       |
| 14 | 5MW2DB00T0C0         | 15872     | -6.15       |
| 15 | 5MW2DB00T0C0TipBrk   | 15883     | -6.09       |
| 16 | 5MW2DB00TeeterNo     | 15847     | -6.30       |
| 17 | 5MW2DB00Teeter0.1    | 15622     | -7.63       |
| 18 | 5MW2DB00Teeter0.25   | 15739     | -6.94       |
| 19 | 5MW2DB00Teeter0.5    | 15793     | -6.61       |
| 20 | 5MW2DB00Teeter0.75   | 15812     | -6.51       |
| 21 | 5MW2DB00Teeter1.0    | 15821     | -6.45       |
| 22 | 5MW2DB00NoTwrShadow  | 16111     | -4.74       |

### 9.3.2 Cost Model Results and Discussion

The following results are for the three models (Baseline NREL Design 3B, University of Toledo Design 2BUT, and an Optimized 2BOPT Design) outlined in Chapter 8.

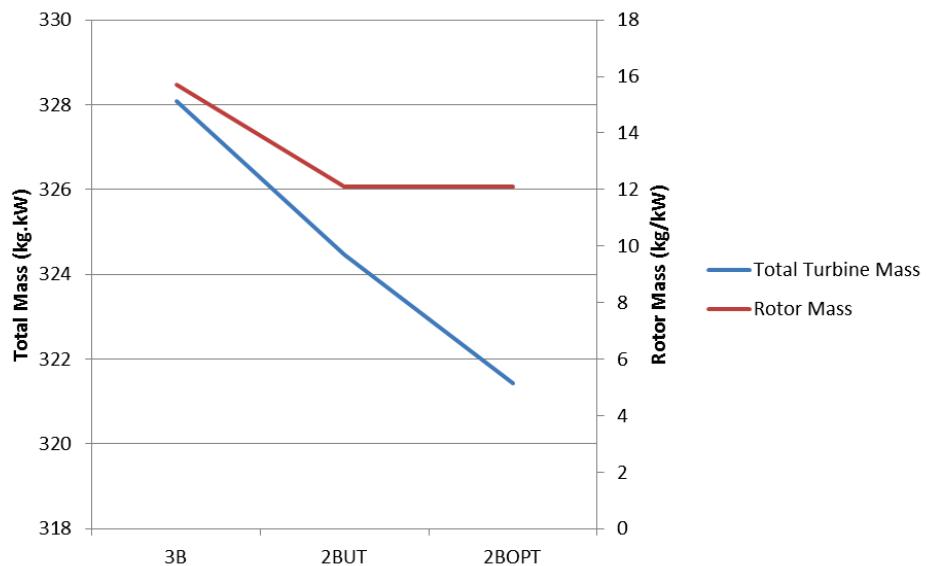
#### 9.3.2.1 Initial Capital Costs Turbine – Results

This section looks at the Mass and Cost estimates of the wind turbine and foundation. Combined with the next subsection, Balance of System Results, the two make up the upfront capital needed to install the wind turbine. The following subsections cover the operating, maintenance and replacement cost during the wind turbine's system life.

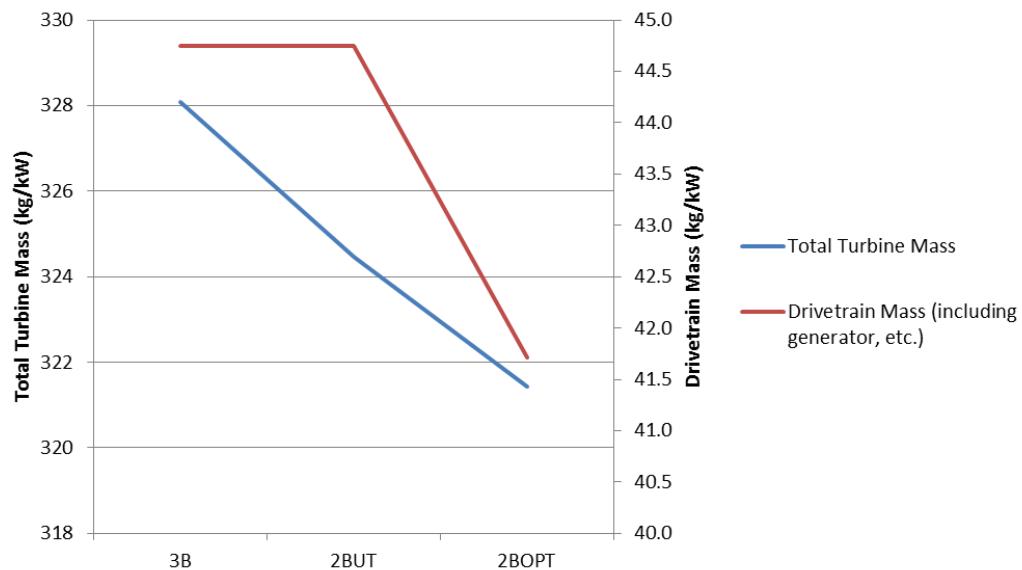
**Table 9.31. Levelized cost of energy (LCOE) \$/kWhr.**

| \$/kWhr               | 3B     | 2BUT   | 2BOPT  |
|-----------------------|--------|--------|--------|
| Turbine Capital Costs | 0.0511 | 0.0493 | 0.0469 |
| BOS Capital Costs     | 0.0387 | 0.0362 | 0.0359 |
| Repair & Maintenance  | 0.0209 | 0.0204 | 0.0194 |
| Levelized Replacement | 0.0346 | 0.0249 | 0.0149 |
| Total                 | 0.1453 | 0.1308 | 0.1170 |
| Difference            |        | 9.9%   | 19.5%  |

The following section presents the results of all 3 models. With each model, components were removed or mass reduced. The UT Design removed the blade. The Optimized Design reduced the mass of the drivetrain, tower, and foundation.


### 9.3.2.2 Mass per Rated Power (kg/kW) – Results

The mass of the different models reduced with each iteration. Removing one blade reduced the mass by 1.1%. Reducing the mass of other components based on one less blade, 2BOPT, generated an additional 0.92% in mass savings over the baseline.


**Table 9.32. Mass comparison (kg/kW).**

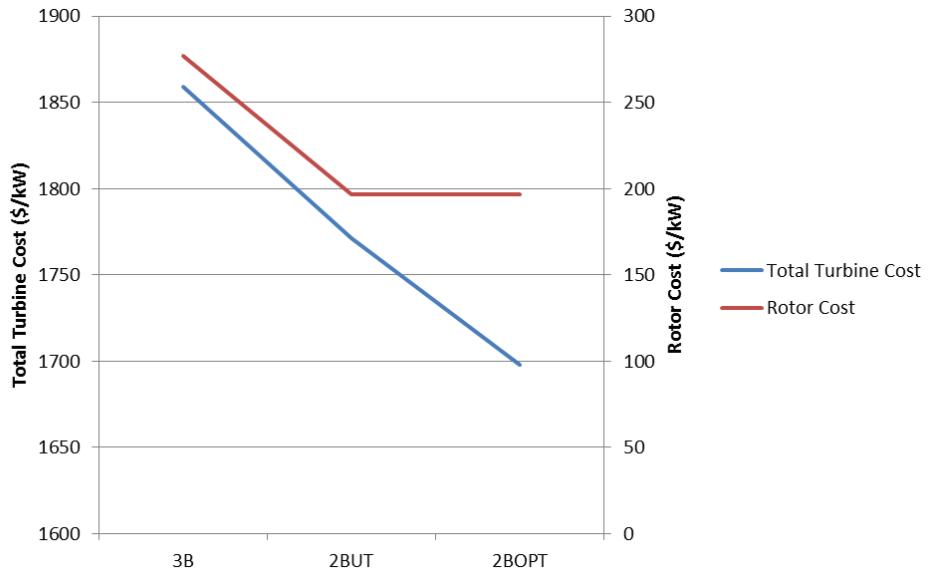
| Mass Estimate (kg/kW)                             | 3B      | 2BUT    | 2BOPT   |
|---------------------------------------------------|---------|---------|---------|
| Rotor                                             | 15.70   | 12.09   | 12.09   |
| Drivetrain (including generator, etc.)            | 44.75   | 44.75   | 41.72   |
| Tower                                             | 67.54   | 67.54   | 67.54   |
| Foundation                                        | 200.00  | 200.00  | 200.00  |
| Control, Safety System, and Condition Monitoring  | 0.00    | 0.00    | 0.00    |
| Marinization (10.00% of Turbine and Tower System) | 0.10    | 0.10    | 0.10    |
| Total Turbine Mass (kg/kW)                        | 328.08  | 324.47  | 321.44  |
| Mass Difference (kg/kW)                           |         | 3.61    | 6.64    |
| Mass Difference (%)                               |         | 1.10%   | 2.02%   |
| Total Turbine Mass (metric ton)                   | 1640.42 | 1622.37 | 1607.22 |

The graphs Total Mass and Rotor and Total Mass and Drivetrain, show the incremental mass reductions.

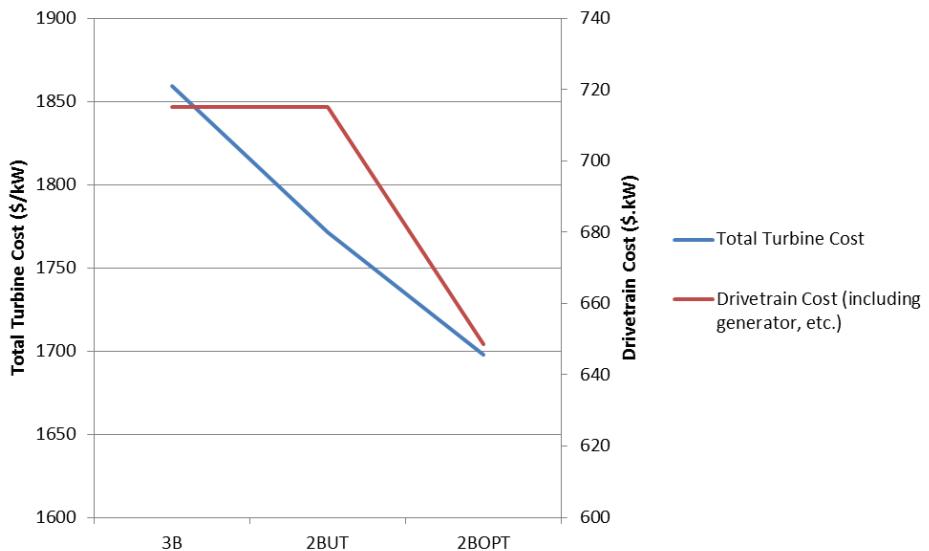


**Figure 9.35. Total mass to rotor.**




**Figure 9.36. Total mass to drivetrain.**

### 9.3.2.3 Cost per Rated Power (\$/kW) – Results


With each iteration, the total cost of the different models was reduced. Cost savings closely followed the mass reductions. The largest factor to the reduction of cost was the removal of one blade from the rotor.

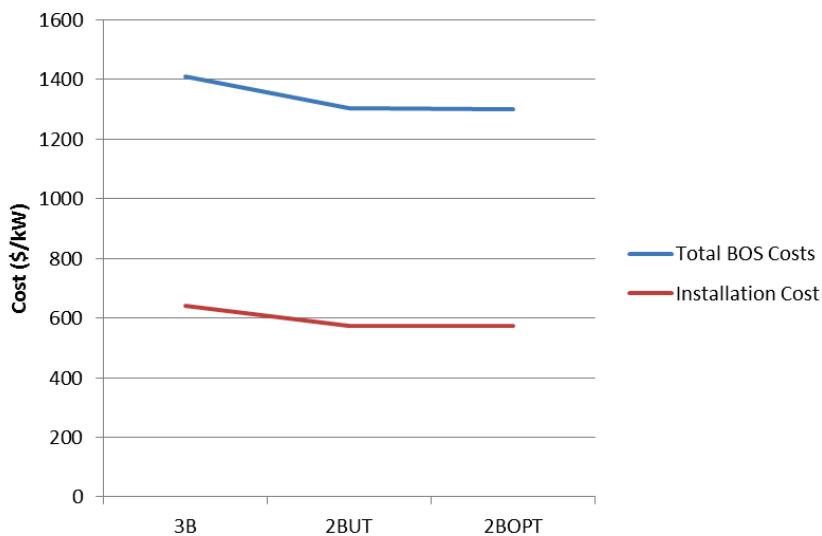
**Table 9.33. Cost comparison (\$/kW).**

| Cost (\$/kW)                                      | 3B      | 2BUT    | 2BOPT   |
|---------------------------------------------------|---------|---------|---------|
| Rotor                                             | 276.79  | 196.67  | 196.67  |
| Drivetrain (including generator, etc.)            | 715.22  | 715.22  | 648.47  |
| Tower                                             | 174.35  | 174.35  | 174.35  |
| Foundation                                        | 504.90  | 504.90  | 504.90  |
| Control, Safety System, and Condition Monitoring  | 18.93   | 18.93   | 18.93   |
| Marinization (10.00% of Turbine and Tower System) | 169.02  | 161.01  | 154.33  |
| Total Turbine Cost (\$/kW)                        | 1859.21 | 1771.07 | 1697.65 |
| Mass Difference (\$/kW)                           |         | 88.14   | 161.56  |
| Mass Difference (%)                               |         | 4.74%   | 8.69%   |
| Total Turbine Cost (\$)                           | \$9.30  | \$8.86  | \$8.49  |



**Figure 9.37. Total cost to rotor.**




**Figure 9.38. Total cost to foundation.**

#### 9.3.2.4 Balance of System Cost per Rated Power (\$/kW) – Results

The Balance of System cost fell moderately (around 8%) when using the current, static foundation installation methods. This may seem small but amounts to 113.25 \$/kW for the Optimized Design.

**Table 9.34. Balance of system (BOS) cost comparison (\$/kW).**

| Cost (\$/kW)                      | 3B         | 2BUT       | 2BOPT      |
|-----------------------------------|------------|------------|------------|
| BOS Hardware                      | 161.74     | 161.74     | 161.74     |
| Transportation                    | 336.36     | 302.29     | 302.29     |
| Installation                      | 640.45     | 572.81     | 572.81     |
| Other                             | 270.22     | 264.52     | 262.32     |
| Total BOS Costs (\$/kW)           | 1408.78    | 1301.36    | 1299.16    |
| Total BOS Costs (\$ in thousands) | \$7,043.88 | \$6,506.80 | \$6,495.79 |

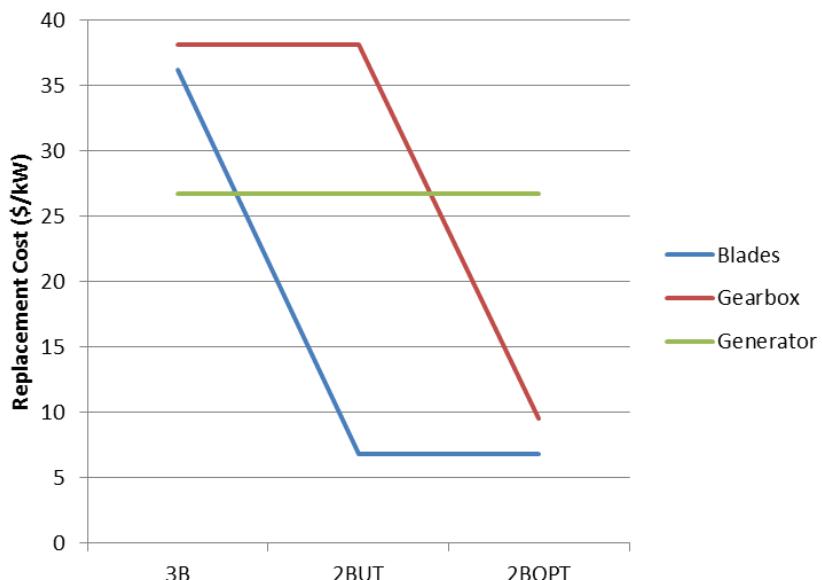


**Figure 9.39. Total BOS cost to installation cost.**

### 9.3.2.5 Repair and Maintenance Cost per Rated Power (\$/kW) – Results

All changes to Operations and Maintenance cost were due to better performing components, with less annual failure. This is largely due to the removal of one blade. In addition, the removal of one blade increased gearbox and yaw control reliability and decreased unscheduled maintenance.

**Table 9.35. Repair and maintenance cost comparison (\$/kW).**


| Operations and Maintenance      | 3B           | 2BUT         | 2BOPT        |
|---------------------------------|--------------|--------------|--------------|
| General Scheduled Maintenance   | 5.70         | 5.70         | 5.70         |
| Bottom Lease                    | 3.18         | 3.14         | 3.16         |
| Plant Operations Cost           | 2.06         | 2.03         | 2.05         |
| Unscheduled Turbine Maintenance | 39.12        | 37.14        | 34.63        |
| Unscheduled BOS Maintenance     | 9.84         | 9.84         | 9.84         |
| Administration and Support      | 0.88         | 0.87         | 0.88         |
| <b>Total O&amp;M Cost</b>       | <b>60.78</b> | <b>58.72</b> | <b>56.27</b> |

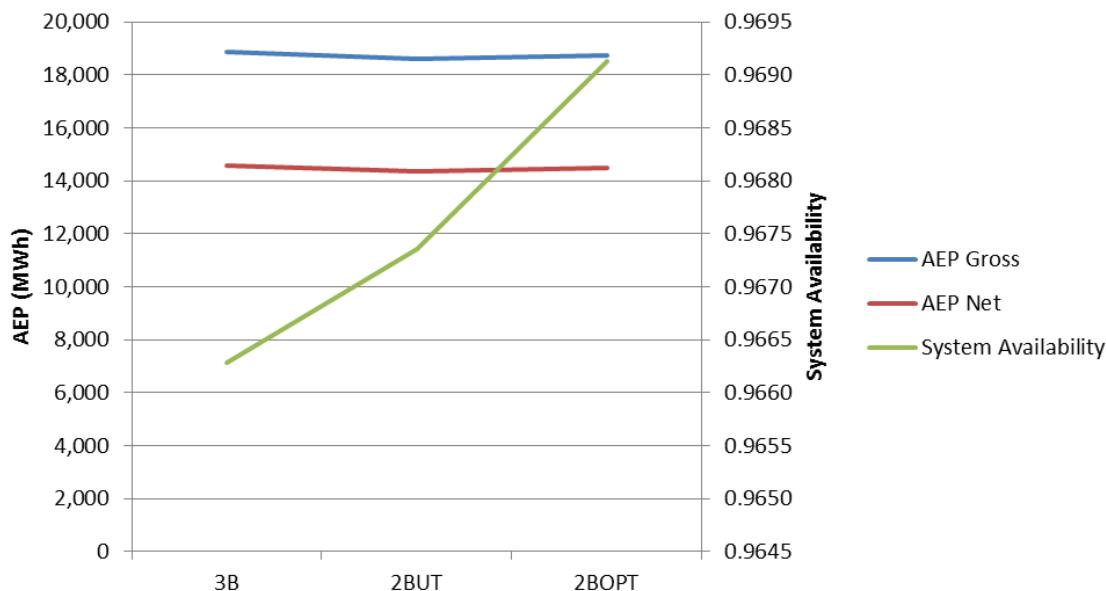
### 9.3.2.6 Levelized Replacement Cost per Rated Power (\$/kW) – Results

The decrease in Replacement costs for the Optimized Design came from the expected system life increase of the gearbox running at less torque. The NREL drivetrain report [H. Link, W. LaCava, 2011] qualitatively states that system life should improve with lower torque transferred to the gearbox.

**Table 9.36. Levelized replacement cost comparison (\$/kW).**

| Cost (\$/kW) | 3B     | 2BUT  | 2BOPT |
|--------------|--------|-------|-------|
| Blades       | 36.14  | 6.81  | 6.81  |
| Gearbox      | 38.09  | 38.09 | 9.55  |
| Generator    | 26.71  | 26.71 | 26.71 |
| Total        | 100.93 | 71.60 | 43.07 |




**Figure 9.40. Replacement costs blade, gearbox, and generator.**

### 9.3.2.7 Annual Energy Production (AEP) – Results

There is a decrease in gross annual energy production from the three- to two-bladed rotors. In addition, system availability increases with each iteration of the two bladed models. This is significant because system availability is more important for an offshore wind farm, when repairs must be made offshore, than in wind turbines on land.

**Table 9.37. Annual energy production (AEP) comparison.**

|                        | 3B     | 2BUT   | 2BOPT  |
|------------------------|--------|--------|--------|
| AEP Gross (MWh)        | 18,887 | 18,619 | 18,741 |
| Total Losses           | 0.20   | 0.20   | 0.20   |
| System Availability    | 0.9663 | 0.9674 | 0.9691 |
| AEP Net (MWh)          | 14,565 | 14,374 | 14,494 |
| Capacity Factor        | 0.3325 | 0.3282 | 0.3309 |
| Total Days Down (days) | 12.32  | 11.92  | 11.28  |



**Figure 9.41. Annual energy production and system availability.**

### 9.3.2.8 Levelized Cost of Energy (LCOE)– Results

For this analysis, the method outlined in the United States Department of Energy FOA 0000415 (Appendix E) was used for calculating the Levelized Cost of Energy (LCOE). This method divides the wind energy system into four cost sections: Turbine Capital, Balance of System Capital, Operations and Maintenance, and Replacement Costs.

**Table 9.38. Levelized cost of energy (LCOE) \$/kWhr.**

| \$/kWhr               | 3B     | 2BUT   | 2BOPT  |
|-----------------------|--------|--------|--------|
| Turbine Capital Costs | 0.0511 | 0.0493 | 0.0469 |
| BOS Capital Costs     | 0.0387 | 0.0362 | 0.0359 |
| Repair & Maintenance  | 0.0209 | 0.0204 | 0.0194 |
| Levelized Replacement | 0.0346 | 0.0249 | 0.0149 |
| Total                 | 0.1453 | 0.1308 | 0.1170 |
| Difference            |        | 9.9%   | 19.5%  |

### 9.3.2.9 Prospect for Cost Benefits

The cost analysis preformed for this report has many limitations and assumptions, as well as insights and conclusions. Yet, two conclusions are worth discussing further:

1. Removing one blade reduces installation costs by 10.6%.
2. Two-bladed rotors offer the possibility of increasing the system availability. Increased system availability decreases the difference in net Annual energy production

#### *Cost of Energy may be Reduced 19.5% using Two-Bladed Rotors Offshore*

Installation cost is the largest cost barrier to the operation of offshore wind turbines. An offshore foundation affects both the capital and installation costs.

**Table 9.39. Wind turbine capital cost difference between models.**

|                     | \$/kW   | difference |
|---------------------|---------|------------|
| Capital Costs 3B    | 1859.21 | 0.00       |
| Capital Costs 2BUT  | 1771.07 | 88.14      |
| Capital Costs 2BOPT | 1697.65 | 161.56     |

**Table 9.40. Installation capital cost difference between models.**

|                    | \$/kW  | difference |
|--------------------|--------|------------|
| Installation 3B    | 640.45 |            |
| Installation 2BUT  | 572.81 | 67.65      |
| Installation 2BOPT | 572.81 | 67.65      |

#### *Offshore Two-Bladed Rotors Increase System Availability*

The system availability is both the strongest and weakest argument in this cost analysis. It is the strongest because it shows the link between reducing the number of components needed to be fixed increases the net annual energy production. Large gains in system availability came from assuming that a higher rpm rotor speed will reduce the torque transferred to the gearbox thereby increasing the life of the gearbox.

It is the weakest argument because the failure rates and average days down are based on three bladed land wind turbines. The analysis further alters the onland, three-bladed failure rates to accommodate a two-bladed wind turbine. The decreased annual failure rates for a two-bladed rotor may be considered optimistic in this study. The blade loads on a two-bladed rotor are higher than on a three-bladed rotor and periodic. The higher loads may decrease the time to failure, eliminating the advantage of having one-less blade to fix. This could be true for all the components whose annual failure rate was changed in this study.

The number of days down due to failure data was not changed to reflect working in an offshore environment. Due to the complexity of working offshore, it is certain that the number of days down will increase in an offshore environment. Moving past this important assumption, if the

failure rates used in this study could be considered optimistic, the number of days down due to failure could be considered conservative.

Like the annual failure rates, the number of days down due to failure is based on studies done on land-based three-bladed wind turbines. Unlike the annual failure rates, the days down due to failure were not changed for two-bladed rotors. It is certain that the number of days down per failure would decrease with a two-bladed rotor. As shown earlier in this report regarding the installation of the wind turbine, the symmetry of a two-bladed rotor holds advantages with moving, or removing the rotor.

### 9.3.3 Proposed Final Design

Based on parametric studies reported in Section 9.1, a 5MW wind turbine design is proposed. This design was designated the name 5MW2DBUTT2C0TipBrk according to the naming convention adopted in Appendix 1. Table 9.41 shows the design configuration of the 5MW wind turbine final design. Compared to other 2-bladed design studied in this project, the selected final design can produce the largest AEP without experiencing significantly larger load effects. Specifically, the final design produces 16,360 MWh AEP, which is 3.84% more than the AEP of the basic 5MW 2-bladed downwind design (5MW2DB00), and only 3.26% less than the AEP of the 3-bladed upwind baseline turbine. The detailed AEP calculations were introduced in Section 4.7, and more AEP results can be found in Section 9.3.1.

**Table 9.41. Configuration of final design.**

| Model Name       | 5MW2DBUTT2C0TipBrk |
|------------------|--------------------|
| Rating           | 5MW                |
| Number of Blades | 2                  |
| Wind Direction   | Downwind           |
| Blade Design     | BUT                |
| Shaft Tilt       | 2°                 |
| Conning Angle    | 0°                 |
| Teeter           | Enabled            |
| Tip-brake        | Enabled            |

**Table 9.42. Major attributes and responses of final design.**

| Model Name                       | 5MW2DBUTT2C0TipBrk | % difference |
|----------------------------------|--------------------|--------------|
| Annual Energy Production         | 16360 MWh          | -3.26        |
| Minimum Tower-to-Blade Clearance | 3.634 m            | -47.9        |
| Maximum Teeter Angles            | 3.24°              | N/A          |

Major performance attributes and responses of the final design as well as a comparison with the baseline turbine are presented in Table 9.42. The load effect and torque results of the final design are tabulated in Table 9.43 and Table 9.44, respectively. The fatigue damage results of this turbine design are listed in Table 9.45.

The rotor blade of the proposed design has a  $0^\circ$  conning angle and a  $2^\circ$  tilt angle. The minimum tower-to-blade clearance for this design is 3.6 m, which satisfies the minimum clearance specification of 3.5 m.

The teeter mechanism for the final design has a teeter parameter set of 0.3, which is suitable for the 2-bladed machines. The details of teeter parameter sets are described in Section 6.2.5. The teeter set 0.3 is found from the parametric study that is performed in Section 6.2.5 and Section 9.1.5. The selected teeter set reduces loads transferred from the rotor to LSS efficiently with the acceptable teeter angle range. The tip-brake is mounted for the safe emergency shutdown. According to the parametric study of Section 9.1.6, application of tip-brake efficiently reduces load effects under fault conditions. In addition, the tip-brakes allow larger minimum tower-to-blade clearance. Because of the increased tower-to-blade clearance, the conning angle and the shaft tilt angles could be reduced to near  $0^\circ$ , which yield higher AEP.

Most of the load effects of the final design are within the safe region. However, the axial force and the torsional moment at the blade root require careful investigation in the detailed design because these load effects exceeded the safe limit. That does not necessarily mean that the axial forces and torsional moments are exceeding structural capacity. The safe limits can confirm that a structure is 100% safe when the load effects on the structure are under the safe limits as long as the baseline design is 100% safe. The detailed description of the safe limit is presented in Appendix 5. The shear force, bending moment, and torsional moment at the tower base did not exceed the safe limit, but they are close. Other load effects and torques are within the safe limit.

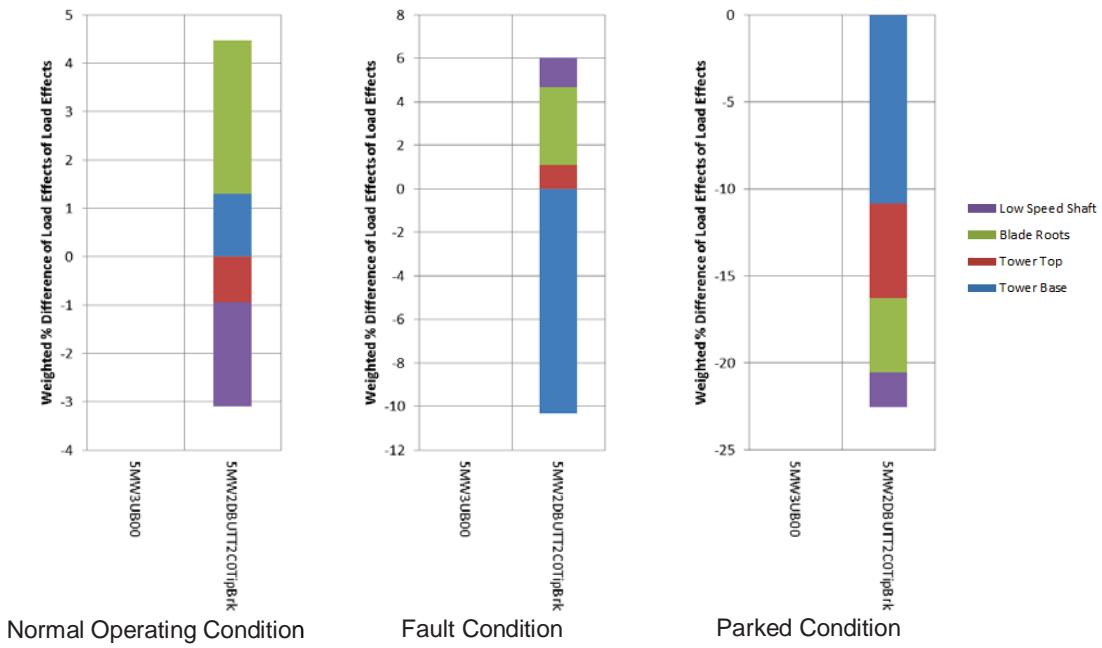
The weighted percent differences of load effects for the final designs are shown in Figure 9.42 and Figure 9.43. The concept of the weighted percent difference as a useful measure for load comparison is described in Appendix 7. The graphs show that the final design has smaller load effects than the baseline design in most cases. A careful examination of the maximum load effects at the base of the tower in normal condition in Figure 9.44 show that that all load effect types are within the safe limit (green horizontal line). The maximum shear force and bending moment at the tower base of the final 5MW machine occurred in DLC1.4, at an average wind speed of 9.4 m/s.

The load effect at the blade root is presented in Figure 9.45 and Figure 9.46 for the normal operating conditions and fault conditions respectively. The graphs show that the blade root axial forces and torsional moments of the final designs exceed the safe limit in both conditions. The maximum axial force at the blade root occurred in DLC1.3 at 25 m/s, the cut-out speed case for the 5MW machine under the normal operating conditions. The maximum axial force occurred in DLC2.3 at the cut-out speed for both the final design and baseline turbines under the fault conditions. The maximum torsional moment occurred in DLC1.4 at an average wind speed of 13.4 m/s for the final 5MW machine in the normal operating conditions. The maximum torsional moment under fault conditions occurred in DLC2.3 at 11.4 m/s rated speed for the 5MW machine.

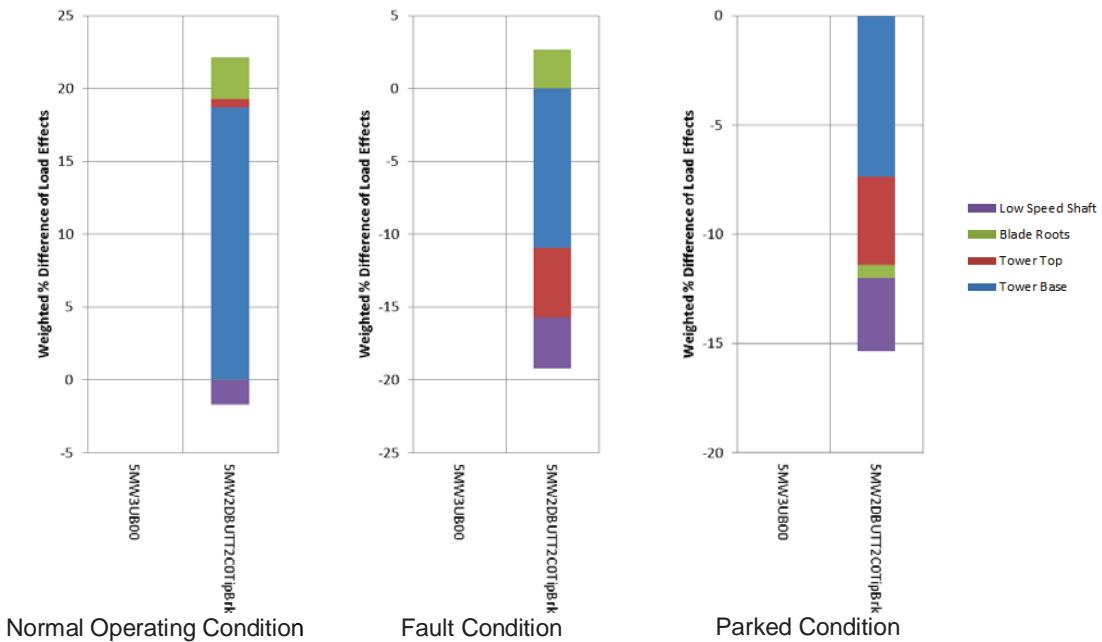
Finally Figure 9.47 shows the torque values in the high speed shaft. These values are below the safe limit under all operating conditions.

As presented in Table 9.45, fatigue damage analysis on 5MW2DBUTT2C0TipBrk turbine shows that the damage values caused by different loads at critical turbine locations are considerably lower than one. Fatigue damage of the final design was estimated using the same technique that was used for all the other designs considered in this study. The fatigue damage calculation methodology is described in Section 4.4.

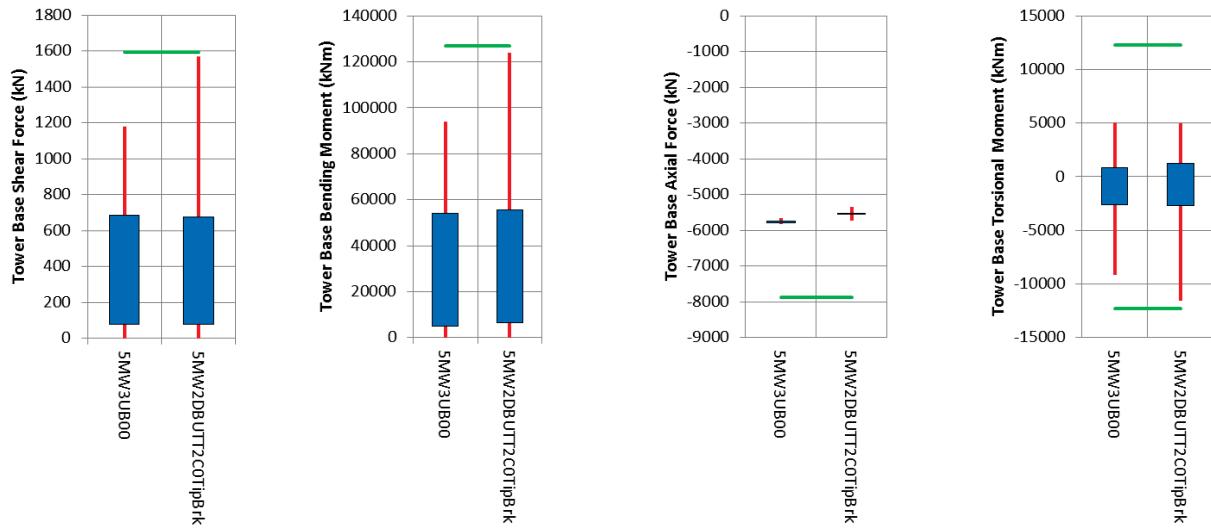
**Table 9.43. Load effects of final design.**


| Location    | Condition        | Shear Force     |                | Bending Moment    |                | Axial Force     |                | Torsional Moment  |                |
|-------------|------------------|-----------------|----------------|-------------------|----------------|-----------------|----------------|-------------------|----------------|
|             |                  | Maximum<br>(kN) | Average<br>(%) | Maximum<br>(kN m) | Average<br>(%) | Maximum<br>(kN) | Average<br>(%) | Maximum<br>(kN m) | Average<br>(%) |
| Tower Base  | Normal Operating | 1570            | 32.9           | 678               | -1.1           | 123959          | 32.0           | 55393             | 2.7            |
|             | Fault            | 1201            | -13.4          | 309               | -21.2          | 95078           | -14.7          | 24915             | -19.0          |
|             | Parked           | 790             | -9.9           | 283               | -17.2          | 59767           | -11.8          | 21878             | -22.9          |
| Tower Top   | Normal Operating | 1431            | 21.1           | 704               | -1.1           | 8887            | -15.3          | 4451              | -14.1          |
|             | Fault            | 1208            | -8.4           | 311               | -14.3          | 8265            | -35.5          | 3839              | 29.1           |
|             | Parked           | 652             | -12.9          | 252               | -29.2          | 1787            | -70.4          | 1236              | -69.4          |
| Blade Roots | Normal Operating | 573             | 22.4           | 360               | 20.2           | 21896           | 23.5           | 12618             | 24.9           |
|             | Fault            | 579             | 28.8           | 244               | 22.0           | 18919           | 25.8           | 6938              | 36.5           |
|             | Parked           | 242             | -15.8          | 216               | -23.3          | 7265            | -5.6           | 4985              | -33.7          |
| LSS         | Normal Operating | 1077            | -4.5           | 921               | -15.0          | 10826           | -19.3          | 4122              | -16.3          |
|             | Fault            | 1085            | -5.9           | 935               | -12.6          | 6815            | -47.6          | 2766              | 7.1            |
|             | Parked           | 959             | -16.4          | 958               | -15.9          | 3760            | -34.3          | 3676              | -21.3          |

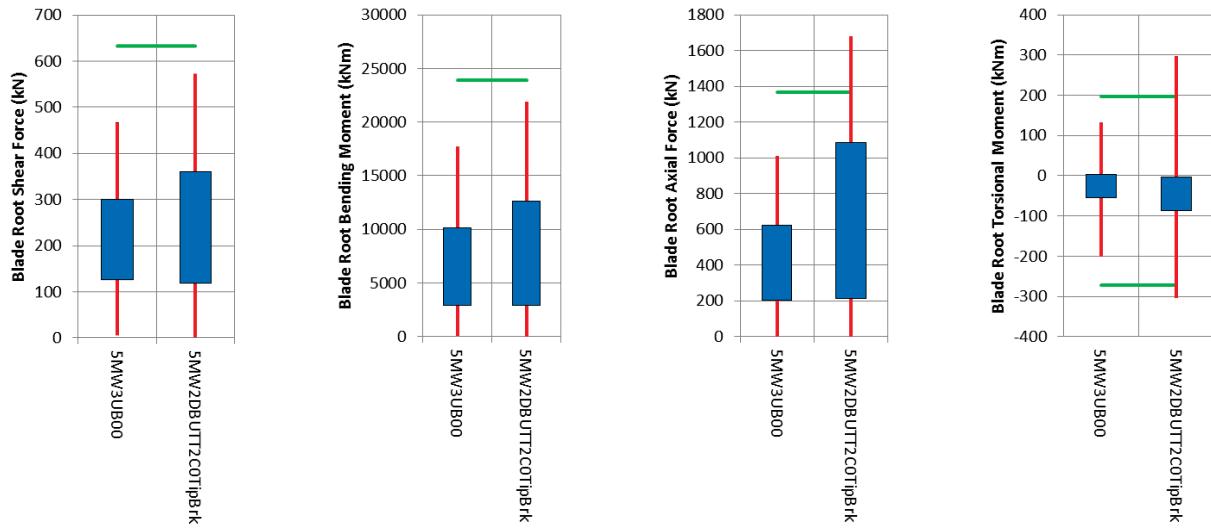
**Table 9.44. Torques of final design.**


| Condition        | LSS             |                | HSS               |                | Generator         |                |
|------------------|-----------------|----------------|-------------------|----------------|-------------------|----------------|
|                  | Maximum<br>(kN) | Average<br>(%) | Maximum<br>(kN m) | Average<br>(%) | Maximum<br>(kN m) | Average<br>(%) |
| Normal Operating | 5272            | -5.0           | 3199              | -23.6          | 54                | -5.0           |
|                  | 6772            | -5.2           | 2959              | 37.7           | 70                | -5.2           |
|                  | 1278            | -55.0          | 1206              | -148.1         | 13                | -55.0          |
| Fault            |                 |                |                   |                | 31                | 37.7           |
| Parked           |                 |                |                   |                | 12                | -51.9          |
|                  |                 |                |                   |                | N/A               | N/A            |

**Table 9.45. Fatigue life result of final design.**


| Location    | Shear Force |           | Bending Moment |           | Axial Force |           | Torsional Moment |           |
|-------------|-------------|-----------|----------------|-----------|-------------|-----------|------------------|-----------|
|             | Damage      | %diff (%) | Damage         | %diff (%) | Damage      | %diff (%) | Damage           | %diff (%) |
| Tower Base  | 3.4944E-02  | 1.45E+02  | 3.0043E-02     | 1.46E+02  | 6.6411E-22  | 6.63E-22  | 1.2935E-10       | 4.20E+03  |
| Tower Top   | 1.7402E-02  | 1.19E+02  | 1.0015E-07     | 2.44E+04  | 1.1039E-19  | 1.10E-19  | 1.2937E-10       | 4.19E+03  |
| Blade Roots | 7.4303E-02  | 2.55E+04  | 1.6400E-01     | 2.01E+04  | 4.2424E-04  | 4.21E-04  | 5.9758E-06       | 1.35E+04  |
| LSS         | 1.5772E-14  | 1.02E+06  | 8.8560E-06     | 6.32E+03  | 2.0256E-04  | 1.00E-04  | 2.1552E-07       | 1.88E+03  |




**Figure 9.42. Weighted % difference of average loads of final design.**



**Figure 9.43. Weighted % difference of maximum loads of final design.**



**Figure 9.44. Tower base load effects of final design under normal operating conditions.**



**Figure 9.45. Blade root load effects of final design under normal operating conditions.**

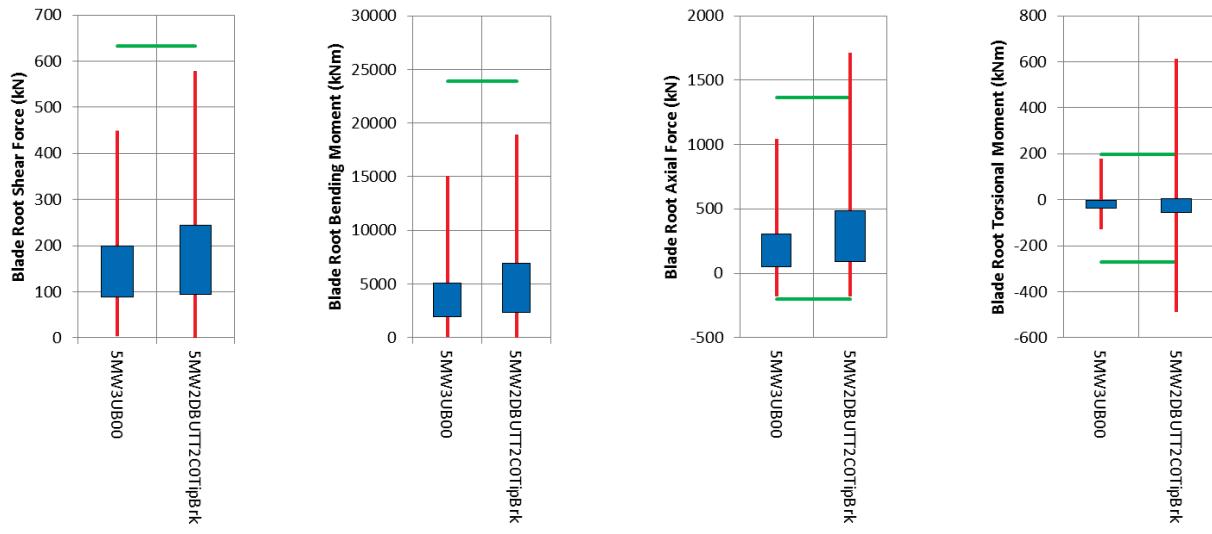



Figure 9.46. Blade root load effects of final design under fault conditions.

