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ABSTRACT 

Combining experiments and electronic structure theory provides the framework to design 

and discover new families of complex intermetallic phases and to understand factors that 

stabilize both new and known phases. Using solid state synthesis and multiple structural 

determinations, ferromagnetic -Mn type Co8+xZn12–x was analyzed for their crystal and 

electronic structures. Inspection of the atomic arrangements of Co8+xZn12–x reveals that the -

Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) 

structure. Structural optimization procedures using the Vienna Ab-initio Simulation Package 

(VASP) and starting from the undistorted, defect Laves phase structure achieved energy 

minimization at the observed -Mn structure type, a result which offers greater insights into 

the -Mn structure type and establishes a closer relationship with the corresponding -Mn 

structure (cI58). Continuously, our research moved on Zn-rich -brasses Co-Zn system which 

has a homogeneity range Co2+xZn11–yy–x including a small concentration of vacancies as the 

Co content increased as well as clear site preference of Co atoms in the structure. Inspired by 

the electronic structure calculated for Co2Zn11, substituting Pd atoms for Zn or Co atoms in 

the Co-Zn system leads to the discovery of a ferromagnetic ( erromagnetic) Co2.5Pd2.5Zn8 -

brass compound. To extend the research on Hume-Rothery phases, -brasses Fe-Pd-Zn 

system was also investigate to study the site preference of transition metals in Hume-Rothery 

phases.  

Additionally, establishing structure-property relationships for complex metal-rich 

materials, e.g., thermoelectric, magnetic and superconductors is related to both practical as 

well as fundamental issues. Cr22Sn24Zn72 and V23.3(1)Sn26.3(1)Zn68.4(1) crystallize in space 



viii 

 

group    ̅ , Z = 8, Pearson symbol Cf944, with unit cell parameters, respectively, a = 

25.184(4) Å and 25.080(3) Å. Their structures can be described as a cubic NaZn13-type 

packing of two distinct, yet condensed intermetallic clusters, or a simple cubic packing of I13 

clusters condensed via extreme Zn sites with rhombic dodecahedra in the voids. Instead of 

using transition metals Cr/V, rare earth element, Ce, was also used to react with Zn and Sn.  

The new cerium-based ternary intermetallic phase, Ce(Sn1-xZnx)6 (0.45(1) < x < 0.49(1)) 

adopted to CeCu6-type structure. It exhibits a structural transition from orthorhombic to 

monoclinic around 150 K. Moreover, the magnetic properties of a sample analyzed as 

CeSn3.33(6)Zn2.67 shows it to be Langegin paramagnetic above 2K.  
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CHAPTER 1 

Introduction 

1.1 The Specialties of Intermetallic Compounds 

Intermetallic compounds
 [1]

 as solid phases contain two or more metallic or semi-metallic 

elements, with optionally one or more non-metallic elements as minority components, and 

adopt crystal structure differ from one of the other constituents. For molecules, the principles 

of covalent bonding lead to a deeper understanding of compositions and structures. However, 

intermetallic compounds cannot often be interpreted in a simple and effective way like 

molecules because of itinerant nature of the valence electrons as a characteristic feature of 

the metallic state. Moreover, most of conventional molecules are fully ordered and 

stoichiometric, but usually intermetallic compounds are not perfectly stoichiometric always 

containing defects and mixtures as the result of self-diffusion. 
[2]

 The defects and mixtures in 

intermetallic compounds are common and used to control the physical properties of materials, 

for example, high-temperature unconventional superconductor, Ba1-xKxFe2As2 (1>x>0). 
[3]

 

Recent research also illustrates complex intermetallic compounds with large unit cells and 

distortions (defects and mixtures) low the lattice thermal conductivities and enable 

themselves potentially good thermoelectric materials. 
[4]

 

1.2 Zinc Metal in Intermetallics 

Among the late transition metals, the zinc group elements are widely studied on both 

experimental and theoretical aspects. Experimentally, they form diverse crystal structures 

from Laves phases like MgZn2 
[5]

, to quasicrystals such as Cd-Yb, 
[6]

 Zn-Mg-Ho 
[7] 

and Zn-

Mg-Sc 
[8]

; Theoretically, zinc group elements have more localized d-electrons than other 
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transition metals, which plays a significant role in controlling the chemical and physical 

properties like structural anomalies and melting points. 
[9] 

 

1.2.1 Structural Anomalies of Zinc 
[10]

 

For metallic elements, the assumption of itinerant, electron-gas-like valence electrons 

forming no directed bonds, and virtually spherical atomic cores suggests a structural 

classification based on geometrical arrangements. Indeed, most of the metallic elements can 

be related to sphere packings, body centered cubic (bcc), face centered cubic (fcc), hexagonal 

close packed (hcp) or double hexagonal close packed (dhcp), the latter three being close 

sphere packings. Usually the metals in one group show the same structure, suggesting that 

the electronic structure of atoms plays a role in determining the packing of the atoms. The 

ideal c/a ratio in hcp crystal systems is 1.633. But most of the elements have a c/a ratio 

which is slightly smaller than the ideal value. These variations may be regarded as first 

indications for interactions between partially filled valence and even semi-core shells of the 

atoms. Elements with closed electronic shells are expected to be closer to the ideal value, as 

there are weak interactions between partially filled valence shells of atoms. 
[10] Indeed, 

magnesium is in accordance with this expectation, but two other elements with filled valence 

and core (sub)shells, zinc ([Ar]3d
10

4s
2
) and cadmium ([Kr]4d

10
5s

2
), actually show 

spectacular deviations from the ideal c/a ratio of 14% and 16%, respectively. Results from 

experimental and theoretical calculations 
[11-12]

 indicate
 
that the anomalies of c/a ratios come 

from 4s-3d electron interactions but not an effect of anisotropy in thermal expansion.  

Zinc does not only exhibit a structurally unusual c/a ratio, it also has lower melting point 

than other 3d transition metals, which makes it possible to react at relative low temperature 

(lower than 1000°C, most tube furnace can reach.) with elements, like Mo 
[13]

 , Nb 
[13]

 , and Ir, 
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[14]
 that have high melting points. Furthermore, previous research indicates melting and 

boiling points of elements are relative with the thermodynamic properties of entropy and 

enthalpy. 
[15]

 

1.2.2 Enthalpy of atomization for d-block metals and their related properties 

The enthalpy of atomization 
[16]

 is the energy required to divide the solid metal into 

separate, gaseous atoms, and it appears in nearly every thermochemical cycle involving the 

metals and their compounds. As one of the most important physical properties of a metal for 

chemists, the enthalpy of atomization is a direct measure of the binding energy of the solid 

metal, although it depends also on the electronic configuration of the gas-phase atoms. Many 

other physical properties, like melting and boiling points, Young’s modulus of elasticity, 

hardness and thermal conductivity, would be related to the enthalpy of atomization. 
[17]

  

For the s-block metals, the enthalpy of atomization rises with increasing group number, 

and the nearly-free electron approach works well to explain electronic structures and 

stabilities of s-block atoms. It is observed that the energies of phase transitions in s-block 

metals are smaller than p- and d-block elements, which means that the energy of the lattice is 

insensitive the details of the structures.  

It is much more difficult to simply use nearly-free-electron approximation for d-block 

metals. The nearly-free-electron model is a modification of the free-electron gas model 

which includes a weak periodic perturbation meant to model the interaction between the 

conduction electrons and the ions in a crystalline solid. This model, like the free-electron 

model, does not take into account electron-electron interactions. For s- and p-block metals, 

the overlap of wave functions is exceedingly small and negligible, so the nearly-free-electron 

approximation works well. However, for d-shelled transition metal atoms, the overlap of 
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atomic wave function is enough to require corrections to the picture of isolated atoms, but not 

so much as to render the atomic description completely irrelevant. Thus, d-electrons have to 

be treated by the tight-binding method. The tight-binding method is an approximation to 

calculate the electronic band structure of tightly bound electrons in solids, for example, d 

electrons in transition metals. The enthalpies of atomization are much larger than s- and p-

block metals, indicating that the d-electrons make a great contribution to the binding. For a 

metal with few d-electrons, the lower part of the band is filled. As orbitals are filled, the 

metallic bonding energy increases, as a result, the melting points would increase as well. 

After about five d electrons per atom have been filled in, the bonding levels are full and 

further electrons must go into the antibonding parts. The antibonding occupancy in orbitals 

destabilizes the system and the metallic bonding energy decreases, so the melting points of 

metals decrease. Even when the d-band is completely filled, some cohesion is obtained from 

the s-electrons and from hybridization of s- and d- levels. The rough trend of enthalpy of 

atomization increases in each period, reaching a maximum in Group V or VI, then decreases 

from Group VII. Within each group, the enthalpy of atomization usually increases with 

increasing atomic number in Figure 1.2.2(a). Corresponding to the enthalpy of atomization, 

the melting points and boiling points in Figure 1.2.2(b) and 1.2.2(c) have the similar trend 

with enthalpy of atomization. 
[18]
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Figure 1.2.2 (a) Enthalpies of atomization of d-block metals (b) Melting points of d-block metals (c) Boiling 

points of d-block metals 

The low melting point of zinc makes it possible to react with different types of elements 

from alkali, transition metals to main group elements. Mostly, they are likely to form polar 

intermetallic phases when active elements like alkali, alkali earth or rare earth elements react 

with zinc, for example, Azn13 (A=Li, Na, K, Rb, Cs, Be, Ca, Sr and Ba) (NaZn13-type).
[19-23]

 

For early transition metals, like group IV and V elements, they could form Laves phases with 

Zn.
[24-26]

 However, as electronegativity increases until similar with zinc, the late transition 

metals prefer to form typically Hume-Rothery phases with Zn, like -brass, -brass, -brass 

and -brass.
[27-30]

 Particularly, when zinc reacts with some main group elements like In and 

Sn, they would form eutectic phases instead of any compound.
[31- 32]

 The eutectic phase has 

the lower melting point than Zn and main group elements, which is ideal for the high-

temperature solid reactions or flux method to grow intermetallic compounds.  

1.2.3 Specialties of Zinc Group Elements 

As mentioned above, the enthalpies of atomization and melting points are much lower for 

zinc group elements than other d-block metals. Zinc group elements have a ground state 

electronic configuration in which electrons fill up all the available subshells. According to 

Hund’s rules, this configuration strongly resists removal of an electron, so the elements 

behave similarly to noble gas elements, which form weak bonds and become solids that melt 

easily at relatively low temperatures compared with other d-block metals. Especially for 

mercury, the stability of the 6s shell is due to the presence of a filled 4f shell, which poorly 

screens the nuclear charge that increases the attractive Coulomb interaction of the 6s shell 

and the nucleus. The absence of a filled inner f shell is the reason for the somewhat higher 
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melting temperature of cadmium and zinc, although both these metals still melt easily and, in 

addition, have unusually low boiling points. 
[33]

 

Mercury can dissolve many other metals such as gold and silver to form amalgams.
[34]

 

Similarly, zinc can also dissolve many metals to form eutectic phases and form solid 

solutions for solid state reactions, like Zn-Sn and Zn-In binary phases.
[31-32]

 

1.3 Rationalizing Structures and “Coloring” Problem 

1.3.1 Rationalizing Structures 

The questions to answer when we seek to rationalize the structures of intermetallic 

compounds are, given a chemical composition, at certain external conditions, among several 

possible structures, which one will it adopt and why. To answer these, we can build up iso-

compositional models according to these possible structures, carry out quantum mechanical 

calculations using them, and analyze the results. The process of analysis is principally the 

same as the process of analyzing a simple solid metal element, for instance, Co, as briefly 

discussed below. 

Cobalt is ferromagnetic with hexagonal-closed-packing (hcp) at room temperature. 

Above 673 K, cobalt will undergo a structural phase transition from hcp to fcc while 

remaining ferromagnetic. Here, we examine why it is not fcc at low temperature or hcp at 

high temperature. Calculations using the Tight-Binding Linear-Muffin-Tin-Orbital Atomic-

Sphere-Approximation (TB-LMTO-ASA) 
[35-36]

 upon the two models provide us with the 

total energy (Etot) for the hcp and fcc volumes (11.115 Å
3
/atom for hcp; 11.130 Å

3
/atom for 

fcc)
[37]

, shown in Table 1.3.1. On increasing temperature, the volume of cobalt extends to 

11.288 Å
3
/atom at 673K according to the thermal expansion coefficient of cobalt at 20°C 

[38]
, 

in this volume, the Etot of fcc is slightly lower (~20meV) than Etot of hcp, and the phase 
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would transform from hcp to fcc. From the Table 1.1, it is shown that for the same volume in 

room temperature (experimental results) the total energy of hcp is lower than total energy of 

fcc. As volume rises at high temperature, the fcc structure becomes more favorable instead of 

hcp, which matches the experiments well. However, Etot is not so informative. To obtain 

energy-resolved visualization of chemical bonding on stability, as well as possible magnetic 

properties of cobalt, TB-LMTO-ASA calculations were carried out to evaluate and analyze 

the electronic structures of cobalt in the two models.   

Table 1.3.1 Energy terms of Cobalt in different structure models 

Structure Energy/atom in R.T. volume Energy/atom in H.T. volume 

Etot(hcp) 0 44.94 meV 

Etot(fcc) 51.17 meV 7.87 meV 

In accordance with Born-Oppenheimer approximation, the electronic structure is given 

primary emphasis onto analyzing computational results, as electronic structure is the 

significant step to study quantum mechanical motion of a molecular or non-molecular (like 

intermetallic) system. 
[39]

 The DOS (density of states) and COHP (crystal orbital Hamilton 

population) of hcp-Co and fcc-Co without spin polarization are shown in Figure 1.3.1. The 

calculation corresponds to 0K. For hcp-Co in Fig. 1.3.1(a), the Fermi level locates on the 

sharp peak in DOS, and falls in the strong Co-Co antibonding region in –COHP, which 

indicate the electronic instability of hcp-Co in local density approximation (LDA). 

Consequently, one would expect some kind of structural change—which here does not occur: 

hcp-Co stays hcp-Co. The answer to that puzzle is that nonmagnetic cobalt does undergo a 

distortion, but instead of the atoms rearranging themselves, the electrons do. Nonmagnetic 

hcp-Co is unstable with respect to an electronic structure distortion, which makes the two 

spin wavefunctions inequivalent, thereby lowering the energy and giving rise, upon ordering, 
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to ferromagnetism; these are the corresponding spin-polarized results in Figure 1.3.2(a). The 

theoretical magnetic moment (1.58 B) is very close to the experimental one (1.6-1.7B). 

Upon spin-polarization, the total energy lowers by ~31 meV. The shifts in the majority and 

minority have removed the antibonding states at the Fermi level, thereby maximizing the Co–

Co bonding as far as possible. 
[40]

 Similarly, the electronic calculations imply fcc-Co 

ferromagnetic. The Curie temperature for cobalt is 1388K, much higher than structural 

transition temperature from hcp to fcc, so cobalt in fcc is still ferromagnetic experimentally. 

[41]
 The theoretical calculations match with experimental results very well.  

 

                                          (a)                                                                              (b) 

Figure 1.3.1 DOS and –COHP in LDA for (a) hcp-Co and (b) fcc-Co 
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                                                       (a)                                                                                (b) 

Figure 1.3.2 DOS and –COHP in LSDA for (a) hcp-Co and (b) fcc-Co 

1.3.2 “Coloring” Problem 

A “coloring” problem occurs when there is more than one element constructing the 

framework of an intermetallic phase. 
[42]

 Finding out how to distribute different atoms on the 

sites of a framework is essential for rationalizing its structure. The criterion of a preferred 

distribution of different atoms (or “coloring scheme”) is that it provides the lowest total 

energy. One efficient way to determine which coloring scheme is favorable over the others is 

accomplished by a population analysis upon a “uniform reference frame”. To study a certain 

framework, we can construct a hypothetical model of the structure with only one element, 

execute quantum mechanical calculations upon such a uniform reference frame, and analyze 

the valence electron population on each site. When constructing the same framework with 

more than one element, the sites with higher populations favor the more electronegative 

element. This is because the valence orbitals of the more electronegative atoms have lower 

energy. Positioning such atoms onto the site(s) with higher electron population(s) means 

more electrons are filling the lower energy orbitals and this will lower the electronic energy. 
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Another structural aspect to consider about the “coloring” problem is to compare the 

numbers of heteroatomic and homoatomic contacts in competing coloring schemes. 
[43-44]

We 

can calculate several tentative coloring schemes with different numbers of heteroatomic and 

homoatomic contacts and see which one gives the lowest total energy. For example, if more 

heteroatomic than homoatomic contacts leads to lower total energy, then, with the help of a 

computer, we can then generate all possible coloring schemes and find the one(s) with the 

most heteroatomic contacts. 

1.4 Layout of the Dissertation 

Chapter 2 summarizes the experimental and computational methods we employed in all work 

included in this dissertation. With these techniques, we addressed the questions raised in 

Sections 1.2 and 1.3 by investigating the projects described in the following chapters. 

In Chapter 3, we studied the -Mn type Co-Zn system in both experimental and theoretical 

methods. We showed that -Mn Co-Zn phases may be expressed as Co8+xZn12–x, (1.7(2) < x < 

2.2(2)) and establish clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d 

sites with all additional Co atoms replacing some Zn atoms. Moreover, inspection of the 

atomic arrangements of Co8+xZn12–x reveals that the -Mn aristotype may be derived from an 

ordered defect, cubic Laves phase (MgCu2-type) structure. This work has been published on 

Inorganic Chemistry. 

In Chapter 4, we studied -brass Co-Zn system with and without Pd doping. After doping Pd, 

the magnetic properties of -brass changes from a Curie-Weiss paramagnetic in Co-Zn 

system to dilute ferrimagentic with Co-Pd-Zn system. A giant magnetic moment on Co atom 

is induced by the Pd atoms. This work has been submitted to Chemistry of Materials.  
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Chapter 5 reports our work in the Fe-Pd-Zn ternary systems. Experimentally we observed 

how the structures of the systems switch between two competing structure types, (Fe1-

xPdx)4Zn9 and (Fe1-xPdx)5Zn8-type, in response to a change in composition. We then 

theoretically explained our experimental observations. Site preferences and site sharing 

between Fe and Pd atoms and the coloring problem are investigated in detail.  

Chapter 6 includes experimental work on TM-Sn-Zn systems, where TM includes Cr and V. 

These complex intermetallic materials feature similar structural clusters. Chapter 7 includes 

experimental work on RE-Sn-Zn systems, where TM includes Ce, Nd, and Gd. These 

complex intermetallic materials feature with interesting magnetic and heat capacities 

properties.  

Appendix includes the collaborative works with other research groups. First part is the 

computational work on Eu11Cd6Sb12-xAsx, which has been under review by Chemistry of 

Materials. Second part is our work on refining the structure and identifying the physical 

properties of complex intermetallic compound, Tb117Fe54.7Ge112. The last part is the summary 

of all the experiments I did in my Ph.D life. 
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CHAPTER 2 

Experimental and Theoretical Techniques, in General 

In this chapter, we describe the experimental and theoretical techniques in general. This 

includes what techniques and theories were employed, what purposes they were serving, and 

what their advantages and disadvantages are. The specific details for each problem can be 

found in each of the following chapters. 

2.1 Synthesis 

2.1.1 Starting Materials. High purity elements, listed in Table 2.1.1, were used as starting 

materials for all synthetic preparations. All elements were used as received from the 

manufacturer. The starting materials except Mn or rare earth elements were stable in air at 

room temperature as pieces; Mn and rare earth elements were stable in Argon-filled glove 

box at room temperature as pieces.  

Table 2.1.1. The starting materials used for all synthetic preparations. (Purity of a specific element as a ratio 

based on other metallic elements; purity of a specific rare earth element as a ratio based on other rare earths) 

Element Source Melting Point (K) Purity Form 

Cr MPC-Ames Lab 2130 99.9% Chunks 

Mn Sigma Aldrich 1518 99.9% Pieces 

Fe MPC-Ames Lab 1808 99.9% Pieces 

Co MPC-Ames Lab 1768 99.9% Pieces 

Ni MPC-Ames Lab 1726 99.9% Pieces 

Cu MPC-Ames Lab 1358 99.99% Pieces 

Zn MPC-Ames Lab 693 99.99% Chunks 

Ga MPC-Ames Lab 303 99.999% Chunks 

Nb MPC-Ames Lab 2750 99.99% Pieces 

Mo MPC-Ames Lab 2896 99.99% Pieces 

Ru MPC-Ames Lab 2523 99.99% Chunks 
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Table 2.1.2 continued 

Rh MPC-Ames Lab 2239 99.9% Chunks 

Pd MPC-Ames Lab 1828 99.99% Chunks 

Ag MPC-Ames Lab 1235 99.99% Chunks 

In MPC-Ames Lab 430 99.99% Chunks 

Sn MPC-Ames Lab 505 99.99% Chunks 

Sb MPC-Ames Lab 904 99.99% Chunks 

Te Sigma Aldrich 723 99.99% Chunks 

RE(La) elements MPC-Ames Lab 1068-1909 99.9% Chunks 

 

2.1.2 Selecting Sample Containers. For solid state reactions at high temperatures, it is 

necessary to choose a suitable container material that is chemically inert to the reactants 

under the heating conditions used. Considering the reactivity, costs, strength, and heat-

resistance, Table 2.1.2 lists the usual types of sample containers and their temperature and 

reactivity limits. 

Table 2.1.2. The usual types of sample containers and their temperature and reactivity limits 

Container Temperature limits Elements attacking the container 

Silica 1200 °C Rare earth, Alkali, Alkali earth, Al 
[1]

 

Alumina 1800 °C Rare earth, Alkali, Alkali earth. (Thermite) 
[2]

 

Ta 3250 °C Alkali, non-metals(halogen, chalcogen), Al, Pt 
[3]

 

Ni 1455 °C Alkali resistance, use to melt Fe and clay 
[4]

 

 

2.1.3 Tube Furnace Heating. The high purity elements used as starting materials are 

typically sealed in evacuated silica tubes (<10
-5

 torr) as the reaction vessel if the elements do 

not attack the container. Whenever required, other reaction vessels are considered, for 

example, precleaned tantalum tubes (0.9cm), used for reactions involving elements like 

Mg and Al are weld-sealed under Ar, or alumina crucibles in which Ga, Sn and Cd metals are 

used as flux materials.
[5]

 The Ta tubes or alumina crucibles are also sealed in evacuated silica 
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tubes (<10
-5

 torr) as double-jackets. With tube furnaces, we are able to program the 

temperature profiles and thus control the reacting/annealing temperatures and the rate of 

heating and cooling. Mostly, we use either quenching or slow-cooling to get final products. 

Quenching is the rapid cooling to prevent low-temperature processes, such as phase 

transformations, from occurring by only providing a narrow window of time in which the 

reaction is both thermodynamically favorable and kinetically accessible. However, 

quenching can reduce crystallinity and thereby increase toughness of products, because there 

is not enough time for the solid to crystallize. Instead, slow-cooling is applied to gain better 

crystalline products. Both procedures usually yield single crystals suitable for subsequent X-

ray diffraction experiments.  

2.2 Characterization Techniques and Analysis 

2.2.1 Powder X-ray Diffraction Analysis. For powder XRD, we ground about 0.1 g 

samples and took several milligrams for diffraction. So, the refinement results, especially to 

determine the lattice parameters, are a course-grained average over the bulk. The three-

dimensional diffraction space can be described with reciprocal axes x*, y*, and z* or, 

alternatively, in spherical coordinates q, φ*, and χ*. In powder diffraction, intensity is 

homogeneous over φ* and χ*, and only q remains as the important measurable quantity. The 

three-dimensional reciprocal space that is studied in single crystal diffraction is projected 

onto a single dimension by averaging the oriented results. Moreover, one-dimensional 

powder patterns, although less informative than single crystal diffraction patterns, can be 

used for “fingerprint” identification of the phases present in samples. Moreover, we still 

apply powder X-ray diffraction for crystallographic structural analysis and unit cell 

calculations by interpreting the intensity of patterns, quantitative determination of amounts of 
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different phases in multi-phase mixtures by peak-ratio calculations 
[6]

, and determination of 

crystallite size from analysis of peak broadening by Scherrer equation 
[7]

. 

All samples were finely ground and examined by powder X-ray diffraction for 

identification and phase purity on a STOE WinXPOW powder diffractometer employing Cu 

radiation (K Å) for all the samples. The scattered intensity was recorded as a 

function of Bragg angle (2) using a scintillation detector with a step of 0.03° 2 in step scan 

mode, ranging from 0° to 130°.  Phase identification was accomplished using the program 

PowderCell 
[8]

. 

Because X-ray fluorescence can create high background for Cr-, Mn-, Fe-, Co- and Ni-

containing samples examined using Cu K radiation 
[9]

, the samples containing Co were also 

examined on a Philips PANalytical X’pert-Pro powder diffractometer using Co radiation (K 

=1.7903Å). The scattered intensities were recorded in step scan mode with 0.008° steps over 

a 2 range from 5°-100°.  For these measurements, phase identification and the lattice 

parameters were refined by full-profile Rietveld 
[10]

 refinements using LHPM RIETICA 
[11]

. 

2.2.2 Single Crystal X-ray Diffraction Analysis. Single crystal XRD provides three-

dimensional diffraction patterns, so it offers more effective than powder XRD for solving and 

refining crystal structures. It is especially able to determine the occupancies of 

crystallographic sites by different atoms or mixtures of atoms in complex structures. 

However, its results largely depend on the availability and quality of the single crystals. 

Moreover, the mass of the single crystal is on the scale of a microgram, so it does not give 

the average information, such as lattice parameters, of the whole sample, which is around 0.5 

g. To get more accurate information, several crystals from the sample are picked and 

examined. 
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Crystals from each reaction sample were mounted on the tips of glass fibers. Room 

temperature intensity data were collected on a Bruker Smart Apex CCD diffractometer using 

Mo K radiation (λ = 0.71073 Å). Data were collected over a full sphere of reciprocal space 

flexible scans in ω with an exposure time of 10s per frame. If the crystal structure is complex 

or the intensity of scattering is not strong enough to be indexed or integrated, the crystal 

would be exposed for as long as 20s per frame. The 2θ range could be extended up to 60°. 

The SMART software was used for data acquisition. Intensities were extracted and corrected 

for Lorentz and polarization effects using the SAINT program. Empirical absorption 

corrections were accomplished with SADABS, which is based on modeling transmission by 

spherical harmonics employing equivalent reflections with I > 3σ(I) 
[12-13]

. With the 

SHELXTL package 
[14]

, the crystal structures were solved using direct methods and refined by 

full-matrix least-squares on F
2
. All crystal structure drawings were produced using the 

program Diamond 
[15]

. 

2.2.3 Neutron Powder Diffraction. Neutrons as quantum particle interact with matters 

differently from X-ray that is electromagnetic radiation in many ways. These differences 

arising primarily from quite different scattering process make neutron scattering 

complementary to X-ray diffraction. First of all, the scattering length of neutron diffraction is 

not atomic number dependent, so the visibility of light elements like H is good, and the 

adjacent elements in the periodic table are often readily distinguished. Secondly, the neutron 

diffraction can defect different isotopic behaviors (e.g. hydrogen and deuterium) because the 

isotopes have different scattering lengths. Additionally, the interaction between neutron and 

atomic magnetic moments due to unpaired electrons makes neutron diffraction able to 
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measure magnetic structures as well as crystal structures. However, as the scattering is weak, 

neutron diffraction needs much larger quantity of samples than X-ray.  

In the measurement of neutron scattering, vanadium containers (L7.5cm; 3.0mm) are 

used to hold the sample, because vanadium has a negligible coherent scattering cross section 

and hence does not contribute observable peaks to the diffraction pattern.
[16]

 Since our 

sample contains cobalt that is radiated after neutron scattering, the sample could not be 

recycled any more. Finally, we refined the neutron powder diffraction data by the Rietveld 

method 
[10]

 using the program FullProf 
[17]

. 

2.2.4 Scanning Electron Microscopy. A scanning electron microscope (SEM) produces 

images of a sample by scanning it with a focused beam of electrons. The electrons interact 

with atoms in the sample, producing various signals that can be detected and that contain 

information about the sample's surface topography and composition. A SEM image can offer 

us the direct visual information on the phase identification of the sample. For conventional 

imaging in the SEM, specimens must be electrically conductive, at least at the surface, and 

electrically grounded to prevent the accumulation of electrostatic charge at the surface. 

Characterization was completed using a variable pressure scanning electron microscope 

(Hitachi S-2460N) and Energy-Dispersive Spectroscopy (EDS) (Oxford Instruments Isis X-

ray analyzer). Scanning electron microscopy and energy-dispersive spectroscopy were 

utilized to check the homogeneity and measure the compositions of the samples. Samples 

were mounted in epoxy, carefully polished, and then sputter-coated with a thin layer of 

carbon prior to loading into the SEM chamber. The samples were examined at 20 kV. 

Spectra were collected for 100 seconds.  An Oxford Instruments Tetra backscattered electron 

(BSE) detector was used to image the samples using the BSE signal.  Multiple points were 
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examined in each phase within multiple grains of a specimen. Compositional estimates were 

calculated using Oxford’s SEM Quant software to correct intensities for matrix effects.  

2.3 Physical Property Measurements 

2.3.1 Magnetic Measurement. The magnetization measurements were performed using a 

superconducting quantum interference device (SQUID) magnetometer MPMS XL-7, and 

Vibrating Sample Magnetometer (VSM) EV11 manufactured by Quantum Design, Inc. were 

employed to measure the magnetic properties on pieces of samples. The SQUID operates 

over a temperature range of 1.8-400 K (He
3
 cooling to 0.4K) and in applied fields of up to 70 

kOe. The VSM can be operated till 1000K. The samples were placed in glass capsules for 

measurement. SQUID that can detect the magnetic field as low as 5×10
−18

T is more sensitive 

than VSM. However, VSM can measure the magnetic properties above room temperature, as 

high as 1000K. The Curie temperature was approximated by the intersection of a linear fit the 

maximum dM/dT of the magnetization vs temperature curve, and the effective magnetic 

moments (eff) and Weiss temperature () were determined according to equation 2.3.1(a): 

                                                                        
   

 
     

 

   
 

                                         Eq. 2.3.1(a) 

For some cases that could not be fitted by the Curie-Weiss relation, instead, a modified 

Curie-Weiss relation is applied to calculate the effective magnetic moments according to the 

equation 2.3.1(b): 

                                                                      
   

 
     

 

   
 

                                      Eq. 2.3.1(b) 

C is the temperature-independent constant. 
[18]
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2.3.2 Specific Heat Capacity Measurement. The heat capacity is measured by Physical 

Property Measurement System (PPMS) manufactured by Quantum Design, Inc. The 

temperature ranges from 2K to room temperature (300K) with non-applied field and pressure 

at 9.40×10
-6

 Torr. The Dulong–Petit law 
[19]

 states the classical expression for the molar 

specific heat capacity of a crystal at room temperature, expressed as equation 2.3.2(a): 

                                                                        
 

  
                                            Eq. 2.3.2(a) 

However, at low temperature, heat capacity (CP) consists of the specific heat of the electrons 

CP,el which depends linearly on temperature T, and of the specific heat of the crystal lattice 

vibrations (phonons) CP,ph which depends cubically on temperature T
3
 in equation 2.3.2(b), 

                                                                                                     Eq. 2.3.2(b) 

 is the Sommerfield parameter;is proportionality constant. We can also write in format of 

Cp/T, that is equation 2.3.2(c), 

                                            
  

 
      , with   

  

 
 
  

  
   ,    

    
 

    
             Eq. 2.3.2(c) 

For CP/T~T
2
 plot, if T= 0K, we can figure out the  value. For normal metals,  is around 

(0.1~1)×10
-3

 J/mol•K
2
, if becomes large, F would become small, and the effective m 

becomes large. The materials with large effective mass can be called heavy fermion materials. 

[20]
 

2.4 Theory and Electronic Structure Calculations 

2.4.1 Extended Hückel Theory (EHT) Calculation. Extended Hückel Theory (EHT) is a 

semi-empirical approach rather than using first-principles to solve the Schrödinger equation 

for molecules and solids. 
[21]

 The construction of the Hamiltonian matrix and the solution of 

the eigenfunctions and eigenvalues are completed only once, without self-consistent 
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iterations. So, it takes much shorter time than first-principles calculations. Also, it employs 

Slater-type atomic orbitals with double zeta functions for transition metals and single zeta 

functions for the main group elements. Extended Hückel theory provides convenient electron 

population analysis and it is successful to determine the molecular orbitals and the relative 

energy of different geometrical configurations. The disadvantage of EHT calculations is that 

it involves significant approximations by ignoring the electron-electron repulsions.  

2.4.2 TB-LMTO-ASA Calculation. We employed two techniques for first-principles 

calculations. The first one is Tight Binding Linear Muffin Tin Orbital with Atomic Spheres 

Approximation (TB-LMTO-ASA). 
[22]

 The tight-binding model (TB model) is an approach to 

the calculation of electronic band structure using an approximate set of wave functions based 

upon superposition of wave functions for isolated atoms located at each atomic site. The 

electrons in this model should be tightly bound to the atom to which they belong and they 

should have limited interaction with states and potentials on surrounding atoms of the solid. 

As a result the wave function of the electron will be rather similar to the atomic orbital of the 

free atom to which it belongs. In the tight-binding approximation, the wave functions of 

electrons can be written as the sum of Bloch wave functions (equation 2.4.2(a)): 

                           
  

 

√ 
∑               

 

√ 
∑                             Eq. 2.4.2(a) 

For mathematical convenience, the crystal is divided up into regions inside muffin-tin 

spheres, where Schrödinger's equation is solved numerically, and an interstitial region. In all 

LMTO methods the wave functions in the interstitial region are constant.  

TB-LMTO method is a self-consistent calculation, so it takes more time than EHT, which 

also means that it has higher accuracy. TB-LMTO is an extremely efficient method for band 

structure calculations utilizing large number of k-points. However, the Atomic Spheres 
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Approximation really imposes limitations upon this LMTO calculation by neglecting the 

contributions from currents in the interstitial regions between the atomic spheres. It makes an 

atomic sphere around each atom in the unit cell and ensures that the total volume of the 

atomic spheres is equal to the volume of the unit cell. In simple systems, it is possible to 

optimize the Wigner-Seitz radii to build the atomic spheres. For the complex systems, it can 

be difficult to maintain the constant radii when comparing hypothetical structures.  

2.4.3 VASP Calculation. We also did first-principles calculations using the Vienna ab initio 

simulation package (VASP). 
[23-26]

 VASP employs pseudopotentials or the projector-

augmented wave method and a plane wave basis set to handle electrons. So the electron 

densities are independent of the atomic positions, as a result, structural optimizations and the 

total energy calculations on many hypothetical structures converge with relative ease. 

Although pseudopotentials are not as straightforward as the atomic orbital basis set, Blochl’s 

description of projector-augmented wave (PAW) pseudopotentials provides a means of 

retaining information about the correct behavior of the valence electron wavefunctions. This 

allows pseudopotentials to be analyzed based on orbital descriptions, similar to the linear 

combinations of atomic orbitals (LCAO) method that is familiar to chemists.   

A few of key uses for VASP in the research are: (a) total energy calculations with or 

without spin polarization, (b) structural optimizations with or without spin polarization, (c) 

determining electron localization through charge-density plots. The main disadvantage of 

VASP is the requirement to input size cutoffs to calculate integrated values. These values are 

often rather arbitrary and require a keen chemical sense to substantiate their sizes. 
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CHAPTER 3 
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3.1 Abstract 

Results of a crystallographic analysis, magnetic characterization, and theoretical 

assessment of -Mn type Co-Zn intermetallics prepared using high temperature methods are 

presented. These -Mn Co-Zn phases crystallize in the space group P4132 (Pearson symbol 

cP20; a = 6.3555(7)-6.3220(7)) and their stoichiometry may be expressed as Co8+xZn12–x, 

(1.7(2) < x < 2.2(2)).  According to a combination of single crystal X-ray diffraction, powder 

neutron diffraction, and scanning electron microscopy, atomic site occupancies establish 

clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d sites with all additional 

Co atoms replacing some Zn atoms, a result which can be rationalized by electronic structure 

calculations.  Magnetic measurements and powder neutron diffraction of an equimolar Co:Zn 

sample confirm ferromagnetism in this phase with a Curie temperature of 420 K. Neutron 

powder diffraction and electronic structure calculations using the local spin density 
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approximation indicate that the spontaneous magnetization of this phase arises exclusively 

from local moments at the Co atoms.  Inspection of the atomic arrangements of Co8+xZn12–x 

reveals that the -Mn aristotype may be derived from an ordered defect, cubic Laves phase 

(MgCu2-type) structure. Structural optimization procedures using the Vienna Ab-initio 

Simulation Package (VASP) and starting from the undistorted, defect Laves phase structure 

achieved energy minimization at the observed -Mn structure type, a result which offers 

greater insights into the -Mn structure type and establishes a closer relationship with the 

corresponding -Mn structure (cI58). 

3.2 Introduction 

Understanding the relationships among structure, composition, bonding, and properties of 

complex intermetallic compounds remains both fascinating and challenging because few 

general predictive strategies have emerged that allow targeted synthesis of novel compounds 

with specific properties.  For compounds involving the late- and post-transition metals, the 

Hume-Rothery electron counting rules,
 [1]

 which emphasize the valence s and p electrons in 

the compound, can be used to rationalize crystal structure.  However, if a system exhibits 

partially filled d-bands, then these rules to predict crystal structures typically incorporate 

negative valences for the transition metals, but cannot rationalize some subtle structural 

distortions nor element distributions.
[2]

 Electronic structure calculations have successfully 

identified some patterns of band structure and occupancies in γ-brass Fe-Zn,
[3]

 Ni-Zn,
[3]

 and 

M-Ga (M = Cr-Fe)
[4-6]

 cases, yet no reports have examined the noncentrosymmetric cubic -

Mn type systems in any systematic way. For example, unlike Fe or Ni, which reacts with Zn 

in 1:1 molar ratio to form a -brass, Co is reported to form a -Mn type structure with Zn.
[7-9]

 

However, other than a lattice constant, no other structural details have been reported.
[10]
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Therefore, investigating the Co-Zn system may help us to understand how 3d transition 

metals control the crystal structures within the framework of Hume-Rothery rules. 

The Co-Zn system shows some anomalies in its phase equilibria arising, in part, from the 

magnetic transition associated with Co.
[8]

  Ferromagnetism in elemental Co certainly 

influences its anomalous ground state structure, which is hexagonal close packed and not 

cubic close packed like Rh and Ir, by breaking the degeneracy between spin-up and spin-

down electronic states.  Ferromagnetic “Co0.5Zn0.5”, which is the Co-richest intermetallic in 

the Co-Zn system and has been assigned the cubic -Mn type (Strukturbericht designation 

A13), was explored for its magneto-optical properties several decades ago.
[10]

 In recent years, 

the Zn-rich region of the Co-Zn diagram has been reinvestigated for two brass-like structures, 

-Co2Zn15 and 1-CoZn7.8,
[11,12]

 the first of which shows an interesting double-helix of 

icosahedra.  However, there are only a few reports of Co-rich Co-Zn phases,
[8,10]

 and even 

any characterization of -Mn type Co-Zn phases remains limited other than a lattice constant 

(a = 6.319 Å), its room temperature magnetization (39 Am
2
kg

–1
) and polar Kerr rotation 

angle (–0.25 at 633 and 830 nm).
[10]

  The recent observation of skyrmions, which are 

described as vortex-like spin structures, in noncentrosymmetric cubic magnetic solids like 

MnSi and FeGe provide additional impetus for a closer examination of the 

noncentrosymmetric -Mn type systems that contain magnetically active metals.
[13-15]

 In 

particular, Nuclear Quadrupole Resonance (NQR) studies
[16]

 on -Mn itself show that 

inequivalent Mn atoms contribute differently to its overall magnetism.
 
