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Chapter 1 General Introduction

I. Overview

In ancient China, water has been regarded as one of the five vital components of
life. It has been observed that water has many fascinating properties: water is ‘soft’ yet it
can penetrate a hard rock; water is ‘pure’ yet it can tolerate other beings. Because of its
unique properties, water is often associated with good quality and has been given the highest
praise by Laozi in his book Tao Te Ching saying: the highest/best quality that one can have
is being like water. However, little did people understand why and how water possesses

such fascinating properties.

Modern scientific developments made people realize that the macroscopic liquid
water is made of a large number of water molecules held together via a network of hydrogen
bonds. And those wonderful properties of water are merely the macroscopic manifestations
of the interactions between water molecules and other molecules. For example, the
dissolving ability of water is due to the fact that the interaction between a water molecule
and the other molecular species is stronger than the interactions among their own molecular
species. In fact the interactions between any two molecules are governed by the same
physics and are termed intermolecular interaction (or intermolecular forces in some

literature, although technically ‘force’ is incorrect usage here).

Although the very existence of the intermolecular interactions is easily proved, e.g.
the mere presence of the solid phase of matter, and scientists today have recognized that the

seemingly weak intermolecular interactions essentially hold the world together through a



delicate and cooperative process, the theoretical understanding of various intermolecular
interactions is still far from satisfactory. On the practical side, theoreticians need to balance
computational cost and accuracy. Because of the relatively small magnitudes of the
intermolecular interactions, errors that appear tiny compared to the usual chemical
(covalent) bonding may change conclusions qualitatively. High-level ab initio methods
including explicit description of electron correlation can achieve the desired accuracy at
very high computational cost. (Chapter 5 and 6) However the cooperative network of
hundreds of thousands of molecules that reflects the true power of intermolecular
interactions cannot be modeled easily by ab initio methods. Deeper understanding of
intermolecular interactions yields better theoretical models; better theoretical models
facilitate and even deepen the understanding of intermolecular interactions. With the
aforementioned motivation in mind, a significant portion of this dissertation is dedicated to
developing a method to describe the intermolecular interactions accurately with affordable

computational resources. (Chapter 2-4)

I1. Dissertation Organization

This introduction chapter builds the foundation of ab initio methods and briefly
describes the theoretical methods employed in the following chapters including an overview
of the effective fragment potential method (EFP). Chapter 2 presents the development and
implementation of using the valence virtual orbitals (VVOs) in place of canonical virtual
orbitals for the charge transfer interaction and its gradient between two EFP fragments
(EFP-EFP). Chapter 3 provides a detailed derivation and implementation of the R term of
the dispersion energy expansion using dipole-dipole and dipole-quadrupole localized

molecular orbital (LMO) dynamic polarizabilities over the imaginary frequency range in the



framework of EFP. Chapter 4 derives the fully analytic gradient of the approximated QM-
EFP exchange repulsion energy between the ab initio molecule and EFP fragment (QM-
EFP). Extensive code modification on the previous implementation of QM-EFP exchange
repulsion Fock operator and energy is made to allow the presence of multiple EFP
fragments. Chapter 5 explores the application of a local correlation coupled cluster
approach, cluster-in-molecules (CIM) to study the anionic water clusters in the range of 4 —
20 water molecules. Chapter 6 studies the temperature effect on the binding enthalpies
between SiHy4 and three boron containing compounds and realizes the importance of outer

core correlation in obtaining accurate energies and structures.

III. Theoretical Background
Time-Dependent Schrodinger Equation

Quantum mechanics provides the laws of motion for microscopic particles.
Schrodinger postulated the dynamical equation that governs the time evolution of the system
in 1926, known as the time-dependent Schrddinger equation' .

_hd¥(r,)
i ot

—H¥(r,)=(T+V)¥(r.) (1)

The Hamiltonian operator H is given as a sum of kinetic and potential energy
operators (for low-velocity particles, i.e. non-relativistic). The solution of the time-
dependent Schrodinger equation is a function of time and position called a wave function.
The wave function W contains all of the information about the system. The probability of
observing a particle at position r and time t is given as the square of the wave function. This

is a fundamental difference between classical mechanics and quantum mechanics, because

classical mechanics is deterministic while quantum mechanics is probabilistic.



For systems in which the potential energy operator is time-independent, the
Hamiltonian becomes time-independent. When acting on the wave function, the
Hamiltonian yields the total energy of the system.

HW (r.t) = B (r.) = L V1)

i ot (2)

Time-Independent Schrodinger Equation

The non-relativistic, time-independent Schrodinger Equation can be written as

Ha(r) = Eo(r) 3)

A

where H is the Hamiltonian operator. In atomic units, it is defined as
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Where M , is the ratio of the mass of nucleus A to the mass of an electron and Z, is the
atomic number of the nucleus A. The systems of electrons and nuclei are described by their

position vectors I; and R, | respectively. Then the distance between electron i and nucleus

Ais iy = |1’; —K,|, the distance between electrons i and j is 7; = ‘l‘,- - I'j‘ and the distance

between nuclei A and B is R, = |R +—R B| . The first two terms in Eq. (4) represent the

operators for the kinetic energy of the nuclei and electrons, respectively. The third term is

the Coulomb attraction between nuclei and electrons. The last two terms represent the

repulsion between electrons and between nuclei, respectively. @ is the total wave function

describing a collection of charged particles, nuclei and electrons. It is a function of
electronic and nuclear coordinates, CI)({ri},{R A}), where {ri} and {R A}represent the

collection of electronic and nuclear coordinates in the system, respectively.



Born-Oppenheimer Approximation®

Since nuclei are so much heavier than electrons, the nuclei move much slower than
electrons. To a good approximation, electrons can be considered to move in a field of fixed
nuclei. Two consequences immediately follow: the nuclear kinetic energy is zero and the
repulsion energy between the nuclei is a constant. The remaining terms in Eq. (4) are

defined as the electronic Hamiltonian.

N M Z
elec :_Z_VZ ZZ = 22_ (5)
i=1 A= lrlA i=1 j>i lj

The eigenvalue solution to the electronic Hamiltonian is the electronic wave

function, which describes the motion of electrons for a fixed nuclear configuration.

Hoe @, ({6 }:{R, ) = B, @, (fr 1R, D) (6)

The electronic wave functions obtained by solving Eq. (6) depend explicitly on the
electronic coordinates and parametrically on the nuclear coordinates.

Invoking the same approximation, one could solve the nuclear wave function: since
electrons move so much faster than the nuclei, the nuclei “feel” the electrons in an averaged

field. The nuclear Hamiltonian then becomes

M 1 N MZ N N 1 M M ZZ
Vit Z LD Nt D FdEDID e
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The second and third terms of Eq. (7) together constitute the potential energy operator for
the nuclei. This is a significant consequence of Born-Oppenheimer approximation: it is
possible to define the “shape” of a molecule and describe how the energy of the molecule

changes as the shape of the molecule changes, i.e. moving on a potential energy surface.



The concepts of equilibrium geometries such as minima and transition states become
meaningful.

By solving the nuclear Schrédinger equation,

Hu®,,({R,})=E,9,.({R,}) ®)
the motions of the nuclei, vibration and rotation, can be described.

Under the premise of the Born-Oppenheimer approximation, the problem of solving
the Schrodinger equation is reduced to solving the electronic Schrodinger equation for a
fixed nuclear configuration and is what all the ab initio methods described below aim for.

For systems with more than one electron an exact analytic solution of the
Schrédinger equation is not possible because the electron-electron repulsion term is

inseparable. Various approximations must be made to get around this problem.

Variational Theorem

Another important theorem is the variational theorem, which states that for a system
whose Hamiltonian is time-independent and whose lowest-energy eigenvalue is Eo, if @ is
any normalized, well-behaved function that satisfies the appropriate boundary conditions,

then
jcp*Hcpdron (9)

The integral in Eq. (9) is called the variational integral. The better the trial function
is, the lower the values of the variational integral and closer to the true ground state energy

Eo.

Antisymmetry Principle



Electrons are fermions, hence they obey antisymmetry principle, which states that a
many-electron wave function must be antisymmetric with respect to interchange of any two
electrons. The simplest example would be a two-electron system and, to satisfy
antisymmetry principle, the total wave function @, expressed in terms of one-electron wave

functions ¥, is in the form,

(I)(r] ’rz) = 2_% I:Wl (rl )Wz (rz ) -V, (rz)W2 (rl )] (10)
Eq. (10) can be cast into a determinant called a Slater determinant, and this can be

generalized to an N-electron wave function. This single determinant wave function is an

approximation to the exact wave function.

Hartree-Fock Method

The Hartree-Fock (HF) method” ' is (for closed shell species) a single determinant
method that solves the approximate time-independent Schrodinger equation in a self-
consistent manner. The approximate wave function is the single determinant formed from a

set of occupied spin orbitals, y,

@ = n) (1)
The energy of this approximate wave function is calculated as the expectation value of the
Hamiltonian operator, provided the wave function is normalized.

E=(D|H|D) (12)
The determinantal form of the wave function gives rise to an exchange term in the energy

expression,

N
E=)h+

l

ii(‘lij_[{ij)—i—VNN (13)
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where i and j run over all of the electrons in the system, and the factor of 1/2 accounts for
the double counting of electron pairs. The variational theorem tells us that the “best” wave
function, or the best set of occupied MOs is the one that makes the energy a minimum, that
is, the variation of the energy with respect to a change in the MOs is zero, with the
constraint that the MOs remain orthonormal. Such a constrained optimization can be

facilitated by the Lagrange method of undetermined multipliers.

L=(®IHId)- Zgu[(;c, 1%;) -5, ]
ij (14)

=E, I:{%z}:l_ Zeij [(%1 I %j)_6ij:|
ij
where © = ‘ X Xo-Xi X, )(N> is the single determinant formed from N occupied spin

orbitals. The energy E, =(®|H | @) is a functional of the spin orbitals { ;(l.} . €;1s the

Lagrange multiplier. This procedure leads to the HF equations
F) (1) =e2,(1) (15)
where € is the orbital energy and f is the Fock operator, which (for closed shells) is

defined (in terms of spin orbitals) to be
N

F(@)=h(1)+v" )+ X[TO-KD)] (16)
Jj=1

The Fock operator is an effective one-electron energy operator, with /(1) describing

the kinetic energy of an electron and its attraction to the nuclei, and v"" (1) describing the

repulsion to all the other electrons in an averaged way. J and K are the Coulomb and

exchange operators, respectively. Their effects when operating on a spin orbital are

Jj(l)%i(l):[Jdrzxj(z)rl;lxj(z)}%i(l) (17)



K, (02,0 =] [dr2;(2)r' 5 (2) |, (1) (18)
where the spin orbital takes the form y (r,w)= ¢(r)(w)ore(r) B(w). Note that the

Coulomb and exchange operators have a functional dependence on the solutions of the Fock

operator and hence Eq. (15) is nonlinear and must be solved iteratively.

LCAO-MO approximation (Basis Set approximation)

A set of basis functions is introduced to expand the spin orbitals.

X =2,C.h, (19)

This turns solving the HF equation into solving a matrix equation for the expansion

coefficients. The spin orbital y, would be exactly represented by the expansion of Eq. (19)

if the basis set was complete (infinite in dimension). The energy obtained would then be the
HF limit. In practice, a calculation can utilize only a finite number of basis functions.
Typically, the larger the basis set, the better the trial wave function as it has more flexibility
during the self-consistent iterations.

At the beginning of self-consistent iterations, an initial guess of orbitals is made
from which the density is obtained. The Fock matrix is formed from the core-Hamiltonian
matrix and the two-electron integral matrix. Diagonalization of the Fock matrix leads to a
new set of orbitals. The process repeats until the density obtained from new orbitals agrees
with the previous density within a certain threshold.

The general HF equation is written in terms of molecular spin orbitals that contain a
spin function and a spatial orbital. Restricted HF (RHF) wave functions contain pairs of
electrons, and each pair has the same spatial part but opposite spin functions. RHF is used

for closed-shell system. For open-shell systems, the restricted open-shell HF (ROHF)



10

method forces the spatial part of the doubly occupied orbitals to be the same. If there is no
restriction on the spatial orbitals that are occupied by electrons of different spins, the trial
wave function is an unrestricted HF (UHF) wave function.

By using a single determinant form of the wave function, the instantaneous electron-
electron repulsion is replaced by an average interaction. The missing electron correlation
energy, although small (~1% of the total energy), is extremely important for describing
chemical phenomena. In addition, the restricted form of the wave function simply cannot
describe the dissociation process into open-shell fragments while the unrestricted wave
function does not produce accurate results. Despite its limitations, the HF wave function is
the best single-determinant trial wave function within a given basis set and is the starting

point for more accurate approximations.

Post-Hartree Fock methods
Various methods have been developed in an effort of recovering the dynamic
correlation energy. Although the configuration interaction method is not used in this thesis,

it is briefly mentioned in order to define the correlation energy.

Configuration Interaction (cn'?

The HF wave function, the determinant formed from the N lowest-energy orbitals, is
the simplest electronic representation of the ground state wave function that is
antisymmetric. Other so-called excited determinants that are formed from the solutions of
the HF equation represent the configurations with promotion of electrons from some
occupied to virtual orbitals. Conceptually, the true wave function is likely to result from the
interaction of several electronic configurations and mixing those excited determinants

allows more variational flexibility in the wave function. The set of HF determinants and all
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the excited determinants can serve as a basis to expand the exact ground state many-electron

wave function, @, .

@)= co|[Wo)+ D i [Fo)+ D ch | o)+ D, e[ W)+ (20)
a<b a<b<c

This is the form of the full CI ground state wave function. Here a, b, ¢ etc. denote occupied
orbitals and 1, s, t etc. denote virtual orbitals. ¥ is the HF determinant, and ¥/ is a singly
excited determinant differing from ‘¥ by exciting the electron in y, to v, . The restriction

on the summation ensures that each excited determinant is included only once.

If the AO basis is complete, so is the basis of determinants. Then full CI would give
the exact energies of all the electronic states. At finite basis, full CI provides the upper
bound for that basis. The (dynamic) correlation energy is defined as the difference between
the exact energy and the HF energy

Eeor = Epcr = Eyr 21)

Except for a few very small systems, full CI is practically intractable. Therefore truncation

at single and double excitation in Eq. (20) is common.

Perturbation Theory

The basic idea behind perturbation theory is that knowing how to treat a simple
system and given that the real system is not too different from the simple system, one can
treat the real/more complex system mathematically as a perturbed simple system. The
commonly used second-order Moller-Plesset perturbation theory (MP2) is the application of
a more general formalism called Rayleigh-Schrodinger perturbation theory (RSPT) to many-

body systems. Since the Effective Fragment Potential Method (which constitutes the bulk of
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this thesis) is formulated in the framework of Rayleigh-Schrodinger perturbation theory

(RSPT), RSPT will be briefly mentioned for later discussion.
Rayleigh-Schrodinger Perturbation Theory (RSPT)

The full Hamiltonian H is the sum of the unperturbed Hamiltonian H,and the
perturbation V', where the solution to H,, is known: H |‘P )=E” |‘I’ .. To solve the
eigenvalue problem H | <I>,.> =E, |CD ;> , one introduces an ordering parameter A and expands
the eigenvalues and eigenfunctions in terms of E{” and ¥!" in a Taylor series of A.

E =E”+AE" + V’E® +... (22)

@)=Y+ 2| PO)+ 2| PP) + (23)

E" and “PE")> are called the n-th order energy and n-th order wave function, respectively.

By choosing intermediate normalization, <‘Pf.0) ‘ CI)i> =1, and expanding “PE”> in the

M\ _ @1
lPi > - zcn
n

basis of the eigenfunctions of H,,, p > , the first three order of energies can

be expressed as:
E[(O) _ <TEO)‘H0 ‘lPEO)> (24)
EV = <‘PEO)‘V“PEO)> (25)

V(e V)
Ei(O) _ E:l())

Ei(z) _ <\_P§0) ‘V“‘PEI)> _ 2< (26)

n#i

Moller-Plesset Perturbation Theory (MPPT)"
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MPPT is the application of RSPT to the many-body problem. H, is a sum of the

Fock operators

H,= Zf =2 (h(i)+v" (i) 27)

i

In Eq. (27), 1 sums over the electrons in the system. Hence the perturbation V is

V=" =>v" (i) (28)

i<j
When the HF wave function is used as the zeroth order wave function, E>+E' recovers the
HF energy. The correction to the HF energy starts at the second-order, MP2. MP2 typically
accounts for 80-90% of the correlation energy and is widely used for its efficiency and
adaptivity on parallel computer systems. Since the Hamiltonian used is not exact,
perturbation theory is not variational. Hence higher order energy corrections do not always

guarantee a lowering of the energy.

Coupled-Cluster Theory (CC)'* "¢
Like configuration interaction (CI), CC expresses the wave function as a sum of the
HF determinant and all other excited determinants. This correlated wave function is

obtained by allowing a series of excitation operators 7, to act on the HF wave function.
T2 3
(D:(1+T+E+—+....j‘PHF=eT‘I’HF (29)
And the cluster operator T is
T=T+T,+T,+..+T, (30)
where T is the single electron excitation operator and 7, is the double electron excitation

operator, and so on. When 7 acts on an HF reference wave function, all excited

determinants are generated.
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TY" = iitf‘l’f (31)
n,Y" = fiz;”?;” (32)
i<ja<b

where the expansion coefficients t are called amplitudes.

If all of the cluster operators up to T, are included in T, the CC wave function will
be equivalent to full CI. A full CC computation is impossible except for very small systems.
It is therefore common to use a truncated cluster operator that includes only singles and

doubles (CCSD) and the triples contribution computed by perturbation theory (CCSD(T)).

Solvation Method

The aforementioned ab initio methods become computationally intractable when
dealing with the solvation problem due to steep scaling with the system size. Two classes of
approaches have been developed to circumvent this problem. One class is called the
continuum or implicit solvation. These methods represent the bulk solvent by some
dielectric parameters and interact with the solute via this pre-defined electric field. The
advantage of such methods is that they attempt to describe the bulk solvation in a
computationally inexpensive manner. However they lack the explicit solvent-solute
interactions. Insightful understanding of structures, properties and reaction mechanism relies
on accurate description of solvent-solute interaction. The other class of methods called the
discrete or explicit solvation methods are developed for this reason. Note that all the ab
initio methods treat solvent molecules explicitly. However the explicit solvation methods

usually refer to those that approximate each solvent molecule as a perturbative potential for
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the solute molecules. Most explicit solvent methods contain some parameters that are
obtained by fitting to experiment or high-level ab initio calculation; TIP3P would be an

example of such potential'’,

Effective Fragment Potential Method (EFP)

The Effective Fragment Potential method (EFP) has been developed by Gordon and
coworkers for the past two decades or so to study intermolecular interactions, including
solvation. The EFP method is designed to accurately and efficiently describe the interaction
between molecules. Detailed descriptions of EFP can be found in many papers'® >
(including Chapters 2-4 in this dissertation). The following paragraphs present the
framework within which EFP is built.

Consider a system of two weakly interacting molecules (A --- B), the unperturbed
Hamiltonian is the sum of the individual Hamiltonian.

H,=H,+H, (33)

Assuming the electron densities of the two molecules do not overlap, the 0" order wave
function is the Hartree product of the wave functions of isolated A and B. This is the so-
called long-range approximation.

PO =iyl (34)

The perturbation V is the electronic interaction between the electrons and nuclei in the two
molecules. Then the zeroth order energy is just the sum of the energies of isolated A and B.

Three types of intermolecular interaction arises as the first and second order perturbation

energy:

£ (v ) = (et (el ) ) @
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(36)

Eq. (35) is just the classical coulomb interaction. The first two terms of the 2™%-order
perturbation energy gives the induction/polarization energy, arising from promoting
molecule A to excited state m or promoting molecule B to excited state n. The last term
corresponds to the dispersion energy when both A and B are excited. Since the overlap
between the two molecules is assumed to be negligible, the excited states of individual
molecules result from mixing their own virtual orbitals. The interaction operator V can be
represented as multipole-multipole interactions. In EFP, distributed multipole expansions

24,25
> are used.

developed by Stone

As two molecules approach, the long-range approximation starts to break down.
Instead of reformulating all three above-mentioned interactions, damping functions have
been developed as short-range corrections for these three interactions. In addition, two types
of interaction arise at short range. Exchange repulsion and charge transfer interaction
emerge as additional first- and second-order interactions, respectively, when using
antisymmetrized product of wave functions for the cluster AB.

The initial implementation of EFP is for water only (EFP1)'®. The intermolecular
interaction between molecules is partitioned into three components: Coulomb interaction,
induction and a remainder repulsive term. The Coulomb interaction is computed according
to Stone’s distributed multipole analysis***, with the expansion truncated at octopole and

the expansion centers at the atom centers and bond midpoints. The induction term is

computed using the static anisotropic localized molecular orbital (LMO) dipole
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polarizability tensor. The dipole induced by the total electric field of all other
molecules/fragments is iterated to self-consistency, incorporating many-body effect into the
model. The remainder term is determined by fitting to water potential calculated either with

Hartree-Fock or density functional theory (B3LYP functional***’

). This empirically
determined remainder term prevents EFP1 from easy generalization to other solvent types.
The second implementation, EFP2, also known in the literature as the general
effective fragment potential method has been developed for any closed-shell molecule. The
interaction between molecules in EFP2 is partitioned into five terms: Coulomb interaction,
polarization, dispersion, exchange repulsion and charge transfer. The coulomb and
polarization terms are identical to EFP1. The dispersion is modeled using the dynamic
dipole polarizability tensor over imaginary frequency range. In this dissertation, R”’
dispersion interaction is developed using the dynamic anisotropic dipole-quadrupole
polarizability tensor over the imaginary frequency range. The exchange repulsion is derived
from a power expansion of the intermolecular overlap truncated at the second order. The

charge transfer interaction is obtained from a second-order perturbative treatment, using the

same power expansion of the intermolecular overlap but truncated at the first order.
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Chapter 2 Charge Transfer Interaction using Quasiatomic

Minimal-basis Orbitials in the Effective Fragment Potential

Method
A paper published in
Journal of Chemical Physics 2013, 139, 194104
Peng Xu and Mark S. Gordon
Abstract

The charge transfer (CT) interaction, the most time-consuming term in the general effective
fragment potential (EFP) method, is made much more computationally efficient. This is
accomplished by the projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs)
as the atomic basis onto the self-consistent field (SCF) virtual molecular orbital (MO) space
to select a subspace of the full virtual space called the valence virtual space. The
diagonalization of the Fock matrix in terms of QUAMBOs recovers the canonical occupied
orbitals and more importantly, gives rise to the valence virtual orbitals (VVOs). The CT
energies obtained using VVOs are generally as accurate as those obtained with the full
virtual space canonical MOs because the QUAMBOSs span the valence part of the virtual
space, which can generally be regarded as ‘chemically important’. The number of
QUAMBOs is the same as the number of minimal-basis molecular orbitals (MOs) of a

molecule. Therefore, the number of VVOs is significantly smaller than the number of
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canonical virtual MOs, especially for large atomic basis sets. This leads to a dramatic

decrease in the computational cost.

I. Introduction

Modeling intermolecular interactions accurately and efficiently has been a target of
computational chemistry for decades. Intermolecular interactions play an important role in
determining the structures and consequently the properties of molecular systems that have
physical, chemical, and biological significance. For example it is essentially the hydrogen-
bonding pattern between the nucleotide bases that enables the correct transcription and
translation processes in expressing a protein.' The dispersion interaction among the stacking
nucleotide bases provides a significant portion of the stabilization.>* Protein structures are
ultimately the result of chemical and intermolecular interactions between the amino acids.'
High-level ab initio methods that include dynamic electron correlation can provide accurate
descriptions of all of the contributions to intermolecular interactions, including Coulomb,
induction/polarization, exchange repulsion, dispersion, and charge transfer interactions.
Unfortunately, such correlated methods are very computationally demanding. For example,
second order perturbation theory (MP2) and coupled cluster theory with singe, double, and
perturbative triple excitations, CCSD(T), scale as N° and N, respectively, where N is the
number of basis functions. Consequently, such methods quickly become prohibitive for
large systems, unless approximations are introduced.

Chemistry is often carried out in a solvent. A fundamental understanding of how
solvent molecules interact with solutes and with each other can provide molecular-level
insights about how chemical phenomena occur. In order to capture explicit solvent effects

one frequently needs to include a large number of solvent molecules, more than is
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practicable for correlated ab initio methods. One therefore needs to develop methods that
are more efficient and at the same time retain the accuracy of the correlated methods.
Implicit solvent methods circumvent these scaling problems, but at the expense of omitting
explicit solute-solvent interactions, such as hydrogen bonding.

The effective fragment potential (EFP) method is an explicit solvent method™*. The
original EFP implementation, called EFP1,” was designed solely for water. The components
of the EFP1 potential are the Coulomb interaction, the induction/polarization interaction,
and a remainder term. The Coulomb interaction is modeled using the Stone distributed
multipole analysis (DMA) method ® expanded through octopoles, where the expansion
points are the atom centers and the bond midpoints. The polarization interaction is modeled
with localized molecular orbital (LMO) polarizability tensors on individual bonds and lone
pairs of electrons and is iterated to self-consistency. The iterative process incorporates
many-body effects into the model. The remainder term is fitted to the water dimer potential
calculated either with Hartree-Fock (HF) or density functional theory (DFT, with the
B3LYP functional’). For EFP1/HF, the remainder term includes exchange repulsion and
charge transfer. In the EFP1/DFT method the remainder term also includes some correlation
effects.

The general EFP implementation, often called EFP2, has no empirically fitted
parameters and is therefore applicable to any (closed shell) molecular species. The
components of the EFP2 method are: Coulomb, induction/polarization, dispersion, exchange
repulsion and charge transfer. Each of these intermolecular interactions is derived from first
principles, based on truncated expansions. The Coulomb and induction interactions are the

same as in EFP1. The exchange repulsion interaction is derived from a power expansion in
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the intermolecular overlap, truncated at the second order, expressed in terms of LMOs.®* The
dispersion interaction is modeled with LMO dynamic (imaginary frequency) polarizability
tensors obtained from time-dependent Hartree-Fock calculations.” The charge transfer
interaction term is obtained using a second-order perturbative treatment, and is also derived
based on an expansion in the intermolecular overlap, neglecting second and higher order
terms.'® All of the required EFP2 input parameters are generated in one ab initio preparative
calculation on the isolated individual molecule. There is no empirical parameterization and
EFP2 can be systematically improved by including higher order terms in the expansions. In
the following, EFP2 will be called, simply, EFP.

The charge transfer (CT) interaction may be defined as the energy stabilization due
to the mixing of the occupied orbitals of one molecule with the virtual orbitals of another
molecule. The CT interaction can be important in ionic and polar molecular systems such as
water.'' Previously the CT energy and gradient between two EFP fragments were derived
and implemented using a perturbative approach with SCF canonical molecular orbitals
(CMOs) (both occupied and virtual orbitals).'’ The CT interaction is the most time-
consuming part of an EFP calculation, mainly due to the large number of canonical virtual
orbitals when reliable basis sets are used. The goal of the present work is to present a new
implementation that decreases the number of virtual orbitals used in the calculation, while
retaining the accuracy of the original method. This goal is accomplished by making use of
the quasiatomic minimal-basis-set orbitals (QUAMBOs), a localized orbital-based method
developed by Ruedenberg and co-workers.'”> QUAMBOs may be thought of as the virtual

orbital complement of the valence occupied space of a molecule. They therefore provide a
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natural set of virtual orbitals with which to determine the majority of the charge transfer
interaction energy.

The reduced variational space (RVS) method is an energy decomposition analysis
algorithm proposed by Stevens and Fink'® which is closely related to the commonly used
Kitaura-Morokuma (KM) energy decompoisition analysis (EDA)'*. Both analyses partition
the interaction energy, at the Hartree-Fock level of theory, into electrostatic/Coulomb,
polarization, exchange and charge transfer components. It has been demonstrated that the
RVS interaction energy components are better behaved than their counterparts in the KM
analysis when the orbital interactions are strong."® This is because the corresponding wave
function from which the RVS component energies are obtained is antisymmetrized. Since
the EFP-EFP CT formula is also derived using the antisymmetrized wave function as the
zeroth order wave function, the numerical results from EFP and RVS are comparable. RVS
CT results serve as benchmark numbers in this study.

This paper is organized as follows. The derivation of the EFP charge transfer energy
and gradients has been described in a previous paper in detail'® and is only briefly
summarized here in Sec. I A. The formulation of QUAMBOs is also detailed in another
paper'” and is only briefly described in Sec II B. The computational methodology used in
this study is summarized in Sec. III A. Numerical results are discussed in Sec III B.

Conclusions are drawn in Sec IV.