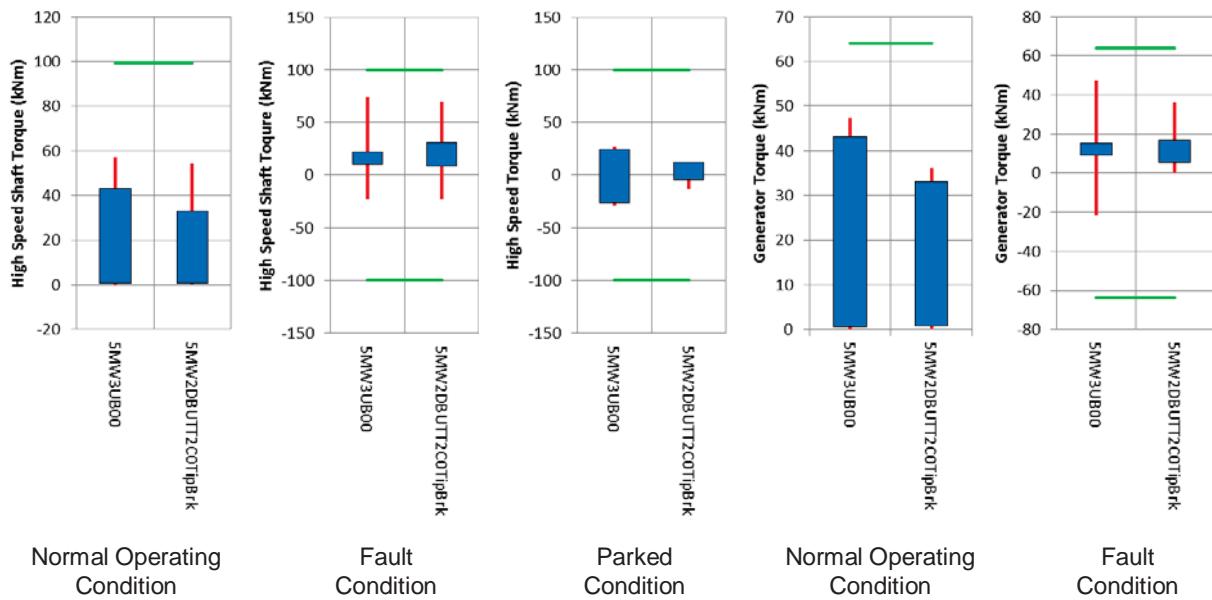



Figure 9.47. Torques of final design.

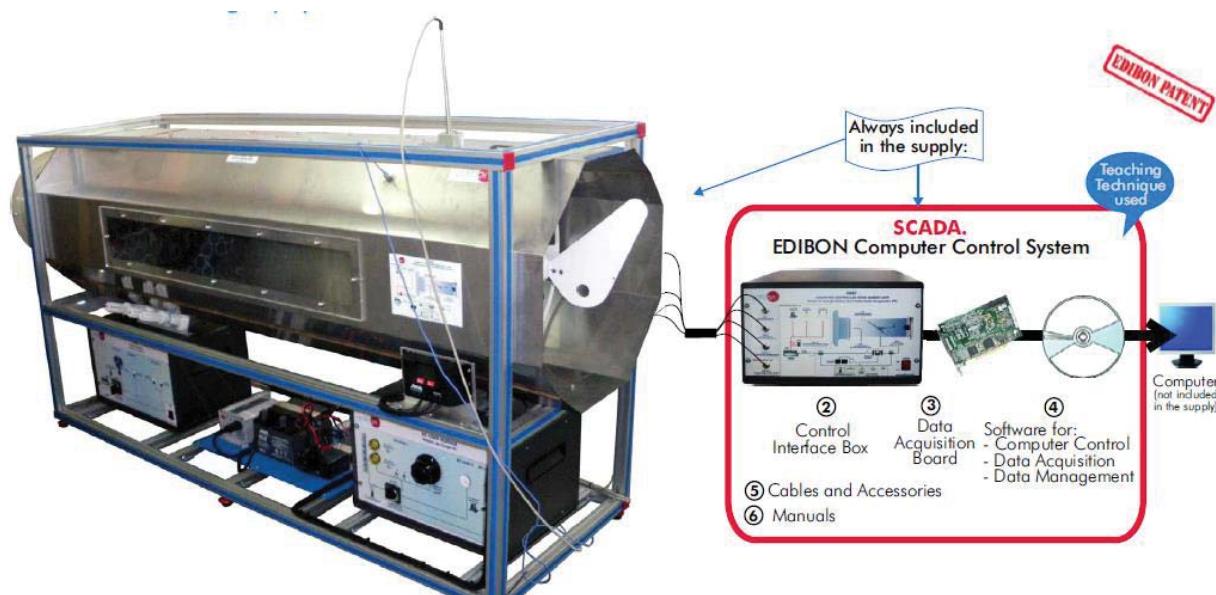
## 9.4 Summary

The computational results presented in this chapter demonstrate that the proposed downwind, 2-bladed wind turbine concept is a creditable and practical wind turbine design for offshore applications. This notwithstanding, the 2-bladed downwind concept has both advantages and disadvantages over its 2-bladed or 3-bladed upwind counterparts.

# 10 Educational Program Development

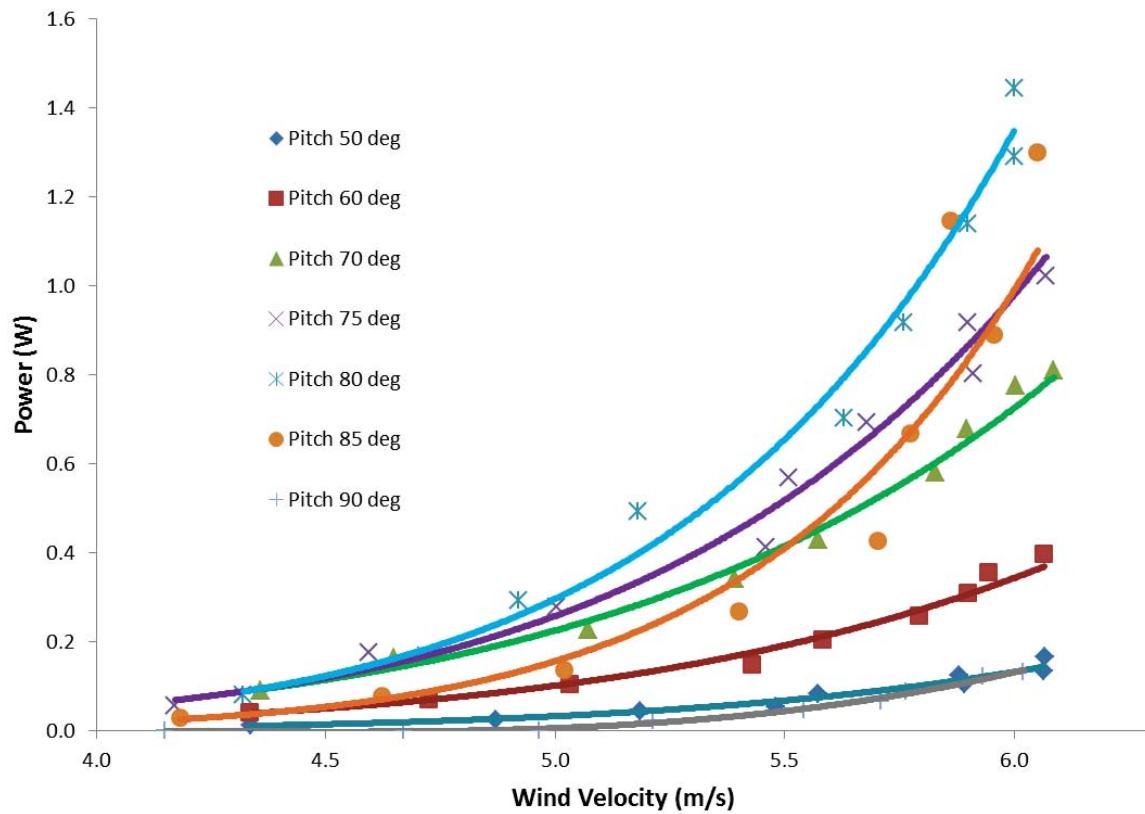
The educational program developed in this project consisted of curriculum development, new course offerings and outreach, which are described below.

## 10.1 Curriculum Development


Major curriculum development activities were as follows:

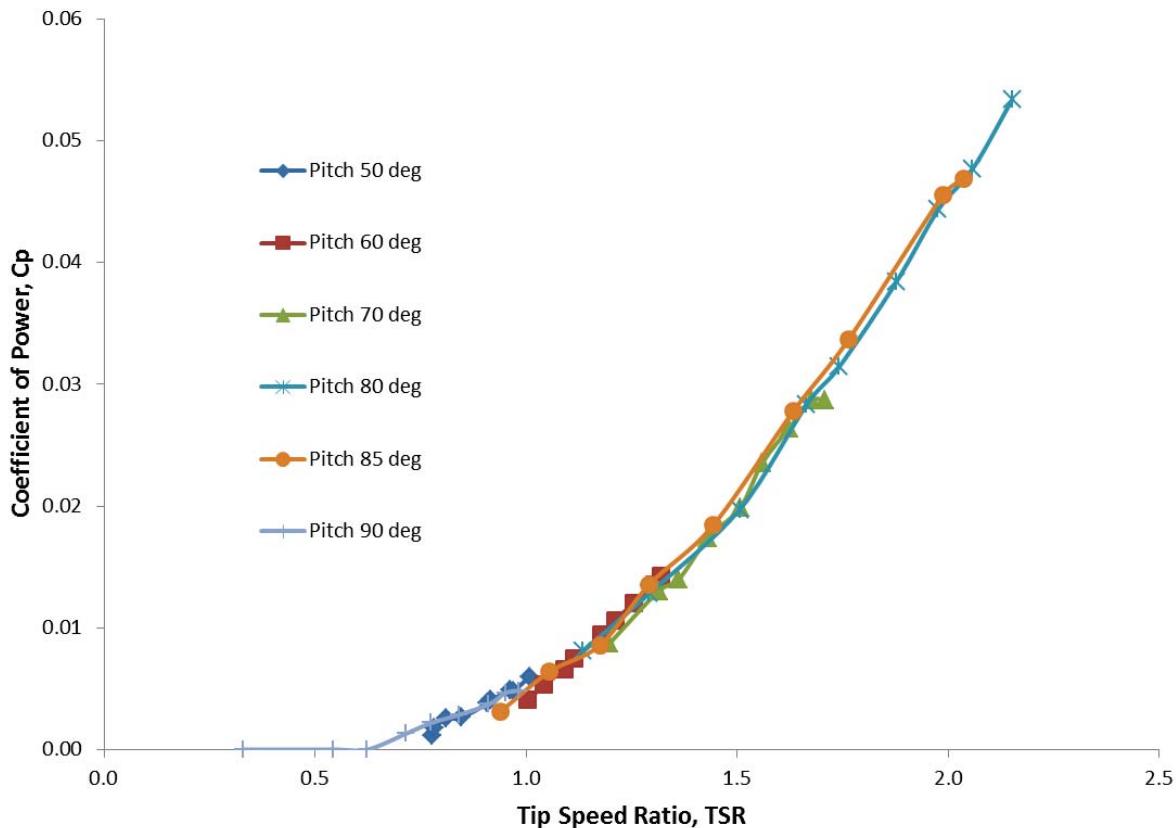
- a) An existing course on Alternative Energy (MIME 4980/5980) was redesigned with a greater wind energy topical content to emphasize wind energy education.
- b) A new course (MIME4980/5980) Wind Energy for Science Educators was developed and offered for the first time in summer 2012.
- c) Acquired new computer-controlled wind energy laboratory equipment for incorporating wind energy related hands-on experiments in the department teaching labs.
- d) One faculty member of the project team served as a faculty panel reviewer for the Ohio Board of Regents and the Ohio Articulation and Transfer Network for the wind energy and alternative energy curricula.
- e) Participated as a founding institution for the North American Wind Energy Academy (NAWEA)

- a) The Alternative Energy course is offered as a technical elective for the Mechanical, Industrial, and Manufacturing Engineering (MIME) students at the University of Toledo, but it is also included in the curriculum for a minor in Alternative Energy offered across the university. Students from other engineering majors have also taken this course in the past. Currently, more than 35% of this course covers the subjects of wind energy (up from about 20% before this course redesign). A few new elements related to wind turbine design were incorporated in the course curriculum after discussions with the engineers from Nordic Windpower, one of the project's original industry partners.
- b) The *Wind Energy for Science Educators* course (MIME4980/5980) is aimed at and was delivered to a select group of K-12 math and science educators from Ohio and Michigan. The course participants earn college credit for taking this course as part of their master's degree in education curriculum. In 2012 two faculty members of the project team (Drs. Afjeh and Cioc), with the assistance of a graduate student (Mr. Zhang) and a faculty member from the Toledo Technology Academy (Mr. Ted Richardson), developed and delivered a workshop/course focused on wind energy. The two-week program was designed to comprise both hands-on and demonstration projects. The topics under consideration were broad in scope and included wind resource measurement, wind turbine siting, and basic experiments on aerodynamic concepts of lift and drag, as it pertains to wind turbines, energy conversion, and power generation from wind.


c) The equipment acquired (Computer Controlled Wind Energy Unit with SCADA “EEEC”) is a turnkey, laboratory-scale unit designed for studying wind energy and the influence of specific factors on wind power generation. The unit consists of the following components: a tunnel, a wind turbine with angle-adjustable and removable blades to permit experiments with different blade numbers, axial fan to produce the wind, load and battery charger regulator, auxiliary battery charger, battery, DC Loads Module for power measurements, sensors, and EDIBON Supervisory Control and Data Acquisition system (SCADA).

The system measures and monitors in real time the voltage and current produced by the wind turbine, the wind speed, the rotational speed of the wind turbine, and the temperature of the air. This Computer Control System (SCADA) supplied by EDIBON includes a control interface box, a data acquisition board, computer control and data acquisition software for controlling the system and measuring all the physical quantities of interest.




**Figure 10.1. The Computer Controlled Wind Energy Unit with SCADA (Courtesy of EDIBON).**

The unit was delivered in 2011 and has been used since then in the *Alternative Energy* and the *Wind Energy for Science Educators* courses. Using this unit, the students can measure the power output from the turbine model, generate the power curve (turbine power as a function of the wind speed), and vary the blade pitch, the number of blades (2, 3, or 6), and the load. Using these quantities, other parameters of interest, such as the variation of power coefficient with the tip speed ratio for various rotor configurations (number of blades, blade geometry) can be determined. For example, in the case of a 6-blade rotor set at various pitch angles, the power produced by the rotor is shown in Figure 10.2.



**Figure 10.2. Power produced by the wind turbine (W) as a function of the wind speed (m/s) for a six-bladed rotor at various pitch angles.**

The same experimental data are shown in Figure 10.3, this time using the non-dimensional parameters, the coefficient of power ( $C_p$ ) and the tip speed ratio (TSR).



**Figure 10.3. Same data as in the previous figure shown in non-dimensional variables.**

- d) A project team member (Dr. Cioc) used the experience gained during this project to serve as a panel reviewer for Transfer Assurance Guides (TAG) courses in Wind Energy or Renewable Energy for the University System of Ohio Board of Regents. The faculty review panel for the TAG in Renewable Energy guarantees that if a student takes an approved TAG course then that course will transfer as major credit to any of Ohio's public institutions. TAG courses are equivalent when they have been matched to the same set of learning outcomes and have been approved during the same time period. The panel receives course proposals from affiliated Ohio institutions, analyzes and discusses them to determine "extent of match" to learning outcomes, rigor and credit hours. During the past year, this project's team member (Dr. Cioc) was involved in the review of more than 10 courses in wind energy and two courses in alternative energy.
- e) The North American Wind Energy Academy, NAWEA, is composed of universities, research laboratories, and industry participants dedicated to coordinating wind energy research and education activities in order to advance the state of wind energy technology and to develop the next generation of wind energy engineers, researchers, scientists, and innovators. Academy members coalesce around the vision, collaborate, and share their knowledge, skills, and capabilities to promote wind energy education and technologies. (Extracted from

<http://www.nawea.org>). Two faculty and three student members of the team actively participated in the 2012 inaugural meeting of NAWEA by presenting UT wind turbine research results, and by contributing to and supported the NAWEA concept, charter and by-laws.

## 10.2 Training and Outreach

Major training and dissemination of the educational program development are as follows:

- a) K-12 teacher training in wind energy during summer 2012.
- b) Undergraduate and graduate Students trained in wind energy research
- c) A subset of the project team members participated at the NAWEA inaugural meeting (2012, Amherst, MA).

The teacher-training course was conducted for the first time in July 2012 on the main campus of The University of Toledo, with visits to UT's engineering laboratories. Twenty-four teacher leaders from Ohio and Michigan attended this course (two Toledo, Ohio school districts, one Akron, Ohio school district, and a Monroe, Michigan school district). The two-week program developed for teacher training was designed to train the teachers to be "teacher leaders." The course consists of both hands-on and demonstration projects. The teacher leaders were prepared to include the wind energy-related concepts learned in this course as part of a project-based science curriculum in their own schools, and to disseminate the knowledge and methods learned to other science teachers (thus becoming teacher leaders.) The course participants were recruited in collaboration with the LEADERS project (Leadership for Educators Academy for Driving Economic Revitalization in Science) at The University of Toledo. The LEADERS program, which is partially funded by the NSF, has a goal of making science education more relevant to students by incorporating Project-Based Science (PBS) that is linked to the renewable energies industry and its environmental impacts. The renewable energies industry, along with its environmental impacts, has been identified as a vital element in the economic development strategy for the Great Lakes Region (<http://leaders.utoledo.edu>).

## 11 Summary and Conclusion

The computational results presented in Chapter 9 demonstrate that the proposed downwind, 2-bladed wind turbine concept is a creditable and practical wind turbine design for offshore applications. This notwithstanding, the 2-bladed downwind concept has both advantages and disadvantages over its 2-bladed or 3-bladed upwind counterparts.

The results shown in Chapter 8 and in Section 9.3.2 confirmed that the levelized cost of energy of the 2-bladed downwind design is considerably lower than that of the baseline design (3-bladed). Specifically, the cost of the 2-bladed design with redesigned blades (BUT blades) is \$0.1308 /kWh and that of the optimized design is \$0.117 /kWh. These values are considerably lower than those of the 3-bladed baseline design, which is \$0.1453 /kWh. It could be possible to reduce the cost even more to \$0.0868 by replacing the gravity foundation with a floating one.

A 2-bladed turbine has one less blade. This can reduce the capital cost of the turbine by approximately 4% (Section 9.3.2). Additionally, assuming the same rated power, the higher RPM of the rotor of this turbine reduces the torque that is applied to the LSS and to the gearbox. This can potentially increase the reliability of the gearbox, which is a critical component of the power transmission. On the other hand, the higher rotational speed of 2-bladed turbines increases the blades loads.

Another important advantage of 2-bladed turbine concepts is the possibility of adding teeter degree of freedom to the system (Section 9.1.5). The teeter mechanism can effectively reduce the loads effects the tower and shaft. However, the teeter mechanism would increase the complexity of the design and the likelihood of failure in this mechanism.

Because the downwind configuration has larger clearance the designer has more options to modify the design to increase AEP. For example, the designer can increase the AEP by reducing the shaft tilt and cone angles thereby increasing the swept area.

Unlike the upwind design, for the downwind configuration, the bending moments due to wind loads and the mass of the rotor are in the same direction. Therefore, higher loads are expected at the base of the tower. Because these two bending moments oppose each other in an upwind configuration, lower bending moments are observed for the upwind configuration. However, this disadvantage of the 2-bladed downwind design compared to the 3-bladed upwind design was found to be minimal because the position of the tower top center of mass is close to the yaw axis and the tower top mass is lower (Section 9.1.2).

An appropriate braking strategy can effectively mitigate the load effects that are applied to the rotor, the blades and the tower of a 2-bladed design under fault conditions.

Fatigue damage analysis on critical turbine components demonstrated that the baseline 3-bladed turbine has relatively less damage than 2-bladed upwind and downwind turbines considered in this project. The results indicated that among all the load effects considered, bending moment on the blade root contributes most to damage accumulation. Increasing the coning angle and introducing a teeter mechanism considerably reduces fatigue damage on 2-bladed turbine

components. Increase in tilt angle reduces the damage associated with torsional moment at the blade root and torsional moment at the LSS.

## References

Bir, G. S. (2005). *User's Guide to BModes*. National Renewable Energy Laboratory, Golden, CO.

Bir, G. S. (2005). *User's Guide to PreComp*. Tech. rep. National Renewable Energy Laboratory, Golden, CO.

Brown, T., & El Seify, M. (2005). A unified model for rubble ice load and behaviour. *PERD/CHC 5-119*.

Buhl, M. L. (2004). *WT\_Perf user's guide*. National Renewable Energy Laboratory, Golden, CO.

Bush, E. A. (2009). *A comparison of alternative foundation models for offshore wind turbines and resulting long-term loads*. M.Sc. Thesis, University of Texas at Austin.

C-CORE. (2008). *Ice loads on wind turbine structures in Lake Erie*. C-Core Report R-08-014-566 v2.

Dames & Moore. (1974). *Lake bottom geotechnical and geophysical studies*. Reports No. 5-1 & 5-2, for the First Phase Airport Feasibility Study for Lake Erie Regional Transportation Authority, under contract to Howard, Needles, Tammen and Bergendoff.

DNV-OS-J101 (2013). *Design of Offshore Wind Turbine Structures*.

Driedger-Marschall, B., Endres, P. K., Krueger, R. M., & van den Bruck, C. (2009). *Great lakes wind energy center feasibility study: final feasibility report*. Cleveland, OH: juwi GmbH.

Downing, S. D., & Socie, D. F. (1982). Simple rainflow counting algorithms. *International Journal of Fatigue*, 4(1), 31-40.

Dykes, K., Miller, F., Weinberg, B., Godwin, A. & Sautter, E., (2008). *A wind resource assessment for near-shore lake Erie*. Cleveland Water Crib Monitoring Site Two-Year Report, Green Energy Ohio.

Fingersh, L. J., Hand, M. M., & Laxson, A. S. (2006). *Wind turbine design cost and scaling model*. National Renewable Energy Laboratory, Golden, CO.

Faulstich, S., Hahn, B., Jung, H., Rafik, K., & Ringhandt, A. (2008). Appropriate failure statistics and reliability characteristics. *Proc. of DEWEK*.

Faulstich, S., Lyding, P., & Hahn, B. (2010). *Component reliability ranking with respect to WT concept and external environmental conditions*. Kassel: Fraunhofer Institute for Wind energy and Energy System Technology (IWES).

Griffith, D. T., & Ashwill, T. D. (2011). *The Sandia 100-meter all-glass baseline wind turbine blade: Snl100-00*. Sandia National Laboratories Technical Report.

Griffin, D. A. (1997). *Investigation of aerodynamic braking devices for wind turbine applications*. National Renewable Energy Lab., Golden, CO.

Hayman, G. J., & Buhl Jr, M. (2012). *MLife User's Guide for Version 1.00*. National Renewable Energy Lab., Golden, CO.

Hansen,C. *NWTC Computer-Aided Engineering Tools, AirfoilPrep*.  
<http://wind.nrel.gov/designcodes preprocessors/airfoilprep/>.Last modified 14-December-2012; accessed 29-August-2013.

International Electrotechnical Committee. (2005). *IEC 61400-1: Wind turbines part 1: Design requirements*.

International Electrotechnical Commission. (2009). *IEC 61400-3. Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines*.

ISO, I. (2005). *19901-1: Petroleum and natural gas industries-specific requirements for offshore structures-Part 1: Metocean design and operating conditions*. British Standards Institute.

Jonkman, J. M., & Buhl Jr, M. L. (2005). *FAST user's guide*. National Renewable Energy Laboratory, Golden, CO.

Jonkman, J. M., & Buhl Jr, M. L. (2007). Loads analysis of a floating offshore wind turbine using fully coupled simulation. In *WINDPOWER Conference and Exhibition*, Los Angeles, California, 3–6 June 2007.

Jonkman, J. M., Butterfield, S., Musial, W., & Scott, G. (2009). *Definition of a 5-MW reference wind turbine for offshore system development*. National Renewable Energy Laboratory, Golden, CO.

Jonkman, J., & Kilcher, L. (2012). *TurbSim User's Guide: Version 1.06. 00. NREL/TP-xxx-xxxx (Draft Version)*. National Renewable Energy Laboratory, Golden, CO.

Jonkman, J. M., & Matha, D. (2010). *A quantitative comparison of the responses of three floating platforms*. National Renewable Energy Laboratory, Golden, CO.

Kaiser, M. J., & Snyder, B. (2010). *Offshore Wind Energy Installation and Decommissioning Cost Estimation in the US Outer Continental Shelf*.

Kelley, N. D., & Jonkman, B. J. (2005). *Overview of the TurbSim stochastic inflow turbulence simulator*. National Renewable Energy Laboratory, Golden, CO.

Kooijman, H. J. T., Lindenburg, C., Winkelaar, D., & van der Hooft, E. L. (2003). *Dowec 6 MW pre-design*. Energy Research Center of the Netherlands (ECN).

Laino, D. J., & Hansen, A. C. (2001). *User's guide to the computer software routines AeroDyn interface for ADAMS®*. Salt Lake City, UT: Windward Engineering, Prepared for the National Renewable Energy Laboratory under Subcontract No. TCX-9-29209-01.

Lever, J. H. (2000). *Assessment of Millennium Pipeline Project Lake Erie Crossing* (No. ERDC/CRREL-TR-00-13). Engineer Research and Development Center Hanover NH Cold Regions Research and Engineering Lab.

Lindenburg, C. (2002). Aeroelastic modeling of the LMH64-5 blade. *ECN, Petten*.

Link, H., LaCava, W., van Dam, J., McNiff, B., Sheng, S., Wallen, R., ... & Oyague, F. (2011). *Gearbox reliability collaborative project report: findings from phase 1 and phase 2 testing*. Contract, 303, 275-3000.

Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2002). *Wind energy explained: theory, design and application*. John Wiley&Sons Ltd, UK.

Marrone, Joseph F., Sharma, Ravi M.S. & Cooper, Brent D. (2013). *Advanced offshore wind turbine/foundation concept for the Great Lakes*. DOE Project DE-EE0003540; Foundation Conceptual Design Report. Prepared by Ocean & Coastal Consultants, Inc., a COWI Company, for Nautica Windpower LLC.

Nelsen, R. B. (2006). *An introduction to copulas*. Springer.

Nikolaidis, E., Mourelatos, Z. P., & Pandey, V. (2011). *Design decisions under uncertainty with limited information* (Vol. 7). Taylor & Francis US.

NOAA. National Oceanic and Atmospheric Administration. *Department of Commerce*.  
<http://www.noaa.gov/>

Norouzi, M. (2012). *An efficient method for reliability assessment under dynamic stochastic loads*. Ph.D. Dissertation, The University of Toledo, OH, USA.

Norouzi, M. & Nikolaidis, E. (2013). Modeling dependence between wind and wave in an offshore wind turbine site. *In Proceedings of the 23rd International Offshore and Polar Engineering Conference*, Anchorage, Alaska.

Ochi, M. K. (2005). *Ocean waves: the stochastic approach* (Vol. 6). Cambridge University Press.

Powles, S. R. J. (1983). The effects of tower shadow on the dynamics of a horizontal-axis wind turbine. *Wind Engineering*, 7, 26-42.

Ralston, T. D. (1977). Ice force design considerations for conical offshore structures. In *Proceedings of the 4th International Conference on Port and Ocean Engineering under Arctic Conditions*, Newfoundland Memorial University, Canada.

Senju, T., Sakamoto, R., Urasaki, N., Funabashi, T., Fujita, H., & Sekine, H. (2006). Output power leveling of wind turbine generator for all operating regions by pitch angle control. *Energy Conversion, IEEE Transactions on*, 21(2), 467-475.

Timco, G., Frederking, R., Kamesaki, K., & Tada, H. (1999). Comparison of ice load calculation algorithms for first-year ridges. In *Proceedings International Workshop on Rational Evaluation of Ice Forces on Structures, REIFS'99* (pp. 88-102).

Wells, E. (2012). *An assessment of surface ice sheet loads and their effects on an offshore wind turbine structure*. M.Sc. Thesis, The University of Toledo, OH, USA.

White, K. (2004) *Method to estimate river ice thickness based on meteorological data*. ERDC/CRREL Technical Note 04-3.

# Appendix

## Appendix 1: Wind Turbine Models

A total of 23 different wind turbine models were developed for parametric studies. The following design parameters were changed in these models in order to investigate the effects of design changes on performance and safety.

- Power rating
- Number of blades
- Upwind/downwind configuration
- Blade model
- Shaft tilt angle
- Conning angle
- Teeter parameters
- Application of tip-brake

Table A1.1 shows the wind turbine models employed in this investigation. Table A1.1 includes the design changes of each wind turbine model. Figure A1.1 shows how these design settings were established for each model. For example, the first row shows that turbines with three and two blades were studied. According to the second row, an upwind design with three blades, and two designs with upwind and downwind configuration were studied. The rest of the rows of the Figure A1.1 can be extended with same logic for the various models. Acronyms for each design are shown at the bottom of the figure.

The wind turbine models numbered from 1 to 16 are used for the wind turbine model comparison studies that includes aspects of load effects, fatigue life estimation, tower-to-blade clearance, and teeter angle. The comparison studies of wind turbine models are covered in section 9.1. The wind turbine models numbered 6, and from 16 to 21 were used to find a proper teeter parameter that is discussed in section 6.2.4. The turbine model number 22 is used only for the AEP comparisons, presented in section 9.3.1. This model was used to find how much the tower shadow affects to the AEP of upwind and downwind turbines. The wind turbine model numbered 23 is the final selected design that is discussed in section 9.3.3. The detail designs of wind turbine models can be found in chapter 6.

The acronym for each model was defined according to the rules described in Table A1.2. The first three characters specify the rating of the wind turbine. For example, “5MW” denotes a wind turbine with a rating of 5MW. The next number shows the number of blades; for example “3” indicates a three blade rotor. The next symbol is for the wind direction for the wind turbine (“U” means upwind machine and “D” means downwind). The next three letters indicates blade model. “B00” denotes the original NREL 5MW wind turbine blade. Acronym “BUT” denotes the blade that has improved twist angle from The University of Toledo. The next letters are optional settings. If there are no characters after the 9th letter, it means that the wind turbine has a 5° shaft tilt angle, 2.5° conning angle, and no tip-brake. Also, if the wind turbine model is a 3-bladed machine, teeter is not used. A wind turbine model of a 2-bladed machine uses the teeter parameter set 0.3. The list of teeter parameter sets can be found from Table 6.6. Moreover, if the

wind turbine is a downwind machine, tower shadow effect is applied. If there is “NoTwrShdw” mark in the acronyms of a downwind machine, it means that the tower shadow effect was not considered. If there is a “TipBrk” mark in the model name, it means the model includes tip-brakes. If there is a “T#C#” mark, where the “#” denotes a number, in the acronyms of a wind turbine model, it means the wind turbine model has changes on shaft tilt or conning angle from the baseline design settings, which is 5° shaft tilt angle and 2.5° conning angle. Character “T” denotes the shaft tilt angle, and “C” denotes the conning angle. The shaft tilt angle used in the wind turbine model is the same as the number after the character “T”. The conning angle of the wind turbine model is the same as the number after character “C”. For example, “T0C2.5” means that the wind turbine model has 0° shaft tilt and 2.5° conning angles. If there is a “Teeter#” mark, where the “#” denotes a number, in the acronyms of a wind turbine model, it means the wind turbine model uses other than the teeter parameter set 0.3 for the 2-bladed machines. For example, if there is “Teeter0.5” mark in the acronyms of a wind turbine model, the wind turbine model uses teeter set “Teeter0.5”. The “TeeterNo” mark is used for the model that has no teeter mechanism for the 2-bladed wind turbine. The details of the teeter parameter sets are explained in section 6.2.4.

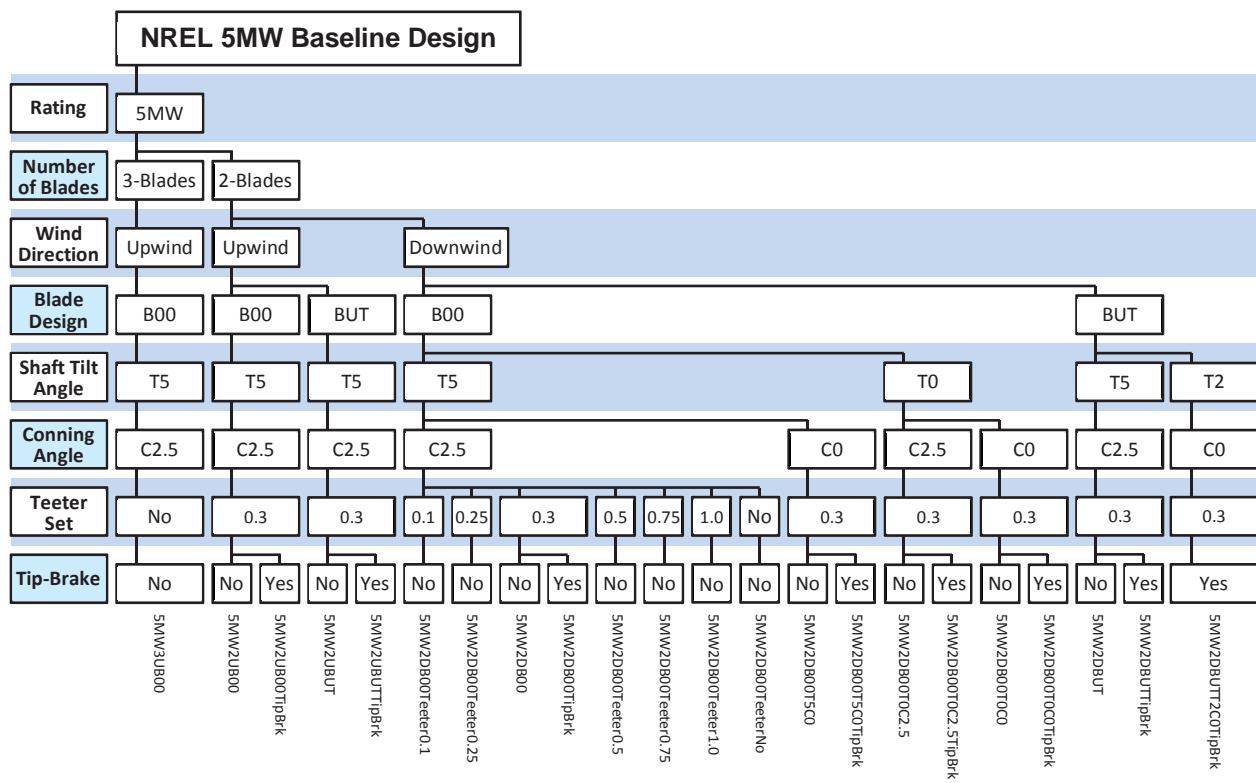



Figure A1.1. Description of alternative designs.

Table A1.1. List of simulated models.

| #  | Model                | Power Rating | Num. of Blades | Wind Direction | Blade Model | Tilt (deg) | Cone (deg) | Teeter Set | Tip Brake | Tower Shadow |
|----|----------------------|--------------|----------------|----------------|-------------|------------|------------|------------|-----------|--------------|
| 1  | 5MW3UB00             | 5MW          | 3              | Up             | Baseline    | 5          | 2.5        | No         | No        | No           |
| 2  | 5MW2UB00             | 5MW          | 2              | Up             | Baseline    | 5          | 2.5        | 0.3        | No        | No           |
| 3  | 5MW2UB00TipBrk       | 5MW          | 2              | Up             | Baseline    | 5          | 2.5        | 0.3        | Yes       | No           |
| 4  | 5MW2UBUT             | 5MW          | 2              | Up             | BUT         | 5          | 2.5        | 0.3        | No        | No           |
| 5  | 5MW2UBUTTipBrk       | 5MW          | 2              | Up             | BUT         | 5          | 2.5        | 0.3        | Yes       | No           |
| 6  | 5MW2DB00             | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 0.3        | No        | Yes          |
| 7  | 5MW2DB00TipBrk       | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 0.3        | Yes       | Yes          |
| 8  | 5MW2DBUT             | 5MW          | 2              | Down           | BUT         | 5          | 2.5        | 0.3        | No        | Yes          |
| 9  | 5MW2DBUTTipBrk       | 5MW          | 2              | Down           | BUT         | 5          | 2.5        | 0.3        | Yes       | Yes          |
| 10 | 5MW2DB00T5C0         | 5MW          | 2              | Down           | Baseline    | 5          | 0          | 0.3        | No        | Yes          |
| 11 | 5MW2DB00T5C0TipBrk   | 5MW          | 2              | Down           | Baseline    | 5          | 0          | 0.3        | Yes       | Yes          |
| 12 | 5MW2DB00T0C2.5       | 5MW          | 2              | Down           | Baseline    | 0          | 2.5        | 0.3        | No        | Yes          |
| 13 | 5MW2DB00T0C2.5TipBrk | 5MW          | 2              | Down           | Baseline    | 0          | 2.5        | 0.3        | Yes       | Yes          |
| 14 | 5MW2DB00T0C0         | 5MW          | 2              | Down           | Baseline    | 0          | 0          | 0.3        | No        | Yes          |
| 15 | 5MW2DB00T0C0TipBrk   | 5MW          | 2              | Down           | Baseline    | 0          | 0          | 0.3        | Yes       | Yes          |
| 16 | 5MW2DB00TeeterNo     | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | No         | No        | Yes          |
| 17 | 5MW2DB00Teeter0.1    | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 0.1        | No        | Yes          |
| 18 | 5MW2DB00Teeter0.25   | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 0.25       | No        | Yes          |
| 19 | 5MW2DB00Teeter0.5    | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 0.5        | No        | Yes          |
| 20 | 5MW2DB00Teeter0.75   | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 0.75       | No        | Yes          |
| 21 | 5MW2DB00Teeter1.0    | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 1.0        | No        | Yes          |
| 22 | 5MW2DB00NoTwrShdw    | 5MW          | 2              | Down           | Baseline    | 5          | 2.5        | 0.3        | No        | No           |
| 23 | 5MW2DBUTT2C0TipBrk   | 5MW          | 2              | Down           | BUT         | 2          | 0          | 0.3        | Yes       | Yes          |

Table A1.2. Model name acronyms descriptions.

| Acronym        | Location | Description                                                                                                                                                                                                                 |
|----------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #MW            | 1~3      | Rating in MW. The number “#” denotes a wind turbine rating.                                                                                                                                                                 |
| “2” or “3”     | 4        | Number of blades on the rotor.                                                                                                                                                                                              |
| “U” or “D”     | 5        | Wind direction. “U” denotes upwind, and “D” denotes downwind.                                                                                                                                                               |
| “B00” or “BUT” | 6~8      | Blade design. “B00” denotes the baseline blade, and “BUT” denotes the improved blade from The University of Toledo                                                                                                          |
| T#C#           | after 8  | Shaft tilt angle and conning angle. The number “#” after character “T” denotes shaft tilt angle in degree, and the number “#” after character “C” denotes conning angle in degree.                                          |
| Teeter#        | after 8  | Teeter set other than the “Teeter0.3” teeter parameter set for the 2-bladed machines. The number “#” denotes teeter set number. If “No” is placed at “#”, teeter is disabled. Teeter is disabled for all 3-bladed machines. |
| TipBrk         | after 8  | If “TipBrk” is placed in a model name, tip-brake is enabled. If not, tip-brake is disabled.                                                                                                                                 |
| NoTwrShdw      | after 8  | If “NoTwrShdw” is placed in a model name of a downwind machine, tower shadow effect is disabled. If not, tower shadow effect is enabled. Tower shadow effect is disabled for all upwind machines.                           |

## Appendix 2: Tower Structural Models

The tower structural properties along the height of the tower are listed in Table A2.1. The abbreviations are the same as those used in FAST tower input file. Refer to FAST User's Guide [Jonkman & Buhl, 2005] for the detailed descriptions of the structural properties.

**Table A2.1. Tower structural properties.**

| Elevation<br>(m) | HtFract<br>(-) | TMassDen<br>(kg/m) | TwFAStif<br>(Nm <sup>2</sup> ) | TwSSStif<br>(Nm <sup>2</sup> ) | TwGJStif<br>(Nm <sup>2</sup> ) | TwEASStif<br>(N) | TwFAIner<br>(kg m) | TwSSIner<br>(kg m) | TwFACgOf<br>(m) | TwSSCgOf<br>(m) |
|------------------|----------------|--------------------|--------------------------------|--------------------------------|--------------------------------|------------------|--------------------|--------------------|-----------------|-----------------|
| 11.00            | 0              | 4270.42            | 1.8871E+04                     | 1.8871E+04                     | 4.6622E+11                     | 4.6622E+11       | 3.5877E+11         | 1.0550E+11         | 0               | 0               |
| 17.76            | 0.088251       | 4030.44            | 1.6720E+04                     | 1.6720E+04                     | 4.1308E+11                     | 4.1308E+11       | 3.1788E+11         | 9.9576E+10         | 0               | 0               |
| 25.52            | 0.189556       | 3763.45            | 1.4483E+04                     | 1.4483E+04                     | 3.5783E+11                     | 3.5783E+11       | 2.7536E+11         | 9.2979E+10         | 0               | 0               |
| 33.28            | 0.290862       | 3505.52            | 1.2479E+04                     | 1.2479E+04                     | 3.0830E+11                     | 3.0830E+11       | 2.3724E+11         | 8.6607E+10         | 0               | 0               |
| 41.04            | 0.392167       | 3256.66            | 1.0689E+04                     | 1.0689E+04                     | 2.6408E+11                     | 2.6408E+11       | 2.0322E+11         | 8.0459E+10         | 0               | 0               |
| 48.80            | 0.493473       | 3016.86            | 9.0989E+03                     | 9.0989E+03                     | 2.2480E+11                     | 2.2480E+11       | 1.7299E+11         | 7.4534E+10         | 0               | 0               |
| 56.56            | 0.594778       | 2786.13            | 7.6927E+03                     | 7.6927E+03                     | 1.9006E+11                     | 1.9006E+11       | 1.4625E+11         | 6.8834E+10         | 0               | 0               |
| 64.32            | 0.696084       | 2564.46            | 6.4557E+03                     | 6.4557E+03                     | 1.5949E+11                     | 1.5949E+11       | 1.2273E+11         | 6.3357E+10         | 0               | 0               |
| 72.08            | 0.797389       | 2351.87            | 5.3739E+03                     | 5.3739E+03                     | 1.3277E+11                     | 1.3277E+11       | 1.0217E+11         | 5.8105E+10         | 0               | 0               |
| 79.84            | 0.898695       | 2148.34            | 4.4336E+03                     | 4.4336E+03                     | 1.0954E+11                     | 1.0954E+11       | 8.4291E+10         | 5.3077E+10         | 0               | 0               |
| 87.60            | 1              | 1953.87            | 3.6221E+03                     | 3.6221E+03                     | 8.9488E+10                     | 8.9488E+10       | 6.8863E+10         | 4.8272E+10         | 0               | 0               |

The masses and CM information of the tower top components are listed in Table A2.2. Similar to the acronyms of wind turbine model names in Appendix 1, the model names with 3U, 2U, and 2D stand for three-bladed upwind, two-bladed upwind, and two-bladed downwind configuration respectively. The models whose names include "TipBrk" include a tip-brake. The model whose names include "T5C0", "T0C2.5", and "T0C0" have 5° shaft tilt with 0° precone, 0° shaft tilt with 2.5° precone, and 0° shaft tilt with 0° precone angle, respectively. Otherwise, shaft tilt and precone angles are 5° and 2.5° respectively.