Moreover, there is a 

close structural relationship between octagonal quasicrystals and the -Mn structure.
[17-20] 
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With these magnetic and structural features in mind, we report herein a thorough 

structural characterization and investigation of the magnetic properties and theoretical 

electronic structures of -Mn type Co-Zn phases, with an emphasis on elemental distribution 

throughout the unit cell, local magnetic moments, and chemical bonding. In a subsequent 

study, we will examine the electronic states and bonding features with respect to other related 

intermetallic phases.   

3.3 Experimental Section 

3.3.1 Synthesis. -Mn type Co-Zn phases were obtained by fusion of mixtures of Co pieces 

(99.9%, Ames Laboratory) and Zn particles (99.99%, Alfa Aesar), combinations that ranged 

from 35-65 mole percent Zn.  Each reactant mixture, about 500 mg total, was sealed into an 

evacuated silica tube (<10
−5

 Torr), heated to 1000 °C for 12 hr, followed by cooling to 

925 °C at a rate of 1 °C/hr and annealed at this temperature for 3 days, after which the 

container was quenched into water or slowly cooled in the furnace. Seven different Co-Zn 

samples were prepared (see Table 1).  Of these, the three Zn-rich loadings yielded a mixture 

of -Mn type and -brass Co2Zn11. The two Co-rich samples contained -Mn type 

compounds and Co particles. Only the two intermediate loadings, i.e., 50 and 55 mole 

percent Zn, led to single-phase -Mn type compounds. Using an optical microscope, the -

Mn type crystals adopt tetragonal block shapes, whereas -brass Co2Zn11 crystals have 

elongated rectangular morphologies.  All products are stable toward decomposition in air and 

moisture, but react with dilute acid at room temperature.  

3.3.2 Phase Analyses.  All samples were finely ground and examined by powder X-ray 

diffraction for identification and phase purity on a STOE WinXPOW powder diffractometer 

employing Cu radiation (K Å) for all the samples. The scattered intensity was 
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recorded as a function of Bragg angle (2) using a scintillation detector with a step of 0.03° 

2 in step scan mode, ranging from 0° to 130°.  Phase identification was accomplished using 

the program PowderCell, 
[21]

 and lattice parameters from manually selected -Mn type 

crystals were refined by Bragg’s law using a silicon 640b powder X-ray diffraction position 

standard (NIST; a = 5.430940 ± 0.000035 Å). 

Because X-ray fluorescence can create high background for Co-containing samples 

examined using Cu K radiation, X-ray powder diffraction patterns of three samples showing 

high yields of a -Mn phase, i.e., those loaded with 40, 50, and 60 atomic percent Zn, were 

also collected on a Philips PANalytical X’pert-Pro powder diffractometer using Co radiation 

(K =1.7903Å).  The scattered intensities were recorded in step scan mode with 0.008° steps 

over a 2 range from 5°-100°.  For these measurements, phase identification and the lattice 

parameters were refined by full-profile Rietveld 
[22]

 refinements using LHPM RIETICA
[23]

. 

3.3.3 Structure Determination.  Crystals from each reaction sample were mounted on the 

tips of glass fibers. Room temperature intensity data were collected on a Bruker Smart Apex 

CCD diffractometer using Mo K radiation (λ = 0.71073 Å). Data were collected over a full 

sphere of reciprocal space by taking three sets of 606 frames with 0.3° scans in ω with an 

exposure time of 10s per frame. The 2θ range extended from 8° to 60°. The SMART software 

was used for data acquisition. Intensities were extracted and corrected for Lorentz and 

polarization effects using the SAINT program. Empirical absorption corrections were 

accomplished with SADABS, which is based on modeling transmission by spherical 

harmonics employing equivalent reflections with I > 3σ(I).
[24-25]

 With the SHELXTL 

package,
[26]

 the crystal structures were solved using direct methods and refined by full-matrix 
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least-squares on F
2
. All crystal structure drawings were produced using the program 

Diamond.
[27] 

3.3.4 Neutron Powder Diffraction (NPD). Neutron powder diffraction (NPD) 

measurements on a polycrystalline sample with nominal composition of Co50.15(1)Zn49.85(1), 

which produced the highest yield of -Mn type compound, were performed on the high 

resolution powder diffractometer at the University of Missouri Research Reactor (MURR) 

using a double focusing Si (511) crystal monochromator to select neutrons with a wavelength, 

λ = 1.4803Å.  To obtain sufficient sample for NPD measurements, 1.3 grams of 

polycrystalline Co50.01(1)Zn49.99(1) were loaded in a vanadium sample holder (7.5 cm long; 3.0 

mm diameter). A set of five linear position sensitive detectors was employed to collect a 

series of 19° sections of the diffraction pattern; the full diffraction pattern was measured in 

five steps to a 2θmax value of 108°. This powder diffractometer uses a radial oscillating 

collimator that averages the shadow of the collimator blades at every channel. The large 

detector areas allow very weak magnetic peaks to be detected by neutrons with high 

statistical accuracy. The NPD pattern at 293K was taken in air, whereas the pattern at 500K 

was collected using a high-temperature furnace. We note that the large amount of material 

contained with the high temperature furnace results in a high background in the low-angle 

segment of the patterns. Therefore, the empty furnace background was subtracted from the 

powder diffraction pattern collected for the sample in the high temperature furnace to 

represent the diffraction pattern from the sample only. Analysis of the NPD data was 

performed by the Rietveld method using the program FULLPROF.
[28]

  

3.3.5 Scanning Electron Microscopy (SEM). Characterization was completed using a 

variable pressure scanning electron microscope (Hitachi S-2460N) and Energy-Dispersive 
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Spectroscopy (EDS) (Oxford Instruments Isis X-ray analyzer). Samples were mounted in 

epoxy, carefully polished, and then sputter-coated with a thin layer of carbon prior to loading 

into the SEM chamber. The samples were examined at 20 kV.  Spectra were collected for 

100 seconds.  An Oxford Instruments Tetra backscattered electron (BSE) detector was used 

to image the samples using the BSE signal.  Multiple points were examined in each phase 

within multiple grains of a specimen. Compositional estimates were calculated using 

Oxford’s SEM Quant software to correct intensities for matrix effects.  

3.3.6 Magnetization Measurements. The magnetization measurements were performed 

using a superconducting quantum interference device (SQUID) magnetometer MPMS XL-7, 

and Vibrating Sample Magnetometer (VSM) EV11 manufactured by Quantum Design, Inc. 

on pieces of -Mn type single crystals that were manually selected from the product obtained 

from the loading with 49.85(1) atomic percent Zn.  The SQUID operates over a temperature 

range of 2-300 K and in applied fields of up to 70 kOe. The samples were placed in glass 

capsules for measurement. The VSM was operated from 300K to 900K.  

NPD at 293K also gives magnetic contribution to nuclear Bragg reflections, which 

facilitates refinement of magnetic moments on each atom.  

3.3.7 Electronic Structure Calculations  

Tight-Binding, Linear Muffin-Tin Orbital-Atomic Spheres Approximation (TB-LMTO-

ASA)
[29]

: Calculations of the electronic and possible magnetic structures were performed by 

TB-LMTO-ASA using the Stuttgart code. Exchange and correlation were treated by the local 

density approximation (LDA) and the local spin density approximation (LSDA).
[30]

  In the 

ASA method, space is filled with overlapping Wigner-Seitz (WS) spheres. The symmetry of 

the potential is considered spherical inside each WS sphere and a combined correction is 
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used to take into account the overlapping part. The WS radii are: 1.34 Å for Co; and 1.52 Å 

for Zn. No empty spheres are necessary, and the overlap of WS spheres is limited to no larger 

than 16%.  The basis set for the calculations included Co 4s, 4p, 3d and Zn 4s, 4p, 3d 

wavefunctions.
[31]

  The convergence criterion was set to 0.1 meV.  A mesh of 60 k points in 

the irreducible wedge of the first Brillouin zone was used to obtain all integrated values, 

including the density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) 

curves. 

Vienna ab-initio Simulation Package
[32-35]

 (VASP): Structure optimization and charge 

density calculations
[36-38]

 were completed using VASP, which employs projector augmented-

wave (PAW) pseudopotentials that were adopted with the Perdew-Burke-Ernzerhof 

generalized gradient approximation (PBE-GGA), in which scalar relativistic effects are 

included. For structural optimization, the conjugate gradient algorithm was applied. The 

energy cutoff was 346.1 eV. Reciprocal space integrations were completed over a 9×9×9 

Monkhorst-Pack k-points mesh
[39]

 with the linear tetrahedron method.
[40]

  With these settings, 

the calculated total energy converged to less than 0.1 meV per atom.
 

3.4 Results and Discussion  

According to the Co-Zn phase diagram,
[8]

 -Mn type phases exist between ~49 and 58 

atomic percent Zn, but this range narrows significantly to ~50 atomic percent Zn above 

~920°C.  Although the phase diagram indicates the existence of a “high-temperature ZnCo” 

phase, which may adopt the -brass
[7]

 (cP2 or cI2-type) structure in the range 820-870°C, our 

synthetic approach did not yield anything other than crystalline -Mn type product. Because 

this structure type involves two sites with different multiplicities, i.e., 8c and 12d, elucidation 

of the Co/Zn distribution is warranted. This aspect of the structural chemistry may also 
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influence the bulk magnetic properties. In the course of investigating this Co-Zn phase, we 

identified an exceptional relationship between the structure of -Mn and an extremely 

common intermetallic structure, the cubic Laves phase MgCu2-type. 

3.4.1 Phase Analyses: In accordance with the reported Co-Zn phase diagram, synthetic 

attempts to prepare -Mn type Co-Zn phases yielded mixtures of phases for Co-rich or Zn-

rich loadings.  Only those reactant mixtures that were loaded approximately 50 and 55 

atomic percent Zn yielded single phase, crystalline products. Co-rich loadings produced hcp-

Co particles, which could contain significant fractions of Zn as a substitutional solid solution.  

On the other hand, Zn-rich reactions yielded a -brass Co-Zn phase in addition to a -Mn 

type product.  Table 1 summarizes the synthetic results; the powder X-ray diffraction patterns 

and electron micrographs of selected samples are illustrated in Figures S1 and S2 in 

Supporting Information.   

Table 1. Compositions, phase analyses, lattice constants, and refined compositions for β-Mn type Co8+Zn12- 

phases. PXRD = powder X-ray diffraction; SCXRD = single crystal X-ray diffraction.  

Atomic % 

Zn 

Loaded 

Phases ---------- a (Å) ---------- ---------- Composition ---------- 

(PXRD) (PXRD)
a 

(SCXRD)
a 

(NPD) (SCXRD) (SEM) (NPD) 

35.04(1) β-Mn; 

hcp-Co 

6.315(5)      

40.33(1) β-Mn; 

hcp-Co 

6.319(2) 6.322(1)  Co10.2(4)Zn9.8 Co10.1(2)Zn9.9(2)  

45.06(1) β-Mn; 

hcp-Co 

6.327(4)      

49.85(1) β-Mn 6.329(7) 6.337(6) 
6.3342(1)

b 

6.3547(2)
c 

Co10.0(4)Zn10.0 Co9.8(2)Zn10.2(2) Co10.4(2)Zn9.6(2) 

55.01(1) β-Mn 6.331(6)      

60.03(1) β-Mn; 

γ-brass 

6.339(7) 6.341(2)  Co9.9(4)Zn10.1 Co9.5(2)Zn10.5(2)  

65.10(1) β-Mn; 

γ-brass 

6.344(7) 6.356(3)  Co9.7(2)Zn10.3   
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a
 293 K; Numbers in ( )’s are standard uncertainties using at least two different measurements of similar 

loadings.  
b 

293 K; Numbers in ( )’s are standard uncertainties in the last given digit from standard deviation of Rietveld 

fits.  
c
 500 K; Numbers in ( )’s are standard uncertainties in the last given digit from standard deviation of Rietveld 

fits. 

For the X-ray powder diffraction patterns, all scale factors and lattice parameters were 

refined, whereas the displacement parameters of all atoms were assumed to be isotropic at B 

= 0.6 according to NPD measurement and were not refined.  The resulting profile residuals 

Rp varied between ca. 1.6-2.8 with weighted profile residuals Rwp between ca. 2.2-4.0.  The 

refined lattice parameters for -Mn type Co-Zn phases showed a 0.46(8)% increase 

according to X-ray powder diffraction as the Zn loading increased from 35 to 65 atomic 

percent.  Single crystals extracted from four reaction products showed a similar trend, 

+0.54(6)%. Analysis of samples, whether by refinements from single crystal or neutron 

powder diffraction, or by SEM, all fall within two standard deviations of an equimolar ratio 

of Co:Zn in this phase.  Therefore, -Mn type Co-Zn phases exhibit a small homogeneity 

region centered at 50 mol.% Zn when quenched from 925°C.  From our powder diffraction 

results, the lower bound for Zn content lies between 40-45 atomic percent, whereas the upper 

bound is 55-60 atomic percent.  Results from single crystal diffraction suggest an even 

narrower range (see discussion below). 

Because the published phase diagrams
[7,8,41]

 from the last 25 years show various 

homogeneity widths of this Co-Zn phase region toward lower temperatures, three samples 

loaded with 40, 50, and 60 atomic percent Zn were heated to 1000°C at a rate of 1 C°/min, 

kept for 12 hr, then cooled to 600 °C at 1 C°/min, at which point they were annealed for 3 

weeks.  Upon cooling to room temperature, PXRD patterns showed -Mn type Co-Zn phases 

in all three, with increasing lattice constants (6.3526(1)Å, 6.3570(1)Å, and 6.3601(1)Å) with 
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increasing loaded Zn content.  Moreover, the Zn-richest sample also contained γ-brass-type 

phase; the Co-richest sample indicated hcp-Co; and 50:50 sample was essentially single 

phase. These results confirm that the -Mn-type Co-Zn phase exists over a broad range of 

concentrations as temperature is lowered to 600 °C. 

3.4.2 Structure Determination and Site Preferences.  To obtain further insights into the 

structural features of these -Mn type Co-Zn phases, single crystals were investigated to 

extract elemental distributions and accurate determination of interatomic distances and 

coordination environments.  The results of single crystal diffraction on specimens extracted 

from four distinct loadings are summarized in Tables 2 and 3.  Corresponding anisotropic 

displacement parameters and significant interatomic distances are summarized in Tables S1 

and S2 in Supporting Information. All structures crystallize in the noncentrosymmetric cubic 

space group P4132 (No. 213) with atoms located at the 8c (C3 symmetry) and 12d (C2 

symmetry) sites.  Regardless of refined compositions, the 8c sites are fully occupied by Co 

atoms, whereas the 12d sites accommodate a mixture of Co and Zn atoms.  Therefore, a 

formulation of these phases is Co8+xZn12–x, in which x ranges from ~1.7(2)-2.2(2), to reflect 

this pattern of site occupation.  Before embarking on a discussion of the structural subtleties 

of this Co-Zn phase, however, we have identified an interesting relationship between the 

complex -Mn type structure and that of the cubic Laves phase, MgCu2-type. 

Table 2.  Single crystal crystallographic data for -Mn type Co-Zn phases at 293(2) K. 

Load. Comp. (at. % 

Zn) 
40.33(1) 49.85(1) 60.03(1) 65.10(1) 

Refined Formula Co10.2(2)Zn9.8 Co10.0(2)Zn10.0 Co9.8(2)Zn10.2 Co9.7(2)Zn10.3 

F.W. (g/mol)  1241.39 1242.94 1244.48 1244.88 

F(000) 1138 1140 1142 1142 

a (Å) 6.3220(7) 6.3358(14) 6.3450(7) 6.3555(7) 
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Table 2. continued 

V (Å
3
) 252.68(5) 254.33(10) 255.44(5) 256.71(5) 

dcalc (Mg/m
3
) 8.158 8.115 8.093 8.041 

Abs. Corr. Empirical Empirical Empirical Empirical 

Ext. Coeff. 0.018(2) 0.004(1) 0.014(4) 0.003(1) 

 (mm
−1

) 38.879 38.800 38.856 38.656 

range (deg) 4.56–28.05 4.55–27.99 4.54–27.94 4.54–28.32 

hkl ranges –8 ≤ h,k,l ≤ 8 –8 ≤ h,k,l ≤ 8 –8 ≤ h,k,l ≤ 8 –8 ≤ h,k,l ≤ 8 

No. Refl. (Rint) 1572 (0.0467) 1570 (0.0376) 2216 (0.0287) 2205 (0.0245) 

No. Indep. Refl. 110 109 110 111 

No. Par. 12 12 12 12 

R1; wR2 (all I) 0.0170; 0.337 0.0167; 0.0280 0.0115; 0.0278 0.0146; 0.0290 

Goodness of fit 1.285 1.180 1.358 1.321 

Peak; Hole (e
−
/Å

3
) 0.432; –0.463 0.320; –0.353 0.407; –0.388 0.405; –0.442 

 

Table 3.  Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters of -Mn type 

Co-Zn phases at 293(2) K.  Ueq is defined as one-third of the trace of the orthogonalized Uij tensor (Å
2
). 

Co10.2(2)Zn9.8 

Atom Wyckoff Site Occupancy x y z Ueq 

Zn/Co 12d 0.81(3)/0.19 1/8 0.2031(1) 0.4531(1) 0.0100(3) 

Co 8c 1 0.0649(1) 0.0649(1) 0.0649(1) 0.0072(3) 

Co10.0(2)Zn10.0 

Atom Wyckoff Site Occupancy x y z Ueq 

Zn/Co 12d 0.83(3)/0.17 1/8 0.2030(1) 0.4530(1) 0.0108(3) 

Co 8c 1 0.0648(1) 0.0648(1) 0.0648(1) 0.0081(3) 

Co9.8(2)Zn10.2 

Atom Wyckoff Site Occupancy x y z Ueq 

Zn/Co 12d 0.86(2)/0.14 1/8 0.2030(1) 0.4530(1) 0.0099(2) 

Co 8c 1 0.0648(1) 0.0648(1) 0.0648(1) 0.0073(2) 

Co9.7(2)Zn10.3 

Atom Wyckoff Site Occupancy x y z Ueq 
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Table 3. continued 

Zn/Co 12d 0.86(2)/0.14 1/8 0.2028(1) 0.4528(1) 0.0095(2) 

Co 8c 1 0.0648(1) 0.0648(1) 0.0648(1) 0.0075(3) 



   

 MgCu2-Type (   ̅ ) 

   Mg: 8a;  Cu: 16d 

     “Mg8Cu124” (P4132) 

Mg: 8c;  Cu: 12d;  : 4a 

Co8+xZn12–x (P4132) 

Co: 8c;  Zn/Co: 12d 

   

8a@[(16d)12(8a)4] 8c@[(12d)9(8a)4] 8c@[(12d)9(8a)3] 

  
 

16d@[(16d)6(8a)6] 12d@[(12d)4(8a)6] 12d@[(12d)6+2(8a)6] 

Figure 1. Unit cell and atomic coordination environments showing the relationship between the MgCu2-type, 

cubic Laves phase structure and the -Mn type, Co8+xZn12x.  (Left) MgCu2-type (Mg, green; Cu, gray); (Middle) 

hypothetical Mg8Cu124 (Mg, green; Cu, purple; , white); (Right) -Mn type Co8+xZn12x (Co, green; Zn/Co, 

purple).

-Mn as an Ordered Defect Cubic Laves Phase.  In a tantalizing description of the analogies 

between the structures of -Mn and the molecular solid P4S3, as well as between those of α-

Mn and white phosphorus, Nesper intimated possible relationships between the structures of 
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α-Mn and -Mn and tetrahedral structures.
[42]

  As it turns out, the structure of -Mn type 

Co8+xZn12–x (space group P4132; Pearson symbol cP20) can be derived from the cubic Laves 

phase MgCu2 (space group    ̅ ; Pearson symbol cF24), both of which exhibit some close 

relationships with the diamond structure.  In particular, the Mg atom sites (Wyckoff 

designation 8a) in the cubic Laves phase MgCu2 form precisely a three-dimensional (3-d) 

diamond network.  Within the voids, Cu atoms (Wyckoff designation 16d) form a 3-d 

framework of vertex-sharing tetrahedra, as emphasized in Figure 1.  The formulation of the 

complete cubic unit cell of this cubic Laves phase is, therefore, Mg8Cu16. After transforming 

the unit cell of the Laves phase from (a, b, c) to (–b, a, c) and orderly removal of 4 atoms 

from the 16d (Cu) sites, one from each tetrahedron located around the (revised) coordinates 

(¼, ¼, ¼), (¾, ¾, ¼), (¼, ¾, ¾), and (¾, ¼, ¾), a cubic “Mg8Cu12” unit cell can be created 

with space group P4132 (see also Figure 1).  Here, the Mg and Cu sites become, respectively, 

8c and 12d, and the 4-fold vacant positions are 4a in the non-centrosymmetric space group. 

Relaxation of this hypothetical ordered defect cubic Laves phase structure yields the -Mn 

structure type for Co8+xZn12–x.  We note that the vacant 4a sites are occupied by C atoms in 

Mo3Al2C
[45]

 or N atoms in Mo3Ni2N.
[43]

  

To study further this relationship between the cubic Laves phase (cF24) and -Mn (cP20) 

structure types, a series of hypothetical “Co8Zn12” structures was constructed starting with 

“Co8Zn16” in space group    ̅  and following the algorithm discussed in the previous 

paragraph.  The question becomes, how many distinct ways can one atomic site be removed 

from each of the four tetrahedra formed by the 16d sites?  Because there are 4 tetrahedra, 

each with 4 atomic sites, it might appear that there are 4
4
 = 256 different possibilities.  

However, rotations, reflections, and translations will cause many of these options to be 

http://en.wikipedia.org/wiki/Tetrahedra
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equivalent.  This counting problem can be solved by using Burnside’s lemma,
[44] 

which 

allows enumeration of distinct isomers (“orbits”) in a set of structures that is permuted by a 

group.  For this problem, it turns out that there are 9 distinct solutions, labeled α-ι,
[44]

 which 

are listed and illustrated in Figure S3 of Supporting Information.  For each ordered vacancy 

structure, “Co8Zn12,” a complete structural optimization was carried out using VASP.  Table 

4 lists the total energies per atom relative to the lowest energy case before and after the 

structural relaxation.  The arrangement of vacancies that gives the lowest energy before 

relaxation is model η, the one most closely related to the -Mn type structure, space group 

P4132.  Upon relaxation, the atoms at the 8c sites shift from (0, 0,0) along body diagonals to 

final coordinates (x, x, x; x = 0.0649), whereas the atoms at the 12d sites shift from (⅛, ⅛, ⅜) 

along face diagonals to final coordinates (⅛, y, y+¼; y = 0.2029).  Comparison with the 

crystallographic results in Table 3 indicates excellent agreement between the calculated 

ground state of the ordered defect structure and the experimentally determined parameters of 

-Mn type Co8+xZn12–x.  

Table 4.  Pearson symbols, volume (Å
3
/atom) after relaxation, relative total energies (eV/atom) before and after 

relaxation, and relative electrostatic (“metallic”) energies (eV/atom) before relaxation for the nine ordered 

defect models of “Co8Zn12”. The labels of the models follow the assignment of an analogous problem in Ref. 45. 

Model 
Pearson 

Symbol 

Volume/atom 

(Å
3
) 

ETOT/atom 

(eV)(before) 

ETOT/atom 

(eV)(after) 

EES/atom 

(eV)(before) 

 hR15 12.20 0.4504 0.2292 39.7767 

 mS40 11.59 0.2255 0.2118 15.2145 

 oP10 12.64 0.2130 0.1919 19.4932 

 mS20 12.01 0.3631 0.4215 13.4378 

 aP20 11.71 0.4180 0.1131 56.3823 

 cI40 13.21 0.2349 0.2682 61.3661 

 cP20 11.51 0 0 0 

 mS40 12.43 0.1827 0.1301 17.5775 
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Table 4. continued 

 tP20 12.27 0.1809 0.2374 15.7561 

 

Assessment of the total energies after relaxation reveals that a major driving force for the 

ordering of defects comes from the electrostatic energy between the conduction electrons and 

the arrangement of atomic cores,
[46]

 which gives its lowest value for model η (the -Mn 

arrangement).  This effect also leads to the lowest atomic volume for model η.  Further 

analysis suggests that two-center orbital interactions prefer the alternative models  and , 

both of which show the two highest electrostatic energies.  Since these energy values can be 

dependent on valence electron count, i.e., energy band filling, we are examining the variation 

in defect ordering as a function of electron count, and other structural alternatives to the -

Mn structure type in the Co-Zn and related systems, and will report these results in a 

forthcoming paper. 

    

Figure 2. The crystal structure of -Mn type Co8+x Zn12–x showing (left) four unit cells with 8c–8c and 12d–12d 

connections emphasized and (right) a (001) view emphasizing the coordination polyhedra surrounding the 8c 

(green) and 12d (purple) sites. 

Site Preferences in -Mn type Co-Zn Phases.  An expanded view of the unit cell and 

coordination polyhedra for -Mn type Co8+xZn12–x is shown in Figure 2.  The polyhedral 
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environments for each site in Co8+xZn12–x are Frank-Kasper polyhedra.  The 8c (Co) site is 

surrounded by a distorted icosahedron consisting of 3 other 8c (Co) sites and 9 12d (Zn/Co) 

sites.  On the other hand, each 12d (Zn/Co) site is coordinated by a 14-vertex polyhedron of 6 

8c (Co) and 8 12d (Zn/Co).  Thus, given the refined site occupancies for the 12d sites, each 

8c Co atom is coordinated, on average, by 4.2(2)-4.7(2) Co atoms and 7.8-7.2 Zn atoms, 

whereas each 12d site is surrounded by 7.0(2)-7.5(2) Co atoms and 7.0-6.5 Zn atoms.  Such 

Frank-Kasper polyhedra are signature building blocks of tetrahedrally close packed (tcp) 

solids, which are common among transition metal intermetallics.
[47,48]

  Examples of tcp solids 

include the cubic MgCu2-type and hexagonal MgZn2-type Laves phases as well as the 

structure of α-Mn, which is also called the χ-phase.  These structures, which are influenced 

by their valence electron concentrations or valence electron-to-atom ratios,
[49]

 are composed 

of densely packed tetrahedra.  The -Mn type may also be assigned among the tcp solids, as 

each unit cell contains four distinct [(8c)2(12d)3] trigonal bipyramids (two face-sharing 

tetrahedra) that are linked to each other via additional tetrahedra.  In the series of Co8+xZn12–x 

crystals, the shortest distances occur between neighboring 8c (Co) sites; these are ~2.37 Å, 

which is ~5% shorter than the nearest neighbor Co–Co distances in hcp-Co (~2.50 Å).  The 

8c–12d (Co–Zn/Co) interatomic distances range from 2.59 to 2.70 Å, whereas the 12d–12d 

(Zn/Co–Zn/Co) distances are more uniform, viz., 2.65-2.68 Å.  Both of these distance ranges 

are in line with the six shorter Zn–Zn distances (~2.66 Å) in hcp-Zn.  Moreover, these 

structural features of the Co8+xZn12–x series are similar to the distance relationships in -Mn 

(Mn20), itself, and Re3Fe2.
[43,50-52]

  Other related phases, e.g., Mg3Ru2
[50]

 and Mo3Ni2N
[43]

 

have somewhat different distance relationships (see Table S3 in Supporting Information), 
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which is part of the detailed structural/computational investigation that is currently underway 

for these complex intermetallics. 

Because Co and Zn differ by only approximately 10% in X-ray scattering functions, a 

sample loaded with an equimolar mixture of Co and Zn was prepared for NPD experiments 

as described above. The neutron scattering length for Co (2.49 fm) and Zn (5.68 fm) differ 

significantly. However, since neutron diffraction is also sensitive to magnetic ordering, data 

were taken both above and below the Curie point, i.e., ~420 K (see Figure 3 and subsequent 

section on Magnetic Characterization), yielded structural parameters that concur with the 

results of single crystal X-ray diffraction; these results are summarized in Table 5.  Again, 

the 8c site refined to be fully occupied by Co.  Refinement of the 12d site yielded ~80% Zn 

for an overall composition that is slightly Co-rich, i.e., Co10.4(2)Zn9.6.  Furthermore, as part of 

this refinement, the 12d site was constrained to be fully occupied by a mixture of Co and Zn.  

The average of ten readings from this sample using SEM-EDS is Co10.0(4)Zn10.0(4), which 

agrees well with the NPD refinement, and is consistent with results of single crystal XRD on 

crystalline specimens extracted from a similarly loaded sample.  As expected, the unit cell 

constant and isotropic displacement parameters for the 8c and 12d sites are larger at 500 K 

than at 293 K. NPD refinement also indicated that polycrystalline -Mn type Co10.0(4)Zn10.0(4)  

showed some preferred orientation along the {001} family of directions. 

Table 5. The refined parameters of an equimolar -Mn type Co-Zn phase as determined by Rietveld refinement 

of NPD data at 293K and 500K. Numbers in parentheses are standard uncertainties in the last given digit from 

Rietveld fits. 

293 K  (a = 6.3343(1) Å); Rp = 3.83; Rwp = 5.17; Rexp = 3.16; Bragg-R factor = 4.41; 
2
 for fit = 2.69 

Atom Wyckoff Site Occupancy x y z U (Å)
2
 

Zn/Co 12d 0.80(2)/0.20 1/8 0.2033(1) 0.4532(1) 0.61(3) 

Co2 8c 1 0.0648(1) 0.0648(1) 0.0648(1) 0.63(3) 

Ferromagnetic moment = 0.85(3) µB/Co 
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500 K  (a = 6.3547(2) Å); Rp = 8.00; Rwp = 11.0; Rexp = 4.88; Bragg-R factor = 7.68; 
2
 for fit = 1.86 

Atom Wyckoff Site Occupancy x y z U (Å)
2
 

Zn/Co 12d 0.80(2)/0.20 1/8 0.2028(2) 0.4533(5) 0.94(4) 

Co2 8c 1 0.0662(5) 0.0662(5) 0.0662(5) 0.98(4) 

       

 

Figure 3. Neutron diffraction 

profile fits from Rietveld method 

using FULLPROF for Co50Zn50 (a) 

nuclear and magnetic Bragg 

reflections at 293 K and (b) nuclear 

Bragg reflections at 500 K. The 

observed data points are given by 

red circles, the calculated intensity 

pattern by black solid lines and 

corresponding residual (i.e. the 

difference between observed and 

calculated pattern) by the blue 

curve at the bottom of the fit. The 

green vertical upper tick marks 

reflect the Bragg positions for 

nuclear reflections and lower green 

tick give the Bragg positions for 

magnetic reflections. 

As part of a brief discussion of the structural chemistry of α-Mn and β-Mn structures, 

Nesper suggested that the majority (12d) site in β-Mn might have slightly cationic character 

and the minority (8c) site has slightly anionic character.
[42,53]

  Evaluation of charge densities 

at the 8c and 12d sites using a Bader analysis for various β-Mn model structures with late 3d 

metal atoms (Co-Zn) supports Nesper’s suggestion (see Table S4 in Supporting Information) 

by yielding the 8c sites as valence electron rich and the 12d sites as valence electron poor. 

Nonetheless, a qualitative assessment of site preferences using atomic electronegativities 

remains unclear for the Co-Zn system.  In particular, depending upon the electronegativity 

scale, there is no clear differentiation between Co and Zn.  According to Pauling’s scale, 

which used bond enthalpies to estimate electronegativities,
[54]

 and Allen’s configuration 
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energies,
[55]

 Co (1.88; 10.85 eV) is more electronegative than Zn (1.65; 9.39 eV).  On the 

other hand, Mulliken’s scale or Pearson’s absolute electronegativities,
[56]

 which are derived 

from gas-phase ionization energies and electron affinities, indicate the opposite with Zn (4.45 

eV) more electronegative than Co (4.27 eV).  Nevertheless, in such an intermetallic 

compound, metallic properties would preclude any significant charge transfer between atoms, 

but does not discount a redistribution of orbital occupations from the ground state gaseous 

atoms. In fact, relative atomic sizes as reflected in 12-coordinate metallic radii may be more 

discriminating for observed β-Mn type examples.  The 8c site, which is fully occupied by Co 

(1.25 Å) in Co8+xZn12–x, Ru (1.34 Å) in Mg3Ru2, and Fe (1.26 Å) in Re3Fe2, attracts the 

smaller atom, whereas Zn (1.37 Å), Mg (1.60 Å), and Re (1.37 Å) fill the majority 12d sites. 

Only in Mg3Ru2 does the electronegativity argument parallel the size argument.  Therefore, 

quantum chemical calculations are warranted to examine possible driving forces arising from 

the electronic structure that influence the structural stability and site preferences in β-Mn 

type Co8+xZn12–x. 

3.4.3 Electronic Structure and Chemical Bonding.  To examine possible electronic 

influences for the site preferences in Co8+xZn12–x, VASP calculations were employed to 

evaluate the total energies and magnetic moments of five different cases (I-V) of -Mn type 

Co10Zn10 (x = 2) with various elemental distributions on the 8c and 12d sites.  For each case, 

four distinct arrangements were calculated.  The average relative total energies, their 

corresponding standard deviations, and the ranges of magnetic moments per formula unit are 

listed for each case in Table 6 (specific results are summarized in Table S5 in Supporting 

Information).  Among these five cases, expressed as (8c)8(12d)12, I most closely resembles 

the experimental results with Co atoms filling the 8c sites and III is closest to a statistical 
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occupation of both crystallographic sites.  According to the relative total energies in Table 6, 

the experimental result with Co fully occupying the 8c sites clearly gives the overall lowest 

energy.  A linear regression analysis using the total energies of Models I-IV estimate a rise in 

total energy by ~44(2) meV/Zn atom in the 8c site.  Fluctuations in the tabulated energies 

originate from the specific atomic locations within each model. Somewhat surprising, 

however, are the comparable total energies between Models IV and V, a result that arises 

from similar coordination environments in these structural models. 

Table 6. Relative total energies (ΔE; meV/unit cell) with respect to the lowest energy model for various atomic 

distributions in -Mn type Co10Zn10. 

Model: I II III IV V 

Formulation: 
8c: (Co)8 (Co6Zn2)  (Co4Zn4)  (Co2Zn6)  (Zn8)  

12d: (Co2Zn10) (Co4Zn8) (Co6Zn6) (Co8Zn4) (Co10Zn2) 

ΔE (meV / f.u.) 0(4) 111(4) 195(12) 264(30) 264(4) 

μ (μB / f.u.) 12.813.0 11.812.4 12.413.3 13.914.1 14.2 

 

To gain further insights into the electronic influences on the site preference problem and 

phase width, as well as possible magnetic properties of the -Mn type Co8+xZn12–x, TB-

LMTO-ASA calculations were carried out to evaluate and analyze the electronic DOS.   With 

the local density approximation (LDA), the corresponding DOS curve for a hypothetical 

“Co8Zn12” (216 valence electrons) is illustrated in Figure 4, which emphasizes contributions 

from the Co valence orbitals (a more detailed orbital decomposition of the DOS curve is 

shown in Figure S4 of Supporting Information).  Most of the DOS curve between –3 eV and 

+1 eV (0 eV = the Fermi level for 216 valence electrons) belongs to the Co 3d band; below –

3 eV is a ~5 eV tail comprising a combination of Co and Zn 4s orbital contributions.  The Zn 

3d orbitals create a narrow band located ~7-8 eV below the Fermi level. In the LDA DOS 
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curve, the Co 3d band exhibits little fine structure except for a noticeable pseudogap at 

approximately –0.5 eV (204 valence electrons) and a sharp, intense peak, which is ~0.1 eV 

wide, just below 0 eV.  According to the corresponding COHP curves, the wavefunctions 

contributing to this peak have strong 8c–8c (Co–Co) antibonding character.  The pseudogap 

at –0.5 eV is associated with optimization of 8c–12d (Co–Zn) orbital interactions in this 

structure.  On the other hand, the LDA band structure (shown in Figure S5 of Supporting 

Information) reveals that the peak involves Co 3d bands that are relatively flat (nearly 

dispersionless) near the Brillouin zone boundaries (near point M and along the direction M-

R).  These features of the LDA-DOS arise from structural influences on the orbital 

interactions in -Mn type Co8+xZn12–x.  The Fermi level for Co10Zn10 (210 valence electrons) 

is both located on the lower energy edge of the peak just below 0.0 eV.  Evaluation of the 

Stoner condition using the Co partial DOS gives N(Co)I(Co) = 1.56; N(Co) = 3.18 eV
1

, I(Co) 

= 0.49 eV.
[57,58]

 Thus, according to the LDA-DOS curves, -Mn type Co8+xZn12–x (x ~ 2) is 

susceptible toward either a possible structural distortion by disrupting the antibonding 

CoCo orbital interactions at the Fermi level or toward ferromagnetism by breaking the spin 

degeneracy.
[59]

 To a first approximation, the Stoner condition for ferromagnetism is satisfied. 
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Figure 4. Partial DOS curves and –COHP curves of 

“Co8Zn12” obtained from non-spin-polarization (LDA). 

(+ is bonding/ − is anti-bonding, EF for 216e
–
 is set to 

zero.) 

Figure 5. Partial DOS curves of “Co8Zn12” obtained 

from spin-polarization (LSDA). EF for 216e
–
 is set to 

zero. 

Applying spin polarization via the local spin density approximation (LSDA) splits the 

DOS curves for the spin-up and spin-down wavefunctions, as seen in Figure 5.  The 

corresponding Fermi levels for 210 and 216 valence electrons are shifted away from the 

peaks in the DOS curves, and closely approach the pseudogap in the minority spin DOS 

curve, at which the 8c–12d (Co–Zn) orbital interactions in this manifold of wavefunctions are 

optimized and occupation of 8c–8c antibonding states is avoided (see Figure S6 in 

Supporting Information).  Therefore, the contribution from 8c–8c Co–Co orbital interactions 

constitute ca. 20.5% of the summed integrated COHP values over all interatomic contacts 

less than 4.2 Å in Co10Zn10.  The 8c–12d metal-metal interactions contribute ca. 46% (see 

Table S6 in Supporting Information).  The DOS also show peaks located at ca. –0.85 eV and 

+0.3 eV, respectively, in the majority and minority spin curves, features which arise from 

similar band dispersions seen in the LDA-DOS and LDA band structure (see also Figure S5 

in Supporting Information).  Integration of the spin-up and spin-down DOS curves yields a 
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total magnetic moment of 11.9 μB per formula unit for Co10Zn10.  Analysis of local moments 

reveals essentially no net unpaired spins at each Zn atom, so the result corresponds to 1.19 μB 

per Co atom.  Furthermore, the majority spin Co 3d band is not completely filled at the Fermi 

level, so the result also indicates soft ferromagnetic behavior.  

