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Chapter 1 General Introduction 

I. Overview  

In ancient China, water has been regarded as one of the five vital components of 

life. It has been observed that water has many fascinating properties: water is ‘soft’ yet it 

can penetrate a hard rock; water is ‘pure’ yet it can tolerate other beings. Because of its 

unique properties, water is often associated with good quality and has been given the highest 

praise by Laozi in his book Tao Te Ching saying: the highest/best quality that one can have 

is being like water. However, little did people understand why and how water possesses 

such fascinating properties. 

 Modern scientific developments made people realize that the macroscopic liquid 

water is made of a large number of water molecules held together via a network of hydrogen 

bonds. And those wonderful properties of water are merely the macroscopic manifestations 

of the interactions between water molecules and other molecules. For example, the 

dissolving ability of water is due to the fact that the interaction between a water molecule 

and the other molecular species is stronger than the interactions among their own molecular 

species. In fact the interactions between any two molecules are governed by the same 

physics and are termed intermolecular interaction (or intermolecular forces in some 

literature, although technically ‘force’ is incorrect usage here).  

Although the very existence of the intermolecular interactions is easily proved, e.g. 

the mere presence of the solid phase of matter, and scientists today have recognized that the 

seemingly weak intermolecular interactions essentially hold the world together through a 
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delicate and cooperative process, the theoretical understanding of various intermolecular 

interactions is still far from satisfactory. On the practical side, theoreticians need to balance 

computational cost and accuracy. Because of the relatively small magnitudes of the 

intermolecular interactions, errors that appear tiny compared to the usual chemical 

(covalent) bonding may change conclusions qualitatively. High-level ab initio methods 

including explicit description of electron correlation can achieve the desired accuracy at 

very high computational cost. (Chapter 5 and 6) However the cooperative network of 

hundreds of thousands of molecules that reflects the true power of intermolecular 

interactions cannot be modeled easily by ab initio methods. Deeper understanding of 

intermolecular interactions yields better theoretical models; better theoretical models 

facilitate and even deepen the understanding of intermolecular interactions. With the 

aforementioned motivation in mind, a significant portion of this dissertation is dedicated to 

developing a method to describe the intermolecular interactions accurately with affordable 

computational resources. (Chapter 2-4)  

II. Dissertation Organization 

 This introduction chapter builds the foundation of ab initio methods and briefly 

describes the theoretical methods employed in the following chapters including an overview 

of the effective fragment potential method (EFP). Chapter 2 presents the development and 

implementation of using the valence virtual orbitals (VVOs) in place of canonical virtual 

orbitals for the charge transfer interaction and its gradient between two EFP fragments 

(EFP-EFP). Chapter 3 provides a detailed derivation and implementation of the R-7 term of 

the dispersion energy expansion using dipole-dipole and dipole-quadrupole localized 

molecular orbital (LMO) dynamic polarizabilities over the imaginary frequency range in the 
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framework of EFP. Chapter 4 derives the fully analytic gradient of the approximated QM-

EFP exchange repulsion energy between the ab initio molecule and EFP fragment (QM-

EFP). Extensive code modification on the previous implementation of QM-EFP exchange 

repulsion Fock operator and energy is made to allow the presence of multiple EFP 

fragments. Chapter 5 explores the application of a local correlation coupled cluster 

approach, cluster-in-molecules (CIM) to study the anionic water clusters in the range of 4 – 

20 water molecules. Chapter 6 studies the temperature effect on the binding enthalpies 

between SiH4 and three boron containing compounds and realizes the importance of outer 

core correlation in obtaining accurate energies and structures. 

III. Theoretical Background 

Time-Dependent Schrödinger Equation 

Quantum mechanics provides the laws of motion for microscopic particles. 

Schrödinger postulated the dynamical equation that governs the time evolution of the system 

in 1926, known as the time-dependent Schrödinger equation1–5. 

 
!
!
i
"# r,t( )

"t
= $

^
# r,t( ) = T + V( )# r,t( )     (1)

 
 

The Hamiltonian operator H is given as a sum of kinetic and potential energy 

operators (for low-velocity particles, i.e. non-relativistic). The solution of the time-

dependent Schrödinger equation is a function of time and position called a wave function. 

The wave function contains all of the information about the system. The probability of 

observing a particle at position r and time t is given as the square of the wave function. This 

is a fundamental difference between classical mechanics and quantum mechanics, because 

classical mechanics is deterministic while quantum mechanics is probabilistic.  

!
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For systems in which the potential energy operator is time-independent, the 

Hamiltonian becomes time-independent. When acting on the wave function, the 

Hamiltonian yields the total energy of the system. 

 
Η
^
Ψ r,t( ) = ΕΨ r,t( ) = −


i
∂Ψ r,t( )

∂t
	
   	
   	
   	
   	
   (2) 

Time-Independent Schrödinger Equation 

The non-relativistic, time-independent Schrödinger Equation can be written as  

!
^
" r( ) = #" r( )        (3) 

where is the Hamiltonian operator. In atomic units, it is defined as 

H = −
1

2MA

∇A
2 −

1
2i=1

N

∑
A=1

M

∑ ∇i
2 −

ZA

riAA=1

M

∑
i=1

N

∑ +
1
rijj>i

N

∑
i=1

N

∑ +
ZAZB

RABB>A

M

∑
A=1

M

∑  (4) 

Where MA  is the ratio of the mass of nucleus A to the mass of an electron and ZA  is the 

atomic number of the nucleus A. The systems of electrons and nuclei are described by their 

position vectors ri  and RA , respectively. Then the distance between electron i and nucleus 

A is riA = ri − RA , the distance between electrons i and j is rij = ri − rj and the distance 

between nuclei A and B is RAB = RA − RB .  The first two terms in Eq. (4) represent the 

operators for the kinetic energy of the nuclei and electrons, respectively. The third term is 

the Coulomb attraction between nuclei and electrons. The last two terms represent the 

repulsion between electrons and between nuclei, respectively. Φ  is the total wave function 

describing a collection of charged particles, nuclei and electrons. It is a function of 

electronic and nuclear coordinates, Φ ri{ }, RA{ }( ) , where ri{ }  and RA{ } represent the 

collection of electronic and nuclear coordinates in the system, respectively.  

!
^
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Born-Oppenheimer Approximation6 

Since nuclei are so much heavier than electrons, the nuclei move much slower than 

electrons. To a good approximation, electrons can be considered to move in a field of fixed 

nuclei. Two consequences immediately follow: the nuclear kinetic energy is zero and the 

repulsion energy between the nuclei is a constant. The remaining terms in Eq. (4) are 

defined as the electronic Hamiltonian.  

H
^
elec = !

1
2i=1

N

" #i
2 !

ZA

riAA=1

M

"
i=1

N

" +
1
rijj>i

N

"
i=1

N

"     (5) 

The eigenvalue solution to the electronic Hamiltonian is the electronic wave 

function, which describes the motion of electrons for a fixed nuclear configuration.  

H
^
elecΦelec ri{ }; RA{ }( ) = EelecΦelec ri{ }; RA{ }( )    (6) 

The electronic wave functions obtained by solving Eq. (6) depend explicitly on the 

electronic coordinates and parametrically on the nuclear coordinates.  

Invoking the same approximation, one could solve the nuclear wave function: since 

electrons move so much faster than the nuclei, the nuclei “feel” the electrons in an averaged 

field. The nuclear Hamiltonian then becomes 

H = !
1

2MA

"A
2 + !

1
2
"i
2

i=1

N

# !
ZA

riAA=1

M

#
i=1

N

# +
1
rijj>i

N

#
i=1

N

#
A=1

M

# +
ZAZB

RABB>A

M

#
A=1

M

#

= !
1

2MA

"A
2

A=1

M

# + Eelec RA{ }( ) + ZAZB

RABB>A

M

#
A=1

M

#
(7)

 

 

The second and third terms of Eq. (7) together constitute the potential energy operator for 

the nuclei. This is a significant consequence of Born-Oppenheimer approximation: it is 

possible to define the “shape” of a molecule and describe how the energy of the molecule 

changes as the shape of the molecule changes, i.e. moving on a potential energy surface. 
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The concepts of equilibrium geometries such as minima and transition states become 

meaningful. 

By solving the nuclear Schrödinger equation, 

H
^
nuc!nuc RA{ }( ) = Enuc!nuc RA{ }( )      (8) 

the motions of the nuclei, vibration and rotation, can be described.  

Under the premise of the Born-Oppenheimer approximation, the problem of solving 

the Schrödinger equation is reduced to solving the electronic Schrödinger equation for a 

fixed nuclear configuration and is what all the ab initio methods described below aim for.  

For systems with more than one electron an exact analytic solution of the 

Schrödinger equation is not possible because the electron-electron repulsion term is 

inseparable. Various approximations must be made to get around this problem.  

Variational Theorem 

Another important theorem is the variational theorem, which states that for a system 

whose Hamiltonian is time-independent and whose lowest-energy eigenvalue is E0, if Φ is 

any normalized, well-behaved function that satisfies the appropriate boundary conditions, 

then 

!* H
^
!d"# $ E0        (9) 

The integral in Eq. (9) is called the variational integral. The better the trial function 

is, the lower the values of the variational integral and closer to the true ground state energy 

E0. 

Antisymmetry Principle 
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Electrons are fermions, hence they obey antisymmetry principle, which states that a 

many-electron wave function must be antisymmetric with respect to interchange of any two 

electrons. The simplest example would be a two-electron system and, to satisfy 

antisymmetry principle, the total wave function Φ , expressed in terms of one-electron wave 

functions ψ , is in the form, 

Φ r1,r2( ) = 2− 12 ψ 1 r1( )ψ 2 r2( ) −ψ 1 r2( )ψ 2 r1( )⎡⎣ ⎤⎦    (10) 

 Eq. (10) can be cast into a determinant called a Slater determinant, and this can be 

generalized to an N-electron wave function. This single determinant wave function is an 

approximation to the exact wave function.  

Hartree-Fock Method 

The Hartree-Fock (HF) method7–10 is (for closed shell species) a single determinant 

method that solves the approximate time-independent Schrödinger equation in a self-

consistent manner. The approximate wave function is the single determinant formed from a 

set of occupied spin orbitals, !i   

! = "1"2 ..."N        (11) 

The energy of this approximate wave function is calculated as the expectation value of the 

Hamiltonian operator, provided the wave function is normalized. 

E = ! H !         (12) 

The determinantal form of the wave function gives rise to an exchange term in the energy 

expression, 

E = hi
i

N

! +
1
2

Jij " Kij( ) +VNN
j

N

!
i

N

!      (13) 
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where i and j run over all of the electrons in the system, and the factor of 1/2 accounts for 

the double counting of electron pairs. The variational theorem tells us that the “best” wave 

function, or the best set of occupied MOs is the one that makes the energy a minimum, that 

is, the variation of the energy with respect to a change in the MOs is zero, with the 

constraint that the MOs remain orthonormal. Such a constrained optimization can be 

facilitated by the Lagrange method of undetermined multipliers. 

L = ! | H |! " #ij $i | $ j( ) " % ij&' ()
ij

N

*

= E0 $i{ }&' () " #ij $i | $ j( ) " % ij&' ()
ij

N

*
    (14) 

where ! = "1"2 ..."i" j ..."N is the single determinant formed from N occupied spin 

orbitals. The energy E0 = ! | H |!  is a functional of the spin orbitals !i{ } . !ij is the 

Lagrange multiplier. This procedure leads to the HF equations 

f 1( )!i 1( ) = "i!i 1( )        (15) 

where ε  is the orbital energy and f  is the Fock operator, which (for closed shells) is 

defined (in terms of spin orbitals) to be  

f 1( ) = h 1( ) + vHF 1( ) = h 1( ) + J(1) ! K(1)[ ]
j=1

N

"     (16) 

The Fock operator is an effective one-electron energy operator, with h 1( )describing 

the kinetic energy of an electron and its attraction to the nuclei, and vHF 1( ) 	
  describing	
  the	
  

repulsion	
  to	
  all	
  the	
  other	
  electrons	
  in	
  an	
  averaged	
  way. J and K are the Coulomb and 

exchange operators, respectively. Their effects when operating on a spin orbital are  

J j 1( )!i 1( ) = dr2! j
* 2( )r12"1# ! j 2( )$

%
&
' !i 1( )     (17) 



	
   9	
  

K j 1( )!i 1( ) = dr2! j
* 2( )r12"1# !i 2( )$

%
&
' ! j 1( )     (18) 

where the spin orbital takes the form ! r,"( ) = # r( )$ "( )or# r( )% "( ) . Note that the 

Coulomb and exchange operators have a functional dependence on the solutions of the Fock 

operator and hence Eq. (15) is nonlinear and must be solved iteratively.   

LCAO-MO approximation (Basis Set approximation) 

A set of basis functions is introduced to expand the spin orbitals.  

!i = Cµi"µ
µ
#         (19) 

This turns solving the HF equation into solving a matrix equation for the expansion 

coefficients. The spin orbital !i  would be exactly represented by the expansion of Eq. (19) 

if the basis set was complete (infinite in dimension).  The energy obtained would then be the 

HF limit. In practice, a calculation can utilize only a finite number of basis functions. 

Typically, the larger the basis set, the better the trial wave function as it has more flexibility 

during the self-consistent iterations.  

At the beginning of self-consistent iterations, an initial guess of orbitals is made 

from which the density is obtained. The Fock matrix is formed from the core-Hamiltonian 

matrix and the two-electron integral matrix. Diagonalization of the Fock matrix leads to a 

new set of orbitals. The process repeats until the density obtained from new orbitals agrees 

with the previous density within a certain threshold.  

 The general HF equation is written in terms of molecular spin orbitals that contain a 

spin function and a spatial orbital. Restricted HF (RHF) wave functions contain pairs of 

electrons, and each pair has the same spatial part but opposite spin functions. RHF is used 

for closed-shell system. For open-shell systems, the restricted open-shell HF (ROHF) 
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method forces the spatial part of the doubly occupied orbitals to be the same. If there is no 

restriction on the spatial orbitals that are occupied by electrons of different spins, the trial 

wave function is an unrestricted HF (UHF) wave function. 

 By using a single determinant form of the wave function, the instantaneous electron-

electron repulsion is replaced by an average interaction. The missing electron correlation 

energy, although small (~1% of the total energy), is extremely important for describing 

chemical phenomena. In addition, the restricted form of the wave function simply cannot 

describe the dissociation process into open-shell fragments while the unrestricted wave 

function does not produce accurate results. Despite its limitations, the HF wave function is 

the best single-determinant trial wave function within a given basis set and is the starting 

point for more accurate approximations.  

Post-Hartree Fock methods 

 Various methods have been developed in an effort of recovering the dynamic 

correlation energy. Although the configuration interaction method is not used in this thesis, 

it is briefly mentioned in order to define the correlation energy. 

Configuration Interaction (CI)11,12 

The HF wave function, the determinant formed from the N lowest-energy orbitals, is 

the simplest electronic representation of the ground state wave function that is 

antisymmetric. Other so-called excited determinants that are formed from the solutions of 

the HF equation represent the configurations with promotion of electrons from some 

occupied to virtual orbitals. Conceptually, the true wave function is likely to result from the 

interaction of several electronic configurations and mixing those excited determinants 

allows more variational flexibility in the wave function. The set of HF determinants and all 
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the excited determinants can serve as a basis to expand the exact ground state many-electron 

wave function,!0 .  

!0 = c0 "0 + ca
r

ar
# "a

r + cab
rs

a<b
r<s

# "ab
rs + cabc

rst

a<b<c
r<s<t

# "abc
rst + ...  (20) 

This is the form of the full CI ground state wave function. Here a, b, c etc. denote occupied 

orbitals and r, s, t etc. denote virtual orbitals. !0 is the HF determinant, and !a
r is a singly 

excited determinant differing from !0 by exciting the electron in ! a to ! r . The restriction 

on the summation ensures that each excited determinant is included only once.  

If the AO basis is complete, so is the basis of determinants. Then full CI would give 

the exact energies of all the electronic states. At finite basis, full CI provides the upper 

bound for that basis. The (dynamic) correlation energy is defined as the difference between 

the exact energy and the HF energy 

Ecorr = EFCI ! EHF        (21)   

Except for a few very small systems, full CI is practically intractable. Therefore truncation 

at single and double excitation in Eq. (20) is common.  

Perturbation Theory 

The basic idea behind perturbation theory is that knowing how to treat a simple 

system and given that the real system is not too different from the simple system, one can 

treat the real/more complex system mathematically as a perturbed simple system. The 

commonly used second-order Möller-Plesset perturbation theory (MP2) is the application of 

a more general formalism called Rayleigh-Schrödinger perturbation theory (RSPT) to many-

body systems. Since the Effective Fragment Potential Method (which constitutes the bulk of 
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this thesis) is formulated in the framework of Rayleigh-Schrödinger perturbation theory 

(RSPT), RSPT will be briefly mentioned for later discussion. 

Rayleigh-Schrödinger Perturbation Theory (RSPT) 

The full Hamiltonian is the sum of the unperturbed Hamiltonian and the 

perturbation , where the solution to H0  is known:	
  H0 ! i = Ei
(0) ! i . To solve the 

eigenvalue problem H Φi = Ei Φi , one introduces an ordering parameter λ and expands 

the eigenvalues and eigenfunctions in terms of Ei
(n)  and Ψ i

(n)  in a Taylor series of λ.  

Ei = Ei
(0) + λEi

(1) + λ2Ei
(2) + ...       (22) 

Φi = Ψ i
(0) + λ Ψ i

(1) + λ2 Ψ i
(2) + ...     (23) 

Ei
(n)  and Ψ i

(n)  are called the n-th order energy and n-th order wave function, respectively.  

By choosing intermediate normalization, Ψ i
(0) Φi = 1 , and expanding ! i

(1) 	
  in the 

basis of the eigenfunctions of H0 , ! i
(1) = cn

(1) !n
(0)

n
" , the first three order of energies can 

be expressed as: 

Ei
(0) = ! i

(0) H0 ! i
(0)       (24) 

Ei
(1) = ! i

(0) V ! i
(0)        (25) 

Ei
(2) = ! i

(0) V ! i
(1) =

! i
(0) V !n

(0) !n
(0) V ! i

(0)

Ei
(0) " En

(0)
n# i
$   (26) 

Möller-Plesset Perturbation Theory (MPPT)13 

H H0

V
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MPPT is the application of RSPT to the many-body problem. H0  is a sum of the 

Fock operators 

H0 = fi
i
! = h i( ) + vHF i( )( )

i
!      (27) 

In Eq. (27), i sums over the electrons in the system. Hence the perturbation V is 

V = rij
!1 ! vHF i( )

i
"

i< j
"        (28) 

When the HF wave function is used as the zeroth order wave function, E0+E1 recovers the 

HF energy. The correction to the HF energy starts at the second-order, MP2. MP2 typically 

accounts for 80-90% of the correlation energy and is widely used for its efficiency and 

adaptivity on parallel computer systems. Since the Hamiltonian used is not exact, 

perturbation theory is not variational. Hence higher order energy corrections do not always 

guarantee a lowering of the energy.  

Coupled-Cluster Theory (CC)14–16 

Like configuration interaction (CI), CC expresses the wave function as a sum of the 

HF determinant and all other excited determinants. This correlated wave function is 

obtained by allowing a series of excitation operators Tn  to act on the HF wave function. 

! = 1+ T +
T 2

2!
+
T 3

3!
+ ....

"
#$

%
&'
(HF = eT(HF 	
   	
   	
   	
   (29) 

And the cluster operator T is 

T = T1 + T2 + T3 + ....+ Tn 	
   	
   	
   	
   	
   	
   (30)  

where T1  is the single electron excitation operator and T2  is the double electron excitation 

operator, and so on. When Ti  acts on an HF reference wave function, all excited 

determinants are generated. 
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T1!
HF = ti

a! i
a

a

vir

"
i

occ

" 	
   	
   	
   	
   	
   	
   	
   (31) 

T2!
HF = tij

ab! ij
ab

a<b

vir

"
i< j

occ

" 	
  	
   	
   	
   	
   	
   	
   (32) 

where the expansion coefficients t are called amplitudes.  

 If all of the cluster operators up to Tn are included in T, the CC wave function will 

be equivalent to full CI. A full CC computation is impossible except for very small systems. 

It is therefore common to use a truncated cluster operator that includes only singles and 

doubles (CCSD) and the triples contribution computed by perturbation theory (CCSD(T)). 

  

Solvation Method 

The aforementioned ab initio methods become computationally intractable when 

dealing with the solvation problem due to steep scaling with the system size. Two classes of 

approaches have been developed to circumvent this problem. One class is called the 

continuum or implicit solvation. These methods represent the bulk solvent by some 

dielectric parameters and interact with the solute via this pre-defined electric field. The 

advantage of such methods is that they attempt to describe the bulk solvation in a 

computationally inexpensive manner. However they lack the explicit solvent-solute 

interactions. Insightful understanding of structures, properties and reaction mechanism relies 

on accurate description of solvent-solute interaction. The other class of methods called the 

discrete or explicit solvation methods are developed for this reason. Note that all the ab 

initio methods treat solvent molecules explicitly. However the explicit solvation methods 

usually refer to those that approximate each solvent molecule as a perturbative potential for 
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the solute molecules. Most explicit solvent methods contain some parameters that are 

obtained by fitting to experiment or high-level ab initio calculation; TIP3P would be an 

example of such potential17.  

Effective Fragment Potential Method (EFP) 

The Effective Fragment Potential method (EFP) has been developed by Gordon and 

coworkers for the past two decades or so to study intermolecular interactions, including 

solvation. The EFP method is designed to accurately and efficiently describe the interaction 

between molecules. Detailed descriptions of EFP can be found in many papers18–23 

(including Chapters 2-4 in this dissertation). The following paragraphs present the 

framework within which EFP is built.  

Consider a system of two weakly interacting molecules ( ), the unperturbed 

Hamiltonian is the sum of the individual Hamiltonian. 

H0 = HA + HB 	
   	
   	
   	
   	
   	
   	
   (33)  

Assuming the electron densities of the two molecules do not overlap, the 0th order wave 

function is the Hartree product of the wave functions of isolated A and B. This is the so-

called long-range approximation. 

!(0) = !0
A!0

B 	
   	
   	
   	
   	
   	
   	
   	
   (34) 

The perturbation V is the electronic interaction between the electrons and nuclei in the two 

molecules. Then the zeroth order energy is just the sum of the energies of isolated A and B. 

Three types of intermolecular interaction arises as the first and second order perturbation 

energy: 

E (1) = !(0) V !(0) = !0
A !0

B V !0
A !0

B 	
   	
   	
   (35) 

A ! ! ! B



	
   16	
  

E (2) =
!0

A !0
B V !m

A !0
B

E0
A + E0

B( ) " Em
A + E0

B( )m#0
$ +

!0
A !0

B V !0
A !n

B

E0
A + E0

B( ) " E0
A + En

B( )n#0
$

+
!0

A !0
B V !m

A !n
B

E0
A + E0

B( ) " Em
A + En

B( )n#0
$

m#0
$

	
   (36) 

Eq. (35) is just the classical coulomb interaction. The first two terms of the 2nd-order 

perturbation energy gives the induction/polarization energy, arising from promoting 

molecule A to excited state m or promoting molecule B to excited state n. The last term 

corresponds to the dispersion energy when both A and B are excited. Since the overlap 

between the two molecules is assumed to be negligible, the excited states of individual 

molecules result from mixing their own virtual orbitals. The interaction operator V can be 

represented as multipole-multipole interactions. In EFP, distributed multipole expansions 

developed by Stone 24,25 are used.  

 As two molecules approach, the long-range approximation starts to break down. 

Instead of reformulating all three above-mentioned interactions, damping functions have 

been developed as short-range corrections for these three interactions. In addition, two types 

of interaction arise at short range. Exchange repulsion and charge transfer interaction 

emerge as additional first- and second-order interactions, respectively, when using 

antisymmetrized product of wave functions for the cluster AB. 

The initial implementation of EFP is for water only (EFP1)18. The intermolecular 

interaction between molecules is partitioned into three components: Coulomb interaction, 

induction and a remainder repulsive term. The Coulomb interaction is computed according 

to Stone’s distributed multipole analysis24,25, with the expansion truncated at octopole and 

the expansion centers at the atom centers and bond midpoints. The induction term is 

computed using the static anisotropic localized molecular orbital (LMO) dipole 
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polarizability tensor. The dipole induced by the total electric field of all other 

molecules/fragments is iterated to self-consistency, incorporating many-body effect into the 

model. The remainder term is determined by fitting to water potential calculated either with 

Hartree-Fock or density functional theory (B3LYP functional26,27). This empirically 

determined remainder term prevents EFP1 from easy generalization to other solvent types.  

The second implementation, EFP2, also known in the literature as the general 

effective fragment potential method has been developed for any closed-shell molecule. The 

interaction between molecules in EFP2 is partitioned into five terms: Coulomb interaction, 

polarization, dispersion, exchange repulsion and charge transfer. The coulomb and 

polarization terms are identical to EFP1. The dispersion is modeled using the dynamic 

dipole polarizability tensor over imaginary frequency range. In this dissertation, R-7 

dispersion interaction is developed using the dynamic anisotropic dipole-quadrupole 

polarizability tensor over the imaginary frequency range. The exchange repulsion is derived 

from a power expansion of the intermolecular overlap truncated at the second order. The 

charge transfer interaction is obtained from a second-order perturbative treatment, using the 

same power expansion of the intermolecular overlap but truncated at the first order.  
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Abstract 

The charge transfer (CT) interaction, the most time-consuming term in the general effective 

fragment potential (EFP) method, is made much more computationally efficient. This is 

accomplished by the projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) 

as the atomic basis onto the self-consistent field (SCF) virtual molecular orbital (MO) space 

to select a subspace of the full virtual space called the valence virtual space. The 

diagonalization of the Fock matrix in terms of QUAMBOs recovers the canonical occupied 

orbitals and more importantly, gives rise to the valence virtual orbitals (VVOs). The CT 

energies obtained using VVOs are generally as accurate as those obtained with the full 

virtual space canonical MOs because the QUAMBOs span the valence part of the virtual 

space, which can generally be regarded as ‘chemically important’. The number of 

QUAMBOs is the same as the number of minimal-basis molecular orbitals (MOs) of a 

molecule. Therefore, the number of VVOs is significantly smaller than the number of 
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canonical virtual MOs, especially for large atomic basis sets. This leads to a dramatic 

decrease in the computational cost.  