Most of the abbreviations used in Table A2.2 are the same as those used in FAST input file. NumBl means number of blades, and TipBrk mass means tip-brake mass. Blade CM means the CM location of a blade measured from the blade root parallel to the blade z axis, according to the FAST blade coordinate system. HubRad means radius of rotor hub, and HubMass means mass of rotor hub. Rotor mass is the summation of blade masses and hub mass. NacMass is the mass of the nacelle, and YawBrMass is the yaw bearing mass. Twr2Shft is the distance from the tower top to the shaft along the tower axis in the height direction. OverHang is the overhang length, and UndSling is the distance between the end point of overhang and the apex of the cone of rotation. HubCM is the distance between the apex of the cone of rotation and the hub center of mass. ShftTilt is the shaft tilt angle and the PreCone is the precone angles of all blades. NacCMxn, NacCMyn, and NacCMzn are the nacelle center of mass location in x, y, and z directions according to the tower top coordinate system given in [Bir, 2007]. These distances are measured from the yaw bearing CM that is located at the top of the tower and the yaw axis. The positive x direction is the same direction as the wind direction. The y direction is perpendicular to the x direction. The z direction is the height direction of the tower. Hub CM x, Hub CM y, and Hub CM z are the hub center of mass location from the yaw bearing CM location in x, y, and z directions, respectively. Blades CM x, Blades CM y, and Blades CM z are the CM location of all blades from the yaw bearing CM in each direction.

Table A2.2. Tower top masses and center of mass locations.

| Model            | 3U      | 3U TipBrk | 2U      | 2U TipBrk | 2D      | 2D TipBrk |
|------------------|---------|-----------|---------|-----------|---------|-----------|
| NumBl            | 3       | 3         | 2       | 2         | 2       | 2         |
| TipBrk mass (kg) | 0       | 77.8      | 0       | 77.8      | 0       | 77.8      |
| Blade mass (kg)  | 17740   | 17818     | 17740   | 17818     | 17740   | 17818     |
| Blade CM (m)     | 20.475  | 20.654    | 20.475  | 20.654    | 20.475  | 20.654    |
| HubRad (m)       | 1.5     | 1.5       | 1.5     | 1.5       | 1.5     | 1.5       |
| HubMass (kg)     | 56780   | 56780     | 56780   | 56780     | 56780   | 56780     |
| Rotor mass (kg)  | 110000  | 110233    | 92260   | 92416     | 92260   | 92416     |
| NacMass (kg)     | 240000  | 240000    | 240000  | 240000    | 240000  | 240000    |
| YawBrMass (kg)   | 0       | 0         | 0       | 0         | 0       | 0         |
| Twr2Shft (m)     | 1.96256 | 1.96256   | 1.96256 | 1.96256   | 1.96256 | 1.96256   |
| OverHang (m)     | -5.0191 | -5.0191   | -5.0191 | -5.0191   | 5.0191  | 5.0191    |
| UndSling (m)     | 0       | 0         | 0       | 0         | 0       | 0         |
| HubCM (m)        | 0       | 0         | 0       | 0         | 0       | 0         |
| ShiftTilt (deg)  | -5      | -5        | -5      | -5        | 5       | 5         |
| PreCone (deg)    | -2.5    | -2.5      | -2.5    | -2.5      | 2.5     | 2.5       |
| NacCMxn (m)      | 1.9     | 1.9       | 1.9     | 1.9       | -1.9    | -1.9      |
| NacCMyn (m)      | 0       | 0         | 0       | 0         | 0       | 0         |
| NacCMzn (m)      | 1.75    | 1.75      | 1.75    | 1.75      | 1.75    | 1.75      |
| Hub CM x (m)     | -5      | -5        | -5      | -5        | 5       | 5         |
| Hub CM y (m)     | 0       | 0         | 0       | 0         | 0       | 0         |
| Hub CM z (m)     | 2.4     | 2.4       | 2.4     | 2.4       | 2.4     | 2.4       |
| Blades CM x (m)  | -5.9576 | -5.9654   | -5.9576 | -5.9654   | 5.9576  | 5.9654    |
| Blades CM y (m)  | 0       | 0         | 0       | 0         | 0       | 0         |
| Blades CM z (m)  | 2.4418  | 2.4422    | 2.4418  | 2.4422    | 2.4418  | 2.4422    |

| Model            | 2D T5C0 | 2D T5C0<br>TipBrk | 2D T0C2.5 | 2D T0C2.5<br>TipBrk | 2D T0C0 | 2D T0C0<br>TipBrk |
|------------------|---------|-------------------|-----------|---------------------|---------|-------------------|
| NumBl            | 2       | 2                 | 2         | 2                   | 2       | 2                 |
| TipBrk mass (kg) | 0       | 77.8              | 0         | 77.8                | 0       | 77.8              |
| Blade mass (kg)  | 17740   | 17818             | 17740     | 17818               | 17740   | 17818             |
| Blade CM (m)     | 20.475  | 20.654            | 20.475    | 20.654              | 20.475  | 20.654            |
| HubRad (m)       | 1.5     | 1.5               | 1.5       | 1.5                 | 1.5     | 1.5               |
| HubMass (kg)     | 56780   | 56780             | 56780     | 56780               | 56780   | 56780             |
| Rotor mass (kg)  | 92260   | 92416             | 92260     | 92416               | 92260   | 92416             |
| NacMass (kg)     | 240000  | 240000            | 240000    | 240000              | 240000  | 240000            |
| YawBrMass (kg)   | 0       | 0                 | 0         | 0                   | 0       | 0                 |
| Twr2Shft (m)     | 1.96256 | 1.96256           | 1.96256   | 1.96256             | 1.96256 | 1.96256           |
| OverHang (m)     | 5.0191  | 5.0191            | 5.0191    | 5.0191              | 5.0191  | 5.0191            |
| UndSling (m)     | 0       | 0                 | 0         | 0                   | 0       | 0                 |
| HubCM (m)        | 0       | 0                 | 0         | 0                   | 0       | 0                 |
| ShiftTilt (deg)  | 5       | 5                 | 0         | 0                   | 0       | 0                 |
| PreCone (deg)    | 0       | 0                 | 2.5       | 2.5                 | 0       | 0                 |
| NacCMxn (m)      | -1.9    | -1.9              | -1.9      | -1.9                | -1.9    | -1.9              |
| NacCMyn (m)      | 0       | 0                 | 0         | 0                   | 0       | 0                 |
| NacCMzn (m)      | 1.75    | 1.75              | 1.75      | 1.75                | 1.75    | 1.75              |
| Hub CM x (m)     | 5       | 5                 | 5         | 5                   | 5       | 5                 |
| Hub CM y (m)     | 0       | 0                 | 0         | 0                   | 0       | 0                 |
| Hub CM z (m)     | 2.4     | 2.4               | 2.0       | 2.0                 | 2.0     | 2.0               |
| Blades CM x (m)  | 5.0000  | 5.0000            | 5.9767    | 5.9845              | 5.0191  | 5.0191            |
| Blades CM y (m)  | 0       | 0                 | 0         | 0                   | 0       | 0                 |
| Blades CM z (m)  | 2.4000  | 2.4000            | 2.0044    | 2.0047              | 1.9626  | 1.96256           |

The same abbreviations used in the BModes input file are used in Table A2.3. The definitions of the terms are introduced in BModes user's guide [Bir, 2007].

**Table A2.3. Tower top mass, CM, and mass moment of inertia for BModes input file.**

| Models                            | 3U      | 3U TipBrk | 2U      | 2U TipBrk | 2D      | 2D TipBrk |
|-----------------------------------|---------|-----------|---------|-----------|---------|-----------|
| <b>NumBl</b>                      | 3       | 3         | 2       | 2         | 2       | 2         |
| <b>Wind direction</b>             | Up      | Up        | Up      | Up        | Down    | Down      |
| <b>Tip-brake</b>                  | No      | Yes       | No      | Yes       | No      | Yes       |
| <b>tip_mass (kg)</b>              | 350000  | 350233    | 332260  | 332416    | 332260  | 332416    |
| <b>cm_loc (m)</b>                 | -0.4142 | -0.4191   | -0.1182 | -0.1218   | 0.1182  | 0.1218    |
| <b>cm_axial (m)</b>               | 1.9606  | 1.9610    | 1.9350  | 1.9352    | 1.9350  | 1.9352    |
| <b>ixx_tip (kg m<sup>2</sup>)</b> | 1379376 | 1380856   | 1273602 | 1274589   | 1273602 | 1274589   |
| <b>iyy_tip (kg m<sup>2</sup>)</b> | 5554229 | 5568969   | 4818804 | 4828631   | 4818804 | 4828631   |
| <b>izz_tip (kg m<sup>2</sup>)</b> | 4174853 | 4188113   | 3545202 | 3554042   | 3545202 | 3554042   |
| <b>ixy_tip (kg m<sup>2</sup>)</b> | 0       | 0         | 0       | 0         | 0       | 0         |
| <b>izx_tip (kg m<sup>2</sup>)</b> | -657574 | -662097   | -399503 | -402519   | 399503  | 402519    |
| <b>iyz_tip (kg m<sup>2</sup>)</b> | 0       | 0         | 0       | 0         | 0       | 0         |

| Models                            | 2D T5C0 | 2D T5C0<br>TipBrk | 2D T0C2.5 | 2D T0C2.5<br>TipBrk | 2D T0C0 | 2D T0C0<br>TipBrk |
|-----------------------------------|---------|-------------------|-----------|---------------------|---------|-------------------|
| <b>NumBl</b>                      | 2       | 2                 | 2         | 2                   | 2       | 2                 |
| <b>Wind direction</b>             | Down    | Down              | Down      | Down                | Down    | Down              |
| <b>Tip-brake</b>                  | No      | Yes               | No        | Yes                 | No      | Yes               |
| <b>tip_mass (kg)</b>              | 332260  | 332416            | 332260    | 332416              | 332260  | 332416            |
| <b>cm_loc (m)</b>                 | 0.0160  | 0.0183            | 0.1235    | 0.1271              | 0.0213  | 0.0236            |
| <b>cm_axial (m)</b>               | 1.9305  | 1.9307            | 1.8135    | 1.8136              | 1.8090  | 1.8091            |
| <b>ixx_tip (kg m<sup>2</sup>)</b> | 1266419 | 1267315           | 1096237   | 1096911             | 1090352 | 1090952           |
| <b>iyy_tip (kg m<sup>2</sup>)</b> | 4439320 | 4444106           | 4660392   | 4669951             | 4280908 | 4285427           |
| <b>izz_tip (kg m<sup>2</sup>)</b> | 3172901 | 3176791           | 3564155   | 3573040             | 3190555 | 3194475           |
| <b>ixy_tip (kg m<sup>2</sup>)</b> | 0       | 0                 | 0         | 0                   | 0       | 0                 |
| <b>izx_tip (kg m<sup>2</sup>)</b> | -657574 | -399503           | 399503    | -662097             | -402519 | 402519            |
| <b>iyz_tip (kg m<sup>2</sup>)</b> | 0       | 0                 | 0         | 0                   | 0       | 0                 |

## References

Jonkman, J. M., & Buhl Jr, M. L. (2005). *FAST user's guide*. National Renewable Energy Laboratory, Golden, CO.

Bir, G. S. (2005). *User's Guide to BModes*. National Renewable Energy Laboratory, Golden, CO.

## Appendix 3: NREL 5MW Baseline Blade Geometry

The NREL 5MW baseline blade geometry data are listed in following table. The values marked in pink are interpolated values.

Table A3.1. Baseline blade geometry data long span.

| Radius (m) | Span (m) | Span (Fraction) | Chord (m) | Twist (deg) | Pitch Axis (Fraction) | Airfoil (-)    | Thickness / Chord Ratio (%) | Source (-) |
|------------|----------|-----------------|-----------|-------------|-----------------------|----------------|-----------------------------|------------|
| 1.500      | 0.000    | 0.000           | 3.500     | 13.308      | 0.500                 | Cylinder       | 100.000                     | All        |
| 1.808      | 0.308    | 0.005           | 3.500     | 13.308      | 0.500                 | Cylinder       | 100.000                     | SNL100-00  |
| 1.931      | 0.431    | 0.007           | 3.500     | 13.308      | 0.500                 | Translation    | 99.250                      | SNL100-00  |
| 2.054      | 0.554    | 0.009           | 3.500     | 13.308      | 0.500                 | Translation    | 98.500                      | SNL100-00  |
| 2.177      | 0.677    | 0.011           | 3.500     | 13.308      | 0.500                 | Translation    | 97.750                      | SNL100-00  |
| 2.300      | 0.800    | 0.013           | 3.500     | 13.308      | 0.500                 | Ellipse        | 97.000                      | SNL100-00  |
| 2.502      | 1.002    | 0.016           | 3.500     | 13.308      | 0.500                 | N/A            | 95.833                      | LMH64-5    |
| 2.867      | 1.367    | 0.022           | 3.542     | 13.308      | 0.499                 | N/A            | 93.730                      | NREL5MW    |
| 2.976      | 1.476    | 0.024           | 3.554     | 13.308      | 0.499                 | Ellipse        | 93.100                      | SNL100-00  |
| 3.099      | 1.599    | 0.026           | 3.568     | 13.308      | 0.498                 | Ellipse        | 92.500                      | SNL100-00  |
| 3.501      | 2.001    | 0.033           | 3.614     | 13.308      | 0.493                 | N/A            | 89.854                      | LMH64-5    |
| 4.391      | 2.891    | 0.047           | 3.716     | 13.308      | 0.483                 | Translation    | 84.000                      | SNL100-00  |
| 5.600      | 4.100    | 0.067           | 3.854     | 13.308      | 0.469                 | N/A            | 76.508                      | NREL5MW    |
| 5.682      | 4.182    | 0.068           | 3.863     | 13.308      | 0.468                 | Translation    | 76.000                      | SNL100-00  |
| 6.974      | 5.474    | 0.089           | 4.011     | 13.308      | 0.453                 | Translation    | 68.000                      | SNL100-00  |
| 8.333      | 6.833    | 0.111           | 4.167     | 13.308      | 0.437                 | N/A            | 60.925                      | NREL5MW    |
| 8.511      | 7.011    | 0.114           | 4.187     | 13.308      | 0.435                 | Translation    | 60.000                      | SNL100-00  |
| 10.479     | 8.979    | 0.146           | 4.412     | 13.308      | 0.410                 | Translation    | 51.000                      | SNL100-00  |
| 11.525     | 10.025   | 0.163           | 4.531     | 13.308      | 0.400                 | Translation    | 47.000                      | SNL100-00  |
| 11.750     | 10.250   | 0.167           | 4.557     | 13.308      | 0.398                 | N/A            | 46.198                      | NREL5MW    |
| 12.001     | 10.501   | 0.171           | 4.586     | 13.274      | 0.395                 | N/A            | 45.305                      | LMH64-5    |
| 12.201     | 10.701   | 0.174           | 4.609     | 13.248      | 0.393                 | N/A            | 44.594                      | LMH64-5    |
| 12.509     | 11.009   | 0.179           | 4.629     | 13.207      | 0.390                 | Translation    | 43.500                      | SNL100-00  |
| 12.700     | 11.200   | 0.182           | 4.641     | 13.181      | 0.388                 | N/A            | 42.906                      | NREL5MW    |
| 13.493     | 11.993   | 0.195           | 4.691     | 12.917      | 0.380                 | DU99-W-405     | 40.448                      | SNL100-00  |
| 13.501     | 12.001   | 0.195           | 4.692     | 12.914      | 0.380                 | N/A            | 40.435                      | LMH64-5    |
| 13.700     | 12.200   | 0.198           | 4.689     | 12.848      | 0.380                 | N/A            | 40.142                      | NREL5MW    |
| 14.700     | 13.200   | 0.215           | 4.673     | 12.192      | 0.379                 | N/A            | 38.668                      | NREL5MW    |
| 15.153     | 13.653   | 0.222           | 4.666     | 11.906      | 0.378                 | DU99-W-405 Adj | 38.000                      | SNL100-00  |
| 15.501     | 14.001   | 0.228           | 4.661     | 11.687      | 0.378                 | N/A            | 37.581                      | LMH64-5    |
| 15.700     | 14.200   | 0.231           | 4.656     | 11.561      | 0.378                 | N/A            | 37.341                      | NREL5MW    |
| 15.850     | 14.350   | 0.233           | 4.652     | 11.480      | 0.378                 | N/A            | 37.160                      | NREL5MW    |
| 16.501     | 15.001   | 0.244           | 4.635     | 11.168      | 0.377                 | N/A            | 36.376                      | LMH64-5    |
| 16.700     | 15.200   | 0.247           | 4.625     | 11.072      | 0.377                 | N/A            | 36.137                      | NREL5MW    |
| 16.814     | 15.314   | 0.249           | 4.619     | 11.040      | 0.377                 | DU99-W-350 Adj | 36.000                      | SNL100-00  |
| 17.700     | 16.200   | 0.263           | 4.573     | 10.792      | 0.376                 | N/A            | 34.932                      | NREL5MW    |
| 18.474     | 16.974   | 0.276           | 4.534     | 10.575      | 0.375                 | DU99-W-350 Adj | 34.000                      | SNL100-00  |
| 19.700     | 18.200   | 0.296           | 4.471     | 10.232      | 0.375                 | N/A            | 33.026                      | NREL5MW    |
| 19.950     | 18.450   | 0.300           | 4.458     | 10.162      | 0.375                 | N/A            | 32.827                      | NREL5MW    |
| 21.501     | 20.001   | 0.325           | 4.379     | 9.728       | 0.375                 | N/A            | 31.595                      | LMH64-5    |
| 21.700     | 20.200   | 0.328           | 4.369     | 9.672       | 0.375                 | N/A            | 31.437                      | NREL5MW    |
| 23.517     | 22.017   | 0.358           | 4.276     | 9.161       | 0.375                 | DU97-W-300     | 29.993                      | SNL100-00  |
| 23.700     | 22.200   | 0.361           | 4.267     | 9.110       | 0.375                 | N/A            | 29.846                      | NREL5MW    |
| 24.050     | 22.550   | 0.367           | 4.249     | 9.011       | 0.375                 | N/A            | 29.566                      | NREL5MW    |
| 24.701     | 23.201   | 0.377           | 4.216     | 8.823       | 0.375                 | N/A            | 29.044                      | LMH64-5    |
| 25.700     | 24.200   | 0.393           | 4.158     | 8.534       | 0.375                 | N/A            | 28.243                      | NREL5MW    |
| 26.501     | 25.001   | 0.407           | 4.111     | 8.293       | 0.375                 | N/A            | 27.601                      | LMH64-5    |
| 27.700     | 26.200   | 0.426           | 4.035     | 7.932       | 0.375                 | N/A            | 26.640                      | NREL5MW    |
| 28.150     | 26.650   | 0.433           | 4.007     | 7.795       | 0.375                 | N/A            | 26.279                      | NREL5MW    |
| 28.499     | 26.999   | 0.439           | 3.985     | 7.688       | 0.375                 | DU91-W2-250    | 26.000                      | SNL100-00  |
| 29.700     | 28.200   | 0.459           | 3.909     | 7.321       | 0.375                 | N/A            | 25.276                      | NREL5MW    |
| 31.700     | 30.200   | 0.491           | 3.783     | 6.711       | 0.375                 | N/A            | 24.072                      | NREL5MW    |
| 32.201     | 30.701   | 0.499           | 3.751     | 6.559       | 0.375                 | N/A            | 23.770                      | LMH64-5    |
| 32.250     | 30.750   | 0.500           | 3.748     | 6.544       | 0.375                 | N/A            | 23.741                      | NREL5MW    |
| 33.480     | 31.980   | 0.520           | 3.674     | 6.186       | 0.375                 | DU93-W-210 Adj | 23.000                      | SNL100-00  |
| 33.700     | 32.200   | 0.524           | 3.661     | 6.122       | 0.375                 | N/A            | 22.913                      | NREL5MW    |
| 34.501     | 33.001   | 0.537           | 3.613     | 5.891       | 0.375                 | N/A            | 22.598                      | LMH64-5    |
| 35.700     | 34.200   | 0.556           | 3.541     | 5.546       | 0.375                 | N/A            | 22.125                      | NREL5MW    |

**Table A3.1. Baseline blade geometry data long span (continue).**

| Radius<br>(m) | Span<br>(m) | Span<br>(Fraction) | Chord<br>(m) | Twist<br>(deg) | Pitch<br>Axis<br>(Fraction) | Airfoil         | Thickness /<br>Chord Ratio<br>(%) | Source<br>(-) |
|---------------|-------------|--------------------|--------------|----------------|-----------------------------|-----------------|-----------------------------------|---------------|
| 36.350        | 34.850      | 0.567              | 3.502        | 5.361          | 0.375                       | N/A             | 21.869                            | NREL5MW       |
| 36.501        | 35.001      | 0.569              | 3.493        | 5.317          | 0.375                       | N/A             | 21.810                            | LMH64-5       |
| 37.501        | 36.001      | 0.585              | 3.433        | 5.028          | 0.375                       | N/A             | 21.416                            | LMH64-5       |
| 37.700        | 36.200      | 0.589              | 3.421        | 4.971          | 0.375                       | N/A             | 21.337                            | NREL5MW       |
| 38.523        | 37.023      | 0.602              | 3.372        | 4.736          | 0.375                       | DU93-W-210      | 21.013                            | SNL100-00     |
| 39.700        | 38.200      | 0.621              | 3.301        | 4.401          | 0.375                       | N/A             | 20.420                            | NREL5MW       |
| 40.450        | 38.950      | 0.633              | 3.256        | 4.188          | 0.375                       | N/A             | 20.043                            | NREL5MW       |
| 41.501        | 40.001      | 0.650              | 3.193        | 3.890          | 0.375                       | N/A             | 19.513                            | LMH64-5       |
| 41.700        | 40.200      | 0.654              | 3.181        | 3.834          | 0.375                       | N/A             | 19.413                            | NREL5MW       |
| 42.201        | 40.701      | 0.662              | 3.151        | 3.708          | 0.375                       | N/A             | 19.161                            | LMH64-5       |
| 42.521        | 41.021      | 0.667              | 3.132        | 3.628          | 0.375                       | NACA 64-618 Adj | 19.000                            | SNL100-00     |
| 43.505        | 42.005      | 0.683              | 3.073        | 3.381          | 0.375                       | NACA 64-618 Adj | 18.500                            | SNL100-00     |
| 43.700        | 42.200      | 0.686              | 3.061        | 3.332          | 0.375                       | N/A             | 18.468                            | NREL5MW       |
| 44.550        | 43.050      | 0.700              | 3.010        | 3.125          | 0.375                       | N/A             | 18.327                            | NREL5MW       |
| 44.701        | 43.201      | 0.702              | 3.001        | 3.094          | 0.375                       | N/A             | 18.301                            | LMH64-5       |
| 45.501        | 44.001      | 0.715              | 2.953        | 2.931          | 0.375                       | N/A             | 18.169                            | LMH64-5       |
| 45.700        | 44.200      | 0.719              | 2.941        | 2.890          | 0.375                       | N/A             | 18.136                            | NREL5MW       |
| 46.518        | 45.018      | 0.732              | 2.892        | 2.732          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 47.700        | 46.200      | 0.751              | 2.821        | 2.503          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 48.486        | 46.986      | 0.764              | 2.774        | 2.351          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 48.650        | 47.150      | 0.767              | 2.764        | 2.319          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 49.700        | 48.200      | 0.784              | 2.701        | 2.116          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 51.501        | 50.001      | 0.813              | 2.593        | 1.768          | 0.375                       | N/A             | 18.000                            | LMH64-5       |
| 51.700        | 50.200      | 0.816              | 2.581        | 1.730          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 52.750        | 51.250      | 0.833              | 2.518        | 1.526          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 53.529        | 52.029      | 0.846              | 2.471        | 1.375          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 53.700        | 52.200      | 0.849              | 2.461        | 1.342          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 55.700        | 54.200      | 0.881              | 2.341        | 0.954          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 56.167        | 54.667      | 0.889              | 2.313        | 0.863          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 56.481        | 54.981      | 0.894              | 2.294        | 0.802          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 56.501        | 55.001      | 0.894              | 2.293        | 0.798          | 0.375                       | N/A             | 18.000                            | LMH64-5       |
| 56.700        | 55.200      | 0.898              | 2.281        | 0.760          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 57.501        | 56.001      | 0.911              | 2.232        | 0.611          | 0.375                       | N/A             | 18.000                            | LMH64-5       |
| 57.700        | 56.200      | 0.914              | 2.211        | 0.574          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 58.700        | 57.200      | 0.930              | 2.107        | 0.404          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 58.900        | 57.400      | 0.933              | 2.086        | 0.370          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 59.200        | 57.700      | 0.938              | 2.055        | 0.319          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 59.495        | 57.995      | 0.943              | 2.024        | 0.280          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 59.501        | 58.001      | 0.943              | 2.023        | 0.279          | 0.375                       | N/A             | 18.000                            | LMH64-5       |
| 59.700        | 58.200      | 0.946              | 1.972        | 0.253          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 60.200        | 58.700      | 0.954              | 1.846        | 0.216          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 60.356        | 58.856      | 0.957              | 1.806        | 0.204          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 60.700        | 59.200      | 0.963              | 1.719        | 0.178          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 61.100        | 59.600      | 0.969              | 1.617        | 0.148          | 0.375                       | N/A             | 18.000                            | LMH64-5       |
| 61.200        | 59.700      | 0.971              | 1.580        | 0.140          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 61.278        | 59.778      | 0.972              | 1.551        | 0.134          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 61.633        | 60.133      | 0.978              | 1.419        | 0.106          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 61.700        | 60.200      | 0.979              | 1.394        | 0.101          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 62.139        | 60.639      | 0.986              | 1.231        | 0.067          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |
| 62.200        | 60.700      | 0.987              | 1.209        | 0.062          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 62.501        | 61.001      | 0.992              | 1.097        | 0.039          | 0.375                       | N/A             | 18.000                            | LMH64-5       |
| 62.700        | 61.200      | 0.995              | 0.684        | 0.023          | 0.375                       | N/A             | 18.000                            | NREL5MW       |
| 63.000        | 61.500      | 1.000              | 0.061        | 0.023          | 0.375                       | NACA 64-618     | 18.000                            | SNL100-00     |

## References

Griffith, D. T., & Ashwill, T. D. (2011). *The Sandia 100-meter all-glass baseline wind turbine blade: Snl100-00*. Sandia National Laboratories Technical Report.

Lindenburg, C. (2002). Aeroelastic modeling of the LMH64-5 blade. *ECN, Petten*.

Jonkman, J. M., Butterfield, S., Musial, W., & Scott, G. (2009). *Definition of a 5-MW reference wind turbine for offshore system development*. National Renewable Energy Laboratory, Golden, CO.

## Appendix 4: Definition of Load Effects

Load effects are determined by performing FAST simulations. The term *load effect* is used in this report to denote internal forces and moments in wind turbine structures that are found from FAST simulations. The term *load effect* distinguishes the internal forces and moments in a wind turbine structure from the term *external load* on a wind turbine structure. More specifically for this report, the term *load effect* denotes the post-processed internal loads that will be introduced in later in this section. Maximum, minimum, and average load effects were calculated using Fast simulations and by sorting the time marching output of FAST for various DLCs, and used for the ultimate load effect analyses. The time marching output of FAST simulation in DLC1.2 were used for estimating the fatigue life.

The detailed theory of load effect calculations from external loads in FAST simulation can be found from Jonkman & Buhl [2004], Jonkman [2003], Moriarty & Hansen [2005], and Jonkman & Buhl [2005]. The detailed output descriptions of FAST simulation can be found in Jonkman & Buhl [2005] or released FAST archives. The design load cases (DLC) for normal operation conditions, fault conditions, and parked conditions were considered to perform the simulation. The DLCs are explained in section 5.4. The detailed description of models used in simulations is explained in chapter 6.

In this research, there are 4 types of load effects of interest (shear forces, bending moments, axial forces, torsional moments) at 4 different locations (tower base, tower top, each blade root, LSS), 3 torques on LSS, HSS, and generator. The load effects found from FAST simulations are post-processed for easier analysis. The root mean squared (RMS) values were used for shear forces and bending moments because the cross-sections of the locations of interest have a circular shape and the structural properties are homogeneous. Although a composite material is used in the rotor blade, it is assumed that the structural properties are homogeneous at the blade root. The post-processed load effects for each locations of interest are listed in Table A4.1 to Table A4.4.

The coordinate systems used in this report follow Jonkman and Buhl [2005]. The tower base coordinate system is fixed at the top of the platform, which is located 11m above the water surface. The tower top location is loaded at the yaw bearing height. The tower top coordinate system does not rotate along the yaw rotation. The LSS coordinate system does not rotate along the rotor. The LSS bending moments are measured at 1.912m location from the rotor apex (for 3 blades machines) or teeter pin (for 2 blades machines). The LSS torsional moment and the LSS torque (rotor torque) are the same concept and are used interchangeably.

Table A4.1. Tower base load effects.

| Internal Load | Unit | Internal Load Description             | Coordinate  | Load Effect                            | Load Effect Description     |
|---------------|------|---------------------------------------|-------------|----------------------------------------|-----------------------------|
| $F_{xt}$      | kN   | Tower base fore-aft shear force       | Along $x_t$ | $F_{xyt} = \sqrt{F_{xt}^2 + F_{yt}^2}$ | Tower base shear force      |
| $F_{yt}$      | kN   | Tower base side-to-side shear force   | Along $y_t$ |                                        |                             |
| $F_{zt}$      | kN   | Tower base axial force                | Along $z_t$ | $F_{zt}$                               | Tower base axial force      |
| $M_{xt}$      | kN-m | Tower base side-to-side (roll) moment | About $x_t$ | $M_{xyt} = \sqrt{M_{xt}^2 + M_{yt}^2}$ | Tower base bending moment   |
| $M_{yt}$      | kN-m | Tower base fore-aft (pitching) moment | About $y_t$ |                                        |                             |
| $M_{zt}$      | kN-m | Tower base torsional (yaw) moment     | About $z_t$ | $M_{zt}$                               | Tower base torsional moment |

Table A4.2. Tower top load effects.

| Internal Load | Unit | Internal Load Description          | Coordinate  | Load Effect                            | Load Effect Description    |
|---------------|------|------------------------------------|-------------|----------------------------------------|----------------------------|
| $F_{xp}$      | kN   | Tower top fore-aft shear force     | Along $x_p$ | $F_{xyp} = \sqrt{F_{xp}^2 + F_{yp}^2}$ | Tower top shear force      |
| $F_{yp}$      | kN   | Tower top side-to-side shear force | Along $y_p$ |                                        |                            |
| $F_{zp}$      | kN   | Tower top axial force              | Along $z_p$ | $F_{zp}$                               | Tower top axial force      |
| $M_{xp}$      | kN-m | Tower top roll moment              | About $x_p$ | $M_{xyp} = \sqrt{M_{xp}^2 + M_{yp}^2}$ | Tower top bending moment   |
| $M_{yp}$      | kN-m | Tower top pitch moment             | About $y_p$ |                                        |                            |
| $M_{zp}$      | kN-m | Tower top yaw moment               | About $z_p$ | $M_{zp}$                               | Tower top torsional moment |

Table A4.3. Blade root load effects.

| Internal Load | Unit | Internal Load Description          | Coordinate  | Load Effect                            | Load Effect Description     |
|---------------|------|------------------------------------|-------------|----------------------------------------|-----------------------------|
| $F_{xb}$      | kN   | Blade root flapwise shear force    | Along $x_b$ | $F_{xyb} = \sqrt{F_{xb}^2 + F_{yb}^2}$ | Blade root shear force      |
| $F_{yb}$      | kN   | Blade root edgewise shear          | Along $y_b$ |                                        |                             |
| $F_{zb}$      | kN   | Blade root axial force             | Along $z_b$ | $F_{zb}$                               | Blade root axial force      |
| $M_{xb}$      | kN-m | Blade root flapwise bending moment | About $x_b$ | $M_{xyb} = \sqrt{M_{xb}^2 + M_{yb}^2}$ | Blade root bending moment   |
| $M_{yb}$      | kN-m | Blade root edgewise bending moment | About $y_b$ |                                        |                             |
| $M_{zb}$      | kN-m | Blade root torsional moment        | About $z_b$ | $M_{zb}$                               | Blade root torsional moment |

Table A4.4. LSS load effects.

| Internal Load | Unit | Internal Load Description                     | Coordinate  | Load Effect                            | Load Effect Description |
|---------------|------|-----------------------------------------------|-------------|----------------------------------------|-------------------------|
| $F_{xs}$      | kN   | LSS axial force (thrust)                      | Along $x_s$ | $F_{xs}$                               | LSS axial force         |
| $F_{ys}$      | kN   | LSS shear force                               | Along $y_s$ | $F_{yzs} = \sqrt{F_{ys}^2 + F_{zs}^2}$ | LSS shear force         |
| $F_{zs}$      | kN   | LSS shear force                               | Along $z_s$ |                                        |                         |
| $M_{xs}$      | kN-m | LSS torsional moment (rotor torque)           | About $x_s$ | $M_{xs}$                               | LSS torsional moment    |
| $M_{ys}$      | kN-m | LSS bending moment at the shaft's strain gage | About $y_s$ | $M_{yzs} = \sqrt{M_{ys}^2 + M_{zb}^2}$ | LSS bending moment      |
| $M_{zs}$      | kN-m | LSS bending moment at the shaft's strain gage | About $z_s$ |                                        |                         |

## References

Jonkman, J. M., & Buhl Jr, M. L. (2004). New developments for the NWTC's FAST aeroelastic HAWT simulator. In *The 23rd ASME Wind Energy Symposium, Reno, Nevada*.

Jonkman, J. M. (2003). *Modeling of the UAE Wind Turbine for Refinement of FAST\_AD*. Colorado: National Renewable Energy Laboratory.

Moriarty, P. J., & Hansen, A. C. (2005). *AeroDyn theory manual*. National Renewable Energy Laboratory. Golden, Co.

Jonkman, J. M., & Buhl Jr, M. L. (2005). *FAST user's guide*. National Renewable Energy Laboratory, Golden, CO.

## Appendix 5: Safe Limit

The safe limits were determined according to the calculated load effects on the baseline model, assuming that the baseline design is safe. First, to determine a safe limit load effect, the maximum and minimum load effects of the baseline model are multiplied by the load factor for the corresponding DLC. Then, the load effects that have largest magnitude are selected for the shear force, bending moment, axial force, and torsional moment from the locations at the tower base, tower top, LSS, and torques from the locations at the HSS, and generator. The safe limit is determined using the load effect with the largest magnitude for both positive and negative value regions on the tower, and shafts that are made of isotropic material. For the blades, maximum and minimum loads are collected from both blades, because the blades are not made of an isotropic material.

The load capacity of the wind turbine structure in reality may be larger than the safe limits calculated using the above procedure and indicated by the green line in load effects graphs. However, if a load effect for a particular model does not exceed the safe limits, this is considered as conclusive evidence that the model is safe. The models in which the load effects exceed the safe limit may still be safe because the load capacity of the structure may be much larger than the safe limit. However, these models need to be carefully considered in the detailed design stage.

**Table A5.1. Safe limits according to the baseline model.**

|                  | <b>Shear Force</b> | <b>Bending Moment</b> | <b>Axial Force</b> |       | <b>Torsional Moment</b> |        |
|------------------|--------------------|-----------------------|--------------------|-------|-------------------------|--------|
|                  | Max                | Max                   | Max                | Min   | Max                     | Min    |
| Tower Base       | 1595               | 126821                | 7878               | -7878 | 12311                   | -12311 |
| Tower Top        | 1595               | 17308                 | 4767               | -4767 | 12311                   | -12311 |
| Blade Roots      | 632                | 23940                 | 1367               | -201  | 197                     | -273   |
| LSS              | 1557               | 18113                 | 1473               | -1473 | 9641                    | -9641  |
| HSS Torque       |                    |                       |                    |       | 99                      | -99    |
| Generator Torque |                    |                       |                    |       | 64                      | -64    |

## Appendix 6: Load Effect Graph

Graphs showing the range of maximum and minimum average load effects, and maximum and minimum load effects were also used to demonstrate the load effect results from various models. Figure A6.1 and Figure A6.2 are examples of this type of graphs. The blue bars indicate ranges of maximum and minimum average values for the load effect. The red lines specify ranges of maximum and minimum values for the load effect. These values do not include load factors. Similar to the maximum and minimum load effects, the average load effects are also shown as a range using maximum and minimum average load effects. This presentation style was selected because the load effects are obtained from different DLCs. The green horizontal lines indicate the safe limit for each load effect.

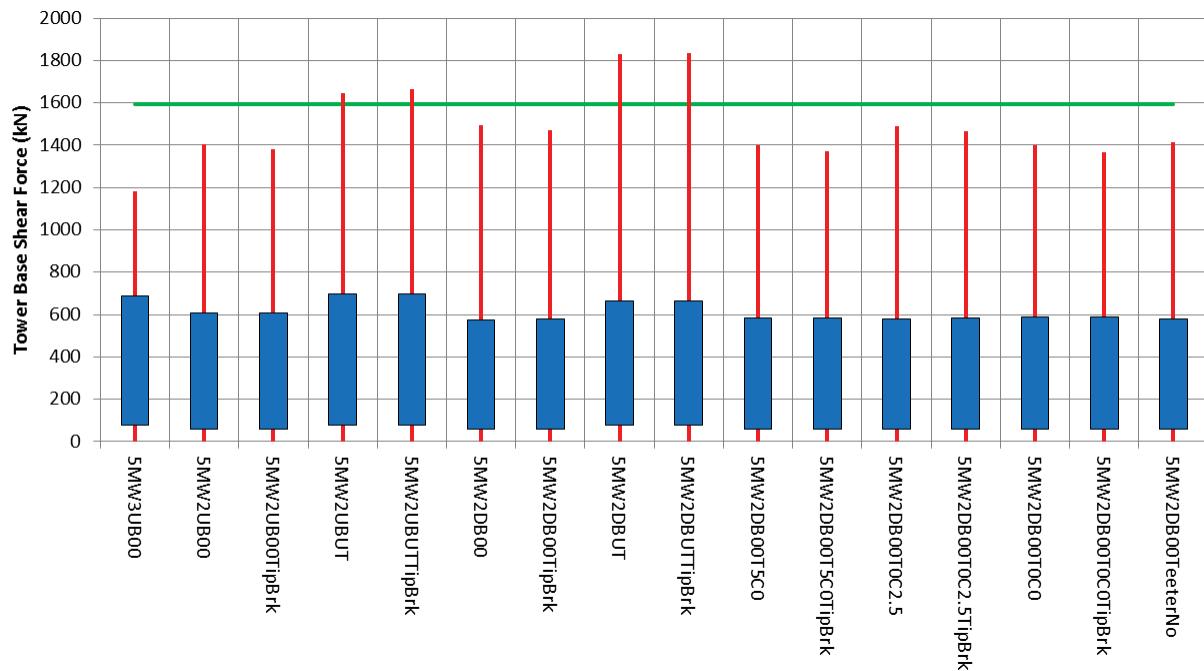
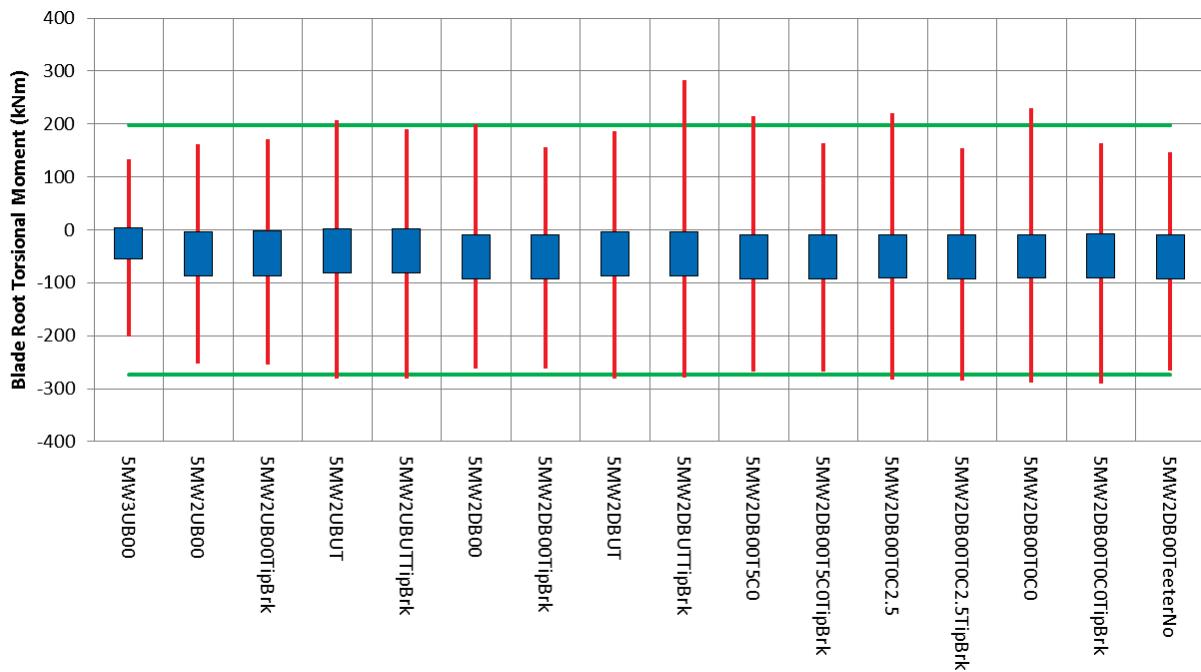




Figure A6.1. An example of load effect graph of tower base shear force.



**Figure A6.2. An example of load effect graph of blade root torsional moment.**

## Appendix 7: Weighted Percent Difference Graph

The weighted percent difference values were used to compare load effects of parametric design models to the load effects of the baseline model. The weighted percent difference,  $\eta_m$ , of load effects of a model relative to the baseline model is defined in Eq. (A7.1). Weights are used to scale the percent differences depending on their own baseline magnitude. Only the magnitudes of the load effect values are considered for the weighted percent difference calculations. This is because the low magnitude of a load effect is always better than a high value, regardless of the sign. Between a maximum and a minimum value of a load effect, the larger magnitude value is used for calculations. The same logic is used for the maximum of average values and the minimum of average values.

