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ABSTRACT 

 

This thesis describes the synthesis of a new class of mixed monoanionic 

cyclopentadienyl-bis(oxazoline) ligands and synthesis of new metal complexes.  Two achiral 

ligands were synthesized: H3CC(C5H5)(OxMe2)2 (H{BoMCp}; OxMe2 = 4,4-dimethyl-2-

oxazoline) and H3CC(C5HMe4)(OxMe2)2 (H{BoMCptet}). The chiral analogs were also 

prepared, H3CC(C5H5)(OxiPr)2 (H{BoPCp}, OxiPr = 4S-isopropyl-2-oxazoline) and 

H3CC(C5HMe4)(OxiPr)2 (H{BoPCptet}). These ligands support a wide variety of metals, 

including magnesium, zinc, titanium, and zirconium. {BoMCp}MgCH3, {BoMCptet}MgCH3, 

{BoPCp}MgCH3, and {BoPCptet}MgCH3 show excellent reactivity for catalyzing the 

hydroboration of ketones using pinacolborane. {BoMCp}Zr(NMe2)3, {BoMCp}MgCH3, and 

{BoMCptet}MgCH3 are also efficient catalysts for the hydroamination of aminoalkenes. This 

thesis also describes the catalytic reduction of amides to amines using pinacolborane as the 

reductant and catalytic amounts of [Mg]. ToMMgMe (ToM = tris(4,4-dimethyl-

oxazolinyl)phenylborate is found to show excellent catalytic activity for the reduction of 

secondary and tertiary amides. Last, pyrene is functionalized with tertiary amine groups 

following a simple synthetic route from commercially available pyrene precursors. These 

pyrene compounds, including N-ethyl-N-(pyren-4-ylmethyl)ethanamine, N,N-diethyl-4-

(pyren-4-yl)butanamine, and N,N-bis(pyren-4-ylmethyl)ethanamine were prepared to be 

adsorbed onto multi-walled carbon nanotubes as a catalyst.   
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CHAPTER 1 

 

Introduction 

 

General Introduction 

 Magnesium is a metal of interest because it is largely abundant and economical. It is 

the eighth most abundant element in the Earth’s crust and the third most abundant element in 

Earth’s oceans.1 It is largely used as an alloying agent in industry, and also plays many 

important roles in the human body and in the function of many enzymes. Magnesium is well-

known in chemistry for its rich Grignard history as a stoichiometric reagent for C-C bond 

formation (eq. 1).1  

 

 In addition to being used in stoichiometric transformations, magnesium has gained 

attention as a metal for use in catalytic applications as a green, low-cost, low-toxicity 

alternative to more commonly used transition metal catalysts such as rhodium, platinum, and 

palladium, which cost up to $450 per gram. Magnesium metal, on the other hand, can be 

purchased for $0.14 per gram.  

 Our group is exploring the chemistry of magnesium, as well as other main group and 

transition metals to develop new catalysts for green chemistry. Several new ligands have 

been developed, including a new oxazoline-based monoanionic scorpionate ligand, tris(4,4-



2 

 

dimethyl-2-oxazolinyl)phenylborate [ToM], and the cyclopentadienyl-bis(oxazolinyl)borate 

ligand PhB(Ox)2(C5H5) (Fig. 1). 

 

 

Figure 1: ToM and PhB(Ox)2(C5H4) 

 

 ToM has supported a wide range of metals, including yttrium,2 zirconium,3 rhodium,4 

and magnesium.5 ToMMgMe catalyzes the reduction of ketones, aldehydes, and esters with 

pinacolborane as the reductant, as well as the Tischenko coupling of aldehydes.6 ToMZnH 

catalyzes the hydroboration and hydrosilylation of aldehydes and ketones. Our group has 

found that cyclopentadienyl-bis(oxazolinyl)borate ligands support many metals, including 

titanium, zirconium, hafnium, and yttrium.7 The oxazoline rings are easily varied to include 

stereogenic centers and a number of substituents, as shown in Figure 2. These compounds are 

excellent catalysts for the hydroamination of aminoalkenes, with enantioselectivities up to 

99%.  
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Figure 2: Highly efficient and selective system for hydroamination 

 

 This thesis is about the development of a new class of ligands similar to the 

previously described cyclopentadienyl-bis(oxazolinyl)borate ligands, in which the boron 

center is replaced with carbon. The synthesis of complexes containing these new ligands is 

described, as well as further stoichiometric and catalytic reactivity of these compounds, 

including the hydroamination of aminoalkenes. This thesis also describes further catalytic 

reactivity of ToMMgMe as a catalyst for amide reduction to amines using pinacolborane as 

the reductant.  

 

Thesis Organization 

 This thesis contains five chapters. Chapter 1 is a general introduction to the chemistry 

described in the thesis. Chapters 2-4 describe research that has not been submitted for 

publication at this time. Chapter 5 is a general conclusion for the thesis. 

 Chapter 2 describes the synthesis of new mixed monoanionic cyclopentadienyl-

bis(oxazoline) ligands. Mg, Zn, Ti, and Zr compounds are prepared, and catalytic activity for 

hydroboration of ketones and esters as well as hydroamination of aminoalkenes is observed. 
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 Chapter 3 describes the catalytic hydroboration reduction of amides to amines using 

pinacolborane as the reductant and Mg complexes as the catalyst. ToMMgMe is found to be 

the best catalyst for the reduction of secondary and tertiary amides to amines.  

 Chapter 4 describes the preparation of functionalized pyrene compounds for the 

adsorption onto multi-walled carbon nanotubes. Various conditions for coronene 

functionalization are also screened. 

 Chapter 5 is a general conclusion for the thesis. 
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Abstract 

A new class of mixed monoanionic cyclopentadienyl bis(oxazoline) ligands has been 

prepared. Two achiral ligands were synthesized: H3CC(C5H5)(OxMe2)2 (H{BoMCp}; OxMe2 = 

4,4-dimethyl-2-oxazoline) and H3CC(C5HMe4)(OxMe2)2 (H{BoMCptet}). The chiral analogs 

were also prepared, H3CC(C5H5)(OxiPr)2 (H{BoPCp}, OxiPr = 4S-isopropyl-2-oxazoline) and 

H3CC(C5HMe4)(OxiPr)2 (H{BoPCptet}). These ligands support a wide variety of metal 

compounds. H{BoMCp} reacts with Zr(NMe2)4 to give {BoMCp}Zr(NMe2)3 with the 

elimination of dimethylamine. H{BoMCp} reacts with thallium ethoxide in diethyl ether to 

give the thallium salt, Tl{BoMCp}. H{BoMCptet} reacts with thallium ethoxide in THF to 

form the thallium salt, Tl{BoMCptet}. Tl{BoMCp} and Tl{BoMCptet} react with TiCl3(THF)3 

to give {BoMCp}TiCl2 and {BoMCptet}TiCl2. The four ligands also react with 

Mg(CH3)2(dioxane)2 to give the magnesium methyl complexes {BoMCp}MgCH3, 

{BoMCptet}MgCH3, {BoPCp}MgCH3, and {BoPCptet}MgCH3. These magnesium compounds 

are excellent catalysts for the hydroboration of ketones and esters using pinacolborane. 

{BoMCp}Zr(NMe2)3, {BoMCp}MgCH3, and {BoMCptet}MgCH3 are also efficient catalysts 

for the hydroamination of aminoalkenes.  
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§ Other authors’ contributions 

Naresh Eedugurala: Characterization of {BoMCp}Zr(NMe2)3 and its 

hydroamination reactions. Obtained X-ray quality crystals of {BoMCp}Zr(NMe2)3. 

Collaborated on synthesis of H{BoPCp}. 

Barun Jana: Collaborated on synthesis and characterization of H{BoMCptet}. First 

hydroamination reactions using BoMCpMgMe. 

Hung-An Ho: First to make H{BoMCp} and BoMCpZr(NMe2)3. 

Introduction 

Cyclopentadiene has been used as a very effective ligand with many metal 

complexes. Bent-metallocene “sandwich” complexes, with two cyclopentadiene rings bound 

to the metal center, have shown excellent catalytic abilities and application in synthesis. For 

example, zirconocene dichloride is an excellent Ziegler-Natta olefin polymerization catalyst, 

and Tebbe’s reagent is used as a methylene transfer reagent (Fig. 1).  

 

 

Figure 1: Examples of bent-metallocene complexes 

 

More recently, several mono-Cp-metal complexes have shown excellent catalytic 

activity. Mono-Cp scandium complexes are active polymerization catalysts for ethylene as 

well as the ring-opening polymerization of ɛ-caprolactone (Fig. 2). 1,2  Sundermeyer’s mono-

Cp rare earth metal catalysts are active for hydroamination.3 
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Figure 2: Catalysts containing cyclopentadiene 

 

 Recently, our group has reported several compounds that are highly active for 

hydroamination using cyclopentadienyl-bis(oxazolinyl)borate ligands (Fig. 3). 4 Stereogenic 

centers are easily introduced in the oxazoline rings, leading to catalysts with extremely high 

enantioselectivity (up to 99% ee) in hydroamination of aminoalkenes. 

 

 

Figure 3: Highly efficient and selective system for hydroamination 

 

Small changes in the structure of these ligands had large effects on reactivity. For 

example, the OxMe2-based ligand gives a zirconium catalyst that is active at room temperature 

and can cycle the unsubstituted aminopentene. The OxiPr,Me2-based ligand is highly reactive 

and operates even at ‒30 °C, but cannot cyclize the parent aminoalkene. We wanted to study 

the effect of replacing the boron ligand center with carbon on the catalytic activity of these 
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compounds. Here we describe the synthesis and reactivity of mono-anionic cyclopentadienyl-

bis(oxazoline) ligands with carbon centers instead of boron. 

 

Results and Discussion 

1. Synthesis and characterization of mixed monoanionic cyclopentadienyl bis(oxazoline) 

ligands 

Cyclopentadienyliodide, C5H5I, is synthesized from thallium cyclopentadienide and 

iodine in benzene at low temperature. 5 Tetramethylcyclopentadienyliodide, C5HMe4I, is 

synthesized from lithium cyclopentadienide and iodine in pentane at low temperature. 6 These 

compounds are not isolated due to their instability at room temperature. Instead, they are 

prepared and used in situ. The compounds H3CC(C5H5)(OxMe2)2 (1) (H{BoMCp}, OxMe2 = 

4,4-dimethyl-2-oxazoline) and H3CC(C5HMe4)(OxMe2)2 (2) (H{BoMCptet}) are synthesized 

from Li[H3CC(OxMe2)2] and C5HR4I (R = H, Me) and are purified by silica gel 

chromatography (Scheme 1). 

 

 

Scheme 1: Synthesis of H{BoMCp} and H{BoMCptet} 

 

H{BoMCp} is obtained as a brown oil after chromatography and is a mixture of two 

isomers as indicated by 1H and 13C NMR spectroscopy. H{BoMCp} has an infrared C=N 
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stretching frequency of 1656 cm-1. H{BoMCptet} is isolated as a white solid after 

chromatography and is isolated as only one isomer. H{BoMCptet} has two infrared C=N 

stretching frequencies at 1661 and 1640 cm-1, which is suprising. Only one oxazoline C=N 

stretching frequency is expected. X-ray-quality crystals of H{BoMCptet} were obtained from 

a pentane solution of H{BoMCptet} at ‒30 °C (Fig. 4).  

 

Figure 4: ORTEP diagram of H{BoMCptet} 

 

The thallium salts, Tl{BoMCp} (3) and Tl{BoMCptet} (4), are synthesized from 

thallium ethoxide and H{BoMCp} or H{BoMCptet} in solutions of diethyl ether or THF, 

respectively (Scheme 2).  
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Scheme 2: Preparation of Tl{BoMCp} and Tl{BoMCptet} 

 

Interestingly, H{BoMCp} reacts readily with thallium ethoxide at room temperature 

within 30 minutes. H{BoMCptet} reacts much more slowly. Tl{BoMCp} has an infrared C=N 

stretching frequency at 1647 cm-1. Similar to H{BoMCptet}, Tl{BoMCptet} has two C=N 

stretching frequencies at 1654 and 1637 cm-1.  