I. Introduction 

 Modeling intermolecular interactions accurately and efficiently has been a target of 

computational chemistry for decades. Intermolecular interactions play an important role in 

determining the structures and consequently the properties of molecular systems that have 

physical, chemical, and biological significance. For example it is essentially the hydrogen-

bonding pattern between the nucleotide bases that enables the correct transcription and 

translation processes in expressing a protein.1 The dispersion interaction among the stacking 

nucleotide bases provides a significant portion of the stabilization.2,3 Protein structures are 

ultimately the result of chemical and intermolecular interactions between the amino acids.1 

High-level ab initio methods that include dynamic electron correlation can provide accurate 

descriptions of all of the contributions to intermolecular interactions, including Coulomb, 

induction/polarization, exchange repulsion, dispersion, and charge transfer interactions. 

Unfortunately, such correlated methods are very computationally demanding. For example, 

second order perturbation theory (MP2) and coupled cluster theory with singe, double, and 

perturbative triple excitations, CCSD(T), scale as N5 and N7, respectively, where N is the 

number of basis functions. Consequently, such methods quickly become prohibitive for 

large systems, unless approximations are introduced.  

Chemistry is often carried out in a solvent. A fundamental understanding of how 

solvent molecules interact with solutes and with each other can provide molecular-level 

insights about how chemical phenomena occur. In order to capture explicit solvent effects 

one frequently needs to include a large number of solvent molecules, more than is 
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practicable for correlated ab initio methods. One therefore needs to develop methods that 

are more efficient and at the same time retain the accuracy of the correlated methods. 

Implicit solvent methods circumvent these scaling problems, but at the expense of omitting 

explicit solute-solvent interactions, such as hydrogen bonding.   

The effective fragment potential (EFP) method is an explicit solvent method4,5. The 

original EFP implementation, called EFP1,5 was designed solely for water. The components 

of the EFP1 potential are the Coulomb interaction, the induction/polarization interaction, 

and a remainder term. The Coulomb interaction is modeled using the Stone distributed 

multipole analysis (DMA) method 6, expanded through octopoles, where the expansion 

points are the atom centers and the bond midpoints. The polarization interaction is modeled 

with localized molecular orbital (LMO) polarizability tensors on individual bonds and lone 

pairs of electrons and is iterated to self-consistency. The iterative process incorporates 

many-body effects into the model. The remainder term is fitted to the water dimer potential 

calculated either with Hartree-Fock (HF) or density functional theory (DFT, with the 

B3LYP functional7). For EFP1/HF, the remainder term includes exchange repulsion and 

charge transfer. In the EFP1/DFT method the remainder term also includes some correlation 

effects.  

The general EFP implementation, often called EFP2, has no empirically fitted 

parameters and is therefore applicable to any (closed shell) molecular species. The 

components of the EFP2 method are: Coulomb, induction/polarization, dispersion, exchange 

repulsion and charge transfer. Each of these intermolecular interactions is derived from first 

principles, based on truncated expansions. The Coulomb and induction interactions are the 

same as in EFP1. The exchange repulsion interaction is derived from a power expansion in 
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the intermolecular overlap, truncated at the second order, expressed in terms of LMOs.8 The 

dispersion interaction is modeled with LMO dynamic (imaginary frequency) polarizability 

tensors obtained from time-dependent Hartree-Fock calculations.9 The charge transfer 

interaction term is obtained using a second-order perturbative treatment, and is also derived 

based on an expansion in the intermolecular overlap, neglecting second and higher order 

terms.10 All of the required EFP2 input parameters are generated in one ab initio preparative 

calculation on the isolated individual molecule. There is no empirical parameterization and 

EFP2 can be systematically improved by including higher order terms in the expansions. In 

the following, EFP2 will be called, simply, EFP. 

 The charge transfer (CT) interaction may be defined as the energy stabilization due 

to the mixing of the occupied orbitals of one molecule with the virtual orbitals of another 

molecule. The CT interaction can be important in ionic and polar molecular systems such as 

water.11 Previously the CT energy and gradient between two EFP fragments were derived 

and implemented using a perturbative approach with SCF canonical molecular orbitals 

(CMOs) (both occupied and virtual orbitals).10 The CT interaction is the most time-

consuming part of an EFP calculation, mainly due to the large number of canonical virtual 

orbitals when reliable basis sets are used. The goal of the present work is to present a new 

implementation that decreases the number of virtual orbitals used in the calculation, while 

retaining the accuracy of the original method. This goal is accomplished by making use of 

the quasiatomic minimal-basis-set orbitals (QUAMBOs), a localized orbital-based method 

developed by Ruedenberg and co-workers.12 QUAMBOs may be thought of as the virtual 

orbital complement of the valence occupied space of a molecule. They therefore provide a 
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natural set of virtual orbitals with which to determine the majority of the charge transfer 

interaction energy.  

 The reduced variational space (RVS) method is an energy decomposition analysis 

algorithm proposed by Stevens and Fink13 which is closely related to the commonly used 

Kitaura-Morokuma (KM) energy decompoisition analysis (EDA)14. Both analyses partition 

the interaction energy, at the Hartree-Fock level of theory, into electrostatic/Coulomb, 

polarization, exchange and charge transfer components. It has been demonstrated that the 

RVS interaction energy components are better behaved than their counterparts in the KM 

analysis when the orbital interactions are strong.13 This is because the corresponding wave 

function from which the RVS component energies are obtained is antisymmetrized. Since 

the EFP-EFP CT formula is also derived using the antisymmetrized wave function as the 

zeroth order wave function, the numerical results from EFP and RVS are comparable. RVS 

CT results serve as benchmark numbers in this study. 

This paper is organized as follows. The derivation of the EFP charge transfer energy 

and gradients has been described in a previous paper in detail10 and is only briefly 

summarized here in Sec. II A. The formulation of QUAMBOs is also detailed in another 

paper12 and is only briefly described in Sec II B. The computational methodology used in 

this study is summarized in Sec. III A. Numerical results are discussed in Sec III B. 

Conclusions are drawn in Sec IV.  

 

II. Theory  

A.	
  EFP2	
  Charge	
  transfer	
  interaction	
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The detailed derivation of the EFP-EFP charge transfer energy and gradient was 

presented in a previous paper10 using a second-order perturbative treatment with CMOs. The 

key steps and important approximations in the derivation are summarized here.   

The starting point is the expression for the energy of a closed-shell molecule M with 

nonorthogonal molecular orbitals: 

EM = 2 hikSik
!1 + Sik

!1 (2 ik rs !
s

occM

"
r

occM

"
k

occM

"
i

occM

"
k

occM

"
i

occM

" ir ks )Srs
!1 + Enuc  

 (1) 

where i, k, r and s are the occupied orbitals of molecule M (thus, the upper limit occM on 

the summations). hik is a one-electron integral,  2<ik|rs>-<ir|ks> are the two-electron 

integrals, S is the matrix of overlap integrals, and Enuc is the nuclear repulsion energy. The 

molecular orbitals can be non-orthogonal and non-normalized but they are linearly 

independent.  

Next, using the definition15 

S!1 = I ! P          

 (2) 

and substituting Eq (2) into Eq (1), one obtains 

EM = 2 hik ! ik " Pik
M( )

k

occM

#
i

occM

#

+ ! ik " Pik
M( )

k

occM

#
i

occM

# $ 2 ik rs " ir ks( )
s

occM

#
r

occM

# !rs " Prs
M( ) + Enuc

  

 (3) 

Now, to approach the intermolecular interaction in a perturbative manner, suppose 

two weakly interacting molecules A and B form a supermolecule; then the zero-order wave 
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function, , for the supermolecule is the antisymmetrized product wave function formed 

from wave functions that describe A and B.  

Let H be the full Hamiltonian, including the perturbation. Then the zeroth + first 

order energy is: 

EAB
(0) + EAB

(1) = !(0) H !(0)

= 2 hik
AB " ik # Pik

AB( )
k

occAB

$
i

occAB

$

+ " ik # Pik
AB( )

k

occAB

$
i

occAB

$ 2 ik rs # ir ks( )
s

occAB

$
r

occAB

$ "rs # Prs
AB( ) + Enuc

  (4) 

where the indices i, k, r and s represent the occupied MOs of isolated A and B.  

 and  are the zeroth- and first-order energies of the system. hAB includes the electron 

kinetic energy plus the electron-nuclear attraction from both molecules: 

hAB = T +V nucA +V nucB        (5) 

The superscript AB on P means that the overlap matrix used to define the P matrix is the 

overlap matrix of the supermolecule AB. If the orbitals are normalized, the diagonal 

elements of the overlap matrix are unity and one can separate the off-diagonal part of the 

matrix: 

S
~
= S ! I          (6) 

Then, the P matrix can be expanded in terms of : 

P = I ! S!1 = I ! (I + S
~
)!1 = I ! (I ! S

~
+ S2

~

! S3
~

+ ...) = S
~
! S2

~

+ S3
~

! ...  (7) 

For those off-diagonal elements in which both orbitals belong to the same molecule, the 

leading term in the expansion is the quadratic power of S because the orbitals within the 

same molecule are orthogonal. Suppose both i and k are MOs on atom A, 

!(0)

EAB
(0) EAB

(1)

S
~
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If the two indices are from different molecules, the leading term of P contains the first 

power of S.  

Pij
AB = S

~
ij! (S2 )

~

ij+ (S
3)
~

ij! ... " S
~
ij! S

~
ik S
~
kj!

k

occA

# S
~
il S
~
lj

l

occB

#

= S
~
ij = (Sij ! Iij ) = Sij

   (9) 

The original EFP charge transfer formula resulted from truncating the 2nd and higher order 

powers of S in the expansion of P. 

Now, let i, k, r and s be the occupied MOs of A and j, l, t and w be the occupied 

MOs of B. Substituting Eqs (8) and (9) into Eq (4) gives 
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          (10) 

Let !(1) = !(0) +! '  where ! '  is the first order correction to the zeroth order wavefunction 

!(0) :  

The second order perturbation energy is then obtained as  

EAB
(2) = !(0) H !(1) " !(0) H !(0)      (11) 

By definition, the energy lowering when the occupied MOs of A mix with the virtual 

MOs of B is referred to as the charge transfer energy of A due to B. The first-order 

perturbed wavefunction of one molecule is obtained by mixing in the virtual MOs of the 

other molecule. For example, the first-order perturbed MO i on molecule A is  

! i
A(1) = ! i

A(0) + Uin!n
B(0)

n

virB

"        (12) 

where U is the mixing coefficient matrix.  

Substituting Eq (12) into Eq (10) and collecting the energy changes due to the mixing from 

virtual orbitals of B, one obtains the change transfer energy of A due to B. Note that if both 

the bra and ket wavefunctions are from molecule A, only one of them is perturbed (e.g., see 

Eq. 11). In this paper, ! i
A(0) and !r

A(0) are conveniently chosen to be perturbed to ! i
A(1) and 

!r
A(1) . !k

A(0)  and ! s
A(0) are unperturbed. 

Combining the contributions to the energy change from each term in Eq. (10) and 

splitting the one-electron operator hAB into the kinetic energy operator and the nuclear 

attraction operators from A and B, the CT energy of molecule A due to the presence of B is 
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           (13) 

Further simplification includes  

Tnj +Vnj
nucB + 2 nj ll ! nl jl( )

l

occB

" = Fnj
B = 0,   n #virB,  j #occB   (14) 

where n and j belong to the virtual and occupied orbitals of molecule B, respectively. This is 

because, for CMOs, the off-diagonal elements of the Fock operator are zero. Likewise, 

Tin +Vin
nucA + 2 in kk ! ik nk( )

k

occA

" = Fin
A = 0,   i #occA,  n #virB   (15) 

In Eq. (15), i is an index for the MOs of A and!n
B(0) is assumed to be orthogonal to all the 

MOs of A. This is enforced by the following approximate orthonormalization procedure 

!n
B(0) =

1

1" Snm( )2

m

allA#
$n

B(0) " Snm$m
A(0)

m

allA

#%
&'

(
)*

,   n +virB    (16) 

where ! is the MO after orthonormalization. To simplify Eq. (14) further, two sets of 

approximations can be applied. The first set [Eqs. (17) and (18)] neglects the exchange 

integrals and approximates the Coulomb integrals with the multipole expansion as the 

electrostatic potential of the molecule, truncated at the quadrupole: 

Vin
nucB + 2 in jj ! ij nj( )

j

occB

" #Vin
nucB + 2 in jj
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" #Vnj
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k
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" #Vnj
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(18)

 

The superscripts EFA and EFB represent the potentials of molecules A and B, respectively, 

described by a distributed multipole expansion. The other possible set of approximations 

[Eqs.(19) and (20)] set the Fock matrix to zero if the two indices are either from different 
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molecules (Eq. (19)) or from the occupied and virtual orbitals of the same molecule (Eq. 

(20)).  

Vin
nucB + 2 in jj ! ij nj( )

j

occB

" = Fin
B ! Tin # !Tin ,    i $occA, n $virB    (19) 

Vnj
nucA + 2 nj kk ! nk jk( )

k

occA

" = Fnj
A ! Tnj # !Tnj ,   n $virB,  j $occB   (20) 

Different combinations of Eqs (17)-(20) can result in four possible formulae (see 

Appendix). Previously, it was demonstrated that the combination of Eqs (17) and (20) gives 

the most accurate numerical results when compared with values obtained from a reduced 

variational space (RVS) analysis.10,13 When the valence virtual orbitals (see Section IIB) are 

used, numerical tests show that this combination still gives the best results (see Appendix).  

Applying Eqs. (17) and (20) to Eq. (13) results in 

CT A(B) = 2 Uin Vin
EFB + TnjSij

j

occB

!
"

#$
%

&'n

virB

!
i

occA

!      (21) 

The mixing coefficient matrix element Uin is approximated as10 

Uin !
" i

A(0) V EFB "n
B(0)

#i
A $ #n

A =
" i

A(0) V EFB "n
B(0)

Fii
A $ Fnn

A ,   i %occA,  n %virB  (22) 

In Eq. (22) VEFB is the multipole potential defined in Eq (17). !i
A  is the orbital energy of 

! i
A , which equals the corresponding diagonal element of the Fock matrix, Fii

A . !n
A , on the 

other hand, is the orbital energy of when it is assumed to be orthonormal to the virtual 

MOs of molecule A (enforced by Eq. (16)). !n
A can also be written as a Fock matrix element, 

Fnn
A , in an analogous manner:  

Fnn
A = Tnn +Vnn

nucA + 2 nn ii ! ni ni( )
i

occA

" = Tnn +Vnn
EFA ! ni ni

i

occA

" ,    n #vir. B  (23) 

!n
B
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The last equality in Eq. (23) is obtained using Eq. (18). It is important to realize that Fnn
A  is 

not related to Fnn
B . The latter is the orbital energy of ! n

B determined by diagonalizing the 

Fock matrix of isolated B. Therefore Fnn
A  is not a quantity that can be obtained from the 

preparative ab initio calculation on the isolated molecule that is used to construct an EFP. 

Since ! n and ! i  are from different molecules, the exchange term ni ni  and the potential 

energy due to the multipole charge distribution on fragment A, Vnn
EFA , in Eq. (23) are 

relatively small and can be neglected. (Fnn
A ! Tnn ) Numerical tests were done previously to 

justify this approximation.10 Hence the final form for the mixing coefficient matrix U is 

Uin !
Vin

EFB

Fii
A " Tnn

        (24) 

Combining Eqs. (21) and (24) and replacing ! n
B  with Eq. (16), one obtains the final form of 

the charge transfer energy expression as 

CT A(B) = 2 1
1! Snm( )2m

allA"
#
Vin

EFB ! SnmVim
EFB

m

allA"
Fii

A !Tnn( ) # Vin
EFB ! SnmVim

EFB

m

allA

" + Sij Tnj ! SnmTmj
m

allA

"$
%&

'
()j

occB

"
*

+
,

-

.
/

n

virB

"
i

occA

"
           

(25)
 

where CTA(B)  is the CT energy of A induced by B.  

Similarly, the CT energy of B induced by A is   

CT B(A) = 2 1
1! Snm( )2n

allB"
#
Vjm

EFA ! SnmVjn
EFA

n

allB"
Fjj

B !Tmm( ) # Vjm
EFA ! SnmVjn

EFA

n

allB

" + Sij Tmi ! SnmTni
n

allB

"$
%&

'
()i

occA

"*

+
,

-

.
/

m

virA

"
j

occB

"
           (26) 

Since the final CT energy formulation is unaltered by the use of the quasiatomic minimal-

basis-set orbitals, the expression for the gradient remains unchanged from the one that was 

derived previously.10 
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 B.	
  QUAMBOs	
  and	
  Valence	
  Virtual	
  Orbitals	
  (VVOs) 

Quasiatomic minimal-basis-set orbitals (QUAMBOs), developed by Ruedenberg and 

coworkers,12 have the following attributes: (i) the number of QUAMBOs equals the number 

of minimal basis set molecular orbitals for the system. (ii) the QUAMBOs deviate 

minimally from the minimal basis set orbitals of the corresponding free atoms of that 

system. Thus QUAMBOs can be viewed as slightly deformed minimal basis atomic orbitals. 

(iii) The formulation of QUAMBOs is independent of the atomic basis sets used.  

The projection of the QUAMBOs onto the SCF virtual space selects a subspace, 

called the virtual valence space, which yields a good approximation to the most important 

correlating orbitals. The most time-consuming part of an EFP CT calculation is the 

computation of the one-electron potential terms. Fundamentally, the bottleneck is the huge 

number of canonical virtual orbitals compared to the number of occupied orbitals. Hence, 

the motivation for using QUAMBOs as the basis for EFP-EFP charge transfer calculations 

is the expectation that the dramatically reduced number of virtual orbitals will diminish the 

cost of a CT calculation significantly while these chemically important “valence virtual 

orbitals” (VVOs) can capture most of the CT interaction.  

 The full description of QUAMBOs is given in reference 12. A summary of how 

QUAMBOs are constructed is given here.  

 The free-atom minimal basis atomic orbital Aj
* can be expressed in terms of the 

occupied and virtual SCF MOs: 

Aj
* = !nanj

*

n

occ

" + !vavj
*

v

vir

"        (27) 

where anj
* = !n Aj

*  and avj
* = !v Aj

*   
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Note that the * here does not represent complex conjugate, but is merely a symbol to 

distinguish the free-atom minimal basis atomic orbitals from QUAMBOs. 
 

The QUAMBO Aj
 can be similarly expanded as 

Aj = !nanj +
n

occ

" !vavj
v

vir

"        (28) 

 with anj = !n Aj  and avj = !v Aj .      (29) 

For both the free-atom minimal basis orbitals, Aj
* and QUAMBOs, Aj, the index j runs from 

1 to M, with M being the total number of minimal basis set valence atomic orbitals in the 

molecule. One can write M = N + P, where P is the number of virtual valence orbitals. The 

M-dimensional space spanned by the QUAMBOs must also be spanned by the N occupied 

SCF MOs plus the appropriate number (P) of orbitals in the V-dimensional SCF virtual 

space.  Calling these virtual orbitals ! p , QUAMBO Aj can be expressed in terms of the SCF 

occupied MOs and these ! p : 

Aj = !nanj
n

occ

" + # pbpj
p

val .vir

"        (30) 

and 

  ! p = "vTvp
v

vir

#         (31) 

In Eq. (30) p goes up to the number of minimal basis set virtual orbitals, which equals the 

number of the VVO, P.  

The QUAMBO Aj is constructed in such a way that it deviates as little as possible 

from the free-atom minimal basis atomic orbital Aj
*. This corresponds to minimizing the 

square deviation12 
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Aj ! Aj
* Aj ! Aj

* = 2 1! Aj Aj
*"# $% = 2 1! Dj( )1/2"

#
$
%    (32) 

where Dj = !n Aj
* 2

n

occ

" + # p Aj
* 2

p

val .vir

"       (33) 

with the normalization condition Aj Aj = 1 and Aj
* Aj

* = 1   

A constrained Lagrange minimization leads to  

Aj = Dj
!1/2 "n "n Aj

*

n

occ

# + $ p $ p Aj
*

p

val .vir

#
%
&
'

('

)
*
'

+'
     (34) 

So, the QUAMBOs are the normalized projection of the free-atom minimal-basis atomic 

orbitals A* onto the space spanned by the SCF MOs. Combining Eqs. (34), (29) and (31), 

one obtains 

Aj = (Dj
!1/2 "n Aj

* )
n=1

occ

# "n + Dj
!1/2

p=1

val .vir

# "vTvp "wTwp
w

vir

# Aj
*

v

vir

#

= Dj
!1/2anj

*( )n# "n + Dj
!1/2TvpTwpp#( ) "w Aj

* "vw#v#
= anj

' "nn# + avj
' "vv#

   (35) 

To find anj
'  and avj

' requires the determination of the expansion coefficient matrix T. The 

simultaneous minimization of the quantity in Eq (32) for all QUAMBOs is equivalent to 

maximizing the sum  

 Dj = !n Aj
* 2

n

occ

" + # p Aj
* 2

p

val .vir

"$

%
&

'

(
)j"

j

min basis

"     (36) 

Eq. (36) is ultimately achieved by maximizing the sum over the ! p (φsum). This is because 

the only variables in Eq. (36) are the elements of the expansion coefficient matrix T [Eq. 

(31)] for ! p . 
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!sum = ! p Aj
* 2

p

val .vir

"
j

min basis

"

= Tvp #v Aj
*

v

vir

"$%&
'
()

Twp #w Aj
*

w

vir

"$%&
'
()p

val .vir

"
j

min basis

"
= TvpTwpBvww"v"p"

    (37) 

T is defined in Eq. (31) and Bvw = !v Aj
*

j" !w Aj
* = avj

* awj
*

j"  

The B matrix is diagonalized, and the T matrix is formed from the p eigenvectors of B with 

the p largest eigenvalues, i.e. BTp = ! pTp , where ! p is the pth eigenvalue of the matrix B.

!sum = " pTvpTvpv#p# = " pp#  is maximized. Once the matrix T is determined, the set of 

P valence virtual orbitals ϕp can be determined using Eq. (31). This effectively is a process 

of optimizing the valence virtual space in such a way that the QUAMBOs deviate least from 

the free-atom minimal basis AOs. Subsequently, the normalized expansion coefficients anj
'  

and avj
'  are obtained as in Eq. (35). Using these QUAMBOs as the atomic basis set, one can 

obtain orbital energies by diagonalizing the corresponding Fock matrix. These orbital 

energies are then used in the CT energy expression. The diagonalization also recovers the 

canonical occupied orbitals and generates the valence virtual orbitals (VVOs) that are then 

used in the CT calculations.  

 

III. Numerical Results and Discussion 

A. Computational Methodology 

The codes for generating VVOs in the preparative ab initio runs to generate an EFP, 

and for using VVOs to calculate the EFP-EFP CT energy and gradient have been 
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implemented in the electronic structure quantum chemistry package GAMESS.15 Five basis 

sets [6-31+G(d,p), 6-31++G(d,p), 6-31++G(df,p), 6-311++G(d,p), 6-311++G(3df,2p)] are 

used here to test the code. The five dimer systems (Fig. 1) chosen as the test systems are 

water dimer, methanol-water, ammonia-water, ammonium-water and ammonium-nitrate, 

illustrated in Figure 1. These five test systems represent different types of charge transfer 

interactions: the CT interactions between polar neutral molecules, between charged 

molecules and between neutral and charged molecules. In addition, a cluster of four pairs of 

ammonium-nitrate dimers are used as a larger test system since the contrast in both the CT 

energy and the computational time is more apparent. The dimer systems were optimized at 

the RHF/6-31+G(d,p) level of theory and the cluster of (ammonium-nitrate)4 was obtained 

from a previous study10 (Fig. 1). The individual molecules in the dimer were used to 

construct the EFP potentials. The exception is the water EFP potential, in which case the 

geometry used to construct the potential has an O-H bond length of 0.9468 Å and an H-O-H 

angle of 106.7°. The RVS analysis13 was performed at these optimized geometries with the 

aforementioned basis sets to obtain the benchmark CT energies. The benchmark CT 

gradients were computed by three-point numerical differencing the EFP CT energies, using 

step sizes of 0.001 Bohr for translation and 0.001 radian for rotation. The CT energies and 

gradients for the dimer systems were computed at both equilibrium and non-equilibrium 

intermolecular distances. To demonstrate time saving for large systems, 7 (H2O)64 clusters, 

10 (H2O)128 clusters and 10 (H2O)256 clusters were chosen as test systems. Single point 

energy and single point energy+gradient calculations were carried out on a single Dell 

x86_64 CPU running at 2660 MHz. The aforementioned calculations were carried out using 

CMOs as well for comparison. All of the calculations were performed using GAMESS.16 
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B.  Accuracy 

(I) Model systems at equilibrium distances 

Table 1 presents the CT energies of the five dimer systems at equilibrium separation 

and the cluster of four ammonium-nitrates. These energies are calculated in three ways: the 

RVS analysis to give benchmark CT energies, and EFP calculations using either CMOs or 

VVOs for the CT interaction. In most cases, the VVO-calculated CT energies are closer to 

the RVS CT energies than are those obtained from the CMOs. The variation of the VVO-

calculated CT energies from basis to basis is small (< 0.5 kcal/mol). In fact, the values 

hardly change for the three relatively small basis sets [6-31+G(d,p), 6-31++G(d,p) and 6-

31++G(df,p)]. In addition, it is interesting to note that the CT energies calculated with 

VVOs using the largest basis set, 6-311++G(3df,2p), are always smaller than those from 

smaller basis sets. This is expected since the energy lowering from the CT interaction arises 

in part from insufficient monomer basis sets.10,17 Therefore, one expects the CT energy to 

decrease as one moves toward the complete basis set limit. Interestingly, this trend is not 

observed consistently in the RVS calculations. For systems involving charged species, such 

as the ammonium-nitrate pair, one can encounter convergence problems and may need to 

adjust the convergence threshold in RVS calculations.  