II. Theory

A. EFP2 Charge transfer interaction
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The detailed derivation of the EFP-EFP charge transfer energy and gradient was
presented in a previous paper'’ using a second-order perturbative treatment with CMOs. The
key steps and important approximations in the derivation are summarized here.

The starting point is the expression for the energy of a closed-shell molecule M with

nonorthogonal molecular orbitals:
occM occM occM occM occM occM
= Z Z h,S;' + Z 2 A Z 2 2(ik|rs)—(ir|ks))S; + E™
(1)
where 1, k, r and s are the occupied orbitals of molecule M (thus, the upper limit occM on
the summations). hix is a one-electron integral, 2<ik|rs>-<ir|ks> are the two-electron

nuc

integrals, S is the matrix of overlap integrals, and E™ is the nuclear repulsion energy. The
molecular orbitals can be non-orthogonal and non-normalized but they are linearly

independent.

Next, using the definition'

)
and substituting Eq (2) into Eq (1), one obtains

occM occM

E, :22 zhik(éik_Piliw)
ik

oceM occM veeM oceM
+z z( ) z Z( lk|7”S lr|ks>)(5rs —P,iw)+E"”“
i k
3)

Now, to approach the intermolecular interaction in a perturbative manner, suppose

two weakly interacting molecules A and B form a supermolecule; then the zero-order wave
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function, ¥, for the supermolecule is the antisymmetrized product wave function formed
from wave functions that describe A and B.
Let H be the full Hamiltonian, including the perturbation. Then the zeroth + first

order energy is:

E(O) E(l) <‘I’(°)‘H“P(°)>
occAB occAB

=2 z z hiQB(gik_PiI?B) 4)
occABl occABk occAB occAB

+ z Z ( )z z ( (ik|rs)— lr|ks>)(6rs _R?B)+Enuc

i k

where the indices i, k, r and s represent the occupied MOs of isolated A and B.
E'Y) and E\}) are the zeroth- and first-order energies of the system. h*® includes the electron
kinetic energy plus the electron-nuclear attraction from both molecules:

hAB — T + VnucA + VnucB (5)
The superscript AB on P means that the overlap matrix used to define the P matrix is the
overlap matrix of the supermolecule AB. If the orbitals are normalized, the diagonal
elements of the overlap matrix are unity and one can separate the off-diagonal part of the

matrix:

S=S-1 (6)
Then, the P matrix can be expanded in terms of S:

Pel-S'=I—(I+8) " =I—(I-S+S—S+.)= S-S+ 5~ .. (7)
For those off-diagonal elements in which both orbitals belong to the same molecule, the

leading term in the expansion is the quadratic power of S because the orbitals within the

same molecule are orthogonal. Suppose both i and k are MOs on atom A,
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- ~ ~ ~ occA occB
E,?B:Sik_(S2)[k+(Ss)[k_"'z_(SZ),'k zserrk ZSU Jk
occB occB
:_ZSU Jjk __Z(Slj Iij)(Sjk_Ijk) (8)
occB

=Zuﬂ<

If the two indices are from different molecules, the leading term of P contains the first

power of S.

- ~ ~ occA occB
P = Sy (82),+ (87)y= o= Sy— Zsk Si— st Sy
€))
=85 =(S; — 1) =5,
The original EFP charge transfer formula resulted from truncating the 2™ and higher order
powers of S in the expansion of P.

Now, let i, k, r and s be the occupied MOs of A and j, 1, t and w be the occupied

MOs of B. Substituting Eqgs (8) and (9) into Eq (4) gives

occA occA occA occB occB occA occB occB
(0) @ ABS ABg AB AB
Bl +Ejy =23, Y '8, =23 D h"S, =23 D WS, +23 > h'5,
i k i j J k J !
[ occA occA occB occB

S Z;(Z(ikhs) (ir|ks) )6 +22( (ik|tw)— zt|kw))5,w

+2, 2.6,

Pk —Ui‘of( zk|rw> (lr|kw )S —(fuf( lk|ts lt|ks>)Sm

[ occA occA occB occB

s | 2 2(2llrs)=Cirlis)3, + 33 (24t ow) = (i )3,
+z 2 5ﬂ occA occB occB occA
s —Z 2( (jl|rw)={jr|iw))S.,, —22( (jl|ts)—(jt|is))S,
occA occB occA occA occB occB
—ZZS{ZZ(Z(Z’IVS) (ir|ls) )5 +ZZ( (il|tw) - lt|lw>)5rw}
i l ros

occB occA |:occA occA occB occB

_zszk 3> (2(jk|rs)— (jir|ks))S,, +22( (jk|tw) — ]t|kw>)5tw}+Enuc
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(10)
Let ¥V =¥ + W' where W' is the first order correction to the zeroth order wavefunction
PO,
The second order perturbation energy is then obtained as
EQ =¥ |H[w")- (¥ |H|¥®) (11)
By definition, the energy lowering when the occupied MOs of A mix with the virtual
MOs of B is referred to as the charge transfer energy of A due to B. The first-order

perturbed wavefunction of one molecule is obtained by mixing in the virtual MOs of the

other molecule. For example, the first-order perturbed MO i on molecule A is

PO = gaO fUm‘Pf(o) (12)
where U is the mixing coefficient matrix.
Substituting Eq (12) into Eq (10) and collecting the energy changes due to the mixing from
virtual orbitals of B, one obtains the change transfer energy of A due to B. Note that if both

the bra and ket wavefunctions are from molecule A, only one of them is perturbed (e.g., see
Eq. 11). In this paper, ¥/ and W** are conveniently chosen to be perturbed to ¥/ and
PO O and WA are unperturbed.

Combining the contributions to the energy change from each term in Eq. (10) and
splitting the one-electron operator h™” into the kinetic energy operator and the nuclear

attraction operators from A and B, the CT energy of molecule A due to the presence of B is

occA virB occA occB

1 2380, 1,4t et )+ v+ 32 ) )

occA virB occB

occB occA
—222Ui,12[Tm+Vn’;”‘B 2( (nj|tly—(nl| j0))+ V2t + Y (2(nj| kk) — (nk| jk))}ij
i n Jj

k



30

(13)
Further simplification includes
occB
T, + Vi + 2( (nj|lly—(nl| jl))= E’ =0, nevirB, j € occB (14)
where n and j belong to the virtual and occupied orbitals of molecule B, respectively. This is

because, for CMOs, the off-diagonal elements of the Fock operator are zero. Likewise,
occA

T, + V" + Z( (in|kk)— lk|nk>):Fl.,f =0, i€occA, nevirB (15)

In Eq. (15), i is an index for the MOs of A and ¥*”’is assumed to be orthogonal to all the

MOs of A. This is enforced by the following approximate orthonormalization procedure

allA

Wi _ ZSnm‘Pﬁ“”j’ n € virB (16)

B(O)

n allA 2 (
Z Sum)

where @ is the MO after orthonormalization. To simplify Eq. (14) further, two sets of

approximations can be applied. The first set [Eqgs. (17) and (18)] neglects the exchange
integrals and approximates the Coulomb integrals with the multipole expansion as the

electrostatic potential of the molecule, truncated at the quadrupole:

occB occB

yueB 4 Z( (in| jj)— 1]|nj>) B 4 22 (in|jj)=VE™®, ieoccA,nevirB (17)

occA occA

Vet + 2( (nj|kk)—(nk| jk)) = V" + Y 2{nj|kk) = VE™, nevirB, j € occB (18)

nj
k

The superscripts EFA and EFB represent the potentials of molecules A and B, respectively,
described by a distributed multipole expansion. The other possible set of approximations

[Egs.(19) and (20)] set the Fock matrix to zero if the two indices are either from different
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molecules (Eq. (19)) or from the occupied and virtual orbitals of the same molecule (Eq.

(20)).
occB
"”‘B+Z( (in| jj)— l]|nj>):F,.f—Tm ~-T,, i€occA,nevirB (19)
occA
Vit 4 2( (nj|kk)—(nk| jk))=F;} =T, =-T,,, nevirB, j € occB (20)

Different combinations of Eqs (17)-(20) can result in four possible formulae (see
Appendix). Previously, it was demonstrated that the combination of Eqs (17) and (20) gives
the most accurate numerical results when compared with values obtained from a reduced

variational space (RVS) analysis.'""?

When the valence virtual orbitals (see Section IIB) are
used, numerical tests show that this combination still gives the best results (see Appendix).

Applying Egs. (17) and (20) to Eq. (13) results in

occA virB occB
CcT"® = 22 ZUm[ VLY Tnjsijj (21)
j
The mixing coefficient matrix element Uy, is approximated as'

. <\P;4(0)‘VEFB‘T5(O)> _ <\};;X(O)‘VEFB‘\{1nB(O)>
SR F-F,

, L €occA, nevirB (22)

In Eq. (22) VF*® is the multipole potential defined in Eq (17). g is the orbital energy of
W, which equals the corresponding diagonal element of the Fock matrix, F;'. €', on the
other hand, is the orbital energy of W” when it is assumed to be orthonormal to the virtual

MOs of molecule A (enforced by Eq. (16)). €’ can also be written as a Fock matrix element,

A
Em’

mn an analogous manner:

occA occA
FA=T, +V"i4 Z( (nnliiy— m|ni>) T, +VEA - Z(ni|ni>, nevir. B (23)
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The last equality in Eq. (23) is obtained using Eq. (18). It is important to realize that F" is
not related to F” . The latter is the orbital energy of v’ determined by diagonalizing the

Fock matrix of isolated B. Therefore F, is not a quantity that can be obtained from the
preparative ab initio calculation on the isolated molecule that is used to construct an EFP.

Since ¥, and y, are from different molecules, the exchange term (ni|ni) and the potential
energy due to the multipole charge distribution on fragment A, V2™ | in Eq. (23) are

relatively small and can be neglected. (F» = T, ) Numerical tests were done previously to
justify this approximation.'® Hence the final form for the mixing coefficient matrix U is

VEFB
U, ~—""— 24
" (24)

u nn

Combining Egs. (21) and (24) and replacing w” with Eq. (16), one obtains the final form of

the charge transfer energy expression as

AB) occA virB 1 ‘/mEF B _ zallA o i}ﬁF B B allA - occB allA
CT ZZZgl_zZIA(Snm)2 X (F;lAfzwnn) X ‘/in _Zn:Snm‘/im +zj:Si/(7;qi_zm:Stlm7:nij:|

(25)

where CT*® is the CT energy of A induced by B.

Similarly, the CT energy of B induced by A is

occB vir. VEFA - allt S VEFA all, occ. all,
CTB(A) = 2§i 1— Zal}B(S )2 X = (Fg_n T m; = x |:‘/janA - zlisnmvijA + 24SU (Tmi - isanm]:|
Jom n nm J mm n t n

(26)
Since the final CT energy formulation is unaltered by the use of the quasiatomic minimal-
basis-set orbitals, the expression for the gradient remains unchanged from the one that was

derived previously."
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B. QUAMBOs and Valence Virtual Orbitals (VVOs)

Quasiatomic minimal-basis-set orbitals (QUAMBOs), developed by Ruedenberg and
coworkers,'” have the following attributes: (i) the number of QUAMBOs equals the number
of minimal basis set molecular orbitals for the system. (ii) the QUAMBOs deviate
minimally from the minimal basis set orbitals of the corresponding free atoms of that
system. Thus QUAMBOs can be viewed as slightly deformed minimal basis atomic orbitals.
(ii1) The formulation of QUAMBOs is independent of the atomic basis sets used.

The projection of the QUAMBOs onto the SCF virtual space selects a subspace,
called the virtual valence space, which yields a good approximation to the most important
correlating orbitals. The most time-consuming part of an EFP CT calculation is the
computation of the one-electron potential terms. Fundamentally, the bottleneck is the huge
number of canonical virtual orbitals compared to the number of occupied orbitals. Hence,
the motivation for using QUAMBOs as the basis for EFP-EFP charge transfer calculations
is the expectation that the dramatically reduced number of virtual orbitals will diminish the
cost of a CT calculation significantly while these chemically important “valence virtual
orbitals” (VVOs) can capture most of the CT interaction.

The full description of QUAMBOs is given in reference 12. A summary of how
QUAMBOs are constructed is given here.

The free-atom minimal basis atomic orbital A; can be expressed in terms of the

occupied and virtual SCF MOs:

occ vir

A =Y0.a,+>0a, 7

v

A;> and a:j = <¢

where a,; = <¢n Aj>
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Note that the * here does not represent complex conjugate, but is merely a symbol to
distinguish the free-atom minimal basis atomic orbitals from QUAMBOs.

The QUAMBO Aj can be similarly expanded as

occ vir

A=Y0,a,+ 04, (28)

with a,; = (¢

n

A;)and a,;=(¢,|A,). (29)

For both the free-atom minimal basis orbitals, Aj* and QUAMBOs, Aj, the index j runs from
1 to M, with M being the total number of minimal basis set valence atomic orbitals in the
molecule. One can write M = N + P, where P is the number of virtual valence orbitals. The
M-dimensional space spanned by the QUAMBOs must also be spanned by the N occupied
SCF MOs plus the appropriate number (P) of orbitals in the V-dimensional SCF virtual

space. Calling these virtual orbitals ¢, QUAMBO A can be expressed in terms of the SCF

occupied MOs and these ¢,

occ val vir

A=20,a,+ D 0,b, (30)
n p

and
0, =0T, 31)
In Eq. (30) p goes up to the number of minimal basis set virtual orbitals, which equals the
number of the VVO, P.
The QUAMBO A is constructed in such a way that it deviates as little as possible
from the free-atom minimal basis atomic orbital A;". This corresponds to minimizing the

.. 2
square deviation'



35

(a,=a|a,-a7)=2[1-(a|4})]=2[1(p,)" ] (2)

occ val .vir

wre 0, =364 + X (o4} &

with the normalization condition <A i ‘ A j> =1 and <Aj ‘ AJ> =

A constrained Lagrange minimization leads to

A, =D} {2¢ (0.]4)+ 3 o, <cop\A;‘>} (34)

So, the QUAMBOs are the normalized projection of the free-atom minimal-basis atomic

orbitals A" onto the space spanned by the SCF MOs. Combining Eqs. (34), (29) and (31),

)

0, (35)

one obtains

occ val .vir vir
8=30 . apo+ S S, (Sor,
n=1

=2 (D, + 2 3 (2 D", T,, (9,
=Y a0, +>, a

To find a;j and a‘vj requires the determination of the expansion coefficient matrix T. The

simultaneous minimization of the quantity in Eq (32) for all QUAMBOs is equivalent to
maximizing the sum
min basis occ val .vir

2 0,=% X0 A7) + Z(co,,\A> (36)

J

Eq. (36) is ultimately achieved by maximizing the sum over the ¢, (psum). This is because

the only variables in Eq. (36) are the elements of the expansion coefficient matrix T [Eq.

(31)] for @, .
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min basis val vir

Qsum = z <g0p‘A >

J )4

S (S f>j(sz,,<¢w
DR

T is defined in Eq. (31) and B, Z <

A;f>] (37)

SUCHENED LAY

The B matrix is diagonalized, and the T matrix is formed from the p eigenvectors of B with

the p largest eigenvalues, i.e. BT, = ,T,, where J3,is the pth eigenvalue of the matrix B.
Qsum = szv B,T,T, = ZP B, is maximized. Once the matrix T is determined, the set of

P valence virtual orbitals @, can be determined using Eq. (31). This effectively is a process
of optimizing the valence virtual space in such a way that the QUAMBOs deviate least from

the free-atom minimal basis AOs. Subsequently, the normalized expansion coefficients a,nj

and a;j are obtained as in Eq. (35). Using these QUAMBOs as the atomic basis set, one can

obtain orbital energies by diagonalizing the corresponding Fock matrix. These orbital
energies are then used in the CT energy expression. The diagonalization also recovers the
canonical occupied orbitals and generates the valence virtual orbitals (VVOs) that are then

used in the CT calculations.

II1. Numerical Results and Discussion
A. Computational Methodology
The codes for generating VVOs in the preparative ab initio runs to generate an EFP,

and for using VVOs to calculate the EFP-EFP CT energy and gradient have been
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implemented in the electronic structure quantum chemistry package GAMESS." Five basis
sets [6-31+G(d,p), 6-31++G(d,p), 6-31++G(df,p), 6-311++G(d,p), 6-311++G(3df,2p)] are
used here to test the code. The five dimer systems (Fig. 1) chosen as the test systems are
water dimer, methanol-water, ammonia-water, ammonium-water and ammonium-nitrate,
illustrated in Figure 1. These five test systems represent different types of charge transfer
interactions: the CT interactions between polar neutral molecules, between charged
molecules and between neutral and charged molecules. In addition, a cluster of four pairs of
ammonium-nitrate dimers are used as a larger test system since the contrast in both the CT
energy and the computational time is more apparent. The dimer systems were optimized at
the RHF/6-31+G(d,p) level of theory and the cluster of (ammonium-nitrate), was obtained
from a previous study'® (Fig. 1). The individual molecules in the dimer were used to
construct the EFP potentials. The exception is the water EFP potential, in which case the
geometry used to construct the potential has an O-H bond length of 0.9468 A and an H-O-H
angle of 106.7°. The RVS analysis'® was performed at these optimized geometries with the
aforementioned basis sets to obtain the benchmark CT energies. The benchmark CT
gradients were computed by three-point numerical differencing the EFP CT energies, using
step sizes of 0.001 Bohr for translation and 0.001 radian for rotation. The CT energies and
gradients for the dimer systems were computed at both equilibrium and non-equilibrium
intermolecular distances. To demonstrate time saving for large systems, 7 (H,O)e4 clusters,
10 (H20)125 clusters and 10 (H,0)as6 clusters were chosen as test systems. Single point
energy and single point energy-+gradient calculations were carried out on a single Dell

x86 64 CPU running at 2660 MHz. The aforementioned calculations were carried out using

CMOs as well for comparison. All of the calculations were performed using GAMESS.'®
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B. Accuracy
(I) Model systems at equilibrium distances

Table 1 presents the CT energies of the five dimer systems at equilibrium separation
and the cluster of four ammonium-nitrates. These energies are calculated in three ways: the
RVS analysis to give benchmark CT energies, and EFP calculations using either CMOs or
VVOs for the CT interaction. In most cases, the VVO-calculated CT energies are closer to
the RVS CT energies than are those obtained from the CMOs. The variation of the VVO-
calculated CT energies from basis to basis is small (< 0.5 kcal/mol). In fact, the values
hardly change for the three relatively small basis sets [6-31+G(d,p), 6-31++G(d,p) and 6-
31++G(df,p)]. In addition, it is interesting to note that the CT energies calculated with
VVOs using the largest basis set, 6-311++G(3df,2p), are always smaller than those from
smaller basis sets. This is expected since the energy lowering from the CT interaction arises
in part from insufficient monomer basis sets.''” Therefore, one expects the CT energy to
decrease as one moves toward the complete basis set limit. Interestingly, this trend is not
observed consistently in the RVS calculations. For systems involving charged species, such
as the ammonium-nitrate pair, one can encounter convergence problems and may need to

adjust the convergence threshold in RVS calculations.

(IT) Non-equilibrium distances
It is important to ensure that one can predict the CT energy accurately, not only at
the equilibrium distance but also at other, non-equilibrium, distances. It is particularly

important to obtain the correct limiting behavior. Taking the equilibrium distance as zero
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and shorter distances as negative, the CT energies were calculated for the five dimer
systems at various distances away from equilibrium, ranging from -0.5 to 1.2 A. The five
dimer systems exhibit similar behavior and therefore only the water dimer system is shown
in Figure 2. In most cases, the CT energies predicted using VVOs agree better with the
RVS results than do those obtained from CMOs. At ~0.5 A and longer than the equilibrium
distances, CT energies approach zero as they should. As two molecules get closer, the
magnitudes of the CT energies increase quickly. Both types of MOs predict the correct
limiting behavior. The deviation from RVS CT energies increases for both types of MOs as
the intermolecular distances get smaller than the equilibrium distances; but the VVO errors
increase less rapidly, creating larger errors only at very small intermolecular distances. In
general, VVOs tend to underestimate and CMOs overestimate the CT energies relative to
the RVS values.

For water dimer (Fig. 2), the VVO-calculated CT energy error only becomes
noticeable at about - 0.2 A, whereas the CMO-predicted CT energy starts to exhibit a
noticeable discrepancy even around the equilibrium distance. The absolute deviation for
VVO-predicted CT energies is generally smaller than that for the CMOs at all distances
examined. Other dimer systems behave similarly. In all cases, VVOs underestimate the CT
energies at -0.5 A. However, this distance may not be of much physical significance and
distance-dependent screening/scaling might be introduced in the future if necessary. In
summary, one can expect VVO-predicted EFP2-EFP2 CT interaction energies to be quite

accurate in the region where most physical and chemical situations occur.

(IIT) Gradients
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The analytic EFP CT gradient code has been modified to use VVOs as an alternative
option to calculate the EFP-EFP CT gradients. The benchmarking gradient results were
computed using the numerical gradient code in GAMESS with a step size of 0.001 bohr for
translation and 0.001 radians for rotation. Both analytic and numerical gradients are
calculated at both the equilibrium and non-equilibrium distances. For all calculations, the
differences between the analytic and numerical gradients using VVOs are within 107

Hartree/Bohr.

C. Efficiency/Timing

Using valence virtual orbitals in the EFP CT formulation greatly reduces the number
of orbitals used in EFP CT calculations, and this causes a significant reduction in the
required computer time. Comparative CPU times for one of the (H,0)as¢ clusters are shown
in Table II. The time saving is global: for all of the terms in the CT energy formula [Egs.
(26) and (27)], the computational times drop by at least 50% compared to the times required
for the analogous CMO calculations. The total CPU time for an EFP-EFP energy calculation
and single point gradient calculation for the (NH," --- NO5'); system are presented in
Figures 3(a) and 3(b), respectively. For both energy and gradient calculations, the total CPU
time increases linearly with the number of basis functions. For CMOs, the CPU time
increases much more rapidly. The average total CPU time for the energy and gradient
calculations, respectively, for the 7 (H,0)e4 clusters, 10 (H20);25 clusters and 10 (H,0)as6
clusters are plotted as a function of the number of water molecules in Figures 4(a) and 4(b).
A linear scaling is again observed. The use of VVOs significantly reduces the linear scaling

coefficients. As the number of basis functions increases or the system size increases, the
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time saved by using VVOs is amplified. This is easily understood because the number of
canonical virtual orbitals increases steeply while the number of minimal basis orbitals stays
the same as the number of basis functions increases. Due to this new implementation,
molecular dynamical (MD) simulations of EFP water clusters are able to run with CT
included in the water potential'®. In general, one can expect a 50% or more time saving

when using the recommended EFP basis set, 6-311++G(3df,2p).

IV. Conclusion

The occupied + valence virtual orbitals have been implemented as an alternative for
calculating the EFP-EFP charge transfer energy and gradient. QUAMBOs furnish a basis
that can exactly expand the SCF occupied orbitals, and projection of QUAMBOs onto the
virtual space select that part of the virtual space that contains the most important correlating
orbitals. The number of QUAMBOs is constant for a particular system. Therefore, the use of
QUAMBOs to obtain VVOs improves the efficiency of EFP-EFP CT calculations markedly

while retaining, and in some cases improving the accuracy of the CT energies.
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Appendix
The different combinations of Egs. (18) — (21) lead to four possible formulae for CT energy

of fragment A due to fragment B (Egs. A1 — A4). Four analogous formulae for the charge

transfer energy of B due to A are not shown here.

A(B LA ‘/i’fFB - zallA S”m‘/i”E1FB EFB & EFB & EFA « EFA
cr @ = 22 2 ZallA (Snm )2 (EIA j Tnn ) |i ZSnm‘/tm 2 Sz/ ( ZSanm/ J:|

(A1)

1A
occA virB VEFB — E “ S VEFB allA occB allA
A(B) _ in mnm”im
T 22 2 allA 2 FA T + ZSnm im + 2 Sl.] ( z nm m])

i 1 : { m nm i~ L J

(A2)

allA
occA virB VEFB S VEFB allA occB allA

(A3)

1A

occA virB VEFB — Za S VEFB allA occB allA

A(B) _ n m__nmum EFB EFB

T 22 2 allA 2 FA T ‘/m 2 Snm‘/tm + 2 Sz/ nj 2 nm mj
Z m (S nm ) ( i~ ) m

(A4)

It is difficult to judge the accuracy of the four formulae without numerical results
since the various approximations involve all the matrix elements, not just the expectation
values of an operator. The accuracies could depend on various factors: basis sets, electronic
structures of the molecules, the shape of the orbitals used, that is, canonical or localized.'” In
order to determine which formula is the best when using VVOs, the CT energies for the five

dimer systems are presented in Table III.
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In all cases tested, Eq. (A2) gives very large positive numbers that are unphysical.
Eq (A1) significantly underestimates the magnitude of the CT energies. Eq (A3) shows
unpredictable behavior: large positive numbers for water dimer and ammonium-water dimer
and underestimated CT energies for the other three systems. Eq. (A4) not only produces

negative CT energies in all cases but also closest to the RVS benchmarking numbers.
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FIG. 1. The structures of the test systems (from left to right) upper row: water-water,
methanol-water, ammonia-water; lower row: ammonium-water, ammonium-nitrate and

(ammonium-nitrate)s.

FIG. 2. EFP-EFP charge transfer energies for water-water dimer at various distances with
basis sets (a) 6-31+G(d,p), (b) 6-31++G(d,p), (c¢) 6-31++G(df,p), (d) 6-311++G(d,p) and (e)

6-311++G(3df,2p).

FIG. 3. Total CPU time versus number of basis functions using either CMO or VVO, (a)

EFP-EFP energy calculation, (b) Single-point EFP-EFP gradient calculation.

FIG. 4. Total CPU time versus number of water molecules using CMO vs. VVO, (a) EFP-

EFP energy calculation, (b) Single-point EFP-EFP gradient calculation.
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TABLE I. Charge transfer energies (kcal/mol) obtained from the RVS analysis, EFP

(canonical occupied + virtual molecular orbitals) and EFP (occupied +valence virtual

orbitals) for the five dimer systems and (ammonium-nitrate), system with five basis sets.

The dimer geometries were optimized with RHF/6-31+G(d,p).

Water-water

Methanol-water

Ammonia-water

Basis sets RVS CMO VVO RVS CMO VVO RVS CMO VVO
6-31+G(d.p) -0.55 -085 -051 -053 -0.78 -0.58 -091 -1.63 -0.86
6-31++G(d.p) -049 -0.75 -051 -046 -077 -0.58 -093 -1.25 -0.85
6-31++G(df,p) -047 -079 -051 -044 -081 -0.58 -0.86 -132 -0.87
6-311++G(d,p) -053 -082 -047 -051 -078 -0.53 -095 -094 -0.75
6-311++G(3df.2p)  -0.65 -044 -035 -0.63 -0.31 -044 -1.20 -0.18 -0.52

Ammonium-water

Ammonium-nitrate

(ammonium-nitrate)s

Basis sets RVS CMO VVO RVS CMO VVO RVS CMO VVO
6-31+G(d.p) -233 -275 -205 -7.88 -500 -536 -15.19 -10.47 -15.32
6-31++G(d.p) -219 -2.64 -204 -790 -553 -538 -15.08 -12.45 -15.32
6-31++G(df,p) -212  -279 205 -785 -6.09 -530 -15.10 -13.41 -15.38
6-311++G(d,p) -235 313 -2.03 -827 -7.12 -530 -15.07 -14.70 -15.19
6-311++G(3df2p) -2.85 -195 -1.79 -6.98 -3.80 -528 -12.76 -8.14 -15.59




TABLE II. The CPU time spent for various terms in an EFP-EFP charge transfer energy
calculation for one (H,O),s6 cluster. Other water clusters of the same size give similar
results. Tax is the kinetic energy integral of fragment A, Sag and Tag are the overlap and
kinetic energy integrals between fragments A and B, V are the one-electron electrostatic
potential integrals. For instance, Vax™" represents the matrix elements of the electrostatic

potential due to B. Ectmeans assembling of all the terms and calculating the charge transfer

47

energy once all of the required integrals are available. Times are in seconds.

CMO VVO
Tana 31.66 16.42

Sas and Tap 8.42 0.37
Vaa™® 145.19 15.73
Vg™ 145.76 15.79
Vapo A 75.11 12.93
Vap ' ? 75.10 13.06
Ecr 2.25 0.01
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TABLE III. Charge transfer energies (kcal/mol) obtained from Egs. (A1) — (A4) in the
Appendix using valence virtual orbitals together with RVS-calculated charge transfer
energies as benchmarks (in bold) for the five dimer systems: water dimer, methanol-water,

ammonia-water, ammonium-water and ammonium-nitrate.