The optically-active compounds H3CC(C5H5)(OxiPr)2 (5) (H{BoPCp}, OxiPr = 4S-

isopropyl-2-oxazoline) and H3CC(C5HMe4)(OxiPr)2 (6) (H{BoPCptet}) are synthesized in a 

similar manner as H{BoMCp} and H{BoMCptet} from Li[H3CC(OxiPr)2] and C5HR4I (R = H, 

Me) and are purified by silica gel chromatography (Scheme 3). 
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Scheme 3: Synthesis of H{BoPCp} and H{BoPCptet} 

 

2. Synthesis and characterization of cyclopentadienyl bis(oxazolinyl) metal complexes 

H{BoMCp} or H{BoMCptet} reacts with Mg(CH3)2(dioxane)2 to give the magnesium 

methyl complexes {BoMCp}MgCH3 (7) and {BoMCptet}MgCH3 (8) (eq. 1). The chiral 

analogs, {BoPCp}MgCH3 (9) and {BoPCptet}MgCH3 (10) were prepared in a similar manner. 

These compounds are isolated as off-white solids and are stored at ‒30 °C to avoid thermal 

decomposition. 

 

The magnesium-methyl resonances are observed in the 1H NMR spectra as broad 

singlets at –1 ppm. Only one infrared C=N stretch at 1658 cm-1 for {BoMCp}MgCH3
 and 

1658 cm-1 for {BoMCptet}MgCH3 was observed, which is similar to the stretching frequencies 

observed for the free ligand. A single-crystal X-ray diffraction study of {BoMCptet}MgCH3 

show the compound crystallized as a dimer with only one oxazoline donor coordinating per 

magnesium center and bridging methyl groups between the two magnesium centers (Fig. 5). 
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Figure 5: ORTEP diagram of {BoMCptet}MgCH3 

 

{BoMCptet}MgCH3 reacts with Lewis acid B(C6F5)3 in benzene in 10 minutes to form 

{BoMCptet}MgCH3B(C6F5)3, which is insoluble in benzene but can be redissolved in CD2Cl2. 

The product has an 11B NMR peak at ‒15 ppm, indicative of forming the borate 

[H3C‒B(C6F5)3]. No further reaction occurs upon addition of phenyl silane. Interestingly, 

partial (C6F5) transfer from B(C6F5)3 to Mg is observed when {BoMCptet}MgCH3 is reacted 

with B(C6F5)3 in methylene chloride. A mixture of {BoMCptet}MgCH3B(C6F5)3 and 

{BoMCptet}Mg(C6F5) is observed by 1H NMR, along with the formation of BMe3, which is 

observed in the 11B NMR spectrum at +86 ppm. 

H{BoMCptet} coordinates ZnMe2 at room temperature in benzene-d6 in 1 hour to form 

H{BoMCptet}ZnMe2. Upon heating at 60 °C for 1 day, {BoMCptet}ZnMe does not form. 

Contrastingly, H{BoMCptet} reacts with ZnEt2 to form {BoMCptet}ZnEt after heating at 60 °C 

for 20 h in benzene-d6 (Scheme 4).  
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Scheme 4: Reactions of H{BoMCptet} with ZnMe2 and ZnEt2 

 

X-ray-quality crystals of  H{BoMCptet}ZnMe2 were obtained from a toluene solution 

at ‒30 °C, as shown in Figure 6. The structure shows two oxazoline rings coordinated to the 

zinc center, while the cyclopentadienyl ring does not coordinate to zinc.  

 

Figure 6: ORTEP diagram of H{BoMCptet}ZnMe2 
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X-ray-quality crystals of {BoMCptet}ZnEt were obtained from a toluene solution at 

‒30 °C, as shown in figure 7. The structure shows the cyclopentadienyl ring coordinated to 

zinc. One oxazoline coordinates to the zinc center, while the other oxazoline ring remains 

uncoordinated.  

 

Figure 7: ORTEP diagram of BoMCptetZnEt 

 

Group 4 titanium compounds are prepared from benzene solutions of Tl{BoMCp} or 

Tl{BoMCptet} and TiCl3(THF)3 to form {BoMCp}TiCl2 (11) and {BoMCptet}TiCl2 (12) as 

green solids (eq. 2). The 1H NMR spectrum of each shows extremely broad, uninterpretable 

resonances because both compounds are Ti(III) and are paramagnetic. 
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X-ray-quality crystals of {BoMCp}TiCl2 were obtained from a toluene/pentane 

solution at ‒30 °C (Fig. 8). The X-ray crystal structure shows the compound crystallized as a 

dimer with two chlorine atoms bridging between two titanium centers. The crystal structure 

shows only one oxazoline ring coordinating per titanium center, which is also supported by 

the two infrared C=N stretching frequencies observed at 1635 and 1662 cm-1.  

Figure 8: ORTEP diagram of {BoMCp}TiCl2 

 

The infrared spectrum of {BoMCptet}TiCl2 shows C=N stretching frequencies at 1661 

and 1641 cm-1 which suggests that only one oxazoline ring coordinates to titanium, as is seen 

in {BoMCp}TiCl2. One unpaired electron was observed for each compound using Evan’s 

method, confirming the Ti(III) d1 configuration.  
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We were interested in trying to reduce these titanium compounds in the presence of 

dinitrogen to see if we could nitrogen activation would occur. Reductions of {BoMCp}TiCl2 

and {BoMCptet}TiCl2 were attempted using sodium mercury amalgam in toluene or THF, but 

in all cases the solutions went from green in color to black and the resulting product was not 

able to be characterized or crystallized. Addition of PMe3 during the reduction produced the 

same result.  

Alkylation attempts of {BoMCp}TiCl2 and {BoMCptet}TiCl2 were also challenging. 

Addition of two equivalents of methyl lithium or EtMgBr to cooled solutions of 

{BoMCp}TiCl2 and {BoMCptet}TiCl2 immediately resulted in a black solution and the product 

was not able to be characterized. However, addition of two equivalents of neopentyl lithium 

in diethyl ether at ‒30 °C resulted in dark red solutions that were presumably 

{BoMCp}Ti(CH2
tBu)2 and {BoMCptet}Ti(CH2

tBu)2, but rapidly decomposed over 10-15 

minutes at  ‒30 °C to a black solution. To avoid decomposition, silver triflate was added 

immediately upon formation of the red solutions, which immediately reacted to give yellow 

solutions that were isolated as yellow solids. The 1H NMR showed these compounds were 

diamagnetic and were possibly the titanium alkylidenes, {BoMCp}Ti(=CHtBu)(OTf) and 

{BoMCptet}Ti(=CHtBu)(OTf). The 1H NMR spectrum of the reaction with {BoMCp}TiCl2 

shows a peak that could correspond to the [Ti](=CHtBu)(OTf) at 4.52 ppm, and the reaction 

with {BoMCptet}TiCl2 shows a peak at 4.81 that could correspond to [Ti](=CHtBu)(OTf).  

However, pure compounds were not isolated and crystals were not obtained to confirm the 

structure. 

{BoMCptet}TiCl2 reacts with one equivalent of sodium azide at room temperature in 

THF over the course of four hours to give a red/orange product. The IR spectrum of the 
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product shows an azide stretching frequency at 2071 cm-1, but crystals were not obtained to 

confirm the structure. Interestingly, {BoMCp}TiCl2 does not react with sodium azide; upon 

heating at 60 °C the starting material slowly decomposes to free ligand. 

Reactions with ZrCl4 and HfCl4 were unsuccessful. H{BoMCp} and H{BoMCptet} do 

not react with ZrCl4 or HfCl4 in benzene or THF at temperatures up to 120 °C. Tl{BoMCp} 

and Tl{BoMCptet} react with ZrCl4 and HfCl4 in benzene-d6, but multiple products are 

obtained and a pure compound was not able to be isolated. When Tl{BoMCp} was refluxed 

with ZrCl4 in benzene for 7 hours, the 1H NMR spectrum showed many unidentifiable peaks, 

including a peak at 11.93 ppm that could not be identified. K{BoMCp} and K{BoMCptet} 

were generated in situ from H{BoMCp} or H{BoMCptet} and KBn in THF at room 

temperature in 12 hours, but when ZrCl4 or HfCl4 were added, a pure product was not 

formed. 

Tl{BoMCp} and Tl{BoMCptet} react with Zr(CH2Ph)4 in benzene at room temperature 

over the course of 10 minutes or 22 hours, respectively, to give {BoMCp}Zr(CH2Ph)3 (13) 

and {BoMCptet}Zr(CH2Ph)3 (14) as orange solids. The byproduct, thallium benzyl, was not 

observed. Instead, the decomposition products bibenzyl and thallium metal are observed as 

byproducts of the reaction.  

  

H{BoMCp} and H{BoMCptet} can also react with Zr(CH2Ph)4 to give 

{BoMCp}Zr(CH2Ph)3 and {BoMCptet}Zr(CH2Ph)3 with the loss of toluene, but the reactions 
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must be heated at 60 °C for several hours to complete. {BoMCp}Zr(CH2Ph)3 and 

{BoMCptet}Zr(CH2Ph)3  are extremely light sensitive, similar to Zr(CH2Ph)4, and are stored at 

‒30 °C and are not exposed to light. 

The benzyl groups on zirconium can be substituted by amines. {BoMCp}Zr(CH2Ph)3 

reacts with “dbabh” at room temperature in 10 minutes to substitute one of the CH2Ph groups 

with the amine, and the loss of toluene is observed (eq. 4). 

 

{BoMCp}Zr(CH2Ph)3 reacts with 3 equivalents of benzyl amine in benzene-d6 at 

room temperature in 10 minutes to form {BoMCp}Zr(NHCH2Ph)3, but the solution must be 

pumped down immediately to isolate the product. {BoMCp}Zr(CH2Ph)3 reacts with 1 or 3 

equivalents of t-butyl amine in benzene-d6 at room temperature in 10 minutes to give a 

mixture of products that were not able to be separated. 

{BoMCp}Zr(CH2Ph)3 reacts with the Lewis acid B(C6F5)3 in benzene-d6 at room 

temperature in 10 minutes to give the borane abstraction product 

[{BoMCp}Zr(CH2Ph)2][PhCH2B(C6F5)3] (15) as a red oil that is insoluble in benzene but can 

be redissolved in bromobenzene (eq. 5).  
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{BoMCp}Zr(CH2Ph)3 reacts with 3 equivalents of trimethylsilyl iodide (TMSI) in  

benzene at 60 °C in 2 hours to form {BoMCp}ZrI3 (16) as a yellow solid (eq. 6).  

 

When LiTMDS is added to {BoMCp}ZrI3 in benzene-d6, no product formation is 

observed, only decomposition to unidentified products within 10 minutes at room 

temperature. When potassium graphite is added to attempt to reduce {BoMCp}ZrI3 in 

benzene-d6, the {BoMCp}ZrI3 starts to decompose over 4 hours and no color change 

indicative of reduction is observed. 

A zirconium amide compound was prepared from the reaction of Zr(NMe2)4 with 

H{BoMCp} in benzene at room temperature to form BoMCpZr(NMe2)3 (17) with the loss of 

dimethylamine (eq. 7). Surprisingly, H{BoMCptet} does not react with Zr(NMe2)4 in benzene 

or THF, even at temperatures up to 120 °C for two days in sealed flasks.  
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1H NMR spectroscopy shows formation of BoMCpZr(NMe2)3 at room temperature 

within 10 minutes. 1H NMR experiments at room temperature show equivalent oxazoline 

rings. However, in low temperature NMR experiments, the oxazoline rings become 

inequivalent, as shown by the 1H splitting pattern. Solution IR experiments show two C=N 

stretching frequencies at 1659 and 1641 cm-1, suggesting coordinating and non-coordinating 

oxazoline rings (Table 1). This data together suggests the oxazoline rings exchange.  

 

Table 1: IR spectroscopy data for {BoMCp}Zr(NMe2)3 

IR experiment C=N stretch (cm-1) 

Solution (toluene) 1659, 1641 

KBr (amorphous) 1646 

KBr (from crystals) 1657, 1636 

 

Interestingly, the IR spectrum of the amorphous solid in KBr has only one infrared 

C=N stretching frequency at 1646 cm-1. X-ray-quality crystals were obtained from a solution 

of {BoMCp}Zr(NMe2)3 in a mixture of toluene and pentane at ‒30 °C (Fig. 9). The crystal 

structure shows only one oxazoline ring coordinated to the zirconium center. This is 

confirmed by the two infrared C=N stretching frequencies from the isolated crystals at 1657 

and 1636 cm-1.  
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Figure 9: ORTEP diagram of {BoMCp}Zr(NMe2)3 

 

 

3. Catalytic hydroboration of ketones and esters using cyclopentadienyl bis(oxazolinyl) 

group 2 compounds 

{BoMCp}MgCH3, {BoMCptet}MgCH3, {BoPCp}MgCH3, and {BoPCptet}MgCH3 

catalyze the hydroboration of acetophenone and ethyl acetate using pinacol borane (HBpin) 

as the hydride source. Acetophenone reacts with one equivalent of HBpin in the presence of 

5 mol% {BoMCp}MgCH3 or {BoMCptet}MgCH3 in benzene-d6 at room temperature in 10 

minutes (eq. 8). 
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Ethyl acetate reacts with two equivalents of HBpin in the presence of 5 mol% 

{BoMCp}MgCH3 or {BoMCptet}MgCH3 in benzene-d6 at room temperature in 10 minutes to 

give the cleaved boryl ether product (eq. 9). Alkenes and alkynes do not react and are not 

reduced. 