Table 7. Magnetic data of Co10.0(1)Zn10.0 from magnetization measurements, NPD, and theoretical calculations. 

 μSAT at 2 K 

(μB/f.u.) 

μSAT at 300 

K (μB/f.u.) 

μEFF 

(μB/f.u.) 

μ(Co) (μB) 
TCurie (K) 

SQUID,VSM 13.0(2) 10.3(2) 8.5(2)   418(15) 

NPD    0.85(3) ~420 

Theory 11.9      

 

3.4.4 Magnetization Measurements. The isothermal magnetization curves of -Mn type 

Co10.0(2)Zn10.0 (loaded as 49.85(1) atomic percent Zn) measured at 2 K and 300 K indicate the 

sample to be ferromagnetic.  Table 7 summarizes the results of this magnetization study. The 

saturation is achieved at 10.0 kOe at 2 K.  The saturation moments are obtained from 

hysteresis 13.0(2) μB/f.u. at 2 K and 10.3(2) μB/f.u. at 300 K.
[60]

 The saturation moment 

observed at 2 K agrees well with the value of the total magnetic moment per unit cell 

(formula unit) calculated by electronic structure methods.  Moreover, temperature-dependent 

magnetic susceptibility measurements from 300 K to 600 K confirm the ferromagnetic nature 

of the phase Co10.0(2)Zn10.0 with a Curie temperature of 418(15) K (see Table 7 and Figure 6 

below). 
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Figure 6. (Left) Hysteresis curves at 2 K and 300 K and (right) m


(T) curve measured in 10 kOe field for β-

Mn type Co10(2)Zn10.  The corresponding magnetization vs. temperature curve in 10kOe field is shown in Figure 

S7 in Supporting Information.   

From NPD, the magnetic structure of as-loaded Co10.0(1)Zn10.0 was refined in the space 

group   ̅, with a refined composition Co10.4(2)Zn9.6.  Modeling of the magnetic intensities at 

293 K revealed a ferromagnetic structure giving a local Co moment of 0.85(3) µB with the 

direction at each Co atom pointing along the crystallographic c-direction, and a total effective 

moment of 8.8(4) µB.  This value agrees well with an effective moment of 8.5(2) µB obtained 

from a linear Curie-Weiss fit of the magnetic susceptibility data evaluated between 450 K 

and 600 K. In addition, from the NPD magnetization measurement, the Curie point is around 

420 K, which is consistent with the magnetic measurement by VSM. 

Taking the magnetization study and calculated electronic structure into account, the 

magnetic behavior of -Mn type Co8+xZn12–x (x ~ 2) is best described by local moments 

located at the Co atoms interacting via electrons in the conduction band.  The absence of 

temperature-independent Pauli paramagnetism above the Curie point of 420 K, and the 

presence of both Curie-Weiss (linear) high temperature behavior and the split flat-band 

regions on the Brillouin zone boundaries in the electronic band structure point toward this 

local moment behavior, even though the Stoner condition is well met by the LDA-DOS curve 

for Co8+xZn12–x (x ~ 2).  To gain a better understanding of the structural-magnetic 
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relationships in these Co-Zn and related -Mn type systems, semi-empirical DFT+U
[61]

 

methods will be employed to examine how the orbital overlaps and electron-electron 

interactions affect the band structure and electronic distributions in these systems. 

3.5 Conclusions   

-Mn type Co8+xZn12–x (1.7(2) < x < 2.2(2)) phases were synthesized and structurally 

characterized. They exhibit a small homogeneity width with Co atoms exclusively occupying 

the 8c sites in the noncentrosymmetric cubic structure.  Moreover, the magnetic properties of 

a sample analyzed as Co10.0(2)Zn10.0, i.e., equiatomic in Co and Zn, show it to be a high-

temperature, ferromagnetic material with a Curie point of 420 K. First principles electronic 

structure calculations substantiate the ferromagnetic ground state and indicate that the 

saturation magnetization is derived essentially from local moments at the Co sites interacting 

via the conduction electrons.  The binary -Mn type structure of Co8+xZn12–x can be derived 

from the cubic Laves phase structure, MgCu2-type, by creating ordered vacancies in the 

majority atom (Cu) positions.  The arrangement of these vacancies is driven primarily by 

minimizing the electrostatic energy between the conduction electrons and the positive nuclei.  

This structural analysis demonstrates a significant relationship between -Mn type structures 

and diamond-like lattices, and is providing greater insights into the complex structures of 

both -Mn and -Mn type structures.
[53]
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3.8 Supporting Information 

Tables of anisotropic temperature factors and significant interatomic distances of -Mn type 

Co8+xZn12–x single crystals, distance comparison among various -Mn type structures, results 

of a Bader charge analysis, specific energies and magnetic moments from Co10Zn10 models, 

integrated COHP values of Co10Zn10, as well as figures of powder X-ray diffraction, electron 

micrographs, structures of nine defect cubic Laves phases, partial DOS curves and band 

structures for “Co8Zn12”, and magnetization vs. temperature curve for Co10.0(2)Zn10.0 are 

included. 

Table S1. Anisotropic displacement parameters (in Å
2
) for four -Mn type Co-Zn single 

crystals.  

 
Co10.2(2)Zn9.8 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0084(3) 0.0084(3) 0.0133(4) –0.0017(2) 0.0017(2) –0.0004(3) 

Co1 0.0084(3) 0.0084(3) 0.0133(4) –0.0017(2) 0.0017(2) –0.0004(3) 

Co2 0.0072(3) 0.0072(3) 0.0072(3) 0.0001(2) 0.0001(2) 0.0001(2) 

Co10.0(2)Zn10.0 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0093(3) 0.0093(3) 0.0139(4) 0.0017(2) –0.0017(2) –0.0005(3) 

Co1 0.0093(3) 0.0093(3) 0.0139(4) 0.0017(2) –0.0017(2) –0.0005(3) 

Co2 0.0081(3) 0.0081(3) 0.0081(3) 0.0001(2) 0.0001(2) –0.0001(2) 

Co9.8(2)Zn10.2 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0085(2) 0.0085(2) 0.0126(3) –0.0012(1) 0.0012(1) –0.0007(2) 

Co1 0.0085(2) 0.0085(2) 0.0126(3) –0.0012(1) 0.0012(1) –0.0007(2) 

Co2 0.0073(2) 0.0073(2) 0.0073(2)  0.0001(1) 0.0006(1)  0.0001(1) 
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Co9.7(2)Zn10.3 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0082(2) 0.0082(2) 0.0121(3) –0.0010(1) 0.0010(1) –0.0005(2) 

Co1 0.0082(2) 0.0082(2) 0.0121(3) –0.0010(1) 0.0010(1) –0.0005(2) 

Co2 0.0075(3) 0.0075(3) 0.0075(3) 0.0001(1) 0.0001(1) 0.0001(1) 

 

Table S2. Interatomic distances for four -Mn type Co-Zn single crystals.  

   

Atom 1 Atom 2 C.N. 

Distances 

(Å) 
Co9.7Zn10.3 

Distances 

(Å) 
Co9.8Zn10.2 

Distances 

(Å) 
Co10.0Zn10.0 

Distances 

(Å) 
Co10.2Zn9.8 

Distances 

(Å) 
Average 

12d 

(Co1|Zn1) 

12d 

(Co1|Zn1) 

4 

2 
2 

2.6542(4) 

2.6617(5) 
3.2703(6) 

2.6596(7) 

2.6684(6) 
3.2886(7) 

2.6632(4) 

2.6731(5) 
3.2827(6) 

2.6666(6) 

2.6801(5) 
3.2889(7) 

2.661(5) 

2.671(8) 
3.283(9) 

12d 
(Co1|Zn1) 

8c(Co2) 

2 

2 

2 

2.5852(5) 

2.6332(6) 

2.6858(6) 

2.5914(10) 

2.6383(11) 

2.7004(7) 

2.5948(6) 

2.6423(6) 

2.6953(5) 

2.6001(6) 

2.6453(7) 

2.6994(6) 

2.593(6) 

2.640(5) 

2.695(7) 

8c(Co2) 8c(Co2) 
3 
1 

2.3610(6) 
4.1577(7) 

2.3661(6) 
4.1808(9) 

2.3698(3) 
4.1720(6) 

2.3737(4) 
4.1791(7) 

2.368(5) 
4.172(9) 

Table S3. Comparison of interatomic distances among different -Mn and stuffed -Mn type 

structures.  

 

Atom 1,2 
Coordination 

Number 

Distances (Å) 

Mg3Ru2 

Distances (Å) 

Fe2Re3 
Distances (Å) -

Mn 

Distances (Å) 

Mo3Ni2N 

Distances(Å) 

Co10(2)Zn10.0 

12d, 12d  

4 

2 

2 

2.9251(14) 

2.8859(13) 

3.5776(4) 

2.7179(30) 

2.6618(29) 

3.3131(49) 

2.6459(8) 

2.6723(10) 

3.2707(10) 

2.7758(6) 

2.8196(3) 

3.4404(6) 

2.6632(4) 

2.6731(5) 

3.2827(6) 

12d, 8c 

2 

2 

2 

2.9116(9) 

2.8196(10) 

2.9635(8) 

2.5793(33) 

2.7367(37) 

2.7349(29) 

2.5761(7) 

2.6343(8) 

2.6795(7) 

2.7423(8) 

2.7306(8) 

2.8177(7) 

2.5948(6) 

2.6423(6) 

2.6953(5) 

8c, 8c 
3 

1 

2.5538(5) 

4.7755(4) 

2.4177(27) 

4.1430(37) 

2.3635(6) 

4.1260(9) 

2.4692(9) 

4.4135(9) 

2.3698(3) 

4.1720(6) 

 

Table S4.  Bader analysis of local atomic charges depending on average valence electron 

count for various hypothetical 3d metal -Mn-type structures. 
 

 # Valence e–   12d sites   8c sites 

“Co20” 9.0 Co: +0.069(2) Co: –0.104(2) 

“Cu8Co12” 9.8 Co: +0.083(3) Cu: –0.127(1) 

“Ni20” 10.0 Ni: +0.045(1) Ni: –0.067(1) 

“Co8Cu12” 10.2 Cu: +0.030(3) Co: –0.042(4) 

“Cu8Ni12” 10.4 Ni: +0.014(1) Cu: –0.071(2) 

“Ni8Cu12” 10.6 Cu: +0.081(2) Ni: –0.067(2) 

“Co8Zn12” 10.8 Zn: +0.124(3) Co: –0.186(3) 

“Cu20” 11.0 Cu: +0.014(1) Cu: –0.022(1) 

“Ni8Zn12” 11.2 Zn: +0.164(3) Ni: –0.246(2) 
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Table S5. Calculated total energies and magnetic moments for four different atomic coloring 

cases of the five different models of Co10Zn10: I, “Co8Co2Zn10”; II, “Co6Zn2Co4Zn8”; III, 
“Co4Zn4Co6Zn6”; IV, “Co2Zn6-Co8Zn4”; and V, “ Zn8Zn2Co10”. 

E(eV) “Co8Co2Zn10” “Co6Zn2Co4Zn8” “Co4Zn4Co6Zn6” “Co2Zn6Co8Zn4” “Zn8Zn2Co10” 

Case 1 –63709.6344 –63709.5236 –63709.4516 –63709.3346 –63709.3661 

Case 2 –63709.6344 –63709.5152 –63709.4387 –63709.3922 –63709.3661 

Case 3 –63709.6269 –63709.5211 –63709.4384 –63709.3513 –63709.3738 

Case 4 –63709.6344 –63709.5252 –63709.4219 –63709.3964 –63709.3660 

Avg. –63709.6325 –63709.5213 –63709.4377 –63709.3685 –63709.3680 

ΔE (meV) 0(4) 111(4) 195(12) 264(30) 264(4) 

 

Mag. Mom. 

(uB/cell) 
“Co8Co2Zn10” “Co6Zn2Co4Zn8” “Co4Zn4Co6Zn6” “Co2Zn6Co8Zn4” “Zn8Zn2Co10” 

Case 1 12.83 12.13 13.30 14.08 14.25 

Case 2 12.83 11.79 12.44 13.89 14.25 

Case 3 13.04 11.98 13.87 13.95 14.16 

Case 4 12.83 12.44 12.37 13.89 14.20 

Ranges 12.83-13.04 11.79-12.44 12.37-13.87 13.89-14.08 14.16-14.25 

 

Table S6. ICOHP values for “Co8Zn12”and “Co10Zn10” from LMTO-LDA and LMTO-LSDA 

calculations. 
ICOHP in LDA 

Atom[1,2] Distance(Å) 
Coordination 

Number 
“Co8Zn12 ” “Co10Zn10” 

% in 

“Co8Zn12 ” 

% in 

“Co10Zn10” 

8c-8c 
2.3676 
4.1724 

3 
1 

22.24 
0.05 

16.37 
0.07 

22.40 
0.05 

16.05 
0.07 

8c-12d 

2.5928 

2.6398 
2.6952 

2 

2 
2 

15.74 

13.15 
14.67 

18.26 

17.55 
16.70 

15.84 

13.23 
14.75 

18.26 

17.21 
16.27 

12d-12d (s,p) 

2.6609 

2.6708 

3.2826 

4 

2 

2 

20.39 

10.52 

2.61 

20.21 

9.84 

2.73 

20.52 

10.58 

2.63 

19.81 

9.65 

2.68 

 

ICOHP in LSDA 

 

Atom[1,2] Distance(Å) 
Coordination 

Number 
“Co8Zn12 ” “Co10Zn10” 

% in 

“Co8Zn12 ” 

% in 

“Co10Zn10” 

8c-8c 
2.3676 
4.1724 

3 
1 

22.38 
0.05 

21.04 
0.03 

22.57 
0.05 

20.54 
0.03 

8c-12d 

2.5928 

2.6398 
2.6952 

2 

2 
2 

15.48 

13.28 
14.24 

17.02 

14.76 
15.20 

15.61 

13.39 
14.36 

16.62 

14.41 
14.84 

12d-12d (s,p) 

2.6609 

2.6708 

3.2826 

4 

2 

2 

20.47 

10.66 

2.61 

20.82 

10.74 

2.81 

20.64 

10.75 

2.63 

20.33 

10.49 

2.74 
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Figure S1. Powder X-ray diffraction patterns for various Co-Zn samples examined using Co 

and Cu radiation. 

Co radiation: 

Co60Zn40 

 

 

Co50Zn50 

 

Co40Zn60 
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Figure S1 continued 
Cu radiation: 
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Figure S1 Continued 
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Figure S2.  Scanning Electron Micrographs of three Co-Zn samples. 

 

Co60Zn40   Co50Zn50   Co40Zn60 
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Figure S3. Nine cases of defect cubic Laves phase structures (Co8Zn124) before and after 

structural optimization using VASP. 

Before VASP optimizations:                                                       

 

After VASP optimizations: 
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Figure S4. Partial DOS curves showing valence s, p, d contributions from Co and Zn atoms 

in -Mn-type “Co8Zn12” obtained from LDA and LSDA methods. 

 

                          DOS-LDA                                                                      DOS-LSDA 

Figure S5. Band structures calculated for “Co8Zn12” using LDA and LSDA methods.  The 

dispersionless bands leading to sharp peaks in the DOS curves near the Fermi level are 

shaded.  Fermi levels for “Co8Zn12” (dashed red line) and Co10Zn10 (dashed blue line) are 

noted. 
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Figure S6. COHP curves for 8c–8c, 8c–12d, and 12d–12d contacts in “Co8Zn12” from 

LMTO-LSDA calculations. 

 

Figure S7. Magnetization vs. temperature from 2 K to 300 K at 10 kOe for -Mn-type 

Co10.0(2)Zn10.0. 
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CHAPTER 4 

New Co-Pd-Zn -Brasses with Dilute Ferrimagnetism and Co2Zn11 

Revisited:  Establishing the Synergism between Theory and Experiment 
 

Modified from a publication in Chemistry of Materials  

(Chem. Mater. 2014, 26, 2624) 

 

Weiwei Xie and Gordon J. Miller* 

Department of Chemistry, Iowa State University and Ames Laboratory, US-DOE 

Ames, Iowa, 50011 USA 

4.1 Abstract 

A synergism between electronic structure theory and the targeted synthesis of new ternary -

brass compounds is demonstrated in the Co-Zn system.  Co2Zn11, which adopts a cubic -

brass structure, is shown to be at the Zn-rich end of a homogeneity width that ranges from 

15.4 to 22.1 atomic percent Co.  Four samples were examined by single crystal diffraction, 

all of which crystallize in space group 43I m with the lattice parameter ranging from 

8.9851(1)-8.8809(1) Å as Co content increases.  In the 26-atom -brass clusters, Co atoms 

preferentially occupy the outer tetrahedron (OT) sites, and then replace Zn atoms at the 

octahedron (OH) sites at higher Co concentrations.  In addition, vacancies occur on the inner 

tetrahedron (IT) sites.  The electronic structure of Co2Zn11 shows two distinct pseudogaps 

near the Fermi level: one at 292 valence electrons per primitive unit cell; the other centered 

around 304 valence electrons per primitive unit cell.  Using molecular orbital arguments 

applied to the body-centered packing of the 26-atom Co4Zn22 -brass cluster, these 

pseudogaps arise from (i) splitting among the valence s and p orbitals, which gives rise to the 

Hume-Rothery electron counting rule, and (ii) splitting within the manifold of Co 3d orbitals 

via Co–Zn orbital interactions.  Co2Zn11 is Pauli paramagnetic, although the density of states 
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at the Fermi level is large, whereas Curie-Weiss behavior emerges for higher Co 

concentrations.  The electronic density of states curve of Co2Zn11 suggests that the 

pseudogap(s) may be accessed by targeted substitution of either Co or Zn by Pd, which has 

similar size and electronegativity to Zn.  Inspired by the electronic structure of Co2Zn11, Pd-

doped -brass compounds are designed and two compounds were obtained: Co0.92(2)Pd1.08Zn11 

and Co2.50(1)Pd2.50Zn8.  The site preferences for Co and Pd can be rationalized by electronic 

structure calculations.  The densities of states reveal that Co 3d states are the major 

contributors near their Fermi levels, with the Pd 4d band lying below by 2-3 eV.  The 

magnetic properties of these Co-Pd-Zn -brasses become quite different from Co2Zn11. A 

giant magnetic moment on Co atom is induced by the Pd atom, and Co2.50(1)Pd2.50Zn8 shows 

magnetization consistent with a dilute ferrimagnet. First-principles calculations are employed 

for two different models of 26-atom -brass clusters, the results of which indicate that intra-

cluster Co–Co exchange is ferromagnetic, whereas inter-cluster Co–Co exchange is 

antiferromagnetic.  These different magnetic exchange interactions provide rationalization 

for the high-temperature magnetization behavior of this phase. 

4.2 Introduction 

Complex metallic alloys (CMAs) generate chemical, physical, metallurgical, and engineering 

interest for their structural complexity, solid solution behavior, and physical features 

different from those of normal metallic alloys.
[1]

 They are generally characterized by 

extremely large unit cells containing tens to thousands of atoms that condense into a packing 

of well-defined clusters. These clusters often display partial chemical disorder and/or ordered 

vacancies, which can also influence thermoelectric characteristics of CMAs.
[2]

 Their 

electronic structures are frequently characterized by pseudogaps or, perhaps, even small gaps 
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at the corresponding Fermi levels, features which create unusual electronic transport 

mechanisms when compared to normal metals.
[3]

 The stability ranges of particular families of 

CMAs are frequently identified by specific electron-to-atom (e/a) ratios, which are generally 

called Hume-Rothery rules and validated by the presence of pseudogaps.
[3]

  Among the 

numerous complex intermetallic structures known, the -brasses have arisen as a superb 

testing ground for chemical and theoretical investigations from which to understand the 

unusual chemistry and physics of CMAs.
[4]

  

The structures of -brasses consist of a body-centered cubic packing of 26-atom clusters 

built of four concentric atomic shells: (i) an inner tetrahedron (IT); (ii) an outer tetrahedron 

(OT); (iii) an octahedron (OH); and (iv) a distorted cuboctahedron (CO).  Mizutani has 

identified three groups of -brasses according to their constituent elements: (I) a monovalent 

noble metal with a polyvalent metal or metalloid whose valency is well defined, e.g., Cu5Zn8 

and Cu9Al4; (II) a 3d metal (V, Mn, Fe, Co, Ni) with either a divalent (Be, Zn, Cd) or 

trivalent (Al, In) metal; and (III) non-transition metals.
[3]

  Group I -brasses follow the 

Hume-Rothery valence electron counting rule exceedingly well, existing for e/a = 21/13 if 

just the valence s and p electrons are considered, whereas those in Group III do not obey the 

“rule”.  However, even systems in Group I exist over a range of e/a values, such as -brasses 

in the Cu-Zn system, which has been determined by neutron diffraction to occur for 1.57(3)-

1.68(3) (21/13 = 1.62). On the other hand, evaluation of e/a values for the Group II -brasses 

requires knowing the valence electrons contributed by each 3d metal, values which remains 

controversial. Thus, electronic structure calculations are valuable aids to interpreting the 

stability of these Hume-Rothery phases.
[3,5]
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Using the Group I -brasses, Mizutani has demonstrated how a pseudogap is generated in 

the electronic density of states (DOS) curves by the interaction between nearly free electron 

states at the Fermi surface (Fs) which have wavevectors that are nearly located on Brillouin 

zone (Bz) surfaces associated with the structure.
[6]

 These interactions create stationary waves, 

and the corresponding wavevectors G are called critical reciprocal lattice vectors.  Moreover, 

this phenomenon on the DOS curves is called a FsBz-induced pseudogap.  To create the 

energetic driving force for phase stability, the pseudogap must be sufficiently deep, and its 

width should justify the phase widths observed in CMAs.  For Group I -brasses in particular, 

Mizutani has also shown that the critical wavevectors occur for |G|
2
 = 18, which include the 

sets of {330} and {411} lattice planes, and from which the e/a value of 1.60 emerges, in 

agreement with the Hume-Rothery rule. A similar analysis applied to the Group II -brasses 

Co2Zn11 and Fe2Zn11 indicates that the FsBz interactions involving |G|
2
 = 18 and 22 occur so 

as to avoid the 3d band of Co or Fe.  These interactions form bonding and antibonding states 

near the bottom and top, respectively, of the 3d band, and are called d-state mediated FsBz 

interactions.
[7,8]

 The corresponding e/a values of 1.73 for Co2Zn11 and 1.80 for Fe2Zn11 lead 

to the valences of Co and Fe to be 0.26 and 0.70, respectively.  However, a clear 

understanding of the possible phase widths in these Group II -brasses remains elusive, and 

some features of the DOS curve of Co2Zn11 suggest the possibility for magnetic properties of 

suitably doped phases.  Thus, with these goals in mind, we have undertaken a thorough 

crystallographic investigation of the Co-Zn -brass region, and, with the aid of electronic 

structure calculations, have proposed a pattern of chemical substitutions that has led to the 

discovery of unprecedented ferrimagnetic -brasses. 
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4.3 Experiments 

4.3.1 Phase Analysis: All samples were examined by powder X-ray diffraction for 

identification and phase purity on a STOE WinXPOW powder diffractometer employing Cu 

radiation (K Å). The scattered intensities were recorded as a function of Bragg 

angle (2) using a scintillation detector with a step size of 0.03° in step scan mode, ranging 

from 0° to 130°. The lattice parameters were refined by full-profile Rietveld refinements
[9]

 

using LHPM RIETICA
[10]

 from reflection peaks between 5° and 90° in 2θ.  

4.3.2 Structure Determination: Single crystal data were measured using a Bruker Smart 

Apex CCD diffractometer with Mo K radiation (λ = 0.71073 Å). Data were collected over a 

full sphere of reciprocal space with 0.5° scans in ω with an exposure time of 10s per frame. 

The 2θ range extended from 6° to 64°.
[11]

 The SMART software was used for data 

acquisition. Intensities were extracted and corrected for Lorentz and polarization effects with 

the SAINT program. Empirical absorption corrections were accomplished with SADABS, 

which is based on modeling a transmission surface by spherical harmonics employing 

equivalent reflections with I > 3σ(I).
[12]

 With the SHELXTL package, the crystal structures 

were solved using direct methods and refined by full-matrix least-squares on F
2
.
[13,14]

 Since 

mixed site occupancies are prevalent in these phases, different permutations and 

combinations were tried to get the best refinement results and the refined statistical 

agreements were tested using the Hamilton test.
[15]

 All crystal structure drawings were 

produced using the program Diamond.
 [16] 

 

4.3.3 Scanning Electron Microscopy (SEM). Characterization was completed using a 

variable pressure scanning electron microscope (JEOL 5610v) and Energy-Dispersive 

Spectroscopy (EDS). Samples were mounted in epoxy, carefully polished, and then sputter-
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coated with a thin layer of carbon prior to loading into the SEM chamber. The samples were 

examined at 20 kV.  Spectra were collected for 60 seconds.  An Oxford Instruments Tetra 

backscattered electron (BSE) detector was used to image the samples using the BSE signal.  

Multiple points were examined in each phase within multiple grains of a specimen. 

Compositional estimates were calculated using Oxford’s SEM Quant software to correct 

intensities for matrix effects.  

4.3.4 Magnetization Measurements. The magnetization measurements were performed 

using a superconducting quantum interference device (SQUID) magnetometer MPMS XL-7, 

and Vibrating Sample Magnetometer (VSM) EV11 manufactured by Quantum Design, Inc. 

on pieces of -brass type single crystals.  Measurements using the SQUID were performed 

over a temperature range of 2-300 K and in applied fields of up to 70 kOe. The samples were 

placed in glass capsules for measurement.  Measurements using the VSM were operated from 

300K to 700K at 10kOe.  

4.3.5 Electronic Structure Calculations.  

Tight-Binding, Linear Muffin-Tin Orbital-Atomic Spheres Approximation (TB-LMTO-

ASA): Calculations of the electronic and possible magnetic structures were performed by 

TB-LMTO-ASA using the Stuttgart code.
[17]

 Exchange and correlation were treated by the 

local density approximation (LDA) and the local spin density approximation (LSDA).
[18]

 In 

the ASA method, space is filled with overlapping Wigner-Seitz (WS) spheres. The symmetry 

of the potential is considered spherical inside each WS sphere and a combined correction is 

used to take into account the overlapping part. The WS radii were: 1.54Å (Co), 1.49Å (Zn) 

and 1.51Å (Pd). No empty spheres were necessary in the -brass structures, and the WS 

sphere overlaps were limited to no larger than 16%.  The basis set for the calculations 



70 

 

included Co (4s, 4p, 3d), Zn (4s, 4p, 3d) and Pd (5s, 5p, 4d) wavefunctions. The convergence 

criterion was set to 10
−4

 eV. A mesh of 8 × 8 × 8 k-points in the irreducible wedge of the first 

Brillouin zone was used to obtain all integrated values, including the density of states (DOS) 

and Crystal Orbital Hamiltonian Population (COHP) curves.
[19]

  

Vienna ab-initio Simulation Package (VASP): Structure optimization and charge density 

calculations
 
were completed using VASP,

[20]
 which employs projector augmented-wave 

(PAW)
[21]

 pseudopotentials that were adopted with the Perdew-Burke-Ernzerhof generalized 

gradient approximation (PBE-GGA)
[22]

, in which scalar relativistic effects are included. For 

structural optimization, the conjugate gradient algorithm was applied. The energy cutoff was 

400 eV. Reciprocal space integrations were completed over a 7×7×7 Monkhorst-Pack k-

points mesh
 
with the linear tetrahedron method.

[23]
 With these settings, the calculated total 

energies converged to less than 0.1 meV per atom. 

Extended Hückel Theory:  An analysis of crystal orbital symmetry and character in 

Co2Zn11 was accomplished using semi-empirical Extended Hückel theory.
[24]

 All orbital 

overlaps extended over two nearest neighbor unit cells were included.  Two different 

minimal basis sets involving Slater-type single-zeta functions for 4s and 4p orbitals and 

double-zeta functions for 3d were applied.  The parameters for Zn are 4s: ζ = 2.01, Hii = –

12.41 eV; and 4p: ζ = 1.70, Hii = –6.53 eV.  The parameters for Co are 4s: ζ = 2.00, Hii = –

8.21 eV; 4p: ζ = 2.00, Hii = –3.00 eV, and 3d: ζ1 = 5.55 (c1 = 0.5679), ζ2 = 2.10 (c2 = 0.6059), 

Hii = –10.50 eV.  The Co parameters were modified to provide the best fit to the results of 

first-principles calculations. 
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4.4 Binary Co-Zn -Brasses 

4.4.1 Synthesis and Phase Analysis: Co-Zn -brass type phases were obtained by fusion of 

mixtures of Co pieces (99.9%, Ames Laboratory) and Zn particles (99.99%, Alfa Aesar) 

loaded at 15.5, 18.1, 24.9, 30.0, and 32.5 atomic percent Co (see Table 1).  Each reactant 

mixture, about 500 mg total, was sealed into an evacuated silica tube (<10
−5

 Torr), heated to 

800 °C for 24 hr, followed by cooling to 500 °C at a rate of 1 °C/min and annealed at this 

temperature for 3 days, after which the container was slowly cooled in the furnace.  The 

products obtained from 15.5-30.0 atomic percent Co loadings yielded a single phase -brass. 

When the loading exceeded 30 atomic percent Co, a -Mn type Co-Zn phase appears as a 

second phase.
[25]

  All products summarized in Table 1 are stable toward decomposition in air 

and moisture, but react with dilute acid at room temperature.  

Table 1. Compositions, phase analyses, lattice constants, and refined compositions for -brass Co-Zn phases. 

Atomic %       

Co loaded 

Phases    

(PXRD) 

a (Å)      

(PXRD) 

a (Å)    

(SCXRD) 

Composition 

(SCXRD) 

Composition 

(SEM-EDX) 

15.54 -brass 8.9851(1) 8.9654(7) Co2Zn11 Co2.0(1)Zn11.0(1) 

18.10 -brass 8.9527(1) 8.9552(5) Co2.33(2)Zn10.63  

24.86 -brass 8.9144(1) 8.911(3) Co2.66(9)Zn10.29 Co2.7(1)Zn10.3(1) 

29.95 -brass 8.8809(1) 8.882(4) Co2.84(9)Zn10.03 Co2.9(1)Zn10.1(1) 

32.51 -brass+ -Mn 8.8814(4)    

As previously mentioned, the e/a ratios for these Group II -brasses require knowledge of 

the number of valence electrons assigned to the 3d metal.  For the series of Co2+xZn11–yy–x 

phases characterized by single crystal X-ray diffraction, if we use the valency of 0.26 

assigned to Co from Mizutani’s analysis of Co2Zn11, then the observed phases exist for e/a 

values ranging between 1.62 and 1.73 (or 1.60 and 1.73, if the vacancies are included), 
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values which are consistent with regions of other -brass phases.  Furthermore, as the Co 

content increases, the e/a value and the total valence electron count decreases. 

4.4.2 Atomic Ordering and Vacancies: Tables 2 and 3 summarize the crystallographic data 

and structural parameters refined from single crystal X-ray diffraction investigations from 

samples obtained from each single-phase product.  Figure 1 illustrates the refined crystal 

structure of Co2Zn11 (15.4 atomic percent Co) in which Co atoms preferentially occupy the 

OT sites whereas Zn atoms are exclusively on the IT, OH, and CO sites of the 26-atom -

brass cluster located at the unit cell corners and center. With increasing Co content, the 

additional Co atoms occupy the OH (12e) sites, while vacancies become apparent on the IT 

sites.  Instead of vacancies at the IT sites, a second model involving a mixture of Co and Zn 

atoms was examined, but this refinement generated large standard deviations for the 

occupancies.  A Hamilton test
[15] 

comparing these two models yielded the vacancy/Zn 

mixture to show a statistically significant improvement, at the 0.5 % significance level on the 

crystallographic R-factor, over the Co/Zn mixture at the IT sites.  Table 3 also indicates that 

the equivalent isotropic displacement parameter of the 8c (OT) sites is always lowest among 

the four positions in the asymmetric unit, a result that is consistently observed among -

brasses.  Previous structural reports
[26-29]

 of -brass phases containing Ni, Pd, or Pt with Zn or 

Cd describe a similar pattern of atomic ordering of the d-metals, i.e., Co vis-à-vis Ni, Pd, or 

Pt preferentially at the OT sites, and the occurrence of vacancies at the IT sites as the d-metal 

concentration increases. To confirm the occurrence of vacancies by independent means, the 

densities of two rod-shaped specimens (0.2 g) extruded from samples prepared at 24.86 

atomic percent Co were measured using Archimedes principle
[30]

. By taking into account the 

unit cell volume determined by X-ray powder diffraction (see Table 1), the measured density 
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of 7.6(1) g/cm
3
 indicates a clear deficiency in the number of atoms (52) per unit cell by 1.3(6) 

atoms.  Refinements of single crystal X-ray diffraction on 3 specimens extracted from this 

sample yielded 20.5(1) atomic percent Co with 0.3(1) vacancies per unit cell.    

Table 2.  Crystallographic data for -brass Co2+xZn11–yy–x phases at 293(2) K. 

Atomic % Co 

loaded 
15.41% 18.10% 24.86% 29.95% 

Refined Formula Co2Zn11 Co2.34(2)Zn10.63(3) Co2.66(2)Zn10.29(3) Co2.84(2)Zn10.03(3) 

F.W. (g/mol); 836.93 832.78 829.13 824.76 

Space group; Z (No.217); 4 (No.217); 4 (No.217); 4 (No.217); 4 

a (Å) 8.9654(2) 8.9552(5) 8.911(3) 8.882(4) 

V (Å
3
) 720.62(3) 718.17(7) 707.7(5) 700.8(6) 

Absorption 

Correction 
Multi-Scan Multi-Scan Multi-Scan Multi-Scan 

Extinction 

Coefficient 
0.0016(1) 0.0105(4) 0.0035(2) 0.0009(1) 

µ(mm
−1

) 40.232 40.117 40.102 40.058 

θ range (deg) 3.21-28.19 3.22-28.22 3.23-27.71 3.24-28.25 

hkl ranges –11 ≤ h,k,l ≤ 11 –11 ≤ h,k,l ≤ 11 –11 ≤ h,k,l ≤ 11 –11 ≤ h,k,l ≤ 11 

No. reflections; Rint 1388; 0.0381 1632; 0.0379 1174; 0.0400 2087; 0.0472 

No. independent 

reflections 
187 188 182 186 

No. parameters 19 21 22 22 

R1; wR2 (all I) 0.0166; 0.0365 0.0154; 0.0342 0.0153; 0.0297 0.0165; 0.0381 

Goodness of fit 1.221 1.226  1.093 1.079 

Diffraction peak 

and hole (e
−
/Å

3
) 

0.481; –0.497 0.807; –0.548 0.321; –0.788 0.505; –0.484 

 

Table 3.  Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters for -brass 

Co2+xZn11–yy–x phases. Ueq is defined as one-third of the trace of the orthogonalized U
ij

 tensor (Å
2
). 

Co2Zn11 (15.4 atomic percent Co) 

Atom Wyckoff. Occupancy. x y z Ueq 

Zn1 8c(IT) 1 0.1041(1) 0.1041(1) 0.1041(1) 0.0090(3) 

Co2 8c(OT) 1 0.3281(1)  0.3281(1) 0.3281(1) 0.0056(3) 

43I m 43I m 43I m 43I m
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Table 3. continued 

Zn3 12e(OH)  1 0.3542(1) 0 0 0.0087(2) 

Zn4 24g(CO) 1 0.3057(1) 0.3057(1) 0.0464(1) 0.0104(2) 

Co2.34(2)Zn10.63(3) (18.0 atomic percent Co) 

Atom Wyckoff. Occupancy. x y z Ueq 

Zn1 8c(IT) 0.986(5) 0.1044(1) 0.1044(1) 0.1044(1) 0.0073(3) 

Co2 8c(OT) 1 0.3284(1)  0.3284(1) 0.3284(1) 0.0047(3) 

Co/Zn3 12e(OH)  0.19(3)/0.81 0.3543(1) 0 0 0.0072(4) 

Zn4 24g(CO) 1 0.3060(1) 0.3060(1) 0.0457(1) 0.0098(3) 

Co2.66(2)Zn10.29(3) (20.5 atomic percent Co) 

Atom Wyckoff. Occupancy. x y z Ueq 

Zn1 8c(IT) 0.973(6) 0.1046(1) 0.1046(1) 0.1046(1) 0.0100(4) 

Co2 8c(OT) 1 0.3304(1)  0.3304(1) 0.3304(1) 0.0049(3) 

Co/Zn3 12e(OH)  0.22(3)/0.78 0.3547(1) 0 0 0.0082(4) 

Zn4 24g(CO) 1 0.3066(1) 0.3066(1) 0.0445(1) 0.0133(3) 

Co2.84(2)Zn10.03(3) (22.1 atomic percent Co) 

Atom Wyckoff. Occupancy. x y z Ueq 

Zn1 8c(IT) 0.937(4) 0.1016(1) 0.1016(1) 0.1016(1) 0.0129(3) 

Co2 8c(OT) 1 0.3322(1)  0.3322(1) 0.3322(1) 0.0069(3) 

Co/Zn3 12e(OH)  0.28(3)/0.72 0.3544(1) 0 0 0.0105(3) 

Zn4 24g(CO) 1 0.3038(1) 0.3038(1) 0.0477(1) 0.0166(3) 

 

 

Figure 1.  Crystal structure of Co2Zn11 at 293(2) K emphasizing the 26-

atom γ-brass clusters located at the unit cell corner(s) and center.  Orange 

circles are Co; green circles are Zn. 

 

To examine the site preference of Co atoms for the IT sites in Co2Zn11 by quantum 

chemical means, two models of Co2Zn11 were constructed, one in which Co atoms are 

located at the IT sites and the other at the OT sites.  These two models were compared by 

total energy-vs-volume curves between 10 and 19 Å
3
/atom using VASP (see Figure S1 in 
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Supporting Information).  To avoid any influence on the total energies by distance variations, 

the coordinates obtained from single crystal data (see Table 3) of Co2Zn11 were used for both 

models.  As seen in Figure S1, the minimum total energy of Co2Zn11 with Co on the OT site 

is 65.8 meV/atom lower than the minimum energy of the alternative model, in agreement 

with the experimental results, and there is no crossing between the two E(V) curves within 

the entire volume range.  In addition, the calculated optimum volume of Co2Zn11 (13.91 

Å
3
/atom) is in excellent agreement with experiment (13.95 Å

3
/atom) and is slightly smaller 

than the optimum volume of “Co2Zn11” with Co atoms in the IT sites (14.14 Å
3
/atom).  This 

site preference or “coloring” problem for two elements on different crystallographic sites is 

driven by optimizing the “site energy” and the “bond energy”.
[31]

  To examine the “site 

energy”, we analyzed the Mulliken populations for the four different crystallographic 

positions in the γ-brass structure using the Extended Hückel theory with Ni, Cu, and Zn 

parameters at every site.  The minimal basis sets for Ni and Cu included 3d, 4s, and 4p 

atomic orbitals; that for Zn used just 4s and 4p orbitals.  Over the range of valence electron 

concentrations (e/a values) observed for the Co-Zn γ-brasses, the Ni and Cu basis sets gave 

preferences to the IT and OT sites for the Co atoms, which have lower valence electron 

counts than Zn.  The Zn basis set essentially gives the OT site as the preferred site for Co 

atoms (see Figure S2 in Supporting Information).  The “bond energy” term is evaluated by 

comparing the crystal orbital Hamilton populations (COHP) curves for the two structural 

models for Co2Zn11.  These curves, illustrated in Figure S3 of Supporting Information, show 

that there is a strong Co–Co antibonding interactions at the Fermi level for Co atoms at the 

IT sites; this antibonding interaction is significantly alleviated when Co atoms are located at 
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the OT sites.  Therefore, placing Co atoms at the OT sites in Co2Zn11 is driven by both “site 

energy” and “bond energy” terms in the total electronic energy.  