 

(II) Non-equilibrium distances 

It is important to ensure that one can predict the CT energy accurately, not only at 

the equilibrium distance but also at other, non-equilibrium, distances. It is particularly 

important to obtain the correct limiting behavior. Taking the equilibrium distance as zero 
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and shorter distances as negative, the CT energies were calculated for the five dimer 

systems at various distances away from equilibrium, ranging from -0.5 to 1.2 Å. The five 

dimer systems exhibit similar behavior and therefore only the water dimer system is shown 

in Figure 2.  In most cases, the CT energies predicted using VVOs agree better with the 

RVS results than do those obtained from CMOs. At ~0.5 Å and longer than the equilibrium 

distances, CT energies approach zero as they should. As two molecules get closer, the 

magnitudes of the CT energies increase quickly. Both types of MOs predict the correct 

limiting behavior. The deviation from RVS CT energies increases for both types of MOs as 

the intermolecular distances get smaller than the equilibrium distances; but the VVO errors 

increase less rapidly, creating larger errors only at very small intermolecular distances.  In 

general, VVOs tend to underestimate and CMOs overestimate the CT energies relative to 

the RVS values.  

For water dimer (Fig. 2), the VVO-calculated CT energy error only becomes 

noticeable at about - 0.2 Å, whereas the CMO-predicted CT energy starts to exhibit a 

noticeable discrepancy even around the equilibrium distance. The absolute deviation for 

VVO-predicted CT energies is generally smaller than that for the CMOs at all distances 

examined. Other dimer systems behave similarly. In all cases, VVOs underestimate the CT 

energies at -0.5 Å. However, this distance may not be of much physical significance and 

distance-dependent screening/scaling might be introduced in the future if necessary. In 

summary, one can expect VVO-predicted EFP2-EFP2 CT interaction energies to be quite 

accurate in the region where most physical and chemical situations occur.  

 

 (III) Gradients 
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 The analytic EFP CT gradient code has been modified to use VVOs as an alternative 

option to calculate the EFP-EFP CT gradients. The benchmarking gradient results were 

computed using the numerical gradient code in GAMESS with a step size of 0.001 bohr for 

translation and 0.001 radians for rotation. Both analytic and numerical gradients are 

calculated at both the equilibrium and non-equilibrium distances. For all calculations, the 

differences between the analytic and numerical gradients using VVOs are within 10-7 

Hartree/Bohr.  

 

C. Efficiency/Timing 

Using valence virtual orbitals in the EFP CT formulation greatly reduces the number 

of orbitals used in EFP CT calculations, and this causes a significant reduction in the 

required computer time. Comparative CPU times for one of the (H2O)256 clusters are shown 

in Table II. The time saving is global: for all of the terms in the CT energy formula [Eqs. 

(26) and (27)], the computational times drop by at least 50% compared to the times required 

for the analogous CMO calculations. The total CPU time for an EFP-EFP energy calculation 

and single point gradient calculation for the (NH4
+ --- NO3

-)4 system are presented in 

Figures 3(a) and 3(b), respectively. For both energy and gradient calculations, the total CPU 

time increases linearly with the number of basis functions. For CMOs, the CPU time 

increases much more rapidly. The average total CPU time for the energy and gradient 

calculations, respectively, for the 7 (H2O)64 clusters, 10 (H2O)128 clusters and 10 (H2O)256 

clusters are plotted as a function of the number of water molecules in Figures 4(a) and 4(b). 

A linear scaling is again observed. The use of VVOs significantly reduces the linear scaling 

coefficients. As the number of basis functions increases or the system size increases, the 
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time saved by using VVOs is amplified. This is easily understood because the number of 

canonical virtual orbitals increases steeply while the number of minimal basis orbitals stays 

the same as the number of basis functions increases. Due to this new implementation, 

molecular dynamical (MD) simulations of EFP water clusters are able to run with CT 

included in the water potential18. In general, one can expect a 50% or more time saving 

when using the recommended EFP basis set, 6-311++G(3df,2p).  

 

IV. Conclusion  

The occupied + valence virtual orbitals have been implemented as an alternative for 

calculating the EFP-EFP charge transfer energy and gradient. QUAMBOs furnish a basis 

that can exactly expand the SCF occupied orbitals, and projection of QUAMBOs onto the 

virtual space select that part of the virtual space that contains the most important correlating 

orbitals. The number of QUAMBOs is constant for a particular system. Therefore, the use of 

QUAMBOs to obtain VVOs improves the efficiency of EFP-EFP CT calculations markedly 

while retaining, and in some cases improving the accuracy of the CT energies.  
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Appendix  

The different combinations of Eqs. (18) – (21) lead to four possible formulae for CT energy 

of fragment A due to fragment B (Eqs. A1 – A4). Four analogous formulae for the charge 

transfer energy of B due to A are not shown here. 
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It is difficult to judge the accuracy of the four formulae without numerical results 

since the various approximations involve all the matrix elements, not just the expectation 

values of an operator. The accuracies could depend on various factors: basis sets, electronic 

structures of the molecules, the shape of the orbitals used, that is, canonical or localized.10 In 

order to determine which formula is the best when using VVOs, the CT energies for the five 

dimer systems are presented in Table III. 
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 In all cases tested, Eq. (A2) gives very large positive numbers that are unphysical. 

Eq (A1) significantly underestimates the magnitude of the CT energies. Eq (A3) shows 

unpredictable behavior: large positive numbers for water dimer and ammonium-water dimer 

and underestimated CT energies for the other three systems. Eq. (A4) not only produces 

negative CT energies in all cases but also closest to the RVS benchmarking numbers.  
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FIG. 1. The structures of the test systems (from left to right) upper row: water-water, 

methanol-water, ammonia-water; lower row: ammonium-water, ammonium-nitrate and 

(ammonium-nitrate)4.  

  

FIG. 2. EFP-EFP charge transfer energies for water-water dimer at various distances with 

basis sets (a) 6-31+G(d,p), (b) 6-31++G(d,p), (c) 6-31++G(df,p), (d) 6-311++G(d,p) and (e) 

6-311++G(3df,2p). 

 

FIG. 3. Total CPU time versus number of basis functions using either CMO or VVO, (a) 

EFP-EFP energy calculation, (b) Single-point EFP-EFP gradient calculation. 

 

FIG. 4. Total CPU time versus number of water molecules using CMO vs. VVO, (a) EFP-

EFP energy calculation, (b) Single-point EFP-EFP gradient calculation. 
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TABLE I. Charge transfer energies (kcal/mol) obtained from the RVS analysis, EFP 

(canonical occupied + virtual molecular orbitals) and EFP (occupied +valence virtual 

orbitals) for the five dimer systems and (ammonium-nitrate)4 system with five basis sets. 

The dimer geometries were optimized with RHF/6-31+G(d,p). 

 Water-water Methanol-water Ammonia-water 

Basis sets RVS CMO VVO RVS CMO VVO RVS CMO VVO 

6-31+G(d,p) -0.55 -0.85 -0.51 -0.53 -0.78 -0.58 -0.91 -1.63 -0.86 

6-31++G(d,p) -0.49 -0.75 -0.51 -0.46 -0.77 -0.58 -0.93 -1.25 -0.85 

6-31++G(df,p) -0.47 -0.79 -0.51 -0.44 -0.81 -0.58 -0.86 -1.32 -0.87 

6-311++G(d,p) -0.53 -0.82 -0.47 -0.51 -0.78 -0.53 -0.95 -0.94 -0.75 

6-311++G(3df,2p) -0.65 -0.44 -0.35 -0.63 -0.31 -0.44 -1.20 -0.18 -0.52 

          

 Ammonium-water Ammonium-nitrate (ammonium-nitrate)4 

Basis sets RVS CMO VVO RVS CMO VVO RVS CMO VVO 

6-31+G(d,p) -2.33 -2.75 -2.05 -7.88 -5.00 -5.36 -15.19 -10.47 -15.32 

6-31++G(d,p) -2.19 -2.64 -2.04 -7.90 -5.53 -5.38 -15.08 -12.45 -15.32 

6-31++G(df,p) -2.12 -2.79 -2.05 -7.85 -6.09 -5.30 -15.10 -13.41 -15.38 

6-311++G(d,p) -2.35 -3.13 -2.03 -8.27 -7.12 -5.30 -15.07 -14.70 -15.19 

6-311++G(3df,2p) -2.85 -1.95 -1.79 -6.98 -3.80 -5.28 -12.76 -8.14 -15.59 
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TABLE II. The CPU time spent for various terms in an EFP-EFP charge transfer energy 

calculation for one (H2O)256 cluster. Other water clusters of the same size give similar 

results. TAA is the kinetic energy integral of fragment A, SAB and TAB are the overlap and 

kinetic energy integrals between fragments A and B, V are the one-electron electrostatic 

potential integrals. For instance, VAA
EFB represents the matrix elements of the electrostatic 

potential due to B.  ECT means assembling of all the terms and calculating the charge transfer 

energy once all of the required integrals are available. Times are in seconds. 

 CMO VVO 

TAA 31.66 16.42 

SAB and TAB 8.42 0.37 

VAA
EFB 145.19 15.73 

VBB
EFA 145.76 15.79 

VAB
EFA 75.11 12.93 

VAB
EFB 75.10 13.06 

ECT 2.25 0.01 
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TABLE III. Charge transfer energies (kcal/mol) obtained from Eqs. (A1) – (A4) in the 

Appendix using valence virtual orbitals together with RVS-calculated charge transfer 

energies as benchmarks (in bold) for the five dimer systems: water dimer, methanol-water, 

ammonia-water, ammonium-water and ammonium-nitrate. 

Basis set  
Water- 

water 

Methanol-

water 

Ammonia-

water 

Ammonium-

water 

Ammonium-

nitrate 

6-31+G(d,p) RVS -0.55 -0.53 -0.91 -2.33 -7.88 

 A1 -0.05 -0.05 -0.07 -0.40 -0.92 

 A2 1.62 1.71 1.29 7.11 13.94 

 A3 2.08 -0.24 -0.32 8.75 -4.82 

 A4 -0.50 -0.58 -0.86 -2.05 -5.36 

       

6-31++G(d,p) RVS -0.49 -0.46 -0.93 -2.19 -7.9 

 A1 -0.05 -0.05 -0.07 -0.40 -0.92 

 A2 1.60 1.67 1.28 7.06 13.87 

 A3 2.06 -0.25 -0.31 8.70 -4.80 

 A4 -0.49 -0.58 -0.85 -2.04 -5.38 

       

6-31++G(df,p) RVS -0.47 -0.44 -0.86 -2.12 -7.85 

 A1 -0.05 -0.05 -0.07 -0.40 -0.92 

 A2 1.62 1.68 1.27 7.08 13.84 

 A3 2.08 -0.25 -0.33 8.74 -4.78 

 A4 -0.50 -0.58 -0.87 -2.05 -5.38 



	
   49	
  

       

6-311++G(d,p) RVS -0.53 -0.51 -0.95 -2.35 -8.27 

 A1 -0.04 -0.04 -0.05 -0.38 -0.87 

 A2 1.45 1.51 1.08 6.93 13.54 

 A3 1.87 -0.19 -0.26 8.57 -4.40 

 A4 -0.45 -0.53 -0.75 -2.03 -5.30 

       

6-311++G(3df,2p) RVS -0.65 -0.63 -1.2 -2.85 -6.98 

 A1 -0.03 -0.03 -0.03 -0.33 -0.86 

 A2 1.18 1.21 0.77 6.46 13.09 

 A3 1.47 -0.15 -0.16 7.88 -4.36 

 A4 -0.34 -0.44 -0.52 -1.79 -5.28 
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Chapter 3 The R-7 dispersion interaction in the general effective 

fragment potential method 

A paper accepted by The Journal of Chemical Theory and Computation 

 

Peng Xu, Federico Zahariev, Mark S. Gordon 

 

Abstract 

The R-7 term (E7) in the dispersion expansion is developed in the framework of the general 

effective fragment potential (EFP2) method, formulated with the dynamic anisotropic 

Cartesian polarizability tensors over the imaginary frequency range. The E7 formulation is 

presented in terms of both the total molecular polarizability and the localized molecular 

orbital (LMO) contributions. An origin transformation from the center of mass to the LMO 

centroids is incorporated for the computation of the LMO dipole-quadrupole polarizability. 

The two forms considered for the damping function for the R-7 dispersion interaction, the 

overlap-based and Tang-Toennies damping functions, are extensions of the existing 

damping functions for the R-6 term in the dispersion expansion. The R-7 dispersion 

interaction is highly orientation-dependent: it can be either attractive or repulsive, and its 

magnitude can change substantially as the relative orientation of two interacting molecules 

changes. Although the R-7 dispersion energy rotationally averages to zero, it may be 

significant for systems in which rotational averaging does not occur, such as rotationally 

rigid molecular systems as in molecular solids or constrained surface reactions.  
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I. Introduction 

The dispersion interaction, a non-classical phenomenon, arises from the correlated 

movement of electrons. In the language of a multipole description of the charge distributions 

of molecules, it can be thought of as the interaction between induced multipoles. Although 

weak, the dispersion interaction plays an important role in many phenomena.  For example, 

the dispersion contribution to the water-water hydrogen bond is non-trivial1, dispersion is a 

key component in π-stacking interactions2–5, and provides the essence of the binding of 

noble gases6,7.  

The dispersion interaction energy is often expressed as an expansion in inverse 

powers of the interatomic or intermolecular distance,8 

Edisp = C6R
!6 +C7R

!7 +C8R
!8 +…       (1) 

The Cn coefficients in Eq. (1) are expansion coefficients that may be derived from first 

principles or fitted in some manner, and each term corresponds to one or more induced 

multipole-induced multipole interactions. The dispersion interaction can be formulated in 

terms of second-order Rayleigh-Schrödinger perturbation theory, where the perturbation 

operator is expressed as multipole expansions of the two interacting molecules.9 The R-6 

dispersion interaction term is accounted for by using the dynamic dipole-dipole 

polarizability over the imaginary frequency range.10 The R-7 dispersion term arises from the 

mixing of dipole-dipole interactions with dipole-quadrupole interactions.11 In this paper the 

R-7 contribution to the dispersion energy will be called E7 for brevity. E7 is zero for atoms 
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and centrosymmetric molecules. For non-centrosymmetric molecules, E7 does depend on 

the relative orientation of the molecules9,11, and that is an important consideration.  

 The effective fragment potential (EFP) method, developed by Gordon and 

coworkers,12 is a discrete method for studying the entire range of intermolecular 

interactions. The original implementation, EFP1, was designed solely for water and involves 

a fitted repulsive potential. The second implementation, the general effective fragment 

potential (EFP2) method contains no fitted parameters and can be generated for any (closed-

shell) molecule. In this paper, EFP2 will be called EFP unless a distinction between EFP1 

and EFP2 needs to be made. The interaction energy between two molecules/fragments is 

calculated using properties of the two isolated molecules. The required properties are 

generated in a prior MAKEFP calculation. The interaction energy is divided into five 

components, which may be classified in two categories: the Coulomb interaction, 

polarization/induction and dispersion are long-range interactions (U ~ R-n). Exchange 

repulsion and charge transfer are short-range interactions (U ~ e-αR).  

The EFP Coulomb interaction is modeled by the Stone distributed multipolar 

analysis (DMA) method13,14. The multipole expansion is truncated at the octopole term, and 

the expansion centers are the nuclei and bond midpoints.12 The EFP polarization term arises 

from the interaction between an induced dipole on one fragment and the electric field due to 

all of the other fragments.12 It is modeled with localized molecular orbital (LMO) 

anisotropic static dipole polarizability tensors. The induced dipole is iterated to self-

consistency, thereby introducing many-body effects. The exchange repulsion term is 

obtained from a power expansion of the intermolecular LMO overlap integral, truncated at 

the second order in the current implementation.15 Charge transfer (CT) is the interaction 
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between the occupied orbitals of one molecule and the virtual orbitals of another molecule. 

The CT interaction between two EFP fragments is derived from a second-order perturbative 

approach.16,17 A power expansion of the intermolecular overlap is used for the CT term as 

well, but the truncation is at first order. The leading term in the dispersion interaction, which 

will be discussed in Section II, is described using the dynamic (frequency-dependent) 

isotropic dipole polarizability of LMOs over the imaginary frequency range.18 This gives 

rise to the isotropic R-6 dispersion energy. Currently, the higher order dispersion energy is 

approximated as one third of this isotropic R-6 energy. The goal of this paper is to derive an 

explicit expression for E7 and to evaluate the relative importance of this term.  

This paper is organized as follows: Section II presents a detailed derivation of E7, in 

terms of the Cartesian molecular dynamic polarizability tensors and in terms of LMO 

dynamic polarizability tensors. Implementation of the polarizability and damping functions 

is also described. Computational details, including the benchmarking system LiH -- LiH and 

other dimer systems, are described in Section III. Results are presented and discussed in 

Section IV. Conclusions and future work are provided in Section V. 

II. Theory 

In the framework of Rayleigh-Schrödinger perturbation theory (RSPT), the 

dispersion interaction energy between two closed-shell nondegenerate ground state 

molecules is part of the second order interaction energy,9,19 

Edisp = !
< 0A0B |V

^
| mn >< mn |V

^
| 0A0B >

Em
A + En

B ! E0
A ! E0

B
m"0
n"0

#     (2) 
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where 0A and 0B are the ground states of molecules A and B, respectively, and m and n are 

the excited states of molecules A and B, respectively. Correspondingly, Em
A  is the energy of 

the mth excited state of molecule A. The other Es are similarly defined. The unperturbed 

Hamiltonian is the sum of the Hamiltonians of the isolated molecules A and B.  

H0

^
= H0

A
^

+ H0
B
^

        (3) 

The perturbation operator V
^

 is the interaction operator, which contains the electrostatic 

interaction between the constituent particles. By expressing the charge distributions of the 

two molecules A and B as two multipole expansions, one can express the interaction 

operator as: 

 V
^
= T ABqAqB + T!

AB (qAµ!
B " µ!

AqB )
!

x,y,z

# " T!$
ABµ!

Aµ$
B

! ,$

x,y,z

# "
1
3

T!$%
AB (µ!

A&$%
B "&!$

A µ%
B )

!$%

x,y,z

# ....(4) 

where qA  is the total charge on molecule A. µ!
B  is the αth component of the dipole moment 

of molecule B. !"#
B  is the βγth component of the quadrupole moment of B. The electrostatic 

T tensors are defined as follows: 

T AB =
1

4!"0R
          (5a) 

T!
AB =

1
4"#0

$!
1
R
= %

R!

4"#0R
3        (5b) 

T!"
AB =

1
4#$0

%!%"
1
R
=
3R!R" & R

2'!"

4#$0R
5       (5c) 
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T!"#
AB =

1
4$%0

&!&"&#
1
R
= '

15R!R"R# ' 3R
2 (R!("# + R"(!# + R#(!" )
4$%0R

7   (5d) 

where R = B – A.  Here B and A are the expansion center coordinates at which the 

multipole expansions are obtained. At this stage, only a single-center multipole expansion 

for each molecule is carried out. There is some arbitrariness in the definition of the 

multipoles because the choice of the expansion center is arbitrary. The charge is a scalar and 

is independent of the expansion center. The dipole moment of a neutral molecule is 

invariant under a change of the expansion center.9 However, the higher moments, such as 

quadrupole moments, depend on the location of the expansion center. In the literature, this 

phenomenon is commonly referred to as “origin dependence”9,11; in this work the word 

“origin” refers to the expansion center. The convention that is used here is discussed in 

subsequent sections.   

 Consider the total wave function of a system AB in the long-range approximation, 

where there is no significant overlap between the two molecular wave functions and hence 

no exchange effect, then the total wave function is the Hartree product of the individual 

wave functions:  

 0A0B = 0A 0B  and mn = m n      (6) 

Truncating the interaction operator (Eq. (4)) at the dipole-quadrupole term and substituting 

Eqs. (4) and (6) into Eq. (2) gives  
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Edisp =
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0A 0B T"#
ABµ"
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B m n
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B ! E0

B )m70
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$

 

           (7) 

The integrals that involve the charge q may be expressed in the form 

0A q
A m = qA 0A m = 0  since q is a scalar and the ground and excited states of the same 

molecule are orthogonal to each other. Hence Eq. (7) starts from the dipole-dipole term. 

From Eqs. (5c) and (5d), T!"  and T!"#  are of the order R-3 and R-4, respectively. Therefore 

E7 arises from the 2nd and 3rd terms in Eq. (7). The 1st term of Eq. (7) is the familiar R-6 

dispersion term. The last term in Eq. (7) is part of the R-8 dispersion term, which will be 

discussed in a subsequent paper. Collecting the terms for E7 and simplifying the notation by 

using Em0 = Em ! E0 yields 
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E7 = !
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 (8) 

The indices α,β,γ,σ,κ all run over the Cartesian coordinates x, y and z, hence the first and 

second terms in the first equality of Eq. (8) are equivalent and may be combined into one 

term.  The T tensors are constant at a fixed configuration. Rearranging the integrand yields, 

 

E7 = !2 T"#
ABT$%&

AB

"#$%&

x,y,z

' 1
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A + En0
B (
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  (9) 

 

The denominator of Eq. (9) is transformed by the Casimir-Polder identity9,20: 

1
A + B

=
2
!

AB
(A2 +" 2 )(B2 +" 2 )

d"
0

#

$      (10) 

Applying Eq. (10) to the denominator in Eq. (9) yields 

 

1
Em0

A + En0
B =

1
!

1
!m0

A +!n0
B =

2
"
1
!

d! !m0
A !n0

B

(!m0
A )2 +! 2#$ %& (!n0

B )2 +! 2#$ %&0

'

(  (11) 

Now the integrand can be written as a product of a term involving only A and a term 

involving only B: 
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 (12) 

From time-dependent perturbation theory, one can express the dynamic dipole-dipole and 

dipole-quadrupole polarizabilities as, respectively, 

 
!!" (# ) = 2

#m0 0 µ! m m µ" 0
!(#m0

2 $# 2 )m%0
&      (13) 

 
A! ,"# ($ ) = 2

$n0 0 µ! n n %"# 0
!($n0

2 &$ 2 )n'0
(      (14) 

Since ! 2 = "(i! )2 , one can cast the E7 expression in terms of dynamic dipole-quadrupole 

polarizability tensors over the imaginary frequency range: 
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The integral in Eq. (15) is evaluated numerically using a 12-point Gauss-Legendre 

quadrature. By a change of variable, 

! =!0
1+ t
1" t

 and d! =
2!0

(1" t)2
dt ,      (16) 
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the integral in Eq. (15) becomes 
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  (17) 

where W(n) and tn are the Gauss-Legendre weights and abscissas, which have been 

determined previously for the R-6 term in the dispersion energy.18,19 The optimal value for 

!0 is found to be 0.3.21 Now the E7 dispersion energy is 

 
E7 = !

!
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T#$
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AB
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(18) 

A distributed multipole expansion model of the molecule has the advantages that one 

attains improved convergence properties and a better description of the molecular charge 

distribution9,14,22. In particular for dispersion, a distributed treatment portrays a more 

realistic picture of the response of the molecule from non-uniform fields due to other 

molecular systems.  

If one divides the molecule into “regions”, each described by its own multipole 

expansion with its own origin, the interaction operator V has the form9,23,24: 

V
^
= T abqaqb + T!

ab qaµ!
b " µ!
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3
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2
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The double sum runs over the expansion centers a of molecule A and b of molecule B.  The 

Tab are the electrostatic tensors between two expansion centers a and b. Note that Einstein 

convention, the repeated-subscript summation convention, is used here for Cartesian 

coordinates (suffix) to avoid cumbersome equations. Substituting Eq. (19), truncated at the 

dipole-quadrupole term, into Eq. (2) and combining with Eq. (6) gives, 
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Each term in the second equality of Eq. (20) can be symbolically represented as 

T abT cdQaQcQbQd

Em0 + En0b,d!B
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m#0
n#0

"       (21) 
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In Eq. (21) Qa  symbolizes the integral of a multipole moment expanded about the center a. 

By going through the same derivation as the single-expansion-center model, the dispersion 

energy calculated using the distributed model can be symbolically represented as 
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Note that the two T tensors in Eq. (22) can now be different from each other. The 

terms in large brackets in the second equality in Eq. (22) have the form of a multipole-

multipole dynamic polarizability tensor P [Eq. (23)]. The two multipole moments in Eq. 

(23) do not necessarily have the same expansion centers (that is, a can be different from c). 

Pac =
!m0

A QaQc

(!m0
A )2 +! 2"# $%m&0

'         (23) 

Stone and Tong23 termed the polarizability with the same expansion center (a = c) as 

‘local’. If the expansion centers differ (a ≠ c), the polarizability is termed ‘non-local’. The 

non-local polarizability arises naturally from a distributed formulation in which a field in 

one region causes a response in another region of the same molecule. Stone and Tong have 

shown, in spherical tensor formalism, that the non-local multipole-multipole polarizability 

can be transformed into the local form by a shifting procedure provided that the centers of 

the moments are not moved too far. This shifting procedure transforms the dispersion 

energy expression to a familiar site-site description: 
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Qc!a and Qd!b symbolize the multipole moments whose centers have been shifted. This 

shifting treatment is formally exact at sufficiently long range. Stone and Tong have 

demonstrated that less than 2% error is incurred for small systems using the shifted 

formula23.  

In the EFP method, each LMO is taken to be a distributed “region” and naturally the 

LMO centroids are chosen as the expansion centers. Jensen and Gordon25 introduced and 

implemented the localized charge distribution (LCD) method26–32 for Hatree-Fock wave 

functions, in which the key idea is to partition the nuclear charge and assign part of the 

nuclear charge to a particular LMO predominantly associated with that nucleus. This “local” 

nuclear charge and the electrons in the LMO together constitute an electrically neutral LCD. 