 

 In comparison, ToMMgMe was previously found to reduce acetophenone with 

pinacolborane in benzene, but the reaction had to be heated to 60 °C for 2 hours to complete 

when using 5 mol% catalyst. The catalysts studied here reduce acetophenone at room 

temperature within 10 minutes.  

 {BoPCp}MgCH3 and {BoPCptet}MgCH3 also catalyze the reduction of acetophenone 

and ethyl acetate. To determine if the reaction was enantioselective, the boryl ether products 

from reductions of acetophenone catalyzed by {BoPCp}MgCH3 and {BoPCptet}MgCH3 were 

converted to the corresponding alcohols through an aqueous workup using NaOH.  GC and 

HPLC analysis of the alcohol products did not show any enantioselectivity, either due to the 

reaction not being enantioselective or the workup racemizing the products.  

 

4. Catalytic hydroamination/cyclization of aminoalkenes using cyclopentadienyl 

bis(oxazolinyl) group 2 and 4 compounds  
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The hydroamination and cyclization of aminoalkenes is performed catalytically using 

{BoMCp}MgCH3, {BoMCptet}MgCH3,
 and {BoMCp}Zr(NMe2)3 (Table 2). The use of 

{BoMCp}Zr(NMe2)3 in these reactions requires heating at 60 °C, while reactions run with 

{BoMCp}MgCH3 or {BoMCptet}MgCH3 go to completion quickly (< 2 h) at room 

temperature. The only product obtained in these reactions is the cyclized aminoalkene, as 

shown in equation 10. 

 

Table 2: Results of hydroamination of aminoalkenes 

Substrate to Product Precatalyst 

(10 mol%) 

Temp 

(°C) 

Time Conversion 

(%) 

 

 

{BoMCp}MgCH3 

 

{BoMCptet}MgCH3 

 

{BoMCp}Zr(NMe2)3 

25 

 

25 

 

25 

45 min 

 

1.5 h 

 

36 h 

>99 

 

>99 

 

>99 

 

 

{BoMCp}MgCH3 

 

{BoMCptet}MgCH3 

 

{BoMCp}Zr(NMe2)3 

25 

 

25 

 

25 

2 h 

 

2 h 

 

42 h 

>99 

 

>99 

 

>99 
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Table 2 continued     

 

 

{BoMCp}MgCH3 

 

{BoMCptet}MgCH3 

 

{BoMCp}Zr(NMe2)3 

25 

 

25 

 

- 

19 h 

 

1.5 h 

 

- 

21 

 

>99 

 

 

 

 

{BoMCp}MgCH3 

 

{BoMCptet}MgCH3 

 

{BoMCp}Zr(NMe2)3 

25 

 

80 

 

60 

- 

 

1.5 h 

 

12 h 

- 

 

50 

 

50 

 

 
 

{BoMCp}MgCH3 

 

{BoMCptet}MgCH3 

 

{BoMCp}Zr(NMe2)3 

80 

 

25 

 

- 

1.5 h 

 

2 h 

 

- 

25 

 

>99 

 

- 

 

Conclusions 

A new class of monoanionic cyclopentadienyl-bis(oxazoline) ligands has been prepared, 

including H{BoMCp}, H{BoMCptet}, H{BoPCp}, and H{BoPCptet}. These ligands support a 

wide variety of metal complexes, including Mg, Zn, Ti, and Zr compounds. 
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{BoMCp}MgCH3, {BoMCptet}MgCH3, {BoPCp}MgCH3, and {BoPCptet}MgCH3 show 

excellent reactivity for catalyzing the hydroboration of acetophenone and ethyl acetate using 

pinacolborane. {BoMCp}Zr(NMe2)3, {BoMCp}MgCH3, and {BoMCptet}MgCH3 are also 

efficient catalysts for the hydroamination of aminoalkenes. Further work should be done to 

determine the enantioselectivity of {BoPCp}MgCH3 and {BoPCptet}MgCH3 in hydroboration 

reactions to make chiral alcohols. Also, new ligands can be readily made by varying the R-

groups on the oxazoline rings or varying the backbone of the ligands. 

 

Experimental Section 

H{BoMCp} (1) A slurry of cyclopentadienylthallium (1.44 g, 5.35 mmol) and benzene (10 

mL) was prepared in a 100 mL Schlenk flask. The flask was fitted with an addition funnel, 

and the solution was cooled to 12 °C using a dioxane/dry ice bath. A solution of iodine (1.24 

g, 4.86 mmol) in benzene (50 mL) was added to the slurry in a dropwise fashion over 1.5 h 

while maintaining the temperature at 12 °C to form a cloudy yellow solution. LiCMe(OxMe2)2 

(1.12 g, 4.86 mmol) was dissolved in THF (20 mL) and was added to the 

cyclopentadienyliodide mixture via cannula. The solution was then warmed to room 

temperature and stirred overnight. The solution was filtered in air, and the solvent was 

evaporated on a rotovapor at 100 mTorr. The crude oily product was purified by silica gel 

chromatography in ethyl acetate to give a brown oil. The product was dried by dissolving in 

benzene and stirring with phosphorus pentoxide for 6 h. The solution was filtered and the 

solvent was removed under reduced pressure to provide brown, oily H{BoMCp} as two 

isomers (0.789 g, 2.753 mmol, 56.6%). 1H NMR (chloroform-d, 400 MHz, 25 °C): δ 

6.57‒6.29 (m, 4 H, HC5H4), 3.94 (m, 4 H, CNCMe2CH2O), 3.16 (s, 1 H, HC5H4), 1.78 (m, 3 
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H, backbone CH3), 1.28 (m, 12 H, CNCMe2CH2O). 13C{1H} NMR (chloroform-d, 

chloroform-d, 101 MHz, 25 °C): (both isomers observed) δ 166.32 (CNCMe2CH2O), 165.98 

(CNCMe2CH2O), 147.05 (HC5H4), 146.00 (HC5H4), 133.41 (HC5H4), 133.22 (HC5H4), 

132.85 (HC5H4), 131.72 (HC5H4), 129.26 (HC5H4), 127.94 (HC5H4), 79.51 (CNCMe2CH2O), 

67.29 (CNCMe2CH2O), 44.60 (backbone CCH3), 43.93 (backbone CCH3), 42.08 (sp3 

HC5H4), 41.25 (sp3 HC5H4), 28.21 (CNCMe2CH2O), 24.58 (backbone CCH3), 23.77 

(backbone CCH3). 
15N{1H} NMR (chloroform-d, 41 MHz, 25 °C): δ ‒135.05 

(CNCMe2CH2O). IR (KBr, cm-1): 2968 s, 2930 m, 2890 m, 1656 s (C=N), 1462 m, 1364 m, 

1286 m, 1249 w, 1193 m, 1084 m, 974 m, 933 w, 900 w, 732 w. Anal. Calcd for 

C17H24N2O2: C, 70.80; H, 8.39; N, 9.71. Found: C, 70.30; H, 8.78; N, 9.69.  

 

H{BoMCptet} (2) 500 mL Schlenk flask was charged with 2,3,4,5-

tetramethylcyclopentadienyllithium (1.12 g, 8.74 mmol). Dry pentane (400 mL) was added 

and the mixture was cooled to ‒78 °C. Solid iodine (2.21 g, 8.73 mmol) was added to the 

flask. The mixture was stirred at ‒78 °C for 8 h and was then warmed to ‒20 °C and stirred 

for 12 h until all LiC5Me4 reacted. Over the course of the reaction, the solution turned dark 

yellow with a white precipitate. Li[H3CC(OxMe2)2] (2.00 g, 8.73 mmol) was placed in a 100 

mL Schlenk flask and dissolved in THF (30 mL). The THF solution was added via cannula to 

the pentane mixture at ‒20 °C. The solution was warmed to room temperature and was 

stirred 8 h. The reaction mixture was then filtered in air, and the solvent was removed using a 

rotovapor. The crude oily product was purified by silica gel chromatography in ethyl acetate 

to give the product as a white solid (2.04 g, 5.90 mmol, 68%). The solid was dried by 

dissolving in benzene and stirring with phosphorous pentoxide for 6 h. Crystallization from 
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pentane at ‒35 °C gave X-ray quality crystals. 1H NMR (benzene-d6, 700 MHz, 25 °C): δ 

1.13 (s, 6 H, CNCMe2CH2O), 1.17 (s, 6 H, CNCMe2CH2O), 1.62 (s, 3 H, backbone CH3), 

1.70 (s, 6 H, C5HMe4), 1.95 (s, 6 H, C5HMe4), 3.65 (d, 2 H, 2JHH = 7.7 Hz, CNCMe2CH2O), 

3.75 (d, 2 H, 2JHH = 7.7 Hz, CNCMe2CH2O), 4.17 (s, 1 H, CHMe4). 
13C{1H} NMR (benzene-

d6, 400 MHz, 25 °C): δ 11.68 (C5HMe4), 14.2 (C5HMe4), 16.4 (backbone CH3), 28.1 

(CNCMe2CH2O), 29.1 (CNCMe2CH2O), 44.34 (backbone CH3), 59.79 (C5HMe4), 67.61 

(CNCMe2CH2O), 79.43 (CNCMe2CH2O), 134.4 (C5HMe4), 138.21 (C5HMe4), 166.87 170.0 

(CNCMe2CH2O); 15N{1H} NMR (benzene-d6, 700 MHz, 25 °C): δ ‒131.1 (CNCMe2CH2O). 

IR (KBr, cm-1): 615 w, 654 s, 733 w, 769 m, 852 m, 892 w, 926 m, 945 s, 975 s, 994 m, 1011 

m, 1036 m, 1068 m, 1094 m, 1170 m, 1195 m, 1253 m, 1301 m, 1346 m, 1363 m, 1376 s, 

1446 s, 1463 s, 1640 m (C=N), 1661 s (C=N), 2734 w, 2860 s, 2890 s, 2930 s, 2963 s, 3010 

m, 3287 w. Anal. Calcd for C21H32N2O2: C, 73.22; H, 9.36; N, 8.13. Found: C, 73.16; H, 

9.31; N, 8.12.  mp 109‒111 °C. 

 

Tl{BoMCp} (3). H{BoMCp} (0.375 g, 1.31 mmol) was placed in a vial in the glovebox and 

dissolved in diethyl ether. Thallium ethoxide (102 μL, 1.44 mmol) was added, and brown 

precipitate immediately formed. The solution was stirred at room temperature for 2 h. To 

isolate the product, the vial was centrifuged, and the solvent was removed by pipet. The solid 

was washed with pentane (3) and was then extracted with benzene, filtered, and dried under 

reduced pressure to give the product as a brown solid (0.537 g, 1.09 mmol, 83%). 1H NMR 

(chloroform-d, 400 MHz, 25 °C): δ 1.01 (s, 6 H, CNCMe2CH2O), 1.03 (s, 6 H, 

CNCMe2CH2O), 2.13 (s, 3 H, CH3), 3.60 (d, 2 H, 2J = 4.4, CNCMe2CH2O ), 3.65 (d, 2 H, 2J 

= 4.8, CNCMe2CH2O), 6.29 (s, 2 H, C5H4), 6.56 (s, 2 H, C5H4). 
13C{1H} NMR (chloroform-
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d, 101 MHz, 25 °C): δ 170.92 (CNCMe2CH2O), 124.13 (C5H4), 107.90 (C5H4), 107.52 

(C5H4), 80.13 (CNCMe2CH2O), 67.30 (CNCMe2CH2O), 44.20 (backbone CCH3), 28.46 

(CNCMe2CH2O), 28.38 (CNCMe2CH2O), 25.17 (backbone CCH3). 
15N{1H} NMR 

(chloroform-d, 41 MHz, 25 °C): δ ‒129.9 (CNCMe2CH2O). IR (KBr, cm-1): 3075 m, 2966 s, 

2930 m, 2887 s, 1647 s (C=N), 1463 m, 1383 w, 1365 m, 1349 w, 1276 m, 1248 m, 1200 m, 

1080 s, 1042 vw, 1028 w, 975 m. Anal. Calcd for C17H23N2O2Tl: C, 41.52; H, 4.71; N, 5.70. 