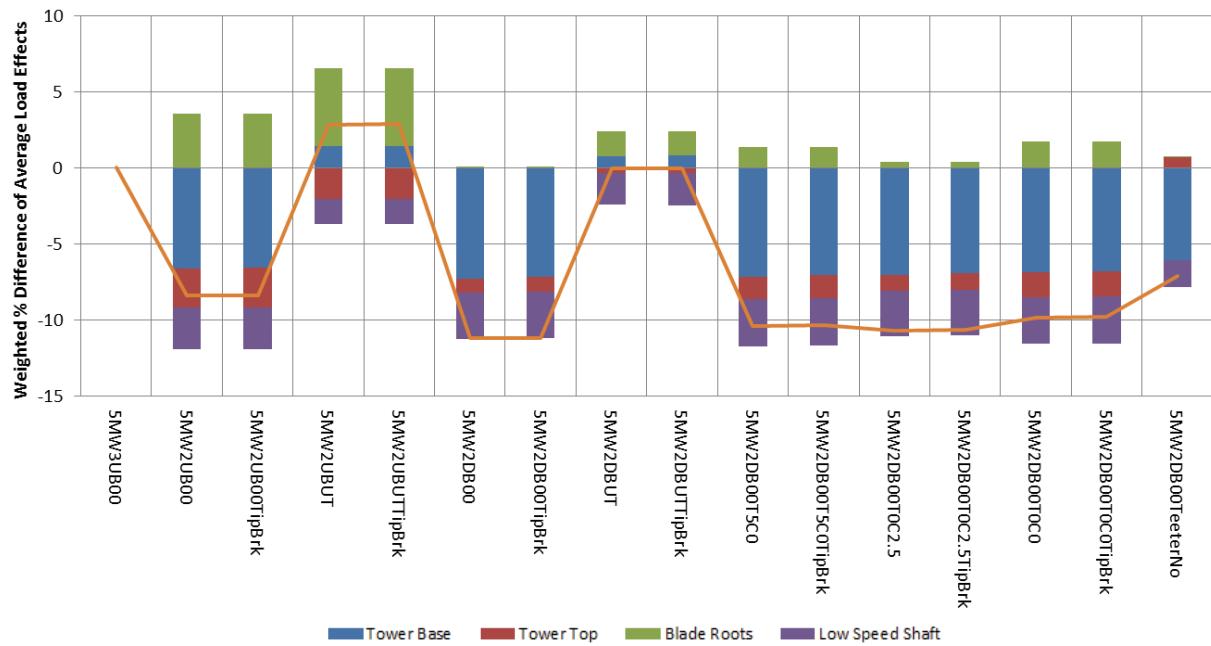
$$\eta_m = \sum_{i=1}^N \frac{[q_i |(\xi_i)_b|]^p \left[ \left( \frac{|(\xi_i)_j| - |(\xi_i)_b|}{|(\xi_i)_b|} \right) s \right]}{\sum_{i=1}^N [q_i |(\xi_i)_b|]^p} \quad (\text{A7.1})$$

In the above equation,  $\xi$  is a load effect value,  $j$  is the model number, and  $b$  denotes the baseline model. Variable  $i$  specifies the load effect for various load effect types at locations of interest.  $N$  is the total number of kinds of load effects considered. Variable  $q$  is a factor that determines the importance of each load effect, which is set to 1 in this research, which means that all load effects are considered equally important. The magnitude of exponent  $p$  determines the importance of the weight term, which is  $[q_i |(\xi_i)_b|]$  term, relative to the difference of load effects term, which is  $\left[ \left( \frac{|(\xi_i)_j| - |(\xi_i)_b|}{|(\xi_i)_b|} \right) s \right]$  term. In this research, this factor is set to 1, which means that the weight term and the difference of load effects term are considered equally important.  $s$  is the scale for normalization. In this research,  $s$  is set to 100%.

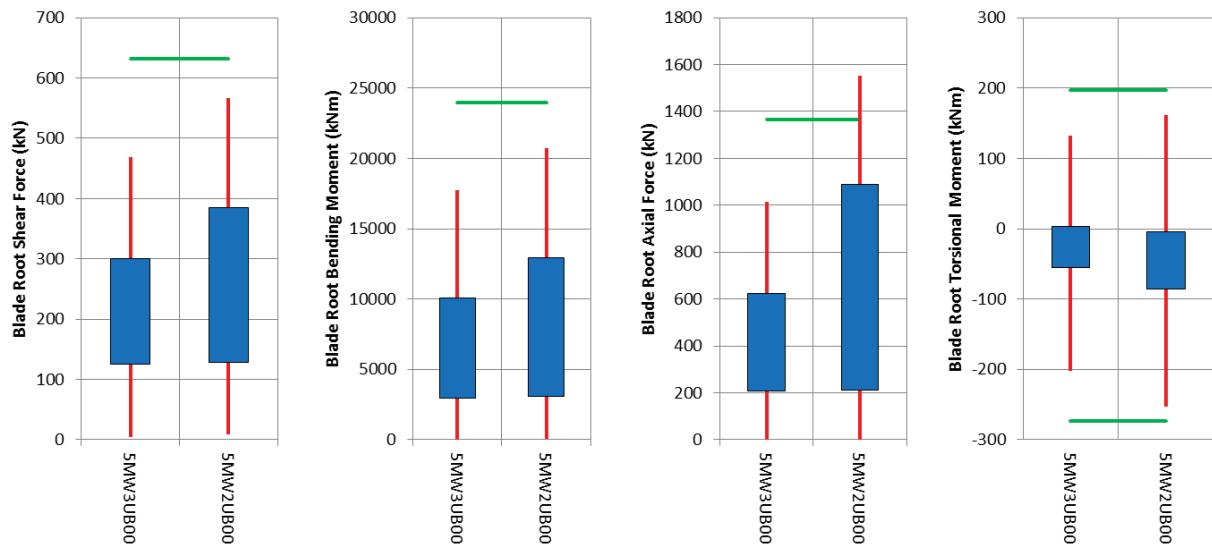
There are three reasons why the weighted percent difference is used: a) An index is required to quantify the aggregate difference of the load effects of a model relative to the baseline model. The weighted percent difference converts load effect results to dimensionless values and enables putting all weighted percent differences into one value for different types of load effects on the locations of interest. The weighted percent difference in Eq. (A7.1) summarizes the differences in 192 load effect values, that are maximum and minimum, and maximum and minimum of averages of 4 different types of load effects (shear force, bending moment, axial force, torsional moment) at 4 different locations of interest (tower base, tower top, blade roots, LSS) in normal operating, fault, and parked conditions, into 6 values, that are weighted percent differences of maximum load effects and average load effects in the 3 different condition groups, for each wind turbine model. (Refer Appendix 4, and section 9.1) This helps readers analyze and understand load effect results more easily. b) An index is required that express the cumulative difference of many load effects in a design relative to the load effects in a baseline model. c) That index also requires capability to reflect the magnitude of load effects at the same time. The problem of traditional percent difference is when the value of interest is too small (near zero), the percent difference becomes too sensitive to the load value. For example, if the baseline design has  $1N$  value and an alternative design has  $10N$  value, the percent difference will be 900%. However, a  $9N$  difference is negligible for a large wind turbine structure. Thus, the reader may misinterpret that 900% difference is a significant difference, although the difference in the actual magnitude is just  $9N$ . Because of this, the product of the magnitude of load effects and the percent

difference is used to compare the load effects of various wind turbine models. As a result, the percent differences of load effects that have small magnitude are minimized in the weighted percent difference value. On the other hand, the percent differences of load effects that have larger magnitudes relative to the other load effects are maximized and this contributes more to determining the weighted percent difference value.

The weighted percent difference is made for an index that can compare the differences of load effects relative to the baseline model. This allows comparing changes in load effects of other alternative designs. The weighted percent difference value does not show the exact value of load effect differences. However, it is a good index that can be used to compare changes in load effect values in one model to those in other models. By examining weighted percent difference graphs, the reader easily understands which design is subjected to higher loads. It also shows what location contributes more to increase or decrease the total load effects relative to other models or other measurement locations.


Using the weighted percent difference, the load effects at the tower base, tower top, blades, and LSS from the simulations of the selected 16 different models of section 9.1 are summarized into 6 graphs: maximum values and maximum of average values for normal operation, fault, and parked conditions. These graphs are listed in Figure 9.2 and Figure 9.3. The NREL 5MW 3-bladed upwind baseline model (5MW3UB00) is the baseline model for these graphs. Each bar graph is divided into 4 portions to show how much the tower base, tower top, blades, and LSS load effects contribute to total weighted percent difference from the baseline model. The line graph indicates the total weighted percent difference. This reflects changes in the load effects from the baseline model from all different locations. The total weighted percent difference is equal to the sum of all weighted percent differences at each location.

An example of the percent difference graphs is shown in Figure A7.1. Each color of bar represents a location of interest. In the Figure A7.1, the blue bars denote tower base, the red bars denote the tower top, the green bars denote the blade roots, and the purple bars denote the LSS. The orange line denotes the total weighted percent difference. This line can be used when it is necessary.


For example, the overall average load effect in normal operating conditions decreases relative to the baseline in design 5MW2UB00 (represented by the second column in Figure A7.1). The total weighted percent difference of average load effects (orange line) is 8.41% lower than the average load effects in the baseline design (5MW3UB00). The load effects on a blade (green bar) contribute to an increase of 3.55% to the total load effect compared to the baseline design. On the other hand, the tower base load effects (blue bar) contribute to decrease the total load effect of 6.63%. The load effects in the tower top (red bar) and the LSS (purple bar) reduce the total load effect by 2.57% and 2.76%, respectively. The total change in the load effects is equal to the sum of weighted percent differences, and it is equal to  $3.55\% - 6.63\% - 2.57\% - 2.76\% = -8.41\%$ . In this way, it can be determined approximately what locations contribute to the total change in the overall load effect relative to the baseline model.

For a more detailed example, consider the blade root load effect comparisons of the baseline design and the 5MW2UB00 design shown in Figure A7.2. The blue bars are ranges of the average load effect and the red lines are ranges of the maximum load effect. Because the average

load effects are calculated from various DLC, the average load effects are shown as a range rather than a single value. The green line is the safe limit that will be explained later in this section. In this example, only the average load effects (blue bars) will be considered because we are considering Figure A7.1. As shown in Table 9.12, the percent difference of the maximum average blade root shear force of the 5MW2UB00 wind turbine model is 28.57%. The percent difference of the maximum average blade root bending moment is 28.34%, and the axial force is 74.56%. The minimum average blade root torsion moments have maximum magnitude values. Thus, the absolute values of these values are used to calculate percent difference, which is equal to 55.06%. All four different percent differences are positive values in this case. The weights of each load effect at blade root are 300, 10101, 624, and 56 for the shear force, bending moment, axial force, and torsional moment, respectively. These values are the  $[a_n|(x_n)_b|]^p$  terms of the numerator in Eq. (A7.1). Because the  $a_n$  and  $p$  are set to 1, and the maximum magnitudes of average load effects of baseline model are used as weights,  $(x_n)_b$ , these values are same as the average load effects of 5MW3UB00 in Table 9.12. The total weight of all locations for average load effects is 97106 that is the denominator of Eq. (A7.1). The weighted percent difference of each type of load effects in the blade root are 0.088%, 2.948%, 0.479%, and 0.032% respectively. The summation of these four values is 3.55%. This value is the same as the weighted percent difference of the blade root that contributed to increase total weighted percent difference. It is the value of the green bar in Figure A7.1 at the third column for the model 5MW2UB00. Using the same procedure, weighted percent differences at other locations can be found.



**Figure A7.1. Weighted % difference of maximum of average load effects in normal operation conditions.**



**Figure A7.2. Blade root load effect comparisons for 3-bladed and 2-bladed configurations in normal operating conditions.**

## Appendix 8: Load Effect Results

The load effect results at the tower base, tower top, blade roots, LSS, and torques at LSS, HSS, and generator, in normal operating, fault, and parked conditions are listed in the tables below. Also, data for minimum tower-to-blade clearance, and maximum and minimum teeter angle in each condition are presented in following tables.

**Table A8.1. Load effect result data at tower base in normal operating conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1181          | DLC1.3     | 15.0        | 93942           | DLC1.3     | 15.0        | -5654         | DLC1.3     | 25.0        | 5090             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 21.0        | 100             | DLC1.3     | 25.0        | -5836         | DLC1.3     | 17.0        | -9119            | DLC1.4     | 11.4        |
| Averages              | Max | 685           | DLC1.5H    | 11.0        | 53934           | DLC1.5V    | 11.0        | -5730         | DLC1.5H    | 25.0        | 827              | DLC1.4     | 13.4        |
|                       | Min | 77            | DLC1.3     | 3.0         | 4816            | DLC1.3     | 3.0         | -5788         | DLC1.5V    | 11.0        | -2625            | DLC1.4     | 9.4         |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1405          | DLC1.4     | 9.4         | 109496          | DLC1.4     | 9.4         | -5498         | DLC1.3     | 25.0        | 4418             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 21.0        | 95              | DLC1.3     | 25.0        | -5679         | DLC1.3     | 25.0        | -7922            | DLC1.4     | 11.4        |
| Averages              | Max | 606           | DLC1.5H    | 11.0        | 48577           | DLC1.5V    | 11.0        | -5556         | DLC1.3     | 3.0         | 453              | DLC1.4     | 13.4        |
|                       | Min | 61            | DLC1.3     | 3.0         | 4595            | DLC1.3     | 3.0         | -5608         | DLC1.3     | 11.0        | -1802            | DLC1.4     | 9.4         |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1379          | DLC1.4     | 9.4         | 107410          | DLC1.4     | 9.4         | -5500         | DLC1.3     | 25.0        | 4437             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 21.0        | 80              | DLC1.3     | 25.0        | -5681         | DLC1.3     | 25.0        | -7951            | DLC1.4     | 11.4        |
| Averages              | Max | 607           | DLC1.5H    | 11.0        | 48674           | DLC1.5V    | 11.0        | -5558         | DLC1.5H    | 3.0         | 458              | DLC1.4     | 13.4        |
|                       | Min | 61            | DLC1.3     | 3.0         | 4578            | DLC1.3     | 3.0         | -5610         | DLC1.3     | 11.0        | -1771            | DLC1.4     | 9.4         |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1645          | DLC1.4     | 11.4        | 128540          | DLC1.4     | 9.4         | -5468         | DLC1.4     | 11.4        | 5153             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 25.0        | 57              | DLC1.3     | 25.0        | -5684         | DLC1.3     | 13.0        | -9773            | DLC1.4     | 9.4         |
| Averages              | Max | 696           | DLC1.5V    | 11.0        | 55820           | DLC1.5V    | 11.0        | -5558         | DLC1.3     | 3.0         | 497              | DLC1.4     | 13.4        |
|                       | Min | 78            | DLC1.3     | 3.0         | 5930            | DLC1.3     | 3.0         | -5615         | DLC1.3     | 11.0        | -2262            | DLC1.4     | 9.4         |
| <b>5MW2UBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1664          | DLC1.4     | 11.4        | 129283          | DLC1.4     | 9.4         | -5476         | DLC1.4     | 11.4        | 5148             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 23.0        | 98              | DLC1.3     | 23.0        | -5684         | DLC1.3     | 15.0        | -9729            | DLC1.4     | 9.4         |
| Averages              | Max | 696           | DLC1.5V    | 11.0        | 55852           | DLC1.5V    | 11.0        | -5560         | DLC1.5H    | 3.0         | 495              | DLC1.4     | 13.4        |
|                       | Min | 78            | DLC1.3     | 3.0         | 5917            | DLC1.3     | 3.0         | -5616         | DLC1.3     | 11.0        | -2261            | DLC1.4     | 9.4         |
| <b>5MW2DB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1495          | DLC1.4     | 9.4         | 118349          | DLC1.4     | 9.4         | -5353         | DLC1.4     | 9.4         | 5079             | DLC1.3     | 25.0        |
|                       | Min | 1             | DLC1.3     | 25.0        | 84              | DLC1.3     | 21.0        | -5718         | DLC1.3     | 25.0        | -9307            | DLC1.4     | 11.4        |
| Averages              | Max | 576           | DLC1.5V    | 11.0        | 47465           | DLC1.5V    | 11.0        | -5514         | DLC1.5H    | 11.0        | 1588             | DLC1.3     | 25.0        |
|                       | Min | 59            | DLC1.3     | 3.0         | 5374            | DLC1.5H    | 3.0         | -5551         | DLC1.3     | 25.0        | -2354            | DLC1.4     | 9.4         |
| <b>5MW2DB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1469          | DLC1.4     | 9.4         | 116337          | DLC1.4     | 9.4         | -5393         | DLC1.4     | 11.4        | 5083             | DLC1.3     | 25.0        |
|                       | Min | 1             | DLC1.3     | 21.0        | 64              | DLC1.4     | 11.4        | -5720         | DLC1.3     | 25.0        | -9308            | DLC1.4     | 11.4        |
| Averages              | Max | 578           | DLC1.5V    | 11.0        | 47619           | DLC1.5V    | 11.0        | -5516         | DLC1.5H    | 11.0        | 1585             | DLC1.3     | 25.0        |
|                       | Min | 59            | DLC1.3     | 3.0         | 5374            | DLC1.5H    | 3.0         | -5552         | DLC1.3     | 25.0        | -2321            | DLC1.4     | 9.4         |
| <b>5MW2DBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1831          | DLC1.4     | 9.4         | 144619          | DLC1.4     | 9.4         | -5329         | DLC1.4     | 11.4        | 4950             | DLC1.3     | 25.0        |
|                       | Min | 0             | DLC1.4     | 11.4        | 87              | DLC1.3     | 23.0        | -5710         | DLC1.3     | 25.0        | -12250           | DLC1.4     | 11.4        |
| Averages              | Max | 663           | DLC1.5H    | 11.0        | 54675           | DLC1.5V    | 11.0        | -5510         | DLC1.5H    | 11.0        | 1574             | DLC1.3     | 25.0        |
|                       | Min | 77            | DLC1.3     | 3.0         | 6821            | DLC1.5H    | 3.0         | -5550         | DLC1.3     | 25.0        | -2861            | DLC1.4     | 9.4         |
| <b>5MW2DBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1836          | DLC1.4     | 9.4         | 145193          | DLC1.4     | 9.4         | -5287         | DLC1.4     | 9.4         | 4936             | DLC1.3     | 25.0        |
|                       | Min | 1             | DLC1.3     | 23.0        | 54              | DLC1.3     | 21.0        | -5716         | DLC1.3     | 25.0        | -12250           | DLC1.4     | 11.4        |
| Averages              | Max | 664           | DLC1.5H    | 11.0        | 54761           | DLC1.5V    | 11.0        | -5512         | DLC1.5H    | 11.0        | 1569             | DLC1.3     | 25.0        |
|                       | Min | 77            | DLC1.3     | 3.0         | 6826            | DLC1.5H    | 3.0         | -5552         | DLC1.3     | 25.0        | -2847            | DLC1.4     | 9.4         |
| <b>5MW2DB00T5C0</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1400          | DLC1.4     | 11.4        | 106981          | DLC1.4     | 11.4        | -5364         | DLC1.4     | 9.4         | 4994             | DLC1.3     | 25.0        |
|                       | Min | 1             | DLC1.3     | 21.0        | 85              | DLC1.3     | 25.0        | -5724         | DLC1.3     | 25.0        | -8816            | DLC1.4     | 11.4        |
| Averages              | Max | 584           | DLC1.5V    | 11.0        | 47828           | DLC1.5V    | 11.0        | -5513         | DLC1.5H    | 11.0        | 1545             | DLC1.3     | 25.0        |
|                       | Min | 59            | DLC1.3     | 3.0         | 5083            | DLC1.5H    | 3.0         | -5549         | DLC1.3     | 25.0        | -2126            | DLC1.4     | 9.4         |

**Table A8.1. Load effect result data at tower base in normal operating conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1371          | DLC1.4     | 11.4        | 104812          | DLC1.4     | 11.4        | -5416         | DLC1.4     | 11.4        | 4992             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 25.0        | 83              | DLC1.3     | 21.0        | -5727         | DLC1.3     | 25.0        | -8790            | DLC1.4     | 11.4        |
| Averages                    | Max | 585           | DLC1.5V    | 11.0        | 47954           | DLC1.5V    | 11.0        | -5514         | DLC1.5H    | 11.0        | 1542             | DLC1.3     | 25.0        |
|                             | Min | 59            | DLC1.3     | 3.0         | 5076            | DLC1.5H    | 3.0         | -5551         | DLC1.3     | 3.0         | -2100            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1492          | DLC1.4     | 9.4         | 117768          | DLC1.4     | 9.4         | -5392         | DLC1.4     | 9.4         | 4495             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 21.0        | 66              | DLC1.3     | 21.0        | -5714         | DLC1.4     | 9.4         | -9493            | DLC1.4     | 11.4        |
| Averages                    | Max | 580           | DLC1.5V    | 11.0        | 47584           | DLC1.5V    | 11.0        | -5545         | DLC1.4     | 9.4         | 1026             | DLC1.3     | 25.0        |
|                             | Min | 60            | DLC1.3     | 3.0         | 5400            | DLC1.3     | 3.0         | -5568         | DLC1.3     | 11.0        | -2449            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1467          | DLC1.4     | 9.4         | 115986          | DLC1.4     | 9.4         | -5461         | DLC1.4     | 11.4        | 4482             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.4     | 9.4         | 106             | DLC1.3     | 25.0        | -5716         | DLC1.3     | 25.0        | -9459            | DLC1.4     | 11.4        |
| Averages                    | Max | 582           | DLC1.5V    | 11.0        | 47736           | DLC1.5V    | 11.0        | -5547         | DLC1.4     | 9.4         | 1022             | DLC1.3     | 25.0        |
|                             | Min | 60            | DLC1.3     | 3.0         | 5407            | DLC1.3     | 3.0         | -5569         | DLC1.3     | 11.0        | -2417            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1399          | DLC1.4     | 11.4        | 106416          | DLC1.4     | 11.4        | -5412         | DLC1.4     | 9.4         | 4515             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.4     | 9.4         | 72              | DLC1.3     | 25.0        | -5720         | DLC1.3     | 25.0        | -8972            | DLC1.4     | 9.4         |
| Averages                    | Max | 588           | DLC1.5V    | 11.0        | 47974           | DLC1.5V    | 11.0        | -5546         | DLC1.4     | 9.4         | 1023             | DLC1.3     | 25.0        |
|                             | Min | 60            | DLC1.3     | 3.0         | 5092            | DLC1.3     | 3.0         | -5568         | DLC1.4     | 13.4        | -2199            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1365          | DLC1.4     | 11.4        | 103507          | DLC1.4     | 11.4        | -5471         | DLC1.3     | 25.0        | 4502             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 19.0        | 54              | DLC1.3     | 25.0        | -5725         | DLC1.3     | 25.0        | -8869            | DLC1.4     | 11.4        |
| Averages                    | Max | 590           | DLC1.5V    | 11.0        | 48105           | DLC1.5V    | 11.0        | -5548         | DLC1.4     | 9.4         | 1019             | DLC1.3     | 25.0        |
|                             | Min | 60            | DLC1.3     | 3.0         | 5094            | DLC1.3     | 3.0         | -5570         | DLC1.4     | 13.4        | -2173            | DLC1.4     | 9.4         |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1412          | DLC1.4     | 11.4        | 110809          | DLC1.4     | 9.4         | -5390         | DLC1.4     | 11.4        | 7188             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 19.0        | 95              | DLC1.3     | 21.0        | -5686         | DLC1.3     | 25.0        | -13790           | DLC1.4     | 11.4        |
| Averages                    | Max | 577           | DLC1.5V    | 11.0        | 47891           | DLC1.5V    | 11.0        | -5512         | DLC1.4     | 11.4        | 1595             | DLC1.3     | 25.0        |
|                             | Min | 59            | DLC1.3     | 3.0         | 5403            | DLC1.5H    | 3.0         | -5552         | DLC1.3     | 25.0        | -3114            | DLC1.4     | 11.4        |
| <b>5MW2UBUTT2C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1570          | DLC1.4     | 9.4         | 123959          | DLC1.4     | 9.4         | -5347         | DLC1.4     | 9.4         | 4972             | DLC1.4     | 13.4        |
|                             | Min | 1             | DLC1.3     | 25.0        | 97              | DLC1.3     | 23.0        | -5723         | DLC1.3     | 25.0        | -11540           | DLC1.4     | 11.4        |
| Averages                    | Max | 678           | DLC1.5H    | 11.0        | 55393           | DLC1.5V    | 11.0        | -5534         | DLC1.4     | 9.4         | 1217             | DLC1.3     | 25.0        |
|                             | Min | 77            | DLC1.3     | 3.0         | 6558            | DLC1.3     | 3.0         | -5560         | DLC1.3     | 25.0        | -2667            | DLC1.4     | 9.4         |

**Table A8.2. Load effect result data at tower base in fault conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1386          | DLC2.3     | 25.0        | 111495          | DLC2.3     | 25.0        | -5526         | DLC2.1P    | 25.0        | 7782             | DLC2.1P    | 11.4        |
|                       | Min | 0             | DLC2.3     | 11.4        | 38              | DLC2.3     | 9.4         | -5828         | DLC2.3     | 11.4        | -8876            | DLC2.1P    | 25.0        |
| Averages              | Max | 392           | DLC2.3     | 25.0        | 30759           | DLC2.3     | 25.0        | -5671         | DLC2.1P    | 25.0        | 27               | DLC2.1G    | 11.4        |
|                       | Min | 222           | DLC2.1P    | 11.4        | 17788           | DLC2.1P    | 11.4        | -5737         | DLC2.1P    | 11.4        | -1868            | DLC2.1P    | 25.0        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1498          | DLC2.3     | 25.0        | 115128          | DLC2.3     | 25.0        | -5211         | DLC2.1P    | 25.0        | 10261            | DLC2.1P    | 11.4        |
|                       | Min | 0             | DLC2.3     | 11.4        | 40              | DLC2.3     | 25.0        | -5750         | DLC2.1P    | 25.0        | -17278           | DLC2.1P    | 25.0        |
| Averages              | Max | 347           | DLC2.3     | 13.4        | 27228           | DLC2.3     | 13.4        | -5552         | DLC2.1G    | 25.0        | 1576             | DLC2.1P    | 25.0        |
|                       | Min | 192           | DLC2.1G    | 11.4        | 15465           | DLC2.1G    | 11.4        | -5596         | DLC2.1P    | 25.0        | -238             | DLC2.3     | 25.0        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1443          | DLC2.3     | 25.0        | 112975          | DLC2.3     | 25.0        | -5425         | DLC2.1P    | 25.0        | 3685             | DLC2.1P    | 25.0        |
|                       | Min | 0             | DLC2.3     | 11.4        | 3               | DLC2.3     | 11.4        | -5686         | DLC2.3     | 25.0        | -4323            | DLC2.1P    | 25.0        |
| Averages              | Max | 284           | DLC2.3     | 11.4        | 22503           | DLC2.3     | 11.4        | -5539         | DLC2.3     | 25.0        | 568              | DLC2.1P    | 25.0        |
|                       | Min | 139           | DLC2.3     | 9.4         | 11004           | DLC2.3     | 9.4         | -5583         | DLC2.1P    | 25.0        | -878             | DLC2.1P    | 25.0        |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1451          | DLC2.3     | 25.0        | 112531          | DLC2.3     | 25.0        | -5305         | DLC2.1P    | 25.0        | 9993             | DLC2.1P    | 11.4        |
|                       | Min | 0             | DLC2.3     | 13.4        | 12              | DLC2.3     | 13.4        | -5761         | DLC2.1P    | 25.0        | -11310           | DLC2.1P    | 25.0        |
| Averages              | Max | 332           | DLC2.3     | 25.0        | 26145           | DLC2.3     | 25.0        | -5523         | DLC2.3     | 25.0        | 207              | DLC2.1P    | 25.0        |
|                       | Min | 203           | DLC2.3     | 9.4         | 16188           | DLC2.3     | 9.4         | -5571         | DLC2.3     | 11.4        | -160             | DLC2.3     | 13.4        |

**Table A8.2. Load effect result data at tower base in fault conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1179          | DLC2.3     | 11.4        | 93868           | DLC2.3     | 11.4        | -5413         | DLC2.1G    | 25.0        | 4462             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 11.4        | 2               | DLC2.3     | 9.4         | -5693         | DLC2.1P    | 25.0        | -4402            | DLC2.1P    | 25.0        |
| Averages                    | Max | 281           | DLC2.3     | 11.4        | 22415           | DLC2.3     | 11.4        | -5538         | DLC2.3     | 25.0        | 677              | DLC2.1P    | 25.0        |
|                             | Min | 165           | DLC2.3     | 9.4         | 13078           | DLC2.3     | 9.4         | -5584         | DLC2.1P    | 25.0        | -1129            | DLC2.1P    | 25.0        |
| <b>5MW2DB00</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1380          | DLC2.3     | 25.0        | 110466          | DLC2.3     | 25.0        | -5291         | DLC2.1P    | 25.0        | 9330             | DLC2.1P    | 11.4        |
|                             | Min | 1             | DLC2.3     | 13.4        | 37              | DLC2.3     | 13.4        | -5745         | DLC2.1P    | 25.0        | -13638           | DLC2.1P    | 25.0        |
| Averages                    | Max | 309           | DLC2.3     | 13.4        | 24630           | DLC2.3     | 13.4        | -5544         | DLC2.3     | 11.4        | 2431             | DLC2.1P    | 25.0        |
|                             | Min | 177           | DLC2.3     | 9.4         | 14527           | DLC2.3     | 9.4         | -5610         | DLC2.1P    | 25.0        | 142              | DLC2.3     | 9.4         |
| <b>5MW2DB00TipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1466          | DLC2.3     | 25.0        | 118227          | DLC2.3     | 25.0        | -5409         | DLC2.3     | 25.0        | 4938             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 4               | DLC2.3     | 9.4         | -5718         | DLC2.1G    | 25.0        | -6259            | DLC2.1G    | 25.0        |
| Averages                    | Max | 262           | DLC2.1P    | 25.0        | 22606           | DLC2.1P    | 25.0        | -5535         | DLC2.1P    | 25.0        | 1446             | DLC2.1P    | 25.0        |
|                             | Min | 144           | DLC2.3     | 9.4         | 11914           | DLC2.3     | 9.4         | -5570         | DLC2.3     | 25.0        | -92              | DLC2.1P    | 25.0        |
| <b>5MW2DBUT</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1517          | DLC2.3     | 25.0        | 116346          | DLC2.3     | 25.0        | -5326         | DLC2.1P    | 25.0        | 13267            | DLC2.1P    | 25.0        |
|                             | Min | 1             | DLC2.3     | 13.4        | 28              | DLC2.1G    | 11.4        | -5812         | DLC2.1P    | 25.0        | -10665           | DLC2.1P    | 11.4        |
| Averages                    | Max | 301           | DLC2.3     | 11.4        | 24412           | DLC2.3     | 11.4        | -5543         | DLC2.3     | 13.4        | 489              | DLC2.1G    | 25.0        |
|                             | Min | 192           | DLC2.3     | 9.4         | 15719           | DLC2.3     | 9.4         | -5585         | DLC2.3     | 25.0        | 166              | DLC2.3     | 9.4         |
| <b>5MW2DBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1178          | DLC2.3     | 11.4        | 93647           | DLC2.3     | 11.4        | -5370         | DLC2.3     | 9.4         | 4942             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 13.4        | 2               | DLC2.3     | 9.4         | -5717         | DLC2.1G    | 25.0        | -5721            | DLC2.1G    | 25.0        |
| Averages                    | Max | 295           | DLC2.3     | 11.4        | 24059           | DLC2.3     | 11.4        | -5537         | DLC2.3     | 11.4        | 1539             | DLC2.1P    | 25.0        |
|                             | Min | 156           | DLC2.3     | 9.4         | 13032           | DLC2.3     | 9.4         | -5570         | DLC2.1G    | 25.0        | -39              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T5C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1405          | DLC2.3     | 25.0        | 112574          | DLC2.3     | 25.0        | -5281         | DLC2.1P    | 25.0        | 9394             | DLC2.1P    | 11.4        |
|                             | Min | 0             | DLC2.3     | 25.0        | 9               | DLC2.3     | 9.4         | -5744         | DLC2.1P    | 25.0        | -13635           | DLC2.1P    | 25.0        |
| Averages                    | Max | 318           | DLC2.3     | 13.4        | 25220           | DLC2.3     | 13.4        | -5541         | DLC2.3     | 11.4        | 2456             | DLC2.1P    | 25.0        |
|                             | Min | 183           | DLC2.3     | 9.4         | 14849           | DLC2.3     | 9.4         | -5609         | DLC2.1P    | 25.0        | 120              | DLC2.3     | 9.4         |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1488          | DLC2.3     | 25.0        | 119434          | DLC2.3     | 25.0        | -5411         | DLC2.3     | 25.0        | 4592             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 4               | DLC2.3     | 9.4         | -5720         | DLC2.1G    | 25.0        | -6266            | DLC2.1G    | 25.0        |
| Averages                    | Max | 259           | DLC2.1P    | 25.0        | 22240           | DLC2.1P    | 25.0        | -5536         | DLC2.1P    | 25.0        | 1310             | DLC2.1P    | 25.0        |
|                             | Min | 140           | DLC2.3     | 9.4         | 11432           | DLC2.3     | 9.4         | -5570         | DLC2.3     | 25.0        | -120             | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1416          | DLC2.3     | 25.0        | 111228          | DLC2.3     | 25.0        | -5268         | DLC2.1P    | 25.0        | 9325             | DLC2.1P    | 11.4        |
|                             | Min | 0             | DLC2.3     | 9.4         | 16              | DLC2.3     | 9.4         | -5742         | DLC2.1P    | 25.0        | -15583           | DLC2.1P    | 25.0        |
| Averages                    | Max | 326           | DLC2.3     | 13.4        | 25890           | DLC2.3     | 13.4        | -5554         | DLC2.3     | 9.4         | 2194             | DLC2.1P    | 25.0        |
|                             | Min | 180           | DLC2.3     | 9.4         | 14663           | DLC2.3     | 9.4         | -5606         | DLC2.1P    | 25.0        | 66               | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1491          | DLC2.3     | 25.0        | 117709          | DLC2.3     | 25.0        | -5437         | DLC2.1P    | 25.0        | 4293             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 13.4        | 4               | DLC2.3     | 13.4        | -5691         | DLC2.1P    | 25.0        | -4795            | DLC2.1P    | 25.0        |
| Averages                    | Max | 258           | DLC2.1P    | 25.0        | 21970           | DLC2.1P    | 25.0        | -5547         | DLC2.1P    | 25.0        | 795              | DLC2.1P    | 25.0        |
|                             | Min | 136           | DLC2.3     | 9.4         | 11398           | DLC2.3     | 9.4         | -5573         | DLC2.1P    | 25.0        | -320             | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1438          | DLC2.3     | 25.0        | 113130          | DLC2.3     | 25.0        | -5259         | DLC2.1P    | 25.0        | 9355             | DLC2.1P    | 11.4        |
|                             | Min | 0             | DLC2.3     | 11.4        | 39              | DLC2.3     | 11.4        | -5742         | DLC2.1P    | 25.0        | -15555           | DLC2.1P    | 25.0        |
| Averages                    | Max | 338           | DLC2.3     | 13.4        | 26757           | DLC2.3     | 13.4        | -5553         | DLC2.3     | 9.4         | 2225             | DLC2.1P    | 25.0        |
|                             | Min | 188           | DLC2.3     | 9.4         | 15248           | DLC2.3     | 9.4         | -5606         | DLC2.1P    | 25.0        | 52               | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1509          | DLC2.3     | 25.0        | 118812          | DLC2.3     | 25.0        | -5436         | DLC2.1P    | 25.0        | 4274             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 1               | DLC2.3     | 9.4         | -5694         | DLC2.1P    | 25.0        | -4614            | DLC2.1P    | 25.0        |
| Averages                    | Max | 260           | DLC2.3     | 11.4        | 22030           | DLC2.1P    | 25.0        | -5546         | DLC2.1P    | 25.0        | 658              | DLC2.1P    | 25.0        |
|                             | Min | 137           | DLC2.3     | 9.4         | 11143           | DLC2.3     | 9.4         | -5570         | DLC2.1P    | 25.0        | -320             | DLC2.1P    | 25.0        |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1407          | DLC2.3     | 25.0        | 112319          | DLC2.3     | 25.0        | -5248         | DLC2.1P    | 25.0        | 11714            | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 55              | DLC2.3     | 9.4         | -5751         | DLC2.1P    | 25.0        | -15572           | DLC2.1P    | 25.0        |
| Averages                    | Max | 449           | DLC2.3     | 25.0        | 35761           | DLC2.3     | 25.0        | -5543         | DLC2.3     | 11.4        | 2464             | DLC2.1P    | 25.0        |
|                             | Min | 202           | DLC2.1G    | 11.4        | 16728           | DLC2.1G    | 11.4        | -5610         | DLC2.1P    | 25.0        | 85               | DLC2.3     | 9.4         |

**Table A8.2. Load effect result data at tower base in fault conditions (continue).**

| Load Effects              |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|---------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                           |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTT2C0TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                  | Max | 1201          | DLC2.3     | 11.4        | 95078           | DLC2.3     | 11.4        | -5401         | DLC2.3     | 9.4         | 4446             | DLC2.1P    | 25.0        |
|                           | Min | 0             | DLC2.3     | 9.4         | 1               | DLC2.3     | 13.4        | -5719         | DLC2.3     | 9.4         | -4450            | DLC2.1G    | 25.0        |
| Averages                  | Max | 309           | DLC2.3     | 11.4        | 24915           | DLC2.3     | 11.4        | -5540         | DLC2.1P    | 25.0        | 1170             | DLC2.1P    | 25.0        |
|                           | Min | 161           | DLC2.3     | 25.0        | 13191           | DLC2.3     | 9.4         | -5576         | DLC2.1P    | 25.0        | -393             | DLC2.1P    | 25.0        |

**Table A8.3. Load effect result data at tower base in parked conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 877           | DLC6.2a    | 37.4        | 67766           | DLC6.2a    | 37.4        | -5636         | DLC6.1a    | 37.4        | 3901             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 41              | DLC6.2a    | 37.4        | -5758         | DLC6.2a    | 37.4        | -4250            | DLC6.2a    | 37.4        |
| Averages              | Max | 342           | DLC6.2a    | 37.4        | 28359           | DLC6.2a    | 37.4        | -5636         | DLC6.1a    | 37.4        | 3800             | DLC7.1a    | 25.0        |
|                       | Min | 24            | DLC6.3a    | 25.0        | 959             | DLC6.3a    | 25.0        | -5756         | DLC7.1a    | 25.0        | -1989            | DLC6.2a    | 37.4        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 539           | DLC6.2a    | 37.4        | 41614           | DLC6.2a    | 37.4        | -5429         | DLC6.2a    | 37.4        | 3354             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 6               | DLC6.2a    | 37.4        | -5583         | DLC6.2a    | 37.4        | -186             | DLC6.2a    | 37.4        |
| Averages              | Max | 181           | DLC6.2a    | 37.4        | 13970           | DLC6.2a    | 37.4        | -5431         | DLC6.2a    | 37.4        | 3265             | DLC7.1a    | 25.0        |
|                       | Min | 8             | DLC6.2a    | 37.4        | 658             | DLC6.2a    | 37.4        | -5568         | DLC7.1a    | 25.0        | -51              | DLC6.2a    | 37.4        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 581           | DLC6.2a    | 37.4        | 44334           | DLC6.2a    | 37.4        | -5431         | DLC6.2a    | 37.4        | 3352             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -5584         | DLC6.2a    | 37.4        | -184             | DLC6.2a    | 37.4        |
| Averages              | Max | 179           | DLC6.2a    | 37.4        | 13886           | DLC6.2a    | 37.4        | -5432         | DLC6.2a    | 37.4        | 3262             | DLC7.1a    | 25.0        |
|                       | Min | 8             | DLC6.2a    | 37.4        | 683             | DLC6.2a    | 37.4        | -5569         | DLC7.1a    | 25.0        | -52              | DLC6.2a    | 37.4        |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 611           | DLC6.2a    | 37.4        | 46547           | DLC6.2a    | 37.4        | -5422         | DLC6.2a    | 37.4        | 3368             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -5585         | DLC6.2a    | 37.4        | -150             | DLC6.2a    | 37.4        |
| Averages              | Max | 189           | DLC6.2a    | 37.4        | 14629           | DLC6.2a    | 37.4        | -5423         | DLC6.2a    | 37.4        | 3274             | DLC7.1a    | 25.0        |
|                       | Min | 8             | DLC6.2a    | 37.4        | 679             | DLC6.2a    | 37.4        | -5560         | DLC6.2a    | 37.4        | -37              | DLC6.2a    | 37.4        |
| <b>5MW2UBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 619           | DLC6.2a    | 37.4        | 47130           | DLC6.2a    | 37.4        | -5423         | DLC6.2a    | 37.4        | 3368             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 1               | DLC6.2a    | 37.4        | -5587         | DLC6.2a    | 37.4        | -151             | DLC6.2a    | 37.4        |
| Averages              | Max | 187           | DLC6.2a    | 37.4        | 14537           | DLC6.2a    | 37.4        | -5424         | DLC6.2a    | 37.4        | 3274             | DLC7.1a    | 25.0        |
|                       | Min | 9             | DLC6.2a    | 37.4        | 709             | DLC6.2a    | 37.4        | -5561         | DLC6.2a    | 37.4        | -38              | DLC6.2a    | 37.4        |
| <b>5MW2DB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 596           | DLC6.2a    | 37.4        | 45467           | DLC6.2a    | 37.4        | -5519         | DLC6.2a    | 37.4        | 3565             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -5671         | DLC6.2a    | 37.4        | -153             | DLC6.2a    | 37.4        |
| Averages              | Max | 228           | DLC6.2a    | 37.4        | 17594           | DLC6.2a    | 37.4        | -5544         | DLC6.2a    | 37.4        | 3280             | DLC7.1a    | 25.0        |
|                       | Min | 4             | DLC6.2a    | 37.4        | 462             | DLC6.2a    | 37.4        | -5669         | DLC6.2a    | 37.4        | -118             | DLC6.1a    | 37.4        |
| <b>5MW2DB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 637           | DLC6.2a    | 37.4        | 48102           | DLC6.2a    | 37.4        | -5522         | DLC6.2a    | 37.4        | 3542             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 6               | DLC6.2a    | 37.4        | -5672         | DLC6.2a    | 37.4        | -162             | DLC6.2a    | 37.4        |
| Averages              | Max | 228           | DLC6.2a    | 37.4        | 17644           | DLC6.2a    | 37.4        | -5545         | DLC6.2a    | 37.4        | 3278             | DLC7.1a    | 25.0        |
|                       | Min | 5             | DLC6.2a    | 37.4        | 494             | DLC6.2a    | 37.4        | -5671         | DLC6.2a    | 37.4        | -118             | DLC6.1a    | 37.4        |
| <b>5MW2DBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 704           | DLC6.2a    | 37.4        | 53004           | DLC6.2a    | 37.4        | -5514         | DLC7.1a    | 25.0        | 3579             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 3               | DLC6.2a    | 37.4        | -5678         | DLC6.2a    | 37.4        | -157             | DLC6.2a    | 37.4        |
| Averages              | Max | 255           | DLC6.2a    | 37.4        | 19632           | DLC6.2a    | 37.4        | -5545         | DLC6.2a    | 37.4        | 3292             | DLC7.1a    | 25.0        |
|                       | Min | 4             | DLC6.2a    | 37.4        | 438             | DLC6.2a    | 37.4        | -5676         | DLC6.1a    | 37.4        | -96              | DLC6.2a    | 37.4        |
| <b>5MW2DBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 714           | DLC6.2a    | 37.4        | 53672           | DLC6.2a    | 37.4        | -5517         | DLC6.2a    | 37.4        | 3579             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 1               | DLC6.2a    | 37.4        | -5680         | DLC6.1a    | 37.4        | -148             | DLC6.2a    | 37.4        |
| Averages              | Max | 255           | DLC6.2a    | 37.4        | 19728           | DLC6.2a    | 37.4        | -5546         | DLC6.2a    | 37.4        | 3290             | DLC7.1a    | 25.0        |
|                       | Min | 4             | DLC6.2a    | 37.4        | 461             | DLC6.2a    | 37.4        | -5679         | DLC6.1a    | 37.4        | -99              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T5C0</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 594           | DLC6.2a    | 37.4        | 45672           | DLC6.2a    | 37.4        | -5517         | DLC6.2a    | 37.4        | 3532             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -5673         | DLC6.2a    | 37.4        | -172             | DLC6.2a    | 37.4        |
| Averages              | Max | 229           | DLC6.2a    | 37.4        | 17664           | DLC6.2a    | 37.4        | -5544         | DLC6.2a    | 37.4        | 3252             | DLC7.1a    | 25.0        |
|                       | Min | 5             | DLC6.2a    | 37.4        | 359             | DLC6.2a    | 37.4        | -5672         | DLC6.2a    | 37.4        | -134             | DLC6.2a    | 37.4        |