For binary Co-Zn -brasses formulated as Co2+xZn11–yy–x, refinements indicated that x 

Co atoms replace x Zn atoms at the OH sites while yx vacancies occur at the IT sites.  

Preliminary studies using VASP to explore these two outcomes were examined: (i) “Co9Zn43” 

(= [Co4Zn22][Co5Zn21]) with all OT sites plus either one OH or one IT site occupied by Co 

atoms; and (ii) “Co8Zn43” (= [Co4Zn22][Co4Zn21]) with all OT sites occupied by Co atoms 

and one vacant position located at either the OH or IT sites. For both cases, energy-vs-

volume curves were evaluated between 10 and 19 Å
3
/atom.  In agreement with our 

experimental refinements, we find that the OH site is preferred for Co-atom substitution, 

whereas the IT site is preferred for vacancy formation.  At this point, however, further 

theoretical investigations are required to fully understand the correlated occurrence of Co-

substitution and vacancy formation as the e/a ratio decreases. 

4.4.3 Electronic Structures: Figure 2 illustrates the total electronic DOS curve calculated 

using the TB-LMTO-ASA method and LDA for Co2Zn11, in which the OT sites were 

completely occupied by Co atoms and all other sites by Zn atoms.  The qualitative features 

obtained by this calculation closely resemble the DOS curve obtained using the FLAPW 

method.
[3,32]

 States that are 2-6 eV below the Fermi level (EF) arise primarily from valence 4s 

and 4p orbitals from Zn, whereas the Zn 3d band is narrow and located ~7-8 eV below EF.  

The contribution of Co valence orbitals to the DOS curve, as shaded in Figure 2, shows 

significant Co content to states between –2 eV and +1 eV relative to EF.  Furthermore, states 

between –1.7 eV and +0.3 eV are largely Co 3d orbitals.  The Fermi level for Co2Zn11 falls 

just above the topmost peak of the largely Co 3d bands.  Therefore, we employed LSDA to 
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see if a magnetic moment would spontaneously develop, but the converged result yielded 

zero magnetic moment.  This result agrees with the weak Pauli paramagnetism observed for 

the product of the sample loaded at 15.41 atomic percent Co, i.e., Co2Zn11. 

 

Figure 2.  Results of TB-LMTO-ASA (LDA) electronic structure calculations on Co2Zn11.  (Left) Total DOS 

curve with contributions from Co states shaded. (Middle) COHP curves among all near-neighbor interatomic 

contacts (+ is bonding/− is antibonding). (Right) Energy band structure between special points of the first 

Brillouin zone.  Energy values are with respect to 300 e

 (Co2Zn11  2); the dashed red lines indicate the upper 

(300 e

)

 
and lower (292.3 e


)
 
bounds of valence electron counts observed for Co-Zn γ-brasses.   

In the DOS curve of Co2Zn11 (space group 43I m ; Z = 2 in the primitive cell), there is a 

broad pseudogap located around +0.5 eV (~304 e

/primitive cell) and a much sharper 

pseudogap near 0.4 eV (292 e

/primitive cell), a result that implies there are six electronic 

states associated with the region of the DOS corresponding to the Fermi level of Co2Zn11 

(300 e

/primitive cell).  From the various COHP curves for all near-neighbor metal-metal 

orbital interactions, the broad pseudogap around +0.5 eV generally corresponds to the 

separation between bonding (below) and antibonding (above) states involving the IT sites.  

On the other hand, the deep pseudogap at 0.4 eV (292 e

/primitive cell) differentiates 

bonding and antibonding states involving the OT sites, i.e., where Co atoms are located.  
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States near EF for the entire range of Co-Zn -brasses show weakly antibonding or nearly 

nonbonding orbital interactions for all metal-metal contacts. 

To analyze the crystal orbitals of the Co2Zn11 -brass from a “molecular” perspective, 

Extended Hückel theory
[24]

 was applied using two different atomic orbital basis sets: (i) only 

4s and 4p orbitals on all atoms; and (ii) 4s, 4p, and 3d orbitals on Co, and only 4s and 4p 

orbitals on Zn atoms.  The primitive unit cell contains one 26-atom -brass cluster Co4Zn22.  

Figure 3 illustrates the crystal orbital energy diagrams for the two cases evaluated at the Γ-

point (point symmetry 43m ) with orbital energies given relative to the corresponding Fermi 

levels.  As seen in Figure 2, dispersion will create the quasi-continuous DOS curves.  These 

crystal orbital energy diagrams, however, provide a rationale for the Hume-Rothery valence 

electron counting rule for these -brasses, as well an interpretation of the features of the DOS 

of Co2Zn11 of Figure 2.  The broad pseudogap, which is indicated by the shaded energy range 

for both models in Figure 3, corresponds to 20-22 filled cluster valence s and p orbitals, a 

result which leads to e/a = 1.54-1.69 (= 40-44 e

 / 26 atoms) and is consistent with the FsBz-

induced pseudogap for Group I -brasses like Cu5Zn8.
[3,6]

  With valence 3d orbitals included 

at Co atoms, the additional pseudogap emerges by splitting of these  20 3d-centered crystal 

orbitals into 15 to lower energies and 5 (e + t2) to higher energy.  The peak in the DOS curve 

near EF for Co2Zn11 corresponds to these 5 (e + t2) states, which are Co-Zn antibonding 

between all Co-Zn near neighbor contacts.  Thus, the electronic structures of Groups I and II 

-brasses can also be interpreted using a “molecular orbital” perspective, and not just via the 

nearly free electron model.
[5]
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Figure 3. Crystal orbital energy 

diagrams at the Γ point for Co4Zn22 

calculated with and without 3d orbitals 

at the Co atoms using Extended Hückel 

theory.  Those orbitals that have 

majority contributions from 3d orbitals 

are shown in red.  The numbers in ( )’s 

are the numbers of orbitals at or below 

the designated level.  The labels of the 

irreducible representations are given for 

orbitals near the corresponding Fermi 

levels (EF). The shaded region 

corresponds to the broad pseudogap 

region seen in the DOS curve of Figure 

2. 

4.5 Pd-doping in -brass Co2Zn11 

Analysis of the electronic structure of the Group II -brass compound Co2Zn11 inspired us to 

investigate their electronic versatility by targeting new ternary derivatives.  To accomplish 

this chemistry, we selected Pd as the ternary component because its absolute 

electronegativity
 [33] 

and size match those of Zn (4.45 eV; 1.37 Å), whereas its chemical 

hardness (3.89 eV) resembles that of Co (3.60 eV).  Our goal to adjust both the total valence 

electron and the d-electron counts in these -brasses would be accomplished by considering 

Pd substitutions for both Co and Zn positions because Pd has one more d-electron than Co, 

but two less valence electrons than Zn. In addition, since bulk Pd with filled 4d orbitals is 

Pauli paramagnetic but can become ferromagnetic if expanded,
[34, 35]

 some interesting 

magnetic responses are anticipated.  
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Table 4.  Compositions, phase analyses, lattice constants (Å), and refined compositions for -brass Co-Pd-Zn 

phases.  Refined compositions are expressed with respect to γ-brass formalism.  VE = total valence electron 

count per unit cell; PXRD = powder X-ray diffraction; SCXRD = single crystal X-ray diffraction; SEM-EDX = 

electron microscopy.  + and ++ signify additional phases seen by PXRD. 

Co/Pd 

Loaded 

Target Phases 
a (Å) 

Composition Composition 

(At %)    (VE) (PXRD) (PXRD) (SCXRD) (SCXRD) (SEM-EDX) 

7.58 / 

7.74 

CoPdZn11   

(302 e

) 

γ1 9.053(2) 9.0510(7) Co0.92(2)Pd1.08Zn11 Co1.0(1)Pd1.0(1)Zn11.0(2) 

7.97 / 

15.29 

CoPd2Zn10 

(298 e

) 

γ1 

+ 

9.046(3)   Co1.0(1)Pd1.0(1)Zn11.0(2) 

Co0.2(1)Pd3.5(2)Zn6.3(1) 

11.72 / 

11.52 

Co1.5Pd1.5Zn10 

(297 e

) 

γ1 

+ 

++ 

9.051(4)   Co0.8(1)Pd1.1(1)Zn11.1(2) 

Co0.3(1)Pd3.4(2)Zn6.3(2) 

Co7.2(2)Zn2.8(2) 

15.24 / 

7.94 

Co2PdZn10 

(296 e

) 

γ1 

+ 

9.056(3)   Co1.0(1)Pd1.1(1)Zn11.0(2) 

Co7.4(2)Zn2.6(2) 

15.61 / 

15.34 

Co2Pd2Zn9 

(292 e

) 

γ2 9.076(1) 9.098(1) Co2.50(1)Pd2.50Zn8 Co2.6(3)Pd2.4(3)Zn8.0(3) 

19.35 / 

19.24 

Co2.5Pd2.5Zn8 

(287 e

) 

γ2 

+ 

++ 

9.076(1)   Co2.5(2)Pd2.5(2)Zn8.0(3) 

Co0.1(1)Pd3.8(2)Zn6.1(2) 

Co9.1(2)Zn0.9(1) 

 

4.5.1 Synthesis and Phase Analysis: Five different Co-Pd-Zn samples targeting -brass 

phases with 292-302 valence electrons per cubic unit cell were loaded to synthesize our 

target compounds (see Table 4).  After the results of loading “Co2Pd2Zn9” (292 e
–
), a sixth 

sample which mimicked the refined composition was prepared. Each reactant mixture, about 

500 mg total, was sealed into an evacuated silica tube (< 10
−5

 Torr), heated to 1000°C for 24 

hr, followed by cooling to 600°C at a rate of 1°C/min and annealed at this temperature for 3 

days, after which the container was slowly cooled in the furnace. In general, synthetic 

attempts to prepare -brass type Co-Pd-Zn phases yielded a series of mixed phases. Only 

those reactant mixtures that were loaded for “CoPdZn11” and “Co2Pd2Zn9” yielded single 

phase, crystalline products according the results of powder X-ray diffraction and scanning 

electron microscopy. The intermediate loadings, “CoPd2Zn10” and “Co2PdZn10”, gave a γ-
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brass phase (Co1xPdx)2Zn11 and, respectively, ~PdZn2 and Co particles.  The “Co1.5Pd1.5Zn10” 

loading yielded γ-brass Co1xPdxZn11, ~PdZn2 and Co particles. On the other hand, the 

Co2.5Pd2.5Zn8 γ-brass produced (Co1xPdx)5Zn8, ~PdZn2, and Co particles.  Crystalline 

specimens suitable for single crystal X-ray diffraction analysis were extracted from the two 

single phase products.  For the loaded composition “CoPdZn11”, the refined crystal structure 

agreed closely with the loading, i.e., Co0.92(2)Pd1.08Zn11, with Co and Pd atoms sharing the OT 

(8c) sites and Zn atoms fully occupying all other (IT, OH, and CO) sites. The corresponding 

number of valence electrons for this compound is 302.2(4) electrons per unit cell, which 

corresponds closely to the position of the pseudogap around +0.5eV in total DOS of Co2Zn11.  

For the loaded composition “Co2Pd2Zn9”, however, the refined crystal structure is 

Co2.50(1)Pd2.50Zn8, with Co and Pd atoms mixing on the OT (8c) and OH (12e) sites and the 

other two (IT, CO) sites occupied exclusively by Zn atom, as shown in Figure 4. The results 

of these crystal structure refinements are summarized in Tables 5 and 6. 

 

Figure 4. The crystal structure of Co2.5(1)Pd2.5Zn8 at 293(2) K 

emphasizing the 26-atom γ-brass clusters located at the unit cell 

corner(s) and center.  Orange circles are Co/Pd mixed sites; green circles 

are Zn. 

Table 5.  Crystallographic data for “CoPdZn11” and Co2.5(1)Pd2.5Zn8 at 293(2) K. 

Loading Composition CoPd1Zn11 Co2Pd2Zn9 

Refined Formula Co0.92(2)Pd1.08Zn11 Co2.50(1)Pd2.50Zn8 

F.W. (g/mol); 887.84 934.78 

Space group; Z (No.217); 4 (No.217); 4 

a (Å) 9.0510(7)  9.098(1) 

43I m 43I m
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Table 5. continued 

V (Å
3
) 741.46(10) 753.07(16) 

Absorption Correction Multi-Scan Multi-Scan 

Extinction Coefficient 0.0005(1) None 

µ(mm
−1

) 39.304 36.091 

θ range (deg) 3.18-28.11 3.17-28.23 

hkl ranges –11 ≤ h,k,l ≤ 11 –11 ≤ h,k,l ≤ 11 

No. reflections; Rint 1516; 0.0573 2356; 0.0305 

No. independent reflections 193 198 

No. parameters 20 20 

R1; wR2 (all I) 0.0226; 0.0457 0.0152; 0.0405 

Goodness of fit 1.061 1.108 

Diffraction peak and hole (e
−
/Å

3
) 0.836; –0.851 0.426; –0.584 

Table 6.  Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters for CoPdZn11 

and Co2.5(1)Pd2.5Zn8.  Ueq is defined as one-third of the trace of the orthogonalized U
ij
 tensor (Å

2
). 

“CoPdZn11”:  Co0.92(2)Pd1.08Zn11 (302.2 e

) 

Atom Wyckoff. Occupancy. x y z Ueq 

Zn1 8d(IT) 1 0.1061(1) 0.1061(1) 0.1061(1) 0.014(1) 

Co/Pd 8c(OT) 0.46(1)/0.54 0.3266(1)  0.3266(1)  0.3266(1)  0.008(1) 

Zn2 12e(OH)  1 0.3555(1) 0 0 0.012(1) 

Zn3 24g(CO) 1 0.3086(1) 0.3086(1) 0.0426(1) 0.015(1) 

“Co2Pd2Zn9”: Co2.50(1)Pd2.50Zn8 (287.0 e

) 

Atom Wyckoff. Occupancy. x y z Ueq 

Zn1 8d(IT) 1 0.1037(2) 0.1037(2) 0.1037(2) 0.015(1) 

Co/Pd 8c(OT) 0.25(1)/0.75 0.3281(2)  0.3281(2) 0.3281(2) 0.009(1) 

Co/Pd 12e(OH)  0.67(1)/0.33 0.3539(3) 0 0 0.011(1) 

Zn2 24g(CO) 1 0.3052(1) 0.3052(1) 0.0472(2) 0.016(1) 

The outcome of phase analysis of Co-Pd-Zn -brasses and refinements from single crystal 

X-ray diffraction indicate that Co and Pd mix on the OT sites at low concentrations, but then 

combine at both the OT and OH sites at high concentrations.  The Mulliken population 

analysis described above for site preferences in the Co-Zn -brasses may also be applied here 
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to evaluate the “site energy” term of the total electronic energy.  Again, the OT site is clearly 

favored for the element(s) with lower valence electron count, i.e., Co and Pd.  Moreover, the 

next favored site for substitution by Co and/or Pd atoms is the IT site according to this 

model, but these sites are occupied solely by Zn atoms.  Thus, it is the “bond energy” term to 

the total electronic energy that influences preferred occupation for Co and Pd atoms at the 

OH rather than the IT sites at higher Co/Pd concentrations. 

4.5.2 Electronic Structures of “Co2.5Pd2.5Zn8”: TB-LMTO and VASP calculations using 

both LDA and LSDA were applied to two hypothetical ordered models of “Co2.5Pd2.5Zn8” 

(see Figure 5) both of which took into account the observed site preferences from single 

crystal X-ray diffraction.  Although diffraction results indicated an I-centered cubic unit cell, 

these two models utilized primitive lattices by decorating the OT and OH sites of the two 26-

atom -brass clusters in different ways (in all clusters, Zn atoms fully occupied the IT and 

CO sites as seen experimentally).  For model (a), the two clusters are formulated as 

[Zn4Co4Pd6Zn12] and [Zn4Pd4Co6Zn12] with the occupations of OT and OH sites by Co and 

Pd atoms switched between the two distinct clusters.  For model (b), the two clusters involve 

binary Co-Zn and Pd-Zn arrangements, i.e., formulated as [Zn4Co4Co6Zn12] and 

[Zn4Pd4Pd6Zn12].  According to the results of VASP calculations including LSDA, the total 

energies of models (a) and (b) differ by 5 meV/atom near their energy minima with a slight 

preference for model (b).  
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Figure 5. Hypothetical models (a) and (b) for Co2.5Pd2.5Zn8 emphasizing the 26-atom -brass clusters in the unit 

cells (purple: Co atoms; orange: Pd atoms; green: Zn atoms).   See text for detailed descriptions. 

  

Figure 6.  Non-spin polarized total and partial DOS curves with OT–OH and OT–OH COHP curves for models 

(a) and (b) of “Co2.5Pd2.5Zn8” (+ is bonding / − is antibonding; EF indicated by the red dashed line for 287 e
–
).  

In the DOS curves, purple shading indicates Co contributions, orange shading indicates Pd contributions. 

In Figure 6, the LDA-based DOS curves and the corresponding OT–OH and OH–OH 

COHP curves for both models are illustrated for an energy range between –6 and +2 eV 

relative to their Fermi levels.  When compared to the DOS curves of other -brasses,
[3,36]

 they 

also show the broad pseudogap in the DOS between +1 and +2 eV corresponding to e/a 

values ranging from 1.55-1.73.  The presence of both Co and Pd atoms, however, with 

valence d orbitals creates a rather broad (4 eV) d band that decomposes into mostly Pd 4d 
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wavefunctions toward the bottom of the band and mostly Co 3d orbitals toward the top of the 

band.  The Fermi levels fall within and near the top of this broad d band, in the midst of the 

Co-rich region with rather large values of 44.6 eV
–1

 for (a) and 116.0 eV
–1

 for (b).  The 

LDA-based COHP curves indicate that all d-d bonding and most d-d antibonding orbitals are 

filled, with the most significant antibonding contributions at the EF values arising from 

interactions with Co atoms. 

On applying the LSDA, the electronic structures of both models converged to new and 

different magnetically ordered ground states.  In both cases, the total magnetic moments arise 

primarily from net unpaired spins at the Co atoms with small moments arising at Pd and Zn 

sites (see next section on magnetic properties).  The DOS curves for the majority-spin and 

minority-spin wavefunctions, shown in Figure 7, clearly illustrate this outcome because the 

Co projected DOS curves are quite unsymmetrical, but also show that the corresponding 

Fermi levels fall just below sharp peaks in the minority-spin states.  According to the 

accompanying COHP curves, these peaks involve Co–Co antibonding interactions in each 

model.  In fact, the EF values for each model correspond to the crossover point between Co–

Co bonding and antibonding states in the DOS. Thus, unlike Co2Zn11, which showed no net 

magnetization using LSDA, Co2.5Pd2.5Zn8 should spontaneously give net magnetization, 

results that were confirmed by subsequent measurements.  
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Figure 7. Spin polarized total and partial DOS curves with OT–OH and OT–OH COHP curves for models (a) 

and (b) of “Co2.5Pd2.5Zn8” (+ is bonding / − is antibonding; EF indicated by the red dashed line for 287 e
–
).  In 

the DOS curves, purple shading indicates Co contributions, orange shading indicates Pd contributions. 

4.6 Magnetic Properties of Co-Zn and Co-Pd-Zn -brasses  

The magnetic susceptibility curves of Co2Zn11 and Co2.66(2)Zn10.29(3) (loaded as 24.86 at% 

Co), shown in Figure 8, indicate paramagnetic properties for both samples. In particular, 

Co2Zn11 is Pauli paramagnetic with a very small magnetic susceptibility of 5 × 10
–4

 

emu/molOe.  This low susceptibility leads to a magnetic moment μ ≈ 0.06(1) μB and a low-

temperature magnetization that should vary linearly with magnetic field, which is verified in 

Figure 8.  For the Co-richer sample, Co2.66(2)Zn10.29(3), the magnetic susceptibility follows 

Curie-Weiss behavior with an effective moment per Co atom of 0.6(1) μB and a small, 

negative Weiss temperature of –6(1)K.  The nonlinear relationship between magnetization 

and applied field is verified in Figure 8 (see Supporting Information for further data analysis). 
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Figure 8.  (Left) Temperature-dependent molar susceptibility measured from 2 K to 300 K at 10 kOe for (top) 

Co2Zn11 and Co2.66(2)Zn10.29(3) and (bottom) Co2.5(1)Pd2.5Zn8. (Right) Magnetization vs. applied field (top) 

measured at 1.8 K for Co2Zn11 and Co2.66(2)Zn10.29(3) and (bottom) measured at 2 K and 300 K for 

Co2.5(1)Pd2.5Zn8. 

 

The isothermal magnetization curves of the Co2.50(1)Pd2.50Zn8 sample measured at 2 K and 

300 K indicate the sample to be ferromagnetic.  Saturation is achieved at 7.0 kOe. The 

saturation moments are 0.88(5) μB/f.u. at 2 K and 0.80(5) μB/f.u. at 300 K. Moreover, 

temperature-dependent magnetic susceptibility measurements from 300 K to 700 K (see 

Figure S9 in Supporting Information) can be divided into two parts: (i) from 300 K to 450 K 

during which the magnetic moment decreases from ~2.3 to ~1.8 B/f.u; and (ii) from 500 K 

to 700 K during the magnetic moment decreases slightly from ~1.8 to ~1.7 B/f.u.  The larger 

magnetic susceptibility of the Co2.50(1)Pd2.50Zn8 sample as compared to the binary Co-Zn  
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brasses is presumably caused by enhanced Stoner ferromagnetism upon doping Pd in the 

system.
[37-39]

 According to the LDA-based DOS curves for Co2Zn11 (Figure 2) and the two 

models of Co2.5Pd2.5Zn8 (Figure 6), the density of states at the Fermi level N(EF) per atom 

increases from 0.623 eV
–1

 in the binary to 2.25 eV
–1

 (averaged) in the ternary case. Moreover, 

the two stages of magnetic response above room temperature may arise because different 

magnetically-active sites will have their own different Curie temperatures.
[40]

 The current 

data are not enough to make a clear judgment on the magnetic properties of Co2.5Pd2.5Zn8 at 

high temperature.  

 

Figure 9.  Converged magnetic structures of models (a) and (b) for Co2.5Pd2.5Zn8 (see Figure 4).  Relative 

moments at the Co atoms, which have the largest contributions, and indicated by arrow lengths and directions. 

As mentioned above, LSDA calculations of two different models (a) and (b) of 

Co2.5Pd2.5Zn8 yielded spontaneous magnetization arising primarily from net unpaired spins at 

the Co atoms and with different magnetically ordered ground states, which are illustrated in 

Figure 9.  Using the Co partial DOS curves for both models at the intra-atomic exchange 

parameter for Co of 0.49 eV
[41,42]

, the Stoner condition for ferromagnetism is satisfied to a 

first approximation since N(a)(Co) = 2.21 eV
–1

 and N(b)(Co) = 3.20 eV
–1

 at EF.  In model (a), 

which has Co and Pd atoms on both 26-atom -brass clusters in the cubic unit cell, the local 

moments on the two different sets of Co atoms are antiferromagnetically aligned: 1.39 μB at 

OH sites for the cluster at (½, ½, ½); –0.78 μB at the OT sites for the cluster at (0, 0, 0) and a 
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total magnetic moment of 2.76 μB/f.u., which corresponds to 0.55 μB/Co atom.  In model (b), 

with Co and Pd segregated onto different clusters, the Co moments are ferromagnetically 

aligned: 1.50 μB at OH sites and 1.31 μB at the OT sites for the cluster at (0,0,0) and a total 

magnetic moment of 6.63 μB/f.u., which corresponds to 1.36 μB/Co atom.  To evaluate the 

total moments, the Pd and Zn atoms are slightly polarized (see Table S4 for a complete 

listing of these calculated moments).  Since the results of single crystal X-ray diffraction on 

Co2.5Pd2.5Zn8 gave no clear evidence of any long-range ordering of Co and Pd atoms among 

the OT and OH sites of the 26-atom -brass clusters, then the observed saturation moments of 

0.80(5)-0.88(5) μB/f.u. from 300 K to 2 K are consistent with the results of these LSDA 

calculations.  In particular, theory suggests ferromagnetically coupled Co-atom moments 

within a cluster, and antiferromagnetically coupled Co-atom moments between neighboring 

clusters.  The occurrence of ferromagnetic (or ferrimagnetic) behavior in Co2.5Pd2.5Zn8 seems 

to arise from both the change in valence electron count as well as the presence of valence 

orbitals introduced by Pd atoms.  Additional experiments and theoretical calculations are 

warranted, however, to assess fully the nature of both these through-space and through-bond 

interactions.   

4.7 Summary 

The Group II -brasses in the Co-Zn system were shown to exist over a homogeneity range 

Co2+xZn11–yy–x that included a small concentration of vacancies as the Co content increased 

as well as clear site preference of Co atoms for the OT and OH sites.  Stoichiometric Co2Zn11 

is Pauli paramagnetic whereas they become Curie-Weiss paramagnetic with increasing Co 

content.  As an alternative interpretation to the FsBz-interaction to stabilize the -brass 

structure for Co2Zn11, a molecular orbital based model shows that the bcc packing of 26-atom 
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Co4Zn22 -brass clusters also accounts for its stability. Inspired by the electronic structure 

calculated for Co2Zn11, substituting Pd atoms for Zn or Co atoms in the Co-Zn system led to 

the discovery of a ferromagnetic (ferrimagnetic) Co2.5Pd2.5Zn8 -brass compound with Co 

and Pd atoms occupying the OT and OH sites.  States at the Fermi level of this ternary 

compound arise mostly from Co 3d orbitals, and form spontaneous magnetic moments in two 

distinct structural models.  Magnetization measurements indicate ferromagnetic or 

ferrimagnetic behavior, while theory predicts ferromagnetic Co–Co intra-cluster interactions 

but antiferromagnetic Co–Co inter-cluster interactions. 
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Co2Zn11 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0090(3) 0.0090(3) 0.0090(3) 0.0020(3) 0.0020(3) 0.0020(3) 

Co2 0.0056(3) 0.0056(3) 0.0056(3) 0.0012(3) 0.0012(3) 0.0012(3) 

Zn3 0.0099(4) 0.0099(3) 0.0064(3) 0 0 0.0022(4) 

Zn4 0.0113(3) 0.0113(3) 0.0087(3) –0.0027(2) –0.0027(2) –0.0015(3) 

Co2.34(2)Zn10.63(3) 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0073(3) 0.0073(3) 0.0073(3) 0.0021(3) 0.0021(3) 0.0021(3) 

Co2 0.0047(3) 0.0047(3) 0.0047(3) 0.0015(3) 0.0015(3) 0.0015(3) 

Co/Zn3 0.0080(4) 0.0080(4) 0.0056(5) 0 0 0.0027(4) 

Zn4 0.0109(3) 0.0109(3) 0.0075(3) –0.0029(2) –0.0029(2) –0.0015(3) 

Co2.66(2)Zn10.29(3) 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0100(4) 0.0100(4) 0.0100(4) 0.0035(3) 0.0035(3) 0.0035(3) 

Co2 0.0049(3) 0.0049(3) 0.0049(3) 0.0008(3) 0.0008(3) 0.0008(3) 

Co/Zn3 0.0086(4) 0.0086(4) 0.0073(5) 0 0 0.0021(4) 

Zn4 0.0153(3) 0.0153(3) 0.0092(3) –0.0047(2) –0.0047(2) –0.0014(3) 

Co2.84(2)Zn10.05(3) 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0129(3) 0.0129(3) 0.0129(3) 0.0042(3) 0.0042(3) 0.0042(3) 

Co2 0.0070(3) 0.0070(3) 0.0070(3) 0.0036(3) 0.0036(3) 0.0036(3) 

Co/Zn3 0.0110(4) 0.0110(4) 0.0094(5) 0 0 0.0021(4) 

Zn4 0.0185(3) 0.0185(3) 0.0128(3) –0.0052(2) –0.0052(2) –0.0007(3) 

Co0.92(2)Pd1.08Zn11 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0142(4) 0.0142(4) 0.0142(4) 0.0034(3) 0.0034(3) 0.0034(3) 

Co/Pd2 0.0078(4) 0.0078(4) 0.0078(4) 0.0102(3) 0.0102(3) 0.0102(3) 

Zn3 0.0140(4) 0.0140(4) 0.0097(5) 0 0 –0.0025(5) 

Zn4 0.0166(4) 0.0166(4) 0.0145(4) –0.0044(3) –0.0044(3) –0.0002(4) 

Co2.50(1)Pd2.50Zn8 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0152(3) 0.0152(3) 0.0152(3) 0.0047(3) 0.0047(3) 0.0047(3) 

Co/Pd2 0.0095(3) 0.0095(3) 0.0095(3) 0.0009(2) 0.0009(2) 0.0009(2) 

Co/Pd3 0.0123(4) 0.0123(4) 0.0096(5) 0 0 –0.0031(4) 

Zn4 0.0178(3) 0.0178(3) 0.0141(4) –0.0046(2) –0.0046(2) –0.0011(3) 
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Table S2.  Significant interatomic distances (Å) in Co-Zn and Co-Pd-Zn -brass structures. 

Pairs C.N. Co2Zn11 Co2.34(2)Zn10.63(3) Co2.66(2)Zn10.29(3) Co2.84(2)Zn10.03(3) 

IT–IT 3 2.639(2) 2.643(1) 2.637(1) 2.552(2) 

IT–OT 3 2.619(2) 2.614(1) 2.577(1) 2.534(2) 

IT–OH 3 2.602(1) 2.599(1) 2.590(1) 2.583(1) 

IT–CO 3 2.609(1) 2.607(1) 2.601(1) 2.585(1) 

OT–OH 3 2.724(1) 2.720(1) 2.700(1) 2.681(1) 

OT–CO 
3 

3 

2.542(1) 

2.590(1) 

2.546(1) 

2.587(1) 

2.565(1) 

2.573(1) 

2.552(1) 

2.566(1) 

OH–OH 1 2.614(2) 2.610(2) 2.589(2) 2.587(2) 

OH–CO 

2 

4 

2 

2.620(1) 

2.806(1) 

3.006(1) 

2.615(1) 

2.805(1) 

2.997(1) 

2.598(1) 

2.794(1) 

2.966(1) 

2.613(1) 

2.768(1) 

3.003(1) 

CO–CO 4 2.722(1) 2.717(1) 2.697(1) 2.710(1) 

 

Pairs C.N. Co0.92(2)Pd1.08Zn11 Co2.50(1)Pd2.50Zn8 

IT–IT 3 2.716(1) 2.760(1) 

IT–OT 3 2.672(1) 2.688(1) 

IT–OH 3 2.634(1) 2.655(1) 

IT–CO 3 2.655(1) 2.668(1) 

OT–OH 3 2.764(1) 2.783(1) 

OT–CO 
3 

3 

2.582(1) 

2.611(1) 

2.610(1) 

2.611(1) 

OH–OH 1 2.617(1) 2.591(1) 

OH–CO 

2 

4 

2 

2.619(1) 

2.851(1) 

2.979(1) 

2.614(1) 

2.868(1) 

2.952(1) 

CO–CO 4 2.725(1) 2.721(1) 

 

Table S3.  Unit cell parameters and valence electron concentrations in Group II -brass 

structures. 

 

System Composition e–/unit cell a (Å) V (Å3) e–/V (Å–3) e/a 

Fe-Zn 
Fe13Zn39

[1] 572 8.994 727.54 0.786 11.00 

Fe3Zn10
[2] 576 9.018 733.38 0.785 11.08 

Co-Zn 
Co2Zn11 600 8.9654 720.62 0.833 11.54 

Co2.34Zn10.63 594.48 8.9552 718.17 0.828 11.46 
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Table S3. continued 

 
Co2.66Zn10.29 589.68 8.911 707.59 0.833 11.38 

Co2.84Zn10.03 583.68 8.882 700.70 0.833 11.34 

Ni-Zn[3] 
Ni8.8Zn42.5 598 8.9231 710.47 0.842 11.66 

Ni8Zn42.5 590 8.9206 709.88 0.831 11.68 

Cu-Zn[4] 

Cu4.21Zn8.79 607.16 8.8829 700.91 0.866 11.68 

Cu4.56Zn8.44 605.76 8.8744 698.90 0.867 11.65 

Cu5Zn8 604 8.8664 697.01 0.867 11.62 

Cu5.31Zn7.69 602.76 8.8601 695.53 0.867 11.59 

Cu5.59Zn7.41 601.64 8.8565 694.98 0.866 11.57 

[1] Belin, C. H. E., Belin, R. C. H. J. Solid State Chem. 2000, 151, 85. 

 

[2] Brandon, J. K.; Brizard, R. Y.; Chieh, P. C.; McMillan, R. K.; Pearson, W. B. Acta 

Crystallogr. B 1974, 30, 1412. 

 

[3] Pearson, W. B. Zeitschrift für Kristallographie, 1981, 156, 281. 

 

[4] Gourdon, O.; Gout, D.; Williams, D. J.; Proffen, T.; Hobbs, S.; Miller, G. J. Inorg. 

Chem. 2007, 46(1), 251. 

 

Table S4. Magnetic moments (B) calculated for models (a) and (b) for “Co2.5Pd2.5Zn8” 

using TB-LMTO-ASA with LSDA. 

 

Position / Cluster 
Model (a) Model (b) 

Atom Moment (B) Atom Moment (B) 

IT / (0, 0, 0) Zn 0.024 Zn –0.044 

OT / (0, 0, 0) Co –0.777 Co 1.310 

OH / (0, 0, 0) Pd 0.009 Co 1.503 

CO / (0, 0, 0) Zn –0.001 Zn –0.017 

IT / (½ , ½, ½) Zn –0.012 Zn –0.004 

OT / (½ , ½, ½) Pd 0.041 Pd 0.001 

OH / (½ , ½, ½) Co 1.393 Pd –0.007 

CO / (½ , ½, ½) Zn 0.002 Zn –0.022 
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Figure S1. Total energy vs.volume curves for Co2Zn11 in two structural models: (i) Co atoms 

in IT sites; and (ii) Co atoms in OT sites.  Also shown are the results of fitting each curve 

with the Birch-Murnaghan equation of state. 
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Figure S2.  Relative Mulliken populations (Qsite – Q) as determined by Extended Hückel 

calculations for the four crystallographic sites in the -brass-type structure.  Graphs are 

plotted for (upper left) Ni parameters (4s: ζ = 1.93, Hii = –8.86; 4p: ζ = 1.93, Hii = –4.90; 3d: 

ζ1 = 5.75 (c1 = 0.5817), ζ2 = 2.20 (c2 = 0.5800), Hii = –12.99); (upper right) Cu parameters (4s: 

ζ = 2.20, Hii = –11.40; 4p: ζ = 2.20, Hii = –6.06; 3d: ζ1 = 5.95 (c1 = 0.5933), ζ2 = 2.30 (c2 = 

0.5744), Hii = –14.00); (lower right) Zn parameters (4s: ζ = 2.01, Hii = –12.41; 4p: ζ = 1.70, 

Hii = –6.53); and (lower left) Ni parameters on OT sites and Cu parameters on IT, OH, and 

CO sites.  
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Figure S3.  Electronic DOS and COHP curves, as well as band structure of “Co2Zn11” with 

Co atoms on the IT sites. 

 

 

Figure S4. Vegard’s law analysis for Co-Zn -brass structures. 
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Figure S5. SEM-BES images for Co-Zn and Co-Pd-Zn samples. 

 

   

   (a)  Co2.0(1)Zn11.0(1)                                   (b) Co2.7(1)Zn10.3(1)                                                 (c)  Co2.9(1)Zn10.1(1) 

   

(d) Co1.0(1)Pd1.0(1)Zn11.0(2) 

 (e) Co1.0(1)Pd1.0(1)Zn11.0(2)& Co0.2(1)Pd3.5(2)Zn6.3(1)    

(f) Co0.8(1)Pd1.1(1)Zn11.1(2)& Co0.3(1)Pd3.4(2)Zn6.3(2)& Co7.2(2)Zn2.8(2) 

   

(g) Co1.0(1)Pd1.1(1)Zn11.0(2)& Co7.4(2)Zn2.6(2) 

(h) Co2.6(3)Pd2.4(3)Zn8.0(3) 

(i) Co2.5(2)Pd2.5(2)Zn8.0(3) &Co0.1(1)Pd3.8(2)Zn6.1(2) &Co9.1(2)Zn0.9(1) 
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Figure S6. Total energies vs. volume of models (a) and (b) for Co2.5Pd2.5Zn8 using VASP 

with LSDA.  

 

 

 

 

 

Figure S7.  Magnetization hysteresis of Co2.50(1)Pd2.50Zn8 at 2 K and 300 K measured 

between –70 kOe and 70kOe.  
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Figure S8. Temperature-dependent mol and 1/mol for Co2Zn11 and Co2.66(2)Zn10.29(3) (loaded 

as 24.86 at% Co). 

 

Figure S9. Temperature-dependent mol and 1/mol for Co2.50(1)Pd2.50Zn8 measured up to 

700K.
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5.1 Abstract 

A new series of -brass compounds in the Zn-rich Fe-Pd-Zn system are synthesized and 

characterized both of their structures and magnetic properties. 

(Fe0.72(1)Pd0.28)3(Zn0.18(1)Pdy0.82)2Zn8 and (Fe0.62(1)Pd0.38)3(Zn0.04(1)Pd0.96)2Zn8 are crystallized 

with cubic symmetry, space group   ̅  , with the lattice parameters 9.0775(9)Å ~ 

9.0803(2)Å and 9.0973(8)Å ~ 9.1028(4)Å, respectively. (Fe0.72(1)Pd0.28)3(Zn0.18(1)Pdy0.82)2Zn8 

shows Fe/Pd mixing on the sites forming octahedron (Wyckoff sites 12e), Zn/Pd mixing on 

the sites forming outer tetrahedral (8c), and Zn atoms occupy the sites forming inner 

tetrahedral (8c) and cub-octahedron (24g). Upon increasing the amount of Pd, in 

(Fe0.62(1)Pd0.38)3(Zn0.04(1)Pd0.96)2Zn8, outer tetrahedral (8c) is near-fully occupied by Pd atoms. 