Found: C, 41.14; H, 4.61; N, 5.67. mp 168‒171 °C, dec. 

 

Tl{BoMCptet} (4) H{BoMCptet} (0.377 g, 1.09 mmol) was placed in a vial in the glovebox 

and dissolved in THF (10 mL) to give a light yellow solution. Thallium ethoxide (84.9 μL, 

1.20 mmol) was added, and the solution was stirred at room temperature for 10 days. The 

solvent was removed under reduced pressure, and the solid was washed with pentane (3) 

and was then extracted with benzene, filtered, and dried under reduced pressure to give the 

product as a green solid (0.512 g, 0.933 mmol, 85.5%). 1H NMR (benzene-d6, 600 MHz, 25 

°C): δ 3.64 (m, 4 H, CNCMe2CH2O), 2.37 (s, 6 H, C5Me4), 2.34 (s, 6 H, C5Me4), 2.21 (s, 3 H, 

backbone CH3), 1.11 (s, 6 H, CNCMe2CH2O), 1.10 (s, 6 H, CNCMe2CH2O). 13C{1H} NMR 

(benzene-d6, 700MHz): 11.14 (C5Me4), 12.63 (C5Me4), 26.31(backbone CMe), 27.29 

(CNCMe2CH2O), 28.42 (CNCMe2CH2O), 46.20(backbone CMe), 67.28 (CNCMe2CH2O), 

79.49 (CNCMe2CH2O), 114.38(C5Me4), 115.61(C5Me4), 170.0 (CNCMe2CH2O); 15N{1H} 

NMR (benzene-d6, 700MHz): ‒128.1 (CNCMe2CH2O). IR (KBr, cm-1): 2971 s, 2961 m, 

2923 m, 2889 m, 2855 m, 1654 m (C=N), 1637 s (C=N), 1457 w, 1381 m, 1362 w, 1343 w, 

1267 m, 1246 m, 1194 m, 1091 m, 1075 m, 1042 w, 993 m, 973 m, 936 w, 897 w. Anal. 
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Calcd for C21H31N2O2Tl: C, 46.04; H, 5.70; N, 5.11. Found: C, 46.21; H, 5.79; N, 5.06. mp 

164 °C (dec). 

 

H{BoPCp} (5) A slurry of cyclopentadienylthallium (0.653 g, 2.42 mmol) and benzene (10 

mL) was prepared in a 100 mL Schlenk flask. The flask was fitted with an addition funnel, 

and the solution was cooled to 12 °C using a dioxane/dry ice bath. A solution of iodine 

(0.560 g, 2.21 mmol) in benzene (30 mL) was added to the slurry in a dropwise fashion over 

1 h while maintaining the temperature at 12 °C to form a cloudy yellow solution. Meanwhile, 

HCMe(OxiPr)2 (0.556 g, 2.20 mmol) was dissolved in THF (10 mL) in a 100 mL Schlenk 

flask and was cooled to –78 °C. n-BuLi (2.5 M solution in hexane, 0.882 mL, 2.20 mmol) 

was added dropwise via a 10 mL glass syringe to form LiCMe(OxiPr)2. The solution was 

warmed to room temperature while stirring and remained colorless and clear. The solution of 

LiCMe(OxiPr)2 in THF was added to the solution of cyclopentadienyliodide in benzene at 12 

°C via cannula. The solution was then warmed to room temperature, sealed, and stirred at 

room temperature for 15 hours. The solution was then filtered, and the solvent was removed 

under reduced pressure using a rotovapor. The crude brown oil was purified using silica gel 

chromatography in ethyl acetate to give a brown oil. The product was dried by dissolving in 

benzene and stirring with phosphorus pentoxide for 6 h. The solution was filtered and the 

solvent was removed under reduced pressure to provide brown, oily H{BoPCp} as three 

isomers (0.355 g, 1.12 mmol, 50.9%). 1H NMR (benzene-d6, 600 MHz, 25 °C): 3 isomers 

observed δ 6.59 – 6.33 (m, 4 H, HC5H4), 4.46 (s, 1 H, HC5H4), 3.87 (m, 2 H, 

CNCH(CH(CH3)2)CH2O), 3.72 (m, 4 H, CNCH(CH(CH3)2)CH2O), 2.14 (s, backbone 
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CCH3), 2.08 (s, backbone CCH3), 2.00 (s, backbone CCH3), 1.56 (m, 2 H, 

CNCH(CH(CH3)2)CH2O), 0.91 –  0.71 (m, 12 H, CNCH(CH(CH3)2)CH2O). 

 

H{BoPCptet} (6) A 1 L Schlenk flask was charged with 2,3,4,5-

tetramethylcyclopentadienyllithium (0.504 g, 3.90 mmol). Dry pentane (300 mL) was added 

and the mixture was cooled to ‒78 °C. Solid iodine (0.991 g, 3.90 mmol) was added to the 

flask. The mixture was stirred at ‒78 °C for 12 h and was then warmed to ‒20 °C and stirred 

for 12 h until all LiC5Me4 reacted. Over the course of the reaction, the solution turned dark 

yellow with a white precipitate. Meanwhile, HCMe(OxiPr)2 (0.985 g, 3.91 mmol) was 

dissolved in THF (10 mL) in a 100 mL Schlenk flask and was cooled to –78 °C. n-BuLi (2.5 

M solution in hexane, 1.50 mL, 3.75 mmol) was added dropwise via a 10 mL glass syringe to 

form LiCMe(OxiPr)2. The solution was warmed to room temperature while stirring and 

remained colorless and clear. The solution of LiCMe(OxiPr)2 in THF was added via cannula 

to the pentane mixture at ‒20 °C. The solution was warmed to room temperature and was 

stirred 8 h. The reaction mixture was then filtered in air, and the solvent was removed using a 

rotovapor. The crude oily product was purified by silica gel chromatography in ethyl acetate 

to give the product as a yellow oil (0.568 g, 1.52 mmol, 39%). The solid was dried by 

dissolving in benzene and stirring with phosphorous pentoxide for 6 h. 1H NMR (benzene-d6, 

600 MHz, 25 °C): 2 isomers observed? δ 4.22 (s, 1 H, HC5Me4), 3.98 (m, 2 H, 

CNCH(CH(CH3)2)CH2O), 3.70 (m, 4 H, CNCH(CH(CH3)2)CH2O), 1.94 (s, backbone 

CCH3), 1.93 (s, backbone CCH3), 1.72 (s, 6 H, HC5Me4), 1.62 (s, 6 H, HC5Me4), 1.03 – 0.71 

(m, 12 H, CNCH(CH(CH3)2)CH2O). 
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{BoMCp}MgCH3 (7) H{BoMCp} (0.066 g, 0.230 mmol) was placed in a vial in the glovebox 

and dissolved in benzene (3 mL). Mg(CH3)2(dioxane)2 (0.049 g, 0.230 mmol) was added to 

the solution, and the solution was stirred at room temperature for 1.5 h. Gas formation was 

observed over the course of the reaction. The solution was then filtered and dried under 

reduced pressure to give a pink oil. The oil was washed with pentane (3) and dried under 

reduced pressure to give a white solid that was stored at ‒30 °C (0.051 g, 0.157 mmol, 

68.3%). 1H NMR (benzene-d6, 600 MHz, 25 °C): δ 6.45 (s, 2 H, C5H4), 6.32 (s, 2 H, C5H4), 

3.66 (d, 2 H, 2JHH = 7.8 Hz, CNCMe2CH2O), 3.55 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 

2.05 (s, 3 H, backbone CH3), 1.12 (br d, 12 H, CNCMe2CH2O), ‒0.89 (br s, 3 H, Mg-CH3). 

13C{1H} NMR (benzene-d6, 151 MHz, 25 °C): δ CNCMe2CH2O peaks under benzene-d6, 

118.09 (C5H4) , 108.12 (C5H4), 102.07 (C5H4), 58.29 (CNCMe2CH2O), 44.61 (backbone 

CCH3), 27.95 (CNCMe2CH2O), 21.80 (backbone CCH3), 1.43 (Mg-CH3). CNCMe2CH2O not 

observed by 15N{1H} NMR. IR (KBr, cm-1): 2968 s, 2931 m, 2897 m, 1658 s (C=N), 1547 w, 

1463 m, 1366 m, 1309 w, 1292 w, 1255 w, 1202 w, 1192 m, 1084 s sh, 1041 s, 974 w, 960 

w, 934 w, 874 m, 809 w, 750 m. Anal. Calcd for C18H26MgN2O2: C, 66.17; H, 8.02; N, 8.57. 

Found: C, 63.34; H, 7.61; N, 8.67. mp 145‒147 °C, dec. 

 

{BoMCptet}MgCH3 (8) H{BoMCptet} (0.129 g, 0.373 mmol) was placed in a vial in the 

glovebox and dissolved in benzene (5 mL). Mg(CH3)2(dioxane)2 (0.080 g, 0.373 mmol) was 

added to the solution, and the solution was stirred at room temperature for 4 h. Gas formation 

was observed over the course of the reaction. The solution was then filtered and dried under 

reduced pressure to give a yellow oil. The oil was washed with pentane (3) and dried under 

reduced pressure to give a white solid that was stored at ‒30 °C (0.110 g, 0.286 mmol, 
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76.9%). 1H NMR (600 MHz, benzene-d6): 3.70 (d, 2 H, 2J = 12.6 Hz, CNCMe2CH2O), 3.58 

(d, 2 H, 2J = 12.0 Hz, CNCMe2CH2O), 2.33 (s, 3 H, C5(CH3)4), 2.24 (s, 3 H, C5(CH3)4), 2.11 

(s, 3 H, backbone CH3), 1.08 (s, 3 H, CNCMe2CH2O), 1.05 (s, 3 H, CNCMe2CH2O), ‒0.91 

(s, 3 H, Mg-CH3). 
13C{1H} NMR (600 MHz, benzene-d6): δ CNCMe2CH2O peaks buried 

under benzene-d6, 113.34 (C5(CH3)4), 107.85 (C5(CH3)4), 107.16 (C5(CH3)4), 80.48 

(CNCMe2CH2O), 66.17 (CNCMe2CH2O), 46.37 (backbone CCH3), 28.28 (CNCMe2CH2O), 

27.40 (CNCMe2CH2O), 23.79 (backbone CCH3), 13.68 (C5(CH3)4), 11.64 (C5(CH3)4), ‒11.18 

(Mg-CH3). 
15N{1H} NMR (benzene-d6, 71 MHz): δ ‒145.7 (CNCMe2CH2O). IR (KBr, cm-1): 

2996 s, 2928 s, 2866 s, 2726 w sh, 1658 s (C=N), 1496 m, 1467 m, 1304 m, 1306 m, 1283 m, 

1252 m, 1192 m, 1087 m, 1024 w, 991 w, 974 m, 962 m, 934 m, 893 w, 829 w. Anal. Calcd 

for C22H34MgN2O2: C, 69.02; H, 8.95; N, 6.95. Found: C, 67.48; H, 9.35; N, 6.95. mp 

145‒146 °C, dec. 

 

{BoPCp}MgCH3 (9) H{BoPCp} (0.0952 g, 0.301 mmol) was placed in a vial in the glovebox 

and dissolved in benzene (3 mL). Mg(CH3)2(dioxane)2 (0.0403 g, 0.301 mmol) was added to 

the solution, and the solution was stirred at room temperature for 1 h. Gas formation was 

observed over the course of the reaction. The solution was then filtered and dried under 

reduced pressure to give a pink oil. The oil was washed with pentane (3) and dried under 

reduced pressure to give {BoPCp}MgCH3 as a white solid that was stored at ‒30 °C (0.100 g, 

0.282 mmol, 93.7%). 1H NMR (benzene-d6, 600 MHz, 25 °C): δ 6.38 (s, 2 H, C5H4), 6.33 (s, 

2 H, C5H4), 3.90 – 3.70 (m, broad, 6 H, CNCH(CH(CH3)2)CH2O), 2.08 (s, 3 H, backbone 

CCH3), 0.89 – 0.66 (m, 12 H, CNCH(CH(CH3)2)CH2O), – 1.03 (s, 3 H, Mg-CH3).  
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{BoPCptet}MgCH3 (10) H{BoPCptet} (0.0971 g, 0.261 mmol) was placed in a vial in the 

glovebox and dissolved in benzene (5 mL). Mg(CH3)2(dioxane)2 (0.0349 g, 0.261 mmol) was 

added to the solution, and the solution was stirred at room temperature for 4 h. Gas formation 

was observed over the course of the reaction. The solution was then filtered and dried under 

reduced pressure to give a yellow oil. The oil was washed with pentane (3) and dried under 

reduced pressure to give a white solid that was stored at ‒30 °C. 1H NMR (benzene-d6, 600 

MHz, 25 °C): δ 3.99 – 3.57 (m, 6 H, CNCH(CH(CH3)2)CH2O), 2.36 (s, 6 H, C5Me4), 2.28 (s, 

3 H, C5Me4), 2.23 (s, 3 H, C5Me4), 2.15 (s, 3 H, backbone CCH3), 0.86 (s, 6 H, 

CNCH(CH(CH3)2)CH2O), 0.64 (s, 6 H, CNCH(CH(CH3)2)CH2O), – 0.95 (s, 3 H, Mg-CH3). 