The dipole moments of such neutral localized charge distributions are invariant with respect 

to the shifting. Consequently the dipole-dipole polarizability is the same before and after the 

shift. For the dipole-quadrupole polarizability, one can shift the origin of the dipole moment 

to coincide with the origin of the quadrupole moment, and again this gives an LMO dipole-

quadrupole polarizability that is identical to that before the shift. Thus, the polarizabilities 

that are relevant to E7 are unchanged and a distributed E7 expression without the non-local 

polarizabilities can be easily written. The E7 derived from the distributed multipole 

expansion at the centroids of LMOs is 
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where ! k is the dipole-dipole dynamic polarizability of the kth LMO expanded at its 

centroid. Similarly, A j  is the dipole-quadrupole dynamic polarizability of the jth LMO 

expanded at its centroid. This E7 dispersion energy is called E7 (LMO), to distinguish it 

from E7 calculated using molecular polarizabilities, which are called E7 (molecular).   

The molecular dynamic polarizability can be partitioned into LMO contributions: 

PA (! ) = Pl
A (! )

l"A

LMO

#         (26) 

The decomposition is always valid for polarizabilities of any rank when the LMO 

polarizabilities use the same expansion center as the molecular polarizability. For the 

dipole-dipole polarizability, the dipole moments are invariant with respect to the origins as 

discussed above. So the LMO dynamic dipole polarizability that is obtained at the center of 

mass is equal to the LMO polarizability obtained at the centroids of the LMOs. However, 

the quadrupole moments are origin-dependent, which means the LMO dynamic dipole-

quadrupole polarizability expanded at the centroids of the LMOs will be different from 

those expanded at the center-of-mass. The dipole-quadrupole polarizabilities obtained using 

different origins are related through the following transformation: 
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where r’ is the shift of the origin from the center of mass to the centroid of the lth LMO. Al  

and A' l are the dynamic LMO dipole-quadrupole polarizabilities expanded at the center of 

mass and the centroid of LMO l, respectively.  

Renaming the transformed LMO dipole-quadrupole polarizability as Al (i.e., 

dropping the superscript prime), substituting the transformed Al  into Eq. (25), and applying 

the same Gauss-Legendre numerical integration procedure, the final distributed E7 

expression becomes 
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           (28) 

To calculate the LMO dynamic dipole-quadrupole polarizability, the approach 

described by Champagne et al is followed33. The response is calculated in the same way as 

in the dipole-dipole case.10,18  

H (2)H (1) ! (i")2( )Z = !H (2)P       (29) 

H (1) is the real orbital Hessian matrix. 

Haibj
(1) = (!a " !i )#ab# ij + 4(ai | bj) " (ab | ij) " (aj | bi)     (30) 
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where !i and !a are the occupied and virtual Hartree-Fock orbital energies, respectively. 

(ai|bj) etc. are the two-electron integrals over the molecular orbital basis. H (2) is used to 

calculate the magnetizability and is defined as 

Haibj
(2) = (!a " !i )#ab# ij + (ab | ij) " (aj | bi)      (31) 

P in Eq. (29) is the perturbation, and in this case, is the dipole moment matrix, 

Pai = !a µ
^
!i         (32) 

Once the response matrix Z is obtained, it is combined with the quadrupole moment 

integrals to form the dipole-quadrupole polarizability. 

A! ,"# (i$) = 2
ai
% & a '

^

"# & i Z!
ai (i$)       (33) 

where the subscripts run over Cartesian coordinates and the superscripts i and a refer to the 

occupied and virtual orbital indices, respectively. Eq (33) gives the molecular dipole-

quadrupole polarizability at the center of mass. The dipole-quadrupole contribution from the 

lth LMO is obtained by transforming the canonical occupied orbitals to localized orbitals and 

summing over only the virtual orbitals. 
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Then the origin shift as in Eq. (27) is carried out to yield the LMO dipole-quadrupole 

polarizability at the respective centroid. 
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As for the R-6 contribution to the dispersion energy, a damping function is necessary 

for E7 to have the correct asymptotic behavior as R approaches zero. Both Tang-Toennies34 

and overlap-based35 damping functions have been derived. The Tang-Toennies damping 

function for E7 has the form 

f7
TT (R) = 1!

bR( )k
k!k=0

7

"
#

$%
&

'(
exp(!bR)       (35) 

where the parameter b was previously chosen to be 1.5 for the E6 term18,35. The overlap-

based damping function for E7 is 

f7
S = 1! S2

!2 ln | S |( )n
n!n=0

3

" = 1! S2 1+ !2 ln | S |( ) + !2 ln | S |( )2
2!

+
!2 ln | S |( )3

3!
#

$%
&

'(
 (36) 

where S is the matrix of the intermolecular overlap integrals over the LMOs.  

 Codes have been implemented into the GAMESS36,37 software package to compute 

the dynamic molecular dipole-dipole and dipole-quadrupole polarizabilities expanded at the 

center of mass of the molecule, the dynamic LMO dipole-quadrupole polarizability 

expanded at the center of mass of the molecule, the origin shift from the center of mass to 

the LMO centroids for the LMO dipole-quadrupole polarizability, E7 using the molecular 

polarizability  (Eq. 15) and using the distributed LMO polarizability (Eq. 25), overlap-based 

and Tang-Toennies damping functions, and auxiliary subroutines that write and read the 

dynamic polarizabilities.  
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The anisotropic R-6 dispersion interaction obtained from the molecular and LMO 

dipole-dipole polarizability, E6 (molecular) and E6 (LMO), respectively, have previously 

been derived18,19: 
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These anisotropic E6 expressions have been implemented in GAMESS as well, to illustrate 

the comparisons of the R-6 and R-7 dispersion interaction in this study. 

III. Computational details 

There are relatively few E7 calculations for molecules of arbitrary geometry in the 

literature, although explicit orientation dependent E7 expressions have been developed38 for 

simple systems such as a pair of linear molecules. Magnasco and coworkers have done a 

series of studies on the LiH – LiH system in which they calculated full-CI quality, 

imaginary frequency-dependent dipole-dipole and dipole-quadrupole polarizabilities for 

ground state LiH and C6 and C7 dispersion coefficients for LiH – LiH.39–42 The angle-

dependent Cn dispersion coefficients for two linear molecules is38–42 

Cn (!A ,!B ," ) = Cn
LALBMPLA

M (cos!A )PLB
M (cos!B )

LALBM
# cosM"

n = la + la
' + lb + lb

' + 2,    0 $ M $ min(LA ,LB )
| la % la

' |$ LA $ la + la
' ,   | lb % lb

' |$ LB $ lb + lb
'

   (39) 



	
   68	
  

The relative orientation of two LiH molecules is schematically illustrated in Fig. 1 in which

!A ,!B and ! are the angles that specify the relative orientation. The angle !  varies from 0 to 

! , and the angle !  varies from 0 to 2	
  ! . In Figure 1, the increments in !  were taken to be 

p/4. l  specifies the angular momentum quantum numbers of A and B. LA and LB are the 

resultant total angular momentum L of molecule A and molecule B, respectively. ThePL
M  in 

Eq. (39) are the associated Legendre polynomials. The coefficient, Cn
LALBM , is best expressed 

in terms of irreducible dispersion constants, which are linear combinations of elementary 

dispersion constants Cab = 1
2!( ) du"a iu( )"b iu( )

0

#

$  where a = lala
'm , b = lblb

'm  are labels 

specifying polarizabilities in spherical tensor form. Given the C7
LALBM ,40,42 an in-house 

Python program was written to generate LiH – LiH dimers of various relative orientations 

and to calculate C7 (!A ,!B ," )and consequently E7 = C7/R7. R is the distance between the 

centers of mass of the two LiH molecules and is kept at 10 Bohr to ensure negligible 

overlap. The E7 values obtained in this manner are taken as the reference (benchmark) 

values against which the EFP E7 values will be compared. The E7 (benchmark) values can 

be directly compared with the EFP E7 (molecular) values since the center of mass is the 

EFP molecular polarizability expansion center and defines the EFP T tensors.  

The molecular dynamic polarizabilities over the imaginary frequency range are 

computed in a preparatory time-dependent Hartree-Fock calculation in GAMESS with the 

6-311++G(3df,2p) basis set. In the next section, E7 (molecular) is compared directly to the 

E7 (benchmark). The distributed LMO polarizabilities over the same imaginary frequency 

range are generated with the same 6-311++G(3df,2p) basis set, and the expansion centers 
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are shifted to the LMO centroids. The distributed E7, E7 (LMO), is calculated according to 

Eq. (25). 

E6 (molecular), E7 (molecular), E6 (LMO), E7 (LMO), as well as the isotropic E6 

(molecular) and E6 (LMO) have also been calculated for the following dimer systems: Ar, 

H2, HF, water, ammonia, methane, methanol, and dicholoromethane. The equilibrium 

geometries of these dimer systems are taken from the previous study of the EFP-ab initio 

dispersion interaction.19 All of the monomer EFP potentials are generated with the 6-

311++G(3df,2p) basis set except methanol (6-311++G(2d,2p)) and dicholoromethane (6-

31+G(d)). The SAPT calculations for these two systems were carried out using the smaller 

basis sets due to computational cost. The EFP potential energy curves, both E7 (LMO) alone 

and E6 (LMO)+E7 (LMO), have been generated for (H2O)2 and (CH4)2  by varying the 

intermolecular (center of mass to center of mass) distance from -0.8 Å to 0.8 Å, in 

increments of 0.2 Å, with respect to the equilibrium distance. Two damped potential energy 

curves, using the Tang-Toennies and overlap-based damping functions have also been 

generated. The E6 (LMO)+E7 (LMO) curves are compared to symmetry adapted 

perturbation theory (SAPT)43 dispersion energies, which are available from previous 

studies19.  All of the calculations described above were performed with the GAMESS 

software package36,37. 

IV. Results and Discussion 

By systematically varying !A ,!B and !  as described in Section III, a total of 200 

different configurations of LiH – LiH dimers were generated. The E7 (molecular) values for 

these configurations, calculated using the molecular dipole-dipole and dipole-quadrupole 
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polarizabilities expanded about the center of mass of the individual LiH molecules are 

compared in Table S1 (supporting information) to the E7 (benchmark) results by calculating 

the ratio E7 (molecular)/ E7 (benchmark). The agreement is excellent, with an average ratio 

of ~93% and a standard deviation of ~4%. The deviation is most likely attributable to the 

fact that EFP polarizabilities are generated using time dependent Hartree-Fock in which 

only CIS excited states are included. In contrast, the polarizabilities in references 29 and 30 

are based on full configuration interaction (FCI). For configurations with parallel LiH (

!A = !B ), both E7 (benchmark) and E7 (molecular) are numerically tiny and are considered 

to be zero with an undefined ratio.  

To better illustrate the E7 (molecular) trends Figures 2 and 3 are plotted using 

selected data from Table S1. LiH – LiH E7 (molecular) depends on the three angles, 

!A ,!B ," . To examine the ! -dependence, E7 (molecular) values for fixed !A and !B are 

plotted in Fig 2 as a function of ! . In Fig. 2, !A = " / 4 is chosen as a representative 

example, and each line represents E7 (molecular) for a particular value of !B . As !  varies, 

E7 is almost constant for a particular !A and !B combination. Other !A and !B combinations 

behave similarly. It is also interesting to note that E7, unlike E6, can be either attractive or 

repulsive. From Fig 2 it can also be seen that E7 is quite sensitive to changes in !B . This 

observation is much more apparent in Fig. 3. Knowing that E7 is rather insensitive to 

variations of ! , Fig. 3 presents E7 with respect to changes of !A  for fixed! = 0 . Each 

curve represents a different !B  angle. As !A varies, the order of magnitude of E7 changes 

substantially and in some cases, the sign also changes. Similar curves are obtained for 

varying !B  with fixed !A .  
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By examining the numbers in Fig. 3 and Table 1, some interesting observations may 

be made: The configurations that are symmetric about the lower left to upper right diagonal 

line, (!A ,!B ,! ) and (! "#B ,! "#A ,! ), have identical E7. This is expected since they are 

merely the mirror image of each other. The configurations that are symmetric about the 

upper left to lower right diagonal line have E7s that are ~equal in magnitude (difference < 

1%) and opposite in sign. Such a relationship is expected from Eq. (39) and is verified by 

EFP calculations. These symmetry relationships are maintained for other values of !  and 

give rise to a rotationally averaged E7 (molecular) of zero.   

A direct comparison for E7 (LMO) is difficult. Most distributed models use atomic 

polarizabilities that will (incorrectly) give a zero distributed E7. The centroid of the valence 

LMO of LiH does not coincide with its center of mass and therefore an E7 calculated using 

LMOs does not necessarily equal the E7 based on the molecular polarizability. However, it 

can be proved [see Appendix] that if the origins of the two interacting molecules are shifted 

uniformly, that is, in same direction and magnitude, E7 is invariant. This provides a way to 

check the origin shift implementation and the implementation for calculating E7 (LMO): 

Instead of shifting the expansion centers of the LMO polarizability from the center of mass 

to the LMO centroids, one can shift the expansion centers to an arbitrary point such that the 

shifting vectors are the same for the two interacting molecules. Then the E7 calculated from 

the molecular polarizability and the E7 calculated from this “arbitrarily” distributed 

polarizability should match. This indeed is the case for all of the configurations of LiH—

LiH dimers assessed in this study.  
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Table 2 presents E7 (molecular) and E7 (LMO) computed for various dimer systems 

at their equilibrium configurations. Note that for Ar, the molecular dipole-quadrupole 

polarizability is the atomic dipole-quadrupole polarizability. Since an atom is 

centrosymmetric, its dipole-quadrupole polarizability is zero and consequently its E7 

(molecular) is also zero. However, atomic LMOs do not necessarily possess an inversion 

center. Hence the LMO dipole-quadrupole polarizability of Ar atom is not zero, nor is E7 

(LMO). The molecule H2 contains an inversion center that also coincides with the H2 LMO 

inversion center. It is expected that both molecular and LMO dipole-quadrupole 

polarizability tensors are zero, which give zero E7 (molecular) and E7 (LMO). In some 

cases, E7 (molecular) and E7 (LMO) can have different signs, reflecting the fact that 

different multipole expansions give different descriptions of the potential at a truncated 

finite order. E6 (molecular) and E6 (LMO), as well as their isotropic counterparts for these 

dimer systems are also computed and shown in Table 2. The isotropic E6 (molecular) 

deviate very little from the anisotropic E6 (molecular). For the distributed model, the 

deviations between isotropic and anisotropic E6 (LMO) are comparatively larger, although 

the absolute deviation is still less than 0.5 kcal/mol. This validates the isotropic 

approximation. At the equilibrium configurations of these dimer systems, E7 values (both 

the molecular and the distributed) are typically only a small fraction of the E6 values, 

although their signs can be different. For  (H2O)2  and (NH3)2, E7 values are ~ 50% of E6 

values and opposite in sign. When the sums E6+E7 are compared to the SAPT values, the 

errors are still relatively large, indicating that the series in Eq. (1) is not converged at the R-7 

term and at least the R-8 dispersion term is necessary.  
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One interesting observation is that the dispersion contributions calculated from 

molecular and LMO polarizabilities can be strikingly different. For example, E6 (LMO) for 

H2O and NH3 dimers are more than double the corresponding E6 (molecular) values. E7 

(LMO) and E7 (molecular) can also be rather different. In some cases, E7 (molecular) and 

E7 (LMO) have different signs, not surprising since the E7 sign is not always negative. To 

illustrate how these differences arise, consider the simplest case, isotropic E6 (LMO) and E6 

(molecular)18,19:  

isotropic E6 (molecular) = C6
AB
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RAB
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α k
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isotropic E6 (LMO) = C6
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kl

LMO
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   (41) 

where ! =
1
3
! xx +! yy +! zz( )  is the isotropic dynamic dipole-dipole polarizability. Since the 

dipole-dipole polarizability is invariant with respect to the origin shift, the molecular dipole-

dipole polarizability can be partitioned into LMO contributions exactly (See Eq. 26). 

Consequently, the dispersion coefficient C6
AB can be partitioned into C6

kl contributions. The 

difference between the two E6 expressions in Eqs. 40 and 41 comes from the difference 

between RAB and Rkl. RAB is the distance between the centers of mass of A and B. Rkl is the 

distance between the centroids of LMOs k and l, respectively. By an extension of this 

argument, anisotropic molecular and distributed LMO formulations use different T tensors 

[See Eqs. (37, 38)] and consequently yield different dispersion energies. Moreover, for E7 
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(LMO), the LMO dipole-quadrupole polarizability is also being transformed by the origin-

shift formula (Eq. 27). In essence, the different definitions of the electrostatic T tensors and 

the origin shifting transformation are the causes of the discrepancy between the dispersion 

energies calculated with molecular and LMO formulations. Fundamentally, the two 

formulations express the interaction operator as two different expansions. The total 

dispersion energies calculated by the two expansions theoretically converge to the same 

value, just as the oscillator strengths based on the dipole length and the dipole velocity 

converge to the exact result in the limit of a full configuration interaction wave function. 

Conceptually the distributed formulation is expected to converge faster by the following 

argument. A molecular dipole can be regarded as two separated point charges, a molecular 

quadrupole can be considered as arising from the separation of two dipoles. In other words, 

the distributed multipoles of lower rank may resemble molecular multipoles of higher 

rank.44 Consequently, E6 (LMO) captures higher order dispersion terms such as E7 

(molecular) and even higher order contributions. So, agreement between the two 

formulations will be achieved for the total dispersion energy when the molecular and 

distributed multipole expansions are carried out to complete order, although there is no one-

to-one correspondence between the individual terms of the different expansions.   

Figure 4 plots the E7 (LMO) values of two dimer systems, (H2O)2 and (CH4)2, at 

various intermolecular distances, from -0.8 Å to 0.8 Å  with respect to the equilibrium 

distance. Both un-damped values and damped E7 (LMO) using the two different damping 

functions are plotted. As mentioned in Section II, the purpose of the damping function is to 

ensure the correct asymptotic behavior as R approaches zero. From Figure 4, the Tang-

Toennies function appears to over-damp E7 (LMO), i.e. Tang-Toennies damped E7 (LMO) 
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tends to be too weak at shorter intermolecular distances. Hence the overlap-based damping 

function is chosen to be the default damping option for EFP-EFP E7 (LMO) calculations.  

Figure 5 compares the E6 (LMO)+E7 (LMO) dispersion energies for (H2O)2 and 

(CH4)2 , with or without damping, to the SAPT values. Overall, the overlap-damped 

dispersion curve resembles the SAPT curve better. At short intermolecular distances, the 

overlap-damped (H2O)2 dispersion energy appears to be more negative than the non-damped 

value although it is closer to the SAPT value. This is because the non-damped E7 (LMO) is 

positive and much larger than the overlap-damped E7 (LMO), which makes the sum of E6 

and E7 less negative. The Tang-Toennies damping function shows the same over-damping 

problem noted above.   

V. Conclusion and Future work 

A general expression for the R-7 contribution to the dispersion energy between two 

molecular systems in the EFP framework has been derived and implemented in the 

GAMESS software package. The R-7 dispersion interaction can be computed using either 

molecular (E7 (molecular)) or LMO (E7 (LMO)) dynamic dipole-quadrupole polarizability 

tensors over the imaginary frequency range. The molecular dynamic dipole-quadrupole 

polarizability is computed from the dipole response and the quadrupole moments. For E7 

(LMO), the proper LMO dynamic dipole-quadrupole polarizabilities are obtained after an 

origin shift transformation from the center of mass to the centroids of the LMOs. Two types 

of damping functions, overlap-based and Tang-Toennies damping functions, have been 

implemented for the calculation of E7 (LMO). Both E7 (molecular) and E7 (LMO) 

magnitudes can change substantially and their signs can also change as the relative 
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orientations of the molecules change. In other words, E7 is highly orientation-dependent. 

For systems with constrained configurations, e.g. molecular solids or crystal structures or 

reactions occurring on a surface, E7 could be a significant contribution to the total 

dispersion interaction. E7 is probably is not critical for room temperature gas phase or liquid 

phase structures where molecules are free to rotate and the E7 interactions are averaged out. 

The difference between the dispersion energies calculated with molecular and LMO 

polarizabilities is a manifestation of different expansions of the interaction operator 

truncated at a finite order. The comparison between SAPT with E6+E7 values suggests that 

the dispersion series is not converged at E7 and at least R-8 dispersion term should be added. 

The distributed formulation is expected to converge faster. Although this work has been 

presented in the context of the effective fragment potential method, the conclusions that are 

drawn here are very likely applicable to fully quantum calculations as well. 

In order to perform geometry optimizations and molecular dynamics simulations, 

gradients of the R-7 dispersion energy will be the focus of future studies. 
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Appendix  

Since the dipole-quadrupole polarizability is origin-dependent, the question to ask naturally 

is, is E7 also origin-dependent? 
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Suppose the shift of the expansion centers is rA '  and rB ' for molecule A and B, 

respectively. Accordingly, the dipole-quadrupole polarizabilities of A and B become, 
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The superscripts A and B denote the original expansion centers for molecules A and B, 

respectively. And A’ and B’ denote the new expansion centers. The subscripts denote the 

Cartesian coordinates x, y and z. δ is the Kronecker delta function. Note that due to the 

origin-shift, the T tensors are also altered. Therefore now the E7 expression becomes 
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From Eq. (A3), E7 calculated from these new polarizabilities, in general, do not necessarily 

equal to the E7 calculated previously.  

However, if rA ' = rB ' = r ' , i.e. uniform translation of the origins, the T tensors are 

unchanged because the intermolecular distance R that defines the T tensors remains the 

same. Now Eq (A3) becomes 
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The change in E7 is  
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Since the dipole-dipole polarizability is symmetric with respect to interchange of the two 

suffixes, the 1st and the second last terms in Eq. (A5) cancel each other. By the definition of 

the T tensors, the T tensors with two or more suffixes are invariant with respect to 

interchange of suffixes. The 2nd and 4th terms can be rewritten as 

!
3
2
T"#

AB##$
A (i% )T$&'

ABr'
'#&"

B (i% )

+
3
2
T"#

AB##&
A (i% )T&'$

ABr$
'#'"

B (i% )
       (A6) 

Recall that Einstein summation convention is used here: a repeated subscript implies 

summation over that subscript. Therefore one can see that the two terms in (A6) are equal in 

magnitude and opposite in sign, and hence cancel each other. The 3rd term in Eq. (A5) is 
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The term in the parenthesis 
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Again, the Einstein summation convention is implied here. Hence the 3rd term, and similarly 

the last term, in Eq. (A5) are both zero. So, overall E7 is unchanged when the origin-shifts 

are the same for both molecules.  
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Figure	
  1	
  a	
  schematic	
  representation	
  of	
  LiH	
  –	
  LiH	
  dimer.	
  The	
  LiH	
  molecules	
  intersect	
  

with	
  Z-­‐axis	
  at	
  their	
  centers	
  of	
  mass.	
  R	
  is	
  the	
  distance	
  between	
  the	
  two	
  centers	
  of	
  mass,	
  

which	
  is	
  set	
  to	
  10	
  Bohr	
  in	
  this	
  study.	
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Figure	
  2	
  E7	
  (in	
  10-­‐4	
  Hartree)	
  as	
  a	
  function	
  of	
  the	
  angle	
  ! ,	
  calculated	
  from	
  dynamic	
  

molecular	
  polarizabilities	
  over	
  the	
  imaginary	
  frequency	
  range	
  for	
  LiH	
  –	
  LiH	
  dimer	
  with	
  

!A = " 4 ,	
  !B varying	
  from	
  0	
  to	
  ! and	
  ! from	
  0	
  to	
   2! ,	
  in	
  increments	
  of	
  ! 4 ,	
  from	
  the	
  

top	
  line	
  to	
  the	
  bottom	
  line.	
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Figure	
  3	
  E7	
  (in	
  10-­‐4	
  Hartree)	
  as	
  a	
  function	
  of	
  the	
  angle	
  !A ,	
  calculated	
  from	
  dynamic	
  

molecular	
  polarizabilities	
  over	
  the	
  imaginary	
  frequency	
  range	
  for	
  LiH	
  –	
  LiH	
  dimer	
  with	
  

! = 0 ,	
  !B varying	
  from	
  0	
  to	
  ! 	
  in	
  increments	
  of	
  ! 4 ,	
  from	
  the	
  top	
  line	
  to	
  the	
  bottom	
  

line.	
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Figure	
  4	
  	
  (a)	
  water	
  dimer	
  (b)	
  methane	
  dimer:	
  E7	
  (LMO)	
  calculated	
  at	
  various	
  

intermolecular	
  distances	
  ranging	
  from	
  -­‐0.8	
  to	
  +0.8	
  Å	
  away	
  from	
  the	
  equilibrium	
  

distance.	
  The	
  effect	
  of	
  two	
  types	
  of	
  damping	
  function	
  are	
  also	
  shown	
  in	
  the	
  figure:	
  the	
  

red	
  squares	
  represent	
  the	
  damped	
  E7	
  (LMO)	
  by	
  an	
  overlap-­‐based	
  damping	
  function	
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and	
  the	
  green	
  triangles	
  represent	
  the	
  damped	
  E7	
  (LMO)	
  by	
  the	
  Tang-­‐Toennies	
  

damping	
  function.	
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Figure	
  5	
  	
  (a)	
  water	
  dimer	
  (b)	
  methane	
  dimer:	
  E6	
  (LMO)+E7	
  (LMO)	
  dispersion	
  energy	
  

calculated	
  at	
  various	
  intermolecular	
  distances	
  ranging	
  from	
  -­‐0.8	
  to	
  0.8	
  Å	
  away	
  from	
  

the	
  equilibrium	
  distance.	
  The	
  effect	
  of	
  the	
  two	
  types	
  of	
  damping	
  function	
  are	
  also	
  

shown	
  in	
  the	
  figure:	
  the	
  red	
  squares	
  represent	
  the	
  damped	
  dispersion	
  energy	
  by	
  an	
  

overlap-­‐based	
  damping	
  function	
  and	
  the	
  green	
  triangles	
  represent	
  the	
  damped	
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dispersion	
  by	
  the	
  Tang-­‐Tonnies	
  damping	
  function.	
  The	
  SAPT	
  numbers	
  are	
  shown	
  as	
  

brown	
  triangles.	
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Table 1 E7 (molecular) (in Hartree) calculated from dynamic molecular polarizabilities over 

the imaginary frequency range for LiH – LiH dimer for ! = 0 , !A (the	
  x-­‐axis)	
  and !B (the	
  

y-­‐axis)	
  varying from 0 to π, in increments of π/4.  