Water- Methanol- Ammonia- Ammonium- Ammonium-
Basis set
water water water water nitrate
6-31+G(d,p) RVS -0.55 -0.53 -0.91 -2.33 -7.88
Al -0.05 -0.05 -0.07 -0.40 -0.92
A2 1.62 1.71 1.29 7.11 13.94
A3 2.08 -0.24 -0.32 8.75 -4.82
A4 -0.50 -0.58 -0.86 -2.05 -5.36
6-31++G(d,p) RVS -0.49 -0.46 -0.93 -2.19 -7.9
Al -0.05 -0.05 -0.07 -0.40 -0.92
A2 1.60 1.67 1.28 7.06 13.87
A3 2.06 -0.25 -0.31 8.70 -4.80
A4 -0.49 -0.58 -0.85 -2.04 -5.38
6-31++G(df,p) RVS -0.47 -0.44 -0.86 -2.12 -7.85
Al -0.05 -0.05 -0.07 -0.40 -0.92
A2 1.62 1.68 1.27 7.08 13.84
A3 2.08 -0.25 -0.33 8.74 -4.78

A4 -0.50 -0.58 -0.87 -2.05 -5.38



6-311++G(d,p) RVS
Al
A2
A3

A4

6-311++G(3df,2p) RVS
Al
A2
A3

A4

-0.53

-0.04

1.45

1.87

-0.45

-0.65

-0.03

1.18

1.47

-0.34
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-0.51

-0.04

1.51

-0.19

-0.53

-0.63

-0.03

1.21

-0.15

-0.44

-0.95

-0.05

1.08

-0.26

-0.75

-0.03

0.77

-0.16

-0.52

-2.35

-0.38

6.93

8.57

-2.03

-2.85

-0.33

6.46

7.88

-1.79

-8.27

-0.87

13.54

-4.40

-5.30

-6.98

-0.86

13.09

-4.36

-5.28
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Chapter 3 The R’ dispersion interaction in the general effective

fragment potential method

A paper accepted by The Journal of Chemical Theory and Computation

Peng Xu, Federico Zahariev, Mark S. Gordon

Abstract

The R” term (E7) in the dispersion expansion is developed in the framework of the general
effective fragment potential (EFP2) method, formulated with the dynamic anisotropic
Cartesian polarizability tensors over the imaginary frequency range. The E7 formulation is
presented in terms of both the total molecular polarizability and the localized molecular
orbital (LMO) contributions. An origin transformation from the center of mass to the LMO
centroids is incorporated for the computation of the LMO dipole-quadrupole polarizability.
The two forms considered for the damping function for the R dispersion interaction, the
overlap-based and Tang-Toennies damping functions, are extensions of the existing
damping functions for the R™® term in the dispersion expansion. The R”’ dispersion
interaction is highly orientation-dependent: it can be either attractive or repulsive, and its
magnitude can change substantially as the relative orientation of two interacting molecules
changes. Although the R dispersion energy rotationally averages to zero, it may be
significant for systems in which rotational averaging does not occur, such as rotationally

rigid molecular systems as in molecular solids or constrained surface reactions.
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I. Introduction

The dispersion interaction, a non-classical phenomenon, arises from the correlated
movement of electrons. In the language of a multipole description of the charge distributions
of molecules, it can be thought of as the interaction between induced multipoles. Although
weak, the dispersion interaction plays an important role in many phenomena. For example,
the dispersion contribution to the water-water hydrogen bond is non-trivial', dispersion is a
key component in m-stacking interactions® >, and provides the essence of the binding of

6
noble gases™’.

The dispersion interaction energy is often expressed as an expansion in inverse

powers of the interatomic or intermolecular distance,”®

E

disp

=CR°+C,R"+C,R"+... (1)

The C, coefficients in Eq. (1) are expansion coefficients that may be derived from first
principles or fitted in some manner, and each term corresponds to one or more induced
multipole-induced multipole interactions. The dispersion interaction can be formulated in
terms of second-order Rayleigh-Schrédinger perturbation theory, where the perturbation
operator is expressed as multipole expansions of the two interacting molecules.” The R
dispersion interaction term is accounted for by using the dynamic dipole-dipole
polarizability over the imaginary frequency range.'’ The R dispersion term arises from the
mixing of dipole-dipole interactions with dipole-quadrupole interactions.'' In this paper the

R contribution to the dispersion energy will be called E7 for brevity. E7 is zero for atoms
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and centrosymmetric molecules. For non-centrosymmetric molecules, E7 does depend on

the relative orientation of the molecules”’, and that is an important consideration.

The effective fragment potential (EFP) method, developed by Gordon and
coworkers,'? is a discrete method for studying the entire range of intermolecular
interactions. The original implementation, EFP1, was designed solely for water and involves
a fitted repulsive potential. The second implementation, the general effective fragment
potential (EFP2) method contains no fitted parameters and can be generated for any (closed-
shell) molecule. In this paper, EFP2 will be called EFP unless a distinction between EFP1
and EFP2 needs to be made. The interaction energy between two molecules/fragments is
calculated using properties of the two isolated molecules. The required properties are
generated in a prior MAKEFP calculation. The interaction energy is divided into five
components, which may be classified in two categories: the Coulomb interaction,
polarization/induction and dispersion are long-range interactions (U ~ R™). Exchange

repulsion and charge transfer are short-range interactions (U ~ ¢%).

The EFP Coulomb interaction is modeled by the Stone distributed multipolar
analysis (DMA) method'>'*. The multipole expansion is truncated at the octopole term, and
the expansion centers are the nuclei and bond midpoints.'* The EFP polarization term arises
from the interaction between an induced dipole on one fragment and the electric field due to
all of the other fragments.12 It is modeled with localized molecular orbital (LMO)
anisotropic static dipole polarizability tensors. The induced dipole is iterated to self-
consistency, thereby introducing many-body effects. The exchange repulsion term is
obtained from a power expansion of the intermolecular LMO overlap integral, truncated at

the second order in the current implementation.'® Charge transfer (CT) is the interaction
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between the occupied orbitals of one molecule and the virtual orbitals of another molecule.
The CT interaction between two EFP fragments is derived from a second-order perturbative
approach.'®'” A power expansion of the intermolecular overlap is used for the CT term as
well, but the truncation is at first order. The leading term in the dispersion interaction, which
will be discussed in Section 11, is described using the dynamic (frequency-dependent)
isotropic dipole polarizability of LMOs over the imaginary frequency range.'® This gives
rise to the isotropic R dispersion energy. Currently, the higher order dispersion energy is
approximated as one third of this isotropic R energy. The goal of this paper is to derive an

explicit expression for E7 and to evaluate the relative importance of this term.

This paper is organized as follows: Section II presents a detailed derivation of E7, in
terms of the Cartesian molecular dynamic polarizability tensors and in terms of LMO
dynamic polarizability tensors. Implementation of the polarizability and damping functions
is also described. Computational details, including the benchmarking system LiH -- LiH and
other dimer systems, are described in Section III. Results are presented and discussed in

Section IV. Conclusions and future work are provided in Section V.

II. Theory

In the framework of Rayleigh-Schrédinger perturbation theory (RSPT), the

dispersion interaction energy between two closed-shell nondegenerate ground state

. . . 9.19
molecules is part of the second order interaction energy,”

Edl.sp:_2<0AOBIVImn><mnIV|0AOB> 2)

— E+E°-E!-E’

n#0
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where 04 and Og are the ground states of molecules A and B, respectively, and m and n are
the excited states of molecules A and B, respectively. Correspondingly, E” is the energy of

the m™ excited state of molecule A. The other Es are similarly defined. The unperturbed

Hamiltonian is the sum of the Hamiltonians of the isolated molecules A and B.

A A

Hy=H}+H} 3)

A

The perturbation operator V' is the interaction operator, which contains the electrostatic
interaction between the constituent particles. By expressing the charge distributions of the
two molecules A and B as two multipole expansions, one can express the interaction

operator as:

X,,2 )»yc
V=T aq"+ LT 1~ o) - 2 T, iy = ZT;};’i <O, = Oty (4)

txﬁy

where ¢ is the total charge on molecule A. 4’ is the ath component of the dipole moment
of molecule B. Ogy is the Byth component of the quadrupole moment of B. The electrostatic

T tensors are defined as follows:

TAB — 1 (5a)
4me R
1 1 R
A = Vo—=—-——"" (5b)
4me, "R 4me,R

(5¢)
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I15R R.R, —3R* (R 6, + R0, +RJ
1 \V/ VﬁV l:_ a” By ( o By B~ oy 14 aﬂ) (5d)

TAB _
“ 7 TR 4re,R’

afy —

4re,

where R =B — A. Here B and A are the expansion center coordinates at which the
multipole expansions are obtained. At this stage, only a single-center multipole expansion
for each molecule is carried out. There is some arbitrariness in the definition of the
multipoles because the choice of the expansion center is arbitrary. The charge is a scalar and
is independent of the expansion center. The dipole moment of a neutral molecule is
invariant under a change of the expansion center.” However, the higher moments, such as
quadrupole moments, depend on the location of the expansion center. In the literature, this
phenomenon is commonly referred to as “origin dependence””''; in this work the word

“origin” refers to the expansion center. The convention that is used here is discussed in

subsequent sections.

Consider the total wave function of a system AB in the long-range approximation,
where there is no significant overlap between the two molecular wave functions and hence
no exchange effect, then the total wave function is the Hartree product of the individual

wave functions:
10,0,)=10,)|0,) and |mn)=|m)|n) (6)

Truncating the interaction operator (Eq. (4)) at the dipole-quadrupole term and substituting

Egs. (4) and (6) into Eq. (2) gives
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(7

The integrals that involve the charge q may be expressed in the form

<OA|qA|m>:qA<0A|m>:

0 since q is a scalar and the ground and excited states of the same

molecule are orthogonal to each other. Hence Eq. (7) starts from the dipole-dipole term.

From Egs. (5¢) and (5d),

T,; and T,

oK

are of the order R and R'4,

respectively. Therefore

E7 arises from the 2™ and 3" terms in Eq. (7). The 1* term of Eq. (7) is the familiar R

dispersion term. The last term in Eq. (7) is part of the R™ dispersion term, which will be

discussed in a subsequent paper. Collecting the terms for E7 and simplifying the notation by

using E ,

=E, —E,yields
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The indices a,B,y,0,k all run over the Cartesian coordinates X, y and z, hence the first and
second terms in the first equality of Eq. (8) are equivalent and may be combined into one
term. The T tensors are constant at a fixed configuration. Rearranging the integrand yields,

X,9,2 1

_ AB~ AB
E7= 22TaﬁTm2—E 5%

afyox m#0 ~m0
n#0

©)

1
<0, Iy Ilm><mlu; 10, ><OBIugIn><nI§9§KIOB>—

1
<OAI,LL;‘Im><mI§9;‘GIOA ><0, g In><nlul10, >

The denominator of Eq. (9) is transformed by the Casimir-Polder identity’>’:
I 2= AB

=— dw 10
A+B n' (A’ +0°) (B +w%) (19)

Applying Eq. (10) to the denominator in Eq. (9) yields

1 1 1 21 J» w08 (1)

E* +E'  holt +af [((o O+’ () + 0’ ]

Now the integrand can be written as a product of a term involving only A and a term

involving only B:
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From time-dependent perturbation theory, one can express the dynamic dipole-dipole and

dipole-quadrupole polarizabilities as, respectively,

Olualm)<m|uﬁ|0>

1
@, (0|t | m){n[ 6, 0)
14
Aup (@)= 22— N (14)

Since @ = —(iw)’, one can cast the E7 expression in terms of dynamic dipole-quadrupole

polarizability tensors over the imaginary frequency range:

O 111
ET==2Y TY T;ji—j do {—-—- ol ()AL | (i0)— —o—+— b ()AL (la))}
ofyox 322
(15)
¥ THT [ dof ol (i0)A] . (i0) - o} (@)AL ()]
3 i off * yox ay ,0K Bx o, Yo

The integral in Eq. (15) is evaluated numerically using a 12-point Gauss-Legendre

quadrature. By a change of variable,

. (16)
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the integral in Eq. (15) becomes

[ doof o (i0)A] . (i0) - o (i0)AL (@) ]

1 2 A /- B . B /- A .
= [ _“’;)2 [0, (A o (10(1) — 05, (10 )AL, (1) ] (17)
12 2
= Z W(n) (1 _aZO)Z I:a(/:?’ (an )AB,GK (lwn ) - agK (lwn )AOI?,}’U' (lwﬂ ):'

where W(n) and t, are the Gauss-Legendre weights and abscissas, which have been

18,19

determined previously for the R term in the dispersion energy. The optimal value for
p y p gy p

, is found to be 0.3.*' Now the E7 dispersion energy is

X,¥,2 12 2
E7=-1 TETS W (n)—— [0, (i0,)Af o (i02,) — o (i, )AL (i02,) ]

B 2 B,oKk
n afyox oo n=1 (1_tn)

(18)

A distributed multipole expansion model of the molecule has the advantages that one

attains improved convergence properties and a better description of the molecular charge

. 01420
distribution”'*

. In particular for dispersion, a distributed treatment portrays a more
realistic picture of the response of the molecule from non-uniform fields due to other

molecular systems.

If one divides the molecule into “regions”, each described by its own multipole

: o . : . 9,23,24
expansion with its own origin, the interaction operator V has the form™ "

acAbeB

’ a a a a 1 a a 1 a
V= ZZ[T“*’q“q” + T (gl — psq” )+ Ty (gq 005 — Mo, +§9aﬁq”)+ } (19)
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The double sum runs over the expansion centers a of molecule A and b of molecule B. The
T* are the electrostatic tensors between two expansion centers a and b. Note that Einstein
convention, the repeated-subscript summation convention, is used here for Cartesian
coordinates (suffix) to avoid cumbersome equations. Substituting Eq. (19), truncated at the

dipole-quadrupole term, into Eq. (2) and combining with Eq. (6) gives,

(0,410,
+(0,1(0,

+<0A|<OB| T;[?y(#aeb _90 /.13)|m>|n><m| |T“tnumu;c|0 )lo )
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Each term in the second equality of Eq. (20) can be symbolically represented as

TathanQCQde
21
r;)a,L‘ZEA b,dzEB EmO + EnO ( )

n#0
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In Eq. (21) Q“ symbolizes the integral of a multipole moment expanded about the center a.

By going through the same derivation as the single-expansion-center model, the dispersion

energy calculated using the distributed model can be symbolically represented as

w;zowfoTachanQCQde
B = ;{)ZA bZ‘BJ [(@),) + 0" [ (08 +07 ]

n#0

z 2 TachdJ' dw[ mOQaQC ][Z wgog Q : }

T a.ceAb.deB m:’-‘O[(wmo) +o ] n¢0|:(50,,0) + o ]

(22)

Note that the two T tensors in Eq. (22) can now be different from each other. The
terms in large brackets in the second equality in Eq. (22) have the form of a multipole-
multipole dynamic polarizability tensor P [Eq. (23)]. The two multipole moments in Eq.

(23) do not necessarily have the same expansion centers (that is, a can be different from c).

=y —mEE ©,,0"C" (23)
(@) +0 ]
Stone and Tong™ termed the polarizability with the same expansion center (a = c) as

‘local’. If the expansion centers differ (a # ¢), the polarizability is termed ‘non-local’. The
non-local polarizability arises naturally from a distributed formulation in which a field in
one region causes a response in another region of the same molecule. Stone and Tong have
shown, in spherical tensor formalism, that the non-local multipole-multipole polarizability
can be transformed into the local form by a shifting procedure provided that the centers of
the moments are not moved too far. This shifting procedure transforms the dispersion

energy expression to a familiar site-site description:
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Edisp = lgzzTach—m,d_mj‘”dw z wmoQan—m z ®,,Q°0 -
hr 0 (24)

aeAbeB m#0 I:(w,f,() )2 + a)Z:I n#0 I:(wf() )2 + w2]
1 2 a a « a
:EEZZT "7 [ " dwP'P’

acAbeB

Q““and Q“”" symbolize the multipole moments whose centers have been shifted. This

shifting treatment is formally exact at sufficiently long range. Stone and Tong have
demonstrated that less than 2% error is incurred for small systems using the shifted

formula®.

In the EFP method, each LMO is taken to be a distributed “region” and naturally the
LMO centroids are chosen as the expansion centers. Jensen and Gordon® introduced and
implemented the localized charge distribution (LCD) method*®>* for Hatree-Fock wave
functions, in which the key idea is to partition the nuclear charge and assign part of the
nuclear charge to a particular LMO predominantly associated with that nucleus. This “local”
nuclear charge and the electrons in the LMO together constitute an electrically neutral LCD.
The dipole moments of such neutral localized charge distributions are invariant with respect
to the shifting. Consequently the dipole-dipole polarizability is the same before and after the
shift. For the dipole-quadrupole polarizability, one can shift the origin of the dipole moment
to coincide with the origin of the quadrupole moment, and again this gives an LMO dipole-
quadrupole polarizability that is identical to that before the shift. Thus, the polarizabilities
that are relevant to E7 are unchanged and a distributed E7 expression without the non-local
polarizabilities can be easily written. The E7 derived from the distributed multipole

expansion at the centroids of LMOs is
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1 h LMO LMO x,y,z

ET(MO)==~=> 3 3 TS [ "do[ ol (i0)4] . (i0) - of (i0)A; (i) ] 25)

3 T jea Jj€B afyox

where ¢ is the dipole-dipole dynamic polarizability of the kth LMO expanded at its

centroid. Similarly, A’ is the dipole-quadrupole dynamic polarizability of the jth LMO
expanded at its centroid. This E7 dispersion energy is called E7 (LMO), to distinguish it

from E7 calculated using molecular polarizabilities, which are called E7 (molecular).

The molecular dynamic polarizability can be partitioned into LMO contributions:

LMO

P @)=Y P (w) (26)

leA

The decomposition is always valid for polarizabilities of any rank when the LMO
polarizabilities use the same expansion center as the molecular polarizability. For the
dipole-dipole polarizability, the dipole moments are invariant with respect to the origins as
discussed above. So the LMO dynamic dipole polarizability that is obtained at the center of
mass is equal to the LMO polarizability obtained at the centroids of the LMOs. However,
the quadrupole moments are origin-dependent, which means the LMO dynamic dipole-
quadrupole polarizability expanded at the centroids of the LMOs will be different from
those expanded at the center-of-mass. The dipole-quadrupole polarizabilities obtained using

different origins are related through the following transformation:

, 3. 3, ,
I _ a4l I I i
Ay py =Aup — [Erﬁaw + Ery%ﬂ - ZrKaKa5ﬁyj (27)
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where r’ is the shift of the origin from the center of mass to the centroid of the Ith LMO. A’

and A'are the dynamic LMO dipole-quadrupole polarizabilities expanded at the center of

mass and the centroid of LMO 1, respectively.

Renaming the transformed LMO dipole-quadrupole polarizability as A’ (i.e.,
dropping the superscript prime), substituting the transformed A’ into Eq. (25), and applying
the same Gauss-Legendre numerical integration procedure, the final distributed E7
expression becomes

E7(LMO) =

LMO LMO x,y.z

I LY X T ZW< q

T e J€B ofyok )

D0 [0k (i0,)A] o (i,) — 0 (i, AL, (i0,)]

(28)

To calculate the LMO dynamic dipole-quadrupole polarizability, the approach

described by Champagne et al is followed®*. The response is calculated in the same way as

in the dipole-dipole case.'™'®

(H”H® - (v)’)Z=-H"P (29)
H" is the real orbital Hessian matrix.

Hi:,f] = (g, — €)0,,0, +4(ai | bj)— (ablij)—(aj | bi) (30)
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where € and €, are the occupied and virtual Hartree-Fock orbital energies, respectively.

(ailbj) etc. are the two-electron integrals over the molecular orbital basis. H” is used to

calculate the magnetizability and is defined as

H(2)

aibj

=(g, ¢ )6ab51jj +(ab 1ij) — (aj 1 bi) (31)

P in Eq. (29) is the perturbation, and in this case, is the dipole moment matrix,

ulo) (32)

Pai = <¢a

Once the response matrix Z is obtained, it is combined with the quadrupole moment

integrals to form the dipole-quadrupole polarizability.

01 |0) 72 iv) (33)

Ay (V)= 2.2(9"

where the subscripts run over Cartesian coordinates and the superscripts i and a refer to the
occupied and virtual orbital indices, respectively. Eq (33) gives the molecular dipole-
quadrupole polarizability at the center of mass. The dipole-quadrupole contribution from the
lth

LMO is obtained by transforming the canonical occupied orbitals to localized orbitals and

summing over only the virtual orbitals.

Aé,ﬁy<iv>=22(2<¢“

i

éﬁy )T ](2 z (iv)T”] (34)

Then the origin shift as in Eq. (27) is carried out to yield the LMO dipole-quadrupole

polarizability at the respective centroid.
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As for the R contribution to the dispersion energy, a damping function is necessary
for E7 to have the correct asymptotic behavior as R approaches zero. Both Tang-Toennies™*
and overlap-based’” damping functions have been derived. The Tang-Toennies damping

function for E7 has the form

7 b k
MRy =1- (2( 5) ]exp(—bR) (35)

k=0

18,35

where the parameter b was previously chosen to be 1.5 for the E6 term ™°. The overlap-

based damping function for E7 is

& (211 S 1) , 21mnlIS1Y (=2In1s)’
ﬁszl—SZ%:l—S (1+(—2lnlSI)+( ;! ) ! I;! )) (36)

n=0

where S is the matrix of the intermolecular overlap integrals over the LMOs.

Codes have been implemented into the GAMESS>*” software package to compute
the dynamic molecular dipole-dipole and dipole-quadrupole polarizabilities expanded at the
center of mass of the molecule, the dynamic LMO dipole-quadrupole polarizability
expanded at the center of mass of the molecule, the origin shift from the center of mass to
the LMO centroids for the LMO dipole-quadrupole polarizability, E7 using the molecular
polarizability (Eq. 15) and using the distributed LMO polarizability (Eq. 25), overlap-based
and Tang-Toennies damping functions, and auxiliary subroutines that write and read the

dynamic polarizabilities.
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The anisotropic R dispersion interaction obtained from the molecular and LMO

dipole-dipole polarizability, E6 (molecular) and E6 (LMO), respectively, have previously

. 18,19
been derived ™ :

h X,¥,2 -
E6(molecular) = 5 Z TO%BTC;}B JO 0626 (ia))ocg,l (im)dw (37)
ofior
h LMO LMO x,y.z . e )
E6(LMO) =~—— > 2 TATY | o i), (i) de (38)

keA jeB ofioL
These anisotropic E6 expressions have been implemented in GAMESS as well, to illustrate

the comparisons of the R®and R’ dispersion interaction in this study.

ITI. Computational details

There are relatively few E7 calculations for molecules of arbitrary geometry in the
literature, although explicit orientation dependent E7 expressions have been developed®® for
simple systems such as a pair of linear molecules. Magnasco and coworkers have done a
series of studies on the LiH — LiH system in which they calculated full-CI quality,

imaginary frequency-dependent dipole-dipole and dipole-quadrupole polarizabilities for

39-42

ground state LiH and Cs and C; dispersion coefficients for LiH — LiH. The angle-
dependent C, dispersion coefficients for two linear molecules is*®
C,0,.0,,0)= z CnLALBMPLAZ (cosO, )PL": (cosB,)cos M@
LyLyM
n=1+1+1l,+1,+2, 0<M <min(L,,L,) (39)

Wl —0I<SL <l +1, |l,—1 <L, <l +1I,
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The relative orientation of two LiH molecules is schematically illustrated in Fig. 1 in which

0,.0, and @ are the angles that specify the relative orientation. The angle 6 varies from 0 to

m  and the angle ¢ varies from 0 to 2 7. [y Figure 1, the increments in ¢ were taken to be

p/a. [ specifies the angular momentum quantum numbers of A and B. L and Lg are the
resultant total angular momentum L of molecule A and molecule B, respectively. The P in

Eq. (39) are the associated Legendre polynomials. The coefficient, C*"** | is best expressed

in terms of irreducible dispersion constants, which are linear combinations of elementary

dispersion constants C,, = (% n)_[:duoca(iu)ah(iu) where a=11m, b=11m are labels

LM 40,42
b

specifying polarizabilities in spherical tensor form. Given the CJ* an in-house

Python program was written to generate LiH — LiH dimers of various relative orientations

and to calculate C,(6,,8,,9)and consequently E7 = C;/R’. R is the distance between the

centers of mass of the two LiH molecules and is kept at 10 Bohr to ensure negligible
overlap. The E7 values obtained in this manner are taken as the reference (benchmark)
values against which the EFP E7 values will be compared. The E7 (benchmark) values can
be directly compared with the EFP E7 (molecular) values since the center of mass is the

EFP molecular polarizability expansion center and defines the EFP T tensors.

The molecular dynamic polarizabilities over the imaginary frequency range are
computed in a preparatory time-dependent Hartree-Fock calculation in GAMESS with the
6-311++G(3df,2p) basis set. In the next section, E7 (molecular) is compared directly to the
E7 (benchmark). The distributed LMO polarizabilities over the same imaginary frequency

range are generated with the same 6-311++G(3df,2p) basis set, and the expansion centers
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are shifted to the LMO centroids. The distributed E7, E7 (LMO), is calculated according to

Eq. (25).

E6 (molecular), E7 (molecular), E6 (LMO), E7 (LMO), as well as the isotropic E6
(molecular) and E6 (LMO) have also been calculated for the following dimer systems: Ar,
H,, HF, water, ammonia, methane, methanol, and dicholoromethane. The equilibrium
geometries of these dimer systems are taken from the previous study of the EFP-ab initio
dispersion interaction.'” All of the monomer EFP potentials are generated with the 6-
311++G(3df,2p) basis set except methanol (6-311++G(2d,2p)) and dicholoromethane (6-
31+G(d)). The SAPT calculations for these two systems were carried out using the smaller
basis sets due to computational cost. The EFP potential energy curves, both E7 (LMO) alone
and E6 (LMO)+E7 (LMO), have been generated for (H,0O), and (CH4), by varying the
intermolecular (center of mass to center of mass) distance from -0.8 A to 0.8 A, in
increments of 0.2 A, with respect to the equilibrium distance. Two damped potential energy
curves, using the Tang-Toennies and overlap-based damping functions have also been
generated. The E6 (LMO)+E7 (LMO) curves are compared to symmetry adapted
perturbation theory (SAPT)* dispersion energies, which are available from previous
studies'”. All of the calculations described above were performed with the GAMESS

36,3
software package’®™’,

IV. Results and Discussion

By systematically varying 6,,0,and ¢ as described in Section III, a total of 200

different configurations of LiH — LiH dimers were generated. The E7 (molecular) values for

these configurations, calculated using the molecular dipole-dipole and dipole-quadrupole
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polarizabilities expanded about the center of mass of the individual LiH molecules are
compared in Table S1 (supporting information) to the E7 (benchmark) results by calculating
the ratio E7 (molecular)/ E7 (benchmark). The agreement is excellent, with an average ratio
of ~93% and a standard deviation of ~4%. The deviation is most likely attributable to the
fact that EFP polarizabilities are generated using time dependent Hartree-Fock in which
only CIS excited states are included. In contrast, the polarizabilities in references 29 and 30
are based on full configuration interaction (FCI). For configurations with parallel LiH (

0, =0,), both E7 (benchmark) and E7 (molecular) are numerically tiny and are considered

to be zero with an undefined ratio.

To better illustrate the E7 (molecular) trends Figures 2 and 3 are plotted using
selected data from Table S1. LiH — LiH E7 (molecular) depends on the three angles,

0,.0,.¢. To examine the ¢ -dependence, E7 (molecular) values for fixed 6, and 6, are
plotted in Fig 2 as a function of ¢ . In Fig. 2, 8, = w / 41is chosen as a representative
example, and each line represents E7 (molecular) for a particular value of 6. As ¢ varies,
E7 is almost constant for a particular 8, and 6, combination. Other 8, and 6, combinations

behave similarly. It is also interesting to note that E7, unlike E6, can be either attractive or

repulsive. From Fig 2 it can also be seen that E7 is quite sensitive to changes in 6. This

observation is much more apparent in Fig. 3. Knowing that E7 is rather insensitive to

variations of ¢, Fig. 3 presents E7 with respect to changes of 8, for fixedgp =0. Each
curve represents a different 6, angle. As 6, varies, the order of magnitude of E7 changes

substantially and in some cases, the sign also changes. Similar curves are obtained for

varying 6, with fixed 6, .
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By examining the numbers in Fig. 3 and Table 1, some interesting observations may
be made: The configurations that are symmetric about the lower left to upper right diagonal
line, (6,,60,,¢0)and (x—-0,,7—-0,,9), have identical E7. This is expected since they are
merely the mirror image of each other. The configurations that are symmetric about the
upper left to lower right diagonal line have E7s that are ~equal in magnitude (difference <
1%) and opposite in sign. Such a relationship is expected from Eq. (39) and is verified by

EFP calculations. These symmetry relationships are maintained for other values of ¢ and

give rise to a rotationally averaged E7 (molecular) of zero.