 

{BoMCp}TiCl2 (11)  TiCl3(THF)3 (0.194 g, 0.523 mmol) was dissolved in benzene (10 mL) 

and added to a vial containing a solution of Tl{BoMCp} (0.257 g, 0.523 mmol) dissolved in 

benzene (5 mL), resulting in a cloudy green solution. The reaction mixture was stirred for 8 

h. The solution was filtered, and the filtrate was evaporated to dryness under reduced 

pressure to give a brown solid. The solid was recrystallized at ‒30 °C in a mixture of 

toluene/pentane to give green, paramagnetic X-ray quality crystals (0.113 g, 0.278 mmol, 

53.1%). IR (KBr, cm-1): 773 w, 808 s, 822 s, 874 w, 935 m, 960 s, 982 s, 1036 w, 1049 w, 

1050 w, 1090 s, 1109 s, 1190 m, 1258 m, 1290 m, 1323 s, 1368 s, 1461 m, 1635 s (C=N), 

1662 s (C=N), 2970 m, 3117 w. Anal. Calcd for C17H23Cl2N2O2Ti: C, 50.27; H, 5.71; N, 

6.90. Found: C, 49.92; H, 5.64; N, 6.84. mp 140‒142 °C, dec. 

Magnetic susceptibility was measured using Evan’s method at room temperature 

using a Bruker 400 mHz NMR spectrometer. A sample of BoMCpTiCl2 (5.7 mg, 0.014 

mmol) was dissolved in benzene-d6 (0.90 mL) to give a 15.6 mM solution. The solution (0.60 
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mL) was placed in an NMR tube. A capillary was charged with benzene-d6 and placed in the 

NMR tube. The 1H NMR spectrum shows a paramagnetic shift in the benzene-d6 peak. Using 

Evan’s method, the following values were obtained: Δδ = 0.070 ppm, χmol = 1.07 x 10-3 

cm3/mol, μ = 1.60 BM, n = 0.885 electrons. This is consistent with a d1 Ti(III) complex. 

 

{BoMCptet}TiCl2 (12) TiCl3(THF)3 (0.071 g, 0.192 mmol) was dissolved in benzene (5 mL) 

and added to a vial containing a solution of Tl{BoMCptet} (0.257 g, 0.523 mmol) dissolved 

in benzene (5 mL), resulting in a cloudy green solution. The reaction mixture was stirred for 

18 h. The solution was filtered, and the filtrate was evaporated to dryness under reduced 

pressure. The solid was then extracted with benzene and dried under reduced pressure to give 

a green solid. IR (KBr, cm-1): 2964 s, 2927 m, 2871 w, 1661 m sh (C=N), 1641 s (C=N), 

1570 w, 1463 m, 1366 m, 1322 m, 1285 w, 1253 w, 1190 m, 1170 m, 1096 m, 1029 w, 973 

m, 956 m, 935 w, 832 w. n=0.69 by Evan’s method. Anal. Calcd for C21H31Cl2N2O2Ti: C, 

54.56; H, 6.76; N, 6.06. Found: C, 53.82; H, 6.75; N, 5.84. mp 141‒143 °C, dec. 

 

{BoMCp}Zr(CH2Ph)3 (13) Tl{BoMCp} (0.0870 g, 0.176 mmol) was dissolved in benzene (5 

mL) and was added to a vial containing Zr(CH2Ph)4 (0.0811 g, 0.177 mmol). The vial was 

wrapped in foil to protect from light, and the solution was stirred at room temperature for 3 h. 

The solvent was then removed and the product was isolated as a red solid. 1H NMR 

(benzene-d6, 600 MHz, 25 °C): δ 7.23 – 6.86 (m, 15 H, Zr(CH2C6H5)3), 6.05 (d, 4 H, 2JHH = 

4.2 Hz, C5H4), 3.48 (d, 2 H, 2JHH = 12.6 Hz, CNCMe2CH2O), 3.42 (d, 2 H, 2JHH = 12.6 Hz, 

CNCMe2CH2O), 2.51 (s, 6 H, Zr(CH2C6H5)3), 1.36 (s, 3 H, backbone CCH3), 1.16 (s, 6 H, 

CNCMe2CH2O), 1.12 (s, 6 H, CNCMe2CH2O).  
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{BoMCptet}Zr(CH2Ph)3 (14) Tl{BoMCptet} (0.0606 g, 0.110 mmol) was dissolved in benzene 

(5 mL) and was added to a vial containing Zr(CH2Ph)4 (0.0507 g, 0.110 mmol). The vial was 

wrapped in foil to protect from light, and the solution was stirred at room temperature for 3 h. 

The solvent was then removed and the product was isolated as a red solid. 1H NMR 

(benzene-d6, 600 MHz, 25 °C): δ 7.25 – 6.91 (m, 15 H, Zr(CH2C6H5)3), 3.57 (d, 2 H, 2JHH = 

12.6 Hz, CNCMe2CH2O), 3.45 (d, 2 H, 2JHH = 12.6 Hz, CNCMe2CH2O), 2.38 (s, 6 H, 

Zr(CH2C6H5)3), 1.94 (s, 6 H, C5Me4), 1.86 (s, 3 H, backbone CCH3), 1.65 (s, 6 H, C5Me4), 

0.96 (s, 6 H, CNCMe2CH2O), 0.93 (s, 6 H, CNCMe2CH2O).  

 

[{BoMCp}Zr(CH2Ph)2][PhCH2B(C6F5)3] (15) {BoMCp}Zr(CH2Ph)3 (0.0112 g, 0.0172 

mmol) was dissolved in benzene-d6 and placed in an NMR tube. B(C6F5)3 was added and the 

solution was shaken. A red oil crashed out of the benzene solution. The oil was dissolved in 

C6D5Br. 1H NMR (bromobenzene-d5, 400 MHz, 25 °C): δ 7.21 – 7.00 (m, 10 H, 

Zr(CH2C6H5)2), 6.03 (m, 2 H, C5H4), 5.49 (m, 2 H, C5H4), 3.74 (d, 2 H, 2JHH = 8.8 Hz, 

CNCMe2CH2O), 3.68 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 1.98 (d, 2 H, 2JHH = 10 Hz, 

Zr(CH2C6H5)2), 1.58 (d, 2 H, 2JHH = 10 Hz, Zr(CH2C6H5)2), 1.58 (s, 3 H, backbone CCH3), 

0.89 (s, 12 H, CNCMe2CH2O). 11B{1H} NMR (bromobenzene-d5, 128 MHz, 25 °C): δ – 12.1 

([PhCH2B(C6F5)3]). 

 

{BoMCp}ZrI3 (16) {BoMCp}Zr(CH2Ph)3 (0.114 g, 0.176 mol) was dissolved in benzene (10 

mL) and placed in a 100 mL flask. (Me3Si)I (75.4 μL, 0.530 mmol was added to the solution. 

The flask was wrapped in foil to protect from light, and the solution was stirred at 60 °C for 2 
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h. The solvent was removed to give the product as a yellow oil. The crude product was 

washed with pentane (5) to give the product as a yellow solid. 1H NMR (benzene-d6, 400 

MHz, 25 °C): δ 6.43 (s, 2 H, C5H4), 6.06 (s, 2 H, C5H4), 3.45 (d, 2 H, 2JHH = 8.4 Hz, 

CNCMe2CH2O), 3.39 (d, 2 H, 2JHH = 8.4 Hz, CNCMe2CH2O), 1.54 (s, 3 H, backbone 

CCH3), 1.26 (s, 6 H, CNCMe2CH2O), 1.14 (s, 6 H, CNCMe2CH2O). 

 

{BoMCp}Zr(NMe2)3 (17) In the glovebox, H{BoMCp} (0.100 g, 0.347 mmol) was dissolved 

in benzene (5 mL) and added to a solution of Zr(NMe2)4 (0.093 g, 0.347 mmol) in benzene (5 

mL). The solution was stirred for 1 h at room temperature and then filtered. The filtrate was 

dried under reduced pressure providing a yellow gel. The gel was washed with pentane (3  5 

mL) and further dried under vacuum yielding a yellow, analytically pure solid 

BoMCpZr(NMe2)3 (0.168 g, 0.329 mmol, 94.9%). X-ray-quality single crystals were obtained 

from a toluene/pentane solution of the product at ‒30 °C. 1H NMR (600 MHz, benzene-d6): 

6.23 (t, 2 H, 3J = 2.8 Hz, C5H5), 6.19 (t, 2 H, 3JHH = 2.8 Hz, C5H5), 3.62 (d, 2 H, 2JHH = 8.1 

Hz, CNCMe2CH2O), 3.52 (d, 2 H, 2JHH = 8.1 Hz, CNCMe2CH2O), 1.90 (s, 3 H, backbone 

CH3), 3.08 (s, 18 H, NMe2), 1.01 (s, 6 H, CNCMe2CH2O), 0.96 (s, 6 H, CNCMe2CH2O). 

13C{1H} NMR (600 MHz, benzene-d6): δ 169.70 (CNCMe2CH2O), 125.58 (ipso-C5H4), 

108.64 (C5H4), 108.25 (C5H4), 80.01 (CNCMe2CH2O), 67.09 (CNCMe2CH2O), 46.63 

(NMe2), 43.20 (CH3CCNCN), 26.61 (CNCMe2CH2O), 26.31 (CNCMe2CH2O), 21.52 

(backbone CH3). 
15N{1H} NMR (benzene-d6, 71 MHz): δ ‒138.19 (CNCMe2CH2O), ‒138.45 

(CNCMe2CH2O); Zr(NMe2)3 was not detected. IR (KBr, cm-1, amorphous solid): 2965 s, 

2930 m 2890 m, 2865 m, 2819 m, 2759 m, 2736 m, 1645 s (C=N), 1460 m, 1364 m, 1314 m, 

1288 m, 1235 m, 1203 m, 1139 s, 1122 m, 1102 m, 1083 m, 1046 s, 975 s, 957 m, 938 m, 
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875 m, 786 s, 715 m, 712 s. Anal. Calcd. for C23H41N5O2Zr: C, 54.08; H, 8.09; N, 13.71. 

Found: C, 53.63; H, 7.57; N, 13.30. mp 129‒132 °C. 
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Abstract 

 

Several [Mg]-Me complexes are found to catalyze the deoxygenation of amides to 

amines using pinacolborane as the reductant. The best precatalyst observed for amide 

reduction is ToMMgMe (ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). Secondary 

amides are reduced with good yields using four equivalents of pinacolborane and 10 mol% 

ToMMgMe, and tertiary amides are reduced with good yields in almost neat conditions (20 

equivalents of pinacolborane) and 2 mol% ToMMgMe.  
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Studied observed phenyl cleavage side product. Prepared ToMMgMe, ToPMgMe, 

ToMMgHB(C6F5)3,  ToMPMgMe, PhB(OxMe2)2C5H5MgMe, and 

PhMeB(OxMe2)2MgMe.  

Debabrata Mukherjee: First to discover ToMMgMe reduces N,N-

dimethylformamide to triethylamine with pinacolborane. 

 



39 

 

Introduction 

 

Amides are important functional groups found in many biological compounds, such 

as proteins and many enzymes, as well as many pharmaceuticals and organic synthesis 

products. The amide functional group in much less reactive than other carbonyl functional 

groups because of its resonance stabilization (eq. 1), which makes the carbonyl carbon much 

less electrophilic and more difficult to reduce than other carbonyl functional groups. 

 

Forcing conditions are necessary to reduce amide functional groups. Lithium 

aluminum hydride in ether is commonly used to reduce amides (eq. 2).1 

 

Using LiAlH4 to reduce amides requires stoichiometric amounts of the metal hydride 

and is not tolerant of many other functional groups, including esters, aldehydes, ketones, 

epoxides, and lactones. There is a high demand for selective catalytic reduction of amides 

that are greener, more efficient, and more functional group-tolerant than LiAlH4.  