The electronic structures are calculated by Tight-Binding Linear Muffin-Tin Orbital (TB-

LMTO) and Extended Hückel Theory (EHT), which indicate Fe prefer 12e rather than other 

sites as valence electrons/ atom (e/a) increases. Moreover, magnetic measurements 

demonstrate the diluted ferromagnetic properties of (Fe0.72(1)Pd0.28)3(Zn0.18(1)Pdy0.82)2Zn8 and 

(Fe0.62(1)Pd0.38)3(Zn0.04(1)Pd0.96)2Zn8, which are in agreement with theoretical calculations very 

well. 
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5.2 Introduction 

The structures of -brasses consist of a body-centered cubic packing of 26-atom clusters 

built of four concentric atomic shells: (i) an inner tetrahedron (IT); (ii) an outer tetrahedron 

(OT); (iii) an octahedron (OH); and (iv)a distorted cuboctahedron (CO). The site preferences 

in binary -brass compounds containing a d metal (V, Mn, Fe, Co, Ni, Pd) with either a 

divalent (Be, Zn, Cd) or trivalent (Al, In) metal can vary significantly from each other 

depending on composition and valence electron count.
[1]

 For example, in Co2+xZn11-x and 

Pd2.35Zn10.65, the transition metals Co and Pd prefer to locate on the OT and OH sites.
 [2,3]

 

However, in Fe3.25Zn9.75, Fe atoms occupy the IT and OT sites.
[4]

 How changes in valence 

electron counts affect metal-atom site preferences in -brass is the main problem to be 

studied in this paper. Also, according to our previous work on -brasses in the Co-Zn system, 

we established a synergism between the results of electronic structure theory and targeted 

synthesis of new magnetic materials. The electronic structure of -brass Co2Zn11 shows two 

distinct pseudogaps near the Fermi level: one at 292e
–
 and the other around 302-304e

–
per 

primitive unit cell.  Co2Zn11 has 300e
–
 per primitive cell.  Therefore, since Pd has a similar 

size and electronegativity to Zn but different number of valence electrons than either Co or 

Zn, and inspired by the pseudogaps in the electronic density of states curve of Co2Zn11, Pd-

doped -brass compounds were designed and synthesized.
 [5]

 In these ternary Co-Pd-Zn -

brasses, the transition metals Co and Pd atoms prefer mixing on the OT and OH sites. To 

investigate the generality of this site substitution pattern, the synthesis of Fe-Pd-Zn -brasses 

has been designed.   
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Moreover, in the new -brass Co2.50(1)Pd2.50Zn8 phase, a giant magnetic moment on Co 

atom was induced by the Pd atoms, and the compound shows magnetization consistent with a 

dilute ferrimagnet. Replacing Co with Fe in the ternary -brass phase also suggests the 

possibility for interesting magnetic properties. Combining the magnetic properties and 

probably different site preferences in -brass Fe-Pd-Zn from Co-Pd-Zn system, the different 

site occupancy of atoms may be related with different magnetic properties. Thus, with these 

goals in mind, we have examined two specific targeted loadings in the Fe-Pd-Zn systemsfor 

their crystallographic and magnetic properties.   

5.3 Experimental Section 

5.3.1 Phase Analyses. The samples were examined by powder X-ray diffraction for 

identification and phase purity on a STOE WinXPOW powder diffractometer employing Cu 

radiation (K Å) for all the samples. The scattered intensity was recorded as a 

function of Bragg angle (2) using a scintillation detector with a step of 0.03° 2 in step scan 

mode, ranging from 0° to 130°.  Phase identifications and lattice parameters were refined by 

full-profile Rietveld refinement 
[6]

 using LHPM RIETICA 
[7]

 from reflection peaks between 5° 

and 90° in 2θ with -brass type compounds with random grinded samples. 

5.3.2 Structure Determination. Single crystals from the samples were mounted on the tips 

of glass fibers. Room temperature intensity data were collected on a Bruker Smart Apex 

CCD diffractometer with Mo radiation (K=0.71073 Å). Data were collected over a full 

sphere of reciprocal space with 0.5° scans in ω with an exposure time of 10s per frame. The 

2θ range extended from 4° to 60°. 
[8]

 The SMART software was used for data acquisition. 

Intensities were extracted and corrected for Lorentz and polarization effects with the SAINT 
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program. Empirical absorption corrections were accomplished with SADABS which is based 

on modeling a transmission surface by spherical harmonics employing equivalent reflections 

with I > 3σ(I). 
[9]

 With the SHELXTL package, the crystal structures were solved using direct 

methods and refined by full-matrix least-squares on F
2
.
[10-11]

 All crystal structure drawings 

were produced using the program Diamond. 
[12]

 

5.3.3 Scanning Electron Microscopy(SEM). Characterization was accomplished using a 

variable pressure scanning electron microscope (Hitachi S-2460N) and Energy-Dispersive 

Spectroscopy (EDS) (Oxford Instruments Isis X-ray analyzer). Samples were mounted in 

epoxy, carefully polished, and then sputter-coated with a thin layer of carbon prior to loading 

into the SEM chamber. The samples were examined at 20 kV.  Spectra were collected for 

100 seconds.  An Oxford Instruments Tetra backscattered electron (BSE) detector was used 

to image the samples using the BSE signal.  Multiple points were examined in each phase 

within multiple grains of a specimen. Compositional estimates were calculated using 

Oxford’s SEM Quant software to correct intensities for matrix effects.  

5.3.4 Magnetization Measurements. The magnetization measurements were performed 

using a superconducting quantum interference device (SQUID) magnetometer MPMS XL-7, 

and Vibrating Sample Magnetometer (VSM) EV11 manufactured by Quantum Design, Inc. 

SQUID operates over a temperature range of 5-300 K and in applied fields of up to 70 kOe. 

The samples were placed in glass capsules for measurement. The pieces of single-crystal 

from -brass type Fe2Pd2Zn9 sample were manually selected and measured. 

5.3.5 Electronic Structure Calculations  

Tight-Binding, Linear Muffin-Tin Orbital -Atomic Spheres Approximation (TB-

LMTO-ASA): Calculations of the electronic and possible magnetic structures were 
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performed by TB-LMTO-ASA using the Stuttgart code. 
[13]

 Exchange and correlation were 

treated by the local density approximation (LDA) and the local spin density approximation 

(LSDA). 
[14]

 In the ASA method, space is filled with overlapping Wigner-Seitz (WS) spheres. 

The symmetry of the potential is considered spherical inside each WS sphere and a combined 

correction is used to take into account of the overlapping part. The WS radii are: 1.55Å (Fe), 

1.49 Å (Zn), 1.50 Å (Pd). No empty sphere is necessary in both models, and the WS sphere 

overlaps are limited to no larger than 16%.  The basis set for the calculations included Fe (4s, 

4p, 3d), Zn (4s, 4p, 3d) and Pd (5s, 5p, 4d) wavefunctions. The convergence criteria was set 

to 1 × 10
−4

 eV.  A mesh of 54 k points in the irreducible wedge of the first Brillouin zone was 

used to obtain all integrated values, including the density of states (DOS) and Crystal Orbital 

Hamiltonian Population (COHP) curves. 
[15]

 Additionally, with LSDA, the magnetic 

moments of each atom can be examined by TB-LMTO. 

Mulliken Populations Analysis. Calculating the relative atomic Mulliken populations 

with semiempirical, extended Hückel theory (EHT) is well-suited to address the site energy 

contribution. 
[16]

 All orbital overlaps extended over two nearest neighbor unit cells were 

included. Two different minimal basis sets involving Slater-type single-zeta functions for s 

and p orbitals and double-zeta functions for d were applied. The parameters for Pd are 5s: ζ = 

2.19, Hii = –8.64 eV; 5p: ζ = 2.15, Hii = –2.68 eV, and 4d: ζ1 = 5.98 (c1 = 0.5535), ζ2 = 2.61 

(c2 = 0.6701), Hii = –12.65 eV.  The parameters for Cu are 4s: ζ = 2.20, Hii = –11.40 eV; 4p: 

ζ = 2.20, Hii = –6.06 eV, and 3d: ζ1 = 5.95 (c1 = 0.5933), ζ2 = 2.30 (c2 = 0.5744), Hii = –14.00 

eV. Relative atomic Mulliken populations for each crystallographic site in a structure (‹Q› - 

Qsite) are evaluated by setting the atomic orbital parameters to be the same for every site in 

the crystal structure and calculating the difference between the calculated site population at 
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each site (Qsite) and the average value all of sites (‹Q›) for a range of valence electron 

counts. In this way, when the relative atomic Mulliken population at a site is negative, the 

site is attractive for electron-rich atoms; when it is positive, the site is attractive for 

electron-deficient atoms. 

5.4 Results 

5.4.1 Synthesis. Two samples loaded as “Fe1.5Pd1.5Zn10” (294 e
–
) and “Fe2Pd2Zn9” (288 e

–
) 

around the boundary of the sharp pseudogap at 292e
– 

in the DOS curve for Co2Zn11 were 

reacted to synthesize our target compounds (see Table 1). Each reactant mixture, about 500 

mg total, was sealed into an evacuated silica tube (< 10
−5

 Torr), heated to 1000°C for 24 hr, 

followed by cooling to 600°C at a rate of 1°C/min and annealed at this temperature for 3 days, 

after which the container was slowly cooled in the furnace. Through the microscope, -brass 

Fe1.5Pd1.5Zn10 and Fe2Pd2Zn9 crystals are rectangular with silvery luster. The samples are 

stable in air and moisture, but react with dilute acid at room temperature.  

All high-temperature synthetic attempts to prepare Fe1.5Pd1.5Zn10 and Fe2Pd2Zn9 yielded 

major phases of (Fe0.72(1)Pd0.28)3(Zn0.18(1)Pdy0.82)2Zn8 and (Fe0.62(1)Pd0.38)3(Zn0.04(1)Pd0.96)2Zn8, 

respectively. Partial Zn vapored and condensed on the surface of the silica tube. Extra Fe 

forms alloys with Zn as minor phase according to the SEM analysis. The highest quality 

products, as determined by a combination of EDS, powder and single crystal X-ray 

diffraction, were those samples richest in Fe1.5Pd1.5Zn10 and Fe2Pd2Zn9.  

Table 1. Compositions, phase analyses, lattice constants, and refined compositions for -brass Fe-Pd-Zn phases. 

Fe/Pd Loaded Phases a (Å) a (Å) Composition Composition 

(at%) (PXRD) (PXRD) (SCXRD)
a
 (SCXRD)

a
 (SEM-EDX) 

11.62/11.59 -brass 9.0908(1) 9.079(1)  Fe2.14(2)Pd2.48(4)Zn8.38(2) Fe1.6(1)Pd1.7(1)Zn9.7(4) 

15.27/15.42 -brass, + 9.0940(1) 9.100(2) Fe1.84(2)Pd3.08(4)Zn8.08(2) 
Fe1.9(1)Pd2.7(2)Zn8.4(4) 

Fe7.9(3)Zn2.1(2) 
a
 293 K; Numbers in ( )’s are standard uncertainties using at least two different measurements of similar 

loadings.  
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Refinements of site occupancies based on single crystal X-ray diffraction data, discussed in 

more detail in the next section, always led to a mixture of Fe/Pd and Zn/Pd on two single 

crystallographic sites (Wyckoff 12e and 8c sites) to eliminate non-positive definite 

displacement parameters at this position. 

5.4.2 Structure Determination. The observed powder X-ray diffraction patterns of 

(Fe0.72(1)Pd0.28)3(Zn0.18(1)Pdy0.82)2Zn8  and (Fe0.62(1)Pd0.38)3(Zn0.04(1)Pd0.96)2Zn8  samples yielded, 

the refined lattice parameters of a = 9.0908(1) Å and 9.0940(1) Å, respectively, with the 

space group   ̅  . The results of single crystal diffraction on specimens extracted from the 

samples are listed in Tables 2 and 3. The (Fe0.72(1)Pd0.28)3(Zn0.18(1)Pdy0.82)2Zn8  and 

(Fe0.62(1)Pd0.38)3(Zn0.04(1)Pd0.96)2Zn8  structures are shown in Figure 1. 

 

Figure 1. The structure of (Fe0.72(1)Pd0.28)3(Zn0.18(1)Pdy0.82)2Zn8  and (Fe0.62(1)Pd0.38)3(Zn0.04(1)Pd0.96)2Zn8  at 293K  

emphasizing the 26-atom γ-brass clusters located at the unit cell corner(s) and center (I.T.(Grey), O.T.(Green), 

O.H.(Orange) and C.O.(Grey) and  (Fe/Pd-O.H., Zn/Pd-O.T., Zn-I.T. and Zn-C.O.)  

Table 2.  Crystallographic data for samples Fe1.5Pd1.5Zn10 and Fe2Pd2Zn9  at 293(2) K 

Specimen Fe1.5Pd1.5Zn10 Fe2Pd2Zn9 

Refined Formula Fe2.13(2)Pd2.51(4)Zn8.36(2) Fe1.85(2)Pd3.09(4)Zn8.06(2) 

F.W. (g/mol); 932.09 958.90 

Space group; Z   ̅   (No.217); 4   ̅   (No.217); 4 

Table 2. continued 

Lattice Parameters a= 9.0775(9) Å a= 9.0973(8) Å 



109 

 

Volume (Å
3
) 747.99(13) 752.90(11) 

Absorption Correction Multi-Scan Multi-Scan 

Extinction Coefficient 36.015 35.686 

µ(mm
−1

) 0.0010(1) 0.0010(1) 

Θ range (deg) 3.17 to 27.37 3.17 to 28.16 

Completeness to Θ=max 100% 100% 

hkl ranges -12<=h,k,l<=12 -12<=h,k,l<=12 

No. reflections; Rint 1200; 0.0370 5480; 0.0455 

No. independent 

reflections 
202 202 

No. parameters 21 21 

R1; wR2 (all I) 0.0183;0.0391 0.0128; 0.0317 

Goodness of fit 1.119 1.104 

Diffraction peak and 

hole (e
−
/Å

3
) 

0.519; -0.433 0.355;-0.541 

 

Table 3.  Atomic coordinates and equivalent isotropic displacement parameters of  Fe2.13(2)Pd2.51(4)Zn8.36(2) and 

Fe1.85(2)Pd3.09(4)Zn8.06(2) (Ueq is defined as one-third of the trace of the orthogonalized Uij
 tensor (Å

2
)). 

Fe2.13(2)Pd2.51(4)Zn8.36(2) 

Atom Wyck. Occ. x y z Ueq 

Zn1 8c(I.T.) 1 0.1080(1) 0.1080(1) 0.1080(1) 0.0131(4) 

Zn/Pd2 8c(O.T.) 0.18(1)/0.82 0.3271(1) 0.3271(1) 0.3271(1) 0.0079(3) 

Fe/Pd3 12e(O.H.) 0.71(1)/0.29 0.3567(1) 0 0 0.0094(4) 

Zn4 24g(C.O.) 1 0.3104(1) 0.3104(1) 0.0398(1) 0.0139(3) 

Fe1.85(2)Pd3.09(4)Zn8.06(2) 

Atom Wyck. Occ. x y z Ueq 

Zn1 8c(I.T.) 1 0.1087(1) 0.1087(1) 0.1087(1) 0.0130(3) 

Zn/Pd2 8c(O.T.) 0.03(1)/0.97 0.3268(1) 0.3268(1) 0.3268(1) 0.0083(2) 

Fe/Pd3 12e(O.H.) 0.61(1)/0.39 0.3580(1) 0 0 0.0095(3) 

Zn4 24g(C.O.) 1 0.3110(1) 0.3110(1) 0.3110(1) 0.0139(2) 
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5.4.3 Site Preference. The outcome of phase analysis of Fe-Pd-Zn -brasses and refinements 

from single crystal X-ray diffraction indicate that Fe and Pd mix on the OH sites, but Pd near 

fully occupies the OT sites at higher Pd concentrations. This site preference or “coloring” 

problem for two elements on different crystallographic sites is driven by optimizing the “site 

energy”.
[17]

 To examine this, we analyzed the Mulliken populations for the IT, OH and CO 

positions while fixing the OT sites with Pd atoms in the γ-brass structure using Extended 

Hückel theory with Cu parameters at the other three sites. The minimal basis sets for Cu 

included 3d, 4s, and 4p atomic orbitals; that for Pd used 4d, 5s, and 5p orbitals. The Mulliken 

population gave preferences to the OH sites for the Fe atoms, which have lower valence 

electron counts than Zn in the range of the e/a values for the Fe-Pd-Zn γ-brasses and shaded 

in pink in Figure 2.   

 

Figure 2.  Relative Mulliken populations (<Q> - Qsite) for the three crystallographic sites in the -brass-type 

structure Cu as a function of valence electrons. 

5.4.4 Electronic Structures of “Fe1.5Pd3.5Zn8”: TB-LMTO calculations using both LDA 

and LSDA were applied to the hypothetical ordered model of “Fe1.5Pd3.5Zn8” (see Figure 3) 



111 

 

which took into account the observed site preferences from single crystal X-ray diffraction.  

Although diffraction results indicated an I-centered cubic unit cell, these two models utilized 

primitive lattices by decorating the OT and OH sites of the two 26-atom -brass clusters in 

different ways (in all clusters, Zn atoms fully occupied the IT and CO sites as seen 

experimentally). In the model, the two clusters are formulated as [Zn4Pd4Pd6Zn12] and 

[Zn4Pd4Fe6Zn12].  

 

Figure 3. Hypothetical model for Fe1.5Pd3.5Zn8 emphasizing the 26-atom -brass clusters in the unit cells (green: 

Pd atoms; orange: Fe atoms; grey: Zn atoms).   See text for detailed descriptions. 

The electronic structure of the hypothetical model “Fe1.5Pd3.5Zn8” was studied 

computationally to understand thoroughly the electronic structure. The zinc 3d orbital makes 

a great contribution less than -6 eV and the peaks of DOS are very high and narrow. 

However, there is still a little contribution from palladium atoms. From -1.5eV~+1.0eV, iron 

orbital donates more than zinc and palladium orbital, and the peaks of DOS are broader and 

shorter. The sharp and high peak at Fermi level indicates the instability of electronic structure 

in “Fe1.5Pd3.5Zn8”. Moreover, the Fermi level lies in the -COHP curve and thereby falls in the 

Fe-Fe, Fe-Pd and Fe-Zn anti-bonding regions. As a result, there exists a drive towards 

ferromagnetism, which confirms the DOS analysis in LDA well. Thus, according to the 

LDA-DOS curves, “Fe1.5Pd3.5Zn8” is susceptible toward either a possible structural distortion 
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by disrupting the antibonding FeFe orbital interactions at the Fermi level or toward 

ferromagnetism by breaking the spin degeneracy. Applying spin polarization via the local 

spin density approximation (LSDA) splits the DOS curves for the spin-up and spin-down 

wavefunctions, as seen in Figure 5. The Fermi levels are shifted away from the peaks in the 

DOS curves, and closely approach the pseudogap in the minority spin DOS curve. The DOS 

also show peaks located at ca. –1.5 eV and -0.5 eV, respectively, in the majority and minority 

spin curves.  Integration of the spin-up and spin-down DOS curves yields a total magnetic 

moment of 4.09 μB per formula unit for “Fe1.5Pd3.5Zn8”.  Analysis of local moments reveals 

essentially no net unpaired at each Pd or Zn atom, so the result corresponds to 2.73 μB per Fe 

atom. 

Table 4. Magnetic moments (B) calculated for hypothetical model “Fe1.5Pd3.5Zn8” using TB-LMTO-ASA with 

LSDA. 

Position / Cluster 
Model  “Fe1.5Pd3.5Zn8” 

Atom Moment (B) 

IT / (0, 0, 0) Zn –0.02 

OT / (0, 0, 0) Pd 0.11 

OH / (0, 0, 0) Fe 2.57 

CO / (0, 0, 0) Zn 0.03 

Cluster:  16.14 

IT / (½ , ½, ½) Zn –0.02 

OT / (½ , ½, ½) Pd –0.002 

OH / (½ , ½, ½) Pd –0.01 

CO / (½ , ½, ½) Zn 0.03 

Cluster:  0.212 
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Figure 4. Partial DOS curves and –COHP curves of “Fe1.5Pd3.5Zn8” obtained from local density approximation 

(LDA) without spin-polarization calculation. (+ is bonding/ − is anti-bonding, EF indicated by the red dashed 

line for 286 e
–
).  In the DOS curves, purple shading indicates Pd contributions, green shading indicates Fe 

contributions. 

 

Figure 5. Spin polarized total and partial DOS curves for models of “Fe1.5Pd3.5Zn8” (majority: spin down; 

minority: spin up; EF indicated by the red dashed line for 286 e
–
). (Purple shading indicates Pd contributions, 

green shading indicates Fe contributions.) 
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5.4.5 Magnetic Properties. The isothermal magnetization curves of the 

Fe1.85(2)Pd3.09(4)Zn8.06(2) sample measured at 5 K and 300 K indicate the sample to be 

ferromagnetic. Saturation is achieved at 8.0 kOe. The saturation moments are 0.45(2) μB/f.u. 

at 5 K and 0.40(2) μB/f.u. at 300 K.  Ferromagnetic behavior of this sample is also confirmed 

by temperature-dependent magnetization measured at 500 Oe (see Figure 6(Right)). 

According to the LDA-based DOS curves for Fe1.5Pd3.5Zn8, evaluation of the Stoner 

condition using the Fe partial DOS gives N(Fe)I(Fe) = 1.56; N(Fe) = 3.18 eV
1

, I(Fe) = 0.46 

eV.
[18-19]

 Theoretically, the Stoner condition for ferromagnetism is satisfied, which is in great 

agreement with experimental measurements. 

 

Figure 6. (Left) Magnetization vs. applied field measured at 5 K and 300 K for Fe1.85(2)Pd3.09(4)Zn8.06(2). (Right) 

Temperature-dependent M/H  and H/M values measured from 2 K to 300 K at 500 Oe for Fe1.85(2)Pd3.09(4)Zn8.06(2). 

5.5 Conclusions. A-brass type Fe-Pd-Zn system well crystallized and structurally analyzed 

was shown a clear site preference of Fe atoms for OH sites. Mulliken population analysis 

illustrated the “coloring” problem driven by “site energy”. Furthermore, states at the Fermi 

level of hypothetical model “Fe1.5Pd3.5Zn8” in DOS-LDA arise mostly from Fe 3d orbitals, 

and form spontaneous magnetic moments in the model. Magnetization measurements 

indicate ferromagnetic behavior, which match with theoretical prediction well. 
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5.8 Supporting Information 

Table S1. Anisotropic displacements parameters for Fe-Pd-Zn -brass crystal structures. 

Fe2.13(2)Pd2.51(4)Zn8.36(2) 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0131(4) 0.0131(4) 0.0131(4) 0.0029(4) 0.0029(4) 0.0029(4) 

Zn/Pd2 0.0079(3) 0.0079(3) 0.0079(3) 0.0006(2) 0.0006(2) 0.0006(2) 

Fe/Pd3 0.0082(6) 0.0101(4) 0.0101(4) 0.0029(5) 0 0 

Zn4 0.0154(4) 0.0154(4) 0.0108(4) –0.0034(2) –0.0034(2) –0.0014(4) 

 

Fe1.85(2)Pd3.09(4)Zn8.06(2) 

Atom U11 U22 U33 U23 U13 U12 

Zn1 0.0130(3) 0.0130(3) 0.0130(3) 0.0030(3) 0.0030(3) 0.0030(3) 

Zn/Pd2 0.0083(2) 0.0083(2) 0.0083(2) 0.0005(2) 0.0005(2) 0.0005(2) 

Fe/Pd3 0.0081(4) 0.0102(3) 0.0102(3) 0.0032(3) 0 0 

Zn4 0.0158(3) 0.0158(3) 0.0101(3) –0.0031(2) –0.0031(2) –0.0026(3) 
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CHAPTER 6 

Nanoscale Cubic Periodicity of Ordered and Disordered d-Metal 

Intermetallic Compounds Grown from a Zn-Sn Reactive Flux 

 
Weiwei Xie and Gordon J. Miller* 

Department of Chemistry, Iowa State University and Ames Laboratory, Ames, IA, 50011, 

US 

6.1 Abstract 

Two new complex isotypic intermetallic compounds with giant cubic unit cells that were 

grown in high yield from a Zn-Sn flux are reported.  Cr22Sn24Zn72 and V23.3(1)Sn26.3(1)Zn68.4(1) 

crystallize in space group    ̅ , Z = 8, Pearson symbol cF944, with unit cell parameters, 

respectively, a = 25.184(4) Å and 25.080(3) Å. Their structures can be described as a cubic 

NaZn13-type packing of two distinct, yet condensed intermetallic clusters: (i) 

Cr@(Cr8Zn6)(Sn)24(Zn)60 or Zn@{(V/Sn)8(Zn/Sn)6}(V/Sn)24(Sn24Zn36) centered at the 8a (¼, 

¼, ¼) sites with octahedral point symmetry O (432), composed of a central atom 

encapsulated by three successive shells of, respectively, a distorted rhombic dodecahedron, 

snub-cube, and a rhombi-icosidodecahedron; and (ii) a Mackay cluster 

Cr@(Zn)12(Zn)30(Zn)12 or (V/Sn)@(Zn)12(Zn)30(Zn)12, centered at the 8b (0,0,0) sites with 

tetrahedral point symmetry Th ( 3m ), composed of a central Cr or V/Sn site surrounded by 

three successive shells of an icosahedron, an icosidodecahedron, and a larger icosahedron.  

The radius ratio between the two types of clusters around the 8a and 8b sites is 0.74. An 

alternative description, which is similar but eliminates condensation between the two 

structural moieties, involves a simple cubic packing of I13 clusters condensed via extreme Zn 

sites with rhombic dodecahedra Cr@Cr8Zn6 or Zn@{(V/Sn)8(Zn/Sn)6} in the voids.  These 

results indicate that complex intermetallic compounds with nanometer-sized periodicities can 
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be synthesized by flux growth to yield homogeneous, ordered nanocrystals (NCs) or partially 

disordered NCs. 

6.2 Introduction 

Intermetallic crystals with nanoscale periodicities are of interest because quantum size 

effects and the large number of surface atoms can influence their chemical, electronic, 

magnetic, and optical behavior.
[1-2]

 But the growth and identification of such crystals are 

infrequently reported because the characterization of such intermetallic compounds is 

tremendously challenging and, often insufficient data are collected to account for all 

positions in the asymmetric unit of the crystallographic cell.  According to the literature, Zn-, 

Al-, Cd- and Mg-rich intermetallic compounds are the most common systems that form giant 

unit cells encompassing hundreds to thousands of atoms, like Mg2Al3, which has a lattice 

parameter of 2.824 nm with 1832 possible atomic positions per unit cell.
[3]

  According to 

advances in the last 20-25 years, such compounds belong to a broader class of periodic and 

quasiperiodic complex metallic alloys (CMAs). 

CMAs encompass different kinds of structurally complex materials sharing a basic 

property, which is that these alloys exhibit a well-defined, long-range order of atoms.  Over 

shorter length scales, it is possible to identify aggregates of atoms, “clusters”, which can be 

condensed or overlapping.
[4]

 Moreover, CMAs exhibit several attractive properties for 

engineering applications, such as high strength-to-weight ratio, good oxidation resistance, 

high-temperature strength and thermoelectric properties because of the disordered crystal 

structures.
[5-6]

  For instance, Ru13Sb6.29Zn91.56, which has been reported with a cubic lattice 

parameter exceeding 2 nm and partially disordered crystallographic sites, is a potentially 

good thermoelectric material.
[7]

  As the number of identified and characterized CMAs grows, 
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chemists and materials scientists can begin to assess structural chemical principles that can 

lead to new systems with useful properties.  In the electronic structures of small-scale models 

of CMAs, a signature of stability for a given chemical composition is the occurrence of a 

pseudogap in the density of states (DOS) curves at the Fermi level.  Analysis of inter-orbital 

bonding typically shows that this pseudogap separates metal-metal bonding states below 

from metal-metal antibonding states above the Fermi level, but there can be other reasons, 

such as relative electronegativities of the atomic constituents or, from the perspective of the 

nearly free-electron gas, Fermi surface–Brillouin zone (FsBz) interactions are important 

mechanisms to form pseudogaps in the DOS curves.
 [8-9]

 

One useful synthetic tool is the use of a eutectic mixture of elements as a flux medium for 

growing crystals of intermetallic compounds.  In particular, a mixture of Zn and Sn has been 

reported to facilitate the synthesis of two giant-unit-cell ternary compounds, Mo7Sn12Zn40
[10]

 

and Ru4Sn2.88Zn11.73
[11]
. In the report, we extend this mixture’s effectiveness to produce new 

CMAs by the discovery and characterization of two new cubic phases with nanoscale 

periodicities, Cr22Sn24Zn72 and V23.3(1)Sn26.3(1)Zn68.4(1).  

6.3 Synthesis and Structural Characterization 

6.3.1 Synthesis.  Crystalline specimens of the title compounds are best obtained from 

mixtures, 3g total, of Cr or V (99.9%, Ames Lab), Sn pieces (99.99%, Ames Lab), and Zn 

particles (99.99%, Ames Lab) with a molar ratio of Cr/V:Sn:Zn = 1:3:3 in atomic weight and 

loaded into alumina crucibles that was, in turn, sealed in evacuated (pressure < 10
–5

 torr) 

silica jackets to avoid air oxidation.  The samples were heated to 800°C for 24 hrs, followed 

by cooling to 600°C at a rate of 1.0°C/min, and finally spun at 600°C at a speed of 3000 rps 
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for 15 sec.  The mass of crystalline products ranged from 0.1-0.2g and the products are 

identified as cubic crystals under an optical microscope. 

The first products were obtained by seeking to replicate “Mo7Sn12Zn40”
 [10]

 using Cr 

rather than Mo.  So, a mixture, 0.5g total, of Cr, Sn, and Zn in the molar ratio 1:2:6 was 

sealed in an evacuated silica jacket, heated to 850C for 24 hrs, followed by slow cooling to 

200C at a rate of 0.02C/min.  Although cubic crystals with a total mass of 0.02-0.05g could 

be obtained using optical microscopy, much of the product was too ductile for powder X-ray 

diffraction analysis.  Other attempts that involved different annealing temperatures, cooling 

rates, and Cr:Sn:Zn molar ratios ultimately led to the prescription described above.  These 

alternative synthetic attempts are summarized in Supporting Information.  Furthermore, once 

this optimal procedure was identified for the Cr-Sn-Zn system, it was applied to the V-Sn-Zn 

system as well without further synthetic explorations.   

6.3.2 Phase Analyses. The samples were examined by powder X-ray diffraction for 

identification and phase purity on a STOE WinXPOW powder diffractometer employing Cu 

Kradiation (  Å) for all samples. The scattered intensities were recorded as a 

function of Bragg angle (2) using a scintillation detector with 0.03° steps in 2 using the 

step scan mode from 0° to 130°.  Phase identifications were accomplished with the aid of 

calculations from PowderCell using samples obtained by grinding several cubic crystals, and 

lattice parameters were refined by full-profile Rietveld refinement
[12]

 using LHPM 

RIETICA
[13]

 from reflection peaks between 10° and 90° in 2θ.  

6.3.3 High-Resolution Transmission Electron Microscopy (HRTEM).  HRTEM images 

were collected and energy dispersive X-ray spectroscopy (EDS) analyses were conducted 

using a JEOL JEM 2100F FEGTEM (200 keV) with a Gatan UltraScan 1000 (2048×2048) 
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CCD camera. Samples for TEM analysis were prepared by dropping an ethanol solution 

containing the samples onto the surface of a carbon-coated copper grid.  

6.3.4 Structure Determination. Single crystals from the samples were mounted on the tips 

of glass fibers. Room temperature intensity data were collected on a Bruker Smart Apex 

CCD diffractometer with Mo K radiation (λ = 0.71073 Å). Data were collected over a full 

sphere of reciprocal space by taking three sets of 606 frames with 0.3° scans in ω with an 

exposure time of 20s per frame. The 2θ range extended from 3° to 60°. The SMART 

software was used for data acquisition. Intensities were extracted and corrected for Lorentz 

and polarization effects with the SAINT program.
[14]

 Empirical absorption corrections were 

accomplished with SADABS, which is based on modeling a transmission surface by 

spherical harmonics employing equivalent reflections with I > 3σ(I).
[15]

 With the SHELXTL 

package, the crystal structures were solved using direct methods and refined by full-matrix 

least-squares on F
2
.
[16]

 All crystal structure drawings were produced using the program 

Diamond.
[17]

 

6.4 Results and Discussion 

Our synthetic exploration of Cr or V dissolved in Zn-Sn fluxes yielded two new phases 

which crystallized in large cubic unit cells with compositions refined from single crystal X-

ray diffraction to be Cr22Sn24Zn72 and V21.7(1)Sn26.9(1)Zn69.4(1).  Their crystal structures, which 

are discussed in a subsequent subsection, are closely related to Mo7Sn12Zn40
[10]

 and Ru-Zn-

Sb phases
[11]

. These products formed brittle, cubic-shaped crystals that are stable upon 

exposure to air and moisture, but react with dilute aqueous acid at room temperature.  

Although crystals could be obtained by nearly stoichiometric mixtures of the corresponding 
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elements, there was always some additional ductile alloy which could not be easily ground 

for X-ray powder diffraction analysis. 

To date, the Zn-Sn phase diagram has not been fully characterized, but a calculated 

diagram, which covers temperatures up to 1500C is available.
[18]

 In this diagram, there are 

no binary compounds, but a eutectic point occurs at 198.5C at 14.9 atomic percent Zn.
[19] 

According to our synthetic attempts, Sn-rich flux mixtures yielded only ductile products, 

with no evidence for the cubic crystals.  These structures emerged when the Zn:T molar ratio 

(T = V or Cr) exceeded 2:1 and for at least a equimolar mixture of T and Sn. 

6.4.1 Phase Analyses. Once cubic crystals were extracted from the reaction mixtures, phase 

analysis was conducted by X-ray powder diffraction and electron microscopy.  Results are 

summarized in Table 1.  According to X-ray powder diffraction, these crystalline samples 

were single phase and their patterns could be successfully indexed and refined using the 

atomic positions obtained from single crystal diffraction experiments.  For the X-ray powder 

diffraction patterns, the scale factors, lattice parameters, atomic positions, and site 

occupancies were refined, whereas the displacement parameters of all atoms were assumed to 

be isotropic (see Tables S2 and S3 in Supporting Information). The resulting profile residuals 

Rp varied between 4.59 and 7.18 with weighted profile residuals Rwp between 5.08 and 

7.43. The cubic lattice parameter for the Cr-Sn-Zn compound is systematically larger, 

regardless of measurement, than the corresponding parameter for the V-Sn-Zn compound, 

and these values are somewhat smaller than 25.447(1) Å for Mo7Sn12Zn40
[10]

 (single crystal 

X-ray diffraction) but are slightly larger than those reported for Ru-Zn-Sb phases
[11]

 

(24.340(6)-25.133(9); powder X-ray diffraction).   
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Table 1.  Loaded compositions, yields, lattice constants, and refined compositions obtained from cubic crystals 

obtained from Cr-Sn-Zn and V-Sn-Zn flux syntheses. PXRD = powder X-ray diffraction; SCXRD = single 

crystal X-ray diffraction; HRTEM = high resolution transmission electron microscopy; EDX = energy 

dispersive X-ray spectroscopy. 

Loaded Composition “CrSn3Zn3” “VSn3Zn3” 

Yield 
Cubic crystals: 0.1-0.2g 

Flux: 2.8-2.9g 

Cubic crystals: 0.1-0.2g 

Flux: 2.8-2.9g 

a (Å) (PXRD) 25.256(3) 25.032(3) 

a (Å) (SCXRD) 25.184(4) 25.080(3) 

a (Å) (HRTEM) 24.90(1) 23.92(1) 

Composition (PXRD) Cr22Sn24Zn72.0(1) V23.3(1)Sn26.1(1)Zn68.6(1) 

Composition (SCXRD) Cr22Sn24Zn72 V23.3(1)Sn26.3(1)Zn68.4(1) 

Composition (EDX) Cr20.8(4)Sn28.7(4)Zn68.7(6) V19(1)Sn23(1)Zn76(2) 

 

Samples for TEM investigations were dispersed in ethanol.  After complete evaporation 

of the ethanol, TEM tilting experiments were also employed to examine [001] projections of 

Cr22Sn24Zn72 and V23.3(1)Sn26.3(1)Zn68.4(1) (see Figures 1a, 1b) to study the purity of these 

crystalline specimens.  The TEM dark-field (DF) images of the crystalline [001] axes (see 

Figure SX in Supporting Information) of each specimen determined the d-spacings d002 for 

Cr22Sn24Zn72 (12.46 Å) and V23.3(1)Sn26.3(1)Zn68.4(1) (11.96 Å), and, thus, the corresponding 

lattice parameters, 24.92 Å and 23.92 Å.  In the Fast Fourier Transform (FFT) filtered images 

(see Figures 1c, 1d), the square grid identifies a simple cubic-like arrangement of clusters 

with diameters of approximately the d002 spacing in each sample, i.e., 12.5 Å for 

Cr22Sn24Zn72 and 12.0 Å for V23.3(1)Sn26.3(1)Zn68.4(1).  In these images, the light regions would 

correspond to Sn-rich areas, whereas dark regions would correspond to Cr/Zn-rich areas at 

the surfaces.  At least in the surface regions where TEM investigations were surveyed, there 

exists some variation in local compositions, although the pattern of Sn-rich and Cr/Zn-rich 

areas remains essentially periodic.  
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Figure 1.  [001] Projections of (a) Cr22Sn24Zn72 and (b) V23.3(1)Sn26.3(1)Zn68.4(1) obtained by HRTEM tilting 

experiments.  Fast Fourier Transform (FFT) filtered images of (c) Cr22Sn24Zn72 and (d) V23.3(1)Sn26.3(1)Zn68.4(1).  

The square grids outlined in red emphasize the regular array of clusters, which are further examined by SCXRD. 

6.4.2 Crystal Structures. To obtain further insights into the structural features of these 

complex intermetallic compounds, single crystals were extracted from each sample and 

studied by X-ray diffraction.  The results of these single crystal X-ray diffraction 

investigations are summarized in Table 2 with the atomic positions, site occupancies, and 

isotropic thermal displacements listed in Table 3. The corresponding anisotropic 

displacement parameters and significant interatomic distances are available via their CIF-

files, which are part of the Supporting Information. In both cases, although the molar ratios 

of loadings were (V or Cr):Sn:Zn = 1: 3: 3, the refined compositions were closer to 1: 1: 3, 

i.e., Cr22Sn24Zn72 (1: 1.09: 3.27) and V23.3(1)Sn26.3(1)Zn68.4(1) (1: 1.12(1): 2.92(1)).  
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Furthermore, the atomic positions and corresponding site occupancies indicated that the 

distributions of elements in the two structures have some subtle differences. 

Table 2.  Selected crystallographic data for Cr-Sn-Zn and V-Sn-Zn cubic phases at 293(2) K. 