A direct comparison for E7 (LMO) is difficult. Most distributed models use atomic
polarizabilities that will (incorrectly) give a zero distributed E7. The centroid of the valence
LMO of LiH does not coincide with its center of mass and therefore an E7 calculated using
LMOs does not necessarily equal the E7 based on the molecular polarizability. However, it
can be proved [see Appendix] that if the origins of the two interacting molecules are shifted
uniformly, that is, in same direction and magnitude, E7 is invariant. This provides a way to
check the origin shift implementation and the implementation for calculating E7 (LMO):
Instead of shifting the expansion centers of the LMO polarizability from the center of mass
to the LMO centroids, one can shift the expansion centers to an arbitrary point such that the
shifting vectors are the same for the two interacting molecules. Then the E7 calculated from
the molecular polarizability and the E7 calculated from this “arbitrarily” distributed
polarizability should match. This indeed is the case for all of the configurations of LiH—

LiH dimers assessed in this study.
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Table 2 presents E7 (molecular) and E7 (LMO) computed for various dimer systems
at their equilibrium configurations. Note that for Ar, the molecular dipole-quadrupole
polarizability is the atomic dipole-quadrupole polarizability. Since an atom is
centrosymmetric, its dipole-quadrupole polarizability is zero and consequently its E7
(molecular) is also zero. However, atomic LMOs do not necessarily possess an inversion
center. Hence the LMO dipole-quadrupole polarizability of Ar atom is not zero, nor is E7
(LMO). The molecule H, contains an inversion center that also coincides with the H, LMO
inversion center. It is expected that both molecular and LMO dipole-quadrupole
polarizability tensors are zero, which give zero E7 (molecular) and E7 (LMO). In some
cases, E7 (molecular) and E7 (LMO) can have different signs, reflecting the fact that
different multipole expansions give different descriptions of the potential at a truncated
finite order. E6 (molecular) and E6 (LMO), as well as their isotropic counterparts for these
dimer systems are also computed and shown in Table 2. The isotropic E6 (molecular)
deviate very little from the anisotropic E6 (molecular). For the distributed model, the
deviations between isotropic and anisotropic E6 (LMO) are comparatively larger, although
the absolute deviation is still less than 0.5 kcal/mol. This validates the isotropic
approximation. At the equilibrium configurations of these dimer systems, E7 values (both
the molecular and the distributed) are typically only a small fraction of the E6 values,
although their signs can be different. For (H,O), and (NHj3),, E7 values are ~ 50% of E6
values and opposite in sign. When the sums E6+E7 are compared to the SAPT values, the
errors are still relatively large, indicating that the series in Eq. (1) is not converged at the R”’

term and at least the R™® dispersion term is necessary.
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One interesting observation is that the dispersion contributions calculated from
molecular and LMO polarizabilities can be strikingly different. For example, E6 (LMO) for
H,0 and NHj3 dimers are more than double the corresponding E6 (molecular) values. E7
(LMO) and E7 (molecular) can also be rather different. In some cases, E7 (molecular) and
E7 (LMO) have different signs, not surprising since the E7 sign is not always negative. To
illustrate how these differences arise, consider the simplest case, isotropic E6 (LMO) and E6

(molecular)'®":

k l
o (2] 2]

isotropic E6 (molecular)=——= =

RAB R R} (40)
LMO Lsz C ki
kl RgB

LMO Ckl LMO

isotropic E6 (LMO) = z 7 2 R6
kl kl kl

(41)

1
where o = 5(0‘” +o, + Oczz) is the isotropic dynamic dipole-dipole polarizability. Since the

dipole-dipole polarizability is invariant with respect to the origin shift, the molecular dipole-

dipole polarizability can be partitioned into LMO contributions exactly (See Eq. 26).
Consequently, the dispersion coefficient C{* can be partitioned into C,’ contributions. The

difference between the two E6 expressions in Egs. 40 and 41 comes from the difference
between Rap and Ry. Rag is the distance between the centers of mass of A and B. Ry; is the
distance between the centroids of LMOs k and 1, respectively. By an extension of this
argument, anisotropic molecular and distributed LMO formulations use different T tensors

[See Egs. (37, 38)] and consequently yield different dispersion energies. Moreover, for E7
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(LMO), the LMO dipole-quadrupole polarizability is also being transformed by the origin-
shift formula (Eq. 27). In essence, the different definitions of the electrostatic T tensors and
the origin shifting transformation are the causes of the discrepancy between the dispersion
energies calculated with molecular and LMO formulations. Fundamentally, the two
formulations express the interaction operator as two different expansions. The total
dispersion energies calculated by the two expansions theoretically converge to the same
value, just as the oscillator strengths based on the dipole length and the dipole velocity
converge to the exact result in the limit of a full configuration interaction wave function.
Conceptually the distributed formulation is expected to converge faster by the following
argument. A molecular dipole can be regarded as two separated point charges, a molecular
quadrupole can be considered as arising from the separation of two dipoles. In other words,
the distributed multipoles of lower rank may resemble molecular multipoles of higher
rank.** Consequently, E6 (LMO) captures higher order dispersion terms such as E7
(molecular) and even higher order contributions. So, agreement between the two
formulations will be achieved for the total dispersion energy when the molecular and
distributed multipole expansions are carried out to complete order, although there is no one-

to-one correspondence between the individual terms of the different expansions.

Figure 4 plots the E7 (LMO) values of two dimer systems, (H,O), and (CH4),, at
various intermolecular distances, from -0.8 A to 0.8 A with respect to the equilibrium
distance. Both un-damped values and damped E7 (LMO) using the two different damping
functions are plotted. As mentioned in Section II, the purpose of the damping function is to
ensure the correct asymptotic behavior as R approaches zero. From Figure 4, the Tang-

Toennies function appears to over-damp E7 (LMO), i.e. Tang-Toennies damped E7 (LMO)
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tends to be too weak at shorter intermolecular distances. Hence the overlap-based damping

function is chosen to be the default damping option for EFP-EFP E7 (LMO) calculations.

Figure 5 compares the E6 (LMO)+E7 (LMO) dispersion energies for (H,O), and
(CHa)s , with or without damping, to the SAPT values. Overall, the overlap-damped
dispersion curve resembles the SAPT curve better. At short intermolecular distances, the
overlap-damped (H,O), dispersion energy appears to be more negative than the non-damped
value although it is closer to the SAPT value. This is because the non-damped E7 (LMO) is
positive and much larger than the overlap-damped E7 (LMO), which makes the sum of E6
and E7 less negative. The Tang-Toennies damping function shows the same over-damping

problem noted above.

V. Conclusion and Future work

A general expression for the R contribution to the dispersion energy between two
molecular systems in the EFP framework has been derived and implemented in the
GAMESS software package. The R” dispersion interaction can be computed using either
molecular (E7 (molecular)) or LMO (E7 (LMO)) dynamic dipole-quadrupole polarizability
tensors over the imaginary frequency range. The molecular dynamic dipole-quadrupole
polarizability is computed from the dipole response and the quadrupole moments. For E7
(LMO), the proper LMO dynamic dipole-quadrupole polarizabilities are obtained after an
origin shift transformation from the center of mass to the centroids of the LMOs. Two types
of damping functions, overlap-based and Tang-Toennies damping functions, have been
implemented for the calculation of E7 (LMO). Both E7 (molecular) and E7 (LMO)

magnitudes can change substantially and their signs can also change as the relative
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orientations of the molecules change. In other words, E7 is highly orientation-dependent.
For systems with constrained configurations, e.g. molecular solids or crystal structures or
reactions occurring on a surface, E7 could be a significant contribution to the total
dispersion interaction. E7 is probably is not critical for room temperature gas phase or liquid
phase structures where molecules are free to rotate and the E7 interactions are averaged out.
The difference between the dispersion energies calculated with molecular and LMO
polarizabilities is a manifestation of different expansions of the interaction operator
truncated at a finite order. The comparison between SAPT with E6+E7 values suggests that
the dispersion series is not converged at E7 and at least R™® dispersion term should be added.
The distributed formulation is expected to converge faster. Although this work has been
presented in the context of the effective fragment potential method, the conclusions that are

drawn here are very likely applicable to fully quantum calculations as well.

In order to perform geometry optimizations and molecular dynamics simulations,

gradients of the R dispersion energy will be the focus of future studies.
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Appendix

Since the dipole-quadrupole polarizability is origin-dependent, the question to ask naturally

is, is E7 also origin-dependent?
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Suppose the shift of the expansion centers is 7" and r” for molecule A and B,

respectively. Accordingly, the dipole-quadrupole polarizabilities of A and B become,

, 3 . 3 4 .
A= et 2ot = s, | (A1)

: 3 . 3 5 :
B B B' B B B B' B
Aﬁ,cﬂc = Aﬁ,(m - (Ercr aKﬂ + E K (X,Bcr - r/.l auﬁSmcj (Az)

The superscripts A and B denote the original expansion centers for molecules A and B,
respectively. And A’ and B’ denote the new expansion centers. The subscripts denote the
Cartesian coordinates X, y and z. o is the Kronecker delta function. Note that due to the

origin-shift, the T tensors are also altered. Therefore now the E7 expression becomes

I A [ Algs B - B - A e
ET==— T3 T [ dof ol (i0)A] . (i0) - . (@)AL (@) ]

_ h A'BAB [T
——5 o T)’UK JO do

. . 3 ' . 3 ' . ' .
agy(zw)(Agm (iw)— (5 ry o (i) + > rl o (i) — 1l ol ()5, ))

_aﬁK(iw)[Agw(iw) _ (g Lol (i) + %rj'oc;‘y (iw) =1, O (i)5.,, j)

(A3)
From Eq. (A3), E7 calculated from these new polarizabilities, in general, do not necessarily

equal to the E7 calculated previously.

. A' B'
However, if r* =r

=r', i.e. uniform translation of the origins, the T tensors are
unchanged because the intermolecular distance R that defines the T tensors remains the

same. Now Eq (A3) becomes
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3, 3, ,
o, (i0)| Ay o (i) —| —1,0p(i0)+ =10, (i0) = 1,0, (i0)d,,
E7=-" TABTABrd 2 2
=—— )
3” aﬁ ’JUK' O 3 ! 3 1 1
—agk(iw)(A;‘,w(ia)) - (5 ryaﬁa (iw)+ Eraa;(ia)) - rﬂﬁa (i0)d,, D

(A4)

The change in E7 is

. 3. . 3, . : .
. i -a, (za))(a 1,0 (i) + 5 1.0, (i) = 1,05 (i0)3, j
_ AB AB
ET=-—T T [ do

3 .3 . 3. . | .
+0th (160)[51}0620, (iw)+ 5 ra(x;‘y (io)— V#O!:a (i)d,, )
3 \ . . 3 , . . N .
B o ) —ETDZ;BTyﬁiroagy (iw)ot gy (im) - ETaf};BTy;eragy (i), (i0) + T T o o, (i0)r, 0, (i00)5,
=——| do
37[ 0 3 ABmAB_' B . A . 3 AB AB B /. A /. ABAB B /- ' A .
+5Taﬁ T o1, 0, (i) 0, (i) + ET"ﬁ T oo O (@)t (i) = T,y T o 0, (i0)r, 0, (i0)6,,

(AS)

Since the dipole-dipole polarizability is symmetric with respect to interchange of the two
suffixes, the 1* and the second last terms in Eq. (A5) cancel each other. By the definition of
the T tensors, the T tensors with two or more suffixes are invariant with respect to

interchange of suffixes. The 2" and 4™ terms can be rewritten as

3 AB ., A . AB_ ' B /-
_ETB“ Oy (io)T ol Olop (iw)

3 (A6)
+ETﬁZBaQG(iw)Tjgry‘afﬁ(iw)

Recall that Einstein summation convention is used here: a repeated subscript implies
summation over that subscript. Therefore one can see that the two terms in (A6) are equal in

magnitude and opposite in sign, and hence cancel each other. The 3 term in Eq. (A5) is
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T Tty (i0)1,06, (i0)8,,,. = (T8, )0, ()T i 0ty (i0)r,

of ~ yox oy up yoK oK

The term in the parenthesis

AB AB
Tymcgo'K = Tyov
2
ISR R,R,~3R*(R,8,, +R,5, +R,5,)
= -
ISR R’ -3R*(3R, +2R,5,,)
- -
ISR R*-3R*(3R,+2R,)
- =
2 2
_I5R,R*~15R°R,

R7
=0

(A7)

(A8)

Again, the Einstein summation convention is implied here. Hence the 3™ term, and similarly

the last term, in Eq. (A5) are both zero. So, overall E7 is unchanged when the origin-shifts

are the same for both molecules.



80

References

ey

2)

3)

“4)

(&)

(6)

(7

®)

©)

Pruitt, S. R.; Leang, S. S.; Xu, P.; Fedorov, D. G.; Gordon, M. S. Hexamers and
Witchamers: Which Hex Do You Choose?. Comput. Theor. Chem. 2013, 1021, 70—
83.

Burley, S. K.; Petsko, G. A. Aromatic-Aromatic Interaction: A Mechanism of
Protein Structure Stabilization. Sci. (Washington, DC, United States) 1985, 229, 23—
28.

Saenger, W. Principles of Nucleic Acid Structure.; Springer-Verlag, 1984; p. 556 pp.
Lerman, L. S. Structural Considerations in the Interaction of Deoxyribonucleic Acid
and Acridines. mol. biol. 1961, 3, 18-30.

Brana, M. F.; Cacho, M.; Gradillas, A.; De B., P.-T.; Ramos, A. Intercalators as
Anticancer Drugs. Curr. Pharm. Des. 2001, 7, 1745-1780.

Eisenschitz, R.; London, F. The Relation between the van Der Weals Forces and the
Homeopolar Valence Forces. Zeitschrift fuer Phys. 1930, 60, 491-527.

London, F. Theory and Systematics of Molecular Forces. Zeitschrift fuer Phys. 1930,
63,245-279.

London, F. The General Theory of Molecular Forces. Trans. Faraday Soc. 1937, 33,
8-26.

Stone, A. J.; Editor. The Theory of Intermolecular Forces.; Oxford Univ Press, 1996.



(10)

(11

(12)

(13)

(14)

(15)

(16)

17)

(18)

81

Amos, R. D.; Handy, N. C.; Knowles, P. J.; Rice, J. E.; Stone, A. J. AB-Initio
Prediction of Properties of Carbon Dioxide, Ammonia, and Carbon
Dioxide...ammonia. J. Phys. Chem. 1985, 89,2186-2192.

Buckingham, A. D. Theory of Long-Range Dispersion Forces. Discuss. Faraday Soc.
1965, No. 40, 232-238.

Day, P.N; Jensen, J. H.; Gordon, M. S.; Webb, S. P.; Stevens, W. J.; Krauss, M ;
Garmer, D.; Basch, H.; Cohen, D. An Effective Fragment Method for Modeling
Solvent Effects in Quantum Mechanical Calculations. J. Chem. Phys. 1996, 105,
1968-1986.

Stone, A. J. Distributed Multipole Analysis, or How to Describe a Molecular Charge
Distribution. Chem. Phys. Lett. 1981, 83, 233-239.

Stone, A. J.; Alderton, M. Distributed Multipole Analysis Methods and Applications.
Mol. Phys. 1985, 56, 1047-1064.

Jensen, J. H.; Gordon, M. S. An Approximate Formula for the Intermolecular Pauli
Repulsion between Closed Shell Molecules. Mol. Phys. 1996, 89, 1313—1325.

Li, H.; Gordon, M. S.; Jensen, J. H. Charge Transfer Interaction in the Effective
Fragment Potential Method. J. Chem. Phys. 2006, 124,214108/1-214108/16.

Xu, P.; Gordon, M. S. Charge Transfer Interaction Using Quasiatomic Minimal-Basis
Orbitals in the Effective Fragment Potential Method. J. Chem. Phys. 2013, 139,
194104/1-194104/11.

Adamovic, I.; Gordon, M. S. Dynamic Polarizability, Dispersion Coefficient C6 and
Dispersion Energy in the Effective Fragment Potential Method. Mol. Phys. 2005, 103,

379-387.



(19)

(20)

21)

(22)

(23)

(24)

(25)

(26)

27)

82

Smith, Q. A.; Ruedenberg, K.; Gordon, M. S.; Slipchenko, L. V. The Dispersion
Interaction between Quantum Mechanics and Effective Fragment Potential
Molecules. J. Chem. Phys. 2012, 136, 244107/1-244107/12.

Casimir, H. B. G.; Polder, D. The Influence of Retardation on the London-van Der
Waals Forces. Phys. Rev. 1948, 73, 360-372.

Gross, E. K. U.; Ullrich, C. A.; Gossmann, U. J. Density Functional Theory of Time-
Dependent Systems. NATO ASI Ser. Ser. B Phys. 1995, 337, 149-171.

Stone, A. J. Distributed Polarizabilities. Mol. Phys. 1985, 56, 1065-1082.

Stone, A.J.; Tong, C. S. Local and Nonlocal Dispersion Models. Chem. Phys. 1989,
137,121-135.

Williams, G. J.; Stone, A.J. Distributed Dispersion: A New Approach. J. Chem.
Phys. 2003, 119, 4620-4628.

Jensen, J. H.; Gordon, M. S. Ab Initio Localized Charge Distributions: Theory and a
Detailed Analysis of the Water Dimer-Hydrogen Bond. J. Phys. Chem. 1995, 99,
8091-8107.

England, W.; Gordon, M. S. Localized Charge Distributions. I. General Theory,
Energy Partitioning, and the Internal Rotation Barrier in Ethane. J. Am. Chem. Soc.
1971, 93, 4649-4657.

England, W.; Gordon, M. S. Localized Charge Distributions. II. Interpretation of the
Barriers to Internal Rotation in Hydrogen Peroxide. J. Am. Chem. Soc. 1972, 94,

4818-4823.



(28)

(29)

(30)

(31

(32)

(33)

(34)

(35)

83

Gordon, M. S.; England, W. Localized Charge Distributions. III. Transferability and
Trends of Carbon-Hydrogen Moments and Energies in Acyclic Hydrocarbons. J. Am.
Chem. Soc.1972,94,5168-5178.

Gordon, M. S.; England, W. Localized Charge Distributions. Internal Rotation
Barrier in Borazane. Chem. Phys. Lett. 1972, 15, 59-64.

Gordon, M. S.; England, W. Localized Charge Distributions. V. Internal Rotation
Barriers in Methylamine, Methyl Alcohol, Propene, and Acetaldehyde. J. Am. Chem.
Soc. 1973, 95, 1753-1760.

Gordon, M. S. Localized Charge Distributions. VI. Internal Rotation in
Formaldoxime and Formic Acid. J. Mol. Struct. 1974, 23, 399-410.

England, W.; Gordon, M. S.; Ruedenberg, K. Localized Charge Distributions. VII.
Transferable Localized Molecular Orbitals for Acyclic Hydrocarbons. Theor. Chim.
Acta 1975, 37,177-216.

Quinet, O.; Liegeois, V.; Champagne, B. TDHF Evaluation of the Dipole-Quadrupole
Polarizability and Its Geometrical Derivatives. J. Chem. Theory Comput. 2005, 1,
444-452.

Tang, K. T.; Toennies, J. P. An Improved Simple Model for the van Der Waals
Potential Based on Universal Damping Functions for the Dispersion Coefficients. J.
Chem. Phys. 1984, 80, 3726-3741.

Slipchenko, L. V; Gordon, M. S. Damping Functions in the Effective Fragment

Potential Method. Mol. Phys. 2009, 107,999-1016.



(36)

(37)

(38)

(39)

(40)

(41)

(42)

84

Schmidt, M. W ; Baldridge, K. K.; Boatz,J. A_; Elbert, S. T.; Gordon, M. S.; Jensen,
J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A_; et, al. General Atomic and
Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347-1363.
Gordon, M. S.; Schmidt, M. W. Advances in Electronic Structure Theory: GAMESS
a Decade Later. In Theory Appl. Comput. Chem.: First Forty Years; Elsevier B.V .,
2005; pp. 1167-1189.

Meyer, W. Dynamic Multipole Polarizabilities of Hydrogen and Helium and Long-
Range Interaction Coefficients for Hydrogen-Hydrogen, Hydrogen-Helium and
Helium-Helium. Chem. Phys. 1976, 17,27-33.

Bendazzoli, G. L.; Magnasco, V.; Figari, G.; Rui, M. Full-CI Calculation of
Imaginary Frequency-Dependent Dipole Polarizabilities of Ground State LiH and the
C6 Dispersion Coefficients of LiH-LiH. Chem. Phys. Lett. 2000, 330, 146—151.
Luigi Gian, B.; Magnasco, V.; Figari, G.; Rui, M. Full-CI Calculation of Imaginary
Frequency-Dependent Dipole-Quadrupole Polarizabilities of Ground State LiH and
the C7 Dispersion Coefficients of LiH-LiH. Chem. Phys. Lett. 2002, 363, 540-543.
Bendazzoli, G. L.; Monari, A.; Magnasco, V.; Figari, G.; Rui, M. An Enlarged Basis
Full-CI Calculation of C7 Dispersion Coefficients for the LiH-LiH Homodimer.
Chem. Phys. Lett. 2003, 382, 393-398.

Luigi Gian, B.; Magnasco, V.; Figari, G.; Rui, M. Full-CI Calculation of Imaginary
Frequency-Dependent Dipole-Quadrupole Polarizabilities of Ground State LiH and
the C7 Dispersion Coefficients of LiH-LiH. [Erratum to Document Cited in

CA137:358415]. Chem. Phys. Lett. 2003, 381, 526-527.



85

(43) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to
Intermolecular Potential Energy Surfaces of van Der Waals Complexes. Chem. Rev.
(Washington, DC, United States) 1994, 94, 1887-1930.

(44) Buckingham, A. D. Molecular Quadrupole Moments. Q. Rev. 1959, 8, 183-214.



86

D
o)

Y

Figure 1 a schematic representation of LiH - LiH dimer. The LiH molecules intersect
with Z-axis at their centers of mass. R is the distance between the two centers of mass,

which is set to 10 Bohr in this study.
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Figure 2 E7 (in 10-4 Hartree) as a function of the angle ¢, calculated from dynamic

molecular polarizabilities over the imaginary frequency range for LiH - LiH dimer with

0, =n/4, 6,varying from 0 to 7w and ¢ from 0 to 27, in increments of /4, from the

top line to the bottom line.
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Figure 3 E7 (in 10-* Hartree) as a function of the angle 8, , calculated from dynamic

molecular polarizabilities over the imaginary frequency range for LiH - LiH dimer with
¢ =0, 6,varying from 0 to 7 in increments of 7/4, from the top line to the bottom

line.
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Figure 4 (a) water dimer (b) methane dimer: E7 (LMO) calculated at various
intermolecular distances ranging from -0.8 to +0.8 A away from the equilibrium
distance. The effect of two types of damping function are also shown in the figure: the

red squares represent the damped E7 (LMO) by an overlap-based damping function
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and the green triangles represent the damped E7 (LMO) by the Tang-Toennies

damping function.
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Figure 5 (a) water dimer (b) methane dimer: E6 (LMO)+E7 (LMO) dispersion energy
calculated at various intermolecular distances ranging from -0.8 to 0.8 A away from
the equilibrium distance. The effect of the two types of damping function are also
shown in the figure: the red squares represent the damped dispersion energy by an

overlap-based damping function and the green triangles represent the damped
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dispersion by the Tang-Tonnies damping function. The SAPT numbers are shown as

brown triangles.
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Table 1 E7 (molecular) (in Hartree) calculated from dynamic molecular polarizabilities over

the imaginary frequency range for LiH — LiH dimer for ¢ =0, 6, (the x-axis) and 6, (the

y-axis) varying from 0 to m, in increments of n/4.

(4] 0 /4 /2 3n/4 T
B

0 1.09E-56 4.04E-05 1.23E-04 2.00E-04 2.34E-04

/4 -4.04E-05 1.18E-15 8.28E-05 1.62E-04 2.00E-04

/2 -1.23E-04 -8.25E-05 -8.66E-21 8.28E-05 1.23E-04

3n/4 -1.98E-04 -1.61E-04 -8.25E-05 5.38E-16 4.04E-05

L -2.32E-04 -1.98E-04 -1.23E-04 -4.04E-05 -3.88E-55




2Ar
2H,
2HF
2H,0
2NH;
2CH,4
2MeOH

2CH,Cl,
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Table 2 E6 (molecular), E7 (molecular), E6 (LMO) and E7 (LMO) for various dimer

systems at their equilibrium distances, in kcal/mol. Isotropic E6 (molecular) and isotropic

E6 (LMO) values calculated from LMO dipole polarizabilities are also presented. The

SAPT

-0.390

-0.087

-1.661

-2.191

-1.909

-0.736

-2.253

-2.074

SAPT dispersion+exchange dispersion values are listed here as well.

Eé6

(molecular)

-0.265
-0.058
-0.527
-0.787
-0.736
-0.415
-0.960

-1.197

E6
(molecular)
(isotropic)
-0.265
-0.057
-0.499
-0.788
-0.739
-0.415
-0.944

-1.314

E7

(molecular)

0.000
0.000
-0.138
-0.107
-0.046
0.002
0.641

-0.022

Eé6

(LMO)

-0.285
-0.058
-0.777
-1.554
-1.526
-0.509
-1.476

-1.802

E6
(LMO)
(isotropic)
-0.295
-0.057
-0.661
-1.095
-1.111
-0.570
-1.252

-1.913

E7

(LMO)

0.002
0.000
-0.059
0.573
0.718
0.010
0.373

0.421
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Table S1 E7 (benchmark) and E7 (molecular), in Hartree, computed for different

combination of (OA ,93,(0) , with O ranging from 0 to 7 and @ from 0 to 77 /4 radians. The

energies are in scientific notation to make the change of E7 more apparent. The ratio of E7

(molecular)/E7 (benchmark) is in the last column as a percentage.