Reductions of amides using noble-metal catalysts and silanes have been reported. In 

2001, Fuchikami described the reduction of tertiary amides using a variety of metal catalysts, 

including Mn, Ru, Re, Os, Rh, Ir, Pd, and Pt, with triethylsilane (eq. 3).2 
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More recently, Brookhart has investigated Ir-catalyzed reduction of tertiary and 

secondary amides (eq. 4, 5).3  

 

In 2013, Breit reported hydrogenation of tertiary and secondary amides to amines 

using H2 and a Pd/Re/graphite catalyst.4 Cleavage of the C‒N bond has also been reported 

using Ru catalysts and H2 as well as with bimetallic Mo complexes and diphenyl silane.5,6 

While these examples of catalytic amide reduction show progress toward finding 

better alternatives to LiAlH4, expensive metal catalysts such as Ir limit the practical use. 

Examples using more earth-abundant and less expensive metals, such as Fe and Zn, have 

been recently reported.7,8 Tertiary amides can be reduced using Fe catalysts and 

polymethylhydrosiloxane (PMHS) (eq. 6).8  

 

Primary amides were also reduced using a diiron system with methyldiethoxysilane 

and achieved yields from 49 to 70%.9 Beller has reported zinc-catalyzed reduction of tertiary 
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and secondary amides.10 Mild conditions are reported and wide functional group tolerance is 

achieved (eq. 7). 

 

 Our group has recently found that ToMMgMe (ToM = tris(4,4-dimethyl-2- 

oxazolinyl)phenylborate) catalytically reduces and cleaves esters with two equivalents of 

pinacolborane (HBpin) to give alkoxyboronic pinacol esters (ROBpin) (eq. 8) (Sadow, 

2014).11 

 

Results and Discussion 

ToMMgMe is a precatalyst for the deoxygenation of amides to amines with 

pinacolborane as the reductant. This deoxgyenation pathway contrasts the previously 

observed HBpin-mediated ester cleavage and reduction with ToMMgMe as a catalyst. Thus, 

N,N-dimethylbenzamide reacts with two equivalents of pinacolborane in the presence of 10 

mol% of ToMMgMe to give dimethylbenzylamine and pinBOBpin (eq. 9). 

 

ToMMgMe decomposes in the presence of stoichiometric amounts of pinacolborane, 

so the order of addition in this reaction is important. A benzene solution of ToMMgMe is 

added to a mixture of amide and pinacolborane, or pinacolborane is injected into a benzene 

solution of ToMMgMe and amide to avoid decomposition. The background reaction of N,N-
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dimethylbenzamide and two equivalents of pinacolborane gives only starting materials as 

observed by 1H NMR after 24 hours at 120 °C. A stoichiometric reaction of ToMMgMe and 

N,N-dimethylbenzamide shows no reaction after two hours at room temperature and then 

decomposition of ToMMgMe over the next 24 hours. ToMMgMe reacts instantaneously with 

one equivalent of pinacolborane to presumably give ToMMgH, which rapidly decomposes to 

a black precipitate. With excess pinacolborane (20 equivalents), the decomposition of 

ToMMgMe in benzene is slower, and the complex ToMMgH2Bpin can be isolated (Sadow, 

2014).  

Several [Mg]-Me complexes with different ligands were screened to optimize the 

reaction conditions of N,N-dimethylbenzamide to dimethylbenzylamine as shown in Table 1. 

 

Table 1. Deoxygenation of N,N-dimethylbenzamide with 2 eq. pinacolborane and 10 mol% 

catalyst  

 

Entry Precatalyst Time (h) NMR Yield (%) Yield Ph cleav. 

1 

 

BoMCptetMgMe 

 

12 25 23 
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Table 1 continued 

2 

 
BoPCptetMgMe 

 

26 24 - 

3 

 
BoPCpMgMe 

 

26 16 - 

4 

 

ToMPMgMe 

 

26 46 14 

5 

 

ToMMgMe 

 

12 54 24 
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Table 1 continued 

6 

 

ToPMgMe 

 

24 97 0 

7 

 

PhB(OxMe2)2C5H5MgMe 

 

12 10 10 

8 

 
PhMeB(OxMe2)2MgMe 

 

6 44 4 

9 

 
ToMMgH2Bpin 

 

24 34 23 

 

 

Surprisingly, ToMMgH2Bpin performed relatively poorly, requiring a long reaction 

time and low yield, which provides convincing evidence that it is not the catalytic species. 
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Overall, ToMMgMe gives the cleanest conversion to N,N-dimethylbenzamide, even though it 

gave an intermediate reaction time and yield. 

In all entries in Table 1, a side product was observed that appears to be the result of 

C‒C cleavage. In the 1H NMR spectrum, singlets at 2.4 and 4.5 ppm were observed in a 3:1 

ratio, shifted downfield of the dimethylbenzylamine product peaks. This side product became 

the major product when the solvent was changed to methylene chloride (Table 2). This side 

product was proposed to be a partially deoxygenated amine with a cleaved aryl group (eq. 

10). 

 

 

 

 

Table 2: Reduction of N,N-dimethylbenzamide in methylene chloride 

 

 

Entry Precatalyst 
NMR Yield 

(%) 
Yield Ph cleav. 

1 

ToMMgMe 

 

12 23 

 

 

 

 

 

   

1 
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Table 2 continued 

2 

ToMMgHB(C6F5)3 

 

8 2 

3 

 

ToPMgMe 

 

26 2 

4 

 

BoMCptetMgMe 

 

4 - 

 

Independently synthesized N,N-dimethylaminomethanol reacts with pinacolborane to 

show partial conversion to hydrogen and a species with the same 1H and 11B NMR 

resonances as 1. Furthermore, the parent ion of 1 was identified by GC/MS in the reaction 

mixtures of N,N-dimethylbenzamide and two equivalents of pinacolborane with 10 mol% 

ToMMgMe in CD2Cl2. This supports the formation of the proposed species. 

Catalyst performance was found to be strongly substrate dependent. Therefore, the 

three highest yielding catalysts from Table 1 were used to extend the substrate scope (Table 

3).  
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Table 3: Reduction of amides using various catalysts (10 mol%), 2 eq. HBpin, benzene-d6 

Entry Substrate ToMMgMe ToPMgMe ToMMgHB(C6F5)3 

  Time (h) 
NMR                       

Yield 
Time (h) 

NMR 

Yield 
Time (h) 

NMR 

Yield 

 

1* 

  

 

24 

 

0 

 

4 

 

0 

 

24 

 

0 

 

2 

  

 

24 

 

0 

 

24 

 

0 

 

24 

 

0 

 

3 

 
 

 

24 

 

0 

 

24 

 

0 

 

24 

 

0 

 

4 

  

 

2 

 

66 

 

2 

 

36 

 

1 

 

3 

 

5 

  

 

24 

 

12 

 

24 

 

0 

 

24 

 

15 

 

6 

  

 

24 

 

12 

 

24 

 

0 

 

4 

 

11 

 

7 

 
 

 

12 

 

6 

 

24 

 

0 

 

30 

 

29 

 

8 

  

 

0.17 

 

74 

 

1.5 

 

53 

 

6 

 

62 

 

9 

  

 

12 

 

40 

 

24 

 

38 

 

30 

 

39 

 

 

Overall, ToMMgMe performs better than ToPMgMe or ToMMgHB(C6F5)3 based on 

NMR yields of the amines. Tertiary amides give the highest yields compared to primary and 

secondary amides. Formamides are the fastest to react, followed by acetamides and 



48 

 

benzamides. Some product formation is observed with secondary amides. With primary 

amides, no amine products are observed in the 1H NMR. However, hydrogen and methane 

are always observed. 

The reactions proceed more slowly for substrates that are not very soluble in benzene. 

When methylene chloride is used as a solvent, the amides are completely soluble. However, 

the conversion of N,N-dimethylbenzamide with two equivalents pinacolborane to 

dimethylbenzylamine decreases, even though the [Mg]-Me compounds are stable in 

methylene chloride. Additionally, conversion to side product 1 increased. Therefore, we 

reverted to benzene-d6 and tried varying the equivalents of pinacolborane. For secondary 

amides, four equivalents of pinacolborane resulted in the highest yields (Table 4). Increasing 

above four equivalents caused yields to decrease again. However, for tertiary amides, 20 

equivalents of pinacolborane resulted in the highest yields and allowed us to decrease 

catalyst loading to 2 mol% ToMMgMe (Table 5).  

 

 

 

Table 4. Secondary amides with 10 mol% ToMMgMe, 4 eq. HBpin, C6D6, rt 

Entry Substrate Product Time (h) NMR Yield  

 

1 

 
  

 

48 

 

99 

 

2 

   

 

24 

 

72 
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Table 4 continued 

 

3 

  

 

 

 

< 10 min 

 

97 

 

 

4 
  

 

48 

 

71 

 

5 

 

 

 

 

48 

 

86 

 

6 

  

 

12 

 

99 

 

7 

  

 

 

 

48 

 

44 

 

8 

 
  

 

2 

 

12 

 

 

9 

 

 

 

 

 

 

48 

 

 

11 

 

 

10 

 
 

 

 

 

24 

 

49 

 

 

11 

 
 

 

 

 

 

24 

 

 

9 

 

 

 

Table 5. Tertiary amides with 2 mol% ToMMgMe, 20 eq. HBpin, drop C6D6 

Entry Substrate Product Time (h) NMR 

Yield 

 

1 

 
 

 

 

 

0.17 

 

77 
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Table 5 continued 

 

2 

 
 

 

 

 

6 h 

 

99 

 

3 

 
 

 

 

 

3 h 

 

99 

 

4 

 

 

 

 

6 h 

 

99 

 

5 

 

 

 

 

6  

 

99 

 

6 

 

 

 

 

10 

 

74 

 

 

7 

 
 

 

 

 

 

8 

 

 

99 

 

 

8a 

 

 
 

 

 

 

 

15 

 

 

60 

 

 

9a 

 

 
 

 

 

 

 

15 

 

 

63 

 

 

10a 

 

 
 

 

 

 

 

15 

 

 

83 

 aMore dilute conditions because of lower solubility of amide (0.5 mL benzene) 

 

 

With excess pinacolborane, the deoxygenation runs under mild conditions and 

tolerates a variety of functional groups that common stoichiometric reductants such as LAH 
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do not. An exception is N,N-dimethyl acrylamide, which rapidly polymerizes in the presence 

of ToMMgMe. For entries 10‒13 in Table 4, the starting amide had a very low solubility in 

neat pinacolborane; therefore, these reactions were run at more dilute conditions by adding 

benzene. 

Many of the amides were not commercially available and were synthesized using a 

procedure similar to that used by Beller, where an acid chloride was reacted with a secondary 

amine to give the tertiary amide (eq. 11).10a 

 

Conclusions 

Overall, we have the first example of magnesium-catalyzed reduction of amides, as 

well as the first example of amide reduction using pinacolborane, not silanes. This system is 

attractive because all reactions run at room temperature. Tertiary amides can be reduced in 

neat pinacolborane without the presence of solvent. Further work should be done to study the 

mechanism of this reaction because little work has been done to study the mechanism of 

other amide deoxygenation systems, and understanding the mechanism would help us 

understand how to optimize reaction conditions and prevent side product formation. We also 

find it interesting that magnesium is able to perform catalytically in this system and does not 

stop at a Mg‒O species. 

 

Experimental Section 

General procedure for preparation of amides10a  
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The acid chloride (0.010 mol) was added in one portion to the amine (0.0110 mol) and 

triethylamine (0.0125 mol) in methylene chloride (20 mL) at room temperature, resulting in a 

rapidly boiling solution. The mixture was stirred at room temperature for one hour and was 

then diluted with methylene chloride (30 mL). The solution was transferred to a separatory 

funnel and was washed with 1 M HCl (50 mL). The organic layer was filtered on a short 

silica gel column and then the solution was dried over sodium sulfate. The solution was 

filtered and the solvent was removed. Some products were oils that solidified after standing 

overnight.  

 

 

2,2-dimethyl-1-morpholinopropanone: : 1H NMR (benzene-d6, 600 MHz, 25 °C): 3.27 (s, 8 

H, N(CH2CH2)2O), 1.10 (s, 9 H, C(CH3)3). 
15N{1H} NMR (benzene-d6, 60 MHz, 25 °C): 

‒273.4 (N(CH2CH2)2O). 13C{1H} NMR (benzene-d6, 151 MHz, 25 °C): 175.37, 66.89, 45.91, 

38.50, 28.39 (-C(CH3)3). 