Specimen (Loaded) “Cr1Sn3Zn3” “V1Sn3Zn3” 

Refined Formula Cr22Sn24Zn72 V23.3(1)Sn26.3(1)Zn68.4(1) 

F.W. (g/mol); F(000) 8699.20; 31104 8776.94; 31214 

Space group; Z Fm–3c (No. 226); 8 F m -3 c(No. 226); 8 

Lattice Parameter (Å) a = 25.184(4) a= 25.080(3) 

Volume (Å
3
) 15972(4) 15775(3) 

dcalc (Mg/m
3
) 7.235 7.391 

Absorption Correction Multi-scan Multi-scan 

(mm
−1

) 31.320 31.065 

 range (°) 1.62-28.33 1.62 to 27.58 

hkl ranges –33  h, k, l  33 -32<=h,k,l<=32 

No. independent reflections; Rint 896; 0.0817 831; 0.0772 

No. parameters 60 60 

R1; wR2 (all I) 0.0406; 0.0699 0.0365;0.0690 

Goodness of fit 1.094 1.316 

Diffraction peak and hole (e
−
/Å

3
) 2.938;–2.464 1.183;-1.019 

Table 3.  Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters of Cr-Sn-Zn 

and V-Sn-Zn phases examined at 293(2) K.  Ueq is defined as one-third of the trace of the orthogonalized Uij 

tensor (Å
2
). 

Cr22Sn24Zn72 

 
Atom 

Wyckoff 

Site 
Occupancy x y z Ueq 

“I13”-

Cluster 

Cr1 8b 1 0 0 0 0.005(1) 

Cr2 96i 1 0 0.1103(1) 0.1756(1) 0.007(1) 

Zn3 48e 1 0.1778(1) 0 0 0.009(1) 

Zn4 96i 1 0 0.0547(1) 0.0869(1) 0.007(1) 

Zn5 96i 1 0 0.2189(1) 0.1483(1) 0.012(1) 

Zn6 96h 1 ¼ 0.0563(1) 0.0563(1) 0.009(1) 

Zn7 192j 1 0.0571(1) 0.1463(1) 0.0901(1) 0.010(1) 

Sn8 192j 1 0.0960(1) 0.1630(1)  0.2054(1) 0.017(1) 
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Table 3. continued 

“bcc”-

Cluster 

Cr9 8a 1 ¼ ¼ ¼ 0.005(1) 

Cr10 64g 1 0.1904(1) 0.1904(1) 0.1904(1) 0.047(1) 

Zn11 192j ¼  0.1538(2) 0.2677(3) 0.2677(3) 0.068(5) 

V23.3(1)Sn26.3(1)Zn68.4(1) 

 Atom 
Wyckoff 

Site 
Occupancy x y z Ueq 

“I13”-

Cluster 

V1 8b 1 0 0 0 0.001(1) 

V/Sn2 96i 0.72(1)/0.28 0 0.1150(1) 0.1783(1) 0.001(1) 

Zn3 48e 1 0.1815(1) 0 0 0.008(1) 

Zn4 96i 1 0 0.0557(1) 0.0879(1) 0.004(1) 

Sn5 96i 1 0 0.2222(1) 0.1577(1) 0.009(1) 

V/Sn6 96h 0.66(1)/0.34 ¼ 0.0607(1) 0.0607(1) 0.009(1) 

Zn7 192j 1 0.0586(1) 0.1466(1) 0.0891(1) 0.007(1) 

Zn8 192j 1 0.0953(1) 0.1561(1) 0.1954(1) 0.020(1) 

“bcc”-

Cluster 

V/Sn9 8a 0.75(3)/0.25 ¼ ¼ ¼ 0.006(2) 

V/Sn10 64g 0.62(1)/0.38 0.1910(1) 0.1910(1) 0.1910(1) 0.025(1) 

Zn/Sn11 48f 0.40(1)/0.60 0.1165(1) ¼ ¼ 0.014(1) 

 

Both structures crystallize in the face-centered cubic space group    ̅  (No. 226) with 

944 atoms per unit cell distributed among 11 crystallographic sites in the asymmetric unit.  In 

Cr22Sn24Zn72, there are no mixed occupancies, but the site labeled Zn11 (192j) could be 

maximally occupied by 25% from distance restrictions.  In fact, allowing the occupancy to 

refine yielded 27.1(4)% occupancy by Zn, so the occupancy was set to 25% for further 

refinement steps (see the electron density distribution in a Fourier map in Figure S2).  In 

V23.3(1)Sn26.3(1)Zn68.4(1), however, five crystallographic sites refined with mixed occupancies, 

four of which involved V and Sn mixing, while one site, Zn/Sn11 (48f) refined using Zn and 

Sn atoms.  Furthermore, this site corresponds to the four-fold split Zn11 (192j) site that is 25% 

occupied by Zn atoms in Cr22Sn24Zn72. 
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(a) 

 

(b) 
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Figure 2. Crystal structures constructed by a body-centered cubic type packing of large atomic clusters in (a) 

Cr22Sn24Zn72 (red: Cr; green: Zn; blue: Sn) and (b) V23.3(1)Sn26.3(1)Zn68.4(1) (red: V; pink V/Sn; green: Zn; blue: Sn; 

purple: Zn/Sn). 

The structures of these two compounds can be described by two complementary yet 

related perspectives that each provides some important insights about this small class of 

complex intermetallic compounds.  The first perspective is illustrated in Figure 2, which 

emphasizes their relationship with NaZn13-type structures by identifying a body-centered 

cubic packing of two distinct intermetallic clusters which are condensed along {111} 

directions.  These two clusters are (1) an icosahedral-like 55-atom Mackay cluster centered at 

the 8b (0, 0, 0) sites, point symmetry Th (m  ̅ ), Cr@(Zn)12(Zn)30(Cr)12 and 

V@(Zn)12(Zn)30(V0.72(1)Sn0.28)12; and (2) an octahedrally symmetric 99-atom cluster centered 

at the 8a (¼, ¼, ¼) sites, point symmetry O (432), Cr@(Cr)8(Zn)6(Sn)24(Zn)60 and 

(V0.75(3)Sn0.25)@(V0.62(1)Sn0.38)8(Zn0.40(1)Sn0.60)6(Zn)24-(V0.13(1)Sn0.47Zn0.40)60.  The 55-atom 

Mackay clusters consist of a single atom surrounded by three successive shells of an 

icosahedron, an icosidodecahedron, and a second icosahedron that caps every pentagonal 

face of the icosidodecahedron. The other 99-atom octahedrally symmetric cluster contains a 

rhombic dodecahedron, which is distorted in Cr22Sn24Zn72, that successively encapsulated by 

a snub cube and a rhombi-icosidodecahedron.  In NaZn13, Zn@(Zn)12 icosahedra are centered 

at the 8b (0, 0, 0) sites, and Na atoms are located at the 8a (¼, ¼, ¼) sites, surrounded by a 

snub cube of 24 Zn atoms.  The radius ratios of the two different clusters in the two 

compounds are approximately 0.76, which is in line with expectations of filling voids of a 

simple cubic packing of spheres.  In this case, there is a simple cubic packing of 99-atom 

octahedrally symmetric rhombi-icosidodecahedra with the voids filled by icosahedrally 

symmetric Mackay clusters.   
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The second perspective again divides these structures into two fragments, shown in 

Figure 3, but now emphasizes their construction by condensing icosahedrally symmetric I13-

type clusters along {100} directions, and placing rhombic dodecahedra, which are small 

fragments of body-centered cubic packing, into the large octahedrally symmetric voids.  The 

I13 cluster, which contains 127 atoms consists of 12 metal-centered icosahedra vertex-

connected to a central icosahedron that is also metal-centered.  In Cr22Sn24Zn72, the I13 

cluster is formulated as [Cr@(Zn12/2)][Cr@(Zn6/2Zn4Sn2]12, but these are condensed via 48 

terminal Zn atoms, 8 each along the six {100} directions to give the final structural formula 

as [Cr@(Zn12/2)][Cr@(Zn6/2 Zn4/2Sn2]12.  As revealed by the structural formula and Figure 3, 

the sites occupied by Sn atoms belong to a single I13 cluster.  Moreover, these Sn atoms form 

a 24-atom snub cube that encapsulates the rhombic dodecahedra, which are formulated as 

Cr@(Cr8)(Zn6). 

 

(a) 
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(b) 

Figure 3. Crystal structures emphasizing the I13- and bcc-clusters in (a) Cr22Sn24Zn72 (red: Cr; green: Zn; blue: 

Sn) and (b) V23.3(1)Sn26.3(1)Zn68.4(1) (red: V; pink V/Sn; green: Zn; blue: Sn; purple: Zn/Sn). 

6.4.3 Electronic Structure.  The chemical compositions and structures of many CMAs 

have been rationalized using a Hume-Rothery valence electron counting mechanism.  In this 

model, which relies on the nearly-free-electron model for electronic states, the spherical 

Fermi surface lies close to a large number of Brillouin zone faces set up by the periodic 

potential of atomic sites.  Since the radius of the Fermi sphere is the Fermi wavevector kF and 

Brillouin zone faces bisect reciprocal lattice vectors Khkl, for a cubic system with lattice 

constant a this criterion is  

kF ≈ |Khkl|/2 = (π/a)[h
2
 + k

2
 + l

2
]
1/2

. (1) 

When this condition is met, the ensuing Fermi surface-Brillouin zone (Fs-Bz) interaction 

creates gaps at the Fermi level in the electronic energy band structure near certain zone 

boundaries of the Brillouin zone and, consequently, expresses a pseudogap in the electronic 
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density of states (DOS) curve.  Since the Fermi surface is set by the number of valence 

electrons N or occupied states (N/2) within the Fermi sphere, the criterion of strong Fs-Bz 

interactions, equation (1), sets the number of valence electrons per unit cell Ncell to be 

Ncell = (kF
3
Vcell)/3π

2
 = (π/3)[h

2
 + k

2
 + l

2
]
1/2

,                                                              (2) 

and, therefore, a corresponding valence electron concentration expressed as an electron-

to-atom (e/a) ratio as  

e/a = Ncell/Acell = (π/3Acell)[h
2
 + k

2
 + l

2
]
1/2

, (3) 

in which Acell is the number of atoms per unit cell.  This model has been successfully 

applied to CMAs ranging from -brasses like Cu5Zn8 (cI52) and Cu9Al4 (cP52), which show 

optimal e/a ratios of 1.615,
[9]

 as well as a series of Mackay-type icosahedral quasicrystals in 

the Al–Cu–T (T = Fe, Ru, Os) and Al–Pd–T (T = Mn, Re) systems for e/a = 1.75.
[20-21]

  In 

these CMAs, the appropriate Brillouin zone faces for optimal Fs-Bz interactions occurs for 

the most intense (hkl) peaks observed in the X-ray diffraction pattern. 

Therefore, for Cr22Sn24Zn72 and V23.3(1)Sn26.3(1)Zn68.4(1), the most four intense peaks occur 

in the range of scattering angle 2θ of 36-44.  Listed in Table 4 are the requisite pieces of 

information that, when used in equations (1)-(3), derive e/a values of 1.657 for Cr22Sn24Zn72 

and 1.627 for V23.3(1)Sn26.3(1)Zn68.4(1).  These values lie between 1.615 (-brass) and 1.75 

(Mackay-type icosahedral QCs), to suggest that these CMAs, Cr22Sn24Zn72 and 

V23.3(1)Sn26.3(1)Zn68.4(1), identify a transition from cubic periodic structures to QCs.  

Table 4. (h, k, l), d-spacing, Khkl and kF for most four intensity peaks in the powder X-ray diffraction patterns of 

Cr-Sn-Zn and V-Sn-Zn cubic phases. 

Most Intense Peaks Cr-Sn-Zn V-Sn-Zn- 

(h, k, l) 

(0,6,10)*24, (6,6,8)*24 

(3,5,9)*48 

(2,8,8)*24, (4,4,10)*24 

(0,6,10)*24, (6,6,8)*24 

(3,5,9)*48 

(2,8,8)*24, (4,4,10)*24 
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 Table 4. continued  

 (3,7,9)*48 (1,3,11)*48, (1,7,9)*48 

d-spacing(1/Å) 

2.1598 

2.3487 

2.1922 

2.1363 

2.1598 

2.3487 

2.1922 

2.2006 

½ *Khkl 

1.455 

1.338 

1.433 

1.471 

1.455 

1.338 

1.433 

1.428 

kF 

1.455 

1.338 

1.433 

1.471 

1.455 

1.338 

1.433 

1.428 

e/a 

1.759 

1.368 

1.682 

1.818 

1.759 

1.368 

1.682 

1.663 

e/a 1.657 1.627 

Tight-binding electronic structure calculations using the LMTO code reveals that the 

Fermi level for Cr22Sn24Zn72 falls within a pseudogap in the electronic density of states (see 

Figure 4).  Further computational analysis is required to understand features of the chemical 

bonding in these CMAs. 

 

Figure 4. Electronic density of states curve for Cr22Sn24Zn72.  

Cr states shaded in yellow; zinc states shaded in green; tin 

states shaded in red.  The Fermi level is the energy reference. 

(eV)
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6.5 Conclusion:  The synthesis and structural characteristics of two new complex metallic 

compounds Cr22Sn24Zn72 and V23.3(1)Sn26.3(1)Zn68.4(1) are presented, both of which show 

nanoscale lattice parameters. There are two types of clusters in the compounds, I13-type and 

bcc-type, which are packed in a body-centered cubic packing.  The e/a ratios evaluated for 

these two CMAs place them between cubic -brasses and icosahedral quasicrystals, and their 

electronic DOS curve show a pseudogap near the Fermi level, results which suggest that 

these CMAs satisfy some type of Hume-Rothery valence electron counting rule.  
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6.8 Supporting Information 

Table S1. The refined parameters of TM-Sn-Zn as determined by Rietveld refinement of 

PXRD data at 293K.  
 

 
Cr22Sn24Zn72 

Crystallographic unit cell: cubic (space group: Fm-3c), a = b = c= 25.2562(1) Å, Rp = 4.588,   Rwp = 5.084.              

Atom Wyckoff Occupancy x y z U(eq) (Å) 

Cr1 8a 1 ¼ ¼ ¼ 0.042 

Cr2 8b 1 0 0 0 0.045 
Cr3 64g 1 0.19441 0.19441 0.19441 0.054 

Cr4 96i 1 0 0.10998 0.16782 0.045 
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Table S1. continued 

Zn5 192j ¼  0.13832 0.27097 0.26737 0.051 

Zn6 48e 1 0.18984 0 0 0.054 
Zn7 96i 1 0 0.05511 0.08944 0.046 

Zn8 96i 1 0 0.21475 0.14173 0.045 
Zn9 96h 1 ¼ 0.05701 0.05701 0.045 

Zn10 192j 1 0.05372 0.14996 0.09111 0.048 

Sn11 192j 1 0.08802 0.16267 0.20472 0.050 

 

 
V23.3Sn26.1Zn68.6 

Crystallographic unit cell: cubic (space group: Fm-3c), a = b = c= 25.0322(1) Å, Rp = 6.898,   Rwp = 7.139.              

Atom Wyckoff Occupancy x y z U(eq) (Å) 

V/Sn1 8a 0.70(1)/0.30 ¼ ¼ ¼ 0.080 

V2 8b 1 0 0 0 0.083 
Zn/Sn3 48f 0.44(1)/0.56 0.12070 ¼ ¼ 0.094 

V/Sn4 64g 0.60(1)/0.40 0.18874 0.18874 0.18874 0.093 

Zn5 96i 1 0 0.11065 0.18013 0.091 
Zn6 48e 1 0.18179 0 0 0.082 

V/Sn7 96i 0.74(1)/0.26 0 0.05493 0.09141 0.089 

Sn8 96i 1 0 0.22054 0.16256 0.097 
V/Sn9 96h 0.66(1)/0.34 ¼ 0.06009 0.06009 0.090 

Zn10 192j 1 0.05860 0.14790 0.08644 0.085 

Zn11 192j 1 0.09400 0.15630 0.19623 0.090 

 

Table S2. Anisotropic displacements parameters of Cr-Sn-Zn and V-Sn-Zn phases examined 

at 293(2) K. 

Cr22Sn24Zn72 

 Atom U11 U22 U33 U23 U13 U12 

“I13”-

Cluster 

Cr1 0.005(1) 0.005(1) 0.005(1) 0 0 0 

Cr2 0.007(1) 0.008(1) 0.006(1) -0.000(1) 0 0 

Zn3 0.011(1) 0.015(1) 0.009(1) 0 0 0 

Zn4 0.010(1) 0.010(1) 0.008(1) -0.001(1) 0  0 

Zn5 0.017(1) 0.013(1) 0.019(1) 0.001(1) 0 0 

Zn6 0.009(1) 0.014(1) 0.014(1) 0.002(1) 0.001(1) -0.001(1) 

Zn7 0.015(1) 0.011(1) 0.010(1) 0.002(1) 0.002(1) 0.001(1) 

Sn8 0.015(1) 0.020(1) 0.018(1) 0.001(1) -0.004(1) -0.006(1) 

“bcc”-

Cluster 

Cr9 0.005(1) 0.005(1) 0.005(1) 0 0 0 

Cr10 0.047(1) 0.047(1) 0.047(1) -0.018(1) -0.018(1) -0.018(1) 

Zn11 0.047(3) 0.077(7) 0.012(7) 0.076(6) 0.095(7) 0.050(4) 

 

V23.3(1)Sn26.3(1)Zn68.4(1) 

 Atom U11 U22 U33 U23 U13 U12 

“I13”-

Cluster 

V1 0.001(1) 0.001(1) 0.001(1) 0 0 0 

V/Sn2 0.002(1) 0.001(1) -0.001(1) 0.001(1) 0 0 

Zn3 0.008(1) 0.009(1) 0.006(1) 0 0 0 

Zn4 0.005(1) 0.005(1) 0.003(1) -0.002(1) 0 0 

Sn5 0.015(1) 0.003(1) 0.008(1) 0.002(1) 0 0 
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 Table S2. continued 

 V/Sn6 0.006(1) 0.011(1) 0.011(1) 0.002(1) 0.001(1) -0.001(1) 

 Zn7 0.010(1) 0.005(1) 0.006(1) 0.001(1) 0.002(1) 0.001(1) 

 Zn8 0.015(1) 0.019(1) 0.025(1) 0.001(1) -0.005(1) -0.011(1) 

“bcc”-

Cluster 

V/Sn9 0.006(2) 0.006(2) 0.006(2) 0 0 0 

V/Sn10 0.025(1) 0.025(1) 0.025(1) -0.006(1) -0.006(1) -0.006(1) 

Zn/Sn11 0.024(1) 0.009(1) 0.009(1) 0 0 0 

 

Figure S1. The refined powder X-ray patterns of TM-Sn-Zn as determined by Rietveld 

refinement at 293K. 

Cr22Sn24Zn72 

V23.3Sn26.1Zn68.6 
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Figure S2. Electronic density distribution in Cr-Sn-Zn without Zn11 (192j) site along x axis. 

 

x=0.158                                                                                           
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To investigate the relationship between Cr/V-Sn-Zn and QCs, the views on each layer of 

Cr/V-Sn-Zn are shown in Figure S3. Because of the space group symmetry, only one-quarter 

of cubic unit cell marked by red along {001} directions are listed. The first, second, and 

fourth layers are built up by irregular pentagons, and the third layer is made by irregular 

decagons. The pentagons and decagons are connected to form decagons again. Moreover, the 

polyhedra circled by light green contain pentagonal prisms surrounding by five distorted 

icosahedra. The distorted icosahedra form C4 operation which breaks the C5 operation. The 

polyhedra circled in pink contain icosahedra and distorted cubes, which form irregular 

decagons.    

 

  

 

Figure S3. Red: The four layers along {010} direction in the Cr/V-Sn-Zn. (from (0, 0, 0) 

plane to (0, ¼, 0) plane); Light Green: Polyhedrons corresponding to the layers in the crystal; 

Pink: Polyhedrons corresponding to the layers in the crystal. 
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Figure S4. Dark field images of (a) Cr22Sn24Zn72 and (b) V21.7(1)Sn26.9(1)Zn69.4(1) obtained by 

HRTEM tilting experiments. 

 

                                (a)                                                                    (b) 
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CHAPTER 7 
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7.1 Abstract 

       The crystal structure, physical properties and computational investigation of new cerium 

based compounds, Ce(Sn1-xZnx)6, are presented. The orthorhombic CeCu6-type phase 

crystallizes in the space group Pnma (Pearson symbol oP28; a = 8.797(1)-8.823(2) Å, b = 

5.394(1)-5.402(2) Å and c = 11.140(2)-11.167(1) Å) at room temperature and the 

stoichiometry may be expressed as Ce(Sn1-xZnx)6, (0.45(1) < x < 0.49(1)). Crystal structure 

can be treated as distorted octahedral, which are connected by vertex-sharing, edge-sharing 

and face-sharing. With decreasing the temperature, single crystal and magnetic 

measurements indicate that the crystal structure would transit from orthorhombic to 

monoclinic by slightly changing  from 90° to 90.38(3)° and flattening distorted octahedral. 

Temperature-dependent magnetic measurements and AC susceptibility confirm the 

paramagnetic properties of Ce(Sn1-xZnx)6 above 20 K. Above about 20 K, 
-1

(T) follows the 

Curie-Weiss law with the effective magnetic moment = 2.81(3) B/f.u. and the 

paramagnetic Curie temperature p= 8.5(7) K, which means the Ce ions in the compound are 
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trivalent with carrying a Ce
3+

 magnetic moment. More, the specific heat capacity of Ce(Sn1-

xZnx)6 shows the unusual peak below 2K possibly caused by low temperature magnetic 

transition. Theoretical calculation conducted by density functional theory
[1]

 plus U (GGA+U) 

[2]
 applied for predict the magnetic properties below 2K shows hypothetical model 

“CeSn3.5Zn2.5” preferring the ferromagnetic properties at 0K with magnetic moment 

0.99B/Ce. 

7.2 Introduction 

Cerium based intermetallic compounds have been widely studied for decades because of 

their unusual physical properties.
[3]

 One major physical behavior is the heavy-fermion (HF) 

property
[4]

, observed for the first time in CeAl3.
[5]

 Heavy fermion materials have a greater 

effective mass than the value expected from the free-electron theory. Recently, CeCu6-type 

compounds like CeCu6-xAux
 
are new heavy-fermion superconductor systems attracting 

research.
[7]

 In a conventional superconductor, the binding of electrons into the paired states 

that collectively carry the supercurrent is mediated by phonons—vibrations of the crystal 

lattice. However, in the case of the heavy fermion superconductors like CePd2Si2 
[8]

, CeIn3 
[9]

 

and CeCu6-xAux 
[7]

, the charge carriers are bound together in pairs by magnetic spin–spin 

interactions called magnetically mediated superconductivity.
[10]

 On the other hand, as sub-

family of cerium-transition-metal stannides, CeTSn has been interesting for the magnetic 

properties. For example, CeTSn(T=Ni 
[11]

, Rh
[12]

, Ir
[13]

) are intermediate valence systems, 

CeTSn(T=Pd
[14]

, Pt
[15]

) are antiferromagnetic Kondo lattices, and CeRh3B2
[16]

 is so far the 

highest Curie-temperature ferromagnetic material in the system. Thus, new cerium-

transition-metal stannide, Ce(Sn1-xZnx)6, adopting to CeCu6-type structure may have both 

intriguing magnetic and heavy-fermion superconductor properties.        
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In the aspect of structure, LnCu6 (Ln=La, Ce, Pr) compounds revealed the same type of 

the structural phase transition from orthorhombic to monoclinic.
[17]

 Neutron scattering 

experiments show that the major contribution to this phase transition attributed not to rare 

earth atoms but to Cu atoms.
[18]

 Also, in CeCu6, Ce has a state with 4f
1
 configuration and a 

magnetic state j=5/2 with an effective moment of 2.54B.
[19]

 Ce(Sn1-xZnx)6 with localized 3d 

and 4d electrons in Zn and Sn still has structural transition from orthorhombic to monoclinic 

according to our magnetic and structural measurements. Moreover, the Sn and Zn have 

similar localized d-electron with Cu, the magnetic properties of CeCu6-type Ce(Sn1-xZnx)6 is 

also as straightforward as CeCu6, resulting from Ce(4f
1
).  

With these magnetic and structural features in mind, we report herein a thorough 

structural characterization and investigation of the magnetic properties and theoretical 

electronic structures of Ce(Sn1-xZnx)6, with an emphasis on relationship between physical 

properties and crystal structure.  

7.3 Experimental Section 

7.3.1 Synthesis. Different Ce/Sn/Zn binary and ternary phases were obtained by fusion of 

mixtures of Ce pieces (99.99%, Ames Laboratory), Sn pieces (99.99%, Ames Laboratory) 

and Zn particles (99.99%, Alfa Aesar), combinations as different atomic ratio of Ce:Sn:Zn 

with their products shown in Table 1. Each reactant mixture, about 400 mg total, was sealed 

into precleaned Ta tube in an Ar-filled glove box. After being transferred into an arc welder, 

the crimped Ta tubes were weld-sealed under argon and then enclosed in evacuated SiO2 

jackets (<10
−5

 Torr) to protect them from air during heating. The samples were heated to 

800 °C for 24 hr, followed by cooling to 500 °C at a rate of 1 °C/hr and annealed at this 

temperature for 6 days, after which the containers were slowly cooled in the furnace. Only 
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atomic ratio of Ce:Sn:Zn=1:1:1 can produce CeCu6-type Ce(Sn1-xZnx)6 as major phase, and 

all products are silvery shining, but change to golden shining after several days. 

7.3.2 Phase Analysis. All samples were finely ground and examined by powder X-ray 

diffraction for identification and phase purity on a STOE WinXPOW powder diffractometer 

employing Cu radiation (K Å) for all the samples. The scattered intensity was 

recorded as a function of Bragg angle (2) 
[20]

 using a scintillation detector with a step of 

0.03° 2 in step scan mode, ranging from 0° to 130°. Phase identification and the lattice 

parameters were refined by full-profile Rietveld 
[21]

 refinements using LHPM RIETICA 
[22]

 

from reflection peaks between 5° and 90° in 2θ.  

7.3.3 Structure Determination. Crystals from each reaction sample were mounted on the 

tips of glass fibers. Temperatures at 143K and 293K intensity data were collected on a 

Bruker Smart Apex CCD diffractometer using Mo K radiation (λ = 0.71073 Å). Data were 

collected over a full sphere of reciprocal space with 0.5° scans in ω with an exposure time of 

10s per frame. The 2θ range extended from 3° to 60°. The SMART software was used for data 

acquisition. Intensities were extracted and corrected for Lorentz and polarization effects 

using the SAINT program. Empirical absorption corrections were accomplished with 

SADABS, which is based on modeling transmission by spherical harmonics employing 

equivalent reflections with I > 3σ(I).
[23-24]

 With the SHELXTL package,
[25]

 the crystal 

structures were solved using direct methods and refined by full-matrix least-squares on F
2
. 

All crystal structure drawings were produced using the program Diamond.
[26] 

7.3.4 Magnetic Measurement. The magnetization measurements were performed using a 

superconducting quantum interference device (SQUID) magnetometer MPMS XL-7 

manufactured by Quantum Design, Inc. on pieces of single crystals that were manually 
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selected from the product.  The SQUID operates over a temperature range of 2-300 K and in 

applied fields of up to 70 kOe under DC measurement. Moreover, the AC susceptibility was 

measured at 1Hz and 100Hz. The samples were placed in glass capsules for measurement.  

7.3.5 Specific Heat Capacity Measurement. The heat capacity is measured by Physical 

Property Measurement System (PPMS) manufactured by Quantum Design, Inc. The 

temperature ranges from 2K to 100K with non-applied field and pressure at 9.40×10
-6

 Torr.   

7.3.6 Vienna ab-initio Simulation Package
[27-30]

 (VASP). Energy and magnetic properties 

calculations
[31-33]

 were completed using VASP, which employs projector augmented-wave 

(PAW) pseudopotentials that were adopted with the Perdew-Burke-Ernzerhof generalized 

gradient approximation (PBE-GGA), in which scalar relativistic effects are included. For 

structural optimization, the conjugate gradient algorithm was applied. The energy cutoff was 

400.0 eV. Reciprocal space integrations were completed over a 5×3×6 Monkhorst-Pack k-

points mesh
[34]

 with the linear tetrahedron method.
[35]

  With these settings, the calculated 

total energy converged to less than 0.1 meV per atom.
 

7.4 Results 

According to the Sn-Zn phase diagram, Sn and Zn do not form any binary compounds, 

but a eutectic point occurs at 198.5C at 14.9 atomic percent Zn.
[36]

 Since previous 

experiments involving Cr and V yielded new ternary compounds, we explored Ce as a 

possible rare-earth metal that could lead to novel intermetallic phases. Five different loadings 

(see Table 1) led primarily to Ce2Zn17-type phases except for the molar ratio Ce:Sn:Zn = 

1:1:1, for which a new CeCu6-type phase, Ce(Sn1-xZnx)6, emerged as the major product.  

CeZn2 also crystallized, according to the results of X-ray diffraction.  Because the CeZn2 are 
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needle-shaped, whereas that for Ce(Sn1-xZnx)6 is block-shaped, they can be easily manually 

separated for measuring physical properties. 

Table 1. Compositions, phase analyses, and refined compositions for different loading Ce-Sn-Zn systems. 

Loaded 

Composition 

Ce33.13Sn33.39 

Zn33.48 (CeSnZn) 

Ce25.16Sn37.45 

Zn37.39 

(CeSn1.5Zn1.5) 

Ce14.23Sn49.94 

Zn35.84 

(Ce1Sn3.5Zn2.5) 

Ce14.29Sn43.00 

Zn42.71 

(Ce1Sn3Zn3) 

Ce14.30Sn35.87 

Zn49.82 

(Ce1Sn2.5Zn3.5) 

Phases 

(PXRD) 

CeCu6-

type(major) 

+CeZn2 (minor) 

Ce2Zn17(major) Ce2Zn17(major) Ce2Zn17(major) Ce2Zn17(major) 

 

7.4.1 Phase Analysis. For the X-ray powder diffraction patterns, all scale factors and lattice 

parameters were refined, whereas the displacement parameters of all atoms were assumed to 

be isotropic at B = 0.01 according to single crystal XRD measurement and were not refined. 

The diffraction peaks in powder XRD are broad, which is probably caused by a homogenous 

phase of Ce(Sn1-xZnx)6 in the product. Two same Ce(Sn1-xZnx)6 phases with different lattice 

parameters are set to refine the powder pattern. The resulting profile residuals Rp was 5.082 

with weighted profile residuals Rwp 6.197. The refined lattice parameters for major phase of 

Ce(Sn1-xZnx)6 is a= 8.698-8.794(1) Å, b= 5.393-5.397(1) Å and c= 11.140-11.247(1) Å.  

7.4.2 Room Temperature Crystal Structure. Single crystals were investigated to obtain 

further insights into the structural features of cerium based compounds. The results of single 

crystal diffraction extracted from the specimen at 143K and 293K are summarized in Tables 

2 and 3. Corresponding anisotropic displacement parameters are summarized in Tables S1 in 

Supporting Information. All structures at room temperature crystallize in the orthorhombic 

space group Pnma (No. 62) with Ce atoms located at the 4c site and Sn and Zn atoms mixed 

on another four 4c and one 8d sites (marked from Sn/Zn1 to Sn/Zn5). Ce, Sn/Zn1, Sn/Zn2, 

Sn/Zn3 and Sn/Zn4 all situate on the mirror planes whereas the Sn/Zn5 exists on a general 

position. The crystal structure can be constructed as distorted octahedral with Ce atoms as 
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vertex. Along b-axis, there are two types of distorted octahedra, one consists of Sn/Zn1 and 

Sn/Zn2 with Ce atoms as vertex, and the other one is made of Sn/Zn3 and Sn/Zn5 also with 

Ce atoms as vertex. The two types of distorted octahedra are connected by Ce vertex. The 

Sn/Zn4 atoms marked in green in Figure 1 are located between the layers along b-axis. From 

the Table 2, the Sn/Zn1, Sn/Zn2 and Sn/Sn3 are mostly occupied by Sn atoms, whereas 

Sn/Zn5 is mostly occupied by Zn atoms, but only Sn/Zn4 sites are closely half-and-half 

occupied Sn and Zn atoms. If viewed along c-axis, the distorted octahedra made by Sn/Zn1, 

Sn/Sn2 and Ce are face-sharing and forming layer A in Figure 1(b), while the distorted 

octahedra containing Sn/Zn3, Sn/Zn5 and Ce are edge-sharing by Ce-Sn/Zn3 only in layer B.   

 

Figure 1. Crystal structure of Ce(Sn1-xZnx)6 at room temperature constructed as distorted octahedral with Red as 

Ce atoms; Blue as Sn/Zn1, Sn/Zn2, Sn/Zn3, Sn/Zn5 and Green as Sn/Zn4 (a) Projection view from (010). (b) 

Projection view from (001), A and B mark the layering sequence along c-axis.  

Table 1. Single crystal data for Ce(Sn1-xZnx)6 at 293(2)K, 223(2)K, 173(2)K and 143(2)K.  

Measuring 

Temperature 
293K 223K 173K 143K 
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Table 1. continued 

Refined Formula CeSn3.33Zn2.67 CeSn3.33Zn2.67 CeSn3.33Zn2.67 CeSn3.33(4)Zn2.67 

F.W. (g/mol) 709.90 709.90 709.90 709.90 

F(000) 1218 1218 1218 1218 

Space Group; Z Pnma(No. 62); 4 Pnma(No. 62); 4 Pnma(No. 62); 4 P21/c(No. 14); 4 

a (Å) 

b (Å) 

c (Å) 

 (°) 

5.402(2) 

8.809(3) 

11.162(3) 

90 

5.397(1) 

8.804(2) 

11.154(2) 

90 

5.393(1) 

8.795(2) 

11.144(2) 

90 

5.3880(2) 

8.7853(3) 

11.1313(3) 

90.38(3) 

V (Å
3
) 531.1(3) 529.9(2) 528.6(2) 526.90(3) 

dcalc (Mg/m
3
) 8.878 8.898 8.920 8.941 

Abs. Corr. Multi-scan Multi-scan Multi-scan Multi-scan 

Ext. Coeff. 0.0014(2) 0.0024(4) 0.0013(2) 0.0013(1) 

 (mm
−1

) 35.468 35.546 35.636 35.729 

range (deg) 4.79–28.37 3.65–28.29 3.66–28.31 2.95–28.32 

hkl ranges 

-11<=h<=11 

-5<=k<=7 

-14<=l<=14 

-11<=h<=11 

-7<=k<=7 

-12<=l<=14 

-11<=h<=11 

-7<=k<=7 

-12<=l<=14 

-7<=h<=7 

-11<=k<=11 

-14<=l<=13 

No. Refl. (Rint) 2988 (0.0621) 4084 (0.1337) 4087 (0.0527) 3650 (0.0546) 

No. Indep. Refl. 724 726 726 1287 

No. Par. 41 41 41 71 

R1; wR2 (I>2sigma(I)) 0.0320; 0.0696 0.0614; 0.1419 0.0272; 0.0617 0.0340; 0.0698 

R1; wR2 (all I) 0.0496; 0.0769 0.0738; 0.1514 0.0375; 0.0658 0.0473; 0.0752 

Goodness of fit 1.033 1.019 1.039 1.002 

Peak; Hole (e
−
/Å

3
) 1.862; -2.164 4.230; -4.987 1.704; -1.836 2.255; -2.236 

Table 2.  Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters of Ce(Sn1-

xZnx)6  at 293(2)K, 223(2)K, 173(2)K and 143(2)K.  Ueq is defined as one-third of the trace of the 

orthogonalized Uij tensor (Å
2
). 

293(2) K 

Atom Wyckoff Site Occupancy x y z Ueq 

Ce 4c 1 0.2594(1) ¼  0.5641(1) 0.0126(2) 

Sn/Zn1 4c 0.76/0.24 0.0561(1) ¼  0.0907(1) 0.0166(3) 

Sn/Zn2 4c 0.81/0.19 0.4087(1) ¼  0.0150(1) 0.0141(3) 

Sn/Zn3 4c 0.79/0.21 0.1418(1) ¼  0.8539(1) 0.0152(3) 

Sn/Zn4 4c 0.57/0.43 0.3100(1) ¼  0.2551(1) 0.0122(3) 

Sn/Zn5 8d 0.20/0.80 0.0623(1) 0.5076(2) 0.3070(1) 0.0114(3) 
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223(2) K 

Atom Wyckoff Site Occupancy x y z Ueq 

Ce 4c 1 0.2593(2) ¼  0.5642(2) 0.0111(4) 

Sn/Zn1 4c 0.76/0.24 0.0564(2) ¼  0.0905(2) 0.0144(5) 

Sn/Zn2 4c 0.81/0.19 0.4085(2) ¼  0.0151(2) 0.0117(4) 

Sn/Zn3 4c 0.79/0.21 0.1417(2) ¼  0.8536(2) 0.0135(5) 

Sn/Zn4 4c 0.57/0.43 0.3100(2) ¼  0.2549(2) 0.0104(5) 

Sn/Zn5 8d 0.20/0.80 0.0625(2) 0.5072(2) 0.3068(2) 0.0094(4) 

173(2) K 

Atom Wyckoff Site Occupancy x y z Ueq 

Ce 4c 1 0.2593(1) ¼  0.5643(1) 0.0088(2) 

Sn/Zn1 4c 0.76/0.24 0.0564(1) ¼  0.0906(1) 0.0113(2) 

Sn/Zn2 4c 0.81/0.19 0.4083(1) ¼  0.0150(1) 0.0091(2) 

Sn/Zn3 4c 0.79/0.21 0.1420(1) ¼  0.8537(1) 0.0102(2) 

Sn/Zn4 4c 0.57/0.43 0.3100(1) ¼  0.2550(1) 0.0082(2) 

Sn/Zn5 8d 0.20/0.80 0.0622(1) 0.5076(1) 0.3070(1) 0.0077(2) 

143(2) K 

Atom Wyckoff Site Occupancy x y z Ueq 

Ce 4e 1 0.2594(1) 0.2497(1) 0.5642(1) 0.0085(2) 

Sn/Zn1 4e 0.76(1)/0.24 0.0565(1) 0.2504(2)  0.0907(1) 0.0110(3) 

Sn/Zn2 4e 0.81(1)/0.19 0.4083(1) 0.2502(2) 0.0151(1) 0.0097(3) 

Sn/Zn3 4e 0.79(1)/0.21 0.1421(1) 0.2496(2) 0.8537(1) 0.0104(3) 

Sn/Zn4 4e 0.57(1)/0.43 0.3099(1) 0.2501(2)  0.2552(1) 0.0080(3) 

Sn/Zn5 4e 0.20(1)/0.80 0.0622(1) 0.0073(2) 0.3070(1) 0.0082(4) 

Sn/Zn6 4e 0.20(1)/0.80 0.0625(1) 0.5077(2) 0.3071(1) 0.0079(4) 

 

7.4.3 Low Temperature Crystal Structure. For LnCu6 (Ln=La, Ce, Pr) compounds, as 

temperature decreases, the orthorhombic system would transit to monoclinic structure. 
[17]

 

The temperature-dependent magnetism measurements in Figure 2(b) at applied filed of 1kOe 

indicates the structure transition beginning at 150K. Thus, the low temperature crystal data at 

143K were collected to identify the existence of structure transition from orthorhombic to 
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monoclinic. The crystal data in Table 2 and 3 shows the structure transition from 

orthorhombic (Pnma) to monoclinic (P21/c) with  changing from 90° to 90.38(3) °. The 

sites of Ce, Sn/Zn1, Sn/Zn2, Sn/Zn3 and Sn/Zn4 locate on general sites in monoclinic rather 

than mirror plane in orthorhombic structure. The octahedron built up by Sn/Zn1 and Sn/Zn2 

with Ce atoms as vertex becomes flattening while the other octahedron built up by Sn/Zn3 

and Sn/Zn5 with Ce atoms in orthorhombic structure becomes expanded in monoclinic phase. 