 

 

 

!A
!B
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Table 2 E6 (molecular), E7 (molecular), E6 (LMO) and E7 (LMO) for various dimer 

systems at their equilibrium distances, in kcal/mol. Isotropic E6 (molecular) and isotropic 

E6 (LMO) values calculated from LMO dipole polarizabilities are also presented. The 

SAPT dispersion+exchange dispersion values are listed here as well.  

 

 

SAPT E6 

(molecular) 

E6 

(molecular) 

(isotropic) 

E7 

(molecular) 

 

E6  

(LMO) 

E6 

(LMO) 

(isotropic) 

E7  

(LMO) 

 

2Ar -0.390 -0.265 -0.265 0.000 -0.285 -0.295 0.002 

2H2 -0.087 -0.058 -0.057 0.000 -0.058 -0.057 0.000 

2HF -1.661 -0.527 -0.499 -0.138 -0.777 -0.661 -0.059 

2H2O -2.191 -0.787 -0.788 -0.107 -1.554 -1.095 0.573 

2NH3 -1.909 -0.736 -0.739 -0.046 -1.526 -1.111 0.718 

2CH4 -0.736 -0.415 -0.415 0.002 -0.509 -0.570 0.010 

2MeOH -2.253 -0.960 -0.944 0.641 -1.476 -1.252 0.373 

2CH2Cl2 -2.074 -1.197 -1.314 -0.022 -1.802 -1.913 0.421 
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Supporting information 

Table S1 E7 (benchmark) and E7 (molecular), in Hartree, computed for different 

combination of !A ,!B ,"( ) , with ! ranging from 0 to !  and ! from 0 to 7! / 4  radians. The 

energies are in scientific notation to make the change of E7 more apparent.  The ratio of E7 

(molecular)/E7 (benchmark) is in the last column as a percentage. 

ΘA ΘB φ E7 (benchmark) E7 (molecular) 
E7 (molecular)/ 

E7 (benchmark) % 

      

0 0 0 -1.69E-21 1.09E-56 / 

0 0 π/4 -1.69E-21 4.59E-21 / 

0 0 2π/4 -1.69E-21 -3.34E-44 / 

0 0 3π/4 -1.69E-21 4.59E-21 / 

0 0 π -1.69E-21 -3.05E-44 / 

0 0 5π/4 -1.69E-21 4.59E-21 / 

0 0 6π/4 -1.69E-21 -3.34E-44 / 

0 0 7π/4 -1.69E-21 4.59E-21 / 

0 π/4 0 -4.70E-05 -4.04E-05 85.89% 

0 π/4 π/4 -4.70E-05 -4.04E-05 85.89% 

0 π/4 2π/4 -4.70E-05 -4.04E-05 85.89% 

0 π/4 3π/4 -4.70E-05 -4.04E-05 85.89% 

0 π/4 π -4.70E-05 -4.04E-05 85.89% 

0 π/4 5π/4 -4.70E-05 -4.04E-05 85.89% 

0 π/4 6π/4 -4.70E-05 -4.04E-05 85.89% 

0 π/4 7π/4 -4.70E-05 -4.04E-05 85.89% 
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0 2π/4 0 -1.33E-04 -1.23E-04 92.52% 

0 2π/4 π/4 -1.33E-04 -1.23E-04 92.52% 

0 2π/4 2π/4 -1.33E-04 -1.23E-04 92.52% 

0 2π/4 3π/4 -1.33E-04 -1.23E-04 92.52% 

0 2π/4 π -1.33E-04 -1.23E-04 92.52% 

0 2π/4 5π/4 -1.33E-04 -1.23E-04 92.52% 

0 2π/4 6π/4 -1.33E-04 -1.23E-04 92.52% 

0 2π/4 7π/4 -1.33E-04 -1.23E-04 92.52% 

0 3π/4 0 -2.10E-04 -1.98E-04 94.38% 

0 3π/4 π/4 -2.10E-04 -1.98E-04 94.38% 

0 3π/4 2π/4 -2.10E-04 -1.98E-04 94.38% 

0 3π/4 3π/4 -2.10E-04 -1.98E-04 94.38% 

0 3π/4 π -2.10E-04 -1.98E-04 94.38% 

0 3π/4 5π/4 -2.10E-04 -1.98E-04 94.38% 

0 3π/4 6π/4 -2.10E-04 -1.98E-04 94.38% 

0 3π/4 7π/4 -2.10E-04 -1.98E-04 94.38% 

0 π 0 -2.49E-04 -2.32E-04 93.15% 

0 π π/4 -2.49E-04 -2.32E-04 93.15% 

0 π 2π/4 -2.49E-04 -2.32E-04 93.15% 

0 π 3π/4 -2.49E-04 -2.32E-04 93.15% 

0 π π -2.49E-04 -2.32E-04 93.15% 

0 π 5π/4 -2.49E-04 -2.32E-04 93.15% 

0 π 6π/4 -2.49E-04 -2.32E-04 93.15% 

0 π 7π/4 -2.49E-04 -2.32E-04 93.15% 

π/4 0 0 4.70E-05 4.04E-05 85.91% 

π/4 0 π/4 4.70E-05 4.04E-05 85.91% 

π/4 0 2π/4 4.70E-05 4.04E-05 85.91% 

π/4 0 3π/4 4.70E-05 4.04E-05 85.91% 
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π/4 0 π 4.70E-05 4.04E-05 85.91% 

π/4 0 5π/4 4.70E-05 4.04E-05 85.91% 

π/4 0 6π/4 4.70E-05 4.04E-05 85.91% 

π/4 0 7π/4 4.70E-05 4.04E-05 85.91% 

π/4 π/4 0 -7.34E-21 1.18E-15 / 

π/4 π/4 π/4 -8.43E-21 -1.37E-08 / 

π/4 π/4 2π/4 -3.10E-21 -4.71E-08 / 

π/4 π/4 3π/4 4.28E-21 -8.05E-08 / 

π/4 π/4 π 5.47E-21 -9.43E-08 / 

π/4 π/4 5π/4 4.52E-21 -8.05E-08 / 

π/4 π/4 6π/4 -2.83E-21 -4.71E-08 / 

π/4 π/4 7π/4 -8.23E-21 -1.37E-08 / 

π/4 2π/4 0 -8.58E-05 -8.25E-05 96.21% 

π/4 2π/4 π/4 -8.62E-05 -8.29E-05 96.15% 

π/4 2π/4 2π/4 -8.70E-05 -8.36E-05 96.01% 

π/4 2π/4 3π/4 -8.77E-05 -8.41E-05 95.86% 

π/4 2π/4 π -8.80E-05 -8.43E-05 95.79% 

π/4 2π/4 5π/4 -8.77E-05 -8.41E-05 95.86% 

π/4 2π/4 6π/4 -8.70E-05 -8.36E-05 96.01% 

π/4 2π/4 7π/4 -8.62E-05 -8.29E-05 96.15% 

π/4 3π/4 0 -1.66E-04 -1.61E-04 96.56% 

π/4 3π/4 π/4 -1.67E-04 -1.61E-04 96.51% 

π/4 3π/4 2π/4 -1.69E-04 -1.63E-04 96.38% 

π/4 3π/4 3π/4 -1.70E-04 -1.64E-04 96.26% 

π/4 3π/4 π -1.71E-04 -1.64E-04 96.21% 

π/4 3π/4 5π/4 -1.70E-04 -1.64E-04 96.26% 

π/4 3π/4 6π/4 -1.69E-04 -1.63E-04 96.38% 

π/4 3π/4 7π/4 -1.67E-04 -1.61E-04 96.51% 
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π/4 π 0 -2.10E-04 -1.98E-04 94.38% 

π/4 π π/4 -2.10E-04 -1.98E-04 94.38% 

π/4 π 2π/4 -2.10E-04 -1.98E-04 94.38% 

π/4 π 3π/4 -2.10E-04 -1.98E-04 94.38% 

π/4 π π -2.10E-04 -1.98E-04 94.38% 

π/4 π 5π/4 -2.10E-04 -1.98E-04 94.38% 

π/4 π 6π/4 -2.10E-04 -1.98E-04 94.38% 

π/4 π 7π/4 -2.10E-04 -1.98E-04 94.38% 

2π/4 0 0 1.33E-04 1.23E-04 92.93% 

2π/4 0 π/4 1.33E-04 1.23E-04 92.93% 

2π/4 0 2π/4 1.33E-04 1.23E-04 92.93% 

2π/4 0 3π/4 1.33E-04 1.23E-04 92.93% 

2π/4 0 π 1.33E-04 1.23E-04 92.93% 

2π/4 0 5π/4 1.33E-04 1.23E-04 92.93% 

2π/4 0 6π/4 1.33E-04 1.23E-04 92.93% 

2π/4 0 7π/4 1.33E-04 1.23E-04 92.93% 

2π/4 π/4 0 8.58E-05 8.28E-05 96.55% 

2π/4 π/4 π/4 8.62E-05 8.31E-05 96.45% 

2π/4 π/4 2π/4 8.70E-05 8.37E-05 96.21% 

2π/4 π/4 3π/4 8.77E-05 8.42E-05 95.96% 

2π/4 π/4 π 8.80E-05 8.43E-05 95.85% 

2π/4 π/4 5π/4 8.77E-05 8.42E-05 95.96% 

2π/4 π/4 6π/4 8.70E-05 8.37E-05 96.21% 

2π/4 π/4 7π/4 8.62E-05 8.31E-05 96.45% 

2π/4 2π/4 0 5.35E-37 -8.66E-21 / 

2π/4 2π/4 π/4 6.74E-37 -2.37E-08 / 

2π/4 2π/4 2π/4 7.64E-37 -8.19E-08 / 

2π/4 2π/4 3π/4 6.92E-37 -1.41E-07 / 
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2π/4 2π/4 π 6.90E-37 -1.65E-07 / 

2π/4 2π/4 5π/4 7.34E-37 -1.41E-07 / 

2π/4 2π/4 6π/4 7.94E-37 -8.19E-08 / 

2π/4 2π/4 7π/4 7.01E-37 -2.37E-08 / 

2π/4 3π/4 0 -8.58E-05 -8.25E-05 96.21% 

2π/4 3π/4 π/4 -8.62E-05 -8.29E-05 96.15% 

2π/4 3π/4 2π/4 -8.70E-05 -8.36E-05 96.01% 

2π/4 3π/4 3π/4 -8.77E-05 -8.41E-05 95.86% 

2π/4 3π/4 π -8.80E-05 -8.43E-05 95.79% 

2π/4 3π/4 5π/4 -8.77E-05 -8.41E-05 95.86% 

2π/4 3π/4 6π/4 -8.70E-05 -8.36E-05 96.01% 

2π/4 3π/4 7π/4 -8.62E-05 -8.29E-05 96.15% 

2π/4 π 0 -1.33E-04 -1.23E-04 92.52% 

2π/4 π π/4 -1.33E-04 -1.23E-04 92.52% 

2π/4 π 2π/4 -1.33E-04 -1.23E-04 92.52% 

2π/4 π 3π/4 -1.33E-04 -1.23E-04 92.52% 

2π/4 π π -1.33E-04 -1.23E-04 92.52% 

2π/4 π 5π/4 -1.33E-04 -1.23E-04 92.52% 

2π/4 π 6π/4 -1.33E-04 -1.23E-04 92.52% 

2π/4 π 7π/4 -1.33E-04 -1.23E-04 92.52% 

3π/4 0 0 2.10E-04 2.00E-04 95.18% 

3π/4 0 π/4 2.10E-04 2.00E-04 95.18% 

3π/4 0 2π/4 2.10E-04 2.00E-04 95.18% 

3π/4 0 3π/4 2.10E-04 2.00E-04 95.18% 

3π/4 0 π 2.10E-04 2.00E-04 95.18% 

3π/4 0 5π/4 2.10E-04 2.00E-04 95.18% 

3π/4 0 6π/4 2.10E-04 2.00E-04 95.18% 

3π/4 0 7π/4 2.10E-04 2.00E-04 95.18% 
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3π/4 π/4 0 1.66E-04 1.62E-04 97.25% 

3π/4 π/4 π/4 1.67E-04 1.62E-04 97.18% 

3π/4 π/4 2π/4 1.69E-04 1.64E-04 97.03% 

3π/4 π/4 3π/4 1.70E-04 1.65E-04 96.87% 

3π/4 π/4 π 1.71E-04 1.65E-04 96.80% 

3π/4 π/4 5π/4 1.70E-04 1.65E-04 96.87% 

3π/4 π/4 6π/4 1.69E-04 1.64E-04 97.03% 

3π/4 π/4 7π/4 1.67E-04 1.62E-04 97.18% 

3π/4 2π/4 0 8.58E-05 8.28E-05 96.55% 

3π/4 2π/4 π/4 8.62E-05 8.31E-05 96.45% 

3π/4 2π/4 2π/4 8.70E-05 8.37E-05 96.21% 

3π/4 2π/4 3π/4 8.77E-05 8.42E-05 95.96% 

3π/4 2π/4 π 8.80E-05 8.43E-05 95.85% 

3π/4 2π/4 5π/4 8.77E-05 8.42E-05 95.96% 

3π/4 2π/4 6π/4 8.70E-05 8.37E-05 96.21% 

3π/4 2π/4 7π/4 8.62E-05 8.31E-05 96.45% 

3π/4 3π/4 0 -3.69E-21 5.38E-16 / 

3π/4 3π/4 π/4 -2.60E-21 -1.37E-08 / 

3π/4 3π/4 2π/4 -8.07E-21 -4.71E-08 / 

3π/4 3π/4 3π/4 -1.60E-20 -8.05E-08 / 

3π/4 3π/4 π -1.73E-20 -9.43E-08 / 

3π/4 3π/4 5π/4 -1.63E-20 -8.05E-08 / 

3π/4 3π/4 6π/4 -8.34E-21 -4.71E-08 / 

3π/4 3π/4 7π/4 -2.89E-21 -1.37E-08 / 

3π/4 π 0 -4.70E-05 -4.04E-05 85.89% 

3π/4 π π/4 -4.70E-05 -4.04E-05 85.89% 

3π/4 π 2π/4 -4.70E-05 -4.04E-05 85.89% 

3π/4 π 3π/4 -4.70E-05 -4.04E-05 85.89% 
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3π/4 π π -4.70E-05 -4.04E-05 85.89% 

3π/4 π 5π/4 -4.70E-05 -4.04E-05 85.89% 

3π/4 π 6π/4 -4.70E-05 -4.04E-05 85.89% 

3π/4 π 7π/4 -4.70E-05 -4.04E-05 85.89% 

π 0 0 2.49E-04 2.34E-04 94.10% 

π 0 π/4 2.49E-04 2.34E-04 94.10% 

π 0 2π/4 2.49E-04 2.34E-04 94.10% 

π 0 3π/4 2.49E-04 2.34E-04 94.10% 

π 0 π 2.49E-04 2.34E-04 94.10% 

π 0 5π/4 2.49E-04 2.34E-04 94.10% 

π 0 6π/4 2.49E-04 2.34E-04 94.10% 

π 0 7π/4 2.49E-04 2.34E-04 94.10% 

π π/4 0 2.10E-04 2.00E-04 95.18% 

π π/4 π/4 2.10E-04 2.00E-04 95.18% 

π π/4 2π/4 2.10E-04 2.00E-04 95.18% 

π π/4 3π/4 2.10E-04 2.00E-04 95.18% 

π π/4 π 2.10E-04 2.00E-04 95.18% 

π π/4 5π/4 2.10E-04 2.00E-04 95.18% 

π π/4 6π/4 2.10E-04 2.00E-04 95.18% 

π π/4 7π/4 2.10E-04 2.00E-04 95.18% 

π 2π/4 0 1.33E-04 1.23E-04 92.93% 

π 2π/4 π/4 1.33E-04 1.23E-04 92.93% 

π 2π/4 2π/4 1.33E-04 1.23E-04 92.93% 

π 2π/4 3π/4 1.33E-04 1.23E-04 92.93% 

π 2π/4 π 1.33E-04 1.23E-04 92.93% 

π 2π/4 5π/4 1.33E-04 1.23E-04 92.93% 

π 2π/4 6π/4 1.33E-04 1.23E-04 92.93% 

π 2π/4 7π/4 1.33E-04 1.23E-04 92.93% 
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π 3π/4 0 4.70E-05 4.04E-05 85.91% 

π 3π/4 π/4 4.70E-05 4.04E-05 85.91% 

π 3π/4 2π/4 4.70E-05 4.04E-05 85.91% 

π 3π/4 3π/4 4.70E-05 4.04E-05 85.91% 

π 3π/4 π 4.70E-05 4.04E-05 85.91% 

π 3π/4 5π/4 4.70E-05 4.04E-05 85.91% 

π 3π/4 6π/4 4.70E-05 4.04E-05 85.91% 

π 3π/4 7π/4 4.70E-05 4.04E-05 85.91% 

π π 0 1.69E-21 -3.88E-55 / 

π π π/4 1.69E-21 -2.44E-21 / 

π π 2π/4 1.69E-21 -3.30E-43 / 

π π 3π/4 1.69E-21 -2.44E-21 / 

π π π 1.69E-21 -3.70E-43 / 

π π 5π/4 1.69E-21 -2.44E-21 / 

π π 6π/4 1.69E-21 -3.30E-43 / 

π π 7π/4 1.69E-21 -2.44E-21 / 
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Chapter	
  4	
  Exchange	
  Repulsion	
  Interaction	
  Between	
  Ab	
  Initio	
  

System	
  and	
  Effective	
  Fragment	
  Potential	
  Fragments	
  

 

Peng Xu and Mark S. Gordon 

Abstract 

Extensive formulation and code modification has been made to the previous implementation 

of exchange repulsion Fock operator (VXR) and energy (EXR) between the ab initio (RHF) 

system and effective fragment potential (EFP) fragments (abbreviated as QM-EFP) to allow 

the presence of multiple EFP fragments. The fully analytic gradient of the QM-EFP EXR has 

been derived and implemented.   

I. Introduction 

 The effective fragment potential method (EFP)1 has been developed as a quantum-

mechanics-based model potential to yield accurate (MP2 quality and CCSD(T) quality in 

some cases [ref]) intermolecular interaction energies at very low computational cost. The 

EFP method decomposes the intermolecular interaction into five components: Coulomb, 

polarization, dispersion, exchange repulsion and charge transfer. Depending on how these 

interaction terms are described, namely, the last three terms, there are two versions of EFP, 

EFP1 and EFP2. EFP1 is specifically designed for water by having a repulsive term fitted to 

either the RHF or DFT water dimer potential to account for some of the effect of the last 

three interactions mentioned above. The RHF-fitted and DFT-fitted repulsive potentials can 
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account for none and some dynamic correlation, respectively. The fitted repulsive potential 

severely limits the application of EFP because an expensive fitting process has to be 

performed for every new molecular species. EFP2 is therefore developed with the 

motivation of having explicit expressions for all of the interaction terms without any fitted 

parameters. Then, an EFP2 potential can be generated for any (closed-shell) molecular 

species. Hence EFP2 is also referred to as the general effective fragment potential method. 

Currently only EFP1 has been fully interfaced with ab initio methods so that one can have 

the chemically important region (e.g., a chemical reaction site) described by ab initio 

methods and the spectator region by rigid EFP fragments. The QM-EFP interaction terms 

are formulated differently from that between EFP potentials (EFP-EFP).   For EFP2, QM-

EFP Coulomb, polarization and dispersion interactions and their corresponding gradients 

have been developed and implemented into the ab initio quantum chemistry package 

GAMESS23.  

The Pauli exclusion principle gives rise to the exchange repulsion interaction 

between electrons of like spin at short range. Exchange repulsion is a purely quantum-

mechanical effect that does not have a simple classical analogue. It accounts for part of the 

rapid increase in interaction energy at short-range. Two approaches for deriving the 

exchange repulsion interaction have been developed over the years. One is to regard the 

exchange repulsion as the exchange part of the first-order energy correction in the short-

range intermolecular perturbation theory through a density matrix formalism.4 The other 

LCAO-MO type approach due to Fröman and Löwdin does not rely on perturbation theory. 

The interaction energy is the difference between the expectation value of the total 

Hamiltonian and the energy of the non-interaction constituting molecules. Jensen and 
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Gordon developed a formula for EXR, initially using density matrix formalism.5 The other 

approach leads to the same exchange repulsion formula.6 A fully analytic EFP-EFP 

exchange repulsion gradient was subsequently.7,8 QM-EFP EXR is developed together with 

the exchange repulsion Fock operator VXR.6  QM-EFP EXR and VXR have been implemented 

in GAMESS.9  

 In a previous work, the QM-EFP EXR implementation was limited to one EFP 

fragment. In the present work, extensive code modifications were accomplished to enable 

the use of multiple EFP fragments. The fully analytic QM-EFP EXR gradients are presented 

in Section II. The code modification and testing results are briefly discussed in Section III. 

Section IV describes the implementation of the QM-EFP EXR gradient. Section V concludes.  

II. Theory 

(A) Fock Operator and Energy Expressions 

 The QM-EFP exchange repulsion energy EXR is5, 

EXR = !2 (ij | ij)SGO
j"B
#
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#
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   (1) 

In Eq. (1) i and k refer to the MOs of the ab initio molecule A; j and l refer to the MOs of 

EFP fragment B. (ij|ij) is an electron repulsion integral, SGO refers to the spherical 

Gaussian approximation10. Sij is the QM-EFP overlap integral. Fik
A  and Fjl

B  are the Fock 
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matrices of the ab initio and the EFP molecules, respectively. Vij
A 	
  is	
  the	
  one-­‐electron	
  

nuclear	
  attraction	
  term	
  from	
  the	
  molecule	
  A.	
  Vik
j 	
  is	
  the	
  one-­‐electron	
  potential	
  due	
  to	
  

the	
  EFP	
  MO	
  j.	
  The	
  attraction	
  between	
  the	
  electrons	
  of	
  the	
  EFP	
  fragments	
  and	
  nuclei	
  of	
  

the	
  ab	
  initio	
  molecules	
  is	
  modeled	
  classically	
  as	
  
!ZI

RjII"A

Atom

# .	
  The	
  two-­‐electron	
  integrals	
  

involving	
  EFP	
  MOs	
  is	
  defined	
  as:Gij
A = 2Jij

A ! Kij
A = 2 ij | kk( ) ! ik | jk( )"# $%

k&A
' . 

 The exchange repulsion Fock operator VXR is obtained by taking the variational 

derivative with respect to the ab initio orbitals6,9.  

Vmi
XR = ! mj | ij( )SGO
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(2)	
  

VXR can be separated into one-electron and two-electron terms, hXR  and GXR , respectively, 

so that EXR = [2hii
XR +Gii

XR

i!A
" ] . The one- and two-electron terms explicitly refer to the ab 

initio orbitals. Now consider the hXR 	
  part	
  of	
  VXR, 
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hmi
XR = ! mj | ij( )SGO
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So,	
  the	
  sum	
  over	
  the	
  diagonal	
  terms	
  gives	
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(4)	
  

Now,	
  consider	
  the	
  two-­‐electron	
  part,	
  Gmi
XR ,	
  of	
  VXR:	
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Summing over the diagonal terms gives:	
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 (B) Exchange Repulsion Gradients 

In the derivation below, j and l denote EFP MOs, i, k, m and n denote ab initio MOs. 

Atomic orbitals are denoted by Greek letters. The atoms of the ab initio molecule and the 

EFP fragments are denoted by a and b, respectively.  

Derivatives with respect to ab initio atom centers 

The derivative of Eq. (1) with respect to an ab initio atom center, qa, is 
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where qa is the Cartesian coordinate of atom a of the ab initio molecule A. The following 

derivatives are required to evaluate Eq. (7): 
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The last two terms in the second equality of Eq. (8) equal zero because EFP MOs are frozen 

and the EFP AOs are not functions of the ab initio coordinates. Note that Sij
a  is not a 

shorthand notation for !Sij !qa , rather Sij
a = Cµi µa | j( )

µ

A

! . To avoid solving the time-

consuming coupled perturbed Hartree-Fock equations for Ca, Eq. (8) is rewritten in terms of 

orbital response terms 
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The last step of Eq. (9) uses the fact that Umi
a +Uim

a = !Smi
a 11 

Carrying out the same procedures as above for all the derivative terms, the derivative of EXR 

with respect to the ab initio atom center becomes 
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Derivatives with respect to EFP centers 

The derivative with respect to an EFP center, that is, center of mass of an EFP fragment, is 

first expressed as, 
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When an EFP fragment translates, all of its AO centers and MOs translate in the same way. 

Because EFP fragments are rigid the MO coefficients are constant. Hence the translational 

derivatives of MO coefficients are zero. The overall translation of an EFP fragment can be 

decomposed into the individual atomic translation in A.8,12   

The derivative of the overlap integral yields 
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The second term in the first equality vanishes because EFP MOs are frozen and the third 

term disappears because an AO of an ab initio molecule is not a function of the coordinates 

of fragment B. The derivative of the ab initio MO coefficient can be rewritten in terms of 

the orbital response terms:	
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where Sij
b = i | jb( )  and Smi

b is zero because the AOs of the ab initio molecule do not depend 

on the EFP coordinates. 

The derivative of EXR with respect to the EFP centers becomes: 
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III.	
  Code	
  Modification	
  and	
  Testing	
  

The previous implementation of QM-EFP EXR was unable to deal with multiple EFP 

fragments. As an example, water trimer is shown in Table 1. The notation H2O-1-23 means 

that the first water molecule in the input file is treated by the RHF method and the second 

and third water molecules are treated as EFP fragments. One can see that when two EFP 

fragments are reversed in the input file, exactly the same EXR are expected but distinctly 

different EXRs are obtained. In addition, the EXRs obtained by choosing different water 

molecules as ab initio are expected to be very close to each other but very different results 

are observed. 

 The basis functions used for EFP fragments are also Gaussian functions, not 

different from the ab initio counterpart and therefore the underlying algorithms for 

computing the various matrix elements between an ab initio molecule and an EFP fragment 
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are the same as in the usual ab initio code. However, due to the fragmentation nature of 

EFP, the EFP basis functions are organized differently. As a concrete example, the 

exponents for the Gaussian basis functions for the ab initio system are stored as a one-

dimensional array, while its EFP counterpart is a two-dimensional array with the second 

dimension being the maximum number of different EFP potentials.  