E7 (molecular)/

(O (02 (0} E7 (benchmark) E7 (molecular)
E7 (benchmark) %

0 0 0 -1.69E-21 1.09E-56 /

0 0 /4 -1.69E-21 4.59E-21 /

0 0 2n/4 -1.69E-21 -3.34E-44 /

0 0 3n/4 -1.69E-21 4.59E-21 /

0 0 T -1.69E-21 -3.05E-44 /

0 0 Sn/4 -1.69E-21 4.59E-21 /

0 0 6n/4 -1.69E-21 -3.34E-44 /

0 0 Tn/4 -1.69E-21 4.59E-21 /

0 /4 0 -4.70E-05 -4.04E-05 85.89%
0 /4 /4 -4.70E-05 -4.04E-05 85.89%
0 /4 2n/4 -4.70E-05 -4.04E-05 85.89%
0 /4 3n/4 -4.70E-05 -4.04E-05 85.89%
0 /4 T -4.70E-05 -4.04E-05 85.89%
0 /4 Sn/4 -4.70E-05 -4.04E-05 85.89%
0 /4 on/4 -4.70E-05 -4.04E-05 85.89%
0 /4 Tn/4 -4.70E-05 -4.04E-05 85.89%
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0 2n/4 0 -1.33E-04 -1.23E-04 92.52%
0 2n/4 /4 -1.33E-04 -1.23E-04 92.52%
0 2n/4 2n/4 -1.33E-04 -1.23E-04 92.52%
0 2n/4 3n/4 -1.33E-04 -1.23E-04 92.52%
0 2n/4 T -1.33E-04 -1.23E-04 92.52%
0 2n/4 Sn/4 -1.33E-04 -1.23E-04 92.52%
0 2n/4 on/4 -1.33E-04 -1.23E-04 92.52%
0 2n/4 Tn/4 -1.33E-04 -1.23E-04 92.52%
0 3n/4 0 -2.10E-04 -1.98E-04 94.38%
0 3n/4 /4 -2.10E-04 -1.98E-04 94.38%
0 3n/4 2n/4 -2.10E-04 -1.98E-04 94.38%
0 3n/4 3n/4 -2.10E-04 -1.98E-04 94.38%
0 3n/4 T -2.10E-04 -1.98E-04 94.38%
0 3n/4 Sn/4 -2.10E-04 -1.98E-04 94.38%
0 3n/4 on/4 -2.10E-04 -1.98E-04 94.38%
0 3n/4 Tn/4 -2.10E-04 -1.98E-04 94.38%
0 m 0 -2.49E-04 -2.32E-04 93.15%
0 T /4 -2.49E-04 -2.32E-04 93.15%
0 m 2n/4 -2.49E-04 -2.32E-04 93.15%
0 T 3n/4 -2.49E-04 -2.32E-04 93.15%
0 T T -2.49E-04 -2.32E-04 93.15%
0 T Sn/4 -2.49E-04 -2.32E-04 93.15%
0 T on/4 -2.49E-04 -2.32E-04 93.15%
0 T Tn/4 -2.49E-04 -2.32E-04 93.15%
/4 0 0 4.70E-05 4.04E-05 85.91%
/4 0 /4 4.70E-05 4.04E-05 85.91%
/4 0 2n/4 4.70E-05 4.04E-05 85.91%
/4 0 3n/4 4.70E-05 4.04E-05 85.91%
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/4 0 T 4.70E-05 4.04E-05 85.91%
/4 0 Sn/4 4.70E-05 4.04E-05 85.91%
/4 0 on/4 4.70E-05 4.04E-05 85.91%
/4 0 Tn/4 4.70E-05 4.04E-05 85.91%
/4 /4 0 -7.34E-21 1.18E-15 /

/4 /4 /4 -8.43E-21 -1.37E-08 /

/4 /4 2n/4 -3.10E-21 -4.71E-08 /

/4 /4 3n/4 4.28E-21 -8.05E-08 /

/4 /4 T 5.47E-21 -9.43E-08 /

/4 /4 Sn/4 4.52E-21 -8.05E-08 /

/4 /4 on/4 -2.83E-21 -4.71E-08 /

/4 /4 Tn/4 -8.23E-21 -1.37E-08 /

/4 2n/4 0 -8.58E-05 -8.25E-05 96.21%
/4 2n/4 /4 -8.62E-05 -8.29E-05 96.15%
/4 2n/4 2n/4 -8.70E-05 -8.36E-05 96.01%
/4 2n/4 3n/4 -8.77E-05 -8.41E-05 95.86%
/4 2n/4 T -8.80E-05 -8.43E-05 95.79%
/4 2n/4 Sn/4 -8.77E-05 -8.41E-05 95.86%
/4 2n/4 on/4 -8.70E-05 -8.36E-05 96.01%
/4 2n/4 Tn/4 -8.62E-05 -8.29E-05 96.15%
/4 3n/4 0 -1.66E-04 -1.61E-04 96.56%
/4 3n/4 /4 -1.67E-04 -1.61E-04 96.51%
/4 3n/4 2n/4 -1.69E-04 -1.63E-04 96.38%
/4 3n/4 3n/4 -1.70E-04 -1.64E-04 96.26%
/4 3n/4 T -1.71E-04 -1.64E-04 96.21%
/4 3n/4 Sn/4 -1.70E-04 -1.64E-04 96.26%
/4 3n/4 on/4 -1.69E-04 -1.63E-04 96.38%
/4 3n/4 Tn/4 -1.67E-04 -1.61E-04 96.51%
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/4 T 0 -2.10E-04 -1.98E-04 94.38%
/4 T /4 -2.10E-04 -1.98E-04 94.38%
/4 T 2n/4 -2.10E-04 -1.98E-04 94.38%
/4 T 3n/4 -2.10E-04 -1.98E-04 94.38%
/4 T T -2.10E-04 -1.98E-04 94.38%
/4 T Sn/4 -2.10E-04 -1.98E-04 94.38%
/4 T on/4 -2.10E-04 -1.98E-04 94.38%
/4 T Tn/4 -2.10E-04 -1.98E-04 94.38%
2n/4 0 0 1.33E-04 1.23E-04 92.93%
2n/4 0 /4 1.33E-04 1.23E-04 92.93%
2n/4 0 2n/4 1.33E-04 1.23E-04 92.93%
2n/4 0 3n/4 1.33E-04 1.23E-04 92.93%
2n/4 0 T 1.33E-04 1.23E-04 92.93%
2n/4 0 Sn/4 1.33E-04 1.23E-04 92.93%
2n/4 0 on/4 1.33E-04 1.23E-04 92.93%
2n/4 0 Tn/4 1.33E-04 1.23E-04 92.93%
2n/4 /4 0 8.58E-05 8.28E-05 96.55%
2n/4 /4 /4 8.62E-05 8.31E-05 96.45%
2n/4 /4 2n/4 8.70E-05 8.37E-05 96.21%
2n/4 /4 3n/4 8.77E-05 8.42E-05 95.96%
2n/4 /4 T 8.80E-05 8.43E-05 95.85%
2n/4 /4 Sn/4 8.77E-05 8.42E-05 95.96%
2n/4 /4 on/4 8.70E-05 8.37E-05 96.21%
2n/4 /4 Tn/4 8.62E-05 8.31E-05 96.45%
2n/4 2n/4 0 5.35E-37 -8.66E-21 /

2n/4 2n/4 /4 6.74E-37 -2.37E-08 /

2n/4 2n/4 2n/4 7.64E-37 -8.19E-08 /

2n/4 2n/4 3n/4 6.92E-37 -1.41E-07 /
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2n/4 2n/4 T 6.90E-37 -1.65E-07 /

2n/4 2n/4 Sn/4 7.34E-37 -1.41E-07 /

2n/4 2n/4 on/4 7.94E-37 -8.19E-08 /

2n/4 2n/4 Tn/4 7.01E-37 -2.37E-08 /

2n/4 3n/4 0 -8.58E-05 -8.25E-05 96.21%
2n/4 3n/4 /4 -8.62E-05 -8.29E-05 96.15%
2n/4 3n/4 2n/4 -8.70E-05 -8.36E-05 96.01%
2n/4 3n/4 3n/4 -8.77E-05 -8.41E-05 95.86%
2n/4 3n/4 T -8.80E-05 -8.43E-05 95.79%
2n/4 3n/4 Sn/4 -8.77E-05 -8.41E-05 95.86%
2n/4 3n/4 on/4 -8.70E-05 -8.36E-05 96.01%
2n/4 3n/4 Tn/4 -8.62E-05 -8.29E-05 96.15%
2n/4 T 0 -1.33E-04 -1.23E-04 92.52%
2n/4 T /4 -1.33E-04 -1.23E-04 92.52%
2n/4 T 2n/4 -1.33E-04 -1.23E-04 92.52%
2n/4 T 3n/4 -1.33E-04 -1.23E-04 92.52%
2n/4 T T -1.33E-04 -1.23E-04 92.52%
2n/4 T Sn/4 -1.33E-04 -1.23E-04 92.52%
2n/4 T on/4 -1.33E-04 -1.23E-04 92.52%
2n/4 T Tn/4 -1.33E-04 -1.23E-04 92.52%
3n/4 0 0 2.10E-04 2.00E-04 95.18%
3n/4 0 /4 2.10E-04 2.00E-04 95.18%
3n/4 0 2n/4 2.10E-04 2.00E-04 95.18%
3n/4 0 3n/4 2.10E-04 2.00E-04 95.18%
3n/4 0 T 2.10E-04 2.00E-04 95.18%
3n/4 0 Sn/4 2.10E-04 2.00E-04 95.18%
3n/4 0 on/4 2.10E-04 2.00E-04 95.18%
3n/4 0 Tn/4 2.10E-04 2.00E-04 95.18%
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3n/4 /4 0 1.66E-04 1.62E-04 97.25%
3n/4 /4 /4 1.67E-04 1.62E-04 97.18%
3n/4 /4 2n/4 1.69E-04 1.64E-04 97.03%
3n/4 /4 3n/4 1.70E-04 1.65E-04 96.87%
3n/4 /4 T 1.71E-04 1.65E-04 96.80%
3n/4 /4 Sn/4 1.70E-04 1.65E-04 96.87%
3n/4 /4 on/4 1.69E-04 1.64E-04 97.03%
3n/4 /4 Tn/4 1.67E-04 1.62E-04 97.18%
3n/4 2n/4 0 8.58E-05 8.28E-05 96.55%
3n/4 2n/4 /4 8.62E-05 8.31E-05 96.45%
3n/4 2n/4 2n/4 8.70E-05 8.37E-05 96.21%
3n/4 2n/4 3n/4 8.77E-05 8.42E-05 95.96%
3n/4 2n/4 T 8.80E-05 8.43E-05 95.85%
3n/4 2n/4 Sn/4 8.77E-05 8.42E-05 95.96%
3n/4 2n/4 on/4 8.70E-05 8.37E-05 96.21%
3n/4 2n/4 Tn/4 8.62E-05 8.31E-05 96.45%
3n/4 3n/4 0 -3.69E-21 5.38E-16 /

3n/4 3n/4 /4 -2.60E-21 -1.37E-08 /

3n/4 3n/4 2n/4 -8.07E-21 -4.71E-08 /

3n/4 3n/4 3n/4 -1.60E-20 -8.05E-08 /

3n/4 3n/4 T -1.73E-20 -9.43E-08 /

3n/4 3n/4 Sn/4 -1.63E-20 -8.05E-08 /

3n/4 3n/4 on/4 -8.34E-21 -4.71E-08 /

3n/4 3n/4 Tn/4 -2.89E-21 -1.37E-08 /

3n/4 T 0 -4.70E-05 -4.04E-05 85.89%
3n/4 T /4 -4.70E-05 -4.04E-05 85.89%
3n/4 T 2n/4 -4.70E-05 -4.04E-05 85.89%
3n/4 T 3n/4 -4.70E-05 -4.04E-05 85.89%
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3n/4 T T -4.70E-05 -4.04E-05 85.89%
3n/4 T Sn/4 -4.70E-05 -4.04E-05 85.89%
3n/4 T on/4 -4.70E-05 -4.04E-05 85.89%
3n/4 T Tn/4 -4.70E-05 -4.04E-05 85.89%
T 0 0 2.49E-04 2.34E-04 94.10%
T 0 /4 2.49E-04 2.34E-04 94.10%
T 0 2n/4 2.49E-04 2.34E-04 94.10%
T 0 3n/4 2.49E-04 2.34E-04 94.10%
T 0 T 2.49E-04 2.34E-04 94.10%
T 0 Sn/4 2.49E-04 2.34E-04 94.10%
T 0 on/4 2.49E-04 2.34E-04 94.10%
T 0 Tn/4 2.49E-04 2.34E-04 94.10%
T /4 0 2.10E-04 2.00E-04 95.18%
T /4 /4 2.10E-04 2.00E-04 95.18%
T /4 2n/4 2.10E-04 2.00E-04 95.18%
T /4 3n/4 2.10E-04 2.00E-04 95.18%
T /4 T 2.10E-04 2.00E-04 95.18%
T /4 Sn/4 2.10E-04 2.00E-04 95.18%
T /4 on/4 2.10E-04 2.00E-04 95.18%
T /4 Tn/4 2.10E-04 2.00E-04 95.18%
T 2n/4 0 1.33E-04 1.23E-04 92.93%
T 2n/4 /4 1.33E-04 1.23E-04 92.93%
T 2n/4 2n/4 1.33E-04 1.23E-04 92.93%
T 2n/4 3n/4 1.33E-04 1.23E-04 92.93%
T 2n/4 T 1.33E-04 1.23E-04 92.93%
T 2n/4 Sn/4 1.33E-04 1.23E-04 92.93%
T 2n/4 on/4 1.33E-04 1.23E-04 92.93%
T 2n/4 Tn/4 1.33E-04 1.23E-04 92.93%
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3n/4 0 4.70E-05 4.04E-05 85.91%
3n/4 /4 4.70E-05 4.04E-05 85.91%
3n/4 2n/4 4.70E-05 4.04E-05 85.91%
3n/4 3n/4 4.70E-05 4.04E-05 85.91%
3n/4 T 4.70E-05 4.04E-05 85.91%
3n/4 Sn/4 4.70E-05 4.04E-05 85.91%
3n/4 on/4 4.70E-05 4.04E-05 85.91%
3n/4 Tn/4 4.70E-05 4.04E-05 85.91%

T 0 1.69E-21 -3.88E-55 /

T /4 1.69E-21 -2.44E-21 /

T 2n/4 1.69E-21 -3.30E-43 /

T 3n/4 1.69E-21 -2.44E-21 /

T T 1.69E-21 -3.70E-43 /

T Sn/4 1.69E-21 -2.44E-21 /

T on/4 1.69E-21 -3.30E-43 /

T Tn/4 1.69E-21 -2.44E-21 /
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Chapter 4 Exchange Repulsion Interaction Between Ab Initio

System and Effective Fragment Potential Fragments

Peng Xu and Mark S. Gordon

Abstract

Extensive formulation and code modification has been made to the previous implementation
of exchange repulsion Fock operator (V*?) and energy (E*®) between the ab initio (RHF)

system and effective fragment potential (EFP) fragments (abbreviated as QM-EFP) to allow
the presence of multiple EFP fragments. The fully analytic gradient of the QM-EFP E*® has

been derived and implemented.

I. Introduction

The effective fragment potential method (EFP)' has been developed as a quantum-
mechanics-based model potential to yield accurate (MP2 quality and CCSD(T) quality in
some cases [ref]) intermolecular interaction energies at very low computational cost. The
EFP method decomposes the intermolecular interaction into five components: Coulomb,
polarization, dispersion, exchange repulsion and charge transfer. Depending on how these
interaction terms are described, namely, the last three terms, there are two versions of EFP,
EFP1 and EFP2. EFP1 is specifically designed for water by having a repulsive term fitted to
either the RHF or DFT water dimer potential to account for some of the effect of the last

three interactions mentioned above. The RHF-fitted and DFT-fitted repulsive potentials can
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account for none and some dynamic correlation, respectively. The fitted repulsive potential
severely limits the application of EFP because an expensive fitting process has to be
performed for every new molecular species. EFP2 is therefore developed with the
motivation of having explicit expressions for all of the interaction terms without any fitted
parameters. Then, an EFP2 potential can be generated for any (closed-shell) molecular

species. Hence EFP2 is also referred to as the general effective fragment potential method.

Currently only EFP1 has been fully interfaced with ab initio methods so that one can have
the chemically important region (e.g., a chemical reaction site) described by ab initio
methods and the spectator region by rigid EFP fragments. The QM-EFP interaction terms
are formulated differently from that between EFP potentials (EFP-EFP). For EFP2, QM-
EFP Coulomb, polarization and dispersion interactions and their corresponding gradients
have been developed and implemented into the ab initio quantum chemistry package

GAMESS?.

The Pauli exclusion principle gives rise to the exchange repulsion interaction
between electrons of like spin at short range. Exchange repulsion is a purely quantum-
mechanical effect that does not have a simple classical analogue. It accounts for part of the
rapid increase in interaction energy at short-range. Two approaches for deriving the
exchange repulsion interaction have been developed over the years. One is to regard the
exchange repulsion as the exchange part of the first-order energy correction in the short-
range intermolecular perturbation theory through a density matrix formalism.* The other
LCAO-MO type approach due to Froman and Lowdin does not rely on perturbation theory.
The interaction energy is the difference between the expectation value of the total

Hamiltonian and the energy of the non-interaction constituting molecules. Jensen and
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Gordon developed a formula for E*®, initially using density matrix formalism.” The other
approach leads to the same exchange repulsion formula.® A fully analytic EFP-EFP
exchange repulsion gradient was subsequently.”® QM-EFP E*® is developed together with
the exchange repulsion Fock operator VX*.° QM-EFP E*® and V** have been implemented
in GAMESS.”

In a previous work, the QM-EFP E*® implementation was limited to one EFP
fragment. In the present work, extensive code modifications were accomplished to enable
the use of multiple EFP fragments. The fully analytic QM-EFP E*® gradients are presented
in Section II. The code modification and testing results are briefly discussed in Section III.

Section IV describes the implementation of the QM-EFP E*® gradient. Section V concludes.
II. Theory
(A) Fock Operator and Energy Expressions

The QM-EFP exchange repulsion energy E** is’

XR _ _222(11 | l-j)SGO

i€A jeB
23S, 2(V + G+ ZFfS”} 1)
icA jeB L leB
2 35, 35, (B + VI -vi)+s, [ = ]]
icA jeB _keA IeA jI keA

In Eq. (1) 1 and k refer to the MOs of the ab initio molecule A; j and | refer to the MOs of

EFP fragment B. (ij|ij) is an electron repulsion integral, SGO refers to the spherical

Gaussian approximation'”. S, 1s the QM-EFP overlap integral. F and ij are the Fock
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matrices of the ab initio and the EFP molecules, respectively. V”A is the one-electron

nuclear attraction term from the molecule A. V; is the one-electron potential due to

the EFP MO j. The attraction between the electrons of the EFP fragments and nuclei of

Atom

the ab initio molecules is modeled classically as 2
IeA jI

I

. The two-electron integrals

involving EFP MOs is defined as: G} =2J; — K = > [ 2(ij | kk) — (ik | jk)].

keA

The exchange repulsion Fock operator V** is obtained by taking the variational

derivative with respect to the ab initio orbitals™’.

Vol = =2 (mj i)™

jeB

_%ZSW [2(&/; +G} )+ Zf«;fs,.,}— %Zs{z(vjj +G )+ ZFme,}

jeB leB jeB leB

-3 > S, [4 (ki 1 mi)~(km i)~ (ki1 jm)]

keA jeB
' Az A (2)

+ZSW[2Sk,-(E;‘ VI V)t [Z Lt 22%}}

jeB keA U Rj] k

+3.8, {2 Sy (EL+VED? =V, )} +23 ) sV

jeB  Lkea keA jeB
+12223kj5nj[4(nk|im)—(nm|ik)—(ni|mk)]

2neAkeAjeB

VR can be separated into one-electron and two-electron terms, A and G**, respectively,

so that E¥ = [21" + G;*]. The one- and two-electron terms explicitly refer to the ab

icA

initio orbitals. Now consider the #** part of V*¥,
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' = —z mj | ij) SGO

jeB

jEB leB jEB leB
Z,
%[ 52 1
JEB Jl
So, the sum over the diagonal terms gives
> on® =23 (ijli)"
icA icA jeB
-2 —ZZSU [2 + Y F)S, } 2 —EZSU [2 ZFBSi,}
IEA jeB leB zeA jEB leB
-Z,
235|532
i€eA jeB yi

S (1) 2225{2\/; - ZFBS,,}r 222511[ éf[zjf_zeil J]

icA jeB icA jeB leB icA jeB

(4)

Now, consider the two-electron part, G, of V**:

G =— ZSW (2GA)——ZSU (2G5 ) -2 X8, [4(kjt mi)—(km 1 ji) = (ki1 jm)]

JGB /eB keA jeB
+ 2.5 {Z Sy (R + Vi = vy )} + 25 [Z S (Foic+ V™" ank)}
jeB keA jeB keA (5)
+3.S,.5, [22 Vi j +2) > SV
jeB keA jeB
+— 222%%[4 (nklim)— nmlik)—(nilmk)]
neA keA jeB

Summing over the diagonal terms gives:
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Y6 =- 2250(22[2 ij | kk) - zkljk]]——ZZSu[22[2 ij | kk) - zkljk)])

ieA zeA jeB keA i€cA jeB keA
—222&[4 kjlii)—(kil ji)— (kilji)]
icA keA jeB
TS| B e -vi)es (23
i€A jeB keA keA
DIRIPICREEEAII R L
i€A jeB keA i€A keA jeB

+— ZZZZS“SWH (nk Vi) — (nilik)— (nilik)

zeA neAkeA jeB

=—225,;,-[22[2(zj|kk)—(ikljk)]]—ZZZSM[Z(kfIii)—(kiIﬁ)]

i€A jeB keA i€A keA jeB
a3 35| B, (v )|+ ST 250 [+ 2 T S siv
icA jeB keA icA jeB keA icA keA jeB

+22225@ m|:2 nklzz (nilik)]

icAneAkeA jeB

E —2225,,(2G;)+2ZZS,,-[ZSM(F,? +V Vii)}

icA jeB i€cA jeB keA
+Y YS! [22%’;} 2 Y NSV
i€A jeB keA i€A keA jeB

+2. 33> 5,8, [ 2(ik 1 nn) - (in | nk) ]

icAneAkeA jeB

(6)

(B) Exchange Repulsion Gradients

In the derivation below, j and 1 denote EFP MOs, i, k, m and n denote ab initio MOs.
Atomic orbitals are denoted by Greek letters. The atoms of the ab initio molecule and the
EFP fragments are denoted by a and b, respectively.

Derivatives with respect to ab initio atom centers

The derivative of Eq. (1) with respect to an ab initio atom center, (a,1s
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A
28, (Rl +V - Viz>+sl-,-(2;
k 1

A0S, .
)) a—qi’](f}hv,f”ﬁ—v,z)

oF, oV 9V
+
dq dq, dq,

a

Sy

J

L+
M-

(7)

where q, is the Cartesian coordinate of atom a of the ab initio molecule A. The following

derivatives are required to evaluate Eq. (7):

A1 IS, V' G aE v v & ) -z,

ij
oq dq,” dq, 9dq, dq,  9dq,  9q, “T'9q, R,

a

a a a

The derivation of the derivative of the overlap integral is shown here as an example to

illustrate the key steps. The details of the full derivation can be found in the Appendix.

aq _a_zzcut vj ,LL|V

. 94,05
=Y Co(ulj +EC,1,(M j)+Y.c(itv)+>.C,,(i1ve)
Z ' ' (8)
ZZ Z AUIJ +2Cut('u lJ)

Cyi(u1j)+S;

Il
EM> .
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The last two terms in the second equality of Eq. (8) equal zero because EFP MOs are frozen

and the EFP AOs are not functions of the ab initio coordinates. Note that S;‘ is not a

A
shorthand notation for 95, /dg, , rather S = C,, ( ully ) . To avoid solving the time-
u

consuming coupled perturbed Hartree-Fock equations for C*, Eq. (8) is rewritten in terms of

orbital response terms

s, &
% —L=3Ci(ulj)+8; = EZCM o (ulj)+s;
’ 1#A B A B
=3 > (vs +Us)s,, +2.2.5; (9)
m L J
A B 1 . .
m

The last step of Eq. (9) uses the fact that U*, + U¢ =—§° !

Carrying out the same procedures as above for all the derivative terms, the derivative of EX®

with respect to the ab initio atom center becomes
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aEXR A B a(l] | l.j)SGO
= _222—

aq, z
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A B A B A B
—2225,; (2v/ +2G62)-2).3's, (2&/;“ +2G) ) 43 Y S;FLS,
[ J i J j.l

4iisz mj (F;I? +V1kEFPB_Vin)_2i2S:uSm/S [i +22VkiJ
k, 1 J'

.

k

ik.m j im j
A B ) A B A _7
D AR X0 D
ik i I JI
—Z
2iiSUSkj (EZ + ‘/ikEFP,Ba - ‘/t/{{ )+ ziisj !(I(e—a) ZsakVn{k + 2i‘/kf ]
i,k i Jj ja k.m k

+
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+

233,59 [4(i7 1 mk)— (im | k)~ (ik 1 )]

i3
13

i,k,m,n

AP TR [4(ikImn)—(imlkn)—(inlkm)]

i~ ki~ mn

(10)

Derivatives with respect to EFP centers

The derivative with respect to an EFP center, that is, center of mass of an EFP fragment, is

first expressed as,
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%y (11
S Is )
A
Yy -v)s [a—f (i = 22@
qp i
59—z, &Vl
ST

T s (aﬁhav,f”’ﬁ_avﬂf]”
|k & 0, 0q, dq, ! qs Rﬂ g,

Sy (EL+VITP—Vi)+s

When an EFP fragment translates, all of its AO centers and MOs translate in the same way.
Because EFP fragments are rigid the MO coefficients are constant. Hence the translational
derivatives of MO coefficients are zero. The overall translation of an EFP fragment can be
decomposed into the individual atomic translation in A.*"

The derivative of the overlap integral yields

ChC,Su +CuChS,, +C,C, (1 1V)+C,C, (11V)

i~ v uv ui v uv ui=vj ui=vj

(12)
ChCySu+CC,, (V")

i v v Hivj

The second term in the first equality vanishes because EFP MOs are frozen and the third
term disappears because an AO of an ab initio molecule is not a function of the coordinates
of fragment B. The derivative of the ab initio MO coefficient can be rewritten in terms of

the orbital response terms:

- A B B B B
—U=Z;UZ[SW+;(H]) 22 SfmSmj+;(in”):;Sg (13)

m b
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where S[’j’. = (i I jb) and S”, is zero because the AOs of the ab initio molecule do not depend

on the EFP coordinates.

The derivative of E*® with respect to the EFP centers becomes:

aEXR A B a(l] I lj)SGO
RN e T
P i 4

A B avEFP,B A B
R |—|k] 33
i j qB q J

J

(14)

lll. Code Modification and Testing

The previous implementation of QM-EFP E*® was unable to deal with multiple EFP
fragments. As an example, water trimer is shown in Table 1. The notation H,O-1-23 means
that the first water molecule in the input file is treated by the RHF method and the second
and third water molecules are treated as EFP fragments. One can see that when two EFP
fragments are reversed in the input file, exactly the same EX® are expected but distinctly
different EX®s are obtained. In addition, the EX"s obtained by choosing different water
molecules as ab initio are expected to be very close to each other but very different results
are observed.

The basis functions used for EFP fragments are also Gaussian functions, not
different from the ab initio counterpart and therefore the underlying algorithms for

computing the various matrix elements between an ab initio molecule and an EFP fragment
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are the same as in the usual ab initio code. However, due to the fragmentation nature of
EFP, the EFP basis functions are organized differently. As a concrete example, the
exponents for the Gaussian basis functions for the ab initio system are stored as a one-
dimensional array, while its EFP counterpart is a two-dimensional array with the second
dimension being the maximum number of different EFP potentials.

Sufficient memory allocation and correct indexing for EFP fragments are the two
key considerations in the code modification. An EFP-related matrix typically has one index
related to counting EFP fragments. To store the EFP-related matrices, one can choose
between generating and storing all fragment matrices at once or a single fragment at a time.
For example, the overlap matrix between the ab initio molecule and EFP fragments, S;;, with
i and j being ab initio and EFP MO indices, respectively, can be generated and stored once
for all the fragments or for one fragment at a time. The key difference between the two
approaches is the memory requirement. The former approach requires a memory allocation
of (# MOs of ab initio molecule x # MOs of all EFP fragments) whereas the latter only
needs (# MOs of ab initio molecule x # MOs of the largest EFP fragment). Since the S
matrix is only an intermediate quantity for computing the VX and E*® it is more efficient
to use the latter approach. To use the latter approach, the computation and utilization of the
S matrix must be in the same loop over the EFP fragments. There are, however, cases for
which one must use the former approach. For example, the coefficient matrix that
transforms all EFP AOs to MOs, PROVEQC, is stored in a dictionary file and retrieved once
at the beginning of the calculation. It is necessary to allocate enough memory for it and also
very important to be able to ‘jump’ to the right fragment. Figure 1 is a pictorial

representation of PROVEC matrix, where MXBF is the maximum number of basis
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functions/AOs of EFP and NTMO is the total number of MOs of all the fragments. The way
to ‘jump’ to the right fragment block is illustrated in Figure 2. The counter JIMO is
initialized before looping over the EFP fragments and is incremented by the number of MOs
of the previous fragment at the end of each iteration. This way, JMO will be the right
number for the next fragment.

After extensive code modification (see Appendix) the same water trimer systems
were redone and the expected results were observed (Table 1): changes in the order in the
input file do not alter the E*® and very similar EX®s are obtained when different water

molecules are treated by the ab initio method.

Various trimer systems and water clusters (H ZO)H ,n=3-6,16 were tested and

compared to benchmarking exchange repulsion energies calculated by the reduced
variational space (RVS) method. The 16-water cluster benchmarking result was generated
by an all-EFP calculation. All of the structures were optimized with RHF/6-31+G(d,p). The
EFP potentials were generated with the 6-311++G(3df,2p) basis set. Each molecule in the
clusters was in turn treated as an ab initio region with the RHF/6-311++G(3df,2p) basis set.
For example, a 3-water cluster has three combinations: H,O-1-23, H,O-2-13 and H,0-3-12.
The maximum and minimum errors compared to the RVS E*® are reported in Table 2. Note
that the E® of the system is the sum of all the pair-wise QM-EFP and EFP-EFP EX}. For
small clusters (trimer, tetramer and pentamer), even the largest errors are within ~ 4.0
kcal/mol. The medium-sized water clusters showed larger values for the maximum errors
but the minimum errors remain comparable with the small clusters. The different
approximations used for deriving QM-EFP and EFP-EFP exchange repulsion lead to

different expressions and consequently different EXX.
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IV. Implementation of Gradient

The general outline of the QM-EFP exchange repulsion gradient code is to have one
driver subroutine (QMEFGXRDR) to allocate the dynamic memory for relevant quantities
and to call a subroutine called QMEFGXR that calculates the gradient contributions. All of
the quantities required for the gradient are computed in QMEFGXR by calling various
subroutines and all of the terms are then assembled according to Eqs (10) and (14).