Furthermore, the angle between the distorted octahedral is slightly smaller in monoclinic 

(110.38°) than orthorhombic (110.46°) phase.  

7.4.4 Magnetic Properties of Ce(Sn1-xZnx)6. The hysteresis curve of Ce(Sn1-xZnx)6 at 2K in 

Fig 2(a) indicates the non-linear relationship between magnetization and magnetic field.
[37]

 

Moreover, the magnetic susceptibility curves of Ce(Sn1-xZnx)6 (Fig. 2(b) and Fig. S1) 

measured by SQUID indicate Pauli paramagnetic properties.
[38]

  The magnetic susceptibility 

in Figure S1 at 10kOe of Ce(Sn1-xZnx)6 can be fitted by the Curie-Weiss law with the 

effective magnetic moment = 2.81(3) B/f.u. and the paramagnetic Curie temperature p= 

8.5(7) K. The magnetic results illustrate the Ce ions in the compound are trivalent with 

carrying a stable Ce
3+

 magnetic moment. What’s more, the temperature-dependent magnetic 

susceptibility measured at a lower applied field (1 kOe) intimates the structural or magnetic 

transition below 150K in Figure 2(b). The AC susceptibility of Ce(Sn1-xZnx)6 was measured 

at 1Hz and 100Hz from 2K to 65K to confirm the magnetic properties in Fig S2. χ' is small 

and negative, also " is small and χ' follows the Curie law '   T
-1

, as expected for 

paramagnetic behavior. 
[39]
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                                           (a)                                                                                    (b) 

Figure 2. (a) Magnetization changes with applied field curve at 2 K and (b) magnetic susceptibility curves 

((T) and 1/(T)) measured in 1 kOe field for Ce(Sn1-xZnx)6.  

7.4.5 Heat capacity of Ce(Sn1-xZnx)6. The total specific heat consists of electronic, phonon 

and magnetic contributions. The electronic coefficient provides information concerning the 

conduction band density of states at the Fermi level. 
[40]

 Figure 3 shows the overall heat 

capacity of Ce(Sn1-xZnx)6 plotted as Cp~T between 2K and 165K. The decreasing peak 

around 150K is due to the phase transition from orthorhombic to monoclinic structures, 

confirmed by magnetic and crystal structure measurements. The inserted figure in Fig. 3 is 

fitted with the formula: Cp= T+T
3
 from 5K to 20K, without consideration of magnetic 

contribution since in the range of temperature, there is no structural or magnetic transitions. 

The first and second terms correspond to electronic and phonon contributions. The obtained 

values of the parameters are: the electronic specific heat coefficient =115(9) mJ/(mol K2) 

and phonon specific heat coefficient =2.28(7) mJ/(mol K
4
). The obtained large  value less 

than 400 mJ/(mol K
2
) is not a sign of a heavy-fermion type behavior. From both magnetic 

and heat capacity measurements, there is no magnetic ordering observed above 2K in Ce(Sn1-

xZnx)6.      
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To estimate the physical properties at low temperature (<2 K), the Density Functional Theory 

(DFT) using Vienna Ab-initio Simulation Package (VASP) is applied for the theoretical 

calculations. VASP calculations were employed to evaluate the total energies and magnetic 

moments of hypothetical model of “CeSn3.5Zn2.5” (x ~ 0.42) with Sn/Zn1, Sn/Zn2 and 

Sn/Zn3 occupied by Sn atoms, Sn/Zn5 occupied by Zn atoms, and Sn/Zn4 located by two Zn 

atoms and two Sn atoms. To avoid any distance influence on magnetic properties, the 

calculations used the same set of crystal data. The LDA and LSDA (FM/AFM) models 
[41]

 

were assigned the parallel/antiparallel spin alignment between Ce atoms along b-axis. The 

relative total energies and atom projected magnetic moments (B/Ce) are listed for each case 

in Table 4. Among these three models, ferromagnetic model gives the overall lowest energy, 

with magnetic moment around 0.99 B/Ce. Thus, the sharp peak in specific heat capacity 

beginning from 10K and continuing below 2K in a zero magnetic field is high possibly 

ascribed to the transition into a magnetically ordered phase. 

Table 4. The total energies, relative total energy and atom projected magnetic moments (B/Ce) of cerium 

atoms of CeSn3.5Zn2.5 by three different sets of DFT+U calculation. (U1=6.89eV, J1=0.89eV; U2=6.39eV, 

J2=0.89eV; U3=5.39eV, J3=0.89eV) 

CeSn3.5Zn2.5 LDA 
LSDA 

FM AFM 

E(meV/f.u.) 1327 0 243 

(Ce) 0 
0.97(2) 
0.96(2) 

±0.96(2) 
±0.96(2) 

 

Among these three models, ferromagnetic model gives the overall lowest energy, with 

magnetic moment around 0.99 B/Ce. Experimental magnetic measurements indicate about 

1.05B/Ce at 2K. The experimental and theoretical results intimate the ferromagnetic 

properties below 2K, which also hints the unusual peak in heat capacity coming from the 

magnetic transition.  
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Figure 3. Temperature dependence of specific heat capacity (Cp) curve of Ce(Sn1-xZnx)6 from 2K to 165K at 

9.40×10
-5

 Torr and non-applied magnetic field. Insert: the low temperature range 5-20K is fitted with the 

formula: Cp= T+T
3
.  

7.5 Summary. The new cerium based ternary intermetallic compounds, Ce(Sn1-xZnx)6 

(0.45(1) < x < 0.49(1)), were synthesized and structurally characterized. They exhibit totally 

mixed compositions between Sn and Zn with Sn/Zn on Cu sites in CeCu6 structure. 

Moreover, the magnetic properties of a sample analyzed as CeSn3.33(6)Zn2.67 shows it to be 

paramagnetic material above 2K. The heat capacity curves of CeSn3.33(6)Zn2.67 dependent on 

temperature demonstrate the possible phase transition behavior of the new compound with 

unusual peak below 2K. Ab-initio calculations substantiate the ferromagnetic ground state 

and indicate that the unusual peak in heat capacity below 2K is derived likely from magnetic 

transition at the Ce sites.  The CeCu6-type structure can be treated as continuous distorted 

octahedral by vertex-, edge- and face-sharing. The temperature-dependent magnetism 

measurements intimate the structural transition of the compound, which was also proved by 

single crystal measurement at low temperature. 
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Figure S1. magnetic susceptibility curves ((T) and 1/(T)) measured in 10 kOe field for 

Ce(Sn1-xZnx)6.  
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CHAPTER 8 

Summary 

The work in this dissertation investigated the synthesis, crystal and electronic structures, 

and physical properties of Zn-based, complex intermetallic compounds. The results deepen 

our understanding of the relationship among chemical composition, atomic structure, 

physical properties and chemical bonding in Zn-containing complex intermetallic phases. 

Moreover, these findings also point to more questions that require further investigations. 

The fully-filled 3d-subshell, atomic size and electronegativity of zinc act as crucial roles 

in determining the stable structures and site preferences in complex intermetallic compounds. 

Modifying the valence electron count (vec) is one of the skillful methods employed for 

seeking stable phases in solid state chemistry. When counting the valence electrons of zinc in 

complex intermetallic compounds, the number of valence electrons can be treated as 2 like 

alkali earth element, Mg, because of localized 3d-electron. For instance, Zn is always 

considered having 2 valence electrons in -brasses containing transition metals, like -brass 

Co-Zn, to simplify problems of controlling the compositions by adjusting vec.  

Fully-filled 3d-subshell Zn has similar atomic size with partially-filled 4d-subshell 

transition metals, Ru, Rh, and Pd. When doping Ru, Rh, or Pd in Zn-based compounds, these 

4d transition metals have great preference to replace Zn or mix with Zn. For example, Pd 

atoms replaced Zn in -brass Co-Pd-Zn system.  

Moreover, when Zn reacts with p-block elements, like Ga, In, Ge and Sn, they could not 

form any compound. However, Zn becomes more activate with the elements involving d-

electron. To synthesize Zn-based ternary compounds, choosing p-block elements as one of 

minority components is a useful way to reduce the binary impurities in final products. In 
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ternary compounds T-Zn-M (T: early transition metals or rare earth elements; M: main group 

elements), Zn has the closer electronegativity with main group elements, thus Zn and main 

group elements have great possibility to mix together in complex intermetallic compounds.      

The influence of zinc was well understood in our research systems by predicting the 

physical properties like magnetism by electronic structure calculation. Combination between 

Stoner criterion and density of states is used to illustrate the ferromagnetism of the 

compounds, like -Mn Co-Zn, -brasses Co-Zn and Fe-Zn, and Pd-doped Co-Zn and Fe-Zn 

systems. Based on our results, diamagnetic zinc does not only play as a simple role of 

“solvent” to dilute the magnetic moments in the compounds, but also controls the nature of 

magnetism by changing compositions. For example,-brasses Co-Zn change from weak 

paramagnetic to strong paramagnetic with less zinc loaded in the compounds. Furthermore, 

Zn decreases the Curie temperature from 1115°C for cobalt to 175°C for -Mn CoZn, instead 

of diluting the magnetic moments. Future work will involve more investigation on the role of 

fully-filled 3d-subshell in controlling physical properties in Zn-containing intermetallic 

compounds.  
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CHAPTER 9 

Appendix 

Appendix I. High Temperature Thermoelectric Properties of the Solid Solution Zintl 

Phase Eu11Cd6Sb12-xAsx (x < 3) 

 

Modified from a paper in Chemistry of Materials 

(Chem. Mater. 2014, 26, 1393) 
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9.1.1 Abstract 

Zintl phases are compounds that have shown promise for thermoelectric applications. The 

title solid-solution Zintl compounds were prepared from the elements as single crystals using 

a tin flux for compositions x = 0, 1, 2 and 3. Eu11Cd6Sb12-xAsx (x < 3) crystallize 

isostructurally in the centrosymmetric monoclinic space group C2/m (no. 12, Z = 2) as the 

Sr11Cd6Sb12 structure type (Pearson symbol mC58). Efforts to make the As compositions for 

x exceeding ~3 resulted in structures other than the Sr11Cd6Sb12 structure type. Single crystal 

X-ray diffraction indicates that As does not randomly substitute for Sb in the structure, but is 

site specific for each composition. The amount of As determined by structural refinement 

was verified by electron microprobe analysis. Electronic structures and energies calculated 

for various model structures of Eu11Cd6Sb10As2 (x = 2) indicated that the preferred As 



159 

 

substitution pattern involves a mixture of three of the six pnicogen sites in the asymmetric 

unit.  In addition, As substitution at the Pn4 site opens an energy gap at the Fermi level, 

whereas substitution at the other five pnicogen sites remain semimetallic with a pseudo gap. 

The thermoelectric properties of these compounds were measured on hot pressed, fully 

densified pellets. The samples show exceptionally low lattice thermal conductivities from 

room temperature to 775 K: 0.78-0.49 W/mK for x = 0; 0.72-0.53 W/mK for x = 1; and 0.70-

0.56 W/mK for x = 2. Eu11Cd6Sb12 shows a high p-type Seebeck coefficient (+118 to 153 

 V/K), but also high electrical resistivity (6.8 to 12.8 mΩ cm). The value of zT reaches 0.23 

at 774 K. The properties of Eu11Cd6Sb12-xAsx are interpreted in discussion with the As site 

substitution. 

9.1.2 Introduction 

Thermoelectric materials enable the generation of electricity from a heat gradient and vice 

versa with no harmful emissions. However, this energy conversion is a low efficiency 

process which has prevented broader usage of thermoelectric devices. The operation of 

thermoelectric materials is described by a figure of merit,          , in which   is the 

Seebeck coefficient,   is the electrical resistivity, and   is the thermal conductivity. The 

figure of merit characterizes how efficiently a material converts a heat gradient into 

electricity - the higher zT, the greater the efficiency.  

An ideal compound for thermoelectric applications can be imagined as a material that 

possesses different pathways to transport electrons and phonons. In this way, thermal 

conductivity can be tuned while the electronic properties remain unaffected, and vice versa, 

leading to the idea of the “phonon glass-electron crystal” (PGEC) approach introduced by 

Slack.
1
  In principle, electronic and thermal properties of materials can be independently 
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optimized while minimizing effects on the other quantities to achieve maximum zT values. 

Among the best candidates that can satisfy this idea of different charge carrier and heat 

carrier routes in one material are Zintl phases.
2
 

Zintl phases are made of elements with different electronegativities in which the most 

electropositive element formally donates its valence electrons to the more electronegative 

elements, which form (poly)anionic networks that satisfy the octet rule. The electropositive 

element, serving now as a cations, can be considered as guest atoms within the cavities 

formed by the (poly)anionic network.
2
   These cations, therefore, have important roles for 

thermoelectric properties both to tune the carrier concentrations and to contribute to phonon 

scattering mechanisms. On the other hand, the covalent bonds in the (poly)anionic network 

are responsible for the electron-crystal region.
2
  One of the interesting characteristics of Zintl 

phases is that they are favorable for isovalent substitutions as seen, for example, in 

Yb xCaxCd2Sb2,
3
 Eu xYbxCd2Sb2,

4
 and Yb13CaMnSb11.

5
  Because the exact electron 

donating abilities of various cations are slightly different due to their different 

electronegativities, the charge carrier concentration can be finely tuned by such mixed 

occupancies at the cation sites to maximize zT without strongly perturbing the anionic 

network.
6
 Many high zT Zintl compounds, such as Yb14MnSb11,

7
 Yb1−xCaxZn2Sb2,

3
 and 

Ba0.08La0.05Yb0.04Co4Sb12 skutterudites,
8
 have been synthesized for thermoelectric 

applications.  

Although Zintl phases form a large family of inorganic compounds with many different 

crystal structures,
9
 only a small fraction of them have been studied for their thermoelectric 

properties. Eu11Cd6Sb12 was selected in this study for its potential thermoelectric applications 

because it shows low electrical resistivity, contains heavy atoms, and adopts a complex 
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structure (Figure 1), similar to other compounds which have good thermoelectric properties.
3-

5
 Eu11Cd6Sb12 adopts the Sr11Cd6Sb12

10
 structure type, which can be described as infinite, 

one-dimensional tubes of two edge-fused pentagons. The overall structure of Sr11Cd6Sb12,
10

 

projected along the b-axis, is shown in Fig. 1. Infinite [Cd6Sb12]
22-

 chains running along the 

b-axis involve a covalent network of vertex-sharing CdSb4 tetrahedra that are separated by 

Sr
2+

 cations. In this paper, we explore the chemical and physical flexibility of this structure 

type by using the pnicogen sites for alloying, leading to lower lattice thermal conductivities, 

and investigate this alloying effect on the subsequent thermoelectric properties of 

Eu11Cd6Sb12-xAsx phases. Theoretical calculations were carried out to understand the As site 

preferences and to assess their effects on electronic energy bands, which in turn influences 

thermoelectric performance of Eu11Cd6Sb12-xAsx. We present herein details of the synthesis, 

structural characterization, and transport properties of the solid solution Eu11Cd6Sb12-xAsx (x 

= 0, 1 and 2), along with discussing the observed As site specificity behavior which is 

noticed in other phases such as Ba2Cd2(Sb1-xAsx)3.
11

 

 

Figure 1. A perspective view of the crystal structure of Sr11Cd6Sb12 down the b-axis.  The network of Cd–Sb 

covalent bonds and [CdSb4] tetrahedra are emphasized.  One unit cell outline is included. 

9.1.3 Experiments 
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9.1.3.1 Synthesis. Eu11Cd6Sb12-xAsx compounds were prepared similarly to the literature 

procedure,
12

 but using a 30-fold excess tin flux instead of a 50-fold excess lead; details of 

flux-growth synthetic procedures can be found elsewhere. All manipulations were carried out 

in argon or nitrogen-filled glove boxes or under vacuum.
13

 All starting elements were loaded 

in 5 cm
3
 alumina crucibles in the respective Eu:Cd:Sb:As:Sn molar ratios of 11:6:12– 

xsyn:xsyn:30 (xsyn is an integer from 0 to 12) to a total weight of 10 g; (Sources: Eu, Ames 

Lab, 99.999%; Cd pieces, Alfa, 99.98%; Sb shot, Alpha Aesar 99.9 %; and Sn shot, Alpha 

Aesar 99.99 %). The crucibles were placed into fused silica tubes with a second crucible 

filled with SiO2 wool placed on top, and the fused silica tubes were sealed under less than 

200 mtorr of vacuum. The sealed silica tubes were placed upright in a box furnace and heated 

at 10 ˚C/h to 500 ˚C, allowed to dwell 6 h, and then heated at 10 ˚C/h to 950 ˚C for 96 h. 

Subsequently, the reaction vessels were slowly cooled at 5 ˚C/h to 600 ˚C, at which point 

molten tin was removed by inverting and placing the reaction vessels into a centrifuge, and 

spinning for 2-3 min at 6500 rpm. Finally, the reaction vessels were opened in a N2-filled 

glove box equipped with an optical microscope and at moisture levels below 1 ppm. Silver–

colored, reflective crystals of Eu11Cd6Sb12-xAsx were observed as the product. 

9.1.3.2 Single-Crystal X-ray Diffraction. Structure determination for the products of each 

reaction was performed on more than two crystals and unit cell determination was 

accomplished for at least ten crystals of a variety of shapes from each reaction to determine 

the phase width and purity of each reaction product. Single crystals of Eu11Cd6Sb12-xAsx (xsyn > 

0) were selected in Paratone N oil to minimize the oxidation of the sample under a 

microscope and then, if necessary, cut in to the desired dimensions for data collection. 

Selected crystals were positioned on the tops of glass fibers or MiTeGen micro loops and 
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quickly transferred to the nitrogen stream and mounted on the goniometer. Diffraction data 

for Eu11Cd6Sb12-xAsx were collected at 90 K on a Bruker Apex II diffractometer with 

graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) and CCD area detector. Several 

sets of ω-scans (0.3°/frames) at different Φ settings were collected while in a nitrogen stream. 

Determinations of unit cell parameters, refinements, and raw frame data integrations were 

completed using the APEX II v2011.4-1 software. The space group was determined on the 

basis of systematic absences using XPREP, followed by a semi-empirical absorption 

correction based on symmetrically equivalent reflections with the program SADABS and the 

structure was solved using direct methods from the SHELXTL Version 6.14 package. After 

successful assignments of the high electron density peaks as Eu, Cd, and Sb, the occupancy 

on each atomic site was examined. For all compounds, the refined occupancies of only some 

of the six pnicogen sites (i.e. Pn1, Pn2 and Pn5 sites in xsyn = 1) which were initially assigned 

to Sb atoms, were significantly low indicating that lighter As atoms were involved into those 

sites.  Occupancies of the shared Sb/As sites were fixed to fully fill each crystallographic 

sites and they were assigned the same coordinates and atomic displacement parameters. An 

unrestrained refinement of site occupancies, coordinates and thermal parameters lead to an 

unstable refinement. The final optimized R-factors, U-values, and peak/hole values was 

obtained by applying the restriction on aforementioned parameters. Similar refinements for 

each structure lead to the structural models described herein. The CIFs are provided in the 

Supporting Information.  

9.1.3.3 Electron Microprobe Analysis. Single crystalline and pelleted samples were 

enclosed in epoxy and polished to provide flat surfaces for analysis. The polished samples 

were mounted on 25 mm metal rounds using adhesive carbon tape and were carbon coated to 
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make them conducting. Microprobe analysis was performed by using a Camera SX-100 

Electron Probe Microanalyzer with wavelength-dispersive spectrometers. Back scattered 

electrons were used for imaging the surfaces of the samples, characteristic X-rays generated 

by samples were analyzed by wavelength-dispersive spectroscopy to determine the 

compositions of samples, and element mapping was accomplished to assess the spatial 

distribution of elements in the samples. X-ray intensities of Eu, Cd, Sb, As and Sn were 

compared with the calibrated standards EuPO3, Cd (metal), Sb (metal), GaAs and Sn (metal) 

for quantitative analysis. At least 15 different points with a spot size of 1 μm were analyzed 

for each sample. 

9.1.3.4 Electronic Structure Calculations. Electronic structures and total energies of 

various model structures of Eu11Cd6Sb10As2 (x = 2) were calculated by the tight-binding, 

linear muffin-tin orbital method in the atomic sphere approximation (TB-LMTO-ASA) using 

the Stuttgart code.
14

  Exchange and correlation were treated by the local density 

approximation (LDA).
15

 In the ASA method, space is filled with overlapping Wigner-Seitz 

(WS) spheres. The symmetry of the potential is considered spherical inside each WS sphere 

and a combined correction is used to take into account the overlapping part.
16

 The ranges of 

WS radii are: 3.79-4.01 Å for Eu sites; 2.80-2.97 Å for Cd sites; and 3.06-3.49 Å for Sb/As 

sites. Empty spheres were necessary to achieve the LMTO volume criterion, and the overlap 

of WS spheres was limited to no larger than 16%. The basis set for the calculations included 

Eu 6s, 6p, 5d; Cd 5s, 5p, 4d; Sb 5s, 5p, 5d; and As 4s, 4p, 3d wavefunctions. The 

convergence criterion was set to 0.5 meV. A mesh of 14-20 k points in the irreducible wedge 

of the first Brillouin zone was used to obtain all integrated values, including the density of 

states (DOS) and crystal orbital Hamiltonian population (COHP) curves. 
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9.1.3.5 Synchrotron Powder X-ray diffraction. High resolution synchrotron powder 

diffraction data for Eu11Cd6Sb12-xAsx were collected at room temperature (295.0 K) using 

beamline 11-BM at the Advanced Photon Source (APS),
17

 Argonne National Laboratory, 

using an average wavelength of 0.41396 Å produced by a bending magnet (BM) with 30 keV 

energy. Si(111) double crystals were used as the monochromator and a sagittally bent Si(111) 

crystal focused the beam to the dimensions of 1.5 mm (horizontal)  0.5 mm (vertical) on the 

sample. Twelve discrete detectors covering an angular range from –6º to 16º 2θ are scanned 

over a 34º 2θ range, with data points collected every 0.001º at a scan speed of 0.01º/s.
18

 All 

samples were diluted by mixing with pulverized fused silica with the mass ratio 1:1 

amorphous SiO2:sample. The amorphous SiO2 dilutant was necessary to overcome the strong 

absorption issues due to the presence of high-Z elements in these solid solutions. The diluted 

samples were sealed in quartz capillaries of 0.3 mm in diameter to minimize oxidation. A 

small broad peak at a low 2θ angle, especially for x = 2, comes from the amorphous SiO2. 

The program FullProf was used to perform profile matching with constant scale factor by 

employing pseudo-Voigt axial divergence asymmetry peak shape for the calculated patterns. 

9.1.3.6 Sample Preparation for Transport Properties. High temperature thermoelectric 

property measurements were performed on Eu11Cd6Sb12-xAsx (x < 3) hot pressed pellets. To 

get dense samples, polycrystalline powder samples were first cold-pressed at 415 MPa in 

hardened steel die sets, then the pressure was released to 206 MPa and immediately hot-

pressed at this pressure for 30 min under an argon atmosphere at 500 ⁰C to make 10-mm 

diameter pellets with approximately 1.5-mm thickness. Densities of the pellets found to be 

about 95% of the calculated densities. Samples were polished to obtain smooth and parallel 

faces appropriate for electrical and thermal transport properties measurements.  
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9.1.3.7 Transport Properties Measurements. High temperature resistivity ( ) data were 

measured to 773 K by using the van der Pauw technique and pressed niobium contacts.  The 

Hall effect was measured simultaneously in a 2 T magnetic field.
19

 Seebeck data were 

obtained using Chromel–Nb thermocouples. The Seebeck coefficient at each temperature 

obtained by oscillating ∆T by ±10 K about a fixed average temperature.  The resulting linear 

voltage response yields the Seebeck coefficient (∆V = α ∆T).
20

 Thermal diffusivity data were 

collected using a Netzsch LFA 457. The temperature of measurements was limited to 773 K 

because of the thermal instability of Eu11Cd6Sb12-xAsx (x = 0, 1, 2) observed above this 

temperature; TG-DSC data are provided in the Supporting Information, mass loss was 

observed at around 887 K can be caused by As sublimation. The final product after TG-DSC 

was not investigated further. Thermal conductivities were calculated from the equation, 

            , in which    is the Dulong–Petit heat capacity (        ;   is the gas 

constant,   is the molar mass, and   is number of atoms per formula unit),   is the 

geometric density, and   is measured thermal diffusivity from flash diffusivity 

measurements given in the Supporting Information. 

9.1.4 Results and discussion 

9.1.4.1 Structures and Compositions. Single crystal and powder X-ray diffraction (PXRD) 

and electron microprobe analysis (EMPA) were used to investigate the products of each 

reaction to prepare the solid solutions Eu11Cd6Sb12-xAsx (xsyn =  0 to 12). Single crystal X-ray 

diffraction studies show that there is a small range of compositions of Eu11Cd6Sb12-xAsx that 

crystallize in the Sr11Cd6Sb12 structure type. The compound with the highest As content 

characterized by single crystal X-ray diffraction was Eu11Cd6Sb7.76As4.24(6) from the reaction 

of xsyn = 3. However, this phase appeared as a minor product together with a new structure, 
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which was the major phase and will be reported in another publication. Herein, samples of 

Eu11Cd6Sb12-xAsx with the Sr11Cd6Sb12 structure type as the major phases of each product 

will be discussed, so xsyn < 3. These structures are solved with acceptable R1 and wR2 values 

(R1 < 2.3% and wR2 < 5%); the details can be found in the Supporting Information. There 

was no evidence for Sn substitution from the structure refinements, in good agreement with 

EMPA on single crystals. Figure 2a shows that the lattice parameters decrease with 

increasing As content x (determined from single crystal X-ray diffraction), a result which is 

in agreement with the covalent radii of Sb (1.39 Å) and As (1.19 Å).
21

 The b-axis decreases 

slightly compared with the decreases in a- and c-axes with increasing As content. Moreover, 

the linear variation in lattice constants with As content indicate its solid solution behavior, in 

accordance with Vegard’s law.
22, 23

  

 

 
Figure 2. a) Lattice parameters for Eu11Cd6Sb12-xAsx obtained from single-crystal X-ray diffraction plotted as a 

function of synthetic values x, x(Synthetic). a-axis (squares), b-axis (circles), and c-axis (triangles) are 

presented in the bottom, middle, and top plot, respectively, lattice parameters for x = 0 are obtained from the 
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literature.
12

 b) Experimentally determined composition, x(Experimental), for Eu11Cd6Sb12-xAsx from single 

crystal X-ray diffraction (triangles) and EMPA of the single crystals (squares) and hot pressed pellets (circles) 

vs synthetic values, x(Synthetic). 

Figure 2b shows the x values in Eu11Cd6Sb12-xAsx determined independently from single 

crystal data refinements and EMPA on single crystal samples and the hot pressed pellets vs 

their loaded (synthetic) values, xsyn. The microprobe results from the single crystal samples 

and the hot pressed pellets give similar values for the amount of As present in the compounds 

especially for the low xsyn amounts.  The backscattered electron microscopy (BSE) and 

elemental mapping images of hot pressed slices with total area sizes more than 4 mm
2
 shown 

in Figure 3 indicate that As is homogenously distributed.  EMPA on single crystals did not 

show the presence of other phases. However, the electron microprobe studies on the pressed 

pellets indicate that there is a minor phase with the possible composition of Eu10CdSb10-x-

ySnxAsy , an unknown phase., the bright gray areas in the backscattered images in Fig. 3 were 

identified as this composition and indicated by arrows. Our attempts to find single crystals of 

this phase as a possible minority phase in the single crystal product were unsuccessful 

suggesting that this minor phase arises via the hot press procedure through the reaction 

between the residual tin and the main phase of each compound at high temperature and 

pressure. The pellets also showed a very minor presence of Eu2O3 impurities.  
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Figure 3. BSE images and X-ray maps of hot pressed slices for Eu11Cd6Sb12-xAsx solid solutions (x = 0, 1, 2), 

the areas of bright contrast identified with the Eu10Cd1Sb10-x-ySnxAsy composition are indicated by arrows. 

The average compositions with standard deviations in parentheses from EMPA on single 

crystals and pressed pellets are provided in Table 1 along with the compositions from single 

crystal X-ray diffraction. There is good agreement between the compositions obtained from 

single crystal X-ray diffraction and from EMPA (see also Figure 2b). The presence of the 

minor phase Eu10Cd1Sb10-x-ySnxAsy (generalized stoichiometry: Eu10MPn10) and Eu2O3 

observed by EMPA in the pressed pellets is not apparent in the powder patterns obtained 

from a conventional powder X-ray diffractometer of samples obtained before or after hot 

pressing. Therefore, to investigate the quality of each sample, synchrotron powder XRD 

(SPXRD) was utilized. Representative patterns of the x = 0, 1, and 2 samples of Eu11Cd6Sb12-

xAsx are shown in Figure 4. The best profile matching was achieved by using the crystal 

structures solved for crystals of each reaction. The corresponding calculated patterns are 

shown as orange dashed lines overlaid on each observed pattern, shown in black, and the 

difference profile is also shown below each pattern in black. The difference profiles indicate 

some unassigned peaks are present in the 2  range of 7˚-10˚. Assigning these peaks and 

utilizing software such as Dicvol and Treor to determine a solution for their unit cells were 

not successful. However, these unassigned diffraction peaks might be attributed to the minor 
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phase identified by EMPA as Eu10MPn10. Further analysis by the Rietveld method was not 

reliable as a result of the presence of unassigned peaks belonging to an unknown phase (or 

phases) because the contribution of each phase to each peak cannot be properly evaluate. 

However, most of the peaks are fully matched with the parent structure Eu11Cd6Sb12 as 

shown in Figure 4. 

 

Figure 4. High resolution synchrotron powder X-ray diffraction patterns for Eu11Cd6Sb12-xAsx solid solutions, x 

= 0 (lower pattern), x = 1 (middle pattern) and x = 2 (top pattern) and their overlaid calculated patterns (in 

orange dashed lines) and difference profiles (in black) below each set. 
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Table 1. Comparisons of Elemental Analysis from Single-Crystal X-ray Diffraction, and EMPA from Single 

Crystals and Hot-Pressed Pellets of Eu11Cd6Sb12xAsx 

  

XSyn 

 

Composition 

from Single 

Crystal XRD 

 

Composition from 

EMPA on Single 

Crystals 

Composition from EMPA on Pellets 

Major phase 

11_6_12 

Minor phase 

10_1_10 

0.0 Eu11Cd6Sb12 Eu10.95(7)Cd6.03(5)Sb12.01(2) Eu10.95(7)Cd6.03(5)Sb12.01(2) Eu10.07(9)Cd0.96(18)Sb9.02(4)Sn0.95(9) 

1.0 
Eu11Cd6Sb10.97As1

.03(3) 

Eu10.95(5)Cd6.06(5)Sb10.88(4)As

1.11(3) 

Eu10.95(3)Cd6.05(1)Sb10.90(7)As

1.12(5) 

Eu10.0(1)Cd1.05(1)Sb7.53(4)As1.43(7)Sn

1.0(1) 

2.0 
Eu11Cd6Sb9.64As2.

46(5) 

Eu11.01(5)Cd6.05(3)Sb9.7(2)As2.

2(2) 

Eu11.04(3)Cd5.99(3)Sb10.1(2)As1

.8(2) 

Eu10.07(9)Cd1.02(4)Sb6.61(12)As2.32(11)

Sn0.98(9) 

9.1.4.2 Arsenic Site Preferences. Refined site occupancies obtained from single crystal 

diffraction data show that As substitution on the pnicogen sites is not statistically random, 

but that some pnicogen positions are more susceptible to substitution than others, a result 

which is called the “coloring problem”.
24

  In the crystal structure of the parent compound, 

Eu11Cd6Sb12, which has been studied in detail by Saparov et al.,
12

 there are six different 

crystallographic sites for Sb (shown in Figure 5) that can be substituted by As atoms. Table 2 

summarizes our experimental results, which shows, for example in Eu11Cd6Sb10.97As1.03, 

preferential substitution occurs at the Pn2, Pn1, and Pn5 sites, respectively. 

 
Figure 5. Double pentagonal tubes repeated along the crystallographic b-axis made by the connecting CdSb4 

tetrahedral units (sky blue spheres = Cd; orange spheres = Sb).  The six distinct crystallographic pnicogen sites 

are labeled; Eu atoms are removed for clarity. 
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This preferential substitution cannot be explained by simple chemical reasoning such as 

electronegativities of As and Sb and the respective formal charges for each pnicogen (Pn) site 

(i.e. one-bonded Pn = –2, two-bonded Pn = –1, three-bonded Pn = 0),   which are listed in 

Table 1 using the Zintl-Klemm formalism.
9 

According to this simple idea, the more 

electronegative As atoms should substitute for Sb at those sites with the more negative 

formal charges, but the most preferred site is, in fact, Pn2, which has the most positive formal 

charge of zero. Since this simplistic idea does not readily interpret the refined As substitution 

patterns, quantum chemical calculations were carried out on six model structures of 

“Eu11Cd6Sb10As2” in which As completely replaces Sb at each of the six independent 

pnicogens sites. 

Table 2. Percent occupation As (and the standard deviations) in the six crystallographic positions of pnicogen 

atoms in Eu11Cd6Sb12-xAsx and relative total energies (ΔE) in meV/f.u. and K/f.u. with respect to the lowest 

energy model for As substitution in the six sites for “Eu11Cd6Sb10As2.” 

 

The total energies of the six different substitution patterns of Eu11Cd6Sb10As2 are also 

listed in Table 2 relative to the lowest energy case Pn5. According to these relative total 

energies, the pattern of As substitution for Sb atoms in ternary “Eu11Cd6Sb12” follows the 

qualitative order (Pn5-Pn2-Pn1)—(Pn4-Pn6)—(Pn3).  We can use these relative total 

Site Pn1 Pn2 Pn3 Pn4 Pn5 Pn6 

Formal Charge –1 0 –1 –1 0 –2 

Eu11Cd6Sb10.97As1.03  10.6(5)% 34.5(5)% No As No As 6.5(5)% No As 

Eu11Cd6Sb9.64As2.46  28.9(7)%  60.4(6)% No As 11.8(6)% 19.0(7)% No As 

Eu11Cd6Sb7.85As4.15  53.87(6)% 79.6(6)% 9.9(6)% 27.9(6)% 37.9(6)% 2.8(6)% 

ΔE (meV/f.u.) 63.9 21.6 235.1 133.7 0 165.5 

ΔE (K/f.u.) 741 251 2727 1551 0 1920 
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energies to estimate the distribution of As atoms among the six different pnicogen sites as a 

function of temperature by using a Boltzmann distribution for these six models. At 300 K, 

the calculated As site occupancies are 66% (Pn5), 28% (Pn2), and 6% (Pn1); at 800 K, the 

As site occupancies become 42% (Pn5), 31% (Pn2), 17% (Pn1), 6% (Pn4), and 4% (Pn6). 

Clearly, the calculations reproduce gross trends in the As substitution pattern, by identifying 

the three sites at which As is found to replace Sb for the lowest As content x = 1.03. On the 

other hand, the calculations do not correctly follow the quantitative results that site Pn2 is 

most favorable for As substitution. 

To understand the relative energies of the six different As substitution patterns, analysis 

of the electronic structures of Eu11Cd6Sb12 and “Eu11Cd6Sb10As2” is warranted.  In the 

valence orbital region of the electronic DOS curve for Eu11Cd6Sb12,
12

 shown in Figure 6, 

there are three distinct regions: (i) 8-12 eV below the Fermi level EF show mostly Sb 5s 

bands mixed with Cd 5s and 4d and small amounts of Eu valence orbitals; (ii) 0-6 eV below 

EF arises mostly from Sb 5p bands mixed with Cd 5p and Eu 6s/5d states; and (iii) above EF, 

which contains mostly Eu 6s and 5d character. There is a clear pseudogap at EF, which would 

suggest Eu11Cd6Sb12 to be, at best, semimetallic. In line with the Zintl-Klemm formalism, the 

Cd–Sb and Sb5–Sb5 COHP curves indicate maximum orbital interactions, i.e., “covalency”, 

in Eu11Cd6Sb12, which can be formulated as (Eu
2+

)11(Cd
2+

)6(Sb
3–

)10(Sb2
4–

). 
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Figure 6. DOS curve decomposed into its atomic components (Eu: blue; Sb: green; Cd: white) and significant 

COHP curves for Eu11Cd6Sb12 (+ is bonding; − is antibonding). EF for 154 e
–
 is set to 0 eV. 

For comparison, the DOS curves for the six different As-substitution models 

Eu11Cd6Sb10As2 are presented in Figure 7. These curves provide some insights about the 

preferred pattern of As substitution by focusing on the As partial DOS contributions. For the 

cases As2 and As5, which are the two lowest energy substitution patterns, the As partial DOS 

extends throughout all of region (ii), that is, throughout the entire valence band. Thus, these 

states show enhanced electronic occupation as compared to the other pnictide states and will 

be favored for substitution by the electronegative As atoms. This outcome can be more 

clearly visualized by taking ratios of each As partial DOS curve with respect to the partial 

DOS curve for the As4 site (see Supporting Information): from 2-6 eV below EF, 

contributions from As2 and As5 clearly dominate the total DOS, whereas contributions from 

the remaining pnictide sites show a more uniform, yet oscillating, distribution throughout the 

entire valence band. The broad partial DOS arising from the As2 and As5 contributions is a 

signature of greater orbital overlap with their neighboring sites as compared to the other 
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pnictide positions. These two sites have the largest connectivity within the formal Zintl 

polyanion, [Cd6Sb12–xAsx]
22–

: Pn5 is three-bonded to 2 Cd atoms and 1 site Pn5 atom (Sb or 

As); Pn2 is also three-bonded, but to 3 Cd atoms.  Sites Pn1, Pn3, and Pn4 are two-bonded to 

Cd sites, whereas site Pn6 is one-bonded to a Cd site. 

 

Figure 7. DOS curves emphasizing the pnicogens contributions (As: blue; Eu: green; Cd+Sb: white) for six 

different models of Eu11Cd6Sb10As2. EF for 154 e
–
 is set to 0 eV.  The coordination polyhedron for each site (for 

distances less than 4.0 Å) are included (Eu: green; Cd: gray; Sb/As: blue). 

In model As5 above, all dimers were treated as formally (As–As)
4–

. To examine the 

realistic possibility that mixed site substitution patterns may be energetically favorable, three 

additional sets of structural models of Eu11Cd6Sb10As2 were constructed, in which the dimers 

are heteroatomic (Sb–As)
4–

, listed as cases (a)-(c) in Figure 8. Since the unit cell contains 

two formula units, the dimer positions Pn5 are assigned 2 As and 2 Sb atoms for which there 

are three possible distinct patterns per unit cell, and various arrangements with the remaining 

two As atoms occupying two of sites Pn1, Pn2, Pn3, Pn4, or Pn6 were examined. For 

completion, Figure 8 includes the two homoatomic cases (As–As)
4–

 (d) and (Sb–Sb)
4–

 (e). 