 

 

N,N-dibenzyl-4-nitrobenzamide: 1H NMR (benzene-d6, 600 MHz, 25 °C): 7.59 (d, 2 H, 

2JHH = 7.8 Hz, meta-CH), 7.20 (br s, 4 H, -N(CH2C6H5)2 (ortho-CH)), 7.11 (br s, 4 H, -
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N(CH2C6H5)2 (meta-CH)), 7.04 (d, 2 H, 2JHH = 8.4 Hz, ortho-CH), 6.81 (br s, 2 H, -

N(CH2C6H5)2 (para-CH)), 4.64 (s, 2 H, -N(CH2C6H5)2), 3.91 (s, 2 H, -N(CH2C6H5)2). 

15N{1H} NMR (benzene-d6, 60 MHz, 25 °C): -12.3 (-C6H4NO2). 
13C{1H} NMR (benzene-d6, 

151 MHz, 25 °C): (many peaks overlap with benzene-d6 resonances) 169.69, 148.37, 142.33, 

137.38, 136.48, 130.82, 129.21, 129.03, 128.99, 128.35, 128.02, 127.63, 126.95, 51.18 (-

N(CH2C6H5)2), 47.34 (-N(CH2C6H5)2).  

 

 

N,N-dibenzyl-4-cyanobenzamide: 1H NMR (chloroform-d, 600 MHz, 25 °C): 7.58‒7.01 

(m, 14 H, aromatic C-H), 4.63 (s, 2 H, (-N(CH2C6H5)2), 4.25 (s, 2 H, (-N(CH2C6H5)2). 
15N 

resonances not detected by 15N{1H} HMBC experiments. 13C{1H} NMR (chloroform-d, 151 

MHz, 25 °C): 170.45, 167.56, 140.49, 136.39, 133.93, 132.55, 132.29, 130.55, 130.41, , 

128.94, 128.57, 128.09, 127.93, 127.48, 126.86, 118.10, 116.68, 113.61, 51.53, 48.94, 47.42. 

 

N,N-dibenzyl-4-(phenyldiazenyl)benzamide: 1H NMR (benzene-d6, 600 MHz, 25 °C): 7.97 

(d, 2 H, 2JHH = 7.2 Hz), 7.83 (d, 2 H, 2JHH = 8.4 Hz), 7.51 (d, 2 H, 2JHH = 8.4 Hz), 7.19 – 7.09 

(br m, 13 H), 4.73 (br s, 2 H, -CH2C6H5), 4.16 (br s, 2 H, -CH2C6H5). 
15N{1H} NMR 

(benzene-d6, 60 MHz, 25 °C): -272.35 (-N=NC6H5). 
13C{1H} NMR (benzene-d6, 151 MHz, 

25 °C): (peaks overlap with benzene-d6 resonances) 171.00, 170.72, 155.00, 153.99, 153.36, 

153.14, 139.29, 137.85, 137.17, 135.27, 131.50, 129.37, 129.02, 128.84, 128.35, 128.14, 
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127.98, 127.75, 127.45, 127.16, 123.43, 123.33, 120.80, 120.45, 51.38 (-N(CH2C6H5)2), 

47.32 (-N(CH2C6H5)2).  

 

General procedure for NMR-scale catalytic amide reductions ToMMgMe (0.05 eq, 

0.0039 mmol) was dissolved in 0.5 mL benzene-d6 and added to the amide (1 eq, 0.078 

mmol), pinacolborane (4 eq, 0.31 mmol) and tetrakis(trimethylsilyl)silane standard (0.05 eq, 

0.0039 mmol). Reactions were monitored by 1H and 11B NMR. 
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Abstract 

 Pyrene, a polycyclic aromatic hydrocarbon, is functionalized with tertiary amine 

groups following a simple synthetic route from commercially available pyrene precursors. 

These pyrene compounds, including N-ethyl-N-(pyren-4-ylmethyl)ethanamine, N,N-diethyl-

4-(pyren-4-yl)butanamine, and N,N-bis(pyren-4-ylmethyl)ethanamine were prepared to be 

adsorbed onto multi-walled carbon nanotubes as a catalyst. Various conditions for coronene 

functionalization were also screened. 

§ Other authors’ contributions 

Chi Liu: Collaborated on coronene functionalization screening and pyrene 

functionalization. Adsorption studies of pyrene on MWCNTs. 

 

Introduction 

Heterogeneous catalysts are often favored by industry over homogeneous catalysts 

because of simple catalyst recovery and increased catalyst stability.  Important industrial 
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processes that utilize heterogeneous catalysts include the Haber-Bosch process, Ziegler-Natta 

olefin polymerization, and the Fischer-Tropsch reaction of syngas to hydrocarbons.1 

Drawbacks of heterogeneous catalysts compared to homogeneous catalysts include lack of 

selectivity and activity. Heterogeneous catalysts are difficult to study and characterize by 

standard spectroscopic methods, which makes studying the active sites and mechanism 

difficult. On the other hand, homogeneous catalysts can be characterized by spectroscopic 

techniques, such as NMR, IR, UV-Vis, and X-ray crystallography and often exhibit high 

activity and selectivity. Our strategy is to synthesize and characterize small-molecule 

catalysts that can then be adsorbed onto a solid support, such as multi-walled carbon 

nanotubes (MWCNTs). 

Multi-walled carbon nanotubes have been covalently functionalized in the past by 

exploiting defects on the nanotube surface, but the products are difficult to characterize and 

functionalization is limited. Commonly, MWCNTs are oxidized with nitric acid to form 

carboxylic acid groups on the surface which can then be further functionalized. However, 

these harsh conditions are not selective and often shorten the chain length of the nanotubes. 

In 2009, Schögl reported an alternative route where MWCNTs are reacted with excess n-

BuLi to deprotonate C‒H bonds near defects in the nanotubes.2 2-bromotriethylamine is 

added to form MWCNTs functionalized with a tertiary amine group. Catalytic activity is 

tested for transesterifaction of glyceryl tributyrate with methanol and achieved a 77% yield 

after eight hours. Characterization of the functionalized nanotubes was difficult so methods 

such as electron microscopy and acid-base titrations were used to gain information about the 

structure.  
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Noncovalent functionalization of nanotubes allows the characterization and study of 

the catalytic species before adsorption onto the carbon surface. In 2001, Dai reported 

anchoring protein groups to single-walled carbon nanotubes (SWCNTs).3 Pyrene is 

functionalized with a succinimidyl ester group, and is then irreversibly adorbed on the 

sidewall of the SWCNTs via π-stacking. Amine groups on the proteins then react with 

anchored succinimidyl ester groups to form amide bonds for protein immobilization. Gray 

recently reported noncovalent immobilization of pyrene-based electrocatalysts on carbon 

electrodes (Fig. 1).4  

  

Fig. 1: Rh and Re pyrene-based electrocatalysts 

Pyrene groups were attached to bipyridine, which then reacted to form complexes with their 

Rh or Re catalysts. The functionalized pyrene groups were easily adsorbed onto carbon 

electrodes by soaking the electrodes in a solution of the functionalized pyrene in methylene 

chloride, followed by washing with acetonitrile. 

 Functionalization of polyaromatic compounds such as coronene and pyrene can be 

challenging because of the lack of functional groups. Coronene is desirable to use because of 

the strong π-interaction with the carbon support, but it is difficult to functionalize, and 

coronene derivatives are not commercially available. Michie reports the chlorination of 

coronene to perchloronene.5 Coronene was refluxed with AlCl3 and S2Cl2 in SO2Cl2 to get 

the perchlorinated product (eq. 1).  
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Unfortunately, the reaction cannot be stopped before all positions are substituted.  

Pyrene derivatives are commercially available and functionalization of pyrene is less 

challenging. Selective borylation of pyrene is reported on the 2,7 positions using pinacolato 

diboron and an iridium catalyst, which is useful for making symmetrically functionalized 

pyrene derivatives (eq. 2).6 

 

Pyrene is brominated using NBS7 or Br2
8  to give mono- or tetra-brominated pyrene 

as shown in Scheme 1. 

 

 

Scheme 1: Bromination of pyrene 
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Large aromatic systems such as coronene and pyrene are ideal to serve as the “linker” 

to adsorb to the carbon surface because of their strong pi-pi interactions with the carbon 

surface. 

 

Results and Discussion 

Our focus was to synthesize tertiary amine-substituted polyaromatic compounds that 

would adsorb on carbon nanotubes so that simple isomerization reactions catalyzed by 

tertiary amines could be studied. 

The first attempts focused on the functionalization of coronene because of its strong 

π-stacking interactions. Based on Schögl’s report on using n-BuLi to deprotonate sites on 

multi-walled carbon nanotubes, we tried extending that strategy to coronene. We were 

encouraged to find that coronene appeared to be deprotonated by benzyl potassium. The 

formation of toluene was observed when benzyl potassium was added to a solution of 

coronene in benzene-d6. Different deprotonation conditions were then screened and are 

summarized in Table 1. Different alkyllithium reagents were added to a solution of coronene 

at low temperature, and then the solution was warmed to room temperature and stirred for 

one hour before adding chlorodiphenylphosphine, which was used as a 31P NMR handle to 

evaluate if substitution had occurred. All deprotonation conditions tested gave mixtures of 

products that were difficult to characterize. 
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Table 1: Attempts at deprotonation and substitution of coronene 

 

Deprotonation 

Reagents 
Solvent Temp (˚C) 

Color change with 

addition of RLi 

31P NMR results 

with PPh2Cl 

LDA Et2O ‒78 to rt No color change 

Doublets at 34 and 

‒23 ppm 

Singlet at 23 ppm 

nBuLi THF ‒78 to rt 
At -78, turned blue, 

then purple 

Doublets at 34 and 

‒23 ppm 

nBuLi/TMEDA THF ‒78 purple 

Doublets at 36 and 

‒21 ppm 

Singlets at ‒16 

and 111 

nBuLi/TMEDA Et2O ‒78 to rt 
Yellow at -78, turned 

green/grey at rt 

Doublets at 36 and 

‒21 ppm 

Singlets at ‒16 

(large) and 110 

tBuLi Et2O ‒78 to rt 
No color change, 

stayed yellow 

Two doublets at 

36 and ‒21 ppm 

Singlet at 81 
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Table 1 continued 

tBuLi/TMEDA Et2O ‒78 to rt 
No color change, 

stayed yellow 

Two doublets at 

36 and ‒21 ppm 

Singlet at 81 

nBuLi/KOtBu Et2O ‒78 to rt 

At -78, turned bright 

blue immediately. At rt, 

color changed to pink, 

then yellow/green, then 

yellow after 1h 

Two doublets 36 

and ‒21 ppm 

Singlet 110 ppm 

tBuLi/KOtBu Et2O ‒78 to rt 

At -78, turned pink 

immediately. At rt, 

color changed to 

purple, then 

green/black, then 

purple, then yellow 

after 2h 

Sample decomp in 

CDCl3 

Mult. peaks at 

110, 85, 44, 31, 

‒14 

 

Because of the challenges encountered trying to functionalize coronene, 

functionalized pyrene molecules were synthesized from commercially available pyrene 

precursors. Tertiary amine-substituted pyrene compounds were prepared to then adsorb onto 

MWCNTs and test for catalytic activity. The amine groups were attached to pyrene via 

different chain lengths to study the effect of flexibility of the molecule or distance of the 

amine group from pyrene on catalytic activity. 

N-ethyl-N-(pyren-4-ylmethyl)ethanamine was synthesized from pyrene carboxylic 

acid. The acid chloride was formed by refluxing with thionyl chloride, followed by the 

addition of diethylamine to form the amide, which was then reduced with lithium aluminum 

hydride to form the tertiary amine (Scheme 2). The product was isolated as a yellow oil in 
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good yield (66%) after aqueous workup and was characterized by 1H NMR, 13C NMR, 15N 

NMR, and IR spectroscopy. 

 

 

Scheme 2: Synthesis of N-ethyl-N-(pyren-4-ylmethyl)ethanamine 

 

N,N-diethyl-4-(pyren-4-yl)butan-1-amine was prepared from pyrene butyric acid in a 

similar method to that described for N-ethyl-N-(pyren-4-ylmethyl)ethanamine (Scheme 3). 

The product was isolated as a brown oil after aqueous workup, but several small impurities 

remained and could not be separated. 