For the quantities for which both indices are for the ab initio region, the derivative
codes are available. Only a small modification is done to make the relevant derivative
matrices available in QMEFGXR subroutine. For the quantities that involve EFP indices,

new subroutines were written.

V. Conclusion and Future work

The QM-EFP exchange repulsion Fock operator and energy codes were extensively
modified. The current implementation allows multiple EFP fragments. For hetero-dimer
systems, a modified Fock operator generates much improved exchange repulsion energies.
The results from the QM-EFP exchange repulsion and RVS calculations are in good
agreement, with minimal errors typically less than 5 kcal/mol. The derivatives of QM-EFP
exchange repulsion energy with respect to ab initio atom centers and with respect to EFP

centers have been implemented. Testing is in progress.
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[< NTMO >|

| €#MO fragl—> |€&  #MOfrag2 = |

Fragment1l  Fragment2 Fragment3.. Fragment
n

Figure 1. A pictorial representation of PROVEC matrix. Each block represents one EFP

fragment.

JIMO=1
DO MJ = 1,NFRG
Call STINT
Call DGEMM
(..PROVEC(1,JMO)...)
JMO = JMO+NORB(MJ)
ENDDO

Figure 2. An illustration of the key steps in the code to ‘jump’ to the correct EFP index.
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Table 1 The QM-EFP E*® (in Hartree) of water trimer calculated before and after code

modification. H,O-1-23 means that the 1% water is treated ab initio and the 2" and 3™ water

molecules are EFP fragments in that order in the input file.

Water trimer QM-EFP E** QM-EFP E™*
(before) (after)
H,0-1-23 0.237570729 0.018545921
H,0-1-32 0.023720728 0.018545921
H,0-2-13 0.060030457 0.020656253
H,0-2-31 0.052989663 0.020656253
H,0-3-12 0.103773878 0.018469143
H,0-3-21 1.120385809 0.018469143

Table 2. Exchange repulsion energies (kcal/mol) obtained from benchmark calculations and

smallest and largest errors for QM-EFP calculations. The second and the third columns

show the smallest and the largest deviations from the RVS interaction energies when

different molecules are treated ab initio. For all systems except (H20O);6, the benchmark

results were obtained from the RVS analysis. The (H,O);¢ benchmark value is obtained

from an all-EFP2 calculation. All of the cluster structures were optimized with RHF/6-

31+G(d,p) and the EFP potentials were generated with the 6-311++G(3df,2p) basis set.

Exchange Repulsion Benchmark QM-EFP error QM-EFP error
(kcal/mol) (min) (max)
(H0); 15.0 1.6 2.0
(MeOH);3 13.5 0.0 2.7
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((CH3),CO)3 5.6 -1.2 -1.4
(CH3CN)3 5.1 -0.8 -1.2
(CH2Cly)s 1.1 -0.1 1.3

3DMSO 10.1 -2.0 Not converged
(H20)4 29.3 -0.9 -1.9
(H20)s 39.1 24 3.8
(H,O)¢-bag 42.5 1.1 -7.2

(H,O)¢-boat 433 2.4 -6.8

(H20)s-book 43.8 0.0 -4.0

(H20)6-cage 40.9 0.8 -2.3

(H20)6-cyclic 45.0 -3.2 -8.8

(H20)6-prism 39.8 0.3 1.5

(H20)16 118.3 0.3 52
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Appendix

(A) Derivation of gradients of QM-EFP | O

The QM-EFP exchange repulsion energy expression is
A B
=23 Y (i)
i
A B B
_222SU ( + GA) 2 Jjl Sll:| (Al)
i

A B A A
12 DS, DSy (B + Vi =)+ S ( ]]
i

k 1 j

The derivative of Eq. (A1) with respect to an ab initio atom center, (a, 1S

aEXR A B a(l:] I lj)SGO
- 233 2D
aqa i j aqa

A

A
28y (Fe+ Ve - V,z)+Sl-,-(Z_R
1

S EUREHB ERS
j z

(A2)

where q, is the Cartesian coordinate of atom a of the ab initio molecule A. The following

derivatives are required to evaluate Eq. (A2):

Ajli*® 98, V' 9G; 9F! VP 9Vl & 0 -z
dq dqg, dq, 9dq, Iq dq dq, “T'9q, R,

b 2

a a a a a a a
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The derivative of —Zi/R; is trivial, use the x-coordinate of q, as an example

, IR _ )3[(X.f-xa)2+(yj—yu)2+(Zf‘zu)T/2

ox,
-2 =5 [l =)+l ) =2 ] 2l =) (83)

Where I is the nucleus of the molecule A and only the terms with I=a survive.

B

aSij _
dg, 9q,

ii% C,;(ulv)

\4

Q)

B B

co(ulj +ZC,,,(M 1j)+Y.ce(itv)+>.C,,(i1ve)

v v

Z,-(ulj)+ZCm(u“ 1)

(A4)

Il
“:M:> “S:M:u tM>

Ci(ulj)+S;

The last two terms in the second equality are equal to zero because EFP MOs are frozen and

the EFP AQs are not a function of the ab initio coordinates. Note that SZ 1s not a shorthand

A
notation for dS; /dq, , rather S = ZC i ( u'lj ) . To avoid solving the time-consuming
u

coupled perturbed Hartree-Fock equations for C*, Eq. (A4) is rewritten in terms of orbital

response terms



(AS)

Il
M=
M=
/T\\v
N | —
%)

ga

9%)

3

+

1%

= Q
~_

WSA

The last step of Eq. (A5) uses the fact that U, + U, =-S7. 11

A

The derivative of the nuclear-electron attraction term, — , involves the derivative
q,

of the ab initio MO and the derivative of the operator.

‘ @

255

iiii%%qu>

j v

A B
22 CuC, (ulv [v)+ €
u

‘]a

I
"M> *;‘M> -M:> )

V) + CuCy (ulV V)

(A6)

M= - M=

1 A B
s e S+ v 1)
1 . 2 v

=2 ES"”V'”’+Z’; f

A“ .
where V" = <z“

D+ v L)

The derivative of the two-electron matrix element involving an EFP MO looks like
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A B 9G4 0 A& &
SN L= [2(ij 1 kk)—(ik 1 jk)]
T T 9q, 9q, T T4
a A B A A 1 l
— Y P33 €, CuCa| 2w 1A S v )= 5 (1)
aqa i j ko uvi 2 2
1 1
CLCCa| 2 W)= a1 2) - Sk 1v3)|
_ 1 1
#C,CC | 2 VA= (1 2) - 3 (A1)
i 1 1
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i ny
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Where iiG;‘ = iig[z(ﬂj ki) — (K 1 ji)+ 4 (i 1 k*k) = (ik“ 1 ji) = (ik 1 jk*) ]

1

The derivative of the Fock matrix of molecule A can be broken down to one- and

two-electron contributions.

A A A A
zaa ik ZZ( ahik + aGik ) (AS)

A A
=>Y.ciCh,, +C,Coh,, +C,C,h,

Hi~"vk Hi~"vk

ik uv
A A A A
=33 > (CoUnCoiy, + CCo Ul )+ X (A9)
ik u,v m ik
: ‘LL 1 1 a : a
- %—Esmihmk =5 Suuhu + %h,.k
A A
= 2 _SZu'hmk + zhtcllc
ik,m i,k

Both i and k run over the occupied orbitals of the ab initio molecule and the first two terms

in the second last equality are equivalent.
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L 0G,
gaq
—iiZC C,.C,,C, [ ( vlla)—l( llvo)—l( O'|V),):|
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A [2(1’“/{ I nn) - (i“n I kn) + 2(ik“ I nn) - (in | k“n)]

A
here 3,G;\" =
where z ik 2 +4(ik|n”n)—(i”a Ikn)—(inlkna)

ik ik.n

Now combine Eq. (A9) and (A10)

A A

A
z%i_i S,‘j”hmk+ih‘; is;;,G;jk D [%S;ﬂﬂ(ikImn)—(imlkn)—(inIkm)]}+ZGi’,f“
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A A A l
= 2 S F5 + ZE,f 2 [ES:"’ [4(ik | mn)— (im | kn) - (in| km)]}
ik ik,m,n
(A11)
\/ EFP.B v/
The operators of both é" and 3 % are functions of EFP fragment B hence the

q. 4.

derivatives come from the contributions of derivatives of MOs. These two terms are derived

similarly. Here only the derivation for ? is given.
q(l
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Now substitute Egs. (A3), (A5-7) and (A11-13) back into Eq. (A2) and look at them term by

term,
as, B
233 aqa][ \g +G;)+2F55”}
ARt 1 a a A B
2222(—55msmj+5 ][ (v +G))+ ZF]S,.Z}
i J m
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(A15)
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Now adding up Egs. (A14-18)
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Rearrange the terms and combine the terms of the same color that are equivalent or

identical.
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In the last equality of Eq. (A21), the first two terms just involve the derivative of the MO

coefficients and can be easily obtained using the response coefficient matrix U.

A B AO€A . 2 2aﬂ ‘av‘ 1 2a‘u 'aVl 5
222 2 Gl o Swswﬂ{z[ﬁ’%
W uj vi wi vj
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Since m and i both run over the occupied orbitals of the ab initio molecule A, and p and v
both run over the AO basis of molecule A. Eqs (A22) and (A23) are equivalent and can be

combined.

The last term of Eq. (A21) is much more involved algebraically with repeated use of

the chain rule and product rule.
A B AOcA o) 20 o 1{ 2a, .0,

-2 c,C WV g S F|—| — YR
222 uCo 8%{\/_ o, +a, " 0[4[0¢M+a” H

i 2a (Xv. 1 za av ]
91 2% g g g | L] 2% e (A24)
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Now,
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The expression in blue will be used later.

2
Recall that = R_Z In ‘S )
1j

, both R and S have functional dependence on the

coordinates of nuclear a of the ab initio molecule A.

do,, 9 21n\s

l

M
dq" oq"* RZ].
Rz'a(zmsuf‘)_m g a[(xu _xj)z +(yn _yj)2 +(Zu _Zj)z} (A26)
" aq“ n‘ !‘J‘ aqa
o

Take q"=x" for concreteness,
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o[22l o )5
Hi_ HJ
o, - (A27)

uj

where the delta function equals 1 if the basis function p is centered at atom a in the molecule
A and equals 0 otherwise. Eq. (A27) can then be substituted back into Eq. (A25).

The F, function is defined as"’

F(r)=r"]" & dy (A28)

1/2
Fo(t):—(z) erf (") (A29)
The derivative of the error function is

d 2
d—Zerf(z) == (A30)

1
Let z=1¢"?, then dz/dt = Et_m

d 1 d(x\"” ey (7w rd 12
Z%(I)ZE{E(TJ :Ierf(t )+5(7) |:E€I’f(t )i|

Y I R PRV ny, (7 . d dz

_2( 2)71: t erf(t )+2(t) [dzerf(z)dt}

11l 1(=)" 12 1(z)"? 2 P
—‘5;{5(7] e ﬂ*&(?) WAy

(A31)

200, .00

1 ; C . . .
Now let ¢ = —(#Rﬁvj =1(g,), which is a function of the nuclear coordinates itself.
4l a,+o,



138

d dF, ot
_F t :_0_
2, @)= 3,
_dh 9 1) 2000 g (A32)
dt  dq, 4\ o+, "

2
_ 14k [Rz J ( 20,0t )_'_ 20,00, aRuv:l
uv
4 dt Jdg, \ o, ta,;, | a,+a, dq,

Jd | 2o, : ) .
—+L | has been derived in Eq. (25) (shown in blue).

a_% auj + an
orR:, 9
axi za_xa[(xu —xv)z +( ‘yv)z +(z, ‘ZVH (A33)
= Z(xll — xv)éac

where J,, =1 if the atom c, where the basis function i resides, coincides with the atom a.

All the terms that are needed for evaluating Eq. (24) are derived.

(B) Analytic QM-EFP exchange repulsion gradient with respect to EFP centers

The derivative with respect to an EFP center, that is, the center of mass of an EFP fragment.

aEXR A B a(l] | l-j)SGO
TR D Y
qp i qp

[aFfJ ]
s, (A34)
aq B

dq, dq,  Oq,
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Forces

When an EFP fragment translates, all of its AO centers and MOs translate in the
same way. Because EFP fragments are rigid the MO coefficients are constant. Hence the
translational derivatives of MO coefficients are zero. The overall translation of an EFP
fragment can be decomposed into the individual atomic translations in A.*'?

The derivative of the overlap integral yields

Ch.C, S +CuClS,, +C,C (1 1v)+CC, (n1V)

ui=viPuy ui=viPuy Hi=vj ui=vj

(A35)
Ch.CySuy+CC, (V")

piviPuy WiV

where b stands for the atoms of fragment B. The second term in the first equality vanishes
because EFP MOs are frozen, and the third term disappears because the AO of ab initio
molecule is not a function of coordinates of fragment B. The derivative of the ab initio MO

coefficient can be rewritten in terms of the orbital response terms:

-J:ii%%+iWH ZZ—Q&ﬁiwﬁﬁig (A36)
m b b b b

m

where S[’j’. = (i I jb) and S”.equals to zero because AOs of the ab initio molecule do not

depend on EFP coordinates.

The operator of V”A is the potential due to the ab initio molecule hence do not

contribute to the derivative with respect to EFP coordinates,

A

%) S

an

And
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B A B

L= 3 2(i 1kk) - k1K) [= Y. Gy (A38)
bk b

When the EFP fragment B translates or rotates about its center of mass, the Fock matrix F

is not changing.

B B B
I _ > i g (A39)
dq, 5 dq,

A B A
o _ Za =0 (A40)
b

R is the distance between EFP jth LMO centroid and Ith nuclear coordinate of molecule A.

Since an EFP fragment is rigid, the translational movements of the centroids and the center

of mass are the same, i.e. dg,/dg, =1. Use the x-coordinate as a concrete example,

_z [%}[%[(xj —x ) (v, -w) +(z- ZI)ZTQJ

7, (_ljz(xj - x,)[(xj —x, ) (=0 +(z- z,)z} (A41)

2

Ai Z]_
z,"ax R,

Similarly the operator V/ =—1/ r; has implicit dependence on the center of mass of the EFP

fragment.
Vj
G121 =-{ 32

For operator V*"* which is the electrostatic potential expressed as a multipole

B

%16 = 5 (a2

expansion, there is a functional dependence on the nuclear coordinates of B.
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aVEFP,B ' aVEFP,B ' aVEFP,B
=i k)= (il | k) (A43)
g, 0q, bes 0q,

Now substituting various terms back into Eq. (A34) yields
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where the terms of the same color are equivalent and combined.
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To evaluate Eq. (A46) the derivative of a needs to be calculated.

da,; _ ) 2ln‘SM.‘
9" 9" R}
Rz'a(Zhl‘Suf‘)_zm‘S l‘a[(x#—xj)2+(y#—yj)2+(zu—zj)2} (A47)
_ Hy an wj an
R4

Hj

Take q°=x", the x-coordinate of the center of mass of EFP fragment B for concreteness,

. (2S55j)_ 2ln‘Sm‘( o, ja[(xu -x) + —'y].)2 +(z, —Zjﬂ

Jda,; _ = i ox,, ox’
ox” Rﬁj (A48)
528"
Rﬁj{; S: j+ 21n\sw.\[2(xﬂ - x.,.)]

4
Rﬂj

ox;
Note that —~ =1 because EFP fragments are rigid. Next,

xB
9 | L 2% e ||| 2 dhl) (r) o (A49)
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=0 since R,y 1s only a function of the nuclear coordinates of the ab initio molecule. So
xB
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(B) Code Modification of QM-EFP exchange repulsion interaction

Two-electron integrals

1 dF,

, 0

2“#1“"]

4 dr

F

" BQB

|

(AS52)

Currently, the computation of two-electron integrals (TEI) involved in QM-EFP

exchange repulsion is done conventionally, i.e. stored on disk and retrieved later when

needed. The storage of TEI is accomplished by two subroutines: QOUTEFP and

OC#j+OC

FINAL EFP. The TEI are sequentially stored onto the records (storage unit), each of which

holds NINTMX integrals. This is handled by the subroutine QOQUTEFP. For each fragment,

the last record may be only partially filled and is handled by the subroutine FINAL EFP. In

7
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the current implementation, after filling the partial record, the record index NREC and the
integral index ICOUNT is reset by the subroutine FINAL EFP so that the QM-EFP TEI of
the next fragment will be stored at the beginning of a new record. (Fig A1) The previous
implementation did not separate the storage of TEI of different fragments by resetting the
counters, which caused confusion when retrieving those TEI.

Besides the exchange integral (mjlij) or (ij|ij) that are approximated by SGO
approximations, two types of TEIs appear in the QM-EFP exchange repulsion Fock
operator. Type I has all four MOs belonging to the ab initio molecule A, e.g. (nk|im); type 11
has one EFP MO and three ab initio MOs, e.g. (kjjmi) with j being the EFP MO.

Compare the usual ab initio 2-electron integrals with type I term. Denote capital
letters for AO indices and small letters for MO indices.

ab initio 2-electron integrals in AO basis:

G, :Azjéj‘pﬁ [(IJIKL)—%(IKIJL)—%(ILIJK)} (53)
Type I term:

%giisnisﬁ [ 4(nk \mi)—(in | km) — (nm | ki) |

= 2$$A§M§A§M§A(z ]C C C,’,fC,{(IJ IKL)—%(LI | JK)—%(IK | JL)}

1
AOeA AO eAAOeAAOeA( A A

=2 Y ¥ ¥ ZZCHC’(SZ) ]C,’ECI.L[(IJIKL)—%(LIIJK)—%(IKIJL)}

L n
AOcA AOcA {AOEA AO€A

Y > (s7) [[JIKL)—%(LIIJK)—%(IKIJL)}}

(54)
One can see that the term in the curly parentheses resembles the ab initio 2-electron

integrals with a density-like S* matrix. Thus the code can be simply modified by taking the
g y
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conventional code and replacing the density matrix with the S* matrix. It is important to
realize that although both indices of the S* matrix (I and J) is on molecule A, it is derived
from a product of two overlap matrices by summing over the index j, which counts MOs on
the EFP fragment. Therefore the S* matrix is different for different fragments. The type I
term is then obtained by the appropriate transformation and multiplied by a factor two.

Type II terms:

B A
—ZS,WG,;* = —szj;[Z(ij | kk) = (ik | jk) ]
J
B A AO€AAOeB AOeA AOcA

==285, 20 > > > Cl.’ijC,kaL{Z(IJIKL)—%(IKIJL)—%(ILIJK)}

j koI J K

:_AOZEZAAOEGZBC [ZSW j]{Aoze:AAoiA(zc CLJ[ U|KL)—%(IK|JL)—%(IL|JK)}}

AOcA AO<B ){AOEA AO€A

=_2 2 2(;1( >N (DKL){ IJIKL)—%(IKIJL)—%(ILIJK)}}

(55)
In Eq. (55), the term in the curly parentheses is essentially the same as in the ab initio case

except that J is an AO on the EFP fragments.

3

Mm

S, [ 4(kj1mi)—(km! ji)—(kil jm)]

]1;‘1 B AOeA AOeB AO€A AO€A 1 1
=—4> 38 D Y, 2 Z C/C’ C,jfcf[ IJIKL)——(IKIJL)——(ILIJK)}

ko I J 4 4 (56)
AOeA AOeB AOeA ADeA A B
=—> >3y C,’;C,L[Z c/cls, J[ (J1KL)-(IK1JL)-(IL1JK)]

I J K L ko

AO€eA A

"2

Q

=M1

X ckct {AfAAfgs',, [4(1J1KL)—(IK | JL)—(IL| JK)]}

1 J

In Eq. (56) the transformed overlap matrix acts as the density matrix. The TEI involving one

EFP index only has permutation symmetry between two ab initio indices in the ket, i.e.
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(IJJKL)=(1J|LK). This permutation symmetry was not taken advantage of in the previous

implementation. The new implementation makes use of the permutation symmetry to give a
more efficient and cleaner code. It should be mentioned that in the above equation, S, is not

simply the overlap matrix between AOs. Rather, it is the matrix transformed from the MO

overlap matrix. To see this more clearly,

AO
Sy = <¢i|¢k> = 6ik = <z%,uc,ui
u

AO .
D xvcvk> e S0 =C'$*C=1

Therefore (C T)_1 =S$C and C™' = C'S*’ . Hence the AO overlap matrix can be back-

transformed from the MO overlap matrix by $*° = (CT)_1 s"oc = (SAOC)SMO (CTSAO) . By

comparison, the transformed S’ matrix is simply $*'° = C'S"°C .

Schwarz inequality screening

The computation and processing of TEI are time-consuming. Besides taking
advantage of the permutation symmetry, using Schwarz inequality to skip the computation
of TEI that contribute little to the final energy saves time, especially for the conventional
approach where I/O may add significant time cost. The Schwarz inequality implies that a

TEI such as (ij|kl) obeys the following relationship:
(ij1kl) < (Kl.j )1/2 (K,)" where K, =(ijlij) and K, = (kI Ikl). In the context of QM-EFP

TEI, j is EFP AO index and the other three indices are the ab initio AO indices. The
exchange integrals involving EFP are computed using the SGO approximation. Both the
EFP and ab initio basis functions are ordered in shells and consequently the integrals are

arranged in shell blocks. The largest exchange integral in each block is picked out and the
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/2.

quantity (Kij )1/2 (K,) " is formed and compared to a threshold value. If (Kij )1/2 (K, )”2 is

smaller than this threshold value the corresponding block of TEI (ij|kl) can be skipped. The
time saving due to the Schwarz inequality screening is demonstrated in Fig. A2. Fig. A2
plots the total CPU time saving, which is the difference in total CPU time with and without
Schwarz inequality screening, as a function of the number of EFP fragments for acetone
clusters and dichloromethane clusters. The cluster sizes range from 2 up to 5 molecules, one
of which is treated as ab initio molecule. The time saving grows linearly as the number of
EFP fragments increases. The exchange repulsion energies with and without screening are

the same.

Fragment # 1 Fragment # 2

Record1 Record2 Record3 Record4
rtial)

)

QOUTEFP FINAL_EFP QOUTEFP FINAL_EFP

Figure Al. a pictorial representation of the storage of QM-EFP two-electron integrals.
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-
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[
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Figure A2 the total CPU time saving for acetone and dichloromethane clusters ranging from

2 to 5 molecules.
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Chapter 5 Renormalized Coupled Cluster Approaches in the
Cluster-in-Molecule framework: Predicting vertical electron

binding energies of the anionic water clusters (H,0)

n

A paper submitted to The Journal of Physical Chemistry

Peng Xu and Mark S. Gordon

Abstract

Anionic water clusters are generally considered to be extremely challenging to model using
fragmentation approaches due to the diffuse nature of the excess electron distribution. The
local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach
combined with the completely renormalized CR-CC(2,3) method (abbreviated CIM/CR-
CC(2,3)) is shown to be a viable alternative for computing the vertical electron binding

energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter { set to 0.001, as a trade-

off between accuracy and computational cost, demonstrates the reliability of predicting the
VEBE, with an average percentage error of ~ 15%. The errors are predominantly from the
electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-
box type calculation with few threshold parameters to manipulate. The cluster sizes that can
be studied by high-level ab initio methods are significantly increased in comparison with

full CC calculations.
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I. Introduction

The hydrated electron, the simplest reducing agent, still captures intense interest in
the scientific community, even after its first experimental detection half a century ago.' The
hydrated electron plays a key role as an important intermediate in many physical, chemical
and biological processes such as in radiation chemistry and atmospheric chemistry.> Despite
persistent efforts to understand this seemingly simple species, the very nature of the

hydrated electron is still under debate. This is partly because of the ubiquitous presence of

the hydrated electron in diverse environments, in particular, in bulk (e, ) and in finite-sized

water clusters [(H 2O); ]. Finite-sized anionic water clusters, especially small water clusters

(n=2-6), provide an appealing starting point for understanding the hydrated electron because
one can study them with sophisticated electronic structure theory methods. Experiments
under well-controlled conditions can also be carried out for small anionic water clusters.””
However, the binding characteristics of the excess electron in bulk and in smaller water
clusters are generally different.'” The smaller water clusters tend to bind the excess electron
weakly, and often the excess electron density exceeds the size of the cluster. As the cluster
size gets larger, the binding becomes stronger and is expected to converge to the bulk
behavior.

Theoretical studies play an important role in unveiling both a dynamic and a
microscopically revealing picture of the hydrated electron, especially with regard to the
transition from finite-size water clusters to the bulk. Two approaches have primarily been
used to study the hydrated electron, static and statistical. The statistical approach employs

Monte Carlo (MC) or molecular dynamics (MD) simulation techniques to study the
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statistically averaged properties. A recent review by Turi and Rossky'' presents a nice
discussion of statistical methods. The inherent quantum nature of the excess electron means
that at least this excess electron must be treated with quantum mechanics. The static
approach focuses primarily on minima on the hydrated electron potential energy surface
(PES) with methods of varying complexity; for example, treating only one electron quantum
mechanically, such as the quantum Drude model developed by Jordan and coworkers'*'* or

a many-electron treatment using correlated ab initio methods. Density functional theory

(DFT) is also a popular approach although its success depends heavily on the choice of the

functional. Considering the rapidly increasing complexity of the (H 2O) PES with

increasing n, it is not clear that one functional will work equally well for all sizes and motifs

of (H 2O) . The present work focuses on the static approach.

It has been recognized that electron correlation is important in the binding of the

15-18

excess electron and that correlated methods such as second order perturbation theory

(MP2) or coupled cluster theory with singe, double, and perturbative triple excitations,
CCSD(T), should be used. Moreover the (H 2O); systems are sensitive to the choice of basis

set. In particular, diffuse functions have been demonstrated to be necessary to describe the

15,16,18

flexible and diffuse excess electron density. Taken together, these realizations severely

limit the size of the systems that can be studied by well correlated ab initio methods, given
that MP2 and CCSD(T) formally scale as N° and N, respectively, with N being the number

of basis functions. (H 2O);3 and (H 2O); are the largest clusters that have been studied to

date by MP2 and CCSD(T), respectively, with the 6-31(+,3+)G* basis set. In this basis set

each H atom has two additional s-type diffuse functions."” In the current study, MP2 and the
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completely renormalized coupled cluster method, CR-CC(2,3), aka CR-CCSD(T)y, are
employed, since the CR-CC(2,3) approach is at least as accurate as CCSD(T) and often
provides CCSDT quality results at a computational cost that is similar to that of CCSD(T)."
“Locality” is a relative concept. Although it is relatively diffuse, the excess electron
density is not completely delocalized (such as the electron ‘sea’ in metals), especially
viewed in the context of bulk water. It is possible to find water cluster motifs in which the
excess electron density is localized and to treat such a motif as one open-shell fragment and
rest of the system as closed-shell fragments. The natural parallelism of fragmentation
approaches reduces memory and CPU time costs, both of which are bottlenecks in
correlated electronic structure calculations. Furthermore, a multi-layer construction, i.e.,
different levels of theory for different layers (regions) of the system, has been implemented
for many fragmentation methods. In principle, the fragmentation approach should allow
much larger anionic water clusters to be examined by ab initio methods. In the present

2022 method,

work, one particular fragmentation approach, the cluster-in-molecule (CIM)

will be assessed in terms of the accuracy of vertical electron binding energies (VEBE).
The remainder of the paper is arranged as follows. The main idea of the single-

environment (SE) CIM is described briefly in Section II. Section III presents the

computational details. The results are reported and discussed in Section IV. Conclusions are

drawn in Section V.

I1. Methods

The central premise of fragmentation approaches is that chemical processes are local
phenomena. For fragmentation methods, it is crucial to have a sensible and reliable method

for fragmenting the system so that the locality is maintained. It is also desirable to have the
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fragment definitions as controlled and automated as possible. For the solvated electron the
excess electron density is relatively diffuse and spread over several water molecules and
may also extend beyond the atoms in a small cluster, rendering fragmentation difficult. The

CIM method provides a possible solution to this problem.

CIM is a linear scaling local correlation approach. The CIM method is based on the
premise that the total correlation energy of a system can be obtained as the sum of the
contributions from the occupied orthonormal LMOs (central LMOs) and their respective
occupied (environmental) and unoccupied localized orbital domains, since the correlation

contributions from spatially distant LMO pairs are expected to be negligible.***

In this work, the single-environment (SE) CIM method is used. The SE CIM coupled
cluster (CC) approach has been demonstrated to work well for weakly bound molecular
clusters, with subsystems that apparently do not vary with the nuclear geometry.”> The
construction of SE CIM subsystems is detailed in reference 22. Unlike most other
fragmentation methods whose fragmentation schemes are entirely atom-based, often with
distance cutoffs, the CIM method is LMO-based and the Fock matrix elements are used as a
key threshold parameter. This local correlation approach is ‘black box’ in the sense that one

does not require detailed prior knowledge of the system to know how to fragment it. This

feature is particularly useful for the diverse motifs of (H 2O) . However, the threshold

n

parameters do need to be adjusted from their default values for the (H 20) systems.

n
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ITI. Computational details

The water clusters examined in this work range from 2 to 20 water molecules

denoted as nw.* where n is the number of water molecules in the system and * is an index

for the particular isomer, either numerical or alphabetical. The structures of (H 2O); ,n=2-
7,14, 20, indicated by an alphabetical index, are obtained from the studies by Herbert et.
al.””'7. The water clusters 6w./ to 6w.5 were obtained from a study by Jordan and
coworkers.'* The 8-water clusters and the cluster /2w. were obtained from Monte Carlo
simulated annealing simulations conducted by the authors, followed by MP2/aug-cc-pVTZ

30 geometry optimization and verified to be minima by Hessian calculations.