 Sufficient memory allocation and correct indexing for EFP fragments are the two 

key considerations in the code modification. An EFP-related matrix typically has one index 

related to counting EFP fragments. To store the EFP-related matrices, one can choose 

between generating and storing all fragment matrices at once or a single fragment at a time. 

For example, the overlap matrix between the ab initio molecule and EFP fragments, Sij, with 

i and j being ab initio and EFP MO indices, respectively, can be generated and stored once 

for all the fragments or for one fragment at a time. The key difference between the two 

approaches is the memory requirement. The former approach requires a memory allocation 

of (# MOs of ab initio molecule × # MOs of all EFP fragments) whereas the latter only 

needs (# MOs of ab initio molecule × # MOs of the largest EFP fragment). Since the S 

matrix is only an intermediate quantity for computing the VXR and EXR, it is more efficient 

to use the latter approach. To use the latter approach, the computation and utilization of the 

S matrix must be in the same loop over the EFP fragments. There are, however, cases for 

which one must use the former approach. For example, the coefficient matrix that 

transforms all EFP AOs to MOs, PROVEC, is stored in a dictionary file and retrieved once 

at the beginning of the calculation. It is necessary to allocate enough memory for it and also 

very important to be able to ‘jump’ to the right fragment. Figure 1 is a pictorial 

representation of PROVEC matrix, where MXBF is the maximum number of basis 
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functions/AOs of EFP and NTMO is the total number of MOs of all the fragments. The way 

to ‘jump’ to the right fragment block is illustrated in Figure 2. The counter JMO is 

initialized before looping over the EFP fragments and is incremented by the number of MOs 

of the previous fragment at the end of each iteration. This way, JMO will be the right 

number for the next fragment.  

 After extensive code modification (see Appendix) the same water trimer systems 

were redone and the expected results were observed (Table 1): changes in the order in the 

input file do not alter the EXR and very similar EXRs are obtained when different water 

molecules are treated by the ab initio method.  

 Various trimer systems and water clusters H2O( )n , n = 3-6,16 were tested and 

compared to benchmarking exchange repulsion energies calculated by the reduced 

variational space (RVS) method. The 16-water cluster benchmarking result was generated 

by an all-EFP calculation. All of the structures were optimized with RHF/6-31+G(d,p). The 

EFP potentials were generated with the 6-311++G(3df,2p) basis set. Each molecule in the 

clusters was in turn treated as an ab initio region with the RHF/6-311++G(3df,2p) basis set. 

For example, a 3-water cluster has three combinations: H2O-1-23, H2O-2-13 and H2O-3-12. 

The maximum and minimum errors compared to the RVS EXR are reported in Table 2. Note 

that the EXR of the system is the sum of all the pair-wise QM-EFP and EFP-EFP EXR. For 

small clusters (trimer, tetramer and pentamer), even the largest errors are within ~ 4.0 

kcal/mol. The medium-sized water clusters showed larger values for the maximum errors 

but the minimum errors remain comparable with the small clusters. The different 

approximations used for deriving QM-EFP and EFP-EFP exchange repulsion lead to 

different expressions and consequently different EXR. 
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IV. Implementation of Gradient 

The general outline of the QM-EFP exchange repulsion gradient code is to have one 

driver subroutine (QMEFGXRDR) to allocate the dynamic memory for relevant quantities 

and to call a subroutine called QMEFGXR that calculates the gradient contributions. All of 

the quantities required for the gradient are computed in QMEFGXR by calling various 

subroutines and all of the terms are then assembled according to Eqs (10) and (14). 

For the quantities for which both indices are for the ab initio region, the derivative 

codes are available. Only a small modification is done to make the relevant derivative 

matrices available in QMEFGXR subroutine. For the quantities that involve EFP indices, 

new subroutines were written.    

V. Conclusion and Future work 

 The QM-EFP exchange repulsion Fock operator and energy codes were extensively 

modified. The current implementation allows multiple EFP fragments. For hetero-dimer 

systems, a modified Fock operator generates much improved exchange repulsion energies. 

The results from the QM-EFP exchange repulsion and RVS calculations are in good 

agreement, with minimal errors typically less than 5 kcal/mol. The derivatives of QM-EFP 

exchange repulsion energy with respect to ab initio atom centers and with respect to EFP 

centers have been implemented. Testing is in progress. 
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Figure 1. A pictorial representation of PROVEC matrix. Each block represents one EFP 

fragment. 

 

 

Figure 2. An illustration of the key steps in the code to ‘jump’ to the correct EFP index.  
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Table 1 The QM-EFP EXR (in Hartree) of water trimer calculated before and after code 

modification. H2O-1-23 means that the 1st water is treated ab initio and the 2nd and 3rd water 

molecules are EFP fragments in that order in the input file.  

Water trimer QM-EFP EXR 

(before) 

QM-EFP EXR 

(after) 

H2O-1-23 0.237570729 0.018545921 

H2O-1-32 0.023720728 0.018545921 

H2O-2-13 0.060030457 0.020656253 

H2O-2-31 0.052989663 0.020656253 

H2O-3-12 0.103773878 0.018469143 

H2O-3-21 1.120385809 0.018469143 

 

Table 2. Exchange repulsion energies (kcal/mol) obtained from benchmark calculations and 

smallest and largest errors for QM-EFP calculations. The second and the third columns 

show the smallest and the largest deviations from the RVS interaction energies when 

different molecules are treated ab initio. For all systems except (H2O)16, the benchmark 

results were obtained from the RVS analysis. The (H2O)16 benchmark value is obtained 

from an all-EFP2 calculation. All of the cluster structures were optimized with RHF/6-

31+G(d,p) and the EFP potentials were generated with the 6-311++G(3df,2p) basis set. 

Exchange Repulsion 

(kcal/mol) 

Benchmark QM-EFP error 

(min) 

QM-EFP error 

(max) 

(H2O)3 15.0 1.6 2.0 

(MeOH)3 13.5 0.0 2.7 
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((CH3)2CO)3 5.6 -1.2 -1.4 

(CH3CN)3 5.1 -0.8 -1.2 

(CH2Cl2)3 1.1 -0.1 1.3 

3DMSO 10.1 -2.0 Not converged 

(H2O)4 29.3 -0.9 -1.9 

(H2O)5 39.1 2.4 3.8 

(H2O)6-bag 42.5 1.1 -7.2 

(H2O)6-boat 43.3 -2.4 -6.8 

(H2O)6-book 43.8 0.0 -4.0 

(H2O)6-cage 40.9 0.8 -2.3 

(H2O)6-cyclic 45.0 -3.2 -8.8 

(H2O)6-prism 39.8 0.3 1.5 

(H2O)16 118.3 0.3 5.2 
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Appendix 

(A) Derivation of gradients of QM-EFP EXR 

The QM-EFP exchange repulsion energy expression is 
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The derivative of Eq. (A1) with respect to an ab initio atom center, qa, is 
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           (A2) 

where qa is the Cartesian coordinate of atom a of the ab initio molecule A. The following 

derivatives are required to evaluate Eq. (A2): 

!(ij | ij)SGO
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The derivative of –ZI/RjI is trivial, use the x-coordinate of qa as an example 
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Where I is the nucleus of the molecule A and only the terms with I=a survive.  
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   (A4) 

The last two terms in the second equality are equal to zero because EFP MOs are frozen and 

the EFP AOs are not a function of the ab initio coordinates. Note that Sij
a  is not a shorthand 

notation for !Sij !qa , rather Sij
a = Cµi µa | j( )

µ

A

! . To avoid solving the time-consuming 

coupled perturbed Hartree-Fock equations for Ca, Eq. (A4) is rewritten in terms of orbital 

response terms 
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The last step of Eq. (A5) uses the fact that Umi
a +Uim

a = !Smi
a 11 

 The derivative of the nuclear-electron attraction term, 
!Vij

A

!qa
, involves the derivative 

of the ab initio MO and the derivative of the operator. 
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where Vij
Aa = ia V A j + i V Aa j  

 The derivative of the two-electron matrix element involving an EFP MO looks like 
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The derivative of the Fock matrix of molecule A can be broken down to one- and 

two-electron contributions.  
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Both i and k run over the occupied orbitals of the ab initio molecule and the first two terms 

in the second last equality are equivalent.  
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The operators of both !Vik
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and !Vik
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are functions of EFP fragment B hence the 

derivatives come from the contributions of derivatives of MOs. These two terms are derived 

similarly. Here only the derivation for !Vik
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is given.  
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Now substitute Eqs. (A3), (A5-7) and (A11-13) back into Eq. (A2) and look at them term by 

term, 
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Now adding up Eqs. (A14-18) 
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Rearrange the terms and combine the terms of the same color that are equivalent or 

identical.  
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Now, !(ij | ij)
SGO

!qa
is dealt with. 
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In the last equality of Eq. (A21), the first two terms just involve the derivative of the MO 

coefficients and can be easily obtained using the response coefficient matrix U. 
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And similarly 
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Since m and i both run over the occupied orbitals of the ab initio molecule A, and µ and ν 

both run over the AO basis of molecule A. Eqs (A22) and (A23) are equivalent and can be 

combined. 

The last term of Eq. (A21) is much more involved algebraically with repeated use of 

the chain rule and product rule. 
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Now, 



	
   136	
  

!
!qa

2"µ j"# j

"µ j +"# j

Sµ jS# j
$

%
&

'

(
)

=
!
!qa

2"µ j"# j

"µ j +"# j

$

%&
'

()

1/2$

%
&
&

'

(
)
)
Sµ jS# j +

2"µ j"# j

"µ j +"# j

$

%&
'

()

1/2
!Sµ j
!qa

$
%&

'
()
S# j + Sµ j

!S# j
!qa

$
%&

'
()

*

+
,

-

.
/

=
1
2

2"µ j"# j

"µ j +"# j

$

%&
'

()

01/2
!
!qa

2"µ j"# j

"µ j +"# j

$

%&
'

()
*

+
,
,

-

.
/
/
Sµ jS# j +

2"µ j"# j

"µ j +"# j

$

%&
'

()

1/2

µa j S# j + Sµ j #
a j*+ -.

=
1
2

2"µ j"# j

"µ j +"# j

$

%&
'

()

01/2 "µ j +"# j( ) ! 2"µ j"# j( )
!qa

0 2"µ j"# j( ) ! "µ j +"# j( )
!qa

"µ j +"# j( )2
*

+

,
,
,
,
,

-

.

/
/
/
/
/

Sµ jS# j

+
2"µ j"# j

"µ j +"# j

$

%&
'

()

1/2

Sµ j
a S# j + Sµ jS# j

a*+ -.

=
1
2

2"µ j"# j

"µ j +"# j

$

%&
'

()

01/2 "µ j +"# j( ) 2 !"µ j

!qa
"# j + 2"µ j

!"# j

!qa

$
%&

'
()
0 2"µ j"# j( ) !"µ j

!qa
+
!"# j

!qa

$
%&

'
()

"µ j +"# j( )2
*

+

,
,
,
,

-

.

/
/
/
/
Sµ jS# j

+
2"µ j"# j

"µ j +"# j

$

%&
'

()

1/2

Sµ j
a S# j + Sµ jS# j

a*+ -.

           (A25) 

The expression in blue will be used later. 

Recall that !µ j = "
2
Rµ j
2 ln Sµ j , both R and S have functional dependence on the 

coordinates of nuclear a of the ab initio molecule A. 
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Take qa=xa for concreteness, 
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where the delta function equals 1 if the basis function µ is centered at atom a in the molecule 

A and equals 0 otherwise. Eq. (A27) can then be substituted back into Eq. (A25). 
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Now let t =
1
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= t qa( ) , which is a function of the nuclear coordinates itself. 
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 has been derived in Eq. (25) (shown in blue). 
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where !ac =1 if the atom c, where the basis function µ resides, coincides with the atom a. 

All the terms that are needed for evaluating Eq. (24) are derived.  

(B) Analytic QM-EFP exchange repulsion gradient with respect to EFP centers 

The derivative with respect to an EFP center, that is, the center of mass of an EFP fragment. 
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Forces 

 When an EFP fragment translates, all of its AO centers and MOs translate in the 

same way. Because EFP fragments are rigid the MO coefficients are constant. Hence the 

translational derivatives of MO coefficients are zero. The overall translation of an EFP 

fragment can be decomposed into the individual atomic translations in A.8,12  

The derivative of the overlap integral yields 
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where b stands for the atoms of fragment B. The second term in the first equality vanishes 

because EFP MOs are frozen, and the third term disappears because the AO of ab initio 

molecule is not a function of coordinates of fragment B. The derivative of the ab initio MO 

coefficient can be rewritten in terms of the orbital response terms: 
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where Sij
b = i | jb( )  and Smi

b equals to zero because AOs of the ab initio molecule do not 

depend on EFP coordinates. 

The operator of Vij
A is the potential due to the ab initio molecule hence do not 

contribute to the derivative with respect to EFP coordinates, 
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And 
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When the EFP fragment B translates or rotates about its center of mass, the Fock matrix Fjl
B

is not changing. 
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The Fock matrix of ab initio molecule A has no dependence on B. Hence 
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RjI is the distance between EFP jth LMO centroid and Ith nuclear coordinate of molecule A. 

Since an EFP fragment is rigid, the translational movements of the centroids and the center 

of mass are the same, i.e. !qj !qB = 1 . Use the x-coordinate as a concrete example, 
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Similarly the operator V j = !1 / rj has implicit dependence on the center of mass of the EFP 

fragment.  
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For operator V EFP,B , which is the electrostatic potential expressed as a multipole 

expansion, there is a functional dependence on the nuclear coordinates of B.  
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Now substituting various terms back into Eq. (A34) yields 
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where the terms of the same color are equivalent and combined.  
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Firstly, 
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To evaluate Eq. (A46) the derivative of α needs to be calculated. 
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Take qB=xB, the x-coordinate of the center of mass of EFP fragment B for concreteness, 
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Note that 
!x j
!xB

= 1  because EFP fragments are rigid. Next, 
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!Rµ"
2

!xB
= 0  since Rµν is only a function of the nuclear coordinates of the ab initio molecule. So 
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(B)	
  Code	
  Modification	
  of	
  QM-­EFP	
  exchange	
  repulsion	
  interaction	
  

Two-­‐electron	
  integrals	
  

Currently, the computation of two-electron integrals (TEI) involved in QM-EFP 

exchange repulsion is done conventionally, i.e. stored on disk and retrieved later when 

needed. The storage of TEI is accomplished by two subroutines: QOUTEFP and 

FINAL_EFP. The TEI are sequentially stored onto the records (storage unit), each of which 

holds NINTMX integrals. This is handled by the subroutine QOUTEFP. For each fragment, 

the last record may be only partially filled and is handled by the subroutine FINAL_EFP. In 
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the current implementation, after filling the partial record, the record index NREC and the 

integral index ICOUNT is reset by the subroutine FINAL_EFP so that the QM-EFP TEI of 

the next fragment will be stored at the beginning of a new record. (Fig A1) The previous 

implementation did not separate the storage of TEI of different fragments by resetting the 

counters, which caused confusion when retrieving those TEI.    

 Besides the exchange integral (mj|ij) or (ij|ij) that are approximated by SGO 

approximations, two types of TEIs appear in the QM-EFP exchange repulsion Fock 

operator. Type I has all four MOs belonging to the ab initio molecule A, e.g. (nk|im); type II 

has one EFP MO and three ab initio MOs, e.g. (kj|mi) with j being the EFP MO. 

 Compare the usual ab initio 2-electron integrals with type I term. Denote capital 

letters for AO indices and small letters for MO indices. 

ab initio 2-electron integrals in AO basis: 
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Type I term: 
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One can see that the term in the curly parentheses resembles the ab initio 2-electron 

integrals with a density-like S2’ matrix. Thus the code can be simply modified by taking the 
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conventional code and replacing the density matrix with the S2’ matrix. It is important to 

realize that although both indices of the S2’ matrix (I and J) is on molecule A, it is derived 

from a product of two overlap matrices by summing over the index j, which counts MOs on 

the EFP fragment. Therefore the S2’ matrix is different for different fragments. The type I 

term is then obtained by the appropriate transformation and multiplied by a factor two.  

Type II terms: 
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In Eq. (55), the term in the curly parentheses is essentially the same as in the ab initio case 

except that J is an AO on the EFP fragments. 
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In Eq. (56) the transformed overlap matrix acts as the density matrix. The TEI involving one 

EFP index only has permutation symmetry between two ab initio indices in the ket, i.e. 



	
   148	
  

(IJ|KL)=(IJ|LK). This permutation symmetry was not taken advantage of in the previous 

implementation. The new implementation makes use of the permutation symmetry to give a 

more efficient and cleaner code. It should be mentioned that in the above equation, SIJ
' is not 

simply the overlap matrix between AOs. Rather, it is the matrix transformed from the MO 

overlap matrix. To see this more clearly, 

Sik = ! i !k = " ik = #µCµi
µ

AO

$ #%C%k
%

AO

$ , i.e. SMO = C†SAOC = I   

Therefore C†( )!1 = SAOC  and C!1 = C†SAO . Hence the AO overlap matrix can be back-

transformed from the MO overlap matrix by SAO = C†( )!1 SMOC!1 = SAOC( )SMO C†SAO( ) . By 

comparison, the transformed S’ matrix is simply S ',AO = C†SMOC . 

 

Schwarz inequality screening 

 The computation and processing of TEI are time-consuming. Besides taking 

advantage of the permutation symmetry, using Schwarz inequality to skip the computation 

of TEI that contribute little to the final energy saves time, especially for the conventional 

approach where I/O may add significant time cost. The Schwarz inequality implies that a 

TEI such as (ij|kl) obeys the following relationship:  

ij | kl( ) ! Kij( )1/2 Kkl( )1/2 where Kij = ij | ij( )  and Kkl = kl | kl( ) . In the context of QM-EFP 

TEI, j is EFP AO index and the other three indices are the ab initio AO indices. The 

exchange integrals involving EFP are computed using the SGO approximation. Both the 

EFP and ab initio basis functions are ordered in shells and consequently the integrals are 

arranged in shell blocks. The largest exchange integral in each block is picked out and the 
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quantity Kij( )1/2 Kkl( )1/2 is formed and compared to a threshold value. If Kij( )1/2 Kkl( )1/2 is 

smaller than this threshold value the corresponding block of TEI (ij|kl) can be skipped. The 

time saving due to the Schwarz inequality screening is demonstrated in Fig. A2. Fig. A2 

plots the total CPU time saving, which is the difference in total CPU time with and without 

Schwarz inequality screening, as a function of the number of EFP fragments for acetone 

clusters and dichloromethane clusters. The cluster sizes range from 2 up to 5 molecules, one 

of which is treated as ab initio molecule. The time saving grows linearly as the number of 

EFP fragments increases. The exchange repulsion energies with and without screening are 

the same.  

 

 

Figure A1. a pictorial representation of the storage of QM-EFP two-electron integrals.  
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Figure A2 the total CPU time saving for acetone and dichloromethane clusters ranging from 

2 to 5 molecules.  
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Chapter 5 Renormalized Coupled Cluster Approaches in the 

Cluster-in-Molecule framework: Predicting vertical electron 

binding energies of the anionic water clusters H2O( )n
!   

 

A paper submitted to The Journal of Physical Chemistry 

 

Peng Xu and Mark S. Gordon 

 

Abstract 

Anionic water clusters are generally considered to be extremely challenging to model using 

fragmentation approaches due to the diffuse nature of the excess electron distribution. The 

local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach 

combined with the completely renormalized CR-CC(2,3) method (abbreviated CIM/CR-

CC(2,3)) is shown to be a viable alternative for computing the vertical electron binding 

energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ! set to 0.001, as a trade-

off between accuracy and computational cost, demonstrates the reliability of predicting the 

VEBE, with an average percentage error of ~ 15%. The errors are predominantly from the 

electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-

box type calculation with few threshold parameters to manipulate. The cluster sizes that can 

be studied by high-level ab initio methods are significantly increased in comparison with 

full CC calculations. 
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I. Introduction 

 The hydrated electron, the simplest reducing agent, still captures intense interest in 

the scientific community, even after its first experimental detection half a century ago.1 The 

hydrated electron plays a key role as an important intermediate in many physical, chemical 

and biological processes such as in radiation chemistry and atmospheric chemistry.2 Despite 

persistent efforts to understand this seemingly simple species, the very nature of the 

hydrated electron is still under debate. This is partly because of the ubiquitous presence of 

the hydrated electron in diverse environments, in particular, in bulk ( eaq
! ) and in finite-sized 

water clusters [ H2O( )n
! ]. Finite-sized anionic water clusters, especially small water clusters 

(n=2-6), provide an appealing starting point for understanding the hydrated electron because 

one can study them with sophisticated electronic structure theory methods. Experiments 

under well-controlled conditions can also be carried out for small anionic water clusters.3–9 

However, the binding characteristics of the excess electron in bulk and in smaller water 

clusters are generally different.10 The smaller water clusters tend to bind the excess electron 

weakly, and often the excess electron density exceeds the size of the cluster. As the cluster 

size gets larger, the binding becomes stronger and is expected to converge to the bulk 

behavior.  

Theoretical studies play an important role in unveiling both a dynamic and a 

microscopically revealing picture of the hydrated electron, especially with regard to the 

transition from finite-size water clusters to the bulk. Two approaches have primarily been 

used to study the hydrated electron, static and statistical. The statistical approach employs 

Monte Carlo (MC) or molecular dynamics (MD) simulation techniques to study the 
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statistically averaged properties. A recent review by Turi and Rossky11 presents a nice 

discussion of statistical methods. The inherent quantum nature of the excess electron means 

that at least this excess electron must be treated with quantum mechanics. The static 

approach focuses primarily on minima on the hydrated electron potential energy surface 

(PES) with methods of varying complexity; for example, treating only one electron quantum 

mechanically, such as the quantum Drude model developed by Jordan and coworkers12–14 or 

a many-electron treatment using correlated ab initio methods. Density functional theory 

(DFT) is also a popular approach although its success depends heavily on the choice of the 

functional. Considering the rapidly increasing complexity of the H2O( )n
!  PES with 

increasing n, it is not clear that one functional will work equally well for all sizes and motifs 

of H2O( )n
! . The present work focuses on the static approach. 

It has been recognized that electron correlation is important in the binding of the 

excess electron15–18 and that correlated methods such as second order perturbation theory 

(MP2) or coupled cluster theory with singe, double, and perturbative triple excitations, 

CCSD(T), should be used. Moreover the H2O( )n
!  systems are sensitive to the choice of basis 

set. In particular, diffuse functions have been demonstrated to be necessary to describe the 

flexible and diffuse excess electron density.15,16,18 Taken together, these realizations severely 

limit the size of the systems that can be studied by well correlated ab initio methods, given 

that MP2 and CCSD(T) formally scale as N5 and N7, respectively, with N being the number 

of basis functions. H2O( )33
!  and H2O( )7

!  are the largest clusters that have been studied to 

date by MP2 and CCSD(T), respectively, with the 6-31(+,3+)G* basis set. In this basis set 

each H atom has two additional s-type diffuse functions.15 In the current study, MP2 and the 
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completely renormalized coupled cluster method, CR-CC(2,3), aka CR-CCSD(T)L, are 

employed, since the CR-CC(2,3) approach is at least as accurate as CCSD(T) and often 

provides CCSDT quality results at a computational cost that is similar to that of CCSD(T).19    

“Locality” is a relative concept. Although it is relatively diffuse, the excess electron 

density is not completely delocalized (such as the electron ‘sea’ in metals), especially 

viewed in the context of bulk water. It is possible to find water cluster motifs in which the 

excess electron density is localized and to treat such a motif as one open-shell fragment and 

rest of the system as closed-shell fragments. The natural parallelism of fragmentation 

approaches reduces memory and CPU time costs, both of which are bottlenecks in 

correlated electronic structure calculations. Furthermore, a multi-layer construction, i.e., 

different levels of theory for different layers (regions) of the system, has been implemented 

for many fragmentation methods. In principle, the fragmentation approach should allow 

much larger anionic water clusters to be examined by ab initio methods. In the present 

work, one particular fragmentation approach, the cluster-in-molecule (CIM)20–22 method, 

will be assessed in terms of the accuracy of vertical electron binding energies (VEBE).  

The remainder of the paper is arranged as follows. The main idea of the single-

environment (SE) CIM is described briefly in Section II. Section III presents the 

computational details. The results are reported and discussed in Section IV. Conclusions are 

drawn in Section V.  

II. Methods 

The central premise of fragmentation approaches is that chemical processes are local 

phenomena. For fragmentation methods, it is crucial to have a sensible and reliable method 

for fragmenting the system so that the locality is maintained. It is also desirable to have the 
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fragment definitions as controlled and automated as possible. For the solvated electron the 

excess electron density is relatively diffuse and spread over several water molecules and 

may also extend beyond the atoms in a small cluster, rendering fragmentation difficult. The 

CIM method provides a possible solution to this problem. 

CIM is a linear scaling local correlation approach. The CIM method is based on the 

premise that the total correlation energy of a system can be obtained as the sum of the 

contributions from the occupied orthonormal LMOs (central LMOs) and their respective 

occupied (environmental) and unoccupied localized orbital domains, since the correlation 

contributions from spatially distant LMO pairs are expected to be negligible.20,23–28  

In this work, the single-environment (SE) CIM method is used. The SE CIM coupled 

cluster (CC) approach has been demonstrated to work well for weakly bound molecular 

clusters, with subsystems that apparently do not vary with the nuclear geometry.22 The 

construction of SE CIM subsystems is detailed in reference 22. Unlike most other 

fragmentation methods whose fragmentation schemes are entirely atom-based, often with 

distance cutoffs, the CIM method is LMO-based and the Fock matrix elements are used as a 

key threshold parameter. This local correlation approach is ‘black box’ in the sense that one 

does not require detailed prior knowledge of the system to know how to fragment it. This 

feature is particularly useful for the diverse motifs of H2O( )n
! . However, the threshold 

parameters do need to be adjusted from their default values for the H2O( )n
!  systems.  
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III. Computational details 

 The water clusters examined in this work range from 2 to 20 water molecules 

denoted as nw.* where n is the number of water molecules in the system and * is an index 

for the particular isomer, either numerical or alphabetical. The structures of H2O( )n
! 	
  ,	
  n	
  =	
  2-­‐

7,	
  14,	
  20,	
  indicated by an alphabetical index, are obtained from the studies by Herbert et. 

al.15–17. The water clusters 6w.1 to 6w.5 were obtained from a study by Jordan and 

coworkers.14 The 8-water clusters and the cluster 12w.1 were obtained from Monte Carlo 

simulated annealing simulations conducted by the authors, followed by MP2/aug-cc-pVTZ 

29,30 geometry optimization and verified to be minima by Hessian calculations.  