**Table A8.3. Load effect result data at tower base in parked conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 640           | DLC6.2a    | 37.4        | 48636           | DLC6.2a    | 37.4        | -5512         | DLC6.2a    | 37.4        | 3506             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 1               | DLC6.2a    | 37.4        | -5675         | DLC6.2a    | 37.4        | -194             | DLC6.2a    | 37.4        |
| Averages                    | Max | 230           | DLC6.2a    | 37.4        | 17751           | DLC6.2a    | 37.4        | -5545         | DLC6.2a    | 37.4        | 3250             | DLC7.1a    | 25.0        |
|                             | Min | 5             | DLC6.2a    | 37.4        | 390             | DLC6.2a    | 37.4        | -5673         | DLC6.2a    | 37.4        | -133             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 668           | DLC6.2a    | 37.4        | 50814           | DLC6.2a    | 37.4        | -5534         | DLC6.2a    | 37.4        | 3411             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -5586         | DLC7.1a    | 25.0        | -236             | DLC6.2a    | 37.4        |
| Averages                    | Max | 264           | DLC6.2a    | 37.4        | 20312           | DLC6.2a    | 37.4        | -5548         | DLC6.2a    | 37.4        | 3310             | DLC7.1a    | 25.0        |
|                             | Min | 3             | DLC6.2a    | 37.4        | 458             | DLC6.2a    | 37.4        | -5585         | DLC7.1a    | 25.0        | -41              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 746           | DLC6.2a    | 37.4        | 55724           | DLC6.2a    | 37.4        | -5532         | DLC6.2a    | 37.4        | 3419             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.3a    | 25.0        | 1               | DLC6.2a    | 37.4        | -5588         | DLC7.1a    | 25.0        | -261             | DLC6.2a    | 37.4        |
| Averages                    | Max | 267           | DLC6.2a    | 37.4        | 20533           | DLC6.2a    | 37.4        | -5551         | DLC6.2a    | 37.4        | 3311             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 489             | DLC6.2a    | 37.4        | -5588         | DLC7.1a    | 25.0        | -41              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 665           | DLC6.2a    | 37.4        | 51096           | DLC6.2a    | 37.4        | -5523         | DLC6.2a    | 37.4        | 3370             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 5               | DLC6.2a    | 37.4        | -5587         | DLC7.1a    | 25.0        | -223             | DLC6.2a    | 37.4        |
| Averages                    | Max | 266           | DLC6.2a    | 37.4        | 20507           | DLC6.2a    | 37.4        | -5549         | DLC6.2a    | 37.4        | 3283             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 293             | DLC6.2a    | 37.4        | -5585         | DLC7.1a    | 25.0        | -26              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 740           | DLC6.2a    | 37.4        | 56083           | DLC6.2a    | 37.4        | -5521         | DLC6.2a    | 37.4        | 3377             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -5589         | DLC7.1a    | 25.0        | -247             | DLC6.2a    | 37.4        |
| Averages                    | Max | 270           | DLC6.2a    | 37.4        | 20790           | DLC6.2a    | 37.4        | -5552         | DLC6.2a    | 37.4        | 3284             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 318             | DLC6.2a    | 37.4        | -5588         | DLC7.1a    | 25.0        | -26              | DLC6.2a    | 37.4        |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 602           | DLC6.2a    | 37.4        | 45857           | DLC6.2a    | 37.4        | -5517         | DLC6.2a    | 37.4        | 3749             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.3a    | 25.0        | 2               | DLC6.2a    | 37.4        | -5670         | DLC6.2a    | 37.4        | -1634            | DLC6.2a    | 37.4        |
| Averages                    | Max | 231           | DLC6.2a    | 37.4        | 17786           | DLC6.2a    | 37.4        | -5544         | DLC6.2a    | 37.4        | 3262             | DLC7.1a    | 25.0        |
|                             | Min | 5             | DLC6.2a    | 37.4        | 481             | DLC6.2a    | 37.4        | -5669         | DLC6.2a    | 37.4        | -118             | DLC6.1a    | 37.4        |
| <b>5MW2UBUTT2C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 790           | DLC6.2a    | 37.4        | 59767           | DLC6.2a    | 37.4        | -5518         | DLC6.2a    | 37.4        | 3360             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.3a    | 25.0        | 3               | DLC6.2a    | 37.4        | -5606         | DLC6.1a    | 37.4        | -132             | DLC6.2a    | 37.4        |
| Averages                    | Max | 283           | DLC6.2a    | 37.4        | 21878           | DLC6.2a    | 37.4        | -5550         | DLC6.2a    | 37.4        | 3258             | DLC7.1a    | 25.0        |
|                             | Min | 5             | DLC6.2a    | 37.4        | 372             | DLC6.2a    | 37.4        | -5605         | DLC6.1a    | 37.4        | -46              | DLC6.2a    | 37.4        |

**Table A8.4. Load effect result data at tower top in normal operating conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1181          | DLC1.3     | 15.0        | 10492           | DLC1.4     | 11.4        | -3359         | DLC1.3     | 25.0        | 5090             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 23.0        | 17              | DLC1.5V    | 3.0         | -3531         | DLC1.3     | 17.0        | -9119            | DLC1.4     | 11.4        |
| Averages              | Max | 712           | DLC1.5V    | 11.0        | 5180            | DLC1.4     | 13.4        | -3436         | DLC1.5H    | 25.0        | 828              | DLC1.4     | 13.4        |
|                       | Min | 78            | DLC1.3     | 3.0         | 997             | DLC1.3     | 5.0         | -3489         | DLC1.5V    | 11.0        | -2625            | DLC1.4     | 9.4         |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1269          | DLC1.4     | 9.4         | 8068            | DLC1.4     | 9.4         | -3204         | DLC1.3     | 25.0        | 4418             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 25.0        | 8               | DLC1.3     | 3.0         | -3381         | DLC1.3     | 25.0        | -7922            | DLC1.4     | 11.4        |
| Averages              | Max | 629           | DLC1.5H    | 11.0        | 3768            | DLC1.4     | 13.4        | -3263         | DLC1.5H    | 3.0         | 453              | DLC1.4     | 13.4        |
|                       | Min | 63            | DLC1.3     | 3.0         | 213             | DLC1.3     | 3.0         | -3311         | DLC1.3     | 11.0        | -1802            | DLC1.4     | 9.4         |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1246          | DLC1.4     | 9.4         | 7952            | DLC1.4     | 9.4         | -3207         | DLC1.3     | 25.0        | 4437             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 21.0        | 10              | DLC1.5H    | 3.0         | -3384         | DLC1.3     | 25.0        | -7951            | DLC1.4     | 11.4        |
| Averages              | Max | 630           | DLC1.5H    | 11.0        | 3750            | DLC1.4     | 13.4        | -3265         | DLC1.3     | 3.0         | 458              | DLC1.4     | 13.4        |
|                       | Min | 62            | DLC1.3     | 3.0         | 221             | DLC1.3     | 3.0         | -3312         | DLC1.3     | 11.0        | -1771            | DLC1.4     | 9.4         |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1513          | DLC1.4     | 11.4        | 7718            | DLC1.4     | 11.4        | -3169         | DLC1.4     | 11.4        | 5153             | DLC1.4     | 13.4        |
|                       | Min | 1             | DLC1.3     | 21.0        | 3               | DLC1.3     | 3.0         | -3383         | DLC1.3     | 25.0        | -9773            | DLC1.4     | 9.4         |
| Averages              | Max | 722           | DLC1.5V    | 11.0        | 3725            | DLC1.4     | 13.4        | -3265         | DLC1.3     | 3.0         | 497              | DLC1.4     | 13.4        |
|                       | Min | 80            | DLC1.3     | 3.0         | 238             | DLC1.3     | 3.0         | -3316         | DLC1.3     | 11.0        | -2262            | DLC1.4     | 9.4         |

**Table A8.4. Load effect result data at tower top in normal operating conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1528          | DLC1.4     | 11.4        | 7811            | DLC1.4     | 11.4        | -3179         | DLC1.4     | 11.4        | 5148             | DLC1.4     | 13.4        |
|                             | Min | 1             | DLC1.3     | 21.0        | 3               | DLC1.3     | 3.0         | -3385         | DLC1.3     | 25.0        | -9729            | DLC1.4     | 9.4         |
| Averages                    | Max | 723           | DLC1.5V    | 11.0        | 3720            | DLC1.4     | 13.4        | -3266         | DLC1.3     | 3.0         | 496              | DLC1.4     | 13.4        |
|                             | Min | 80            | DLC1.3     | 3.0         | 246             | DLC1.3     | 3.0         | -3318         | DLC1.3     | 11.0        | -2261            | DLC1.4     | 9.4         |
| <b>5MW2DB00</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1344          | DLC1.4     | 9.4         | 9830            | DLC1.4     | 9.4         | -3054         | DLC1.4     | 9.4         | 5079             | DLC1.3     | 25.0        |
|                             | Min | 0             | DLC1.4     | 13.4        | 155             | DLC1.5H    | 3.0         | -3424         | DLC1.3     | 25.0        | -9307            | DLC1.4     | 11.4        |
| Averages                    | Max | 598           | DLC1.5V    | 11.0        | 4881            | DLC1.4     | 11.4        | -3216         | DLC1.5H    | 11.0        | 1588             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 641             | DLC1.5H    | 3.0         | -3255         | DLC1.3     | 25.0        | -2354            | DLC1.4     | 9.4         |
| <b>5MW2DB00TipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1323          | DLC1.4     | 9.4         | 9572            | DLC1.4     | 9.4         | -3096         | DLC1.4     | 11.4        | 5083             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 23.0        | 154             | DLC1.5H    | 3.0         | -3426         | DLC1.3     | 25.0        | -9307            | DLC1.4     | 11.4        |
| Averages                    | Max | 600           | DLC1.5V    | 11.0        | 4860            | DLC1.4     | 11.4        | -3218         | DLC1.5H    | 11.0        | 1585             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 653             | DLC1.5H    | 3.0         | -3257         | DLC1.3     | 25.0        | -2321            | DLC1.4     | 9.4         |
| <b>5MW2DBUT</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1644          | DLC1.4     | 9.4         | 9570            | DLC1.4     | 9.4         | -3028         | DLC1.4     | 11.4        | 4950             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 21.0        | 179             | DLC1.3     | 3.0         | -3416         | DLC1.3     | 25.0        | -12250           | DLC1.4     | 11.4        |
| Averages                    | Max | 689           | DLC1.5H    | 11.0        | 4870            | DLC1.4     | 11.4        | -3211         | DLC1.5H    | 11.0        | 1574             | DLC1.3     | 25.0        |
|                             | Min | 80            | DLC1.3     | 3.0         | 734             | DLC1.5H    | 3.0         | -3255         | DLC1.3     | 25.0        | -2861            | DLC1.4     | 9.4         |
| <b>5MW2DBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1651          | DLC1.4     | 9.4         | 9609            | DLC1.4     | 9.4         | -2990         | DLC1.4     | 9.4         | 4936             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 21.0        | 193             | DLC1.5H    | 3.0         | -3421         | DLC1.3     | 25.0        | -12250           | DLC1.4     | 11.4        |
| Averages                    | Max | 690           | DLC1.5H    | 11.0        | 4864            | DLC1.4     | 11.4        | -3212         | DLC1.5H    | 11.0        | 1569             | DLC1.3     | 25.0        |
|                             | Min | 80            | DLC1.3     | 3.0         | 746             | DLC1.5H    | 3.0         | -3257         | DLC1.3     | 25.0        | -2847            | DLC1.4     | 9.4         |
| <b>5MW2DB00T5C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1295          | DLC1.4     | 11.4        | 9182            | DLC1.4     | 9.4         | -3065         | DLC1.4     | 9.4         | 4994             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 23.0        | 54              | DLC1.3     | 3.0         | -3430         | DLC1.3     | 25.0        | -8816            | DLC1.4     | 11.4        |
| Averages                    | Max | 606           | DLC1.5V    | 11.0        | 4587            | DLC1.4     | 11.4        | -3215         | DLC1.5H    | 11.0        | 1545             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 330             | DLC1.5H    | 3.0         | -3254         | DLC1.3     | 25.0        | -2126            | DLC1.4     | 9.4         |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1272          | DLC1.4     | 11.4        | 9018            | DLC1.4     | 9.4         | -3116         | DLC1.4     | 11.4        | 4992             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 25.0        | 58              | DLC1.3     | 3.0         | -3433         | DLC1.3     | 25.0        | -8790            | DLC1.4     | 11.4        |
| Averages                    | Max | 608           | DLC1.5V    | 11.0        | 4567            | DLC1.4     | 11.4        | -3216         | DLC1.5H    | 11.0        | 1542             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 337             | DLC1.5H    | 3.0         | -3255         | DLC1.3     | 25.0        | -2100            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1344          | DLC1.4     | 9.4         | 9828            | DLC1.4     | 9.4         | -3093         | DLC1.4     | 9.4         | 4495             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 25.0        | 77              | DLC1.5H    | 3.0         | -3418         | DLC1.3     | 25.0        | -9493            | DLC1.4     | 11.4        |
| Averages                    | Max | 603           | DLC1.5H    | 11.0        | 4672            | DLC1.4     | 13.4        | -3249         | DLC1.4     | 9.4         | 1026             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 592             | DLC1.5H    | 3.0         | -3272         | DLC1.4     | 13.4        | -2449            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1323          | DLC1.4     | 9.4         | 9434            | DLC1.4     | 9.4         | -3164         | DLC1.4     | 11.4        | 4482             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 25.0        | 96              | DLC1.5H    | 3.0         | -3422         | DLC1.3     | 25.0        | -9459            | DLC1.4     | 11.4        |
| Averages                    | Max | 605           | DLC1.5V    | 11.0        | 4653            | DLC1.4     | 13.4        | -3251         | DLC1.4     | 9.4         | 1022             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 604             | DLC1.5H    | 3.0         | -3273         | DLC1.4     | 13.4        | -2417            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1281          | DLC1.4     | 11.4        | 9170            | DLC1.4     | 9.4         | -3113         | DLC1.4     | 9.4         | 4515             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 25.0        | 44              | DLC1.3     | 3.0         | -3426         | DLC1.3     | 25.0        | -8972            | DLC1.4     | 9.4         |
| Averages                    | Max | 611           | DLC1.5V    | 11.0        | 4375            | DLC1.4     | 11.4        | -3251         | DLC1.4     | 9.4         | 1023             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 283             | DLC1.5H    | 3.0         | -3273         | DLC1.4     | 13.4        | -2199            | DLC1.4     | 9.4         |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1249          | DLC1.4     | 11.4        | 8827            | DLC1.4     | 9.4         | -3177         | DLC1.3     | 25.0        | 4502             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 25.0        | 42              | DLC1.3     | 3.0         | -3431         | DLC1.3     | 25.0        | -8869            | DLC1.4     | 11.4        |
| Averages                    | Max | 613           | DLC1.5V    | 11.0        | 4355            | DLC1.4     | 11.4        | -3252         | DLC1.4     | 9.4         | 1019             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 290             | DLC1.5H    | 3.0         | -3274         | DLC1.4     | 13.4        | -2173            | DLC1.4     | 9.4         |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1277          | DLC1.4     | 11.4        | 11831           | DLC1.3     | 25.0        | -3094         | DLC1.4     | 11.4        | 7188             | DLC1.3     | 25.0        |
|                             | Min | 1             | DLC1.3     | 25.0        | 97              | DLC1.5H    | 3.0         | -3391         | DLC1.3     | 25.0        | -13790           | DLC1.4     | 11.4        |
| Averages                    | Max | 600           | DLC1.5V    | 11.0        | 5696            | DLC1.4     | 13.4        | -3215         | DLC1.4     | 11.4        | 1595             | DLC1.3     | 25.0        |
|                             | Min | 62            | DLC1.3     | 3.0         | 652             | DLC1.5H    | 3.0         | -3256         | DLC1.3     | 25.0        | -3114            | DLC1.4     | 11.4        |

**Table A8.4. Load effect result data at tower top in normal operating conditions (continue).**

| Load Effects              |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|---------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                           |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTT2C0TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                  | Max | 1431          | DLC1.4     | 9.4         | 8887            | DLC1.4     | 9.4         | -3049         | DLC1.4     | 9.4         | 4972             | DLC1.4     | 13.4        |
|                           | Min | 1             | DLC1.4     | 11.4        | 8               | DLC1.3     | 3.0         | -3429         | DLC1.3     | 25.0        | -11540           | DLC1.4     | 11.4        |
| Averages                  | Max | 704           | DLC1.5H    | 11.0        | 4451            | DLC1.4     | 11.4        | -3238         | DLC1.4     | 9.4         | 1218             | DLC1.3     | 25.0        |
|                           | Min | 81            | DLC1.3     | 3.0         | 371             | DLC1.5H    | 3.0         | -3265         | DLC1.3     | 25.0        | -2667            | DLC1.4     | 9.4         |

**Table A8.5. Load effect result data at tower top in fault conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1318          | DLC2.3     | 25.0        | 12821           | DLC2.1P    | 11.4        | -3229         | DLC2.1P    | 25.0        | 7782             | DLC2.1P    | 11.4        |
|                       | Min | 1             | DLC2.1G    | 11.4        | 11              | DLC2.3     | 13.4        | -3525         | DLC2.1P    | 25.0        | -8876            | DLC2.1P    | 25.0        |
| Averages              | Max | 363           | DLC2.3     | 25.0        | 2974            | DLC2.1P    | 25.0        | -3376         | DLC2.1P    | 25.0        | 27               | DLC2.1G    | 11.4        |
|                       | Min | 223           | DLC2.1P    | 11.4        | 1899            | DLC2.1P    | 11.4        | -3442         | DLC2.1P    | 11.4        | -1868            | DLC2.1P    | 25.0        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1414          | DLC2.3     | 25.0        | 13935           | DLC2.1P    | 11.4        | -2916         | DLC2.1P    | 25.0        | 10261            | DLC2.1P    | 11.4        |
|                       | Min | 0             | DLC2.3     | 25.0        | 1               | DLC2.3     | 9.4         | -3454         | DLC2.1P    | 25.0        | -17278           | DLC2.1P    | 25.0        |
| Averages              | Max | 331           | DLC2.3     | 13.4        | 3507            | DLC2.1P    | 25.0        | -3258         | DLC2.1G    | 25.0        | 1576             | DLC2.1P    | 25.0        |
|                       | Min | 193           | DLC2.1G    | 11.4        | 1039            | DLC2.3     | 9.4         | -3301         | DLC2.1P    | 25.0        | -238             | DLC2.3     | 25.0        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1434          | DLC2.3     | 25.0        | 7162            | DLC2.1P    | 25.0        | -3130         | DLC2.1P    | 25.0        | 3685             | DLC2.1P    | 25.0        |
|                       | Min | 0             | DLC2.3     | 9.4         | 2               | DLC2.3     | 25.0        | -3388         | DLC2.1P    | 25.0        | -4323            | DLC2.1P    | 25.0        |
| Averages              | Max | 283           | DLC2.3     | 11.4        | 3878            | DLC2.1P    | 25.0        | -3245         | DLC2.3     | 25.0        | 568              | DLC2.1P    | 25.0        |
|                       | Min | 143           | DLC2.3     | 9.4         | 1037            | DLC2.3     | 9.4         | -3289         | DLC2.1P    | 25.0        | -878             | DLC2.1P    | 25.0        |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1367          | DLC2.3     | 25.0        | 14300           | DLC2.1P    | 25.0        | -3009         | DLC2.1P    | 25.0        | 9993             | DLC2.1P    | 11.4        |
|                       | Min | 0             | DLC2.3     | 11.4        | 7               | DLC2.3     | 13.4        | -3467         | DLC2.1P    | 25.0        | -11310           | DLC2.1P    | 25.0        |
| Averages              | Max | 306           | DLC2.3     | 25.0        | 3887            | DLC2.1P    | 25.0        | -3228         | DLC2.3     | 25.0        | 208              | DLC2.1P    | 25.0        |
|                       | Min | 204           | DLC2.3     | 9.4         | 1113            | DLC2.3     | 9.4         | -3275         | DLC2.3     | 11.4        | -160             | DLC2.3     | 13.4        |
| <b>5MW2UBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1207          | DLC2.3     | 11.4        | 7100            | DLC2.1P    | 25.0        | -3119         | DLC2.1G    | 25.0        | 4462             | DLC2.1P    | 25.0        |
|                       | Min | 0             | DLC2.3     | 25.0        | 6               | DLC2.3     | 25.0        | -3399         | DLC2.1P    | 25.0        | -4403            | DLC2.1P    | 25.0        |
| Averages              | Max | 287           | DLC2.3     | 11.4        | 3864            | DLC2.1P    | 25.0        | -3244         | DLC2.3     | 25.0        | 677              | DLC2.1P    | 25.0        |
|                       | Min | 169           | DLC2.3     | 9.4         | 1080            | DLC2.3     | 9.4         | -3290         | DLC2.1P    | 25.0        | -1129            | DLC2.1P    | 25.0        |
| <b>5MW2DB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1313          | DLC2.3     | 25.0        | 14113           | DLC2.1P    | 25.0        | -2996         | DLC2.1P    | 25.0        | 9331             | DLC2.1P    | 11.4        |
|                       | Min | 0             | DLC2.3     | 9.4         | 3               | DLC2.3     | 9.4         | -3451         | DLC2.1P    | 25.0        | -13638           | DLC2.1P    | 25.0        |
| Averages              | Max | 298           | DLC2.3     | 13.4        | 3066            | DLC2.1P    | 25.0        | -3249         | DLC2.3     | 11.4        | 2431             | DLC2.1P    | 25.0        |
|                       | Min | 178           | DLC2.3     | 9.4         | 1258            | DLC2.3     | 9.4         | -3315         | DLC2.1P    | 25.0        | 142              | DLC2.3     | 9.4         |
| <b>5MW2DB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1460          | DLC2.3     | 25.0        | 8339            | DLC2.1P    | 25.0        | -3110         | DLC2.3     | 25.0        | 4938             | DLC2.1P    | 25.0        |
|                       | Min | 0             | DLC2.3     | 9.4         | 11              | DLC2.3     | 13.4        | -3424         | DLC2.1G    | 25.0        | -6259            | DLC2.1G    | 25.0        |
| Averages              | Max | 257           | DLC2.1P    | 25.0        | 4142            | DLC2.1P    | 25.0        | -3240         | DLC2.1P    | 25.0        | 1446             | DLC2.1P    | 25.0        |
|                       | Min | 146           | DLC2.3     | 9.4         | 1244            | DLC2.3     | 9.4         | -3275         | DLC2.3     | 25.0        | -92              | DLC2.1P    | 25.0        |
| <b>5MW2DBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1398          | DLC2.3     | 25.0        | 13616           | DLC2.1P    | 25.0        | -3029         | DLC2.1P    | 25.0        | 13267            | DLC2.1P    | 25.0        |
|                       | Min | 1             | DLC2.1G    | 11.4        | 4               | DLC2.3     | 11.4        | -3517         | DLC2.1P    | 25.0        | -10665           | DLC2.1P    | 11.4        |
| Averages              | Max | 301           | DLC2.3     | 11.4        | 4432            | DLC2.1P    | 25.0        | -3248         | DLC2.3     | 13.4        | 489              | DLC2.1G    | 25.0        |
|                       | Min | 194           | DLC2.3     | 9.4         | 1328            | DLC2.3     | 9.4         | -3290         | DLC2.3     | 25.0        | 166              | DLC2.3     | 9.4         |
| <b>5MW2DBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1185          | DLC2.3     | 11.4        | 8156            | DLC2.1P    | 25.0        | -3068         | DLC2.3     | 9.4         | 4942             | DLC2.1P    | 25.0        |
|                       | Min | 0             | DLC2.3     | 11.4        | 4               | DLC2.3     | 25.0        | -3423         | DLC2.1G    | 25.0        | -5721            | DLC2.1G    | 25.0        |
| Averages              | Max | 299           | DLC2.3     | 11.4        | 4195            | DLC2.1P    | 25.0        | -3241         | DLC2.3     | 11.4        | 1539             | DLC2.1P    | 25.0        |
|                       | Min | 161           | DLC2.3     | 9.4         | 1316            | DLC2.3     | 9.4         | -3276         | DLC2.1G    | 25.0        | -39              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T5C0</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1336          | DLC2.3     | 25.0        | 13949           | DLC2.1P    | 25.0        | -2987         | DLC2.1P    | 25.0        | 9394             | DLC2.1P    | 11.4        |
|                       | Min | 0             | DLC2.3     | 9.4         | 6               | DLC2.1G    | 11.4        | -3449         | DLC2.1P    | 25.0        | -13637           | DLC2.1P    | 25.0        |
| Averages              | Max | 306           | DLC2.3     | 13.4        | 2763            | DLC2.1P    | 25.0        | -3246         | DLC2.3     | 11.4        | 2456             | DLC2.1P    | 25.0        |
|                       | Min | 182           | DLC2.3     | 9.4         | 1089            | DLC2.3     | 9.4         | -3314         | DLC2.1P    | 25.0        | 120              | DLC2.3     | 9.4         |

**Table A8.5. Load effect result data at tower top in fault conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1476          | DLC2.3     | 25.0        | 8151            | DLC2.1P    | 25.0        | -3111         | DLC2.3     | 25.0        | 4592             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 13.4        | 1               | DLC2.3     | 13.4        | -3425         | DLC2.1G    | 25.0        | -6265            | DLC2.1G    | 25.0        |
| Averages                    | Max | 257           | DLC2.3     | 11.4        | 3978            | DLC2.1P    | 25.0        | -3241         | DLC2.1P    | 25.0        | 1310             | DLC2.1P    | 25.0        |
|                             | Min | 143           | DLC2.3     | 9.4         | 998             | DLC2.3     | 9.4         | -3275         | DLC2.3     | 25.0        | -120             | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1343          | DLC2.3     | 25.0        | 13370           | DLC2.1P    | 25.0        | -2974         | DLC2.1P    | 25.0        | 9325             | DLC2.1P    | 11.4        |
|                             | Min | 0             | DLC2.3     | 11.4        | 5               | DLC2.3     | 9.4         | -3447         | DLC2.1P    | 25.0        | -15583           | DLC2.1P    | 25.0        |
| Averages                    | Max | 313           | DLC2.3     | 13.4        | 3270            | DLC2.1P    | 25.0        | -3258         | DLC2.3     | 13.4        | 2195             | DLC2.1P    | 25.0        |
|                             | Min | 180           | DLC2.3     | 9.4         | 1239            | DLC2.3     | 9.4         | -3312         | DLC2.1P    | 25.0        | 66               | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1472          | DLC2.3     | 25.0        | 8226            | DLC2.1P    | 25.0        | -3143         | DLC2.1P    | 25.0        | 4293             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 15              | DLC2.3     | 11.4        | -3395         | DLC2.1P    | 25.0        | -4795            | DLC2.1P    | 25.0        |
| Averages                    | Max | 259           | DLC2.3     | 11.4        | 4066            | DLC2.1P    | 25.0        | -3253         | DLC2.1P    | 25.0        | 795              | DLC2.1P    | 25.0        |
|                             | Min | 140           | DLC2.3     | 9.4         | 1204            | DLC2.3     | 9.4         | -3278         | DLC2.1P    | 25.0        | -320             | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1363          | DLC2.3     | 25.0        | 13312           | DLC2.1P    | 25.0        | -2965         | DLC2.1P    | 25.0        | 9355             | DLC2.1P    | 11.4        |
|                             | Min | 0             | DLC2.1G    | 11.4        | 3               | DLC2.1G    | 11.4        | -3446         | DLC2.1P    | 25.0        | -15555           | DLC2.1P    | 25.0        |
| Averages                    | Max | 324           | DLC2.3     | 13.4        | 3065            | DLC2.1P    | 25.0        | -3258         | DLC2.3     | 13.4        | 2225             | DLC2.1P    | 25.0        |
|                             | Min | 188           | DLC2.3     | 9.4         | 1070            | DLC2.3     | 9.4         | -3311         | DLC2.1P    | 25.0        | 52               | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1486          | DLC2.3     | 25.0        | 8246            | DLC2.1P    | 25.0        | -3141         | DLC2.1P    | 25.0        | 4274             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 0               | DLC2.3     | 13.4        | -3398         | DLC2.1P    | 25.0        | -4614            | DLC2.1P    | 25.0        |
| Averages                    | Max | 264           | DLC2.3     | 11.4        | 3823            | DLC2.1P    | 25.0        | -3252         | DLC2.1P    | 25.0        | 659              | DLC2.1P    | 25.0        |
|                             | Min | 141           | DLC2.3     | 9.4         | 977             | DLC2.3     | 9.4         | -3275         | DLC2.1P    | 25.0        | -320             | DLC2.1P    | 25.0        |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1344          | DLC2.3     | 25.0        | 17167           | DLC2.1P    | 25.0        | -2951         | DLC2.1P    | 25.0        | 11714            | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 3               | DLC2.3     | 13.4        | -3455         | DLC2.1P    | 25.0        | -15572           | DLC2.1P    | 25.0        |
| Averages                    | Max | 409           | DLC2.3     | 25.0        | 3212            | DLC2.1P    | 25.0        | -3247         | DLC2.3     | 11.4        | 2464             | DLC2.1P    | 25.0        |
|                             | Min | 202           | DLC2.1G    | 11.4        | 1357            | DLC2.3     | 9.4         | -3315         | DLC2.1P    | 25.0        | 85               | DLC2.3     | 9.4         |
| <b>5MW2UBUTT2C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1208          | DLC2.3     | 11.4        | 8265            | DLC2.1P    | 25.0        | -3103         | DLC2.3     | 9.4         | 4446             | DLC2.1P    | 25.0        |
|                             | Min | 0             | DLC2.3     | 13.4        | 1               | DLC2.3     | 13.4        | -3422         | DLC2.3     | 9.4         | -4450            | DLC2.1G    | 25.0        |
| Averages                    | Max | 311           | DLC2.3     | 11.4        | 3839            | DLC2.1P    | 25.0        | -3245         | DLC2.1P    | 25.0        | 1170             | DLC2.1P    | 25.0        |
|                             | Min | 165           | DLC2.3     | 25.0        | 1070            | DLC2.3     | 9.4         | -3281         | DLC2.1P    | 25.0        | -393             | DLC2.1P    | 25.0        |

**Table A8.6. Load effect result data at tower top in parked conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 748           | DLC6.2a    | 37.4        | 6040            | DLC6.2a    | 37.4        | -3342         | DLC6.1a    | 37.4        | 3901             | DLC7.1a    | 25.0        |
|                       | Min | 1             | DLC6.2a    | 37.4        | 27              | DLC6.2a    | 37.4        | -3464         | DLC7.1a    | 25.0        | -4250            | DLC6.2a    | 37.4        |
| Averages              | Max | 355           | DLC6.2a    | 37.4        | 4036            | DLC6.2a    | 37.4        | -3343         | DLC6.1a    | 37.4        | 3800             | DLC7.1a    | 25.0        |
|                       | Min | 24            | DLC6.3a    | 25.0        | 228             | DLC6.2a    | 37.4        | -3464         | DLC7.1a    | 25.0        | -1989            | DLC6.2a    | 37.4        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 474           | DLC6.2a    | 37.4        | 1787            | DLC7.1a    | 25.0        | -3135         | DLC6.2a    | 37.4        | 3354             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 5               | DLC6.2a    | 37.4        | -3287         | DLC6.2a    | 37.4        | -186             | DLC6.2a    | 37.4        |
| Averages              | Max | 160           | DLC6.2a    | 37.4        | 1708            | DLC7.1a    | 25.0        | -3136         | DLC6.2a    | 37.4        | 3265             | DLC7.1a    | 25.0        |
|                       | Min | 7             | DLC6.2a    | 37.4        | 49              | DLC6.3a    | 25.0        | -3274         | DLC7.1a    | 25.0        | -51              | DLC6.2a    | 37.4        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 480           | DLC6.2a    | 37.4        | 1830            | DLC6.2a    | 37.4        | -3137         | DLC6.2a    | 37.4        | 3352             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 10              | DLC6.2a    | 37.4        | -3287         | DLC6.2a    | 37.4        | -184             | DLC6.2a    | 37.4        |
| Averages              | Max | 160           | DLC6.2a    | 37.4        | 1722            | DLC7.1a    | 25.0        | -3138         | DLC6.2a    | 37.4        | 3262             | DLC7.1a    | 25.0        |
|                       | Min | 7             | DLC6.2a    | 37.4        | 58              | DLC6.3a    | 25.0        | -3276         | DLC7.1a    | 25.0        | -52              | DLC6.2a    | 37.4        |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 503           | DLC6.2a    | 37.4        | 2067            | DLC7.1a    | 25.0        | -3128         | DLC6.2a    | 37.4        | 3368             | DLC7.1a    | 25.0        |
|                       | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -3288         | DLC6.2a    | 37.4        | -150             | DLC6.2a    | 37.4        |
| Averages              | Max | 167           | DLC6.2a    | 37.4        | 1972            | DLC7.1a    | 25.0        | -3128         | DLC6.2a    | 37.4        | 3274             | DLC7.1a    | 25.0        |
|                       | Min | 7             | DLC6.2a    | 37.4        | 115             | DLC6.2a    | 37.4        | -3265         | DLC6.2a    | 37.4        | -37              | DLC6.2a    | 37.4        |

**Table A8.6. Load effect result data at tower top in parked conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 507           | DLC6.2a    | 37.4        | 2060            | DLC7.1a    | 25.0        | -3129         | DLC6.2a    | 37.4        | 3368             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 1               | DLC6.2a    | 37.4        | -3290         | DLC6.2a    | 37.4        | -152             | DLC6.2a    | 37.4        |
| Averages                    | Max | 167           | DLC6.2a    | 37.4        | 1971            | DLC7.1a    | 25.0        | -3131         | DLC6.2a    | 37.4        | 3274             | DLC7.1a    | 25.0        |
|                             | Min | 8             | DLC6.2a    | 37.4        | 97              | DLC6.2a    | 37.4        | -3267         | DLC6.2a    | 37.4        | -38              | DLC6.2a    | 37.4        |
| <b>5MW2DB00</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 520           | DLC6.2a    | 37.4        | 3105            | DLC7.1a    | 25.0        | -3224         | DLC6.2a    | 37.4        | 3565             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 5               | DLC6.2a    | 37.4        | -3377         | DLC6.2a    | 37.4        | -153             | DLC6.2a    | 37.4        |
| Averages                    | Max | 201           | DLC6.2a    | 37.4        | 1921            | DLC7.1a    | 25.0        | -3249         | DLC6.2a    | 37.4        | 3280             | DLC7.1a    | 25.0        |
|                             | Min | 3             | DLC6.2a    | 37.4        | 392             | DLC6.2a    | 37.4        | -3376         | DLC6.2a    | 37.4        | -118             | DLC6.1a    | 37.4        |
| <b>5MW2DB00TipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 529           | DLC6.2a    | 37.4        | 3107            | DLC7.1a    | 25.0        | -3224         | DLC6.2a    | 37.4        | 3542             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 3               | DLC6.2a    | 37.4        | -3378         | DLC6.2a    | 37.4        | -162             | DLC6.2a    | 37.4        |
| Averages                    | Max | 203           | DLC6.2a    | 37.4        | 1931            | DLC7.1a    | 25.0        | -3251         | DLC6.2a    | 37.4        | 3278             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 406             | DLC6.2a    | 37.4        | -3376         | DLC6.2a    | 37.4        | -118             | DLC6.1a    | 37.4        |
| <b>5MW2DBUT</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 578           | DLC6.2a    | 37.4        | 3237            | DLC7.1a    | 25.0        | -3219         | DLC6.2a    | 37.4        | 3579             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 1               | DLC6.2a    | 37.4        | -3384         | DLC6.2a    | 37.4        | -157             | DLC6.2a    | 37.4        |
| Averages                    | Max | 224           | DLC6.2a    | 37.4        | 2079            | DLC7.1a    | 25.0        | -3250         | DLC6.2a    | 37.4        | 3292             | DLC7.1a    | 25.0        |
|                             | Min | 3             | DLC6.2a    | 37.4        | 394             | DLC6.2a    | 37.4        | -3383         | DLC6.1a    | 37.4        | -96              | DLC6.2a    | 37.4        |
| <b>5MW2DBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 584           | DLC6.2a    | 37.4        | 3255            | DLC7.1a    | 25.0        | -3219         | DLC6.2a    | 37.4        | 3579             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 1               | DLC6.2a    | 37.4        | -3386         | DLC6.1a    | 37.4        | -148             | DLC6.2a    | 37.4        |
| Averages                    | Max | 227           | DLC6.2a    | 37.4        | 2062            | DLC7.1a    | 25.0        | -3251         | DLC6.2a    | 37.4        | 3290             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 407             | DLC6.2a    | 37.4        | -3384         | DLC6.1a    | 37.4        | -99              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T5C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 522           | DLC6.2a    | 37.4        | 3041            | DLC7.1a    | 25.0        | -3223         | DLC6.2a    | 37.4        | 3532             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 6               | DLC6.2a    | 37.4        | -3380         | DLC6.2a    | 37.4        | -172             | DLC6.2a    | 37.4        |
| Averages                    | Max | 202           | DLC6.2a    | 37.4        | 1675            | DLC7.1a    | 25.0        | -3249         | DLC6.2a    | 37.4        | 3252             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 70              | DLC6.2a    | 37.4        | -3378         | DLC6.2a    | 37.4        | -134             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 533           | DLC6.2a    | 37.4        | 2974            | DLC7.1a    | 25.0        | -3218         | DLC6.2a    | 37.4        | 3506             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 19              | DLC6.2a    | 37.4        | -3381         | DLC6.2a    | 37.4        | -194             | DLC6.2a    | 37.4        |
| Averages                    | Max | 204           | DLC6.2a    | 37.4        | 1677            | DLC7.1a    | 25.0        | -3251         | DLC6.2a    | 37.4        | 3250             | DLC7.1a    | 25.0        |
|                             | Min | 5             | DLC6.2a    | 37.4        | 83              | DLC6.2a    | 37.4        | -3380         | DLC6.2a    | 37.4        | -133             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 603           | DLC6.2a    | 37.4        | 1906            | DLC6.2a    | 37.4        | -3240         | DLC6.2a    | 37.4        | 3411             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.3a    | 25.0        | 5               | DLC6.2a    | 37.4        | -3292         | DLC7.1a    | 25.0        | -236             | DLC6.2a    | 37.4        |
| Averages                    | Max | 232           | DLC6.2a    | 37.4        | 1070            | DLC6.2a    | 37.4        | -3255         | DLC6.2a    | 37.4        | 3310             | DLC7.1a    | 25.0        |
|                             | Min | 3             | DLC6.2a    | 37.4        | 408             | DLC6.2a    | 37.4        | -3292         | DLC7.1a    | 25.0        | -41              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 612           | DLC6.2a    | 37.4        | 1890            | DLC6.2a    | 37.4        | -3238         | DLC6.2a    | 37.4        | 3419             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 3               | DLC6.2a    | 37.4        | -3294         | DLC7.1a    | 25.0        | -261             | DLC6.2a    | 37.4        |
| Averages                    | Max | 235           | DLC6.2a    | 37.4        | 1093            | DLC6.2a    | 37.4        | -3256         | DLC6.2a    | 37.4        | 3311             | DLC7.1a    | 25.0        |
|                             | Min | 3             | DLC6.2a    | 37.4        | 421             | DLC6.2a    | 37.4        | -3293         | DLC7.1a    | 25.0        | -41              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 606           | DLC6.2a    | 37.4        | 1699            | DLC6.2a    | 37.4        | -3229         | DLC6.2a    | 37.4        | 3370             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -3293         | DLC7.1a    | 25.0        | -223             | DLC6.2a    | 37.4        |
| Averages                    | Max | 234           | DLC6.2a    | 37.4        | 981             | DLC6.2a    | 37.4        | -3256         | DLC6.2a    | 37.4        | 3283             | DLC7.1a    | 25.0        |
|                             | Min | 3             | DLC6.2a    | 37.4        | 82              | DLC6.2a    | 37.4        | -3292         | DLC7.1a    | 25.0        | -26              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 619           | DLC6.2a    | 37.4        | 1863            | DLC6.2a    | 37.4        | -3227         | DLC6.2a    | 37.4        | 3377             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 5               | DLC6.2a    | 37.4        | -3295         | DLC7.1a    | 25.0        | -247             | DLC6.2a    | 37.4        |
| Averages                    | Max | 238           | DLC6.2a    | 37.4        | 1011            | DLC6.2a    | 37.4        | -3257         | DLC6.2a    | 37.4        | 3284             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 94              | DLC6.2a    | 37.4        | -3294         | DLC7.1a    | 25.0        | -26              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0TeeterNo</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 525           | DLC6.2a    | 37.4        | 3137            | DLC7.1a    | 25.0        | -3222         | DLC6.2a    | 37.4        | 3749             | DLC7.1a    | 25.0        |
|                             | Min | 0             | DLC6.2a    | 37.4        | 2               | DLC6.2a    | 37.4        | -3376         | DLC6.2a    | 37.4        | -1634            | DLC6.2a    | 37.4        |
| Averages                    | Max | 204           | DLC6.2a    | 37.4        | 1944            | DLC7.1a    | 25.0        | -3249         | DLC6.2a    | 37.4        | 3262             | DLC7.1a    | 25.0        |
|                             | Min | 4             | DLC6.2a    | 37.4        | 393             | DLC6.2a    | 37.4        | -3376         | DLC6.2a    | 37.4        | -118             | DLC6.1a    | 37.4        |

**Table A8.6. Load effect result data at tower top in parked conditions (continue).**

| Load Effects |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|--------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|              |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>Model</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums     | Max | 652           | DLC6.2a    | 37.4        | 1787            | DLC6.2a    | 37.4        | -3225         | DLC6.2a    | 37.4        | 3360             | DLC7.1a    | 25.0        |
|              | Min | 0             | DLC6.2a    | 37.4        | 1               | DLC6.2a    | 37.4        | -3312         | DLC6.1a    | 37.4        | -132             | DLC6.2a    | 37.4        |
| Averages     | Max | 252           | DLC6.2a    | 37.4        | 1236            | DLC6.2a    | 37.4        | -3255         | DLC6.2a    | 37.4        | 3258             | DLC7.1a    | 25.0        |
|              | Min | 4             | DLC6.2a    | 37.4        | 97              | DLC6.2a    | 37.4        | -3312         | DLC6.1a    | 37.4        | -46              | DLC6.2a    | 37.4        |