Table 3 summarizes the relative average total energies for each case relative to case (d), 

which is model As5 described above. The average total energy for case (e) corresponds to the 

average value of models (Pn1-Pn4 + Pn6) listed in Table 2. 
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Figure 8. Five different As/Sb distributions among site Pn5, including three heteroatomic (a-c) and two 

homoatomic (d-e) cases. (Eu: green; As: red/black; Sb: blue/white) 

According to the results in Table 3, there is a clear energetic preference for mixed site 

substitution by As atoms throughout the structure of Eu11Cd6Sb12–xAsx. On average, there is a 

slight preference toward heteroatomic (Sb–As)
4–

 units, model (a), with additional As atoms 

substituting across the remaining pnictide sites. On the other hand, the overall lowest energy 

configurations specifically for Eu11Cd6Sb10As2 yield homoatomic (As–As)
4–

and (Sb–Sb)
4–

 

units with additional As substitution occurring at sites Pn1 and Pn2. Thus, there is a 

synergistic energetic influence on the substitution pattern of As atoms among the various 

pnictide sites in Eu11Cd6Sb12–xAsx.  

Table 3. Relative average total energies (ΔE; meV/f.u.) with respect to Case (d) for Eu11Cd6Sb10As2 (Z = 2). 

Values in “( )” are standard deviations from 5 different structural models in each case. 

Case: A b c d e Average 

Pn1 –169.8 –199.2 –60.6 --- 63.9 –99.4 

Pn2 –163.8 –192.9 –39.7 --- 21.6 –96.4 

Pn3 –176.2 –133.0 –40.9 --- 235.1 –58.1 

Pn4 –165.5 –94.5 –45.1 --- 133.7 –59.6 

Pn6 –185.8 –111.5 –99.5 --- 165.5 –78.5 

ΔE (meV/f.u.) –172(9) –146(47) –47(12) 0 +124(84) ---- 
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In summary, the results of electronic structure theory agree reasonably well with the 

experimental refinements of As-substituted Eu11Cd6Sb12–xAsx. The results indicate that As 

substitution at a mixture of the sites Pn1, Pn2, and Pn5 is strongly preferred over any other 

specific site substitution. This distribution pattern arises because the sites Pn1, Pn2, and Pn5 

engage in the most significant polar-covalent Cd–Pn orbital interactions (see DOS curves in 

Figure 7) and the covalent Pn5–Pn5 orbital interactions are enhanced by mixed occupation 

by As and Sb. Moreover, the energy differences between heteroatomic (Sb–As)
4–

 and a 

mixture of homoatomic (As–As)
4–

and (Sb–Sb)
4–

 units are relatively small (300 K/f.u., on 

average; compare columns a and b in Table 3) and there is no preferential ordering at the Pn5 

sites throughout the crystal.   

9.1.4.3 Arsenic substitution effects on transport properties. The substitution pattern of As 

for Sb in Eu11Cd6Sb12 is expected to have a significant impact on the electrical transport 

properties of this system. As seen in Figure 9, magnification of the theoretical DOS curves 

near the Fermi level for each substitutional model reveals that As substitution at the Pn4 site 

creates a definite band gap of 17 meV, whereas As substitution at the other five pnictide 

sites leaves a pseudogap. The band structures indicate that there are energy gaps at every 

wavevector for 154 valence electrons (77 valence bands), but the reason for pseudogaps 

arises because band overlaps occur from different regions of wavevector space. Only for 

substitution at the Pn4 sites is this energy band overlap eliminated. An evaluation of 

integrated COHP values for the various Eu–Sb contacts indicate that the largest Eu–Sb polar-

covalent interactions occur with the Pn4 sites. Such interactions are related to Sij
2
/ΔE

(0)
 in 

which Sij is the overlap integral between atomic orbitals i and j and ΔE
(0)

 is their energy 

difference. Substitution by As, which is more electronegative and smaller than Sb, will 
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decrease this covalency because Sij decreases and ΔE
(0)

 increases. We see the greatest 

changes in integrated COHP values occurring for As substitution at the Pn4 positions. 

 

Figure 9. DOS curves (As partial DOS: Green; Eu+Cd+Sb: white), (Eu+Cd)–As COHP curves, and energy 

band structures for six different substitution models of “Eu11Cd6Sb10As2.”  Only As4 substitution opens a band 

gap in the DOS curve at the Fermi level. 
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Figure 10. (a) The total thermal conductivity,       , (color coded solid markers) and             (color coded 

hollow markers) in samples of Eu11Cd6Sb xAsx are shown; the bipolar contribution is apparent at temperatures 

higher than 500K. (b) Total thermal conductivity (green solid circles) and lattice thermal conductivity (green 

hollow circles) of Eu11Cd6Sb12 as a function of temperature are compared to the corresponding properties in 

Yb14MnSb11 (blue diamonds) and Zn4Sb3 (orange squares) from the literature. 

9.1.4.4 Electronic transport properties. The total thermal conductivities for 

Eu11Cd6Sb xAsx samples are shown in the Figure 10a, indicating that they tend to decrease 

with increasing As concentration, a result which is in good agreement with the trend of 

higher electronic resistivity observed in more As-containing solid solutions discussed later. 

The electronic contribution to          can be estimated from         , where   is 

temperature,   is electrical resistivity and   is the Lorenz number calculated using the single 

parabolic band (SPB) model.  In Figure 10a, the          values for each sample represent 

the cumulative effect of the lattice (        ) and bipolar (  ) contributions to the thermal 

conductivities, since                      . In the absence of a bipolar contribution, 

          is expected to decrease with increasing temperature. However, the        

  values for samples of Eu11Cd6Sb xAsx decrease to around 550 K and then it starts to 
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increase, indicating a significant bipolar contribution at higher temperatures, in agreement 

with the temperature dependence of the Hall charge carrier concentrations discussed later. At 

room temperature, the bipolar term is insignificant, and it can thus be assumed that the 

         values approach the intrinsic lattice thermal conductivities. All samples of 

Eu11Cd6Sb12-xAsx show very similar low lattice thermal conductivities but a rough 

comparison of           values near room temperature follows the expected trend based on the 

introducing point defects through the synthesis of isostructural solid solutions. The samples 

with mixed occupancies of As and Sb show lower lattice thermal conductivities since solid 

solutions provide an environment of atomic mass fluctuation throughout the crystal lattice 

(i.e. disorder) providing phonon scattering which generally results in low thermal 

conductivity.
25

  

The measured thermal conductivities of Eu11Cd6Sb12 are as low as 0.6 W/mK, 

comparable to state of the art thermoelectric materials such as Yb14MnSb11 and Zn4Sb3  

which are about 0.9 W/mK and 0.75 W/mK, respectively, as shown in Figure 10b. However, 

the lattice thermal conductivity values of both Yb14MnSb11
7
 and Zn4Sb3

26
 materials are lower 

than Eu11Cd6Sb12 because the electronic thermal conductivity has a significant contribution 

for         in these two compounds;    is minor in Eu11Cd6Sb12 due to high electronic 

resistivity.  

Figure 11a shows the temperature-dependent electrical resistivity (ρ) of 

Eu11Cd6Sb xAsx samples from room temperature to 773 K. Resistivity for all samples 

increases approximately linearly with increasing temperature up to 500 K consistent with 

degenerate semiconducting electrical conductivity properties (metallic behavior with 

transport dominated by extrinsic carriers). The electrical resistivity shows a sharp rise at 
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approximately 500 K, which can be attributed to melting of residual tin (TM(Sn)   500 K) 

from the flux synthesis in the samples. Above 550 K, the resistivity decreases with increasing 

temperature for all samples, as minority carrier activation leads to a transition from extrinsic 

semiconducting behavior to intrinsic, two-carrier type behavior.  

Hall effect measurements were carried out for better understanding of electronic 

properties of these compounds. The positive Hall coefficients of all the samples reveal that 

holes are the dominant carriers at room temperature (   =     
⁄  . Hall carrier concentration 

data shown in Figure 11b reveal that all samples have an extrinsic p-type carrier 

concentration of 2.5–4   10
19

 holes/cm
3
 at room temperature, which may be attributed to the 

inherent defects in the crystal structure. The carrier concentration of all samples is constant to 

~550 K, indicative of extrinsic carriers. At high temperatures, a sharp rise in carrier 

concentration is observed due to the thermally excited carriers across the band gap, defining 

the bipolar regime. At very high temperature, the hole carrier concentration will be 

overestimated since a single carrier type description is no longer valid equation in the bipolar 

regime. Samples with higher arsenic content have higher carrier concentrations, which may 

be due to a higher concentration of intrinsic crystallographic defects in these samples.  
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Figure 11. (a) The temperature dependence of the electrical resistivity for Eu11Cd6Sb12xAsx. (b) The 

Hall carrier concentration for Eu11Cd6Sb12xAsx illustrates the transition from extrinsic regime to 

intrinsic regime around 550 K. (c) The Hall mobility is indicative of acoustic phonon scattering. (d) 

Temperature dependence of Seebeck coefficient for Eu11Cd6Sb12xAsx compounds. 

Hall mobility values shown in the Figure 11c were calculated from the Hall coefficient 

measurements (          
⁄ ). The mobility of the doped samples, in general, decreases 

with increasing x.  However, while samples x = 0 and 1 have comparable mobilities, the 

mobility is decreased by half in sample of x = 2 (35 and 17 cm
2
/v.s for x = 1 and x = 2, 

respectively). The sudden decrease in mobility of Eu11Cd6Sb12-xAsx (x ~ 2) sample can be 

explained by the As site specificity substitution. As discussed above in modeling calculation, 

it is expected that Eu1Sb4 interaction has an important role in electronic properties in 
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Eu11Cd6Sb12 which is in good agreement with the modeling calculations done on Sr11Cd6Sb12 

and Ba11Cd6Sb12 by Xia et al.
27

 Their calculation shows that the bottom of the conduction 

bands and the top of the valence bands originate predominantly from dz
2
-orbitals of Sr1/Ba1 

and py orbitals of Sb4. It is expected that substitution of As (with smaller 4p orbitals) in Sb 

sites (with larger 5p orbitals) lead to less Eu1Pn4 orbital overlap as discussed before and, as 

a result, causes lower mobility. According to Table 1, As begins to preferentially substitute 

Sb4 sites at higher concentration x ~ 2 in Eu11Cd6Sb12 xAsx resulting in a strong effect on the 

electronic properties as predicted by the modeling calculation.  The mobility in all samples 

decreases with increasing temperature.  The temperature dependence of    is indicative of 

acoustic phonon scattering (       , where   ranges from 1 to 1.5 for degenerate and non-

degenerate semiconductors, respectively). For all samples in this study,   ranges from 1.4 to 

1.7.
28

  

The Hall measurements indicate that despite the fact that charge carrier concentration 

increases by substituting As in Sb sites, the mobility is strongly affected by the As site 

substitution. As a result, for x = 1, where the As is not substituting the important Sb4 site, 

slightly increased charge carrier concentration leads to lower resistivity compared to x = 0. 

However, for x = 2, the increased charge carrier concentration introduced by As substitution 

is counteracted by lower mobility attributed to substitution on the Sb4 site, resulting in the 

highest resistivity among all the three samples. 

Figure 11d shows the Seebeck coefficient of Eu11Cd6Sb12-xAsx as a function of 

temperature over the range 300 to 750 K. The Seebeck coefficients of all samples are positive 

in the measured temperature range, which agrees with the results of Hall measurement 

indicating that the dominant carrier concentrations are holes. The value of the Seebeck 
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coefficients decrease with increasing As, consistent with the increasing charge carrier 

concentrations. The Seebeck coefficients of all samples increase with increasing temperature 

and reach their maximum value at about 550 K (consistent with the temperature dependency 

of carrier concentration) and then decrease with further increase in temperature showing the 

transformation from the extrinsic to intrinsic regime.  From this peak, a band gap (Eg) of 

between 0.1 and 0.2 eV can be estimated for Eu11Cd6Sb12-xAsx samples from the relation Eg = 

2maxTmax. 

 
Figure 12. Color coded curves of Figure of Merit for Eu11Cd6Sb12xAsx (x = 0, 1, 2) solid solutions.  

 

The zT values of Eu11Cd6Sb12-xAsx (x = 0, 1, 2) as a function of temperature are shown in 

Figure 12. It is not surprising that Eu11Cd6Sb12 xAsx do not show exceptional thermoelectric 

performance because of the poor electrical conductivity in these samples; the calculated zT 

values are less than 0.25 in the measured temperature range, as indicated in Figure 12. 

However, the fairly high Seebeck coefficient and low thermal conductivity at room 

temperature results in zT ~ 0.07 at room temperature which is high for a Zintl phase.
29

 It 
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suggests that Eu11Cd6Sb12 will be a fruitful area for discovery of new materials for 

thermoelectric refrigeration provided that the electrical conductivity can be further tuned to 

achieve higher zT values. Optimization of zT can be investigated through a doping strategy 

such as introducing more holes by aliovalent substitutions instead of isovalent substitutions. 

The As solid solution samples in this study have lower zT values than the undoped sample 

due to lower Seebeck coefficients (caused by higher charge carrier concentrations through 

substituting As) and lower charge carrier mobilities attributed to point defect scattering.  

9.1.5 Conclusions 

In this work, the role of the pnicogen sites in the thermal and electronic properties of 

Eu11Cd6Sb12-type Zintl compounds is studied by examining the trends in chemical and 

transport properties of the Eu11Cd6Sb12-xAsx system. It is shown that a limited amount of As 

can replace Sb in the Eu11Cd6Sb12 structure through Sn-flux synthesis. Electronic structure 

calculations predict that As substitution on the pnicogen sites in Eu11Cd6Sb12 prefers As/Sb 

mixing in the Pn5–Pn5 dimers with additional substitution at Pn1 and Pn2 sites, an outcome 

that is consistent with single crystal structure refinements. This substitution pattern is the 

result of both size and electronic factors. Refinement of the synchrotron powder X-ray 

diffraction patterns shows the major phase for all the samples is monoclinic Eu11Cd6Sb12-xAsx 

solid solutions. All the synthesized solid solutions show surprisingly low thermal 

conductivities ranging 0.6       
 

  
 at 571 K and positive Seebeck coefficient of 120, 105 

and 75 μV/K at room temperature for x = 0, x = 1 and x = 2 samples reaching to the 

maximum of 156, 140 and 120 at ~570 K. Although the charge carriers increase by 

substituting As in Sb sites, the mobilities decrease. As a result, in x = 1, which the increased 

carrier concentration is not completely counteracted by decreased mobility, the lowest 



186 

 

electrical resistivity is observed and, in x = 2, where the mobility is much lower than the 

increased carrier concentration, the highest resistivity is observed. The figures of merit of 

Eu11Cd6Sb12-xAsx are low, approximately 0.21, 0.18 and 0.07 at ~ 755, 700 and 715 K for x = 

0, x = 1 and x = 2, respectively.  The combination of theoretical and experimental results 

provides insight into this system and shows the potential for optimization through extrinsic 

doping. 
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Appendix II. Spin-glass behavior in giant unit cell compound Tb117Fe54.7Ge112 

Modified from a paper submitted to J Appl. Phys. 
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9.2.1 Abstract 

In this letter, we show the presence of a cluster spin glass in Tb117Fe54.7Ge112 (a unique 

compound with a giant cubic unit cell) via ac and dc susceptibility, magnetization, magnetic 

relaxation and heat capacity measurements. The results clearly show that Tb117Fe54.7Ge112 

undergoes a spin glass phase transition at the freezing temperature, ~38 K.  The good fit of 

the frequency dependence of the freezing temperature to the critical slowing down model and 

Vogel-Fulcher law strongly suggest the existence of cluster glass behavior in the 

Tb117Fe54.7Ge112 system.  The heat capacity data exhibit no evidence for long-range magnetic 

order, and yields a large value of Sommerfeld coefficient. The spin glass behavior of 

Tb117Fe54.7Ge112 may be understood in terms of the outcome of the competing interactions of 

the multiple non-equivalent Tb sites arising from the highly complex unit cell.  
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9.2.2 Introduction 

Spin glasses (SG) with an unconventional phase transition have been extensively studied, 

both experimentally and theoretically, for the last several decades. SG can exist in 

amorphous, diluted metallic alloys, nanostructured systems, and single crystal and 

polycrystalline materials. More recently, our work on the R117M52+xX112+y (R= rare earth 

metals, M = Fe, Co and Cr, X = Ge, Sn) giant crystallize compounds led to the discovery of 

spin glass clusters with short range antiferromagnetic ordering coexist in Pr117Co54.5Sn115.2.
 [1]

 

The R117M52+xX112+y-based ternary intermetallic compounds have a unique structure with a 

large cubic cell with unit cell volume larger than 20,000 Å
3
.  These compounds crystallize in 

two closely related structures, either cubic Tb117Fe52Ge112 –type 
[2]

 or Dy117Co57Sn112 –type
 [3]

. 

The spin glass behavior of Pr117Co54.5Sn115.2, which crystallizes in Dy117Co57Sn112 –type 

structure, is attributed to the crystallographic disorder in atomic clusters. Such origin of the 

SG behavior is similar to those in uranium-based nonmagnetic atom disorder (NMAD) 

compounds U2XSi3 (X = transition metal) and is due to the inherent nature of the crystal 

structure but is different from that in amorphous or diluted metallic spin glasses.
 [4]

 Different 

from the Dy117Co57Sn112 –type, no atomic disorder has been reported in Tb117Fe52Ge112 –type. 

However, considering this extremely complex system, atomic disorder may also exist in 

Tb117Fe52Ge112 –type. Ever since the Tb117Fe52Ge112 –type crystal structure was first 

discovered in 1987, a single crystal analysis of this type structure has not been reported. 

Therefore, it is interesting to reinvestigate the Tb117Fe52Ge112 –type crystal structure using 

single crystal diffraction. In addition, until now, no studies of the physical properties of 

Tb117Fe52Ge112, the first compound discovered with this extremely structurally complex 

system, have been reported. Thus, the main objective of this Letter is to report on the atomic 
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disorder and spin glass behavior in Tb117Fe52Ge112. In this work, we have investigated the 

magnetic behavior of Tb117Fe52Ge112 using dc and ac magnetic susceptibility measurements. 

9.2.3 Experimental Procedure 

The polycrystalline sample of the nominal composition Tb117Fe52Ge112 was prepared by arc 

melting pure constituents Tb (99.9 wt.%), Fe (99.9838 wt.%) and Ge (> 99.99 wt.%) in an 

arc furnace under argon atmosphere. The alloys were flipped and re-melted four times to 

achieve the homogenous composition. Then the sample is sealed in a helium-filled quartz 

glass tube and annealed at 1050 °C for 102 days. The phase analysis and room temperature 

crystal structure determination were based on the refinement of the measured X-ray powder 

diffraction (XRD) patterns collected on a Philips X’Pert diffractometer (Cu Kα1 radiation) 

using the Rietveld method. A single crystal measuring around 60 80 80μm
3 

which was 

picked out of the heat treated sample was mounted on the tip a of glass fiber. An x-ray single 

crystal investigation was also performed by using Bruker APEX CCD single crystal 

diffractometer equipped with graphite-monochromatized Mo K ( = 0.71069 Å) radiation. 

The ac and dc magnetic measurements were performed by using a superconducting quantum 

interference device (SQUID) magnetometer MPMS XL-7. The heat capacity data were 

collected on a physical property measurement system (PPMS).  

9.2.4 Results and Discussions 

An analysis of the powder x-ray diffraction pattern of the Tb117Fe52Ge112 revealed that it is 

almost pure single phase with only 0.2 wt.% TbFe2Ge2 minor phase. The single crystal 

analysis of Tb117Fe52Ge112 shows that it crystallizes in Tb117Fe52Ge112-type with a lattice 

parameter a = 28.553(1) Å, which is comparable to the earlier reported value. However, an 

extra position 24e (0, 0, 0.0664) is occupied by Fe5 with an occupancy of 45%.  This 
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indicates that some atomic disorder also exists in Tb117Fe52Ge112-type crystal structure, and 

that the actual chemical formula of this compound is Tb117Fe54.7Ge112. 

Magnetization data of Tb117Fe54.7Ge112 as a function of temperature collected in magnetic 

fields from 100 Oe to 10 kOe under both zero field cooling warming (ZFC) and field cooled 

cooling (FCC) protocols are show in Fig.1. For H = 100 Oe, the M(T) curve displays one 

sharp peak at  38 K (Tf) and below which magnetic irreversibility is manifest as a bifurcation 

between the ZFC and FCC curves. Below Tf, ZFC branch decreases rapidly while FC 

decrease slowly to a plateau. With increasing field, the sharp peak observed in low magnetic 

field becomes broader with smaller amplitude and shifts toward lower temperature.  The 

variation of temperature Tf with magnetic field follows the de Almedia-Thouless Law
 [5]

 (Tf 

  H
2/3

), as shown in the inset of Fig.1. A peak in the ZFC plot and the distinctive bifurcation 

between the ZFC and FCC curves below Tf are typical features of spin glasses. 

Figure 2(a) shows the ac susceptibility of Tb117Fe54.7Ge112 as a function of temperature at 

frequencies from 1 to 1000 Hz. The measurements were performed at an ac field of 5 Oe 

after ZFC. χ’(w, T) and χ”(w, T) display a peak at ~40 K and ~38 K, respectively. The peak 

temperature shifts upwards with increasing frequency in both χ’ and χ” plots. However, as 

frequency increases, the magnitudes of the peak decrease in χ’(w, T) but increase in χ” (w, T). 

Except for the peak, another anomaly appears at ~ 12 K in χ’(w, T) and a small peak at ~ 9K 

and a slope change at ~ 23 K are seen in χ”(w, T). The small peak at around 9 K in χ” plot 

also shifts up to higher temperature with the increase of the frequency. The initial frequency 

shift δTf  = ∆ Tf / (Tf ∆logw) has often been used as a criterion to compare different spin glass 

systems. The measurements show that Tf varies from ~39.5 K (1 Hz) to ~43 K (1000 Hz) in χ’ 

data while it varies from ~37.5 K (1 Hz) to ~40.5 K (100 0Hz) in χ” data. Therefore, the 
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calculated peak shift δTf is 0.0295 and 0.0267 for χ’ and χ”, respectively. The sensitivity of 

the frequency strongly depends on the interaction between the magnetic entities. The values 

obtained for Tb117Fe54.7Ge112 lie between those reported for canonical SG (between 0.0045 

and 0.06)
 [6]

 and are comparable to those reported for some NMAD concentrated spin glasses 

like URh2Ge2 (0.025)
 [7]

,  U2PdSi3 (0.020)
 [8]

 and Ce2AgIn3 (0.022)
 [9]

, and  also that of cluster 

glass Pr117Co54.5Sn115.2 (0.021). 

In order to estimate the dynamical parameters used to characterize the SG state of 

Tb117Fe54.7Ge112, two well-known models: the conventional critical slowing down model of 

spin dynamics, τ = τ0(Tf /TSG -1)
-zν

, (where TSG is the SG transition temperature determined 

by the system interaction at ω→0, τ0 is the shortest relaxation time available to the system 

and zν is the dynamic critical exponent
 [10]

) and Vogel-Fulcher law 
[11-14]

, ω = ω0 exp[-

Ea/kB(TF -T0)] (where ω0 is characteristic frequency, Ea is activation energy, kB is the 

Boltzmann constant, and T0 is Vogle-Fulcher temperature) are employed to fit the Tf (ω) data.  

Since TSG is the infinitely slow cooling value of Tf, we assigned the value of TSG at which the 

ZFC dc-χ(T) curve has its maximum (i.e. 38K). 

Figure 2 (b) and (c) present the best fits to the data Tf of χ’ in the 1-1000 Hz range, showing 

that the spin glass state can be well described by the two models.  Having TSG fixed, the fit 

using the former equation [solid line in Fig. 2(b)] yields following parameters: τ0 ≈ 10
-9

 s and 

zν = 5.9. These values compare well with those of well-known spin glasses and cluster glass 

systems. The value of zν lies between 4 and 12 for different SG systems, such as the cluster 

glass U2CuSi3
 [15]

, and the Ising spin glass Fe0.5Mn0.5TiO3
 [16]

.  Taking ω0 = 1/τ0 = 10
9
 Hz, the 

fit using the latter one [solid line in Fig. 2(c)] yields the activation energy Ea = 140.8kB ≈ 

4.3kBT0, and the Vogle-Fulcher temperature T0 ≈ 32.8 K. T0 can be treated as a measure of the 
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coupling between the interacting magnetic clusters.
 [17]

 T0   Ea/kB indicates a weak coupling 

whereas T0   Ea/kB suggests a strong one. For Tb117Fe52Ge112, T0 ≈ 0.23Ea/kB, implies a 

moderate interaction between the magnetic clusters.  Moreover, the Tholence criterion
 [18]

 of 

Tb117Fe54.7Ge112, δTTh = (Tf -T0)/Tf ≈ 0.17, is an order of magnitude higher than those of 

canonical SG systems such as CuMn (≈0.07), but comparable to those observed in cluster 

glasses (e.g. La0.5Sr0.5CoO3 ≈0.25)
 [19]

.  Taken together, all the above evidences support the 

cluster glass nature of Tb117Fe54.7Ge112 system. 

To further investigate the SG behavior, we have measured the long-time relaxation of the 

magnetization. Figure 3(a) shows the isothermal normalized remanent magnetization 

M(t)/M(t= 0) curves at 5, 15, 30 and 40 K.  The measurements were carried out by first zero 

field cooling the sample from 200 K to the desired temperature, then setting the field to 500 

Oe for 1000 seconds before switching it off . The results show that the decay of M(t) at  5 to 

30 K is slow and can be represented by a logarithmic time dependence
 [20]

: M(t)=M0 – S 

ln(t+t0), typically observed in metallic spin glasses.  The resultant three fitting parameters are: 

M0 = 0.0833, 0.412, and 0.434 emu/g, and S = 0.0038, 0.036, and 0.031emu/g for 5, 15 and 

30 K, respectively. The remanent magnetization at 40 K, which is in PM state, is very small 

and constant in time.   

Inset of Figure 3(b) shows the selected M(H) loops measured at different temperatures after 

zero-field cooling. Both remanent magnetization MR and coercive field HC obtained from the 

M(H) plots decrease as the temperature increases and become almost negligible above 

freezing temperature, as shown in Fig. 3.  The temperature dependence of MR and HC values 

are consistent with that observed in a conventional spin glass system. 
[21-22]

The high HC in the 

spin glass state probably results from the frustration of the spin clusters with short range 
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AFM, as observed in Pr117Co54.5Sn115.2. It is noteworthy to point out that the magnetization 

does not show any tendency to saturation, even in a 70 kOe magnetic field. 

The heat capacity C(T) curve of Tb117Fe54.7Ge112 measured at zero magnetic field is further 

evidence for the existence of the spin glass state. It is clear that there is no anomaly 

associated with magnetic phase transition observed in the C(T) curve at ~40 K, suggesting no 

long-range magnetic ordering near Tf  in Tb117Fe54.7Ge112. The first derivative of the heat 

capacity with respect to temperature (inset of Fig. 4) exhibits a broad peak around ~40 K, 

indicating a weak contribution from the magnetic cluster state to the heat capacity. 

Furthermore, the large Sommerfeld coefficient value of 109 (mJ (mole-Tb)
-1 

K
-2

), which was 

determined from the C/T vs. T
2
 plot, probably originated from cluster glass freezing, and is 

usually observed in NMAD spin glasses.  

Two necessary conditions for formation of a SG state are the existence of randomness and 

frustration.  Interestingly, as determined from the single crystal x-ray analysis, the level of 

disorder of Tb117Fe54.7Ge112 does not provide enough randomness for the formation of the SG 

state, which is different from Pr117Co54.5Sn115.2 possessing an extensive structural disorder. 

Therefore, we propose that the mechanism of the SG state in Tb117Fe54.7Ge112 originates from 

the large and complex unit cell containing eight symmetrically independent Tb positions 

resulting in competing interactions. Recently, spin glass behavior was also observed in 

another compound Tb30Ru6.0Sn29.5, a highly complex unit cell presenting low level of 

disorder.
 [23]

  

In summary, the temperature, field and frequency dependent dc and ac magnetic 

measurements clearly demonstrate the existence of spin glass phase transition at ~38 K. The 

frequency dependence of the freezing temperature fits well with the critical slowing down 
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model and the Vogel-Fulcher law, indicating the formation of a cluster glass in 

Tb117Fe52Ge112. The occurrence of a de Almedia-Thouless phase line, the stretched 

exponential relaxation of remanence and the absence of anomaly near Tf in C(T) data also 

corroborate the glass nature of Tb117Fe54.7Ge112. We believe these behaviors originate from 

the presence of multiple non-equilibrium sites occupied by R atoms, which leads to 

competing magnetic interactions between Tb atoms, which is different from mechanisms of 

traditional spin glass systems. Therefore, the spin glass behavior observed in  

Tb117Fe54.7Ge112 further broadens the classification of spin glass materials. 

9.2.5 Acknowledgements 

This work was supported by the Office of Basic Energy Science, Division of Materials 

Sciences and Engineering of the U. S. Department of Energy under Contract No. DE-AC02-

07CH11358 with Iowa State University.   

9.2.6 References 

 

[1] J. Liu, Y. Mudryk, J. D. Zou, V. K. Pecharsky, K. A. Gschneidner, Jr., submitted. 

 

[2] V. K. Pecharsky, O. I. Bodak, V. K. Bel'skii, P. K. Starodub, I. R. Mokra, E. I.  

Gladyshevskii, Kristallografiya, 1987, 32, 334 (in Russian). 

 

[3] P. Salamakha, O. Sologub, G. Bocelli, S. Otani, T. Takabatake, J. Alloys Compd. 2001, 

314, 177. 

 

[4] D. X. Li, S. Nimori, Y. Shiokawa, Y. Haga, E. Yamamoto,Y. Onuki, Phys. Rev. B 2003, 

68, 172405. 

 

[5] J. R. L. de Almeida, D. J. Thouless, J. Phys. A 1978, 11, 983. 

 

[6] J. A. Mydosh, Spin Glasses: An Experimental Introduction Taylor & Francis, London, 

1993. 

 

[7] S. Süllow, G. J. Nieuwenhuys, A. A. Menovsky, J. A. Mydosh, S. A. M. Mentink, T. E. 
Mason, and W. J. L. Buyers, Phys. Rev. Lett. 1997, 78, 354. 

 



197 

 

[8] D. X. Li, Y. Shiokawa, Y. Haga, E. Yamamoto, Y. Onuki, J. Phys. Soc. Jpn. 2002, 71, 

418. 

 

[9] T. Nishioka, Y. Tabata, T. Taniguchi, Y. Miyako, J. Phys. Soc. Jpn. 2000, 69, 1012 

(2000) 

 

[10] P. C. Hohenberg, B. I. Halperin, Rev. Mod. Phys.1977, 49, 435. 

 

[11] H. Vogel, Phys. Z. 1921, 22, 645. 

[12] G. S. Fulcher, J. Am. Ceram. Soc. 1925, 8, 339. 

[13] J. L. Tholence, Solid State Commun. 1980, 35, 113. 

[14] J. Souletie and J. L. Tholence, Phys. Rev. B 1985, 32, 516(R). 

[15] D. Li, S. Nimori, T. Yamamura, and Y. Shiokawa, J. Appl. Phys. 2008, 103, 07B715. 

[16] K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lundgren, H. Aruga, A. Ito, Phys. Rev. 

Lett.1988, 61, 754. 

 

[17] S. Shtrikman, E. P. Wohlfarth, Phys. Lett. A 1981, 85, 467. 

[18] J. L. Tholence, Phys. B 1984, 126, 157. 

[19] S. Mukherjee, R. Ranganathan, P. S. Anilkumar, P. A. Joy, Phys. Rev. B 1996, 54, 9267. 

[20] D. X. Li, T. Yamamura, S. Nimori, K. Yubuta, Y. Shiokawa, Appl. Phys. Lett. 2005, 87, 

142505. 

 

[21] I. A. Campbell, S. Senoussi, F. Varret, J. Teillet, A. Hamzić, Phys. Rev. Lett. 1983, 50, 

1615. 

 

[22] J. Dho, W. S. Kim, N. H. Hur, Phys. Rev. Lett. 2002, 89, 027202. 
 

[23] D. C. Schmitt, J. C. Prestigiacomo, P. W. Adams, D. P. Young, S. Stadler, J. Y. Chan, 

Appl. Phys. Lett. 2013, 103, 082403. 

 

 

 

 



198 

 

Appendix III. Summary of failed experiments 

1. Co-Zn systems 

Loading Composition Synthesis Process Results Series number 

Co15.46Zn85.54 

(Co2Zn11) 

1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

-brass Wei012; 077 

Co18Zn82 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

-brass Wei274 

Co20Zn80 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

-brass Wei273 

Co25Zn75 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

-brass Wei004 

Co30Zn70 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

-brass Wei005 

Co32.5Zn67.5 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

-brass + -Mn Wei017 

Co33.5Zn66.5 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-brass + -Mn Wei018; 020 

Co35Zn65 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-brass + -Mn Wei019 

Co40Zn60 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-brass + -Mn Wei001; 021; 201 

Co45Zn55 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-brass + -Mn Wei118 

Co50Zn50 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-Mn Wei002; 202 
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Continued 

Co55Zn45 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-Mn Wei117; 121 

Co60Zn40 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-Mn + Co particle Wei003; 203 

Co65Zn35 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 925 °C, 

anneal for 3 d. Quench. 

-Mn + Co particle Wei116 

2. Co-Zn-M systems to explore -Mn structure 

Loading Composition Synthesis Process Results Series number 

Co35Zn60Ru5 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-brass + -Mn 

without Ru 

Wei029 

Co36Zn60Ru4 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-brass + -Mn 

without Ru 

Wei030 

Co37Zn60Ru3 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-brass + -Mn 

without Ru 

Wei031 

(CoZn)95Ru5 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-Mn  Wei035 

(CoZn)90Ru10 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-Mn + impurity Wei036 

(CoZn)85Ru15 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-Mn + impurity Wei037 

(CoZn)80Ru20 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-Mn + impurity Wei038 

(CoZn)75Ru25 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-Mn + impurity Wei039 
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Continued 

Mg50Ru50 1 °C/min to 1025 °C, 1025 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-brass + -Mn Wei040 

Mg60Ru40 1 °C/min to 1025 °C, 1025 °C 

for 12hrs, 1°C/min to 900 °C, 

anneal for 3 d. Cool slowly 

-Mn Wei041 

Rh2Zn3 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

-brass Wei042 

RhZn 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

-brass Wei043 

Rh3Zn2 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

-brass Wei044 

Rh2Zn11 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

-brass Wei045 

Rh1Zn3 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

-brass Wei046 

Co1Zn3Mg2 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

 Wei049 

Co2Zn2Mg2 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

 Wei050 

Co3Zn1Mg2 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

 Wei051 

Co2Zn1Mg2 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

 Wei052 

Co40Mg60 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

Laves phase Wei032 
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Co50Mg50 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

Laves phase Wei033  

Co60Mg40 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

Laves phase Wei034 

 

Ru40Zn60 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

RuZn Wei022 

Ru50Zn50 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

RuZn Wei023 

Ru60Zn40 1 °C/min to 1000 °C, 1000 °C 

for 12hrs, 1°C/min to 800 °C, 

anneal for 3 d. Cool slowly 

RuZn Wei024 

3. Exploring semi-conductors for thermoelectric materials  

Loading Composition Synthesis Process Results Series number 

RhSbGa 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 400 °C, 

anneal for 3 d. Cool slowly 

RhSb3 Wei053 

RhSbGa2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 400 °C, 

anneal for 3 d. Cool slowly 

RhSb3 Wei054 

RhSb2Ga4 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 400 °C, 

anneal for 3 d. Cool slowly 

RhSb3 Wei055 

CoMoSb2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei056 

FeMoSb2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei057 

NiMoSb2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei058 
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ZnMoSb 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei059 

ZnMoSb2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei060 

ZnMoSb4 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei061 

Ni3MoSb12 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei062 

Cu3MoSb12 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei063 

ZnMoSb6 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Sb7 Wei064 

GaNbSb6 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

 Wei065 

MoGeTe 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Te4 Wei066 

Mo2GeTe 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Mo3Te4 Wei067 

CoGeSn 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Co2Sn Wei068 

Co2GeSn 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 500 °C, 

anneal for 3 d. Cool slowly 

Co2Sn Wei069 

CrSn6Zn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

ductile Wei070 
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CrSn2Zn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

ductile Wei071 

CrSnZn4 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

ductile Wei072 

CrSn2Zn6 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Ductile + several 

crystals 

Wei073 

CrSnZn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

ductile Wei074 

FeSn6Zn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei078 

Fe3Sn1Zn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

a=b=c=18.137Å Wei079 

FeSnZn4 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei080 

Fe1Sn2Zn6 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei081 

FeSnZn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

a=b=c=18.208Å Wei082 

4. Complex intermetallic materials  

Loading Composition Synthesis Process Results Series number 

Cr224Sn192Zn560 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Cr22Sn24Zn72 Wei083 

Ru224Sn192Zn560 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

C2/m Wei084 
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Fe224Sn192Zn560 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei085 

CrBi2Zn6 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Ductile Wei086 

MoBi2Zn6 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Ductile Wei087 

FeBi2Zn6 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Ductile Wei088 

RuBi2Zn6 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Ductile Wei089 

CrInZn2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Ductile Wei090 

MoInZn2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei091 

FeInZn2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei092 

RuInZn2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei093 

MnSnZn2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei094 

MnInZn2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei095 

MnBiZn2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei096 
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Ru1.11Sn1.95Zn1.69 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei097 

Mo7Sn12Zn40 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei098 

Ru4Sn3Zn12 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

Co2Sn Wei103 

CuCrSb 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei105 

CuCrSb2 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei106 

Cu3Cr2Sb3 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei107 

Cu2Cr5Sb3 1 °C/min to 850 °C, 850 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei107 

5. Exploring Zn-based compounds 

Loading Composition Synthesis Process Results Series number 

Co2Zn2Al 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei109 

Co2Zn1Al2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei110 

Co2Zn2In 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei111 

Co2Zn1In2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei112 
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CrCuSn 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei113 

CrRuSn 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei114 

CrCoSn 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei115 

6. -brass investigation 

Loading Composition Synthesis Process Results Series number 

Co2Ag4Zn7 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei122 

Co2Au4Zn7 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei123 

Co2Pd2Zn9 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei124 

Co2Pd1Zn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei125 

Co1Pd4Zn8 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei126 

Co2Pd3Zn8 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei127 

Co3Pd2Zn8 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei128 

Co4Pd1Zn8 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei129 
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Co3Pd2Zn8 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei130 

Co2Pd2Zn9 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei131 

Co2Pd3Zn8 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei132 

Co1Pd1Zn11 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei134 

Co1Pd2Zn10 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei135 

Co1.5Pd1.5Zn10 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei136 

Co2Pd1Zn10 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei137 

Co1Pd1Zn3 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei138 

Co1Pd2Zn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei139 

Co2Pd1Zn2 1 °C/min to 800 °C, 800 °C for 

12hrs, 1°C/min to 600 °C, 

anneal for 3 d. Cool slowly 

 Wei140 

 