Single point energy calculations were carried out for the clusters H2O( )n
!  obtained 

from studies by Herbert et. al.15–17 at the MP2 level of theory using three basis sets: 6-

31++G(d,p), 6-31++G(df,p) and 6-311++G(d,p). The energies of the neutral clusters with 

the same geometries as the corresponding anions were also computed with these three basis 

sets. In this study, the VEBE is defined as VEBE = E (anion cluster) – E (neutral cluster at 

anionic structure). A negative VEBE indicates that the anion is at least metastable with 

respect to the autodetachment of the excess electron. Since a finite basis set is used, a 

positive VEBE is less conclusive, suggesting the anion is unstable relative to the neutral 

cluster but the excess electron may be confined by an inadequate basis set. The clusters with 

positive VEBE are not further investigated with CIM. By comparing VEBEs calculated 

using the aforementioned three basis sets, 6-31++G(d,p) was chosen for the CR-CC(2,3) and 

CIM calculations as a compromise between accuracy and computational cost. Due to the 

high computational cost, the full CR-CC(2,3) calculations were only done for those H2O( )n
!  
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clusters with n ≤ 7 that have a negative VEBE. For all clusters with negative VEBEs (Fig 1), 

the VEBEs were also calculated using CIM/CR-CC(2,3)/6-31++G(d,p) with default 

threshold settings.  

There are three key threshold parameters in CIM that can alter the size of the 

subsystems and consequently affect the binding energy and the computational efficiency. 

Each occupied LMO ! i is taken to be a “central” LMO. An occupied LMO ! j  is considered 

to be an “environmental” LMO for a specific central LMO ! i  if the magnitude of the Fock 

matrix element, ! i f ! j , is greater than the threshold ! . So, the smaller the value of ! , 

the more environmental LMOs are included and the larger the subsystem is. The default 

value of ! is 0.003. The central LMO ! i and the associated environmental LMOs {! j } form 

an occupied LMO domain {I}. It is possible that all of the occupied LMOs in one domain 

are included in another larger domain. In that case the two domains {I} and {J} are 

combined to form a composite domain {IJ}. The central LMOs of the larger domain {IJ} 

now contain two central LMOs, ! i and ! j . The second threshold parameter is a Mulliken 

population cutoff (ATMMLK). For each LMO ! i 	
  all	
  of	
  the	
  atoms	
  in	
  the	
  entire	
  system	
  are	
  

ranked	
  in	
  the	
  order	
  of	
  decreasing	
  Mulliken	
  orbital	
  populations	
  in	
  ! i .	
  A	
  given	
  LMO! i 	
  is	
  

assigned	
  to	
  an	
  atom	
  if	
  the	
  Mulliken	
  population	
  on	
  the	
  atom	
  in	
  LMO	
  ! i 	
  exceeds	
  

ATMMLK.	
  The smaller ATMMLK is, the more atoms would be included in a subsystem. 

The default value of ATMMLK is 0.15.22 Considering the diffuse nature of the solvated 

electron system, reducing the Mulliken charge cutoff may diminish the cost benefit of CIM. 

So ATMMLK=0.15 is used in this study. Lastly,!  is the threshold for selecting the 

unoccupied LMOs that are associated with a subsystem. The subsystem unoccupied LMOs 
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are selected from the set of unoccupied LMOs of the extended subsystem. The larger the 

value of ! , the more unoccupied orbitals will be retained. The definition and construction of 

the extended subsystem and the unoccupied LMOs is discussed in detail in Ref. 22. The	
  

default	
  value	
  of	
  ! 	
  is	
  set	
  to	
  0.2.	
  The values of ! 	
  and	
  ! 	
  were	
  chosen	
  by	
  predicting	
  the	
  

VEBE	
  for	
  several	
  small	
  clusters	
  that	
  have	
  a	
  broad	
  range	
  of	
  VEBEs.	
  ! is	
  chosen	
  to	
  be	
  

0.001	
  while	
  ! 	
  remains	
  at	
  its	
  default	
  value.	
  CIM/CR-CC(2,3) calculations were then 

performed with the chosen set of parameters (! =	
  0.001,	
  ATMMLK	
  =	
  0.15,	
  !=	
  0.2)	
  for all 

clusters that have negative VEBEs.  

To quantify the charge distributions of the anionic and neutral clusters, atomic 

charges were computed by fitting to the electrostatic potential at points that are selected 

according to an algorithm due to Spackman.31 The differences in the atomic charges 

between anionic and neutral clusters were computed. All of the calculations were performed 

with the GAMESS electronic structure code.32,33 

IV. Results and Discussion 

The MP2 VEBEs of water clusters H2O( )n
! , n = 2-7,14 and 20, were examined using 

the three basis sets discussed in Section 3 (See Table 1) and compared with the previously 

calculated MP2/6-31(1+,3+)G*15–17 VEBEs by Herbert et. al.. The 6-31(1+,3+)G* basis set, 

compared to the 6-31++G* basis, has two additional diffuse s functions on H atoms with 

their exponents decreased by a successive factor of 3.32.15 The diffuse functions on H atoms 

have been shown to be crucial for the binding of the excess electron.15 However the 6-

31(1+,3+)G* basis is not employed in the present study, because the CIM method may have 
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difficulties constructing the unoccupied LMOs of subsystems,20 or the very large 

subsystems that are created may require more memory than is available on one processor 

(CR-CC(2,3) only runs in serial).  

Table 1 tabulates the MP2 VEBE results with all four basis sets. The addition of a 

set of f polarization functions hardly changes the binding energies in comparison with the 6-

31++G(d,p) VEBEs. The VEBEs predicted by the triple zeta basis set are reasonably close 

to the 6-31++G(d,p) VEBEs. For all of the clusters listed in Table 1, MP2/6-31(1+,3+)G* 

predicts negative VEBEs. For the smallest clusters (n = 2-4) MP2/6-31++G(d,p) predicts 

mostly positive VEBEs. However, for n>4, the two sets of VEBE are in qualitative 

agreement, with the MP2/6-31++G(d,p) predicting VEBEs that are generally ~3-6 kcal/mol 

smaller in magnitude than the MP2/6-31(1+,3+)G* VEBE values, but with the same sign. 

The small clusters with positive VEBE still do not bind the excess electron even after 

MP2/6-31++G(d,p) geometry optimization. MP2 with the smaller 6-31+G(d,p) basis set 

(results not shown in Table 1) predicts that most of the clusters in Table 1 have positive 

VEBE. The Dunning correlation consistent aug-cc-pvTZ basis set does not produce negative 

VEBEs for the very small clusters and already becomes computationally demanding for 6-

water clusters. Consequently, the 6-31++G(d,p) basis is chosen as a good compromise for 

the present work.  

Herbert and Head-Gordon15 noted that the magnitudes of the MP2 electron 

detachment energies are consistently ~30 meV (0.69 kcal/mol) smaller than the 

corresponding CCSD(T) values using the same basis set. The MP2 error is essentially 

independent of the magnitude of the binding energy or the structure motif. A similar 

conclusion can be drawn from the results in Table 2 for MP2 and CR-CC(2,3): the 



	
   160	
  

magnitudes of MP2 VEBEs are on average ~0.67 kcal/mol lower than the CR-CC(2,3) 

values. This observation is important for the present study, since MP2 VEBEs for larger 

clusters can provide good benchmarks for CIM/CR-CC(2,3) and can therefore be used to 

obtain estimated CR-CC(2,3) VEBE values when CR-CC(2,3) is too challenging for the 

entire system. 

The MP2 and CR-CC(2,3) VEBEs calculated with the 6-31++G(d,p) basis set are 

compared in Table 3. The CR-CC(2,3) VEBE values of the clusters with n ≥ 8 are estimated 

by adding  -0.67 kcal/mol to the corresponding MP2 values. These estimated CR-CC(2,3) 

VEBEs are in italics to emphasize that they are only used as a guideline. The clusters that 

have positive VEBE in Table 1 do not appear in Table 3. The VEBE calculated using 

CIM/CR-CC(2,3) are also tabulated in Table 3. The percent error (% error) is used to assess 

the quality of the results rather than the absolute errors. The % errors are calculated as 

(CIM/CR-CC(2,3) VEBE – CR-CC(2,3) VEBE)/CR-CC(2,3) VEBE. Using the CIM default 

! =0.003, the predicted VEBEs are in poor agreement with the benchmark VEBEs, with an 

average % error of 76%. Relative to CR-CC(2,3) VEBEs, the RMS error of CIM/CR-

CC(2,3) (! =0.003) is 23.65 kcal/mol, two orders of magnitude larger compared to that of 

MP2 (0.68 kcal/mol). Moreover there seems to be no pattern as to whether the error over- or 

under-estimates the VEBE. The default CIM threshold parameters were originally 

benchmarked22 mainly using neutral systems (alkanes, water clusters), and they appear to be 

inadequate for delocalized anionic systems like H2O( )n
! .  

As mentioned in the computational details section, some threshold parameters may 

influence the construction of subsystems and consequently the CIM correlation energy. To 

find the optimal values of these parameters, small clusters with large VEBE errors are 
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examined by varying ! and	
  ! . Table 4 presents the VEBEs for the 4w.a, 5w.d and 5w.e 

clusters calculated at different ! values.  At ! = 0.003, CIM/CR-CC(2,3) produces VEBEs 

that deviate significantly from the CR-CC(2,3) results. For ! = 0.002, some improvement 

can be seen although the results are still far from satisfactory. ! = 0.001 yields much 

improved VEBEs. The RMS errors for the three clusters in Table 4 are reduced from 4.99 

kcal/mol for! = 0.003 to 0.58 kcal/mol for ! = 0.001. For ! = 0.003 or 0.002, CIM 

generates 4 subsystems for both the anionic and neutral 5w.e cluster, while for! = 0.001, 

CIM generates only one subsystem for both anionic and neutral 5w.e clusters. Therefore, the 

computed CIM/CR-CC(2,3) VEBE is identical to the CR-CC(2,3) VEBE. The anionic 5w.d 

cluster is also not fragmented. This lack of fragmentation means that CIM recognizes that 

this cluster is too delocalized to fragment. Table 5 illustrates that there is little dependence 

of the predicted VEBE for the 6w.5 cluster on changes in the parameter ! .	
   

The CIM/CR-CC(2,3) calculations reported in Table 3 were also performed with ! = 

0.001 and other parameters kept as their default values. Two observations can be made 

immediately. First, the average percent error decreases from 76% to 15%. Second, the 

CIM/CR-CC(2,3) method with ! = 0.001 almost always underestimates the VEBE. The 

RMS error of CIM/CR-CC(2,3) with ! = 0.001 is 2.34 kcal/mol, about 10 times smaller than 

that with ! = 0.003.  

The MP2/6-31++G(d,p) and CR-CC(2,3)/6-31++G(d,p) electron correlation 

contributions to the VEBE are shown in Table 6. The MP2/6-31++G(d,p) VEBE electron 

correlation contribution is ~ 0.67 kcal/mol smaller in magnitude than that obtained with CR-

CC(2,3)/6-31++G(d,p) for n ≤ 7. This is expected since MP2 and CR-CC(2,3) use the same 
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HF reference wave function. The CR-CC(2,3) VEBE correlation contributions for n > 7 are 

therefore estimated by adding -0.67 kcal/mol to MP2 correlation energies and are listed in 

italics. By comparing to the VEBEs listed in Table 3, one can see that the correlation energy 

is crucial for the binding of the excess electron. For small clusters (n = 2-5), the excess 

electron will not bind at the Hartree-Fock level. For most of the 6- and 7- water clusters the 

VEBEs come almost entirely from electron correlation. As the cluster size increases, the 

percentage contribution of electron correlation to the VEBE decreases. However, the 

correlation effect is still a significant portion of the VEBE, with the smallest contribution 

among the clusters examined here being ~20% for the 12w.1 cluster. The variation of the 

correlation energy contributions with the size of the system is much smaller than the 

variation of VEBEs with the size of the cluster and different configurations of the same size.  

The CIM/CR-CC(2,3) errors for the total VEBE and the correlation contributions 

compared to the corresponding CR-CC(2,3) values [CIM/CR-CC(2,3) – CR-CC(2,3)] are 

also tabulated in Table 6. The errors in the VEBE come entirely from the correlation energy 

errors. This is because CIM splits the electron correlation energies into contributions from 

subsystems, but the reference HF energy is calculated for the entire system.  

 Unfortunately, examination of the entries in Table 6 does not reveal a clear 

relationship between the cluster size and the correlation energy errors of H2O( )n
! 	
  and	
  

H2O( )n . The signs of the errors are almost always positive (CIM correlation energies are 

less negative) which means (not surprisingly) that CIM tends to under-estimate the 

correlation energies. The error in the calculated VEBE depends, of course on the relative 

errors in the anion and in the corresponding neutral cluster. If both anionic and neutral 
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clusters have similar errors with the same sign (both large errors or both small errors), the 

resulting VEBE error is small, for example, 6w.1 and 6w.2. An interesting example is the 

cluster 6w.e: Upon decreasing ! from 0.003 to 0.001, the correlation energy errors for both 

the anionic and neutral clusters decrease. However, the improvement of the anion 

correlation energy is much less than that of the neutral cluster, so the ! =0.001 VEBE error 

is larger than that for 0.003. In most cases, the errors of the neutral clusters are smaller since 

the electron distributions in the neutral clusters are more localized. The majority of the 

clusters have the same number of subsystems generated by CIM for the anion and its neutral 

counterpart. Of course, the LMO composition of the anion and neutral subsystems do not 

necessarily match. Hence, the difference between the anionic and neutral correlation errors 

is a manifestation of the difference in the degree of localization (or delocalization). In the 

present work, the biggest difference in the number of subsystems between an anion and the 

corresponding neutral is three for 5w.4 and 8w.2.  

The excess electron charge distribution can be studied by taking the difference 

between the atomic charges of the anionic and neutral clusters that are computed by fitting 

to their electrostatic potentials.31 Of course, there is no unique way to define atomic charges. 

So, these atomic charges should be viewed as qualitative indicators for understanding the 

CIM subsystems. Consider, for example, 6w.5. The atomic charge difference is shown in 

Figure 2(a). The excess electron, indicated by negative charge differences on atom centers, 

is essentially evenly distributed over the hydrogen atoms that point into the cavity, while the 

other hydrogen atoms that form the hydrogen network are hardly changed, behaving like 

‘spectators’. This particular ‘internally solvated’ anionic cluster would naturally be 

considered to be one open-shell system and requires no further fragmentation. In fact, such 
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delocalized systems would be extremely difficult, if not impossible, to deal with for any 

fragmentation scheme, because fragmentation approaches are based on the locality of the 

chemistry. The excess electron distribution polarizes the OH bonds pointing towards the 

cavity. The anion oxygen atoms become slightly more positively charged compared to their 

neutral counterparts. A sensible fragmentation should include both the hydrogen atoms 

pointing into the cavity and all of the polarized oxygen atoms. Figures 2(b) and 2(c) show 

the CIM fragmented subsystems of the anion using ! = 0.003 and ! = 0.001, respectively. 

Each of the subsystems in Figure 2(b) encompasses three water molecules on one side and 

the three mostly negatively charged hydrogen atoms on the other side, while the subsystems 

in Figure 2(c) also include the three oxygen atoms on the other side, leaving out three 

‘spectator’ hydrogen atoms on the other side. Larger subsystems should improve the results 

in general. In this case, all six OH bonds equally polarized by the excess electron are 

included in each subsystem in Figure 2(c). The number of subsystems is also reduced in 

Figure 2(c) relative to Figure 2(b).  

 In terms of the computational cost, the effect of changing ! from 0.003 to 0.001 is 

manifested in two ways. The sizes of most of the subsystems increase, and the number of 

subsystems may change. The magnitude of the increase in the computational demand varies 

from system to system. Using 14w.a and 14w.b as examples, the replicated memory 

requirement for each subsystem is reported in Table 7 in units of 1 megaword where a word 

is defined as 64 bits. One can see that almost all of the subsystems of 14w.a and 14w.b 

increase in size when !  decreases, but the change of ! impacts 14w.b subsystems much 

more than in 14w.a. 14w_n indicates the neutral counterparts of the anions. The fact that the 

increase in computational demand for the neutral cluster 14w_n.b is much less compared to 
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that of 14w.b is again a demonstration of the difference in the degree of localization 

between the anion and the neutral.  

 The CIM method significantly reduces the memory requirement compared to an ab 

initio calculation of the whole system. For example, a CR-CC(2,3)/6-31++G(d,p) 

calculation of 7-water clusters requires ~ 1378 megawords while the largest subsystem of 7 

water clusters require ~ 480 megawords, and many other subsystems need less than 100 

megawords. For 20-water clusters, MP2/6-31++G(d,p) requires ~ 4776 megawords (serial 

calculation), while a CIM/CR-CC(2,3) using the same basis set requires 447 megawords for 

the largest subsystem and ~ 97 megawords on average. So, even though empirically 

corrected MP2 calculations do very well for the VEBE, the reduced CIM/CR-CC(2,3) 

memory requirements will allow calculations on much larger clusters.  In addition, such 

empirical corrections may not be available for all properties of interest. 

V. Conclusions 

The excess electron in finite anionic water clusters is diffuse, and electron 

correlation plays an important role in the binding of the excess electron to the water clusters, 

especially smaller clusters (2-5 water molecules). The cluster-in-molecule (CIM) method in 

combination with CR-CC(2,3) is assessed in this study in terms of the accuracy of VEBE for 

anionic water clusters in the range of 4 – 20 water molecules. The use of LMO domains for 

dividing the whole system provides the ease of a ‘black-box’ type calculation, with just 

three threshold parameters. Setting the threshold parameter ! to 0.001 provides reasonably 

accurate VEBEs at an affordable computational expense. At present, the CIM method in 

GAMESS is a sequential code. However, the implementation of a distributed parallel code 
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is in progress. Such a parallel code will considerably reduce the computational cost of CIM 

calculations.  The CIM/CR-CC(2,3) method may be a viable alternative approach for 

obtaining benchmarking numbers for water clusters when traditional coupled-cluster theory 

calculations for the entire system are difficult or impossible.   
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Figure 1. The geometries of the H2O( )n
! , n = 4-20, studied by CIM in this work.  

 

Figure 2 (a) The atomic charge difference between the anionic and the neutral clusters of 

6w.5; (b) The six subsystems constructed by CIM/CR-CC(2,3) with ! = 0.003; (c) the two 

subsystems constructed by CIM/CR-CC(2,3) with ! = 0.001 
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Table 1 MP2 VEBE (kcal/mol) for anionic water clusters H2O( )n
! , n = 2-7, 14, 20.  

 MP2a 

6-31(1+,3+)G* 

MP2 

6-31++G(d,p) 

MP2 

6-31++G(df,p) 

MP2 

6-311++G(d,p) 

2w -0.61 12.47 12.43 13.27 

3w.a -0.16 13.35 13.30 14.00 

3w.b -3.26 6.19 6.14 7.05 

4w.a -8.02 -1.94 -2.01 -0.85 

4w.b -4.57 3.17 3.10 4.05 

4w.c -0.95 11.15 11.09 11.86 

4w.d -5.69 1.73 1.66 2.66 

4w.e -4.42 3.66 3.61 4.63 

4w.f -6.05 1.53 1.47 2.43 

5w.a -9.38 -3.48 -3.54 -2.44 

5w.b -1.76 9.36 9.29 10.13 

5w.c -10.28 -5.09 -5.16 -4.03 

5w.d -6.52 -0.61 -0.69 -0.40 

5w.e -8.50 -2.56 -2.63 -1.62 

5w.f -8.25 -1.83 -1.90 -0.91 

6w.a -0.20 12.11 12.08 12.78 

6w.b -16.26 -13.24 -13.35 -11.96 

6w.c -0.46 11.16 11.13 11.76 

6w.d -2.30 8.20 8.13 8.96 
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6w.e -10.78 -5.63 -5.71 -4.59 

6w.f -11.65 -6.95 -7.03 -5.75 

6w.g -10.20 -5.11 -5.19 -4.18 

7w.a -14.66 -10.74 -10.83 -9.62 

7w.b -13.17 -8.65 -8.72 -7.70 

7w.c -10.44 -4.17 -4.24 -3.23 

14w.a -19.36 -14.81 -14.90 -13.83 

14w.b -21.65 -20.87 -21.07 -19.94 

20w.a -25.32 -21.77 -21.87 -20.65 

20w.b -20.35 -16.48 -16.57 -15.48 

20w.c -14.84 -10.44 -10.52 -9.59 

a The MP2/6-31(1+,3+)G* VEBEs are taken from references 7-9*. 
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Table 2 VEBE (kcal/mol) computed using MP2 and CR-CC(2,3) at 6-31++G(d,p) basis set 

for H2O( )n
! , n = 4 - 7 

 MP2 

6-31++G(d,p) 

CR-CC(2,3) 

6-31++G(d,p) 

4w.a -1.94 -2.59 

5w.a -3.48 -4.26 

5w.c -5.09 -5.70 

5w.d -0.61 -1.49 

5w.e -2.56 -3.22 

5w.f -1.83 -2.34 

6w.1 -3.09 -4.11 

6w.2 -6.83 -7.51 

6w.3 -13.22 -13.67 

6w.4 -5.31 -6.08 

6w.5 -13.89 -14.46 

6w.b -13.24 -13.80 

6w.e -5.63 -6.34 

6w.f -6.95 -7.84 

6w.g -5.11 -5.68 

7w.a -10.74 -11.48 

7w.b -8.65 -9.18 
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7w.c -4.17 -4.68 
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Table 3 VEBEs (kcal/mol) for H2O( )n
! , n = 4 – 20, calculated using MP2, CR-CC(2,3), and 

CIM-CR-CC(2,3) with the 6-31++G(d,p) basis set. The CR-CC(2,3) VEBEs for clusters 

larger than 7 water molecules are estimated from MP2 values (in italics). The % errors 

relative to those estimated values are also in italics. The MP2 and CIM RMS errors are	
  

given	
  in	
  kcal/mol 

 MP2 

 

CR-CC(2,3) 

 

CIM/ 

CR-CC(2,3) 

! =0.003 

% 

Error 

CIM/ 

CR-CC(2,3) 

! =0.001 

% 

Error 

 

4w.a -1.94 -2.59 -0.80 -69% -1.95 -25% 

5w.a -3.48 -4.26 -3.65 -14% -4.15 -3% 

5w.c -5.09 -5.70 -5.82 2% -5.11 -10% 

5w.d -0.61 -1.49 -9.74 556% -2.26 52% 

5w.e -2.56 -3.22 -1.40 -57% -3.21 0% 

5w.f -1.83 -2.34 -8.07 245% -1.40 -40% 

6w.1 -3.09 -4.11 -3.29 -20% -3.88 -6% 

6w.2 -6.83 -7.51 -6.77 -10% -6.53 -13% 

6w.3 -13.22 -13.67 -7.94 -42% -8.15 -40% 

6w.4 -5.31 -6.08 -10.40 71% -5.11 -16% 

6w.5 -13.89 -14.46 -39.46 173% -13.13 -9% 

6w.b -13.24 -13.80 -17.28 25% -12.26 -11% 

6w.e -5.63 -6.34 -5.44 -14% -2.81 -56% 
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6w.f -6.95 -7.84 -13.61 74% -6.20 -21% 

6w.g -5.11 -5.68 -10.81 90% -5.00 -12% 

7w.a -10.74 -11.48 -14.40 26% -10.83 -6% 

7w.b -8.65 -9.18 -8.26 -10% -8.26 -10% 

7w.c -4.17 -4.68 -3.94 -16% -4.30 -8% 

8w.2 21.42 -22.09 -22.98 4% -21.06 -5% 

8w.4 -25.39 -26.07 -19.16 -26% -23.25 -11% 

8w.5 -19.30 -19.98 -24.60 23% -18.23 -9% 

8w.6 -23.37 -24.04 -25.28 5% -21.48 -11% 

8w.7 -22.63 -23.31 -22.80 -2% -21.50 -8% 

8w.8 -24.61 -25.28 -32.26 28% -24.88 -2% 

8w.9 -18.64 -19.31 -31.99 66% -17.65 -9% 

8w.10 -27.01 -27.69 -23.78 -14% -26.51 -4% 

8w.11 -24.29 -24.96 -30.79 23% -24.79 -1% 

8w.12 -15.08 -15.76 -20.70 31% -15.02 -5% 

12w.1 -48.79 -49.46 -42.28 -15% -44.71 -10% 

12w.a -16.23 -16.90 -15.03 -11% -15.68 -7% 

14w.a -14.81 -15.48 -12.45 -20% -12.66 -18% 

14w.b -20.87 -21.54 -10.47 -51% -21.93 2% 

20w.a -21.77 -22.44 -14.89 -34% -15.45 -31% 

20w.b -16.48 -17.15 -151.70 785% -12.20 -29% 

20w.c -10.44 -11.11 -8.77 -21% -9.27 -17% 

RMS 0.68  23.65  2.34  



	
   178	
  

error 
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Table 4 VEBEs (kcal/mol) of three clusters computed using CR-CC(2,3), and CIM/CR-

CC(2,3) with three !  values and the 6-31++G(d,p) basis set. The RMS errors are in 

kcal/mol. 