**Table A8.7. Load effect result data at blade roots in normal operating conditions.**

| Load Effects             |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|--------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                          |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>Model</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| <b>5MW2UBTT2C0TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 468           | DLC1.4     | 11.4        | 17734           | DLC1.4     | 11.4        | 1013          | DLC1.3     | 23.0        | 133              | DLC1.3     | 15.0        |
|                          | Min | 5             | DLC1.3     | 25.0        | 23              | DLC1.3     | 23.0        | 0             | DLC1.1     | 3.0         | -202             | DLC1.4     | 13.4        |
| Averages                 | Max | 300           | DLC1.5V    | 11.0        | 10101           | DLC1.5V    | 11.0        | 624           | DLC1.5V    | 25.0        | 4                | DLC1.5H    | 11.0        |
|                          | Min | 125           | DLC1.3     | 3.0         | 2939            | DLC1.3     | 3.0         | 206           | DLC1.3     | 3.0         | -56              | DLC1.4     | 13.4        |
| <b>5MW3UB00</b>          |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 566           | DLC1.3     | 15.0        | 20723           | DLC1.4     | 11.4        | 1552          | DLC1.3     | 25.0        | 162              | DLC1.3     | 15.0        |
|                          | Min | 8             | DLC1.4     | 11.4        | 44              | DLC1.3     | 25.0        | 0             | DLC1.3     | 3.0         | -253             | DLC1.4     | 11.4        |
| Averages                 | Max | 385           | DLC1.5V    | 11.0        | 12963           | DLC1.5V    | 11.0        | 1090          | DLC1.5H    | 25.0        | -4               | DLC1.5H    | 11.0        |
|                          | Min | 128           | DLC1.3     | 3.0         | 3079            | DLC1.3     | 3.0         | 213           | DLC1.5V    | 3.0         | -86              | DLC1.5V    | 25.0        |
| <b>5MW2UB00</b>          |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 569           | DLC1.3     | 15.0        | 20672           | DLC1.4     | 11.4        | 1567          | DLC1.3     | 25.0        | 172              | DLC1.4     | 11.4        |
|                          | Min | 8             | DLC1.4     | 11.4        | 33              | DLC1.3     | 25.0        | 0             | DLC1.1     | 3.0         | -254             | DLC1.4     | 11.4        |
| Averages                 | Max | 387           | DLC1.5V    | 11.0        | 12978           | DLC1.5V    | 11.0        | 1104          | DLC1.5H    | 25.0        | -3               | DLC1.5H    | 11.0        |
|                          | Min | 128           | DLC1.3     | 3.0         | 3108            | DLC1.3     | 3.0         | 215           | DLC1.5V    | 3.0         | -86              | DLC1.5V    | 25.0        |
| <b>5MW2IB00TipBrk</b>    |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 646           | DLC1.4     | 11.4        | 24036           | DLC1.4     | 11.4        | 1658          | DLC1.3     | 25.0        | 207              | DLC1.4     | 11.4        |
|                          | Min | 9             | DLC1.4     | 11.4        | 47              | DLC1.3     | 25.0        | 0             | DLC1.3     | 3.0         | -281             | DLC1.4     | 11.4        |
| Averages                 | Max | 427           | DLC1.5V    | 11.0        | 14479           | DLC1.5V    | 11.0        | 1070          | DLC1.3     | 23.0        | 1                | DLC1.5H    | 11.0        |
|                          | Min | 132           | DLC1.3     | 3.0         | 3303            | DLC1.3     | 3.0         | 210           | DLC1.3     | 3.0         | -82              | DLC1.5V    | 25.0        |
| <b>5MW2UBUT</b>          |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 644           | DLC1.4     | 11.4        | 23987           | DLC1.4     | 11.4        | 1674          | DLC1.3     | 25.0        | 191              | DLC1.4     | 11.4        |
|                          | Min | 12            | DLC1.4     | 11.4        | 49              | DLC1.3     | 25.0        | 0             | DLC1.1     | 3.0         | -281             | DLC1.4     | 11.4        |
| Averages                 | Max | 428           | DLC1.5V    | 11.0        | 14460           | DLC1.5V    | 11.0        | 1084          | DLC1.3     | 23.0        | 1                | DLC1.5H    | 11.0        |
|                          | Min | 133           | DLC1.3     | 3.0         | 3332            | DLC1.3     | 3.0         | 213           | DLC1.3     | 3.0         | -82              | DLC1.5V    | 25.0        |
| <b>5MW2UBUTTipBrk</b>    |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 473           | DLC1.3     | 15.0        | 17827           | DLC1.4     | 11.4        | 1556          | DLC1.3     | 25.0        | 155              | DLC1.4     | 9.4         |
|                          | Min | 0             | DLC1.4     | 9.4         | 14              | DLC1.3     | 25.0        | 0             | DLC1.1     | 3.0         | -262             | DLC1.4     | 13.4        |
| Averages                 | Max | 269           | DLC1.5V    | 11.0        | 9672            | DLC1.5V    | 11.0        | 1091          | DLC1.5H    | 25.0        | -10              | DLC1.5H    | 7.0         |
|                          | Min | 113           | DLC1.3     | 3.0         | 2456            | DLC1.5H    | 3.0         | 212           | DLC1.5H    | 3.0         | -93              | DLC1.5V    | 25.0        |
| <b>5MW2DB00</b>          |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 469           | DLC1.3     | 15.0        | 17953           | DLC1.4     | 11.4        | 1540          | DLC1.3     | 25.0        | 200              | DLC1.4     | 9.4         |
|                          | Min | 0             | DLC1.4     | 9.4         | 14              | DLC1.3     | 25.0        | 0             | DLC1.1     | 3.0         | -262             | DLC1.4     | 13.4        |
| Averages                 | Max | 269           | DLC1.5V    | 11.0        | 9672            | DLC1.5V    | 11.0        | 1091          | DLC1.5H    | 25.0        | -10              | DLC1.5H    | 7.0         |
|                          | Min | 113           | DLC1.3     | 3.0         | 2456            | DLC1.5H    | 3.0         | 212           | DLC1.5H    | 3.0         | -93              | DLC1.5V    | 25.0        |
| <b>5MW2DB00TipBrk</b>    |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 473           | DLC1.3     | 25.0        | 17827           | DLC1.4     | 11.4        | 1556          | DLC1.3     | 25.0        | 155              | DLC1.4     | 9.4         |
|                          | Min | 0             | DLC1.5H    | 25.0        | 10              | DLC1.3     | 3.0         | 0             | DLC1.1     | 3.0         | -262             | DLC1.4     | 13.4        |
| Averages                 | Max | 269           | DLC1.5V    | 11.0        | 9638            | DLC1.5V    | 11.0        | 1105          | DLC1.5H    | 25.0        | -10              | DLC1.5H    | 7.0         |
|                          | Min | 113           | DLC1.5H    | 3.0         | 2476            | DLC1.5H    | 3.0         | 215           | DLC1.5H    | 3.0         | -93              | DLC1.5V    | 25.0        |
| <b>5MW2DBUT</b>          |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 538           | DLC1.4     | 11.4        | 20880           | DLC1.4     | 11.4        | 1658          | DLC1.3     | 25.0        | 187              | DLC1.4     | 9.4         |
|                          | Min | 0             | DLC1.3     | 3.0         | 13              | DLC1.3     | 21.0        | 0             | DLC1.1     | 3.0         | -280             | DLC1.4     | 13.4        |
| Averages                 | Max | 310           | DLC1.5V    | 11.0        | 11207           | DLC1.5V    | 11.0        | 1071          | DLC1.3     | 23.0        | -4               | DLC1.5H    | 7.0         |
|                          | Min | 114           | DLC1.5H    | 3.0         | 2598            | DLC1.5H    | 3.0         | 210           | DLC1.5H    | 3.0         | -87              | DLC1.5V    | 25.0        |
| <b>5MW2DBUTTipBrk</b>    |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 534           | DLC1.4     | 11.4        | 20700           | DLC1.4     | 11.4        | 1674          | DLC1.3     | 25.0        | 282              | DLC1.4     | 9.4         |
|                          | Min | 0             | DLC1.3     | 3.0         | 13              | DLC1.3     | 25.0        | 0             | DLC1.1     | 3.0         | -279             | DLC1.4     | 13.4        |
| Averages                 | Max | 310           | DLC1.5V    | 11.0        | 11147           | DLC1.5V    | 11.0        | 1085          | DLC1.3     | 23.0        | -4               | DLC1.5H    | 7.0         |
|                          | Min | 114           | DLC1.5H    | 3.0         | 2623            | DLC1.5H    | 3.0         | 213           | DLC1.3     | 3.0         | -88              | DLC1.5V    | 25.0        |
| <b>5MW2DB00T5C0</b>      |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                 | Max | 514           | DLC1.3     | 15.0        | 18891           | DLC1.4     | 11.4        | 1545          | DLC1.3     | 25.0        | 216              | DLC1.4     | 9.4         |
|                          | Min | 1             | DLC1.3     | 23.0        | 17              | DLC1.3     | 23.0        | 0             | DLC1.1     | 3.0         | -267             | DLC1.4     | 13.4        |
| Averages                 | Max | 308           | DLC1.5V    | 11.0        | 10913           | DLC1.5V    | 11.0        | 1093          | DLC1.5H    | 25.0        | -9               | DLC1.5H    | 7.0         |
|                          | Min | 113           | DLC1.3     | 3.0         | 2565            | DLC1.3     | 3.0         | 214           | DLC1.5H    | 3.0         | -92              | DLC1.5V    | 25.0        |

**Table A8.7. Load effect result data at blade roots in normal operating conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 518           | DLC1.3     | 15.0        | 18763           | DLC1.4     | 11.4        | 1561          | DLC1.3     | 25.0        | 163              | DLC1.4     | 9.4         |
|                             | Min | 0             | DLC1.5V    | 3.0         | 13              | DLC1.3     | 23.0        | 0             | DLC1.1     | 3.0         | -269             | DLC1.4     | 13.4        |
| Averages                    | Max | 309           | DLC1.5V    | 11.0        | 10899           | DLC1.5V    | 11.0        | 1107          | DLC1.5H    | 25.0        | -9               | DLC1.5H    | 7.0         |
|                             | Min | 114           | DLC1.3     | 3.0         | 2590            | DLC1.3     | 3.0         | 216           | DLC1.5H    | 3.0         | -92              | DLC1.5V    | 25.0        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 481           | DLC1.3     | 15.0        | 18030           | DLC1.4     | 11.4        | 1548          | DLC1.3     | 25.0        | 220              | DLC1.4     | 9.4         |
|                             | Min | 0             | DLC1.5V    | 3.0         | 4               | DLC1.4     | 9.4         | 0             | DLC1.1     | 3.0         | -284             | DLC1.4     | 13.4        |
| Averages                    | Max | 283           | DLC1.5V    | 11.0        | 9979            | DLC1.5V    | 11.0        | 1092          | DLC1.5H    | 25.0        | -10              | DLC1.5H    | 7.0         |
|                             | Min | 115           | DLC1.3     | 3.0         | 2584            | DLC1.3     | 3.0         | 213           | DLC1.5V    | 3.0         | -92              | DLC1.5V    | 25.0        |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 484           | DLC1.3     | 15.0        | 17912           | DLC1.4     | 11.4        | 1563          | DLC1.3     | 25.0        | 155              | DLC1.4     | 9.4         |
|                             | Min | 0             | DLC1.3     | 3.0         | 3               | DLC1.4     | 13.4        | 0             | DLC1.1     | 3.0         | -284             | DLC1.4     | 13.4        |
| Averages                    | Max | 283           | DLC1.5V    | 11.0        | 9947            | DLC1.5V    | 11.0        | 1105          | DLC1.5H    | 25.0        | -10              | DLC1.5H    | 7.0         |
|                             | Min | 116           | DLC1.3     | 3.0         | 2608            | DLC1.3     | 3.0         | 216           | DLC1.5V    | 3.0         | -92              | DLC1.5V    | 25.0        |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 526           | DLC1.3     | 15.0        | 18940           | DLC1.4     | 11.4        | 1552          | DLC1.3     | 25.0        | 230              | DLC1.4     | 9.4         |
|                             | Min | 1             | DLC1.3     | 23.0        | 16              | DLC1.3     | 25.0        | 0             | DLC1.1     | 3.0         | -289             | DLC1.4     | 13.4        |
| Averages                    | Max | 323           | DLC1.5V    | 11.0        | 11236           | DLC1.5V    | 11.0        | 1093          | DLC1.5H    | 25.0        | -9               | DLC1.5H    | 7.0         |
|                             | Min | 118           | DLC1.3     | 3.0         | 2724            | DLC1.3     | 3.0         | 214           | DLC1.5V    | 3.0         | -91              | DLC1.5V    | 25.0        |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 530           | DLC1.3     | 15.0        | 18850           | DLC1.4     | 11.4        | 1568          | DLC1.3     | 25.0        | 164              | DLC1.4     | 9.4         |
|                             | Min | 1             | DLC1.3     | 25.0        | 17              | DLC1.3     | 23.0        | 0             | DLC1.1     | 3.0         | -291             | DLC1.4     | 13.4        |
| Averages                    | Max | 324           | DLC1.5V    | 11.0        | 11227           | DLC1.5V    | 11.0        | 1107          | DLC1.5H    | 25.0        | -8               | DLC1.5H    | 7.0         |
|                             | Min | 118           | DLC1.3     | 3.0         | 2749            | DLC1.3     | 3.0         | 216           | DLC1.5V    | 3.0         | -91              | DLC1.5V    | 25.0        |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 508           | DLC1.4     | 11.4        | 19770           | DLC1.4     | 11.4        | 1534          | DLC1.3     | 25.0        | 147              | DLC1.4     | 9.4         |
|                             | Min | 1             | DLC1.3     | 17.0        | 9               | DLC1.3     | 3.0         | 0             | DLC1.1     | 3.0         | -266             | DLC1.4     | 13.4        |
| Averages                    | Max | 268           | DLC1.5V    | 11.0        | 9675            | DLC1.5V    | 11.0        | 1091          | DLC1.5H    | 25.0        | -10              | DLC1.5H    | 7.0         |
|                             | Min | 113           | DLC1.5H    | 3.0         | 2452            | DLC1.5H    | 3.0         | 212           | DLC1.5H    | 3.0         | -93              | DLC1.5V    | 25.0        |
| <b>5MW2UBUTT2C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 573           | DLC1.4     | 11.4        | 21896           | DLC1.4     | 11.4        | 1683          | DLC1.3     | 25.0        | 298              | DLC1.4     | 9.4         |
|                             | Min | 1             | DLC1.3     | 23.0        | 16              | DLC1.3     | 25.0        | 0             | DLC1.1     | 3.0         | -304             | DLC1.4     | 13.4        |
| Averages                    | Max | 360           | DLC1.5V    | 11.0        | 12618           | DLC1.5V    | 11.0        | 1087          | DLC1.3     | 23.0        | -3               | DLC1.5H    | 7.0         |
|                             | Min | 119           | DLC1.3     | 3.0         | 2873            | DLC1.3     | 3.0         | 214           | DLC1.3     | 3.0         | -87              | DLC1.5V    | 25.0        |

**Table A8.8. Load effect result data at blade roots in fault conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 450           | DLC2.3     | 11.4        | 15045           | DLC2.3     | 11.4        | 1042          | DLC2.3     | 25.0        | 178              | DLC2.3     | 9.4         |
|                       | Min | 3             | DLC2.3     | 25.0        | 43              | DLC2.1G    | 25.0        | -180          | DLC2.3     | 25.0        | -130             | DLC2.3     | 25.0        |
| Averages              | Max | 200           | DLC2.3     | 11.4        | 5084            | DLC2.3     | 11.4        | 304           | DLC2.3     | 13.4        | -3               | DLC2.3     | 9.4         |
|                       | Min | 89            | DLC2.3     | 25.0        | 1937            | DLC2.3     | 25.0        | 51            | DLC2.1G    | 11.4        | -38              | DLC2.1P    | 25.0        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 588           | DLC2.3     | 13.4        | 18580           | DLC2.3     | 13.4        | 1636          | DLC2.3     | 25.0        | 323              | DLC2.3     | 13.4        |
|                       | Min | 0             | DLC2.3     | 25.0        | 17              | DLC2.3     | 25.0        | -177          | DLC2.3     | 25.0        | -193             | DLC2.3     | 25.0        |
| Averages              | Max | 245           | DLC2.1P    | 25.0        | 5862            | DLC2.1P    | 25.0        | 462           | DLC2.3     | 25.0        | -2               | DLC2.3     | 9.4         |
|                       | Min | 96            | DLC2.3     | 25.0        | 2317            | DLC2.3     | 25.0        | 188           | DLC2.1G    | 25.0        | -59              | DLC2.1P    | 25.0        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 655           | DLC2.3     | 25.0        | 20930           | DLC2.3     | 25.0        | 1723          | DLC2.3     | 25.0        | 609              | DLC2.3     | 11.4        |
|                       | Min | 3             | DLC2.3     | 13.4        | 4               | DLC2.3     | 13.4        | -178          | DLC2.3     | 25.0        | -496             | DLC2.3     | 25.0        |
| Averages              | Max | 249           | DLC2.3     | 11.4        | 6997            | DLC2.3     | 11.4        | 489           | DLC2.3     | 25.0        | 4                | DLC2.3     | 11.4        |
|                       | Min | 115           | DLC2.3     | 9.4         | 3067            | DLC2.3     | 25.0        | 90            | DLC2.3     | 9.4         | -49              | DLC2.1P    | 25.0        |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 607           | DLC2.3     | 11.4        | 20435           | DLC2.3     | 11.4        | 1551          | DLC2.3     | 25.0        | 287              | DLC2.3     | 25.0        |
|                       | Min | 0             | DLC2.3     | 11.4        | 4               | DLC2.3     | 11.4        | -176          | DLC2.3     | 11.4        | -175             | DLC2.3     | 25.0        |
| Averages              | Max | 210           | DLC2.1G    | 11.4        | 5667            | DLC2.1G    | 11.4        | 450           | DLC2.3     | 13.4        | -1               | DLC2.3     | 9.4         |
|                       | Min | 132           | DLC2.1P    | 25.0        | 2831            | DLC2.1P    | 25.0        | 146           | DLC2.3     | 9.4         | -52              | DLC2.1P    | 25.0        |

**Table A8.8. Load effect result data at blade roots in fault conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>Model</b>                |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 622           | DLC2.3     | 11.4        | 20842           | DLC2.3     | 11.4        | 1692          | DLC2.3     | 25.0        | 692              | DLC2.3     | 11.4        |
|                             | Min | 3             | DLC2.3     | 9.4         | 7               | DLC2.3     | 9.4         | -176          | DLC2.3     | 25.0        | -439             | DLC2.3     | 25.0        |
| Averages                    | Max | 251           | DLC2.3     | 11.4        | 7066            | DLC2.3     | 11.4        | 479           | DLC2.3     | 25.0        | 6                | DLC2.3     | 11.4        |
|                             | Min | 121           | DLC2.3     | 9.4         | 3202            | DLC2.3     | 25.0        | 89            | DLC2.3     | 9.4         | -50              | DLC2.1P    | 25.0        |
| <b>5MW2UBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 497           | DLC2.3     | 13.4        | 18397           | DLC2.3     | 25.0        | 1651          | DLC2.3     | 25.0        | 404              | DLC2.3     | 25.0        |
|                             | Min | 2             | DLC2.3     | 25.0        | 2               | DLC2.3     | 25.0        | -177          | DLC2.3     | 25.0        | -257             | DLC2.3     | 25.0        |
| Averages                    | Max | 226           | DLC2.1P    | 25.0        | 5427            | DLC2.1P    | 25.0        | 463           | DLC2.3     | 25.0        | -6               | DLC2.3     | 9.4         |
|                             | Min | 72            | DLC2.3     | 25.0        | 1681            | DLC2.3     | 25.0        | 116           | DLC2.3     | 9.4         | -69              | DLC2.1P    | 25.0        |
| <b>5MW2DB00</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 621           | DLC2.3     | 25.0        | 20249           | DLC2.3     | 25.0        | 1724          | DLC2.3     | 25.0        | 566              | DLC2.3     | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         | -178          | DLC2.3     | 25.0        | -483             | DLC2.3     | 25.0        |
| Averages                    | Max | 205           | DLC2.3     | 11.4        | 5586            | DLC2.3     | 11.4        | 489           | DLC2.3     | 25.0        | -2               | DLC2.3     | 11.4        |
|                             | Min | 85            | DLC2.3     | 9.4         | 2360            | DLC2.3     | 25.0        | 95            | DLC2.3     | 9.4         | -58              | DLC2.1P    | 25.0        |
| <b>5MW2DB00TipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 508           | DLC2.3     | 11.4        | 17522           | DLC2.3     | 25.0        | 1541          | DLC2.3     | 25.0        | 358              | DLC2.3     | 13.4        |
|                             | Min | 1             | DLC2.3     | 13.4        | 43              | DLC2.1P    | 25.0        | -175          | DLC2.3     | 13.4        | -200             | DLC2.1G    | 25.0        |
| Averages                    | Max | 223           | DLC2.3     | 11.4        | 6349            | DLC2.3     | 11.4        | 452           | DLC2.3     | 13.4        | -3               | DLC2.3     | 9.4         |
|                             | Min | 103           | DLC2.3     | 13.4        | 2691            | DLC2.1P    | 25.0        | 133           | DLC2.3     | 9.4         | -55              | DLC2.1P    | 25.0        |
| <b>5MW2DBUT</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 540           | DLC2.3     | 25.0        | 17291           | DLC2.3     | 11.4        | 1710          | DLC2.3     | 25.0        | 577              | DLC2.3     | 11.4        |
|                             | Min | 0             | DLC2.3     | 9.4         | 2               | DLC2.3     | 9.4         | -178          | DLC2.3     | 25.0        | -514             | DLC2.3     | 25.0        |
| Averages                    | Max | 224           | DLC2.3     | 11.4        | 6443            | DLC2.3     | 11.4        | 486           | DLC2.3     | 25.0        | 1                | DLC2.3     | 11.4        |
|                             | Min | 92            | DLC2.3     | 9.4         | 2253            | DLC2.3     | 25.0        | 102           | DLC2.3     | 9.4         | -57              | DLC2.1P    | 25.0        |
| <b>5MW2DBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 542           | DLC2.3     | 13.4        | 17727           | DLC2.3     | 13.4        | 1657          | DLC2.3     | 25.0        | 374              | DLC2.3     | 25.0        |
|                             | Min | 1             | DLC2.3     | 25.0        | 7               | DLC2.3     | 25.0        | -178          | DLC2.3     | 25.0        | -264             | DLC2.3     | 25.0        |
| Averages                    | Max | 232           | DLC2.1P    | 25.0        | 5665            | DLC2.3     | 13.4        | 464           | DLC2.3     | 25.0        | -6               | DLC2.3     | 11.4        |
|                             | Min | 79            | DLC2.3     | 25.0        | 1904            | DLC2.3     | 25.0        | 125           | DLC2.3     | 9.4         | -69              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T5C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 644           | DLC2.3     | 25.0        | 21083           | DLC2.3     | 25.0        | 1734          | DLC2.3     | 25.0        | 622              | DLC2.3     | 25.0        |
|                             | Min | 0             | DLC2.3     | 9.4         | 9               | DLC2.3     | 9.4         | -178          | DLC2.3     | 25.0        | -477             | DLC2.3     | 25.0        |
| Averages                    | Max | 213           | DLC2.3     | 11.4        | 6143            | DLC2.3     | 11.4        | 490           | DLC2.3     | 25.0        | 1                | DLC2.3     | 11.4        |
|                             | Min | 100           | DLC2.3     | 9.4         | 2674            | DLC2.3     | 25.0        | 110           | DLC2.3     | 9.4         | -57              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 508           | DLC2.3     | 13.4        | 17114           | DLC2.3     | 13.4        | 1655          | DLC2.3     | 25.0        | 349              | DLC2.3     | 25.0        |
|                             | Min | 0             | DLC2.3     | 25.0        | 7               | DLC2.3     | 25.0        | -175          | DLC2.3     | 25.0        | -278             | DLC2.3     | 25.0        |
| Averages                    | Max | 232           | DLC2.1P    | 25.0        | 5540            | DLC2.1P    | 25.0        | 464           | DLC2.3     | 25.0        | -6               | DLC2.3     | 9.4         |
|                             | Min | 68            | DLC2.3     | 25.0        | 1623            | DLC2.3     | 25.0        | 124           | DLC2.3     | 9.4         | -66              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 613           | DLC2.3     | 25.0        | 19989           | DLC2.3     | 25.0        | 1730          | DLC2.3     | 25.0        | 566              | DLC2.3     | 25.0        |
|                             | Min | 1             | DLC2.3     | 25.0        | 8               | DLC2.3     | 13.4        | -179          | DLC2.3     | 25.0        | -484             | DLC2.3     | 25.0        |
| Averages                    | Max | 203           | DLC2.3     | 11.4        | 5743            | DLC2.3     | 11.4        | 492           | DLC2.3     | 25.0        | -2               | DLC2.3     | 11.4        |
|                             | Min | 87            | DLC2.3     | 25.0        | 2133            | DLC2.3     | 25.0        | 109           | DLC2.3     | 9.4         | -54              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 554           | DLC2.3     | 13.4        | 17892           | DLC2.3     | 13.4        | 1661          | DLC2.3     | 25.0        | 326              | DLC2.3     | 13.4        |
|                             | Min | 1             | DLC2.3     | 25.0        | 10              | DLC2.3     | 25.0        | -176          | DLC2.3     | 25.0        | -289             | DLC2.3     | 25.0        |
| Averages                    | Max | 239           | DLC2.1P    | 25.0        | 5746            | DLC2.1P    | 25.0        | 464           | DLC2.3     | 25.0        | -5               | DLC2.3     | 9.4         |
|                             | Min | 76            | DLC2.3     | 25.0        | 1847            | DLC2.3     | 25.0        | 140           | DLC2.3     | 9.4         | -66              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 637           | DLC2.3     | 25.0        | 20831           | DLC2.3     | 25.0        | 1739          | DLC2.3     | 25.0        | 622              | DLC2.3     | 25.0        |
|                             | Min | 0             | DLC2.3     | 25.0        | 1               | DLC2.3     | 25.0        | -180          | DLC2.3     | 25.0        | -479             | DLC2.3     | 25.0        |
| Averages                    | Max | 221           | DLC2.3     | 11.4        | 6290            | DLC2.3     | 11.4        | 493           | DLC2.3     | 25.0        | 1                | DLC2.3     | 11.4        |
|                             | Min | 97            | DLC2.3     | 25.0        | 2443            | DLC2.3     | 25.0        | 95            | DLC2.3     | 9.4         | -53              | DLC2.1P    | 25.0        |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 500           | DLC2.3     | 13.4        | 18744           | DLC2.3     | 25.0        | 1638          | DLC2.3     | 25.0        | 415              | DLC2.3     | 25.0        |
|                             | Min | 0             | DLC2.3     | 25.0        | 2               | DLC2.3     | 25.0        | -181          | DLC2.3     | 25.0        | -255             | DLC2.3     | 25.0        |
| Averages                    | Max | 229           | DLC2.1P    | 25.0        | 5521            | DLC2.1P    | 25.0        | 462           | DLC2.3     | 25.0        | -6               | DLC2.3     | 9.4         |
|                             | Min | 77            | DLC2.3     | 25.0        | 1793            | DLC2.3     | 25.0        | 117           | DLC2.3     | 9.4         | -69              | DLC2.1P    | 25.0        |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |

**Table A8.8. Load effect result data at blade roots in fault conditions (continue).**

| Load Effects              |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|---------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                           |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTT2C0TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                  | Max | 579           | DLC2.3     | 25.0        | 18919           | DLC2.3     | 11.4        | 1716          | DLC2.3     | 25.0        | 611              | DLC2.3     | 11.4        |
|                           | Min | 0             | DLC2.3     | 11.4        | 1               | DLC2.3     | 11.4        | -178          | DLC2.3     | 25.0        | -489             | DLC2.3     | 25.0        |
| Averages                  | Max | 244           | DLC2.3     | 11.4        | 6938            | DLC2.3     | 11.4        | 487           | DLC2.3     | 25.0        | 5                | DLC2.3     | 11.4        |
|                           | Min | 93            | DLC2.3     | 25.0        | 2378            | DLC2.3     | 25.0        | 92            | DLC2.3     | 9.4         | -55              | DLC2.1P    | 25.0        |

**Table A8.9. Load effect result data at blade roots in parked conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 288           | DLC6.2a    | 37.4        | 7696            | DLC6.2a    | 37.4        | 149           | DLC7.1a    | 25.0        | 179              | DLC6.2a    | 37.4        |
|                       | Min | 15            | DLC6.2a    | 37.4        | 192             | DLC6.3a    | 25.0        | -183          | DLC6.2a    | 37.4        | -202             | DLC6.2a    | 37.4        |
| Averages              | Max | 282           | DLC6.2a    | 37.4        | 7514            | DLC6.2a    | 37.4        | 149           | DLC7.1a    | 25.0        | 176              | DLC6.2a    | 37.4        |
|                       | Min | 22            | DLC6.3a    | 25.0        | 261             | DLC6.3a    | 25.0        | -183          | DLC6.2a    | 37.4        | -194             | DLC6.2a    | 37.4        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 233           | DLC7.1a    | 25.0        | 6204            | DLC6.2a    | 37.4        | 6             | DLC6.2a    | 37.4        | 6                | DLC6.2a    | 37.4        |
|                       | Min | 86            | DLC6.2a    | 37.4        | 1211            | DLC6.1a    | 37.4        | -10           | DLC6.2a    | 37.4        | -185             | DLC6.2a    | 37.4        |
| Averages              | Max | 232           | DLC7.1a    | 25.0        | 5329            | DLC7.1a    | 25.0        | 3             | DLC6.2a    | 37.4        | 4                | DLC6.2a    | 37.4        |
|                       | Min | 87            | DLC6.2a    | 37.4        | 1236            | DLC6.1a    | 37.4        | -4            | DLC6.2a    | 37.4        | -147             | DLC6.2a    | 37.4        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 234           | DLC7.1a    | 25.0        | 6390            | DLC6.2a    | 37.4        | 6             | DLC6.2a    | 37.4        | 8                | DLC6.2a    | 37.4        |
|                       | Min | 87            | DLC6.2a    | 37.4        | 1259            | DLC6.1a    | 37.4        | -9            | DLC6.2a    | 37.4        | -188             | DLC6.2a    | 37.4        |
| Averages              | Max | 233           | DLC7.1a    | 25.0        | 5377            | DLC7.1a    | 25.0        | 2             | DLC6.2a    | 37.4        | 4                | DLC6.2a    | 37.4        |
|                       | Min | 88            | DLC6.2a    | 37.4        | 1280            | DLC6.1a    | 37.4        | -3            | DLC6.2a    | 37.4        | -146             | DLC6.2a    | 37.4        |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 230           | DLC7.1a    | 25.0        | 6711            | DLC6.2a    | 37.4        | 5             | DLC6.2a    | 37.4        | 23               | DLC6.2a    | 37.4        |
|                       | Min | 104           | DLC6.1a    | 37.4        | 782             | DLC6.2a    | 37.4        | -8            | DLC6.2a    | 37.4        | -178             | DLC6.2a    | 37.4        |
| Averages              | Max | 229           | DLC7.1a    | 25.0        | 5266            | DLC7.1a    | 25.0        | 1             | DLC6.2a    | 37.4        | 3                | DLC6.2a    | 37.4        |
|                       | Min | 104           | DLC6.1a    | 37.4        | 803             | DLC6.2a    | 37.4        | -3            | DLC6.2a    | 37.4        | -135             | DLC6.2a    | 37.4        |
| <b>5MW2UBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 234           | DLC6.2a    | 37.4        | 7011            | DLC6.2a    | 37.4        | 5             | DLC6.2a    | 37.4        | 27               | DLC6.2a    | 37.4        |
|                       | Min | 104           | DLC6.1a    | 37.4        | 831             | DLC6.2a    | 37.4        | -9            | DLC6.2a    | 37.4        | -182             | DLC6.2a    | 37.4        |
| Averages              | Max | 230           | DLC7.1a    | 25.0        | 5303            | DLC7.1a    | 25.0        | 1             | DLC6.2a    | 37.4        | 3                | DLC6.2a    | 37.4        |
|                       | Min | 105           | DLC6.1a    | 37.4        | 851             | DLC6.2a    | 37.4        | -2            | DLC6.2a    | 37.4        | -134             | DLC6.2a    | 37.4        |
| <b>5MW2DB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 268           | DLC7.1a    | 25.0        | 6868            | DLC7.1a    | 25.0        | 5             | DLC7.1a    | 25.0        | 13               | DLC6.2a    | 37.4        |
|                       | Min | 145           | DLC6.2a    | 37.4        | 2728            | DLC6.2a    | 37.4        | -10           | DLC7.1a    | 25.0        | -178             | DLC6.2a    | 37.4        |
| Averages              | Max | 265           | DLC6.1a    | 37.4        | 5957            | DLC6.1a    | 37.4        | 1             | DLC7.1a    | 25.0        | 4                | DLC6.2a    | 37.4        |
|                       | Min | 167           | DLC6.2a    | 37.4        | 3446            | DLC6.2a    | 37.4        | -5            | DLC7.1a    | 25.0        | -148             | DLC6.2a    | 37.4        |
| <b>5MW2DB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 267           | DLC6.1a    | 37.4        | 6832            | DLC7.1a    | 25.0        | 5             | DLC7.1a    | 25.0        | 9                | DLC6.2a    | 37.4        |
|                       | Min | 145           | DLC6.2a    | 37.4        | 2711            | DLC6.2a    | 37.4        | -10           | DLC7.1a    | 25.0        | -182             | DLC6.2a    | 37.4        |
| Averages              | Max | 266           | DLC6.1a    | 37.4        | 6006            | DLC6.1a    | 37.4        | 1             | DLC7.1a    | 25.0        | 4                | DLC6.2a    | 37.4        |
|                       | Min | 168           | DLC6.2a    | 37.4        | 3506            | DLC6.2a    | 37.4        | -5            | DLC7.1a    | 25.0        | -148             | DLC6.2a    | 37.4        |
| <b>5MW2DBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 273           | DLC7.1a    | 25.0        | 7149            | DLC7.1a    | 25.0        | 14            | DLC7.1a    | 25.0        | 25               | DLC6.2a    | 37.4        |
|                       | Min | 146           | DLC6.2a    | 37.4        | 2891            | DLC6.2a    | 37.4        | -19           | DLC7.1a    | 25.0        | -173             | DLC6.2a    | 37.4        |
| Averages              | Max | 247           | DLC6.1a    | 37.4        | 6382            | DLC6.1a    | 37.4        | 6             | DLC7.1a    | 25.0        | 3                | DLC6.2a    | 37.4        |
|                       | Min | 169           | DLC6.2a    | 37.4        | 3525            | DLC6.2a    | 37.4        | -10           | DLC7.1a    | 25.0        | -135             | DLC6.2a    | 37.4        |
| <b>5MW2DBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 272           | DLC7.1a    | 25.0        | 7177            | DLC7.1a    | 25.0        | 14            | DLC7.1a    | 25.0        | 30               | DLC6.2a    | 37.4        |
|                       | Min | 148           | DLC6.2a    | 37.4        | 2966            | DLC6.2a    | 37.4        | -19           | DLC7.1a    | 25.0        | -177             | DLC6.2a    | 37.4        |
| Averages              | Max | 247           | DLC6.1a    | 37.4        | 6432            | DLC6.1a    | 37.4        | 6             | DLC7.1a    | 25.0        | 4                | DLC6.2a    | 37.4        |
|                       | Min | 170           | DLC6.2a    | 37.4        | 3584            | DLC6.2a    | 37.4        | -10           | DLC7.1a    | 25.0        | -135             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T5C0</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 266           | DLC6.1a    | 37.4        | 6804            | DLC7.1a    | 25.0        | 5             | DLC7.1a    | 25.0        | 9                | DLC6.2a    | 37.4        |
|                       | Min | 143           | DLC6.2a    | 37.4        | 2243            | DLC6.2a    | 37.4        | -9            | DLC7.1a    | 25.0        | -178             | DLC6.2a    | 37.4        |
| Averages              | Max | 266           | DLC6.1a    | 37.4        | 5994            | DLC6.1a    | 37.4        | 2             | DLC7.1a    | 25.0        | 4                | DLC6.2a    | 37.4        |
|                       | Min | 167           | DLC6.2a    | 37.4        | 3443            | DLC6.2a    | 37.4        | -5            | DLC7.1a    | 25.0        | -148             | DLC6.2a    | 37.4        |

**Table A8.9. Load effect result data at blade roots in parked conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 267           | DLC6.1a    | 37.4        | 6806            | DLC7.1a    | 25.0        | 6             | DLC7.1a    | 25.0        | 14               | DLC6.2a    | 37.4        |
|                             | Min | 141           | DLC6.2a    | 37.4        | 2190            | DLC6.2a    | 37.4        | -9            | DLC7.1a    | 25.0        | -182             | DLC6.2a    | 37.4        |
| Averages                    | Max | 267           | DLC6.1a    | 37.4        | 6044            | DLC6.1a    | 37.4        | 2             | DLC7.1a    | 25.0        | 4                | DLC6.2a    | 37.4        |
|                             | Min | 168           | DLC6.2a    | 37.4        | 3503            | DLC6.2a    | 37.4        | -5            | DLC7.1a    | 25.0        | -148             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 234           | DLC6.2a    | 37.4        | 6630            | DLC6.2a    | 37.4        | 6             | DLC6.2a    | 37.4        | 5                | DLC6.2a    | 37.4        |
|                             | Min | 139           | DLC6.1a    | 37.4        | 2806            | DLC6.2a    | 37.4        | -5            | DLC6.2a    | 37.4        | -188             | DLC6.2a    | 37.4        |
| Averages                    | Max | 222           | DLC7.1a    | 25.0        | 5102            | DLC7.1a    | 25.0        | 2             | DLC6.2a    | 37.4        | 3                | DLC6.2a    | 37.4        |
|                             | Min | 139           | DLC6.1a    | 37.4        | 3115            | DLC6.1a    | 37.4        | -2            | DLC6.2a    | 37.4        | -110             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 228           | DLC6.2a    | 37.4        | 6610            | DLC6.2a    | 37.4        | 6             | DLC6.2a    | 37.4        | 6                | DLC6.2a    | 37.4        |
|                             | Min | 139           | DLC6.1a    | 37.4        | 2747            | DLC6.2a    | 37.4        | -6            | DLC6.2a    | 37.4        | -194             | DLC6.2a    | 37.4        |
| Averages                    | Max | 223           | DLC7.1a    | 25.0        | 5139            | DLC7.1a    | 25.0        | 3             | DLC6.2a    | 37.4        | 3                | DLC6.2a    | 37.4        |
|                             | Min | 140           | DLC6.1a    | 37.4        | 3160            | DLC6.1a    | 37.4        | -3            | DLC6.2a    | 37.4        | -110             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 235           | DLC6.2a    | 37.4        | 6651            | DLC6.2a    | 37.4        | 5             | DLC6.2a    | 37.4        | 18               | DLC6.2a    | 37.4        |
|                             | Min | 139           | DLC6.1a    | 37.4        | 2418            | DLC6.2a    | 37.4        | -6            | DLC6.2a    | 37.4        | -186             | DLC6.2a    | 37.4        |
| Averages                    | Max | 222           | DLC7.1a    | 25.0        | 5103            | DLC7.1a    | 25.0        | 2             | DLC6.2a    | 37.4        | 2                | DLC6.2a    | 37.4        |
|                             | Min | 139           | DLC6.1a    | 37.4        | 3118            | DLC6.2a    | 37.4        | -2            | DLC6.2a    | 37.4        | -110             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 229           | DLC6.2a    | 37.4        | 6597            | DLC6.2a    | 37.4        | 5             | DLC6.2a    | 37.4        | 7                | DLC6.2a    | 37.4        |
|                             | Min | 139           | DLC6.1a    | 37.4        | 2422            | DLC6.2a    | 37.4        | -6            | DLC6.2a    | 37.4        | -194             | DLC6.2a    | 37.4        |
| Averages                    | Max | 223           | DLC7.1a    | 25.0        | 5141            | DLC7.1a    | 25.0        | 3             | DLC6.2a    | 37.4        | 3                | DLC6.2a    | 37.4        |
|                             | Min | 140           | DLC6.1a    | 37.4        | 3156            | DLC6.2a    | 37.4        | -3            | DLC6.2a    | 37.4        | -110             | DLC6.2a    | 37.4        |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 267           | DLC7.1a    | 25.0        | 6855            | DLC7.1a    | 25.0        | 5             | DLC7.1a    | 25.0        | 7                | DLC6.2a    | 37.4        |
|                             | Min | 145           | DLC6.2a    | 37.4        | 2679            | DLC6.2a    | 37.4        | -10           | DLC7.1a    | 25.0        | -180             | DLC6.2a    | 37.4        |
| Averages                    | Max | 265           | DLC6.1a    | 37.4        | 5957            | DLC6.1a    | 37.4        | 1             | DLC7.1a    | 25.0        | 4                | DLC6.2a    | 37.4        |
|                             | Min | 167           | DLC6.2a    | 37.4        | 3433            | DLC6.2a    | 37.4        | -5            | DLC7.1a    | 25.0        | -148             | DLC6.2a    | 37.4        |
| <b>5MW2UBUTT2C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 242           | DLC6.2a    | 37.4        | 7265            | DLC6.2a    | 37.4        | 4             | DLC6.2a    | 37.4        | 11               | DLC6.2a    | 37.4        |
|                             | Min | 144           | DLC6.2a    | 37.4        | 2304            | DLC6.2a    | 37.4        | -5            | DLC6.2a    | 37.4        | -153             | DLC6.2a    | 37.4        |
| Averages                    | Max | 216           | DLC7.1a    | 25.0        | 4985            | DLC7.1a    | 25.0        | 1             | DLC6.2a    | 37.4        | 3                | DLC6.2a    | 37.4        |
|                             | Min | 171           | DLC6.2a    | 37.4        | 3603            | DLC6.2a    | 37.4        | -2            | DLC6.1a    | 37.4        | -108             | DLC6.2a    | 37.4        |