Single point energy calculations were carried out for the clusters (H 20) obtained

n

1.°7'7 at the MP2 level of theory using three basis sets: 6-

from studies by Herbert et. a
31++G(d,p), 6-31++G(df,p) and 6-311++G(d,p). The energies of the neutral clusters with
the same geometries as the corresponding anions were also computed with these three basis
sets. In this study, the VEBE is defined as VEBE = E (anion cluster) — E (neutral cluster at
anionic structure). A negative VEBE indicates that the anion is at least metastable with
respect to the autodetachment of the excess electron. Since a finite basis set is used, a
positive VEBE is less conclusive, suggesting the anion is unstable relative to the neutral
cluster but the excess electron may be confined by an inadequate basis set. The clusters with
positive VEBE are not further investigated with CIM. By comparing VEBEs calculated

using the aforementioned three basis sets, 6-31++G(d,p) was chosen for the CR-CC(2,3) and

CIM calculations as a compromise between accuracy and computational cost. Due to the

high computational cost, the full CR-CC(2,3) calculations were only done for those (H 20)

n
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clusters with n < 7 that have a negative VEBE. For all clusters with negative VEBEs (Fig 1),

the VEBEs were also calculated using CIM/CR-CC(2,3)/6-31++G(d,p) with default

threshold settings.

There are three key threshold parameters in CIM that can alter the size of the
subsystems and consequently affect the binding energy and the computational efficiency.

Each occupied LMO ¢; is taken to be a “central” LMO. An occupied LMO ¢, is considered

to be an “environmental” LMO for a specific central LMO ¢, if the magnitude of the Fock

(o, f ‘q) j> , is greater than the threshold . So, the smaller the value of (,

matrix element,

the more environmental LMOs are included and the larger the subsystem is. The default
value of {'is 0.003. The central LMO ¢, and the associated environmental LMOs { ¢, } form
an occupied LMO domain {I}. It is possible that all of the occupied LMOs in one domain
are included in another larger domain. In that case the two domains {I} and {J} are
combined to form a composite domain {IJ}. The central LMOs of the larger domain {I1J}
now contain two central LMOs, ¢,and ¢;. The second threshold parameter is a Mulliken
population cutoft (ATMMLK). For each LMO ¢, all of the atoms in the entire system are
ranked in the order of decreasing Mulliken orbital populations in ¢,. A given LMO ¢, is
assigned to an atom if the Mulliken population on the atom in LMO ¢, exceeds
ATMMLK. The smaller ATMMLK is, the more atoms would be included in a subsystem.
The default value of ATMMLK is 0.15.** Considering the diffuse nature of the solvated

electron system, reducing the Mulliken charge cutoff may diminish the cost benefit of CIM.

So ATMMLK=0.15 is used in this study. Lastly, 1 is the threshold for selecting the

unoccupied LMOs that are associated with a subsystem. The subsystem unoccupied LMOs
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are selected from the set of unoccupied LMOs of the extended subsystem. The larger the

value of 17, the more unoccupied orbitals will be retained. The definition and construction of

the extended subsystem and the unoccupied LMOs is discussed in detail in Ref. 22. The

default value of 7 is set to 0.2. The values of { and 1 were chosen by predicting the
VEBE for several small clusters that have a broad range of VEBEs. { is chosen to be
0.001 while 1 remains at its default value. CIM/CR-CC(2,3) calculations were then
performed with the chosen set of parameters ({ = 0.001, ATMMLK = 0.15, 1= 0.2) for all

clusters that have negative VEBEs.

To quantify the charge distributions of the anionic and neutral clusters, atomic
charges were computed by fitting to the electrostatic potential at points that are selected
according to an algorithm due to Spackman.’' The differences in the atomic charges
between anionic and neutral clusters were computed. All of the calculations were performed

with the GAMESS electronic structure code.*>

IV. Results and Discussion

The MP2 VEBEs of water clusters (H 2O); ,n=2-7,14 and 20, were examined using
the three basis sets discussed in Section 3 (See Table 1) and compared with the previously
calculated MP2/6-31(1+,3+)G*">"'7 VEBEs by Herbert et. al.. The 6-31(1+,3+)G* basis set,
compared to the 6-31++G* basis, has two additional diffuse s functions on H atoms with
their exponents decreased by a successive factor of 3.32."° The diffuse functions on H atoms

have been shown to be crucial for the binding of the excess electron.'” However the 6-

31(1+,3+)G* basis is not employed in the present study, because the CIM method may have
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difficulties constructing the unoccupied LMOs of subsystems,’ or the very large
subsystems that are created may require more memory than is available on one processor
(CR-CC(2,3) only runs in serial).

Table 1 tabulates the MP2 VEBE results with all four basis sets. The addition of a
set of f polarization functions hardly changes the binding energies in comparison with the 6-
31++G(d,p) VEBEs. The VEBE:s predicted by the triple zeta basis set are reasonably close
to the 6-31++G(d,p) VEBEs. For all of the clusters listed in Table 1, MP2/6-31(1+,3+)G*
predicts negative VEBEs. For the smallest clusters (n = 2-4) MP2/6-31++G(d,p) predicts
mostly positive VEBEs. However, for n>4, the two sets of VEBE are in qualitative
agreement, with the MP2/6-31++G(d,p) predicting VEBESs that are generally ~3-6 kcal/mol
smaller in magnitude than the MP2/6-31(1+,3+)G* VEBE values, but with the same sign.
The small clusters with positive VEBE still do not bind the excess electron even after
MP2/6-31++G(d,p) geometry optimization. MP2 with the smaller 6-31+G(d,p) basis set
(results not shown in Table 1) predicts that most of the clusters in Table 1 have positive
VEBE. The Dunning correlation consistent aug-cc-pvTZ basis set does not produce negative
VEBEs for the very small clusters and already becomes computationally demanding for 6-
water clusters. Consequently, the 6-31++G(d,p) basis is chosen as a good compromise for
the present work.

Herbert and Head-Gordon'” noted that the magnitudes of the MP2 electron
detachment energies are consistently ~30 meV (0.69 kcal/mol) smaller than the
corresponding CCSD(T) values using the same basis set. The MP2 error is essentially
independent of the magnitude of the binding energy or the structure motif. A similar

conclusion can be drawn from the results in Table 2 for MP2 and CR-CC(2,3): the
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magnitudes of MP2 VEBEs are on average ~0.67 kcal/mol lower than the CR-CC(2,3)

values. This observation is important for the present study, since MP2 VEBE:s for larger
clusters can provide good benchmarks for CIM/CR-CC(2,3) and can therefore be used to
obtain estimated CR-CC(2,3) VEBE values when CR-CC(2,3) is too challenging for the

entire system.

The MP2 and CR-CC(2,3) VEBEs calculated with the 6-31++G(d,p) basis set are
compared in Table 3. The CR-CC(2,3) VEBE values of the clusters with n > 8§ are estimated
by adding -0.67 kcal/mol to the corresponding MP2 values. These estimated CR-CC(2,3)
VEBE:s are in italics to emphasize that they are only used as a guideline. The clusters that
have positive VEBE in Table 1 do not appear in Table 3. The VEBE calculated using
CIM/CR-CC(C(2,3) are also tabulated in Table 3. The percent error (% error) is used to assess
the quality of the results rather than the absolute errors. The % errors are calculated as
(CIM/CR-CC(2,3) VEBE — CR-CC(2,3) VEBE)/CR-CC(2,3) VEBE. Using the CIM default

£=0.003, the predicted VEBESs are in poor agreement with the benchmark VEBEs, with an

average % error of 76%. Relative to CR-CC(2,3) VEBEs, the RMS error of CIM/CR-

CC(2,3) (£=0.003) is 23.65 kcal/mol, two orders of magnitude larger compared to that of

MP2 (0.68 kcal/mol). Moreover there seems to be no pattern as to whether the error over- or
under-estimates the VEBE. The default CIM threshold parameters were originally

benchmarked® mainly using neutral systems (alkanes, water clusters), and they appear to be

inadequate for delocalized anionic systems like (H 2O); .
As mentioned in the computational details section, some threshold parameters may

influence the construction of subsystems and consequently the CIM correlation energy. To

find the optimal values of these parameters, small clusters with large VEBE errors are
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examined by varying { and 1. Table 4 presents the VEBEs for the 4w.a, 5w.d and Sw.e
clusters calculated at different { values. At {=0.003, CIM/CR-CC(2,3) produces VEBEs
that deviate significantly from the CR-CC(2,3) results. For { = 0.002, some improvement
can be seen although the results are still far from satisfactory. = 0.001 yields much

improved VEBEs. The RMS errors for the three clusters in Table 4 are reduced from 4.99
keal/mol for{ = 0.003 to 0.58 kcal/mol for = 0.001. For {=0.003 or 0.002, CIM
generates 4 subsystems for both the anionic and neutral 5w.e cluster, while for{ = 0.001,
CIM generates only one subsystem for both anionic and neutral 5w.e clusters. Therefore, the
computed CIM/CR-CC(2,3) VEBE is identical to the CR-CC(2,3) VEBE. The anionic Sw.d
cluster is also not fragmented. This lack of fragmentation means that CIM recognizes that
this cluster is too delocalized to fragment. Table 5 illustrates that there is little dependence

of the predicted VEBE for the 6w.5 cluster on changes in the parameter 17

The CIM/CR-CC(2,3) calculations reported in Table 3 were also performed with {=
0.001 and other parameters kept as their default values. Two observations can be made
immediately. First, the average percent error decreases from 76% to 15%. Second, the
CIM/CR-CC(2,3) method with {=0.001 almost always underestimates the VEBE. The

RMS error of CIM/CR-CC(2,3) with {=0.001 is 2.34 kcal/mol, about 10 times smaller than

that with {'=0.003.

The MP2/6-31++G(d,p) and CR-CC(2,3)/6-31++G(d,p) electron correlation
contributions to the VEBE are shown in Table 6. The MP2/6-31++G(d,p) VEBE electron
correlation contribution is ~ 0.67 kcal/mol smaller in magnitude than that obtained with CR-

CC(2,3)/6-31++G(d,p) for n < 7. This is expected since MP2 and CR-CC(2,3) use the same
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HF reference wave function. The CR-CC(2,3) VEBE correlation contributions for n > 7 are
therefore estimated by adding -0.67 kcal/mol to MP2 correlation energies and are listed in
italics. By comparing to the VEBEs listed in Table 3, one can see that the correlation energy
is crucial for the binding of the excess electron. For small clusters (n = 2-5), the excess
electron will not bind at the Hartree-Fock level. For most of the 6- and 7- water clusters the
VEBEs come almost entirely from electron correlation. As the cluster size increases, the
percentage contribution of electron correlation to the VEBE decreases. However, the
correlation effect is still a significant portion of the VEBE, with the smallest contribution
among the clusters examined here being ~20% for the 12w.1 cluster. The variation of the
correlation energy contributions with the size of the system is much smaller than the

variation of VEBEs with the size of the cluster and different configurations of the same size.

The CIM/CR-CC(2,3) errors for the total VEBE and the correlation contributions
compared to the corresponding CR-CC(2,3) values [CIM/CR-CC(2,3) — CR-CC(2,3)] are
also tabulated in Table 6. The errors in the VEBE come entirely from the correlation energy
errors. This is because CIM splits the electron correlation energies into contributions from

subsystems, but the reference HF energy is calculated for the entire system.

Unfortunately, examination of the entries in Table 6 does not reveal a clear

relationship between the cluster size and the correlation energy errors of (H 2O); and

(H ZO)H . The signs of the errors are almost always positive (CIM correlation energies are

less negative) which means (not surprisingly) that CIM tends to under-estimate the
correlation energies. The error in the calculated VEBE depends, of course on the relative

errors in the anion and in the corresponding neutral cluster. If both anionic and neutral
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clusters have similar errors with the same sign (both large errors or both small errors), the
resulting VEBE error is small, for example, 6w./ and 6w.2. An interesting example is the

cluster 6w.e: Upon decreasing { from 0.003 to 0.001, the correlation energy errors for both

the anionic and neutral clusters decrease. However, the improvement of the anion

correlation energy is much less than that of the neutral cluster, so the {=0.001 VEBE error

is larger than that for 0.003. In most cases, the errors of the neutral clusters are smaller since
the electron distributions in the neutral clusters are more localized. The majority of the
clusters have the same number of subsystems generated by CIM for the anion and its neutral
counterpart. Of course, the LMO composition of the anion and neutral subsystems do not
necessarily match. Hence, the difference between the anionic and neutral correlation errors
is a manifestation of the difference in the degree of localization (or delocalization). In the
present work, the biggest difference in the number of subsystems between an anion and the

corresponding neutral is three for Sw.4 and §w.2.

The excess electron charge distribution can be studied by taking the difference
between the atomic charges of the anionic and neutral clusters that are computed by fitting
to their electrostatic potentials.”’ Of course, there is no unique way to define atomic charges.
So, these atomic charges should be viewed as qualitative indicators for understanding the
CIM subsystems. Consider, for example, 6w.5. The atomic charge difference is shown in
Figure 2(a). The excess electron, indicated by negative charge differences on atom centers,
is essentially evenly distributed over the hydrogen atoms that point into the cavity, while the
other hydrogen atoms that form the hydrogen network are hardly changed, behaving like
‘spectators’. This particular ‘internally solvated’ anionic cluster would naturally be

considered to be one open-shell system and requires no further fragmentation. In fact, such
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delocalized systems would be extremely difficult, if not impossible, to deal with for any
fragmentation scheme, because fragmentation approaches are based on the locality of the
chemistry. The excess electron distribution polarizes the OH bonds pointing towards the
cavity. The anion oxygen atoms become slightly more positively charged compared to their
neutral counterparts. A sensible fragmentation should include both the hydrogen atoms
pointing into the cavity and all of the polarized oxygen atoms. Figures 2(b) and 2(c) show

the CIM fragmented subsystems of the anion using = 0.003 and {= 0.001, respectively.

Each of the subsystems in Figure 2(b) encompasses three water molecules on one side and
the three mostly negatively charged hydrogen atoms on the other side, while the subsystems
in Figure 2(c) also include the three oxygen atoms on the other side, leaving out three
‘spectator’ hydrogen atoms on the other side. Larger subsystems should improve the results
in general. In this case, all six OH bonds equally polarized by the excess electron are
included in each subsystem in Figure 2(c). The number of subsystems is also reduced in

Figure 2(c) relative to Figure 2(b).

In terms of the computational cost, the effect of changing ¢ from 0.003 to 0.001 is

manifested in two ways. The sizes of most of the subsystems increase, and the number of
subsystems may change. The magnitude of the increase in the computational demand varies
from system to system. Using /4w.a and /4w.b as examples, the replicated memory
requirement for each subsystem is reported in Table 7 in units of 1 megaword where a word
is defined as 64 bits. One can see that almost all of the subsystems of /4w.a and /4w.b

increase in size when { decreases, but the change of { impacts /4w.b subsystems much

more than in /4w.a. 14w_n indicates the neutral counterparts of the anions. The fact that the

increase in computational demand for the neutral cluster /4w _n.b is much less compared to
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that of 14w.b is again a demonstration of the difference in the degree of localization

between the anion and the neutral.

The CIM method significantly reduces the memory requirement compared to an ab
initio calculation of the whole system. For example, a CR-CC(2,3)/6-31++G(d,p)
calculation of 7-water clusters requires ~ 1378 megawords while the largest subsystem of 7
water clusters require ~ 480 megawords, and many other subsystems need less than 100
megawords. For 20-water clusters, MP2/6-31++G(d,p) requires ~ 4776 megawords (serial
calculation), while a CIM/CR-CC(2,3) using the same basis set requires 447 megawords for
the largest subsystem and ~ 97 megawords on average. So, even though empirically
corrected MP2 calculations do very well for the VEBE, the reduced CIM/CR-CC(2,3)
memory requirements will allow calculations on much larger clusters. In addition, such

empirical corrections may not be available for all properties of interest.

V. Conclusions

The excess electron in finite anionic water clusters is diffuse, and electron
correlation plays an important role in the binding of the excess electron to the water clusters,
especially smaller clusters (2-5 water molecules). The cluster-in-molecule (CIM) method in
combination with CR-CC(2,3) is assessed in this study in terms of the accuracy of VEBE for
anionic water clusters in the range of 4 — 20 water molecules. The use of LMO domains for
dividing the whole system provides the ease of a ‘black-box’ type calculation, with just

three threshold parameters. Setting the threshold parameter { to 0.001 provides reasonably

accurate VEBESs at an affordable computational expense. At present, the CIM method in

GAMESS is a sequential code. However, the implementation of a distributed parallel code
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is in progress. Such a parallel code will considerably reduce the computational cost of CIM
calculations. The CIM/CR-CC(2,3) method may be a viable alternative approach for
obtaining benchmarking numbers for water clusters when traditional coupled-cluster theory

calculations for the entire system are difficult or impossible.

Acknowledgement

The authors gratefully thank Professor John Herbert and Dr. Albert DeFusco who

kindly provided the geometries of many (H 2O); clusters that are considered in this work.
Discussions with Dr. DeFusco and Professor Piotr Piecuch are greatly appreciated. This

material is based upon work supported by the Air Force Office of Scientific Research under

AFOSR Award No. FA9550-11-1-0099.

Reference

(1) Hart, E. J.; Boag, J. W. Absorption Spectrum of the Hydrated Electron in Water and
in Aqueous Solutions. J. Am. Chem. Soc. 1962, 84, 4090—4095.

(2)  Garrett, B. C.; Dixon, D. A.; Camaioni, D. M.; Chipman, D. M.; Johnson, M. A_;
Jonah, C. D.; Kimmel, G. A.; Miller, J. H.; Rescigno, T. N.; Rossky, P. J.; et al. Role
of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific

Advances. Chem. Rev. (Washington, DC, United States) 2005, 105, 355-3809.



3)

4

)

(6)

(7

®)

©)

(10)

167

Haberland, H.; Ludewigt, C.; Schindler, H. G.; Worsnop, D. R. Experimental
Observation of the Negatively Charged Water Dimer and Other Small (H20)n-
Clusters. J. Chem. Phys. 1984, 81, 3742-3744.

Haberland, H.; Schindler, H. G.; Worsnop, D. R. Mass Spectra of Negatively
Charged Water and Ammonia Clusters. Berichte der Bunsen-Gesellschaft 1984, 88,
270-272.

Coe, J. V; Lee, G. H.; Eaton, J. G.; Arnold, S. T.; Sarkas, H. W.; Bowen, K. H.;
Ludewigt, C.; Haberland, H.; Worsnop, D. R. Photoelectron Spectroscopy of
Hydrated Electron Cluster Anions, (H20)n=2-69-. J. Chem. Phys. 1990, 92, 3980—
3982.

Sanov, A.; Lineberger, W. C. Dynamics of Cluster Anions: A Detailed Look at
Condensed-Phase Interactions. PhysChemComm [online Comput. file] 2002, 165—
177.

Verlet, J. R. R.; Bragg, A. E.; Kammrath, A.; Cheshnovsky, O.; Neumark, D. M.
Observation of Large Water-Cluster Anions with Surface-Bound Excess Electrons.
Sci. (Washington, DC, United States) 2005, 307, 93-96.

Lee, G. H.; Arnold, S. T.; Eaton, J. G.; Bowen, K. H. Electronic Properties of Dipole-
Bound (H20)2-, (D20)2-, (H20)2-Arn=1,2,3, and (D20)2-Arn=1,2,3 Using
Negative lon Photoelectron Spectroscopy. Chem. Phys. Lett. 2000, 321, 333-337.
Knapp, M.; Echt, O.; Kreisle, D.; Recknagel, E. Trapping of Low Energy Electrons at
Preexisting, Cold Water Clusters. J. Chem. Phys. 1986, 85, 636—637.

Neumark, D. M. Spectroscopy and Dynamics of Excess Electrons in Clusters. Mol.

Phys. 2008, 106, 2183-2197.



(1)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

168

Turi, L.; Rossky, P. J. Theoretical Studies of Spectroscopy and Dynamics of
Hydrated Electrons. Chem. Rev. (Washington, DC, United States) 2012, 112, 5641—
5674.

Sommerfeld, T.; Jordan, K. D. Quantum Drude Oscillator Model for Describing the
Interaction of Excess Electrons with Water Clusters: An Application to (H20)13-. J.
Phys. Chem. A 2005, 109, 11531-11538.

Sommerfeld, T.; Jordan, K. D. Electron Binding Motifs of (H2O)n- Clusters. J. Am.
Chem. Soc. 2006, 128, 5828-5833.

Sommerfeld, T.; DeFusco, A.; Jordan, K. D. Model Potential Approaches for
Describing the Interaction of Excess Electrons with Water Clusters: Incorporation of
Long-Range Correlation Effects. J. Phys. Chem. A 2008, 112, 11021-11035.
Herbert, J. M.; Head-Gordon, M. Calculation of Electron Detachment Energies for
Water Cluster Anions: An Appraisal of Electronic Structure Methods, with
Application to (H20)20- and (H20)24-. J. Phys. Chem. A 2005, 109, 5217-5229.
Herbert, J. M.; Head-Gordon, M. Accuracy and Limitations of Second-Order Many-
Body Perturbation Theory for Predicting Vertical Detachment Energies of Solvated-
Electron Clusters. Phys. Chem. Chem. Phys. 2006, 8, 68-78.

Williams, C. F.; Herbert, J. M. Influence of Structure on Electron Correlation Effects
and Electron-Water Dispersion Interactions in Anionic Water Clusters. J. Phys.
Chem. 42008, 112,6171-6178.

Jordan, K. D.; Wang, F. Theory of Dipole-Bound Anions. Annu. Rev. Phys. Chem.

2003, 54, 367-396.



(19)

(20)

1)

(22)

(23)

(24)

(25)

(26)

169

Wiloch, M.; Lodriguito, M. D.; Piecuch, P.; Gour, J. R. Two New Classes of Non-
Iterative Coupled-Cluster Methods Derived from the Method of Moments of
Coupled-Cluster Equations. Mol. Phys. 2006, 104, 2149-2172.

Li, S.; Shen, J.; Li, W.; Jiang, Y. An Efficient Implementation of the “Cluster-in-
Molecule” Approach for Local Electron Correlation Calculations. J. Chem. Phys.
20006, 725,074109/1-074109/10.

Li, W.; Piecuch, P.; Gour, J. R.; Li, S. Local Correlation Calculations Using Standard
and Renormalized Coupled-Cluster Approaches. J. Chem. Phys. 2009, 131,
114109/1-114109/30.

Li, W.; Piecuch, P. Improved Design of Orbital Domains within the Cluster-in-
Molecule Local Correlation Framework: Single-Environment Cluster-in-Molecule
Ansatz and Its Application to Local Coupled-Cluster Approach with Singles and
Doubles. J. Phys. Chem. A 2010, 114, 8644—-8657.

Pulay, P. Localizability of Dynamic Electron Correlation. Chem. Phys. Lett. 1983,
100, 151-154.

Hampel, C.; Werner, H.-J. Local Treatment of Electron Correlation in Coupled
Cluster Theory. J. Chem. Phys. 1996, 104, 6286—6297.

Schutz, M.; Werner, H.-J. Low-Order Scaling Local Electron Correlation Methods.
IV. Linear Scaling Local Coupled-Cluster (LCCSD). J. Chem. Phys. 2001, 114, 661—
681.

Scuseria, G. E.; Ayala, P. Y. Linear Scaling Coupled Cluster and Perturbation

Theories in the Atomic Orbital Basis. J. Chem. Phys. 1999, 111, 8330-8343.



(27)

(28)

(29)

(30)

(1)

(32)

(33)

170

Foerner, W.; Ladik, J.; Otto, P.; Cizek, J. Coupled-Cluster Studies. II. The Role of
Localization in Correlation Calculations on Extended Systems. Chem. Phys. 1985,
97,251-262.

Li, S.; Ma, J.; Jiang, Y. Linear Scaling Local Correlation Approach for Solving the
Coupled Cluster Equations of Large Systems. J. Comput. Chem. 2002, 23, 237-244.
Dunning Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular
Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys.
1989, 90, 1007-1023.

Kendall, R. A.; Dunning Jr., T. H.; Harrison, R. J. Electron Affinities of the First-
Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys.
1992, 96, 6796—6806.

Spackman, M. A. Potential Derived Charges Using a Geodesic Point Selection
Scheme. J. Comput. Chem. 1996, 17, 1-18.

Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen,
J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; et, al. General Atomic and
Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347-1363.
Gordon, M. S.; Schmidt, M. W. Advances in Electronic Structure Theory: GAMESS
a Decade Later. In Theory Appl. Comput. Chem.: First Forty Years; Elsevier B.V.,

2005; pp. 1167-1189.



171

Figure 1. The geometries of the (H 2O) , n=4-20, studied by CIM in this work.

n

Figure 2 (a) The atomic charge difference between the anionic and the neutral clusters of

6w.5; (b) The six subsystems constructed by CIM/CR-CC(2,3) with = 0.003; (¢) the two

subsystems constructed by CIM/CR-CC(2,3) with {=0.001
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Table 1 MP2 VEBE (kcal/mol) for anionic water clusters (H 20) ,n=2-7,14, 20.

n

MP2°

6-31(1+,3+)G*

MP2

6-31++G(d,p)

MP2

6-31++G(df,p)

MP2

6-311++G(d,p)

2w -0.61 12.47 12.43 13.27
3w.a -0.16 13.35 13.30 14.00
3w.b -3.26 6.19 6.14 7.05
4w.a -8.02 -1.94 -2.01 -0.85
4w.b -4.57 3.17 3.10 4.05
4w.c -0.95 11.15 11.09 11.86
4w.d -5.69 1.73 1.66 2.66
4w.e -4.42 3.66 3.61 4.63
4w .f -6.05 1.53 1.47 243
Sw.a -9.38 -3.48 -3.54 -2.44
5w.b -1.76 9.36 9.29 10.13
Sw.c -10.28 -5.09 -5.16 -4.03
Sw.d -6.52 -0.61 -0.69 -0.40
Sw.e -8.50 -2.56 -2.63 -1.62
Sw.f -8.25 -1.83 -1.90 -0.91
6w.a -0.20 12.11 12.08 12.78
6w.b -16.26 -13.24 -13.35 -11.96
6w.c -0.46 11.16 11.13 11.76
ow.d -2.30 8.20 8.13 8.96
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6w.c -10.78 -5.63 -5.71 -4.59
ow.f -11.65 -6.95 -7.03 -5.75
ow.g -10.20 -5.11 -5.19 -4.18
Tw.a -14.66 -10.74 -10.83 -9.62
Tw.b -13.17 -8.65 -8.72 -7.70
Tw.c -10.44 -4.17 -4.24 -3.23
14w.a -19.36 -14.81 -14.90 -13.83
14w.b -21.65 -20.87 -21.07 -19.94
20w.a -25.32 -21.77 -21.87 -20.65
20w.b -20.35 -16.48 -16.57 -15.48
20w.c -14.84 -10.44 -10.52 -9.59

“ The MP2/6-31(1+,3+)G* VEBEs are taken from references 7-9 .