 4w.a 5w.d 5w.e RMS error 

CR-CC(2,3) 

 

-2.59 -1.49 -3.22  

CIM/CR-CC(2,3) 

! = 0.003 (default) 

-0.80 -9.74 -1.40 4.99 

CIM/CR-CC(2,3) 

! = 0.002 

-0.85 -2.60 -1.79 1.45 

CIM/CR-CC(2,3) 

! = 0.001 

-1.95 -2.26 -3.21 0.58 
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Table 5 VEBEs (in kcal/mol) of three clusters computed using CR-CC(2,3) and CIM/CR-

CC(2,3) with three values of !  and the 6-31++G(d,p) basis set. 

 6w.5 

CR-CC(2,3) -14.46 

CIM/CR-CC(2,3) 

!  = 0.2 (default) 

-39.46 

CIM/CR-CC(2,3) 

!  = 0.3 

-39.08 

CIM/CR-CC(2,3) 

!  = 0.4 

-37.50 
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Table 6 MP2, CR-CC(2,3) and CIM/CR-CC(2,3) correlation energy contributions [anionic 

correlation energy – neutral correlation energy] to the VEBE (kcal/mol). 

 MP2 

Corr. 

E. 

CR-

CC(2,3) 

Corr. E. 

CIM/CR-

CC(2,3) 

Total VEBE  

Error 

CIM/CR-

CC(2,3) 

Corr. E. Error 

CIM/CR-

CC(2,3) 

Anionic 

Corr. E. Error 

CIM/CR-

CC(2,3) 

Neutral 

Corr. E. Error 

4w.a -5.59 -6.24 0.64 0.64 0.79 0.15 

5w.a -5.81 -6.60 0.11 0.11 0.44 0.33 

5w.c -5.82 -6.43 0.59 0.59 1.21 0.63 

5w.d -5.47 -6.35 -0.78 -0.78 0.01 0.79 

5w.e -5.89 -6.55 0.00 0.00 0.00 0.00 

5w.f -5.51 -6.02 0.94 0.94 0.84 -0.09 

6w.1 -5.64 -6.66 0.24 0.24 4.05 3.82 

6w.2 -5.90 -6.58 0.98 0.98 4.27 3.28 

6w.3 -6.39 -6.85 5.53 5.53 7.06 1.53 

6w.4 -5.65 -6.43 0.97 0.97 0.78 -0.19 

6w.5 -5.43 -6.01 1.33 1.33 1.06 -0.27 

6w.b -6.57 -7.13 1.54 1.54 3.33 1.79 

6w.e -6.03 -6.74 3.53 3.53 5.12 1.59 

6w.f -5.79 -6.68 1.64 1.64 2.53 0.89 

6w.g -5.78 -6.34 0.68 0.68 0.85 0.17 

7w.a -6.29 -7.03 0.65 0.65 2.91 2.26 
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7w.b -6.07 -6.60 0.91 0.91 1.97 1.06 

7w.c -5.64 -6.15 0.37 0.37 0.16 -0.21 

8w.2 -6.47 -7.14 1.03 1.03   

8w.4 -7.45 -8.12 2.82 2.82   

8w.5 -7.01 -7.68 1.74 1.74   

8w.6 -6.56 -7.23 2.56 2.56   

8w.7 -6.84 -7.51 1.80 1.80   

8w.8 -7.22 -7.89 0.40 0.40   

8w.9 -6.85 -7.52 1.66 1.66   

8w.10 -7.24 -7.91 1.17 1.17   

8w.11 -6.83 -7.50 0.17 0.17   

8w.12 -6.46 -7.13 0.74 0.74   

12w.1 -9.90 -10.57 4.75 4.75   

12w.a -7.63 -8.30 1.22 1.22   

14w.a -6.35 -7.02 2.82 2.82   

14w.b -11.05 -11.72 -0.39 -0.39   

20w.a -6.61 -7.28 6.99 6.99   

20w.b -6.34 -7.01 4.95 4.95   

20w.c -6.34 -7.01 1.84 1.84   

 

Table 7. Memory requirement (in mwords) for the CIM subsystems of the clusters 14w.a 

and 14w.b and their neutral counterparts with different ! values. 14w_n designates the 

neutral counterparts.  
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 14w.a 14w_n.a 14w.b 14w_n.b 

!
subsystem 

0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 

1 62 119 62 119 42 292 43 135 

2 45 89 45 94 50 135 50 64 

3 80 371 42 57 52 96 52 96 

4 35 122 35 122 290 3780 73 448 

5 62 122 62 122 44 122 61 122 

6 45 91 45 94 42 706 44 304 

7 42 81 32 84 59 149 59 149 

8 57 57 57 57 29 2216 29 1066 

9 45 125 45 125 50 135 52 113 

10 61 61 61 61 218 3256 20 144 

11 44 127 44 61 132 1633 19 55 

12 36 62 36 62 68 250 68 164 

13 111 295 61 61 412 4743 79 701 

14 104 194 61 113 40 91 32 94 
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Abstract 

Equilibrium structures and energies of gas-phase molecular complexes SiH4---BH3, SiH4---

B2H6 and SiH4---BCl3
 were determined using second-order Møller-Plesset perturbation 

theory (MP2) and the aug-cc-pVTZ basis set, with and without explicit core electron 

correlation. Single-point energies are calculated for the MP2-optimized structures using 

MP2 with the aug-cc-pVQZ basis set and using coupled-cluster theory (CCSD(T)) with both 
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the aug-cc-pVTZ and the aug-cc-pVQZ basis sets to extrapolate to the complete basis set 

(CBS). Partition functions were calculated using the harmonic oscillator/rigid-rotor 

approximation at the MP2/aug-cc-pVTZ level of theory. The explicit core electron 

correlation is demonstrated to have significant impact on the structures and binding energies 

and binding enthalpies of these complexes. The binding enthalpies were obtained at various 

temperatures ranging from 0K to the dissociation temperatures of the complexes. The 

potential energy surfaces of the three complexes were explored, and no transition states 

were found along the pathways from separated species to the complexes.  

I. Introduction 

The chemical vapor deposition (CVD) technique is a process widely used in the 

semiconductor industry to produce thin films, in which source gas/precursor molecules are 

transformed into a solid on the surface of a substrate1.  Silane (SiH4) is a common precursor 

used in the CVD process due to its high volatility. Several boron compounds, borane (BH3), 

diborane (B2H6) and boron tricholoride (BCl3), are commonly used as precursors for the 

fabrication of boron doped thin films. At the initial stage of the CVD process, silane and 

boron-containing source gases interact through thermal initiation. Various chemical 

processes could occur, producing radical or charged species depending on the surrounding 

conditions. However, in this study, the processes of interest are the formation of the addition 

complexes: 

SiH4 + BH3   SiH4---BH3  (1a) 

SiH4 + B2H6   SiH4---B2H6  (1b) 

SiH4 + BCl3   SiH4---BCl3  (1c) 
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In these processes, temperature can potentially influence the stability of both the reactants 

and the products, which in turn will affect the subsequent steps in the CVD process. 

Therefore it is crucial to understand the temperature effects on these binding processes.  

The goals of this study are twofold: (1) To predict accurate structures and binding 

energies and binding enthalpies for the SiH4---BH3, SiH4---B2H6 and SiH4---BCl3 

complexes with high level ab initio methods and to determine how increasing the 

temperature affects the binding energies; (2) To explore the potential energy surfaces of 

these complexes along the formation pathway, in particular, to search for possible transition 

states. The binding energies ΔEb are defined as the energy changes associated with reactions 

(1). For example, for reaction (1a) ΔEb = E(SiH4---BH3) – E(SiH4) – E(BH3), where Ex 

refers to the total electronic energy of species x. The binding enthalpies at 0K are obtained 

from  ΔEb + Δ(ZPE) where ZPEx is the zero point vibrational energy for species x, obtained 

using the harmonic oscillator approximation. Further temperature corrections, using 

standard methods, yield the corresponding binding enthalpies at the higher temperatures. 

For clarity, the absolute (positive) binding energies and enthalpies are quoted in this work.  

The paper is organized as follows: the computational methods employed in this 

study are presented in Section II. In Section III, results and discussion are arranged to 

elucidate the results of the study. Conclusions are drawn in Section IV.  

II. Computational Methods 

 The geometries of SiH4, BH3, B2H6 and BCl3 were optimized using second-order 

Møller-Plesset perturbation theory (MP2) with the augmented correlation-consistent triple-

zeta basis set (aug-cc-pVTZ). The geometries of the complexes SiH4---BH3, SiH4---B2H6 

and SiH4---BCl3 were optimized with the same level of theory and basis set. Harmonic 
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vibrational frequencies for all the optimized species were evaluated to confirm that each 

molecular species is a genuine minimum on their respective potential energy surfaces. 

Single point energies were computed for these optimized geometries using coupled cluster 

theory with single, double and perturbative (non-iterative) triple excitations  (CCSD(T)) 

using the same aug-cc-pVTZ basis set. The aforementioned calculations by default used the 

frozen core approximation that assumes the core electrons are inert during the electron 

correlation calculations.  

To determine the importance of core electron correlation for the systems of interest, 

an identical set of calculations was carried out with all core electrons treated explicitly.  

Explicit core electron correlation generally adds a significant computational cost. The 

lowest-lying molecular orbitals (MOs) are expected to contribute very little to the relative 

energies and geometries of the molecular species in this study. Hence, in an attempt to 

reduce the computational cost while retaining accuracy, all of the calculations mentioned 

above were repeated with the Si 1s orbitals frozen. For BCl3 and the SiH4---BCl3 complex 

the three Cl 1s orbitals were also frozen. Freezing more of the core electrons (the outer core) 

results in significant changes in the predicted geometries and relative energies. In addition, 

as a less computationally demanding alternative approach to describe the core electrons, 

Huzinaga’s model core potential (MCP)2 with the equivalent TZ quality basis was employed 

to optimize the geometries of all of the clusters and their components. In the MCP method, 

the core electrons are replaced by the MCP, which incorporates scalar relativistic effects. 

The valence electrons are described with the associated triple zeta basis set.  

The binding energies and binding enthalpies obtained with outer core electrons 

included in the correlation part of the calculations are extrapolated to the complete basis set 
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(CBS) limit at both the MP2 and CCSD(T) levels of theory. Both the HF reference energies 

and the correlation energies are extrapolated using two basis sets (two-point extrapolation), 

aug-cc-pVTZ and aug-ccpVQZ. Single point energies are computed with the aug-cc-pVQZ 

basis set at the TZ-optimized geometries. The two-point extrapolation formula of Karton 

and Martin3 is used for the HF energies: 

E(X) = E(CBS) + A
Xα  

α = 5.34 for the aug-cc-pVTZ/QZ pair.  

The correlation energy extrapolation is accomplished using 4 

Ecorr (X) = Ecorr (CBS) + aX
−3  

Using the vibrational frequency information to calculate the appropriate harmonic 

oscillator/rigid rotor partition functions, the binding enthalpies were calculated at different 

temperatures. To determine if barriers exist during the formation process, re-optimization of 

the geometries was started from separated components of the complexes (~ 5Å apart). The 

re-optimized complexes were compared to the original optimized structures. All calculations 

were carried out using GAMESS program5. 

III. Results and Discussion 

 The minimum energy structures optimized at the MP2/aug-cc-pVTZ level of theory 

with full explicit core electron correlation for all of the molecular species involved in this 

study are shown in Figure 1. It has been suggested that electron correlation is important in 

describing the binding of these complexes and that the Hartree-Fock (HF) method fails to 

predict the correct structure for the SiH4---BH3 complex6.  
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Usually, core electrons are excluded from the electron correlation calculations, since 

most chemical phenomena involve only the valence electrons. Excluding the core electrons, 

i.e. frozen core approximation (FC), can save significant computational cost. However, in 

the present study, the core electron correlation is shown to play a key role in the prediction 

of both the Si--B distances and the binding energies and enthalpies of the three complexes. 

The geometries (Table 1) and binding energies (Table 2) of the SiH4---BH3, SiH4---B2H6 

and SiH4---BCl3 complexes exhibit significant differences, depending on whether or not 

core correlation is included in the calculations. For the SiH4---BH3 complex, including the 

core correlation causes a decrease in the Si---B distance by ~0.04 Å. This in turn results in 

an ~4 kcal/mol increase in the binding energy. Similarly for SiH4---BCl3, the shortening of 

the Si--B distance caused by the inclusion of core correlation, enhances the binding energy 

by nearly a factor of two. The effect of core electron correlation is most dramatic for the 

SiH4---B2H6 complex. For this species, it was not possible to locate a minimum energy 

structure unless core correlation was included in the calculation. Indeed, the SiH4---B2H6 

complex is unbound at the CCSD(T)/aug-cc-pVTZ level of theory without the inclusion of 

core electron correlation.   

In heavier elements like Si, it is likely that the “outer core” (i.e., 2s, 2p) electrons are 

more important for predicting properties than the “inner core” 1s electrons. This is referred 

to as the partial frozen core approximation (PFC) in this paper. Close inspection of MOs 

reveals that lowest MOs of SiH4 and BCl3 are essentially the Si 1s atomic orbital and Cl 1s 

atomic orbital with the orbital energies -68.77 and -104.86 Hartree, respectively. On the 

other hand, the lowest-lying MOs of BH3 and B2H6 are largely boron in character and all 

higher than -10.00 Hartree. Therefore, one can consider freezing the electrons in the Si 1s 
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orbital and Cl 1s orbitals during the electron correlation part of the calculation. The 

structures and binding energies that are obtained when the Si 1s core electrons and, in the 

case of SiH4 --- BCl3, also Cl 1s core electrons are not correlated are also listed in Tables 1 

and 2. The resulting structures and binding energies demonstrate that the 1s electrons of Si 

and Cl play little role in the binding.  

The MCP predicted Si--B distances in the three complexes lie in between those with 

and without the inclusion of core correlation, but more closely resemble the frozen-core-

approximation results. The same is true for the binding energies. Thus, the use of MCPs is 

not a viable alternative to including core correlation in the calculations.  

Of the three complexes considered here, SiH4---BH3 is overwhelmingly the most 

strongly bound, with one silane hydrogen shared with the boron atom, forming a bridged 

structure. In fact, the B—H distance for this hydrogen (1.271Å) is shorter than the 

corresponding Si—H distance (1.636Å). The Si—H distance is ~1.472Å in isolated SiH4 

and the B—H distance is ~1.181Å in isolated BH3. In the complex, one of the SiH4 

hydrogens is pulled and therefore elongated by the boron upon forming the bridged 

structure. The BH3 is planar before binding and adopts a pseudo-tetrahedral geometry after 

binding to the SiH4. After binding, the distances between silicon and the other three 

hydrogens in SiH4 are hardly affected (the changes are less than 0.01 Å). The only 

noticeable change in the BH3 bond lengths is that the distance between the boron and one of 

its hydrogens (#9 in Figure 1(e)) stretches from 1.1811 Å to 1.217 Å.  This exceptionally 

strong interaction between SiH4 and BH3 may be due to the electron-deficient nature of 

boron, which frequently leads to bridging structures7. In contrast, in SiH4---BCl3, the 

electronegative chlorine atoms mitigate this tendency, thereby making the interaction 
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between silane and boron tricholoride much weaker. The SiH4---B2H6 complex exhibits the 

weakest binding, possibly due to the relative stability of the three-center two-electron bonds 

formed among the two boron atoms and two bridging hydrogens8.  

Extrapolation of the binding energies to the complete basis set 

 The binding energies of the three complexes are extrapolated to the complete basis 

set limit (CBS) at the MP2 and CCSD(T) level of theories. The results are presented in 

Table 3. The 0K binding enthalpies at the CBS limit are computed using the MP2/aug-cc-

pVTZ ZPE, assuming the ZPE changes little from aug-cc-pVTZ to the CBS limit.  At the 

CBS limit, the SiH4 --- BH3 complex is still quite strongly bound with over 10 kcal/mol 

binding energy. The other two complexes exhibit similar binding strength differing by ~ 0.4 

kcal/mol at the MP2 level of theory and 0.1 kcal/mol with CCSD(T).  

Temperature effect on the binding energies 

The binding enthalpies computed at MP2/aug-cc-pVTZ at various temperatures for 

the three complexes are plotted in Figure 2. The three curves show similar trends: a slight 

increase to a maximum binding enthalpy, followed by a monotonic decrease. The SiH4---

BH3 complex binds most strongly at ~ 400K and remains bound until ~ 4000K. SiH4---B2H6 

and SiH4---BCl3 reach their maximum binding enthalpies between 50 K and approach 

dissociation at ~ 500K and ~1100 K, respectively.  

Potential Energy Surfaces (PES) 

To explore the potential energy surfaces of these complexes, MP2/aug-cc-pVTZ 

(including Si and Cl outer core correlation) optimizations were performed starting from the 

separated components of the three complexes (~5Å apart). In all three cases, the separated 

complexes fall back to the original minima found in this study with no barriers. It is 
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interesting that SiH4---BH3 and SiH4---B2H6 required tighter gradient convergence 

tolerance, which suggests that these two complexes have a relatively flat region near the 

minima on the PES. The fact that no transition states were found indicates that, at 0K, the 

kinetics of the binding processes between silane and the boron compounds studied in this 

project are diffusion-limited.   

IV. Conclusions  

 The equilibrium structures of SiH4---BH3, SiH4---B2H6 and SiH4---BCl3 complexes 

were determined at the MP2/aug-cc-pVTZ level of theory.  Explicit core correlation, in 

particular, the outer core, is shown to play a crucial role in predicting both the structures and 

binding energies and binding enthalpies for all three complexes. The binding energies and 

0K binding enthalpies at aug-cc-pVTZ basis set agree very well with the single point 

CCSD(T)/aug-cc-pVTZ results, the most accurate method employed in this study. The 

binding energies and 0K binding enthalpies including explicit outer core electron correlation 

are extrapolated to the complete basis set at both the MP2 and CCSD(T) levels of theory. 

Using model core potentials provides only a small improvement over the frozen core results. 

The binding enthalpies of the three complexes were evaluated from 0K to the dissociation 

temperature of each complex. All three complexes exhibit a similar trend, in which there is a 

slight increase in the binding enthalpy followed by a monotonic decrease as the temperature 

rises. At 0K, there are no barriers for the formation of the complexes.  
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Figure Captions 

Figure 1. Equilibrium structures of (a) SiH4, (b) BH3, (c) B2H6, (d) BCl3, (e) SiH4---BH3, 

(f) SiH4---B2H6 and (g) SiH4---BCl3 at MP2/Aug-cc-pVTZ with all the core electrons 

explicitly included in the electron correlation calculation. 

Figure 2. Binding enthalpies of (a) SiH4---BH3 (b) SiH4---B2H6 (c) SiH4---BCl3 at different 

temperatures with all the core electrons treated explicitly.  
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Table 1 Si---B distances for the optimized complexes. The columns from left to right are in 

the order: all electrons (including all core electrons) are treated explicitly; the lowest-lying 

core electrons (partial frozen core approximation) are frozen; all core electrons are frozen 

(frozen core approximation) and core electrons replaced by model core potential. For SiH4--

-B2H6, both Si---B distances are shown. All the distances are in Å.	
  

Si---B 

distance 

Full core 

correlation 

 Partial frozen core 

approximation 

 Frozen core 

approximation 

Model Core 

Potential 

SiH4---BH3 2.138 2.139 2.179 2.159 

SiH4---B2H6 3.624, 4.434 3.624, 4.440 3.908, 4.377 3.738, 4.568 

SiH4---BCl3 3.601 3.605 3.782 3.713 

 

 

 

Table 2 The binding energies (kcal/mol) and 0K binding enthalpies (in parentheses) for 

SiH4---BH3, SiH4---B2H6 and SiH4---BCl3 complexes calculated at MP2/aug-cc-pVTZ. The 

fourth and fifth columns show the binding energies and 0K enthalpies obtained if the partial 

frozen core or frozen core approximations are invoked, respectively. The binding energies 

obtained using MCPs are in the last column. 

Binding Energy 

(kcal/mol) 

MP2 

aug-cc-pVTZ 

(full core correlation) 

CCSD(T) 

aug-cc-pVTZ 

(full core correlation) 

MP2 

aug-cc-pVTZ 

(partial frozen core) 

MP2 

aug-cc-pVTZ 

 (frozen core) 

Model Core Potential 

SiH4 – BH3 15.9 (11.2) 14.8  15.8(11.1) 11.9 (7.3) 11.0 

SiH4 – B2H6 2.2 (1.4) 2.2  2.1(1.4) Fails to locate a 1.3 
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minimum 

SiH4 – BCl3 4.4 (3.6) 4.1  4.3(3.5) 2.4 (1.7) 3.2 

 

Table 3 The binding energies (excluding ZP corrections) extrapolated to the CBS limit for 

both MP2 and CCSD(T) levels of theory. In both cases, the partially frozen core results are 

used for the extrapolation. The 0K binding enthalpies are in parentheses. 

 MP2 

Partial Frozen Core 

CCSD(T) 

Partial Frozen Core 

SiH4 --- BH3 13.1 (8.5) 11.9 (7.3) 

SiH4 --- B2H6 1.7 (1.0) 1.7 (1.0) 

SiH4 --- BCl3 2.1 (1.3) 1.6 (0.8) 
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Chapter 7 Conclusion 

The body of this dissertation is dedicated to the study of various types of 

intermolecular interactions in the framework of the effective fragment potential method 

(EFP). Localized molecular orbital (LMO) plays a central role in EFP, as well as the other 

fragmentation methods, cluster-in-molecules (CIM), employed in Chapter 5 of this 

dissertation.  

The projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) onto the 

SCF virtual space selects a ‘chemically important’ subset of the full virtual space called 

valence virtual space. Diagonalization of the Fock matrix in this much smaller valence 

virtual space gives rise to the valence virtual orbitals (VVOs). Accuracy-wise, the EFP 

charge transfer (CT) energies obtained by using the occupied MOs + VVOs are generally as 

accurate as those obtained with full virtual space. The ‘quasiatomic’ attribute of QUAMBOs 

makes the CT energies much less dependent on the choice of basis set. Because the number 

of QUAMBOs is identical to the number of minimal-basis MOs of a molecule, the 

computational cost for CT energy and gradient are dramatically reduced.  

The R-7 term in the dispersion expansion is developed in the framework of EFP 

formulated with Cartesian polarizability tensors over imaginary frequencies. The 

formulation is developed both in terms of molecular and LMO polarizabilities. The contrast 

between the R-7 dispersion term (E7) and R-6 dispersion term (E6) is very great: E7 is highly 

anisotropic while isotropic approximation for E6 is fairly good. E6 is always attractive while 

E7 can be either attractive or repulsive. Although E7 has a rotational average of zero, its 

importance should not be underestimated for solid-phase structures and constrained 
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reactions. The difference between the dispersion energies calculated with molecular and 

LMO polarizabilities is a manifestation of different expansions of the interaction operator 

truncated at a finite order. By comparing E6+E7 values with benchmarking symmetry-

adapted-perturbation-theory (SAPT) dispersion energies, it is concluded that the dispersion 

expansion is not converged and at least the next term in the expansion, R-8 term, should be 

added. 

The exchange repulsion Fock operator (VXR) is derived by taking the variational 

derivative of the exchange repulsion energy between ab initio molecule and EFP potential 

(QM-EFP). The QM-EFP VXR is added to the ab initio Fock operator during the self-

consistent field iterations. The current implementation of QM-EFP VXR and EXR allows the 

presence of more than one EFP fragments. The agreement between QM-EFP and RVS 

exchange repulsion energies is within 4 kcal/mol for small clusters. The fully analytic 

gradients of QM-EFP energies with respect to both ab initio atom and EFP centers have 

been derived and implemented. 

Currently EFP can only deal with closed-shell systems. The user makes the decision 

about the fragmentation when generating EFP potentials (MAKEFP). Each molecule in the 

system is typically treated as one EFP fragment.  

Anionic water clusters H2O( )n
! , finite analogs of the solvated electron, are open-

shell systems with rather diffuse excess electron density. Such systems are usually 

extremely difficult to deal with by fragmentation methods (a benzene ring should not be 

fragmented due to its delocalized π cloud). Moreover, the complexity of the potential energy 

surfaces of H2O( )n
!  grows rapidly. CIM, a local correlation approach, in combination with 

CR-CC(2,3) provides a ‘black-box’ type calculation for H2O( )n
! . The CIM fragments are 



	
   225	
  

defined through LMO domains rather than atom domains. By reducing the threshold 

parameter ! to 0.001 as a trade-off between accuracy and computational cost, CIM/CR-

CC(2,3) approach can predict the vertical electron binding energies with the RMS error ~ 

2.34 kcal/mol. The cluster size that can be studied by CIM/CR-CC(2,3) is significantly 

increased compared to full ab initio calculations with the same basis set. 

Equilibrium structures and binding energies of gas-phase molecular complexes, 

SiH4---BH3, SiH4---B2H6 and SiH4---BCl3, were determined using second-order Møller-

Plesset perturbation theory (MP2) at aug-cc-pVTZ basis set. It was realized that the core 

electrons, especially outer core electrons, play a crucial role in predicating the structures and 

binding enthalpies for all three complexes. There are no transition states found for all three 

complexes at 0 K along the pathway of complex formation. The binding enthalpies of the 

three complexes were evaluated from 0 K to their respective dissociation temperatures.  The 

binding enthalpies of all three complexes increase slightly followed by a monotonic 

decrease as the temperature rises. 

As much as fragmentation approaches are advocated in this dissertation, it is 

important to realize the shortcoming and limitation of the approach. Approximations of 

different severity are applied to both the Hamiltonian and the wave function. Of course even 

the so called ab initio methods contain approximations. It is important to distinguish 

approximations and fitting: approximations are based on mathematical or sensible 

physical/chemical arguments while fitting is empirical even if the process of obtaining the 

fitted parameters is systematic. An extremely important attribute of EFP that separates it 

from many other model potentials is that there is no fitting and all the terms are derived 

from first-principle with truncated expansions. Consequently EFP can be improved 
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systematically, not through ad hoc attempts (e.g. the R-7 dispersion term is a systematic 

improvement). Another more subtle point is that clearly defined approximations allow users 

to decide whether a method can be applied to a specific system, e.g. EFP would not be 

employed for the SiH4---BH3 complex since the intermolecular interactions between core 

orbitals of different molecules are considered tiny and are neglected in EFP.  
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