 

 

Scheme 3: Synthesis of N,N-diethyl-4-(pyren-4-yl)butan-1-amine 

 

In addition, a tertiary amine containing two pyrene groups was also synthesized 

because the presence of two pyrene groups could increase the ability to π-stack on the 

MWCNTs. First, the secondary amine N-(pyren-4-ylmethyl)ethanamine was synthesized 

from commercially available aminomethylpyrene (Scheme 4). Acetyl chloride was added to 

form the secondary amide, followed by reduction of the amide to the secondary amine with 

lithium aluminum hydride. Pyrene carboxylic acid was then converted to the acid chloride 
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using thionyl chloride, and N-(pyren-4-ylmethyl)ethanamine was added to form the tertiary 

amide containing two pyrene groups. The tertiary amide has low solubility, so the aqueous 

workup should be done quickly or the product will crash out of solution. The amide is then 

reduced with LiAlH4 to the tertiary amine product, N,N-bis(pyren-4-ylmethyl)ethanamine, 

and isolated as a yellow solid. 

 

 

Scheme 4: Synthesis of N,N-bis(pyren-4-ylmethyl)ethanamine 
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Conclusions 

Tertiary-amine substituted pyrene compounds were prepared and characterized 

following simple organic chemistry techniques. Future experiments will explore the 

adsorption of these pyrene compounds onto MWCNTs and will test their catalytic activity. 

 

Experimental Section 

 

N-ethyl-N-(pyren-4-ylmethyl)ethanamine Pyrene carboxylic acid 

(1.00 g, 0.00406 mol) was placed in a 500 mL three-necked round bottom flask under argon 

and fitted with a condenser. Thionyl chloride (5.0 mL, 0.069 mol) was added and the slurry 

was heated to reflux at 80 °C for two hours. The excess thionyl chloride was removed by 

distillation. The flask was cooled to room temperature, and then dry methylene chloride (50 

mL) was added to dissolve the yellow solid. Diethylamine (0.84 mL, 0.00810 mol) was 

dissolved in methylene chloride (10 mL) and added dropwise. The solution was quenched 

with 50 mL 10% NaOH (aq) and was transferred to a separatory funnel and washed with 

additional 10% NaOH (aq) (3 × 100 mL) and then NaCl (aq) (100 mL). The organic layer 

was dried over sodium sulfate and was then filtered and the solvent removed to give the 

amide as a brown oil that solidified into a tan solid after standing overnight. Lithium 

aluminum hydride (1.20 g, 0.0316 mol) was added to a 500 mL three-necked round bottom 

flask under argon and fitted with a condenser. The flask was cooled to 0 °C and THF (150 

mL) was added via cannula. The amide product was dissolved in THF (100 mL) and added 

slowly to the LAH slurry at 0 °C. The solution was warmed to room temperature and then 

heated to reflux for 24 hours. While refluxing, the solution changed from dark purple to dark 
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black/green. The solution was then cooled to 0 °C and quenched by the dropwise addition of 

1 mL water, 1 mL 10% NaOH (aq), and 3 mL water. After quenching, the solution was 

cloudy yellow. MgSO4 was added to dry the solution, and the mixture was then filtered to 

give a clear yellow solution. The solvent was removed to yield a brown oil. To purify further, 

the oil was dissolved in diethyl ether (250 mL) and 1 M HCl (150 mL) was added. The 

ammonium salt immediately partitioned into the aqueous layer. The mixture was transferred 

to a separatory funnel and the yellow aqueous layer was washed with diethyl ether (3 × 100 

mL). 10 % NaOH (aq) was then added to the aqueous layer to neutralize remaining acid and 

form the amine. The solution turned cloudy white once neutralized (about 300 mL NaOH). 

The solution was then extracted with diethyl ether (4 × 200 mL). The organic layer was dried 

with sodium sulfate and the solvent was removed to give a yellow oil. Yield: 0.8198 g (66%). 

1H NMR (chloroform-d, 600 MHz, 25 °C): 8.47 ‒ 7.85 (m, 9 H, aromatic pyrene C‒H), 4.12 

(s, 2 H, -CH2N(CH2CH3)2), 2.53 (q, 4 H, 4JHH = 7.2 Hz, -CH2N(CH2CH3)2), 1.01 (t, 3JHH = 

6.6 Hz, -CH2N(CH2CH3)2). 
15N NMR (chloroform-d, 60 MHz, 25 °C): -330.5 (-

CH2N(CH2CH3)2). 
13C NMR (chloroform-d, 151 MHz, 25 °C): 133.89, 131.45, 131.06, 

130.61, 129.89, 128.46, 128.08, 127.58, 127.13, 127.00, 125.86, 125.11, 124.99, 124.99, 

124.95, 124.52, 124.21 (16 C, pyrene C), 56.19 (-CH2N(CH2CH3)2), 47.12 (-

CH2N(CH2CH3)2), 11.82 (-CH2N(CH2CH3)2). IR (oil between two NaCl plates, cm-1): 3039 

m, 2967 s, 2932 m sh, 2871 m, 2800 m, 2720 w, 1919 w, 1791 w, 1679 w, 1603 w, 1588 w, 

1508 w, 1454 m, 1417 w, 1382 m, 1311 w, 1289 w, 1259 w, 1199 m, 1182 m, 1166 m, 1119 

w, 1064 m, 1037 w sh,  90 w, 956 w, 845 s, 819 w, 768 w, 754 m, 723 w, 709 s, 678 m.  
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N,N-diethyl-4-(pyren-4-yl)butan-1-amine Pyrene butyric acid 

(0.989 g, 0.00343 mol) was placed in a three-necked round bottom flask fitted with a 

condenser and addition funnel. Thionyl chloride (2.0 mL, 0.0274 mol) was added and the 

slurry was heated to reflux. The slurry turned dark red after heating at 60 °C for two hours. 

Excess thionyl chloride was removed by distillation. The solid was then dissolved in 25 mL 

dry methylene chloride, and diethylamine (1.06 mL, 0.0103 mol) dissolved in 50 mL 

methylene chloride was added dropwise slowly via the addition funnel. The solution was 

then quenched with 10% NaOH (aq) (50 mL) and then transferred to a separatory funnel. The 

organic layer was diluted with methylene chloride to 500 mL, and then the solution was 

washed with 10% NaOH (aq) (3 × 150 mL), then 1 M HCl (3 × 100 mL), and then NaCl (aq) 

(3 × 150 mL). The organic layer was then dried over sodium sulfate, then filtered and the 

solvent removed to give the amide as a red solid. Lithium aluminum hydride (1.04 g, 0.0274 

mol) was added to a three-necked 500 mL flask fitted with a condenser and addition funnel. 

The flask was cooled to 0 °C and dry THF (100 mL) was added. The amide product was 

dissolved in dry THF (100 ML) and added slowly to the LAH slurry via the addition funnel 

while maintaining the temperature at 0 °C. The solution was then warmed to room 

temperature and then heated to reflux for 14 hours. The solution was then cooled to 0 °C and 

then quenched by the slow dropwise addition of 1.0 mL water, 1.0 mL 10% NaOH (aq), and 

3.0 mL water. Magnesium sulfate was added to dry the solution, and then the dark red 

solution was filtered and the solvent was removed.  
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N,N-bis(pyren-4-ylmethyl)ethanamine Pyrene 

methylamine•HCl (1.33 g, 0.00497 mol) was added to a 500 mL flask. Methylene chloride 

(250 mL) was added to partially dissolve the ammonium salt. Triethylamine (1.52 mL, 

0.0109 mol) was added and the solution was stirred for 1 hour, until the pyrene methylamine 

completely dissolved. Acetyl chloride (0.337 mL, 0.00472 mol) was added and the solution 

was stirred at room temperature for 1 hour. The orange solution was washed with 1 M HCl (3 

× 150 mL) and then NaCl (aq) (2 × 300 mL). The organic layer was dried over sodium 

sulfate overnight. The solvent was removed to give the amide as a yellow/white powder. 

Lithium aluminum hydride (1.47 g, 0.388 mol) was added to a three-necked 1 L round 

bottom flask fitted with a condenser and addition funnel and cooled to 0 °C. Dry THF (200 

mL) was added. The amide was dissolved in THF (100 mL) and was added slowly to the 

LAH slurry via addition funnel. The solution was heated to reflux for 16 hours. The dark 

black/green solution was cooled to 0 °C and was quenched with 1.5 mL water, 1.5 mL 10% 

NaOH (aq), and 4.5 mL water. Magnesium sulfate was added and the solution was filtered 

and the solvent was removed to give the amine as a yellow oil. The amine was then dissolved 

in methylene chloride (250 mL) and transferred to a separatory funnel and washed with 10% 

NaOH (3 × 100 mL) and NaCl (aq) (2 × 100 mL). The yellow organic layer was dried over 

sodium sulfate and the solvent was removed to give a yellow oil. Pyrene carboxylic acid 

(0.600 g, 0.00244 mol) was added to a three-necked 500 mL round bottom flask fitted with a 

condenser and addition funnel and attached to an oil bubbler. Thionyl chloride (6.0 mL, 

0.0826 mol) was added and the slurry was heated to reflux for 1 hour. The excess thionyl 
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chloride was removed by distillation. The yellow solid was then dissolved in dry methylene 

chloride (100 mL). The pyrenemethylethanamine was dissolved in methylene chloride (50 

mL) and was added dropwise to the solution via the addition funnel. The solution was stirred 

for 1 hour and then quenched with 10% NaOH (aq) (50 mL). The solution was washed with 1 

M HCl (2 × 100 mL) and NaCl (aq) (2 × 100 mL). The yellow organic layer was dried with 

sodium sulfate, and then immediately filtered and the solvent was removed (the amide 

product begins to crash out of methylene chloride over time, so the workup should be done 

quickly). The product is completely soluble in DMF and DMSO. Lithium aluminum hydride 

(0.470 g, 0.0124 mol) was added to a three-necked 1 L round bottom flask fitted with a 

condenser. The flask was cooled to 0 °C and THF (250 mL) was added. The N-ethyl-N-

(pyren-4-ylmethyl)pyrene-4-carboxamide (0.755 g, 0.00155 mol) was slowly added to the 

LAH slurry as a solid in four portions while maintaining the temperature at 0 °C. The 

solution was warmed to room temperature. The orange solution was refluxed for 24 hours 

and then cooled to 0 °C and quenched with 0.5 mL water, 0.5 mL 10% NaOH (aq), and 1.5 

mL water. Magnesium sulfate was added to dry the solution, and then the solution was 

filtered and the solvent was removed. 
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CHAPTER 5 

 

Conclusions 

 

A new class of mixed monoanionic cyclopentadienyl-bis(oxazoline) ligands were 

prepared, including H{BoMCp}, H{BoMCptet}, H{BoPCp}, and H{BoPCptet}. These ligands 

were found to support many metal complexes with Mg, Zn, Ti, and Zr. {BoMCp}MgCH3, 

{BoMCptet}MgCH3, {BoPCp}MgCH3, and {BoPCptet}MgCH3 catalyze the hydroboration of 

ketones and esters using pinacolborane. {BoMCp}Zr(NMe2)3, {BoMCp}MgCH3, and 

{BoMCptet}MgCH3 are also efficient catalysts for the hydroamination of aminoalkenes, but 

these compounds are not as reactive for hydroamination as compounds made with the borate 

ligands of the type [PhB(Ox)2(C5H4)]. Further work should be done to determine the 

enantioselectivity of {BoPCp}MgCH3 and {BoPCptet}MgCH3 in hydroboration reactions to 

make chiral alcohols and hydroamination reactions to make enantiopure cyclized 

aminoalkenes. More ligands of this type can easily be developed; varying the R groups on the 

oxazoline rings or the backbone of the ligand could impart very different reactivity.  

The observed reduction of secondary and tertiary amides with pinacolborane and 

[Mg] catalysts is promising. Mechanistic studies, including kinetics, should be done to 

provide valuable insight into the mechanism of this reaction. Further work should be done to 

understand the phenyl-cleavage byproduct observed in the reduction of N,N-

dimethylbenzamide.  

 Several functionalized pyrene compounds were synthesized with tertiary amine 

groups. Future plans include adsorption of these compounds onto multi-walled carbon 
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nanotubes and testing their ability as heterogeneous catalysts once adsorbed. Other functional 

groups could be easily incorporated onto pyrene. For example, pyrene could become part of 

the backbone of H{BoMCp} or H{BoMCptet} (Fig. 1). This would provide a way to make 

heterogeneous catalysts that include H{BoMCp} or H{BoMCptet} moieties, which would be 

interesting to study. 

 

Figure 1: Proposed synthetic route to {BoMCptet} on pyrene 

 

 

 

 