**Table A8.10. Load effect result data at LSS in normal operating conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1128          | DLC1.3     | 25.0        | 13417           | DLC1.4     | 11.4        | 1091          | DLC1.3     | 15.0        | 5549             | DLC1.3     | 25.0        |
|                       | Min | 975           | DLC1.3     | 25.0        | 4               | DLC1.3     | 23.0        | -39           | DLC1.3     | 25.0        | -9               | DLC1.3     | 3.0         |
| Averages              | Max | 1085          | DLC1.4     | 13.4        | 4924            | DLC1.4     | 9.4         | 790           | DLC1.5V    | 11.0        | 4189             | DLC1.3     | 25.0        |
|                       | Min | 1054          | DLC1.5H    | 25.0        | 1008            | DLC1.3     | 21.0        | 170           | DLC1.3     | 3.0         | 57               | DLC1.3     | 3.0         |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1005          | DLC1.3     | 25.0        | 8572            | DLC1.4     | 11.4        | 1023          | DLC1.3     | 15.0        | 4458             | DLC1.3     | 25.0        |
|                       | Min | 811           | DLC1.4     | 11.4        | 5               | DLC1.4     | 13.4        | -44           | DLC1.4     | 9.4         | 0                | DLC1.4     | 9.4         |
| Averages              | Max | 914           | DLC1.4     | 13.4        | 3537            | DLC1.4     | 9.4         | 693           | DLC1.5V    | 11.0        | 3168             | DLC1.3     | 25.0        |
|                       | Min | 892           | DLC1.5H    | 25.0        | 1554            | DLC1.3     | 21.0        | 140           | DLC1.3     | 3.0         | 85               | DLC1.3     | 3.0         |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1007          | DLC1.3     | 25.0        | 8581            | DLC1.4     | 11.4        | 1028          | DLC1.3     | 15.0        | 4471             | DLC1.3     | 25.0        |
|                       | Min | 806           | DLC1.4     | 11.4        | 6               | DLC1.3     | 23.0        | -38           | DLC1.3     | 25.0        | 0                | DLC1.1     | 3.0         |
| Averages              | Max | 916           | DLC1.4     | 13.4        | 3508            | DLC1.4     | 9.4         | 694           | DLC1.5V    | 11.0        | 3168             | DLC1.3     | 25.0        |
|                       | Min | 894           | DLC1.5H    | 25.0        | 1557            | DLC1.3     | 21.0        | 140           | DLC1.3     | 3.0         | 85               | DLC1.3     | 3.0         |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1001          | DLC1.3     | 25.0        | 11852           | DLC1.4     | 11.4        | 1114          | DLC1.3     | 15.0        | 4489             | DLC1.3     | 25.0        |
|                       | Min | 745           | DLC1.4     | 11.4        | 5               | DLC1.3     | 21.0        | -65           | DLC1.4     | 9.4         | -1               | DLC1.3     | 3.0         |
| Averages              | Max | 914           | DLC1.4     | 13.4        | 4496            | DLC1.4     | 9.4         | 784           | DLC1.5V    | 11.0        | 3198             | DLC1.3     | 25.0        |
|                       | Min | 889           | DLC1.4     | 9.4         | 1546            | DLC1.3     | 21.0        | 157           | DLC1.3     | 3.0         | 77               | DLC1.3     | 3.0         |

**Table A8.10. Load effect result data at LSS in normal operating conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1004          | DLC1.3     | 25.0        | 11988           | DLC1.4     | 11.4        | 1117          | DLC1.3     | 15.0        | 4519             | DLC1.3     | 25.0        |
|                             | Min | 759           | DLC1.4     | 11.4        | 5               | DLC1.3     | 23.0        | -67           | DLC1.4     | 9.4         | -1               | DLC1.3     | 3.0         |
| Averages                    | Max | 915           | DLC1.4     | 13.4        | 4477            | DLC1.4     | 9.4         | 785           | DLC1.5V    | 11.0        | 3198             | DLC1.3     | 25.0        |
|                             | Min | 891           | DLC1.4     | 9.4         | 1549            | DLC1.3     | 21.0        | 157           | DLC1.3     | 3.0         | 77               | DLC1.3     | 3.0         |
| <b>5MW2DB00</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1081          | DLC1.3     | 25.0        | 9083            | DLC1.4     | 9.4         | 842           | DLC1.3     | 15.0        | 5005             | DLC1.3     | 25.0        |
|                             | Min | 757           | DLC1.4     | 9.4         | 4               | DLC1.3     | 9.0         | -224          | DLC1.3     | 25.0        | 0                | DLC1.3     | 3.0         |
| Averages                    | Max | 922           | DLC1.3     | 25.0        | 3472            | DLC1.4     | 9.4         | 504           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 896           | DLC1.4     | 9.4         | 1009            | DLC1.3     | 7.0         | -19           | DLC1.3     | 3.0         | 80               | DLC1.3     | 3.0         |
| <b>5MW2DB00TipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1080          | DLC1.3     | 25.0        | 9052            | DLC1.4     | 9.4         | 847           | DLC1.3     | 15.0        | 5145             | DLC1.3     | 25.0        |
|                             | Min | 799           | DLC1.4     | 11.4        | 4               | DLC1.3     | 9.0         | -222          | DLC1.3     | 25.0        | 0                | DLC1.3     | 3.0         |
| Averages                    | Max | 924           | DLC1.3     | 25.0        | 3432            | DLC1.4     | 9.4         | 506           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 897           | DLC1.4     | 9.4         | 1005            | DLC1.3     | 7.0         | -19           | DLC1.3     | 3.0         | 80               | DLC1.3     | 3.0         |
| <b>5MW2DBUT</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1074          | DLC1.3     | 25.0        | 11532           | DLC1.4     | 11.4        | 935           | DLC1.3     | 15.0        | 4983             | DLC1.3     | 25.0        |
|                             | Min | 756           | DLC1.4     | 9.4         | 5               | DLC1.3     | 11.0        | -247          | DLC1.4     | 9.4         | -2               | DLC1.3     | 3.0         |
| Averages                    | Max | 922           | DLC1.3     | 25.0        | 4237            | DLC1.4     | 9.4         | 593           | DLC1.5V    | 11.0        | 3199             | DLC1.3     | 25.0        |
|                             | Min | 891           | DLC1.4     | 9.4         | 1008            | DLC1.3     | 5.0         | -2            | DLC1.3     | 3.0         | 75               | DLC1.3     | 3.0         |
| <b>5MW2DBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1081          | DLC1.3     | 25.0        | 11526           | DLC1.4     | 11.4        | 938           | DLC1.3     | 15.0        | 5089             | DLC1.3     | 25.0        |
|                             | Min | 685           | DLC1.4     | 9.4         | 6               | DLC1.3     | 7.0         | -248          | DLC1.4     | 9.4         | -2               | DLC1.3     | 3.0         |
| Averages                    | Max | 924           | DLC1.3     | 25.0        | 4220            | DLC1.4     | 9.4         | 594           | DLC1.5V    | 11.0        | 3199             | DLC1.3     | 25.0        |
|                             | Min | 893           | DLC1.4     | 9.4         | 1006            | DLC1.3     | 5.0         | -2            | DLC1.3     | 3.0         | 75               | DLC1.3     | 3.0         |
| <b>5MW2DB00T5C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1086          | DLC1.3     | 25.0        | 8742            | DLC1.4     | 9.4         | 856           | DLC1.3     | 15.0        | 5091             | DLC1.3     | 25.0        |
|                             | Min | 769           | DLC1.4     | 9.4         | 5               | DLC1.3     | 11.0        | -231          | DLC1.3     | 25.0        | 0                | DLC1.1     | 3.0         |
| Averages                    | Max | 921           | DLC1.3     | 25.0        | 3360            | DLC1.4     | 9.4         | 512           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 897           | DLC1.4     | 9.4         | 1242            | DLC1.3     | 7.0         | -19           | DLC1.3     | 3.0         | 81               | DLC1.3     | 3.0         |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1086          | DLC1.3     | 25.0        | 8710            | DLC1.4     | 9.4         | 861           | DLC1.3     | 15.0        | 5228             | DLC1.3     | 25.0        |
|                             | Min | 810           | DLC1.4     | 11.4        | 4               | DLC1.3     | 9.0         | -228          | DLC1.3     | 25.0        | 0                | DLC1.1     | 3.0         |
| Averages                    | Max | 922           | DLC1.3     | 25.0        | 3328            | DLC1.4     | 9.4         | 513           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 898           | DLC1.4     | 9.4         | 1241            | DLC1.3     | 7.0         | -19           | DLC1.3     | 3.0         | 82               | DLC1.3     | 3.0         |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1064          | DLC1.4     | 9.4         | 8839            | DLC1.4     | 9.4         | 925           | DLC1.3     | 15.0        | 5106             | DLC1.3     | 25.0        |
|                             | Min | 735           | DLC1.4     | 9.4         | 5               | DLC1.3     | 9.0         | -158          | DLC1.3     | 25.0        | 0                | DLC1.3     | 3.0         |
| Averages                    | Max | 920           | DLC1.4     | 13.4        | 3420            | DLC1.4     | 9.4         | 586           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 898           | DLC1.4     | 9.4         | 1040            | DLC1.3     | 7.0         | 60            | DLC1.3     | 3.0         | 80               | DLC1.3     | 3.0         |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1063          | DLC1.3     | 25.0        | 8857            | DLC1.4     | 9.4         | 930           | DLC1.3     | 15.0        | 5269             | DLC1.3     | 25.0        |
|                             | Min | 813           | DLC1.4     | 11.4        | 6               | DLC1.3     | 25.0        | -157          | DLC1.3     | 25.0        | 0                | DLC1.3     | 3.0         |
| Averages                    | Max | 921           | DLC1.4     | 13.4        | 3381            | DLC1.4     | 9.4         | 587           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 899           | DLC1.4     | 9.4         | 1037            | DLC1.3     | 7.0         | 60            | DLC1.3     | 3.0         | 80               | DLC1.3     | 3.0         |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1069          | DLC1.3     | 25.0        | 8590            | DLC1.4     | 9.4         | 937           | DLC1.3     | 15.0        | 5235             | DLC1.3     | 25.0        |
|                             | Min | 753           | DLC1.4     | 9.4         | 4               | DLC1.3     | 23.0        | -169          | DLC1.3     | 25.0        | 0                | DLC1.3     | 3.0         |
| Averages                    | Max | 921           | DLC1.4     | 13.4        | 3308            | DLC1.4     | 9.4         | 594           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 899           | DLC1.4     | 9.4         | 1293            | DLC1.3     | 7.0         | 60            | DLC1.3     | 3.0         | 81               | DLC1.3     | 3.0         |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1072          | DLC1.3     | 25.0        | 8602            | DLC1.4     | 9.4         | 942           | DLC1.3     | 15.0        | 5391             | DLC1.3     | 25.0        |
|                             | Min | 815           | DLC1.3     | 25.0        | 7               | DLC1.3     | 23.0        | -166          | DLC1.3     | 25.0        | 0                | DLC1.3     | 3.0         |
| Averages                    | Max | 922           | DLC1.4     | 13.4        | 3278            | DLC1.4     | 9.4         | 596           | DLC1.5H    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 900           | DLC1.4     | 9.4         | 1293            | DLC1.3     | 7.0         | 60            | DLC1.3     | 3.0         | 81               | DLC1.3     | 3.0         |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1073          | DLC1.3     | 25.0        | 13073           | DLC1.4     | 11.4        | 847           | DLC1.3     | 15.0        | 4956             | DLC1.3     | 25.0        |
|                             | Min | 782           | DLC1.4     | 11.4        | 4               | DLC1.3     | 7.0         | -240          | DLC1.3     | 25.0        | 0                | DLC1.1     | 3.0         |
| Averages                    | Max | 924           | DLC1.3     | 25.0        | 4674            | DLC1.4     | 11.4        | 505           | DLC1.5V    | 11.0        | 3167             | DLC1.3     | 25.0        |
|                             | Min | 891           | DLC1.4     | 9.4         | 1010            | DLC1.3     | 5.0         | -19           | DLC1.3     | 3.0         | 81               | DLC1.3     | 3.0         |

**Table A8.10. Load effect result data at LSS in normal operating conditions (continue).**

| Load Effects              |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|---------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                           |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTT2C0TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                  | Max | 1077          | DLC1.3     | 25.0        | 10826           | DLC1.4     | 11.4        | 1000          | DLC1.3     | 15.0        | 5272             | DLC1.3     | 25.0        |
|                           | Min | 716           | DLC1.4     | 9.4         | 6               | DLC1.3     | 9.0         | -204          | DLC1.4     | 9.4         | -2               | DLC1.3     | 3.0         |
| Averages                  | Max | 921           | DLC1.4     | 13.4        | 4122            | DLC1.4     | 9.4         | 653           | DLC1.5V    | 11.0        | 3199             | DLC1.3     | 25.0        |
|                           | Min | 896           | DLC1.4     | 9.4         | 1242            | DLC1.3     | 7.0         | 46            | DLC1.3     | 3.0         | 75               | DLC1.3     | 3.0         |

**Table A8.11. Load effect result data at LSS in fault conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1153          | DLC2.1P    | 25.0        | 13018           | DLC2.1P    | 25.0        | 1219          | DLC2.3     | 11.4        | 7142             | DLC2.1P    | 25.0        |
|                       | Min | 854           | DLC2.1P    | 25.0        | 22              | DLC2.3     | 25.0        | -778          | DLC2.3     | 25.0        | -2215            | DLC2.3     | 9.4         |
| Averages              | Max | 1070          | DLC2.1G    | 11.4        | 2581            | DLC2.3     | 9.4         | 278           | DLC2.1P    | 11.4        | 2149             | DLC2.1P    | 25.0        |
|                       | Min | 1006          | DLC2.1P    | 25.0        | 2148            | DLC2.1P    | 11.4        | 174           | DLC2.1G    | 25.0        | 940              | DLC2.1G    | 25.0        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1103          | DLC2.1P    | 25.0        | 17106           | DLC2.1P    | 25.0        | 1066          | DLC2.3     | 13.4        | 5924             | DLC2.1P    | 25.0        |
|                       | Min | 581           | DLC2.1P    | 25.0        | 29              | DLC2.1G    | 25.0        | -831          | DLC2.3     | 25.0        | -1812            | DLC2.3     | 25.0        |
| Averages              | Max | 933           | DLC2.1P    | 25.0        | 3786            | DLC2.1P    | 25.0        | 267           | DLC2.3     | 11.4        | 2639             | DLC2.1P    | 25.0        |
|                       | Min | 890           | DLC2.3     | 13.4        | 1952            | DLC2.1G    | 11.4        | 152           | DLC2.1G    | 25.0        | 680              | DLC2.1G    | 25.0        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1009          | DLC2.1P    | 25.0        | 7310            | DLC2.1P    | 25.0        | 1266          | DLC2.3     | 25.0        | 6337             | DLC2.1P    | 25.0        |
|                       | Min | 761           | DLC2.1P    | 25.0        | 33              | DLC2.1P    | 25.0        | -301          | DLC2.3     | 25.0        | -1806            | DLC2.3     | 25.0        |
| Averages              | Max | 915           | DLC2.1P    | 25.0        | 3034            | DLC2.1P    | 25.0        | 318           | DLC2.3     | 11.4        | 2880             | DLC2.1P    | 25.0        |
|                       | Min | 874           | DLC2.3     | 25.0        | 1767            | DLC2.1P    | 11.4        | 216           | DLC2.3     | 9.4         | 769              | DLC2.3     | 9.4         |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1100          | DLC2.1P    | 25.0        | 15613           | DLC2.1P    | 25.0        | 1161          | DLC2.3     | 11.4        | 6009             | DLC2.1P    | 25.0        |
|                       | Min | 641           | DLC2.1P    | 25.0        | 51              | DLC2.1P    | 25.0        | -771          | DLC2.3     | 25.0        | -1668            | DLC2.3     | 25.0        |
| Averages              | Max | 900           | DLC2.1P    | 11.4        | 2556            | DLC2.1P    | 25.0        | 297           | DLC2.3     | 11.4        | 2384             | DLC2.1P    | 25.0        |
|                       | Min | 865           | DLC2.3     | 25.0        | 1941            | DLC2.1G    | 11.4        | 151           | DLC2.1G    | 25.0        | 845              | DLC2.3     | 9.4         |
| <b>5MW2UBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1028          | DLC2.1P    | 25.0        | 7194            | DLC2.1P    | 25.0        | 1187          | DLC2.3     | 11.4        | 6357             | DLC2.1P    | 25.0        |
|                       | Min | 765           | DLC2.1G    | 25.0        | 17              | DLC2.1G    | 25.0        | -212          | DLC2.3     | 25.0        | -1818            | DLC2.3     | 9.4         |
| Averages              | Max | 916           | DLC2.1P    | 25.0        | 3085            | DLC2.1P    | 25.0        | 350           | DLC2.3     | 11.4        | 3022             | DLC2.1P    | 25.0        |
|                       | Min | 873           | DLC2.3     | 25.0        | 1774            | DLC2.1P    | 11.4        | 231           | DLC2.3     | 25.0        | 808              | DLC2.3     | 9.4         |
| <b>5MW2DB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1117          | DLC2.1P    | 25.0        | 14296           | DLC2.1P    | 25.0        | 910           | DLC2.3     | 13.4        | 6214             | DLC2.1P    | 25.0        |
|                       | Min | 643           | DLC2.1P    | 25.0        | 8               | DLC2.3     | 25.0        | -974          | DLC2.3     | 25.0        | -1845            | DLC2.1P    | 25.0        |
| Averages              | Max | 974           | DLC2.1P    | 25.0        | 3331            | DLC2.1P    | 25.0        | 100           | DLC2.3     | 11.4        | 1553             | DLC2.1P    | 25.0        |
|                       | Min | 904           | DLC2.3     | 9.4         | 1303            | DLC2.3     | 9.4         | -11           | DLC2.1G    | 25.0        | 729              | DLC2.3     | 9.4         |
| <b>5MW2DB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1073          | DLC2.1G    | 25.0        | 6349            | DLC2.1G    | 25.0        | 1100          | DLC2.3     | 25.0        | 6584             | DLC2.1P    | 25.0        |
|                       | Min | 775           | DLC2.1P    | 25.0        | 4               | DLC2.3     | 11.4        | -438          | DLC2.3     | 25.0        | -2395            | DLC2.3     | 25.0        |
| Averages              | Max | 937           | DLC2.1P    | 25.0        | 2708            | DLC2.1P    | 25.0        | 154           | DLC2.3     | 11.4        | 2922             | DLC2.1P    | 25.0        |
|                       | Min | 902           | DLC2.1P    | 25.0        | 1223            | DLC2.1P    | 11.4        | 52            | DLC2.3     | 9.4         | 723              | DLC2.3     | 9.4         |
| <b>5MW2DBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1175          | DLC2.1P    | 25.0        | 15931           | DLC2.1P    | 25.0        | 966           | DLC2.3     | 11.4        | 6365             | DLC2.1P    | 25.0        |
|                       | Min | 698           | DLC2.1P    | 25.0        | 8               | DLC2.3     | 13.4        | -948          | DLC2.3     | 25.0        | -1942            | DLC2.3     | 25.0        |
| Averages              | Max | 941           | DLC2.3     | 25.0        | 2786            | DLC2.1P    | 25.0        | 129           | DLC2.3     | 11.4        | 2331             | DLC2.1P    | 25.0        |
|                       | Min | 904           | DLC2.3     | 13.4        | 1283            | DLC2.3     | 9.4         | -10           | DLC2.1G    | 25.0        | 788              | DLC2.3     | 9.4         |
| <b>5MW2DBUTTipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1079          | DLC2.3     | 9.4         | 5884            | DLC2.1G    | 25.0        | 995           | DLC2.3     | 11.4        | 6644             | DLC2.1P    | 25.0        |
|                       | Min | 772           | DLC2.3     | 9.4         | 16              | DLC2.3     | 25.0        | -440          | DLC2.3     | 25.0        | -2121            | DLC2.3     | 25.0        |
| Averages              | Max | 937           | DLC2.1P    | 25.0        | 2662            | DLC2.1P    | 25.0        | 184           | DLC2.3     | 11.4        | 2973             | DLC2.1P    | 25.0        |
|                       | Min | 905           | DLC2.3     | 13.4        | 1204            | DLC2.3     | 9.4         | 67            | DLC2.3     | 25.0        | 801              | DLC2.3     | 9.4         |
| <b>5MW2DB00T5C0</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1115          | DLC2.1P    | 25.0        | 14530           | DLC2.1P    | 25.0        | 926           | DLC2.3     | 13.4        | 6269             | DLC2.1P    | 25.0        |
|                       | Min | 639           | DLC2.1P    | 25.0        | 5               | DLC2.3     | 25.0        | -986          | DLC2.3     | 25.0        | -1954            | DLC2.3     | 25.0        |
| Averages              | Max | 974           | DLC2.1P    | 25.0        | 3510            | DLC2.1P    | 25.0        | 102           | DLC2.3     | 11.4        | 1550             | DLC2.1P    | 25.0        |
|                       | Min | 904           | DLC2.3     | 9.4         | 1612            | DLC2.3     | 11.4        | -11           | DLC2.1G    | 25.0        | 733              | DLC2.3     | 9.4         |

**Table A8.11. Load effect result data at LSS in fault conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1074          | DLC2.1G    | 25.0        | 6495            | DLC2.1G    | 25.0        | 1121          | DLC2.3     | 25.0        | 6641             | DLC2.1P    | 25.0        |
|                             | Min | 780           | DLC2.1P    | 25.0        | 19              | DLC2.1G    | 11.4        | -451          | DLC2.3     | 25.0        | -2438            | DLC2.3     | 25.0        |
| Averages                    | Max | 936           | DLC2.1P    | 25.0        | 2913            | DLC2.1P    | 25.0        | 156           | DLC2.3     | 11.4        | 2882             | DLC2.1P    | 25.0        |
|                             | Min | 903           | DLC2.1P    | 25.0        | 1472            | DLC2.1P    | 11.4        | 53            | DLC2.3     | 9.4         | 725              | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1097          | DLC2.1P    | 25.0        | 15661           | DLC2.1P    | 25.0        | 989           | DLC2.3     | 13.4        | 6307             | DLC2.1P    | 25.0        |
|                             | Min | 623           | DLC2.1P    | 25.0        | 5               | DLC2.3     | 25.0        | -903          | DLC2.3     | 25.0        | -1901            | DLC2.3     | 25.0        |
| Averages                    | Max | 960           | DLC2.1P    | 25.0        | 3223            | DLC2.1P    | 25.0        | 180           | DLC2.3     | 11.4        | 2134             | DLC2.1P    | 25.0        |
|                             | Min | 905           | DLC2.3     | 13.4        | 1344            | DLC2.3     | 9.4         | 69            | DLC2.1G    | 25.0        | 725              | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1044          | DLC2.1P    | 25.0        | 6151            | DLC2.1P    | 25.0        | 1191          | DLC2.3     | 25.0        | 6698             | DLC2.1P    | 25.0        |
|                             | Min | 785           | DLC2.1P    | 25.0        | 4               | DLC2.3     | 25.0        | -356          | DLC2.3     | 25.0        | -2451            | DLC2.3     | 25.0        |
| Averages                    | Max | 926           | DLC2.1P    | 25.0        | 2562            | DLC2.1P    | 25.0        | 234           | DLC2.3     | 11.4        | 2750             | DLC2.1P    | 25.0        |
|                             | Min | 900           | DLC2.1P    | 25.0        | 1219            | DLC2.1P    | 11.4        | 132           | DLC2.3     | 9.4         | 722              | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1097          | DLC2.1P    | 25.0        | 15851           | DLC2.1P    | 25.0        | 1004          | DLC2.3     | 13.4        | 6433             | DLC2.1P    | 25.0        |
|                             | Min | 616           | DLC2.1P    | 25.0        | 3               | DLC2.3     | 25.0        | -915          | DLC2.3     | 25.0        | -2023            | DLC2.3     | 25.0        |
| Averages                    | Max | 960           | DLC2.1P    | 25.0        | 3407            | DLC2.1P    | 25.0        | 182           | DLC2.3     | 11.4        | 2144             | DLC2.1P    | 25.0        |
|                             | Min | 905           | DLC2.3     | 13.4        | 1644            | DLC2.3     | 11.4        | 69            | DLC2.1G    | 25.0        | 733              | DLC2.3     | 9.4         |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1048          | DLC2.1P    | 25.0        | 6888            | DLC2.1P    | 25.0        | 1211          | DLC2.3     | 25.0        | 6742             | DLC2.1P    | 25.0        |
|                             | Min | 788           | DLC2.1P    | 25.0        | 14              | DLC2.3     | 25.0        | -369          | DLC2.3     | 25.0        | -2508            | DLC2.3     | 25.0        |
| Averages                    | Max | 924           | DLC2.1P    | 25.0        | 2799            | DLC2.1P    | 25.0        | 236           | DLC2.3     | 11.4        | 2803             | DLC2.1P    | 25.0        |
|                             | Min | 900           | DLC2.1P    | 25.0        | 1476            | DLC2.1P    | 11.4        | 133           | DLC2.3     | 9.4         | 728              | DLC2.3     | 9.4         |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1128          | DLC2.1P    | 25.0        | 18026           | DLC2.1P    | 25.0        | 917           | DLC2.3     | 13.4        | 6101             | DLC2.1P    | 25.0        |
|                             | Min | 584           | DLC2.1P    | 25.0        | 3               | DLC2.3     | 25.0        | -971          | DLC2.3     | 25.0        | -1781            | DLC2.3     | 25.0        |
| Averages                    | Max | 974           | DLC2.1P    | 25.0        | 3608            | DLC2.1P    | 25.0        | 101           | DLC2.3     | 11.4        | 1557             | DLC2.1P    | 25.0        |
|                             | Min | 903           | DLC2.3     | 9.4         | 1291            | DLC2.3     | 9.4         | -11           | DLC2.1G    | 25.0        | 726              | DLC2.3     | 9.4         |
| <b>5MW2UBUTT2C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1085          | DLC2.3     | 9.4         | 6815            | DLC2.1P    | 25.0        | 1055          | DLC2.3     | 11.4        | 6772             | DLC2.1P    | 25.0        |
|                             | Min | 768           | DLC2.3     | 9.4         | 4               | DLC2.3     | 11.4        | -412          | DLC2.3     | 25.0        | -2200            | DLC2.3     | 25.0        |
| Averages                    | Max | 935           | DLC2.1P    | 25.0        | 2766            | DLC2.1P    | 25.0        | 235           | DLC2.3     | 11.4        | 2959             | DLC2.1P    | 25.0        |
|                             | Min | 899           | DLC2.1P    | 25.0        | 1490            | DLC2.1P    | 11.4        | 116           | DLC2.3     | 25.0        | 806              | DLC2.3     | 9.4         |

**Table A8.12. Load effect result data at LSS in parked conditions.**

| Load Effects          |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                       |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 1147          | DLC6.2a    | 37.4        | 5723            | DLC6.2a    | 37.4        | 450           | DLC6.2a    | 37.4        | 2629             | DLC6.2a    | 37.4        |
|                       | Min | 986           | DLC6.2a    | 37.4        | 99              | DLC6.2a    | 37.4        | -333          | DLC6.2a    | 37.4        | -2840            | DLC6.2a    | 37.4        |
| Averages              | Max | 1140          | DLC6.2a    | 37.4        | 4671            | DLC7.1a    | 25.0        | 222           | DLC7.1a    | 25.0        | 2406             | DLC6.2a    | 37.4        |
|                       | Min | 988           | DLC6.2a    | 37.4        | 1488            | DLC6.2a    | 37.4        | 51            | DLC6.2a    | 37.4        | -2508            | DLC6.2a    | 37.4        |
| <b>5MW2UB00</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 945           | DLC6.2a    | 37.4        | 4036            | DLC7.1a    | 25.0        | 308           | DLC6.2a    | 37.4        | 1455             | DLC7.1a    | 25.0        |
|                       | Min | 775           | DLC6.2a    | 37.4        | 1619            | DLC6.2a    | 37.4        | -221          | DLC6.2a    | 37.4        | -702             | DLC6.2a    | 37.4        |
| Averages              | Max | 912           | DLC6.2a    | 37.4        | 3952            | DLC7.1a    | 25.0        | 199           | DLC7.1a    | 25.0        | 1409             | DLC7.1a    | 25.0        |
|                       | Min | 776           | DLC6.2a    | 37.4        | 1625            | DLC6.2a    | 37.4        | 50            | DLC6.2a    | 37.4        | -687             | DLC6.2a    | 37.4        |
| <b>5MW2IB00TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 950           | DLC6.2a    | 37.4        | 4039            | DLC7.1a    | 25.0        | 278           | DLC6.2a    | 37.4        | 1477             | DLC7.1a    | 25.0        |
|                       | Min | 776           | DLC6.2a    | 37.4        | 1626            | DLC6.2a    | 37.4        | -174          | DLC6.2a    | 37.4        | -744             | DLC6.2a    | 37.4        |
| Averages              | Max | 914           | DLC6.2a    | 37.4        | 3955            | DLC7.1a    | 25.0        | 199           | DLC7.1a    | 25.0        | 1423             | DLC7.1a    | 25.0        |
|                       | Min | 778           | DLC6.2a    | 37.4        | 1632            | DLC6.2a    | 37.4        | 51            | DLC6.2a    | 37.4        | -725             | DLC6.2a    | 37.4        |
| <b>5MW2UBUT</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums              | Max | 951           | DLC6.2a    | 37.4        | 4040            | DLC7.1a    | 25.0        | 302           | DLC6.2a    | 37.4        | 1734             | DLC7.1a    | 25.0        |
|                       | Min | 767           | DLC6.2a    | 37.4        | 1592            | DLC6.1a    | 37.4        | -218          | DLC6.2a    | 37.4        | -677             | DLC6.2a    | 37.4        |
| Averages              | Max | 911           | DLC6.2a    | 37.4        | 3952            | DLC7.1a    | 25.0        | 197           | DLC7.1a    | 25.0        | 1675             | DLC7.1a    | 25.0        |
|                       | Min | 769           | DLC6.2a    | 37.4        | 1598            | DLC6.1a    | 37.4        | 51            | DLC6.2a    | 37.4        | -15              | DLC6.2a    | 37.4        |

**Table A8.12. Load effect result data at LSS in parked conditions (continue).**

| Load Effects                |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|-----------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                             |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 952           | DLC6.2a    | 37.4        | 4044            | DLC7.1a    | 25.0        | 319           | DLC6.2a    | 37.4        | 1728             | DLC7.1a    | 25.0        |
|                             | Min | 769           | DLC6.2a    | 37.4        | 1600            | DLC6.1a    | 37.4        | -207          | DLC6.2a    | 37.4        | -698             | DLC6.2a    | 37.4        |
| Averages                    | Max | 913           | DLC6.2a    | 37.4        | 3955            | DLC7.1a    | 25.0        | 197           | DLC7.1a    | 25.0        | 1674             | DLC7.1a    | 25.0        |
|                             | Min | 771           | DLC6.2a    | 37.4        | 1605            | DLC6.1a    | 37.4        | 51            | DLC6.2a    | 37.4        | -17              | DLC6.2a    | 37.4        |
| <b>5MW2DB00</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1023          | DLC6.2a    | 37.4        | 3655            | DLC7.1a    | 25.0        | 162           | DLC6.2a    | 37.4        | 1824             | DLC7.1a    | 25.0        |
|                             | Min | 851           | DLC6.2a    | 37.4        | 1374            | DLC6.2a    | 37.4        | -391          | DLC6.2a    | 37.4        | -2826            | DLC7.1a    | 25.0        |
| Averages                    | Max | 1021          | DLC6.2a    | 37.4        | 3554            | DLC7.1a    | 25.0        | 34            | DLC7.1a    | 25.0        | 879              | DLC6.2a    | 37.4        |
|                             | Min | 890           | DLC6.2a    | 37.4        | 1389            | DLC6.2a    | 37.4        | -107          | DLC6.2a    | 37.4        | -1300            | DLC6.2a    | 37.4        |
| <b>5MW2DB00TipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1024          | DLC6.2a    | 37.4        | 3684            | DLC7.1a    | 25.0        | 137           | DLC6.2a    | 37.4        | 1772             | DLC7.1a    | 25.0        |
|                             | Min | 846           | DLC6.2a    | 37.4        | 1378            | DLC6.2a    | 37.4        | -342          | DLC6.2a    | 37.4        | -2826            | DLC7.1a    | 25.0        |
| Averages                    | Max | 1022          | DLC6.2a    | 37.4        | 3553            | DLC7.1a    | 25.0        | 34            | DLC7.1a    | 25.0        | 895              | DLC6.2a    | 37.4        |
|                             | Min | 892           | DLC6.2a    | 37.4        | 1387            | DLC6.2a    | 37.4        | -107          | DLC6.2a    | 37.4        | -1320            | DLC6.2a    | 37.4        |
| <b>5MW2DBUT</b>             |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1030          | DLC6.1a    | 37.4        | 3661            | DLC7.1a    | 25.0        | 157           | DLC6.2a    | 37.4        | 2503             | DLC7.1a    | 25.0        |
|                             | Min | 842           | DLC6.2a    | 37.4        | 1383            | DLC6.2a    | 37.4        | -392          | DLC6.2a    | 37.4        | -2972            | DLC7.1a    | 25.0        |
| Averages                    | Max | 1028          | DLC6.1a    | 37.4        | 3518            | DLC7.1a    | 25.0        | 34            | DLC7.1a    | 25.0        | 1546             | DLC6.2a    | 37.4        |
|                             | Min | 891           | DLC6.2a    | 37.4        | 1389            | DLC6.2a    | 37.4        | -107          | DLC6.2a    | 37.4        | -579             | DLC6.2a    | 37.4        |
| <b>5MW2DBUTTipBrk</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1031          | DLC6.1a    | 37.4        | 3663            | DLC7.1a    | 25.0        | 193           | DLC6.2a    | 37.4        | 2498             | DLC7.1a    | 25.0        |
|                             | Min | 842           | DLC6.2a    | 37.4        | 1380            | DLC6.2a    | 37.4        | -397          | DLC6.2a    | 37.4        | -2975            | DLC7.1a    | 25.0        |
| Averages                    | Max | 1030          | DLC6.1a    | 37.4        | 3516            | DLC7.1a    | 25.0        | 34            | DLC7.1a    | 25.0        | 1579             | DLC6.2a    | 37.4        |
|                             | Min | 893           | DLC6.2a    | 37.4        | 1387            | DLC6.2a    | 37.4        | -107          | DLC6.2a    | 37.4        | -618             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T5C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1025          | DLC6.2a    | 37.4        | 3837            | DLC7.1a    | 25.0        | 165           | DLC6.2a    | 37.4        | 1787             | DLC7.1a    | 25.0        |
|                             | Min | 853           | DLC6.2a    | 37.4        | 1645            | DLC6.2a    | 37.4        | -394          | DLC6.2a    | 37.4        | -2813            | DLC7.1a    | 25.0        |
| Averages                    | Max | 1024          | DLC6.2a    | 37.4        | 3738            | DLC7.1a    | 25.0        | 35            | DLC7.1a    | 25.0        | 775              | DLC6.2a    | 37.4        |
|                             | Min | 890           | DLC6.2a    | 37.4        | 1721            | DLC6.2a    | 37.4        | -107          | DLC6.2a    | 37.4        | -1216            | DLC6.2a    | 37.4        |
| <b>5MW2DB00T5C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1027          | DLC6.2a    | 37.4        | 3828            | DLC7.1a    | 25.0        | 133           | DLC6.2a    | 37.4        | 1729             | DLC7.1a    | 25.0        |
|                             | Min | 848           | DLC6.2a    | 37.4        | 1641            | DLC6.2a    | 37.4        | -343          | DLC6.2a    | 37.4        | -2745            | DLC7.1a    | 25.0        |
| Averages                    | Max | 1025          | DLC6.2a    | 37.4        | 3738            | DLC7.1a    | 25.0        | 35            | DLC7.1a    | 25.0        | 792              | DLC6.2a    | 37.4        |
|                             | Min | 892           | DLC6.2a    | 37.4        | 1724            | DLC6.2a    | 37.4        | -107          | DLC6.2a    | 37.4        | -1236            | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5</b>       |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 939           | DLC7.1a    | 25.0        | 3625            | DLC7.1a    | 25.0        | 292           | DLC6.2a    | 37.4        | 1291             | DLC6.2a    | 37.4        |
|                             | Min | 873           | DLC6.2a    | 37.4        | 1312            | DLC6.2a    | 37.4        | -364          | DLC6.2a    | 37.4        | -986             | DLC6.2a    | 37.4        |
| Averages                    | Max | 938           | DLC7.1a    | 25.0        | 3536            | DLC7.1a    | 25.0        | 116           | DLC7.1a    | 25.0        | 394              | DLC6.2a    | 37.4        |
|                             | Min | 901           | DLC6.2a    | 37.4        | 1384            | DLC6.2a    | 37.4        | -28           | DLC6.2a    | 37.4        | -971             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C2.5TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 942           | DLC6.2a    | 37.4        | 3631            | DLC7.1a    | 25.0        | 250           | DLC6.2a    | 37.4        | 1429             | DLC6.2a    | 37.4        |
|                             | Min | 872           | DLC6.2a    | 37.4        | 1305            | DLC6.2a    | 37.4        | -318          | DLC6.2a    | 37.4        | -1010            | DLC6.2a    | 37.4        |
| Averages                    | Max | 939           | DLC7.1a    | 25.0        | 3535            | DLC7.1a    | 25.0        | 116           | DLC7.1a    | 25.0        | 415              | DLC6.2a    | 37.4        |
|                             | Min | 902           | DLC6.2a    | 37.4        | 1383            | DLC6.2a    | 37.4        | -28           | DLC6.2a    | 37.4        | -992             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0</b>         |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 940           | DLC7.1a    | 25.0        | 3774            | DLC7.1a    | 25.0        | 294           | DLC6.2a    | 37.4        | 1327             | DLC6.2a    | 37.4        |
|                             | Min | 875           | DLC6.2a    | 37.4        | 1628            | DLC6.2a    | 37.4        | -365          | DLC6.2a    | 37.4        | -1067            | DLC6.2a    | 37.4        |
| Averages                    | Max | 938           | DLC7.1a    | 25.0        | 3698            | DLC7.1a    | 25.0        | 117           | DLC7.1a    | 25.0        | 394              | DLC6.2a    | 37.4        |
|                             | Min | 902           | DLC6.2a    | 37.4        | 1729            | DLC6.2a    | 37.4        | -28           | DLC6.2a    | 37.4        | -975             | DLC6.2a    | 37.4        |
| <b>5MW2DB00T0C0TipBrk</b>   |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 942           | DLC7.1a    | 25.0        | 3780            | DLC7.1a    | 25.0        | 253           | DLC6.2a    | 37.4        | 1416             | DLC6.2a    | 37.4        |
|                             | Min | 873           | DLC6.2a    | 37.4        | 1619            | DLC6.2a    | 37.4        | -320          | DLC6.2a    | 37.4        | -1114            | DLC6.2a    | 37.4        |
| Averages                    | Max | 940           | DLC7.1a    | 25.0        | 3699            | DLC7.1a    | 25.0        | 117           | DLC7.1a    | 25.0        | 415              | DLC6.2a    | 37.4        |
|                             | Min | 904           | DLC6.2a    | 37.4        | 1732            | DLC6.2a    | 37.4        | -28           | DLC6.2a    | 37.4        | -1004            | DLC6.2a    | 37.4        |
| <b>5MW2DB00TeeterNo</b>     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                    | Max | 1022          | DLC6.2a    | 37.4        | 4004            | DLC7.1a    | 25.0        | 165           | DLC6.2a    | 37.4        | 1893             | DLC7.1a    | 25.0        |
|                             | Min | 849           | DLC6.2a    | 37.4        | 1373            | DLC6.2a    | 37.4        | -394          | DLC6.2a    | 37.4        | -2845            | DLC7.1a    | 25.0        |
| Averages                    | Max | 1021          | DLC6.2a    | 37.4        | 3548            | DLC7.1a    | 25.0        | 34            | DLC7.1a    | 25.0        | 878              | DLC6.2a    | 37.4        |
|                             | Min | 890           | DLC6.2a    | 37.4        | 1389            | DLC6.2a    | 37.4        | -107          | DLC6.2a    | 37.4        | -1300            | DLC6.2a    | 37.4        |

**Table A8.12. Load effect result data at LSS in parked conditions (continue).**

| Load Effects              |     | Shear Force   |            |             | Bending Moment  |            |             | Axial Force   |            |             | Torsional Moment |            |             |
|---------------------------|-----|---------------|------------|-------------|-----------------|------------|-------------|---------------|------------|-------------|------------------|------------|-------------|
|                           |     | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m)  | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTT2C0TipBrk</b> |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Model                     |     |               |            |             |                 |            |             |               |            |             |                  |            |             |
| Maximums                  | Max | 959           | DLC6.1a    | 37.4        | 3760            | DLC7.1a    | 25.0        | 241           | DLC6.2a    | 37.4        | 1229             | DLC6.2a    | 37.4        |
|                           | Min | 858           | DLC6.2a    | 37.4        | 1642            | DLC6.2a    | 37.4        | -368          | DLC6.2a    | 37.4        | -1278            | DLC6.2a    | 37.4        |
| Averages                  | Max | 958           | DLC6.1a    | 37.4        | 3676            | DLC7.1a    | 25.0        | 83            | DLC7.1a    | 25.0        | 1206             | DLC6.2a    | 37.4        |
|                           | Min | 901           | DLC6.2a    | 37.4        | 1731            | DLC6.2a    | 37.4        | -59           | DLC6.2a    | 37.4        | -444             | DLC6.2a    | 37.4        |

**Table A8.13. Torque result data in normal operating conditions.**

| Torques         |     | LSS             |            |             | HSS             |            |             | Generator       |            |             |
|-----------------|-----|-----------------|------------|-------------|-----------------|------------|-------------|-----------------|------------|-------------|
|                 |     | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b> |     |                 |            |             |                 |            |             |                 |            |             |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 5549            | DLC1.3     | 25.0        | 57              | DLC1.3     | 25.0        | 47              | DLC1.4     | 11.4        |
|                 | Min | -9              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 4189            | DLC1.3     | 25.0        | 43              | DLC1.3     | 25.0        | 43              | DLC1.3     | 25.0        |
|                 | Min | 57              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 4458            | DLC1.3     | 25.0        | 46              | DLC1.3     | 25.0        | 36              | DLC1.3     | 17.0        |
|                 | Min | 18              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3168            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 85              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 4471            | DLC1.3     | 25.0        | 46              | DLC1.3     | 25.0        | 36              | DLC1.3     | 17.0        |
|                 | Min | 18              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3168            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 85              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 4489            | DLC1.3     | 25.0        | 46              | DLC1.3     | 25.0        | 36              | DLC1.3     | 13.0        |
|                 | Min | 10              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3198            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 77              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 4519            | DLC1.3     | 25.0        | 47              | DLC1.3     | 25.0        | 36              | DLC1.3     | 13.0        |
|                 | Min | 10              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3198            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 77              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 5005            | DLC1.3     | 25.0        | 52              | DLC1.3     | 25.0        | 36              | DLC1.3     | 21.0        |
|                 | Min | 12              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 80              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 5145            | DLC1.3     | 25.0        | 53              | DLC1.3     | 25.0        | 36              | DLC1.3     | 21.0        |
|                 | Min | 12              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 80              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 4983            | DLC1.3     | 25.0        | 51              | DLC1.3     | 25.0        | 36              | DLC1.3     | 15.0        |
|                 | Min | 8               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3199            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 75              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 5089            | DLC1.3     | 25.0        | 52              | DLC1.3     | 25.0        | 36              | DLC1.3     | 15.0        |
|                 | Min | 8               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3199            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 75              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 5091            | DLC1.3     | 25.0        | 52              | DLC1.3     | 25.0        | 36              | DLC1.3     | 21.0        |
|                 | Min | 14              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 81              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| Model           |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums        | Max | 5091            | DLC1.3     | 25.0        | 52              | DLC1.3     | 25.0        | 36              | DLC1.3     | 21.0        |
|                 | Min | 14              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages        | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                 | Min | 81              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |

**Table A8.13. Torque result data in normal operating conditions (continue).**

| Torques                      |     | LSS             |            |             | HSS             |            |             | Generator       |            |             |
|------------------------------|-----|-----------------|------------|-------------|-----------------|------------|-------------|-----------------|------------|-------------|
|                              |     | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2DB00T5C0TipBrk</b>    |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 5228            | DLC1.3     | 25.0        | 54              | DLC1.3     | 25.0        | 36              | DLC1.3     | 21.0        |
|                              | Min | 14              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages                     | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                              | Min | 82              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| <b>5MW2UB00T0C2.5</b>        |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 5106            | DLC1.3     | 25.0        | 53              | DLC1.3     | 25.0        | 36              | DLC1.3     | 19.0        |
|                              | Min | 11              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages                     | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                              | Min | 80              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| <b>5MW2UB00 T0C2.5TipBrk</b> |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 5269            | DLC1.3     | 25.0        | 54              | DLC1.3     | 25.0        | 36              | DLC1.3     | 19.0        |
|                              | Min | 11              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages                     | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                              | Min | 80              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| <b>5MW2UB00T0C0</b>          |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 5235            | DLC1.3     | 25.0        | 54              | DLC1.3     | 25.0        | 36              | DLC1.3     | 17.0        |
|                              | Min | 13              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages                     | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                              | Min | 81              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| <b>5MW2UB00T0C0TipBrk</b>    |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 5391            | DLC1.3     | 25.0        | 56              | DLC1.3     | 25.0        | 36              | DLC1.3     | 19.0        |
|                              | Min | 12              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages                     | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                              | Min | 81              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| <b>5MW2DB00TeeterNo</b>      |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 4956            | DLC1.3     | 25.0        | 51              | DLC1.3     | 25.0        | 36              | DLC1.3     | 21.0        |
|                              | Min | 13              | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages                     | Max | 3167            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                              | Min | 81              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |
| <b>5MW2UBUTT2C0TipBrk</b>    |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 5272            | DLC1.3     | 25.0        | 54              | DLC1.3     | 25.0        | 36              | DLC1.3     | 15.0        |
|                              | Min | 8               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         | 0               | DLC1.3     | 3.0         |
| Averages                     | Max | 3199            | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        | 33              | DLC1.3     | 25.0        |
|                              | Min | 75              | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         | 1               | DLC1.3     | 3.0         |

**Table A8.14. Torque result data in fault conditions.**

| Torques               |     | LSS             |            |             | HSS             |            |             | Generator       |            |             |
|-----------------------|-----|-----------------|------------|-------------|-----------------|------------|-------------|-----------------|------------|-------------|
|                       |     | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums              | Max | 7142            | DLC2.1P    | 25.0        | 74              | DLC2.1P    | 25.0        | 47              | DLC2.1P    | 25.0        |
|                       | Min | -2215           | DLC2.3     | 9.4         | -23             | DLC2.3     | 9.4         | -21             | DLC2.1P    | 25.0        |
| Averages              | Max | 2149            | DLC2.1P    | 25.0        | 22              | DLC2.1P    | 25.0        | 15              | DLC2.1P    | 25.0        |
|                       | Min | 940             | DLC2.1G    | 25.0        | 10              | DLC2.1G    | 25.0        | 9               | DLC2.1G    | 11.4        |
| <b>5MW2UB00</b>       |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums              | Max | 5924            | DLC2.1P    | 25.0        | 61              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                       | Min | -1812           | DLC2.3     | 25.0        | -19             | DLC2.3     | 25.0        | -7              | DLC2.1P    | 25.0        |
| Averages              | Max | 2639            | DLC2.1P    | 25.0        | 27              | DLC2.1P    | 25.0        | 13              | DLC2.1P    | 25.0        |
|                       | Min | 680             | DLC2.1G    | 25.0        | 7               | DLC2.1G    | 25.0        | 6               | DLC2.3     | 9.4         |
| <b>5MW2UB00TipBrk</b> |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums              | Max | 6337            | DLC2.1P    | 25.0        | 65              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                       | Min | -1806           | DLC2.3     | 25.0        | -19             | DLC2.3     | 25.0        | 0               | DLC2.1P    | 11.4        |
| Averages              | Max | 2880            | DLC2.1P    | 25.0        | 30              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                       | Min | 769             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 5               | DLC2.3     | 9.4         |
| <b>5MW2UBUT</b>       |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums              | Max | 6009            | DLC2.1P    | 25.0        | 62              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                       | Min | -1668           | DLC2.3     | 25.0        | -17             | DLC2.3     | 25.0        | -15             | DLC2.1P    | 25.0        |
| Averages              | Max | 2384            | DLC2.1P    | 25.0        | 25              | DLC2.1P    | 25.0        | 13              | DLC2.1P    | 25.0        |
|                       | Min | 845             | DLC2.3     | 9.4         | 9               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |

**Table A8.14. Torque result data in fault conditions (continue).**

| Torques                      |     | LSS             |            |             | HSS             |            |             | Generator       |            |             |
|------------------------------|-----|-----------------|------------|-------------|-----------------|------------|-------------|-----------------|------------|-------------|
|                              |     | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTTipBrk</b>        |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6357            | DLC2.1P    | 25.0        | 66              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -1818           | DLC2.3     | 9.4         | -19             | DLC2.3     | 9.4         | 0               | DLC2.1P    | 11.4        |
| Averages                     | Max | 3022            | DLC2.1P    | 25.0        | 31              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                              | Min | 808             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |
| <b>5MW2DB00</b>              |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6214            | DLC2.1P    | 25.0        | 64              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -1845           | DLC2.1P    | 25.0        | -19             | DLC2.1P    | 25.0        | -25             | DLC2.1P    | 25.0        |
| Averages                     | Max | 1553            | DLC2.1P    | 25.0        | 16              | DLC2.1P    | 25.0        | 12              | DLC2.1P    | 25.0        |
|                              | Min | 729             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |
| <b>5MW2DB00TipBrk</b>        |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6584            | DLC2.1P    | 25.0        | 68              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -2395           | DLC2.3     | 25.0        | -25             | DLC2.3     | 25.0        | 0               | DLC2.1P    | 11.4        |
| Averages                     | Max | 2922            | DLC2.1P    | 25.0        | 30              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                              | Min | 723             | DLC2.3     | 9.4         | 7               | DLC2.3     | 9.4         | 5               | DLC2.3     | 9.4         |
| <b>5MW2DBUT</b>              |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6365            | DLC2.1P    | 25.0        | 66              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -1942           | DLC2.3     | 25.0        | -20             | DLC2.3     | 25.0        | -14             | DLC2.1P    | 25.0        |
| Averages                     | Max | 2331            | DLC2.1P    | 25.0        | 24              | DLC2.1P    | 25.0        | 13              | DLC2.1P    | 25.0        |
|                              | Min | 788             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |
| <b>5MW2DBUTTipBrk</b>        |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6644            | DLC2.1P    | 25.0        | 68              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -2121           | DLC2.3     | 25.0        | -22             | DLC2.3     | 25.0        | 0               | DLC2.1P    | 11.4        |
| Averages                     | Max | 2973            | DLC2.1P    | 25.0        | 31              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                              | Min | 801             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 5               | DLC2.3     | 9.4         |
| <b>5MW2DB00T5C0</b>          |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6269            | DLC2.1P    | 25.0        | 65              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -1954           | DLC2.3     | 25.0        | -20             | DLC2.3     | 25.0        | -25             | DLC2.1P    | 25.0        |
| Averages                     | Max | 1550            | DLC2.1P    | 25.0        | 16              | DLC2.1P    | 25.0        | 12              | DLC2.1P    | 25.0        |
|                              | Min | 733             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |
| <b>5MW2DB00T5C0TipBrk</b>    |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6641            | DLC2.1P    | 25.0        | 68              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -2438           | DLC2.3     | 25.0        | -25             | DLC2.3     | 25.0        | 0               | DLC2.1P    | 11.4        |
| Averages                     | Max | 2882            | DLC2.1P    | 25.0        | 30              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                              | Min | 725             | DLC2.3     | 9.4         | 7               | DLC2.3     | 9.4         | 5               | DLC2.3     | 9.4         |
| <b>5MW2UB00T0C2.5</b>        |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6307            | DLC2.1P    | 25.0        | 65              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -1901           | DLC2.3     | 25.0        | -20             | DLC2.3     | 25.0        | -19             | DLC2.1P    | 25.0        |
| Averages                     | Max | 2134            | DLC2.1P    | 25.0        | 22              | DLC2.1P    | 25.0        | 12              | DLC2.1P    | 25.0        |
|                              | Min | 725             | DLC2.3     | 9.4         | 7               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |
| <b>5MW2UB00 T0C2.5TipBrk</b> |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6698            | DLC2.1P    | 25.0        | 69              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -2451           | DLC2.3     | 25.0        | -25             | DLC2.3     | 25.0        | -2              | DLC2.1P    | 25.0        |
| Averages                     | Max | 2750            | DLC2.1P    | 25.0        | 28              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                              | Min | 722             | DLC2.3     | 9.4         | 7               | DLC2.3     | 9.4         | 5               | DLC2.3     | 9.4         |
| <b>5MW2UB00T0C0</b>          |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6433            | DLC2.1P    | 25.0        | 66              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -2023           | DLC2.3     | 25.0        | -21             | DLC2.3     | 25.0        | -19             | DLC2.1P    | 25.0        |
| Averages                     | Max | 2144            | DLC2.1P    | 25.0        | 22              | DLC2.1P    | 25.0        | 12              | DLC2.1P    | 25.0        |
|                              | Min | 733             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |
| <b>5MW2UB00T0C0TipBrk</b>    |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6742            | DLC2.1P    | 25.0        | 70              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -2508           | DLC2.3     | 25.0        | -26             | DLC2.3     | 25.0        | 0               | DLC2.1P    | 11.4        |
| Averages                     | Max | 2803            | DLC2.1P    | 25.0        | 29              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                              | Min | 728             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 5               | DLC2.3     | 9.4         |
| <b>5MW2DB00TeeterNo</b>      |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                     | Max | 6101            | DLC2.1P    | 25.0        | 63              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                              | Min | -1781           | DLC2.3     | 25.0        | -18             | DLC2.3     | 25.0        | -25             | DLC2.1P    | 25.0        |
| Averages                     | Max | 1557            | DLC2.1P    | 25.0        | 16              | DLC2.1P    | 25.0        | 12              | DLC2.1P    | 25.0        |
|                              | Min | 726             | DLC2.3     | 9.4         | 7               | DLC2.3     | 9.4         | 6               | DLC2.3     | 9.4         |

**Table A8.14. Torque result data in fault conditions (continue).**

| Torques                   |     | LSS             |            |             | HSS             |            |             | Generator       |            |             |
|---------------------------|-----|-----------------|------------|-------------|-----------------|------------|-------------|-----------------|------------|-------------|
|                           |     | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW2UBUTT2C0TipBrk</b> |     |                 |            |             |                 |            |             |                 |            |             |
| Maximums                  | Max | 6772            | DLC2.1P    | 25.0        | 70              | DLC2.1P    | 25.0        | 36              | DLC2.1P    | 25.0        |
|                           | Min | -2200           | DLC2.3     | 25.0        | -23             | DLC2.3     | 25.0        | 0               | DLC2.1P    | 11.4        |
| Averages                  | Max | 2959            | DLC2.1P    | 25.0        | 31              | DLC2.1P    | 25.0        | 17              | DLC2.1P    | 25.0        |
|                           | Min | 806             | DLC2.3     | 9.4         | 8               | DLC2.3     | 9.4         | 5               | DLC2.3     | 9.4         |

**Table A8.15. Torque result data in parked conditions.**

| Torques               |     | LSS             |            |             | HSS             |            |             |
|-----------------------|-----|-----------------|------------|-------------|-----------------|------------|-------------|
|                       |     | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) |
| <b>5MW3UB00</b>       |     |                 |            |             |                 |            |             |
| Maximums              | Max | 2629            | DLC6.2a    | 37.4        | 27              | DLC6.2a    | 37.4        |
|                       | Min | -2840           | DLC6.2a    | 37.4        | -29             | DLC6.2a    | 37.4        |
| Averages              | Max | 2406            | DLC6.2a    | 37.4        | 25              | DLC6.2a    | 37.4        |
|                       | Min | -2508           | DLC6.2a    | 37.4        | -26             | DLC6.2a    | 37.4        |
| <b>5MW2UB00</b>       |     |                 |            |             |                 |            |             |
| Maximums              | Max | 1455            | DLC7.1a    | 25.0        | 15              | DLC7.1a    | 25.0        |
|                       | Min | -702            | DLC6.2a    | 37.4        | -7              | DLC6.2a    | 37.4        |
| Averages              | Max | 1409            | DLC7.1a    | 25.0        | 15              | DLC7.1a    | 25.0        |
|                       | Min | -687            | DLC6.2a    | 37.4        | -7              | DLC6.2a    | 37.4        |
| <b>5MW2UB00TipBrk</b> |     |                 |            |             |                 |            |             |
| Maximums              | Max | 1477            | DLC7.1a    | 25.0        | 15              | DLC7.1a    | 25.0        |
|                       | Min | -744            | DLC6.2a    | 37.4        | -8              | DLC6.2a    | 37.4        |
| Averages              | Max | 1423            | DLC7.1a    | 25.0        | 15              | DLC7.1a    | 25.0        |
|                       | Min | -725            | DLC6.2a    | 37.4        | -7              | DLC6.2a    | 37.4        |
| <b>5MW2UBUT</b>       |     |                 |            |             |                 |            |             |
| Maximums              | Max | 1734            | DLC7.1a    | 25.0        | 18              | DLC7.1a    | 25.0        |
|                       | Min | -677            | DLC6.2a    | 37.4        | -7              | DLC6.2a    | 37.4        |
| Averages              | Max | 1675            | DLC7.1a    | 25.0        | 17              | DLC7.1a    | 25.0        |
|                       | Min | -15             | DLC6.2a    | 37.4        | 0               | DLC6.2a    | 37.4        |
| <b>5MW2UBUTTipBrk</b> |     |                 |            |             |                 |            |             |
| Maximums              | Max | 1728            | DLC7.1a    | 25.0        | 18              | DLC7.1a    | 25.0        |
|                       | Min | -698            | DLC6.2a    | 37.4        | -7              | DLC6.2a    | 37.4        |
| Averages              | Max | 1674            | DLC7.1a    | 25.0        | 17              | DLC7.1a    | 25.0        |
|                       | Min | -17             | DLC6.2a    | 37.4        | 0               | DLC6.2a    | 37.4        |
| <b>5MW2DB00</b>       |     |                 |            |             |                 |            |             |
| Maximums              | Max | 1824            | DLC7.1a    | 25.0        | 19              | DLC7.1a    | 25.0        |
|                       | Min | -2826           | DLC7.1a    | 25.0        | -29             | DLC7.1a    | 25.0        |
| Averages              | Max | 879             | DLC6.2a    | 37.4        | 9               | DLC6.2a    | 37.4        |
|                       | Min | -1300           | DLC6.2a    | 37.4        | -13             | DLC6.2a    | 37.4        |
| <b>5MW2DB00TipBrk</b> |     |                 |            |             |                 |            |             |
| Maximums              | Max | 1772            | DLC7.1a    | 25.0        | 18              | DLC7.1a    | 25.0        |
|                       | Min | -2826           | DLC7.1a    | 25.0        | -29             | DLC7.1a    | 25.0        |
| Averages              | Max | 895             | DLC6.2a    | 37.4        | 9               | DLC6.2a    | 37.4        |
|                       | Min | -1320           | DLC6.2a    | 37.4        | -14             | DLC6.2a    | 37.4        |
| <b>5MW2DBUT</b>       |     |                 |            |             |                 |            |             |
| Maximums              | Max | 2503            | DLC7.1a    | 25.0        | 26              | DLC7.1a    | 25.0        |
|                       | Min | -2972           | DLC7.1a    | 25.0        | -31             | DLC7.1a    | 25.0        |
| Averages              | Max | 1546            | DLC6.2a    | 37.4        | 16              | DLC6.2a    | 37.4        |
|                       | Min | -579            | DLC6.2a    | 37.4        | -6              | DLC6.2a    | 37.4        |
| <b>5MW2DBUTTipBrk</b> |     |                 |            |             |                 |            |             |
| Maximums              | Max | 2498            | DLC7.1a    | 25.0        | 26              | DLC7.1a    | 25.0        |
|                       | Min | -2975           | DLC7.1a    | 25.0        | -31             | DLC7.1a    | 25.0        |
| Averages              | Max | 1579            | DLC6.2a    | 37.4        | 16              | DLC6.2a    | 37.4        |
|                       | Min | -618            | DLC6.2a    | 37.4        | -6              | DLC6.2a    | 37.4        |
| <b>5MW2DB00T5C0</b>   |     |                 |            |             |                 |            |             |
| Maximums              | Max | 1787            | DLC7.1a    | 25.0        | 18              | DLC7.1a    | 25.0        |
|                       | Min | -2813           | DLC7.1a    | 25.0        | -29             | DLC7.1a    | 25.0        |
| Averages              | Max | 775             | DLC6.2a    | 37.4        | 8               | DLC6.2a    | 37.4        |
|                       | Min | -1216           | DLC6.2a    | 37.4        | -13             | DLC6.2a    | 37.4        |

**Table A8.15. Torque result data in parked conditions (continue).**

|          |     | LSS                  |            |             | HSS             |            |             |
|----------|-----|----------------------|------------|-------------|-----------------|------------|-------------|
|          |     | Value<br>(kN m)      | DLC<br>(-) | Vs<br>(m/s) | Value<br>(kN m) | DLC<br>(-) | Vs<br>(m/s) |
| Model    |     | 5MW2DB00T5C0TipBrk   |            |             |                 |            |             |
| Maximums | Max | 1729                 | DLC7.1a    | 25.0        | 18              | DLC7.1a    | 25.0        |
|          | Min | -2745                | DLC7.1a    | 25.0        | -28             | DLC7.1a    | 25.0        |
| Averages | Max | 792                  | DLC6.2a    | 37.4        | 8               | DLC6.2a    | 37.4        |
|          | Min | -1236                | DLC6.2a    | 37.4        | -13             | DLC6.2a    | 37.4        |
| Model    |     | 5MW2UB00T0C2.5       |            |             |                 |            |             |
| Maximums | Max | 1291                 | DLC6.2a    | 37.4        | 13              | DLC6.2a    | 37.4        |
|          | Min | -986                 | DLC6.2a    | 37.4        | -10             | DLC6.2a    | 37.4        |
| Averages | Max | 394                  | DLC6.2a    | 37.4        | 4               | DLC6.2a    | 37.4        |
|          | Min | -971                 | DLC6.2a    | 37.4        | -10             | DLC6.2a    | 37.4        |
| Model    |     | 5MW2UB00T0C2.5TipBrk |            |             |                 |            |             |
| Maximums | Max | 1429                 | DLC6.2a    | 37.4        | 15              | DLC6.2a    | 37.4        |
|          | Min | -1010                | DLC6.2a    | 37.4        | -10             | DLC6.2a    | 37.4        |
| Averages | Max | 415                  | DLC6.2a    | 37.4        | 4               | DLC6.2a    | 37.4        |
|          | Min | -992                 | DLC6.2a    | 37.4        | -10             | DLC6.2a    | 37.4        |
| Model    |     | 5MW2UB00T0C0         |            |             |                 |            |             |
| Maximums | Max | 1327                 | DLC6.2a    | 37.4        | 14              | DLC6.2a    | 37.4        |
|          | Min | -1067                | DLC6.2a    | 37.4        | -11             | DLC6.2a    | 37.4        |
| Averages | Max | 394                  | DLC6.2a    | 37.4        | 4               | DLC6.2a    | 37.4        |
|          | Min | -975                 | DLC6.2a    | 37.4        | -10             | DLC6.2a    | 37.4        |
| Model    |     | 5MW2UB00T0C0TipBrk   |            |             |                 |            |             |
| Maximums | Max | 1416                 | DLC6.2a    | 37.4        | 15              | DLC6.2a    | 37.4        |
|          | Min | -1114                | DLC6.2a    | 37.4        | -11             | DLC6.2a    | 37.4        |
| Averages | Max | 415                  | DLC6.2a    | 37.4        | 4               | DLC6.2a    | 37.4        |
|          | Min | -1004                | DLC6.2a    | 37.4        | -10             | DLC6.2a    | 37.4        |
| Model    |     | 5MW2DB00TeeterNo     |            |             |                 |            |             |
| Maximums | Max | 1893                 | DLC7.1a    | 25.0        | 20              | DLC7.1a    | 25.0        |
|          | Min | -2845                | DLC7.1a    | 25.0        | -29             | DLC7.1a    | 25.0        |
| Averages | Max | 878                  | DLC6.2a    | 37.4        | 9               | DLC6.2a    | 37.4        |
|          | Min | -1300                | DLC6.2a    | 37.4        | -13             | DLC6.2a    | 37.4        |
| Model    |     | 5MW2UBUTT2C0TipBrk   |            |             |                 |            |             |
| Maximums | Max | 1229                 | DLC6.2a    | 37.4        | 13              | DLC6.2a    | 37.4        |
|          | Min | -1278                | DLC6.2a    | 37.4        | -13             | DLC6.2a    | 37.4        |
| Averages | Max | 1206                 | DLC6.2a    | 37.4        | 12              | DLC6.2a    | 37.4        |
|          | Min | -444                 | DLC6.2a    | 37.4        | -5              | DLC6.2a    | 37.4        |

**Table A8.16. Tower-to-blade clearance result data in normal operating conditions.**

| Model                | Blade 1<br>Minimum Clearance |            |             | Blade 2<br>Minimum Clearance |            |             |
|----------------------|------------------------------|------------|-------------|------------------------------|------------|-------------|
|                      | Value<br>(m)                 | DLC<br>(-) | Vs<br>(m/s) | Value<br>(m)                 | DLC<br>(-) | Vs<br>(m/s) |
| 5MW3UB00             | 6.59                         | DLC1.3     | 17.0        | 6.70                         | DLC1.4     | 11.4        |
| 5MW2UB00             | 4.04                         | DLC1.3     | 19.0        | 4.40                         | DLC1.3     | 21.0        |
| 5MW2UB00TipBrk       | 4.36                         | DLC1.3     | 19.0        | 4.67                         | DLC1.3     | 21.0        |
| 5MW2UBUT             | 3.89                         | DLC1.3     | 17.0        | 3.08                         | DLC1.3     | 17.0        |
| 5MW2UBUTTipBrk       | 4.06                         | DLC1.3     | 17.0        | 3.29                         | DLC1.3     | 17.0        |
| 5MW2DB00             | 10.30                        | DLC1.3     | 25.0        | 10.66                        | DLC1.3     | 25.0        |
| 5MW2DB00TipBrk       | 10.37                        | DLC1.3     | 25.0        | 10.75                        | DLC1.3     | 25.0        |
| 5MW2DBUT             | 10.46                        | DLC1.3     | 25.0        | 10.24                        | DLC1.3     | 25.0        |
| 5MW2DBUTTipBrk       | 10.45                        | DLC1.3     | 25.0        | 10.24                        | DLC1.3     | 25.0        |
| 5MW2DB00T5C0         | 8.19                         | DLC1.3     | 25.0        | 8.49                         | DLC1.3     | 25.0        |
| 5MW2DB00T5C0TipBrk   | 8.28                         | DLC1.3     | 25.0        | 8.59                         | DLC1.3     | 25.0        |
| 5MW2DB00T0C2.5       | 4.62                         | DLC1.3     | 25.0        | 4.74                         | DLC1.3     | 23.0        |
| 5MW2DB00T0C2.5TipBrk | 4.69                         | DLC1.3     | 25.0        | 4.78                         | DLC1.3     | 23.0        |
| 5MW2DB00T0C0         | 2.48                         | DLC1.3     | 25.0        | 2.53                         | DLC1.3     | 23.0        |
| 5MW2DB00T0C0TipBrk   | 2.54                         | DLC1.3     | 25.0        | 2.58                         | DLC1.3     | 23.0        |
| 5MW2DB00TeeterNo     | 10.26                        | DLC1.3     | 25.0        | 10.37                        | DLC1.3     | 23.0        |
| 5MW2DBUTT2C0TipBrk   | 4.74                         | DLC1.3     | 25.0        | 4.44                         | DLC1.3     | 25.0        |

**Table A8.17. Tower-to-blade clearance result data in fault conditions.**

| Model                | Blade 1<br>Minimum Clearance |            |                         | Blade 2<br>Minimum Clearance |            |                         |
|----------------------|------------------------------|------------|-------------------------|------------------------------|------------|-------------------------|
|                      | Value<br>(m)                 | DLC<br>(-) | V <sub>s</sub><br>(m/s) | Value<br>(m)                 | DLC<br>(-) | V <sub>s</sub><br>(m/s) |
| 5MW3UB00             | 6.97                         | DLC2.3     | 9.4                     | 5.82                         | DLC2.3     | 11.4                    |
| 5MW2UB00             | 4.50                         | DLC2.1P    | 11.4                    | 3.89                         | DLC2.3     | 11.4                    |
| 5MW2UB00TipBrk       | 2.66                         | DLC2.3     | 25.0                    | 4.24                         | DLC2.1G    | 25.0                    |
| 5MW2UBUT             | 4.37                         | DLC2.1P    | 11.4                    | 2.65                         | DLC2.3     | 11.4                    |
| 5MW2UBUTTipBrk       | 4.09                         | DLC2.3     | 25.0                    | 2.66                         | DLC2.3     | 11.4                    |
| 5MW2DB00             | 7.09                         | DLC2.1G    | 25.0                    | 4.76                         | DLC2.1P    | 11.4                    |
| 5MW2DB00TipBrk       | 10.01                        | DLC2.3     | 25.0                    | 10.48                        | DLC2.1P    | 25.0                    |
| 5MW2DBUT             | 8.37                         | DLC2.1G    | 11.4                    | 6.28                         | DLC2.1P    | 11.4                    |
| 5MW2DBUTTipBrk       | 9.38                         | DLC2.3     | 25.0                    | 10.75                        | DLC2.1P    | 25.0                    |
| 5MW2DB00T5C0         | 4.73                         | DLC2.1G    | 25.0                    | 2.00                         | DLC2.1P    | 11.4                    |
| 5MW2DB00T5C0TipBrk   | 7.65                         | DLC2.3     | 25.0                    | 7.99                         | DLC2.1P    | 25.0                    |
| 5MW2DB00T0C2.5       | 0.88                         | DLC2.1G    | 25.0                    | 0.97                         | DLC2.1P    | 11.4                    |
| 5MW2DB00T0C2.5TipBrk | 3.99                         | DLC2.3     | 25.0                    | 4.07                         | DLC2.1P    | 25.0                    |
| 5MW2DB00T0C0         | 0.61                         | DLC2.1G    | 25.0                    | 0.02                         | DLC2.1P    | 25.0                    |
| 5MW2DB00T0C0TipBrk   | 1.67                         | DLC2.3     | 25.0                    | 2.03                         | DLC2.1P    | 25.0                    |
| 5MW2DB00TeeterNo     | 6.97                         | DLC2.1G    | 25.0                    | 6.75                         | DLC2.3     | 25.0                    |
| 5MW2DBUTT2C0TipBrk   | 3.63                         | DLC2.3     | 25.0                    | 4.37                         | DLC2.1P    | 25.0                    |

**Table A8.18. Tower-to-blade clearance result data in parked conditions.**

| Model                | Blade 1<br>Minimum Clearance |            |                         | Blade 2<br>Minimum Clearance |            |                         |
|----------------------|------------------------------|------------|-------------------------|------------------------------|------------|-------------------------|
|                      | Value<br>(m)                 | DLC<br>(-) | V <sub>s</sub><br>(m/s) | Value<br>(m)                 | DLC<br>(-) | V <sub>s</sub><br>(m/s) |
| 5MW3UB00             | 63.31                        | DLC7.1a    | 25.0                    | 33.47                        | DLC7.1a    | 25.0                    |
| 5MW2UB00             | 63.21                        | DLC7.1a    | 25.0                    | 63.38                        | DLC6.2a    | 37.4                    |
| 5MW2UB00TipBrk       | 63.21                        | DLC7.1a    | 25.0                    | 63.37                        | DLC6.2a    | 37.4                    |
| 5MW2UBUT             | 63.21                        | DLC7.1a    | 25.0                    | 63.37                        | DLC6.2a    | 37.4                    |
| 5MW2UBUTTipBrk       | 63.21                        | DLC7.1a    | 25.0                    | 63.36                        | DLC6.2a    | 37.4                    |
| 5MW2DB00             | 63.33                        | DLC6.1a    | 37.4                    | 63.29                        | DLC7.1a    | 25.0                    |
| 5MW2DB00TipBrk       | 63.33                        | DLC6.1a    | 37.4                    | 63.29                        | DLC7.1a    | 25.0                    |
| 5MW2DBUT             | 63.32                        | DLC6.1a    | 37.4                    | 63.12                        | DLC7.1a    | 25.0                    |
| 5MW2DBUTTipBrk       | 63.31                        | DLC6.1a    | 37.4                    | 63.10                        | DLC7.1a    | 25.0                    |
| 5MW2DB00T5C0         | 63.10                        | DLC6.1a    | 37.4                    | 63.06                        | DLC7.1a    | 25.0                    |
| 5MW2DB00T5C0TipBrk   | 63.10                        | DLC6.1a    | 37.4                    | 63.06                        | DLC7.1a    | 25.0                    |
| 5MW2DB00T0C2.5       | 63.31                        | DLC6.2a    | 37.4                    | 63.34                        | DLC7.1a    | 25.0                    |
| 5MW2DB00T0C2.5TipBrk | 63.29                        | DLC6.2a    | 37.4                    | 63.33                        | DLC7.1a    | 25.0                    |
| 5MW2DB00T0C0         | 63.09                        | DLC6.2a    | 37.4                    | 63.12                        | DLC7.1a    | 25.0                    |
| 5MW2DB00T0C0TipBrk   | 63.08                        | DLC6.2a    | 37.4                    | 63.12                        | DLC7.1a    | 25.0                    |
| 5MW2DB00TeeterNo     | 63.33                        | DLC6.1a    | 37.4                    | 63.37                        | DLC6.2a    | 37.4                    |
| 5MW2DBUTT2C0TipBrk   | 63.11                        | DLC6.2a    | 37.4                    | 63.10                        | DLC6.2a    | 37.4                    |

**Table A8.19. Teeter angle result data in normal operating conditions.**

| Model                | Maximum Teeter Angle |            |             | Minimum Teeter Angle |            |             |
|----------------------|----------------------|------------|-------------|----------------------|------------|-------------|
|                      | Value<br>(deg)       | DLC<br>(-) | Vs<br>(m/s) | Value<br>(deg)       | DLC<br>(-) | Vs<br>(m/s) |
| 5MW3UB00             | 0.00                 | DLC1.1     | 3.0         | 0.00                 | DLC1.1     | 3.0         |
| 5MW2UB00             | 2.38                 | DLC1.4     | 9.4         | -2.69                | DLC1.4     | 9.4         |
| 5MW2UB00TipBrk       | 2.36                 | DLC1.4     | 9.4         | -2.65                | DLC1.4     | 9.4         |
| 5MW2UBUT             | 2.99                 | DLC1.4     | 11.4        | -3.17                | DLC1.4     | 11.4        |
| 5MW2UBUTTipBrk       | 2.97                 | DLC1.4     | 11.4        | -3.22                | DLC1.4     | 11.4        |
| 5MW2DB00             | 2.74                 | DLC1.4     | 11.4        | -3.09                | DLC1.4     | 9.4         |
| 5MW2DB00TipBrk       | 2.71                 | DLC1.4     | 11.4        | -3.04                | DLC1.4     | 9.4         |
| 5MW2DBUT             | 3.44                 | DLC1.4     | 11.4        | -3.24                | DLC1.4     | 11.4        |
| 5MW2DBUTTipBrk       | 3.44                 | DLC1.4     | 11.4        | -3.19                | DLC1.4     | 11.4        |
| 5MW2DB00T5C0         | 2.57                 | DLC1.4     | 11.4        | -2.96                | DLC1.4     | 9.4         |
| 5MW2DB00T5C0TipBrk   | 2.54                 | DLC1.4     | 11.4        | -2.91                | DLC1.4     | 9.4         |
| 5MW2DB00T0C2.5       | 2.68                 | DLC1.4     | 11.4        | -3.04                | DLC1.4     | 9.4         |
| 5MW2DB00T0C2.5TipBrk | 2.64                 | DLC1.4     | 11.4        | -2.99                | DLC1.4     | 9.4         |
| 5MW2DB00T0C0         | 2.52                 | DLC1.4     | 11.4        | -2.93                | DLC1.4     | 9.4         |
| 5MW2DB00T0C0TipBrk   | 2.48                 | DLC1.4     | 11.4        | -2.89                | DLC1.4     | 9.4         |
| 5MW2DB00TeeterNo     | 0.00                 | DLC1.1     | 3.0         | 0.00                 | DLC1.1     | 3.0         |
| 5MW2DBUTT2C0TipBrk   | 3.24                 | DLC1.4     | 11.4        | -3.07                | DLC1.4     | 9.4         |

**Table A8.20. Teeter angle result data in fault conditions.**

| Model                | Maximum Teeter Angle |            |             | Minimum Teeter Angle |            |             |
|----------------------|----------------------|------------|-------------|----------------------|------------|-------------|
|                      | Value<br>(deg)       | DLC<br>(-) | Vs<br>(m/s) | Value<br>(deg)       | DLC<br>(-) | Vs<br>(m/s) |
| 5MW3UB00             | 0.00                 | DLC2.1G    | 11.4        | 0.00                 | DLC2.1G    | 11.4        |
| 5MW2UB00             | 5.94                 | DLC2.1P    | 25.0        | -1.49                | DLC2.3     | 25.0        |
| 5MW2UB00TipBrk       | 2.97                 | DLC2.1P    | 25.0        | -1.82                | DLC2.1G    | 25.0        |
| 5MW2UBUT             | 5.20                 | DLC2.1P    | 11.4        | -1.63                | DLC2.1G    | 25.0        |
| 5MW2UBUTTipBrk       | 3.00                 | DLC2.1P    | 25.0        | -1.65                | DLC2.1G    | 25.0        |
| 5MW2DB00             | 5.05                 | DLC2.1P    | 25.0        | -1.49                | DLC2.3     | 25.0        |
| 5MW2DB00TipBrk       | 3.19                 | DLC2.1P    | 25.0        | -2.75                | DLC2.1G    | 25.0        |
| 5MW2DBUT             | 4.77                 | DLC2.1P    | 25.0        | -1.71                | DLC2.1G    | 25.0        |
| 5MW2DBUTTipBrk       | 2.58                 | DLC2.1G    | 25.0        | -2.62                | DLC2.1G    | 25.0        |
| 5MW2DB00T5C0         | 5.14                 | DLC2.1P    | 25.0        | -1.41                | DLC2.3     | 25.0        |
| 5MW2DB00T5C0TipBrk   | 3.26                 | DLC2.1P    | 25.0        | -2.77                | DLC2.1G    | 25.0        |
| 5MW2DB00T0C2.5       | 5.47                 | DLC2.1P    | 25.0        | -1.48                | DLC2.1P    | 25.0        |
| 5MW2DB00T0C2.5TipBrk | 2.58                 | DLC2.1P    | 25.0        | -1.95                | DLC2.1G    | 25.0        |
| 5MW2DB00T0C0         | 5.55                 | DLC2.1P    | 25.0        | -1.45                | DLC2.1P    | 25.0        |
| 5MW2DB00T0C0TipBrk   | 2.67                 | DLC2.1P    | 25.0        | -1.93                | DLC2.1G    | 25.0        |
| 5MW2DB00TeeterNo     | 0.00                 | DLC2.1G    | 11.4        | 0.00                 | DLC2.1G    | 11.4        |
| 5MW2DBUTT2C0TipBrk   | 3.02                 | DLC2.1P    | 25.0        | -1.98                | DLC2.1G    | 25.0        |

**Table A8.21. Teeter angle result data in parked conditions.**

| Model                | Maximum Teeter Angle |            |             | Minimum Teeter Angle |            |             |
|----------------------|----------------------|------------|-------------|----------------------|------------|-------------|
|                      | Value<br>(deg)       | DLC<br>(-) | Vs<br>(m/s) | Value<br>(deg)       | DLC<br>(-) | Vs<br>(m/s) |
| 5MW3UB00             | 0.00                 | DLC6.1a    | 37.4        | 0.00                 | DLC6.1a    | 37.4        |
| 5MW2UB00             | 1.04                 | DLC7.1a    | 25.0        | -0.02                | DLC6.2a    | 37.4        |
| 5MW2UB00TipBrk       | 1.04                 | DLC7.1a    | 25.0        | -0.02                | DLC6.2a    | 37.4        |
| 5MW2UBUT             | 1.05                 | DLC7.1a    | 25.0        | -0.02                | DLC6.2a    | 37.4        |
| 5MW2UBUTTipBrk       | 1.05                 | DLC7.1a    | 25.0        | -0.02                | DLC6.2a    | 37.4        |
| 5MW2DB00             | 1.01                 | DLC7.1a    | 25.0        | -0.06                | DLC6.2a    | 37.4        |
| 5MW2DB00TipBrk       | 1.01                 | DLC7.1a    | 25.0        | -0.06                | DLC6.2a    | 37.4        |
| 5MW2DBUT             | 1.01                 | DLC7.1a    | 25.0        | -0.08                | DLC6.2a    | 37.4        |
| 5MW2DBUTTipBrk       | 1.01                 | DLC7.1a    | 25.0        | -0.08                | DLC6.2a    | 37.4        |
| 5MW2DB00T5C0         | 1.02                 | DLC7.1a    | 25.0        | -0.07                | DLC6.2a    | 37.4        |
| 5MW2DB00T5C0TipBrk   | 1.01                 | DLC7.1a    | 25.0        | -0.07                | DLC6.2a    | 37.4        |
| 5MW2DB00T0C2.5       | 1.00                 | DLC7.1a    | 25.0        | -0.07                | DLC6.2a    | 37.4        |
| 5MW2DB00T0C2.5TipBrk | 1.01                 | DLC7.1a    | 25.0        | -0.08                | DLC6.2a    | 37.4        |
| 5MW2DB00T0C0         | 1.00                 | DLC7.1a    | 25.0        | -0.07                | DLC6.2a    | 37.4        |
| 5MW2DB00T0C0TipBrk   | 1.00                 | DLC7.1a    | 25.0        | -0.07                | DLC6.2a    | 37.4        |
| 5MW2DB00TeeterNo     | 0.00                 | DLC6.1a    | 37.4        | 0.00                 | DLC6.1a    | 37.4        |
| 5MW2DBUTT2C0TipBrk   | 0.99                 | DLC7.1a    | 25.0        | -0.03                | DLC6.2a    | 37.4        |

## Appendix 9: Publications

### Already Published/Presented

1. Andersen, B., Norouzi, M., Sescu, A., Wells, E., Nikolaidis, E., Cioc, S. & Afjeh, A. (2011). Advancing Offshore Freshwater Wind Energy Development. *Keynote paper presented at 5th International HNICEM Conference* in Manila, Philippines.
2. Sescu, A., Anderson, B. & Afjeh, A. (2011). Computational Investigation of Tower Shadow Effects on Wind Turbines, IMECE2011-62313, *Proceedings of the ASME International Mechanical Engineering Congress and Exposition*, Denver, CO.
3. Norouzi, M., Wells, E., Cioc, S. & Nikolaidis, E. (2011). Simulation of a Monopile 5MW Wind Turbine under Ice Impact Loads, *AWEA Offshore Windpower 2011 Conference & Exhibition*, Baltimore, MD.
4. Norouzi, M. & Nikolaidis, E. (2012). Efficient Estimation of First Excursion Failure by PRRA. *14th AIAA/ISSMO Multidisciplinary Analysis and Optimization (MAO) Conference*, 2012, Indianapolis, IN.
5. Norouzi, M. & Nikolaidis, E. (2012). Efficient Method for Reliability Assessment Under High-Cycle Fatigue. *International Journal of Reliability, Quality and Safety Engineering*, 19(5):2012, pp. 1-27, doi:10.1142/S0218539312500222
6. Norouzi, M. & Nikolaidis, E. (2012). Importance Sampling for Estimation of the Probability of Failure of Dynamic Systems, *SAE Int. J. Mater. Manf.*, 6(3):2013, doi:10.4271/2013-01-0607
7. Lee, J.W., (2012). Preliminary Studies of Structural Design Optimization for Composite Wind Turbine Blades, *Inaugural Meeting of the North American Wind Energy Academy (NAWEA)*, Amherst, MA.
8. Norouzi, M., (2012). Probabilistic Design of an Offshore Wind Turbine. *Inaugural Meeting of the North American Wind Energy Academy (NAWEA)*, Amherst, MA.
9. Norouzi, M. & Nikolaidis, E. (2012). Estimation of High-Cycle Fatigue Life by using Re-analysis. *SAE Int. J. Mater. Manf.* 5(1):2012, doi:10.4271/2012-01-0066
10. Norouzi, M. & Nikolaidis, E. (2012). Efficient Random Vibration Analysis Using Markov Chain Monte Carlo Simulation, *SAE Int. J. Mater. Manf.*, 5(1):2012, doi:10.4271/2012-01-0067.
11. Norouzi, M. & Nikolaidis, E., (2012). Modeling Dependence between Wind and Wave by Copula, *AWEA Offshore Windpower 2012 Conference & Exhibition*, Virginia Beach, VA.
12. Lee, J.W. & Jehan, M., (2012). First Excursion Failure and Fatigue Life Prediction and Damage Estimation of Composite Laminate Wind Turbine Blades, *AWEA Offshore Windpower 2012 Conference & Exhibition*, Virginia Beach, VA.

13. Sescu, A. & Afjeh, A. (2012). Evaluation of Aerodynamic Infrasound Radiating from Upwind and Downwind HAWT's. IMECE2012-86189, *Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition*, Houston, TX.
14. Andersen, B., Lee, J.W., Norouzi, M., Jehan, M., Nikolaidis, E. & Afjeh, A. (2013). Advanced Concept Offshore Wind Turbine for the Great Lakes, *Clean Energy Manufacturing Initiative (CEMI) Summit*, Toledo, OH.
15. Norouzi, M. & Nikolaidis, E. (2013). Integrating Subset Simulation with Probabilistic Re-analysis to Estimate Reliability of Dynamic Systems. *Structural and Multidisciplinary Optimization*, DOI 10.1007/s00158-013-0914-9 2013
16. Norouzi, M., Wells, E., Cioc, S., Nikolaidis, E. & Afjeh, A. (2013). Significance of Ice Impact on Structural Integrity of a Monopile Offshore Wind Turbine in The Great Lakes, *23rd International Offshore (Ocean) and Polar Engineering Conference*, Alaska, Anchorage.
17. Norouzi, M. & Nikolaidis, E. (2013). Modeling Dependence between Wind and Wave in an Offshore Wind Turbine Site. *23rd International Offshore (Ocean) and Polar Engineering Conference*, Alaska, Anchorage.
18. Norouzi, M. & Nikolaidis, E. (2013). Efficient Sensitivity Reliability Analysis of Dynamic Systems Considering Change in Energy Content of Excitation. *11th International Conference On Structural Safety And Reliability (ICOSSAR)*, Columbia University, New York, NY, USA

*Accepted for Publication/Presentation*

1. Lee, J.W., Norouzi, M., Nikolaidis, E. & Afjeh, A. (2013, October). Comparison of the Loads on a 2-Bladed Downwind Turbine and a 3-Bladed Upwind Turbine, *AWEA Offshore WINDPOWER 2013 Conference*, Providence, RI
2. Lee, J.W., and Nikolaidis, E. (2013, October). Efficient Stress Estimation Method for Dynamic Wind Turbine Simulation Using FAST Results, *AWEA Offshore WINDPOWER 2013 Conference*, Providence, RI.
3. Norouzi, M., Lee, J.W., Nikolaidis, E. & Afjeh, A.A., (2013, October). Studying Effect of Soil and Structure Interaction on Load Estimates of a Monopile Offshore Turbine, *AWEA Offshore WINDPOWER 2013 Conference*, Providence, RI.