* The structures and the electron detachment energies are available in the supporting

information for these three references at

http://chemistry.osu.edu/~herbert/reprints/JPCA_112_6171_suppinfo.txt
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Table 2 VEBE (kcal/mol) computed using MP2 and CR-CC(2,3) at 6-31++G(d,p) basis set

for (HzO) ,n=4-7

n

MP2 CR-CC(2,3)
6-31++G(d,p) 6-31++G(d,p)
4w.a -1.94 -2.59
Sw.a -3.48 -4.26
Sw.c -5.09 -5.70
Sw.d -0.61 -1.49
Sw.e -2.56 -3.22
Sw.f -1.83 -2.34
6w.1 -3.09 -4.11
6w.2 -6.83 -7.51
6w.3 -13.22 -13.67
6w.4 -5.31 -6.08
6w.5 -13.89 -14.46
6w.b -13.24 -13.80
6w.e -5.63 -6.34
ow.f -6.95 -7.84
6w.g 5.11 -5.68
Tw.a -10.74 -11.48
Tw.b -8.65 -9.18
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Tw.c

-4.17

-4.68
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Table 3 VEBEs (kcal/mol) for (H 20); ,n =4 —20, calculated using MP2, CR-CC(2,3), and
CIM-CR-CC(2,3) with the 6-31++G(d,p) basis set. The CR-CC(2,3) VEBE:s for clusters
larger than 7 water molecules are estimated from MP2 values (in italics). The % errors

relative to those estimated values are also in italics. The MP2 and CIM RMS errors are

given in kcal/mol

MP2 CR-CC(2.3) CIM/ % CIM/ %

CR-CC(2,3) Error CR-CC(2.3) Error
£ =0.003 £=0.001

4w.a -1.94 -2.59 -0.80 -69% -1.95 -25%
Sw.a -3.48 -4.26 3.65 “14% -4.15 3%
Sw.c -5.09 -5.70 -5.82 2% 5.1 -10%
Sw.d -0.61 -1.49 -9.74 556% 226 52%
Sw.e -2.56 322 -1.40 -57% 321 0%
Sw.f -1.83 234 -8.07 245% -1.40 ~40%
6w.1 -3.09 411 -3.29 20% -3.88 6%
6w.2 -6.83 -7.51 -6.77 -10% -6.53 “13%
6w.3 -13.22 -13.67 -7.94 ~42% -8.15 ~40%
6w.4 -5.31 -6.08 -10.40 71% 5.1 -16%
6w.5 -13.89 -14.46 -39.46 173% -13.13 9%
6w.b -13.24 -13.80 -17.28 25% -12.26 11%
6w.e -5.63 -6.34 -5.44 -14% 2.81 -56%
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ow.f -6.95 -7.84 -13.61 74% -6.20 -21%
o6w.g -5.11 -5.68 -10.81 90% -5.00 -12%
Tw.a -10.74 -11.48 -14.40 26% -10.83 -6%
Tw.b -8.65 -9.18 -8.26 -10% -8.26 -10%
Tw.c -4.17 -4.68 -3.94 -16% -4.30 -8%
8w.2 21.42 -22.09 -22.98 4% -21.06 -5%
8w.4 -25.39 -26.07 -19.16 -26% -23.25 -11%
8w.5 -19.30 -19.98 -24.60 23% -18.23 -9%
8w.6 -23.37 -24.04 -25.28 5% -21.48 -11%
8w.7 -22.63 -23.31 -22.80 -2% -21.50 -8%
8w.8 -24.61 -25.28 -32.26 28% -24.88 -2%
8w.9 -18.64 -19.31 -31.99 66% -17.65 -9%
8w.10 -27.01 -27.69 -23.78 -14% -26.51 -4%
8w.11 -24.29 -24.96 -30.79 23% -24.79 -1%
8w.12 -15.08 -15.76 -20.70 31% -15.02 -5%
12w.1 -48.79 -49.46 -42.28 -15% -44.71 -10%
12w.a -16.23 -16.90 -15.03 -11% -15.68 -7%
14w.a -14.81 -15.48 -12.45 -20% -12.66 -18%
14w.b -20.87 -21.54 -10.47 -51% -21.93 2%
20w.a -21.77 -22.44 -14.89 -34% -15.45 -31%
20w.b -16.48 -17.15 -151.70 785% -12.20 -29%
20w.c -10.44 -11.11 -8.77 -21% -9.27 -17%
RMS 0.68 23.65 2.34
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Table 4 VEBEs (kcal/mol) of three clusters computed using CR-CC(2,3), and CIM/CR-

CC(2,3) with three ¢ values and the 6-31++G(d,p) basis set. The RMS errors are in

kcal/mol.
4w.a Sw.d Sw.e RMS error
CR-CC(2,3) -2.59 -1.49 -3.22
CIM/CR-CC(2,3) -0.80 -9.74 -1.40 4.99
£=0.003 (default)
CIM/CR-CC(2,3) -0.85 -2.60 -1.79 1.45
£=0.002
CIM/CR-CC(2,3) -1.95 -2.26 -3.21 0.58
£=0.001
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Table 5 VEBEs (in kcal/mol) of three clusters computed using CR-CC(2,3) and CIM/CR-

CC(2,3) with three values of 1 and the 6-31++G(d,p) basis set.

6w.5

CR-CC(2,3) -14.46

CIM/CR-CC(2,3) -39.46

n = 0.2 (default)

CIM/CR-CC(2,3) -39.08
n=03

CIM/CR-CC(2,3) -37.50
n=04
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Table 6 MP2, CR-CC(2,3) and CIM/CR-CC(2,3) correlation energy contributions [anionic

correlation energy — neutral correlation energy] to the VEBE (kcal/mol).

MP2 CR- CIM/CR- CIM/CR- CIM/CR- CIM/CR-
Corr. | CC(2,3) CC(2,3) CC(2,3) CC(2,3) CC(2,3)
E. Corr. E. | Total VEBE | Corr. E. Error Anionic Neutral
Error Corr. E. Error | Corr. E. Error
4w.a | -5.59 -6.24 0.64 0.64 0.79 0.15
Swa | -5.81 -6.60 0.11 0.11 0.44 0.33
Sw.e | -5.82 -6.43 0.59 0.59 1.21 0.63
Swd | -5.47 -6.35 -0.78 -0.78 0.01 0.79
Swe | -5.89 -6.55 0.00 0.00 0.00 0.00
Sw.t | -5.51 -6.02 0.94 0.94 0.84 -0.09
6w.l | -5.64 -6.66 0.24 0.24 4.05 3.82
6w.2 | -5.90 -6.58 0.98 0.98 4.27 3.28
6w.3 | -6.39 -6.85 5.53 5.53 7.06 1.53
6w.4 | -5.65 -6.43 0.97 0.97 0.78 -0.19
6w.5 | -5.43 -6.01 1.33 1.33 1.06 -0.27
6w.b | -6.57 -7.13 1.54 1.54 3.33 1.79
6w.e | -6.03 -6.74 3.53 3.53 5.12 1.59
ow.f | -5.79 -6.68 1.64 1.64 2.53 0.89
6w.g | -5.78 -6.34 0.68 0.68 0.85 0.17
Tw.a | -6.29 -7.03 0.65 0.65 291 2.26
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Tw.b | -6.07 -6.60 0.91 0.91 1.97 1.06
Tw.c | -5.64 -6.15 0.37 0.37 0.16 -0.21
8w.2 | -6.47 -7.14 1.03 1.03
8w.d | -7.45 -8.12 2.82 2.82
8w.5 | -7.01 -7.68 1.74 1.74
8w.6 | -6.56 -7.23 2.56 2.56
8w.7 | -6.84 -7.51 1.80 1.80
gw.8 | -7.22 -7.89 0.40 0.40
8w.9 | -6.85 -7.52 1.66 1.66
8w.10 | -7.24 -7.91 1.17 1.17
8w.11 | -6.83 -7.50 0.17 0.17
8w.12 | -6.46 -7.13 0.74 0.74
12w.1 | -9.90 -10.57 4.75 4.75
12w.a | -7.63 -8.30 1.22 1.22
l4w.a | -6.35 -7.02 2.82 2.82
l4w.b | -11.05 | -11.72 -0.39 -0.39
20w.a | -6.61 -7.28 6.99 6.99
20w.b | -6.34 -7.01 4.95 4.95
20w.c | -6.34 -7.01 1.84 1.84

Table 7. Memory requirement (in mwords) for the CIM subsystems of the clusters 14w.a

and 14w.b and their neutral counterparts with different { values. 14w_n designates the

neutral counterparts.
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14w.a 14w n.a 14w.b 14w _n.b
4 0.003 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | 0.003 | 0.001
subsystem
1 62 119 62 119 42 292 43 135
2 45 89 45 94 50 135 50 64
3 80 371 42 57 52 96 52 96
4 35 122 35 122 290 3780 73 448
5 62 122 62 122 44 122 61 122
6 45 91 45 94 42 706 44 304
7 42 81 32 84 59 149 59 149
8 57 57 57 57 29 2216 29 1066
9 45 125 45 125 50 135 52 113
10 61 61 61 61 218 3256 20 144
11 44 127 44 61 132 1633 19 55
12 36 62 36 62 68 250 68 164
13 111 295 61 61 412 4743 79 701
14 104 194 61 113 40 91 32 94
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Chapter 6 Theoretical Study of the Binding of Silane (SiH;) with
Borane (BH3), Diborane (B,Hg) and Boron Tricholoride (BCl;):

The Role of Core-electron Correlation

A paper published in

The Journal of Physical Chemistry A 2012, 116, 11668

Peng Xu, Mark S. Gordon, Binh Nguyen

Abstract

Equilibrium structures and energies of gas-phase molecular complexes SiH4---BH3, SiHy4---
B,Hg and SiHs---BCl; were determined using second-order Moller-Plesset perturbation
theory (MP2) and the aug-cc-pVTZ basis set, with and without explicit core electron
correlation. Single-point energies are calculated for the MP2-optimized structures using

MP2 with the aug-cc-pVQZ basis set and using coupled-cluster theory (CCSD(T)) with both
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the aug-cc-pVTZ and the aug-cc-pVQZ basis sets to extrapolate to the complete basis set
(CBS). Partition functions were calculated using the harmonic oscillator/rigid-rotor
approximation at the MP2/aug-cc-pVTZ level of theory. The explicit core electron
correlation is demonstrated to have significant impact on the structures and binding energies
and binding enthalpies of these complexes. The binding enthalpies were obtained at various
temperatures ranging from OK to the dissociation temperatures of the complexes. The
potential energy surfaces of the three complexes were explored, and no transition states

were found along the pathways from separated species to the complexes.

I. Introduction

The chemical vapor deposition (CVD) technique is a process widely used in the
semiconductor industry to produce thin films, in which source gas/precursor molecules are
transformed into a solid on the surface of a substrate'. Silane (SiH) is a common precursor
used in the CVD process due to its high volatility. Several boron compounds, borane (BH3),
diborane (B,Hs) and boron tricholoride (BCls), are commonly used as precursors for the
fabrication of boron doped thin films. At the initial stage of the CVD process, silane and
boron-containing source gases interact through thermal initiation. Various chemical
processes could occur, producing radical or charged species depending on the surrounding

conditions. However, in this study, the processes of interest are the formation of the addition

complexes:
SIH4 + BH3 -> SiH4---BH3 (la)
SiH, + BHe = SiH4---B>Hg (1b)

SIH4 + BC13 > SiH4---BC13 (IC)
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In these processes, temperature can potentially influence the stability of both the reactants
and the products, which in turn will affect the subsequent steps in the CVD process.
Therefore it is crucial to understand the temperature effects on these binding processes.

The goals of this study are twofold: (1) To predict accurate structures and binding
energies and binding enthalpies for the SiH4---BH3, SiH4---B,Hg and SiHs---BCl;
complexes with high level ab initio methods and to determine how increasing the
temperature affects the binding energies; (2) To explore the potential energy surfaces of
these complexes along the formation pathway, in particular, to search for possible transition

states. The binding energies AE; are defined as the energy changes associated with reactions
(1). For example, for reaction (1a) AE, = E(SiH4---BH3) — E(SiH4) — E(BH3), where Ex
refers to the total electronic energy of species x. The binding enthalpies at OK are obtained

from AE, + A(ZPE) where ZPE; is the zero point vibrational energy for species x, obtained

using the harmonic oscillator approximation. Further temperature corrections, using
standard methods, yield the corresponding binding enthalpies at the higher temperatures.
For clarity, the absolute (positive) binding energies and enthalpies are quoted in this work.
The paper is organized as follows: the computational methods employed in this
study are presented in Section II. In Section III, results and discussion are arranged to

elucidate the results of the study. Conclusions are drawn in Section I'V.

I1. Computational Methods

The geometries of SiHa, BH3, B,Hg and BCl; were optimized using second-order
Mpller-Plesset perturbation theory (MP2) with the augmented correlation-consistent triple-
zeta basis set (aug-cc-pVTZ). The geometries of the complexes SiHs---BH3, SiH4---B,Hg

and SiH4---BCl; were optimized with the same level of theory and basis set. Harmonic
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vibrational frequencies for all the optimized species were evaluated to confirm that each
molecular species is a genuine minimum on their respective potential energy surfaces.
Single point energies were computed for these optimized geometries using coupled cluster
theory with single, double and perturbative (non-iterative) triple excitations (CCSD(T))
using the same aug-cc-pVTZ basis set. The aforementioned calculations by default used the
frozen core approximation that assumes the core electrons are inert during the electron
correlation calculations.

To determine the importance of core electron correlation for the systems of interest,
an identical set of calculations was carried out with all core electrons treated explicitly.
Explicit core electron correlation generally adds a significant computational cost. The
lowest-lying molecular orbitals (MOs) are expected to contribute very little to the relative
energies and geometries of the molecular species in this study. Hence, in an attempt to
reduce the computational cost while retaining accuracy, all of the calculations mentioned
above were repeated with the Si 1s orbitals frozen. For BCl; and the SiH4---BCl; complex
the three Cl 1s orbitals were also frozen. Freezing more of the core electrons (the outer core)
results in significant changes in the predicted geometries and relative energies. In addition,
as a less computationally demanding alternative approach to describe the core electrons,
Huzinaga’s model core potential (MCP)* with the equivalent TZ quality basis was employed
to optimize the geometries of all of the clusters and their components. In the MCP method,
the core electrons are replaced by the MCP, which incorporates scalar relativistic effects.
The valence electrons are described with the associated triple zeta basis set.

The binding energies and binding enthalpies obtained with outer core electrons

included in the correlation part of the calculations are extrapolated to the complete basis set
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(CBS) limit at both the MP2 and CCSD(T) levels of theory. Both the HF reference energies
and the correlation energies are extrapolated using two basis sets (two-point extrapolation),
aug-cc-pVTZ and aug-ccpVQZ. Single point energies are computed with the aug-cc-pVQZ
basis set at the TZ-optimized geometries. The two-point extrapolation formula of Karton

and Martin® is used for the HF energies:
A
E(X)= E(CBS) + -

a = 5.34 for the aug-cc-pVTZ/QZ pair.

The correlation energy extrapolation is accomplished using *

E,,(X)=E,, (CBS)+aX"
Using the vibrational frequency information to calculate the appropriate harmonic
oscillator/rigid rotor partition functions, the binding enthalpies were calculated at different
temperatures. To determine if barriers exist during the formation process, re-optimization of
the geometries was started from separated components of the complexes (~ SA apart). The

re-optimized complexes were compared to the original optimized structures. All calculations

were carried out using GAMESS program”.

I11. Results and Discussion

The minimum energy structures optimized at the MP2/aug-cc-pVTZ level of theory
with full explicit core electron correlation for all of the molecular species involved in this
study are shown in Figure 1. It has been suggested that electron correlation is important in
describing the binding of these complexes and that the Hartree-Fock (HF) method fails to

predict the correct structure for the SiH,---BH; complex’.
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Usually, core electrons are excluded from the electron correlation calculations, since
most chemical phenomena involve only the valence electrons. Excluding the core electrons,
i.e. frozen core approximation (FC), can save significant computational cost. However, in
the present study, the core electron correlation is shown to play a key role in the prediction
of both the Si--B distances and the binding energies and enthalpies of the three complexes.
The geometries (Table 1) and binding energies (Table 2) of the SiH4---BH3, SiH4---B,Hg
and SiH4---BCl; complexes exhibit significant differences, depending on whether or not
core correlation is included in the calculations. For the SiH4---BH3; complex, including the
core correlation causes a decrease in the Si---B distance by ~0.04 A. This in turn results in
an ~4 kcal/mol increase in the binding energy. Similarly for SiH4---BCls, the shortening of
the Si--B distance caused by the inclusion of core correlation, enhances the binding energy
by nearly a factor of two. The effect of core electron correlation is most dramatic for the
SiH4---BoHg complex. For this species, it was not possible to locate a minimum energy
structure unless core correlation was included in the calculation. Indeed, the SiH4---B,Hg
complex is unbound at the CCSD(T)/aug-cc-pVTZ level of theory without the inclusion of
core electron correlation.

In heavier elements like Si, it is likely that the “outer core” (i.e., 2s, 2p) electrons are
more important for predicting properties than the “inner core” 1s electrons. This is referred
to as the partial frozen core approximation (PFC) in this paper. Close inspection of MOs
reveals that lowest MOs of SiH4 and BCI3 are essentially the Si 1s atomic orbital and Cl 1s
atomic orbital with the orbital energies -68.77 and -104.86 Hartree, respectively. On the
other hand, the lowest-lying MOs of BH3 and B,Hg are largely boron in character and all

higher than -10.00 Hartree. Therefore, one can consider freezing the electrons in the Si 1s
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orbital and Cl 1s orbitals during the electron correlation part of the calculation. The
structures and binding energies that are obtained when the Si 1s core electrons and, in the
case of SiH4 --- BCI13, also Cl 1s core electrons are not correlated are also listed in Tables 1
and 2. The resulting structures and binding energies demonstrate that the 1s electrons of Si
and Cl play little role in the binding.

The MCP predicted Si--B distances in the three complexes lie in between those with
and without the inclusion of core correlation, but more closely resemble the frozen-core-
approximation results. The same is true for the binding energies. Thus, the use of MCPs is
not a viable alternative to including core correlation in the calculations.

Of the three complexes considered here, SiHs---BHj; is overwhelmingly the most
strongly bound, with one silane hydrogen shared with the boron atom, forming a bridged
structure. In fact, the B—H distance for this hydrogen (1.271A) is shorter than the
corresponding Si—H distance (1.636A). The Si—H distance is ~1.472A in isolated SiH,
and the B—H distance is ~1.181A in isolated BH;. In the complex, one of the SiH,
hydrogens is pulled and therefore elongated by the boron upon forming the bridged
structure. The BH3 is planar before binding and adopts a pseudo-tetrahedral geometry after
binding to the SiH4. After binding, the distances between silicon and the other three
hydrogens in SiH, are hardly affected (the changes are less than 0.01 A). The only
noticeable change in the BH;3 bond lengths is that the distance between the boron and one of
its hydrogens (#9 in Figure 1(e)) stretches from 1.1811 A to 1.217 A. This exceptionally
strong interaction between SiH4 and BH3 may be due to the electron-deficient nature of
boron, which frequently leads to bridging structures’. In contrast, in SiHy---BCls, the

electronegative chlorine atoms mitigate this tendency, thereby making the interaction
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between silane and boron tricholoride much weaker. The SiH4---B,Hs complex exhibits the
weakest binding, possibly due to the relative stability of the three-center two-electron bonds
formed among the two boron atoms and two bridging hydrogens®.
Extrapolation of the binding energies to the complete basis set

The binding energies of the three complexes are extrapolated to the complete basis
set limit (CBS) at the MP2 and CCSD(T) level of theories. The results are presented in
Table 3. The OK binding enthalpies at the CBS limit are computed using the MP2/aug-cc-
pVTZ ZPE, assuming the ZPE changes little from aug-cc-pVTZ to the CBS limit. At the
CBS limit, the SiH4 --- BH3 complex is still quite strongly bound with over 10 kcal/mol
binding energy. The other two complexes exhibit similar binding strength differing by ~ 0.4
kcal/mol at the MP2 level of theory and 0.1 kcal/mol with CCSD(T).
Temperature effect on the binding energies

The binding enthalpies computed at MP2/aug-cc-pVTZ at various temperatures for
the three complexes are plotted in Figure 2. The three curves show similar trends: a slight
increase to a maximum binding enthalpy, followed by a monotonic decrease. The SiHs---
BH; complex binds most strongly at ~ 400K and remains bound until ~ 4000K. SiH4---B,Hs
and SiH4---BCl; reach their maximum binding enthalpies between 50 K and approach
dissociation at ~ 500K and ~1100 K, respectively.
Potential Energy Surfaces (PES)

To explore the potential energy surfaces of these complexes, MP2/aug-cc-pVTZ
(including Si and CI outer core correlation) optimizations were performed starting from the
separated components of the three complexes (~5A apart). In all three cases, the separated

complexes fall back to the original minima found in this study with no barriers. It is
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interesting that SiH4---BH3 and SiH4---B,H, required tighter gradient convergence
tolerance, which suggests that these two complexes have a relatively flat region near the
minima on the PES. The fact that no transition states were found indicates that, at 0K, the
kinetics of the binding processes between silane and the boron compounds studied in this

project are diffusion-limited.

IV. Conclusions

The equilibrium structures of SiHs---BH3, SiHs---B>He and SiHs---BCl; complexes
were determined at the MP2/aug-cc-pVTZ level of theory. Explicit core correlation, in
particular, the outer core, is shown to play a crucial role in predicting both the structures and
binding energies and binding enthalpies for all three complexes. The binding energies and
OK binding enthalpies at aug-cc-pVTZ basis set agree very well with the single point
CCSD(T)/aug-cc-pVTZ results, the most accurate method employed in this study. The
binding energies and OK binding enthalpies including explicit outer core electron correlation
are extrapolated to the complete basis set at both the MP2 and CCSD(T) levels of theory.
Using model core potentials provides only a small improvement over the frozen core results.
The binding enthalpies of the three complexes were evaluated from OK to the dissociation
temperature of each complex. All three complexes exhibit a similar trend, in which there is a
slight increase in the binding enthalpy followed by a monotonic decrease as the temperature

rises. At OK, there are no barriers for the formation of the complexes.
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Figure Captions

Figure 1. Equilibrium structures of (a) SiH4, (b) BH3, (c) BoHs, (d) BCls, (e) SiHs---BH3,
() SiH4---B,H¢ and (g) SiH4---BCl; at MP2/Aug-cc-pVTZ with all the core electrons
explicitly included in the electron correlation calculation.

Figure 2. Binding enthalpies of (a) SiH4---BH3 (b) SiH4---B,Hg (¢) SiHs---BCl; at different

temperatures with all the core electrons treated explicitly.



(a) SiHy (b) BH;

(C) B2H6 (d) BC13

’@

(e) SiH4---BH3 (f) SiH4---B2H6



217

(g) SiH4---BC13

Figure 1
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Table 1 Si---B distances for the optimized complexes. The columns from left to right are in

the order: all electrons (including all core electrons) are treated explicitly; the lowest-lying

core electrons (partial frozen core approximation) are frozen; all core electrons are frozen

(frozen core approximation) and core electrons replaced by model core potential. For SiHs--

-B,Hg, both Si---B distances are shown. All the distances are in A.

Si---B Full core Partial frozen core Frozen core Model Core

distance correlation approximation approximation Potential
SiH4---BH3 2.138 2.139 2.179 2.159
SiH4---B,Hg 3.624,4.434 3.624, 4.440 3.908, 4.377 3.738, 4.568
SiH4---BCl3 3.601 3.605 3.782 3.713

Table 2 The binding energies (kcal/mol) and OK binding enthalpies (in parentheses) for

SiH4---BH3, SiHs---B,Hg and SiH4---BCl; complexes calculated at MP2/aug-cc-pVTZ. The

fourth and fifth columns show the binding energies and OK enthalpies obtained if the partial

frozen core or frozen core approximations are invoked, respectively. The binding energies

obtained using MCPs are in the last column.

MP2 CCSD(T) MP2 MP2 Model Core Potential
Binding Energy
aug-cc-pVTZ aug-cc-pVTIZ aug-cc-pVTZ aug-cc-pVTZ
(kcal/mol)
(full core correlation) | (full core correlation) (partial frozen core) (frozen core)
SiH4 — BH3 159 (11.2) 14.8 15.8(11.1) 11.9 (7.3) 11.0
SiH4 — B2H6 2.2(1.4) 2.2 2.1(1.4) Fails to locate a 1.3
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minimum

SiH4 — BCI3

4.4 (3.6)

4.1

43(3.5)

2.4(1.7)

32

Table 3 The binding energies (excluding ZP corrections) extrapolated to the CBS limit for

both MP2 and CCSD(T) levels of theory. In both cases, the partially frozen core results are

used for the extrapolation. The OK binding enthalpies are in parentheses.

MP2

Partial Frozen Core

CCSD(T)

Partial Frozen Core

SiH4 - BH3 13.1 (8.3) 11.9 (7.3)
SiH4 --- B2H6 1.7 (1.0) 1.7 (1.0)
SiH4 --- BCI3 2.1(1.3) 1.6 (0.8)
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Chapter 7 Conclusion

The body of this dissertation is dedicated to the study of various types of
intermolecular interactions in the framework of the effective fragment potential method
(EFP). Localized molecular orbital (LMO) plays a central role in EFP, as well as the other
fragmentation methods, cluster-in-molecules (CIM), employed in Chapter 5 of this
dissertation.

The projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) onto the
SCEF virtual space selects a ‘chemically important’ subset of the full virtual space called
valence virtual space. Diagonalization of the Fock matrix in this much smaller valence
virtual space gives rise to the valence virtual orbitals (VVOs). Accuracy-wise, the EFP
charge transfer (CT) energies obtained by using the occupied MOs + VVOs are generally as
accurate as those obtained with full virtual space. The ‘quasiatomic’ attribute of QUAMBOs
makes the CT energies much less dependent on the choice of basis set. Because the number
of QUAMBOs is identical to the number of minimal-basis MOs of a molecule, the
computational cost for CT energy and gradient are dramatically reduced.

The R term in the dispersion expansion is developed in the framework of EFP
formulated with Cartesian polarizability tensors over imaginary frequencies. The
formulation is developed both in terms of molecular and LMO polarizabilities. The contrast
between the R dispersion term (E7) and R dispersion term (E6) is very great: E7 is highly
anisotropic while isotropic approximation for E6 is fairly good. E6 is always attractive while
E7 can be either attractive or repulsive. Although E7 has a rotational average of zero, its

importance should not be underestimated for solid-phase structures and constrained
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reactions. The difference between the dispersion energies calculated with molecular and
LMO polarizabilities is a manifestation of different expansions of the interaction operator
truncated at a finite order. By comparing E6+E7 values with benchmarking symmetry-
adapted-perturbation-theory (SAPT) dispersion energies, it is concluded that the dispersion
expansion is not converged and at least the next term in the expansion, R™® term, should be
added.

The exchange repulsion Fock operator (V*}) is derived by taking the variational
derivative of the exchange repulsion energy between ab initio molecule and EFP potential
(QM-EFP). The QM-EFP V*} is added to the ab initio Fock operator during the self-
consistent field iterations. The current implementation of QM-EFP V*® and E*® allows the
presence of more than one EFP fragments. The agreement between QM-EFP and RVS
exchange repulsion energies is within 4 kcal/mol for small clusters. The fully analytic
gradients of QM-EFP energies with respect to both ab initio atom and EFP centers have
been derived and implemented.

Currently EFP can only deal with closed-shell systems. The user makes the decision
about the fragmentation when generating EFP potentials (MAKEFP). Each molecule in the

system is typically treated as one EFP fragment.

Anionic water clusters (H 20);, finite analogs of the solvated electron, are open-
shell systems with rather diffuse excess electron density. Such systems are usually

extremely difficult to deal with by fragmentation methods (a benzene ring should not be

fragmented due to its delocalized m cloud). Moreover, the complexity of the potential energy

surfaces of (H 2O); grows rapidly. CIM, a local correlation approach, in combination with

CR-CC(C(2,3) provides a ‘black-box’ type calculation for (H 2O) . The CIM fragments are

n
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defined through LMO domains rather than atom domains. By reducing the threshold

parameter § to 0.001 as a trade-off between accuracy and computational cost, CIM/CR-

CC(2,3) approach can predict the vertical electron binding energies with the RMS error ~
2.34 kcal/mol. The cluster size that can be studied by CIM/CR-CC(2,3) is significantly
increased compared to full ab initio calculations with the same basis set.

Equilibrium structures and binding energies of gas-phase molecular complexes,
SiH4---BH3, SiH4---B,Hg and SiH4---BCl3, were determined using second-order Moller-
Plesset perturbation theory (MP2) at aug-cc-pVTZ basis set. It was realized that the core
electrons, especially outer core electrons, play a crucial role in predicating the structures and
binding enthalpies for all three complexes. There are no transition states found for all three
complexes at 0 K along the pathway of complex formation. The binding enthalpies of the
three complexes were evaluated from 0 K to their respective dissociation temperatures. The
binding enthalpies of all three complexes increase slightly followed by a monotonic
decrease as the temperature rises.

As much as fragmentation approaches are advocated in this dissertation, it is
important to realize the shortcoming and limitation of the approach. Approximations of
different severity are applied to both the Hamiltonian and the wave function. Of course even
the so called ab initio methods contain approximations. It is important to distinguish
approximations and fitting: approximations are based on mathematical or sensible
physical/chemical arguments while fitting is empirical even if the process of obtaining the
fitted parameters is systematic. An extremely important attribute of EFP that separates it
from many other model potentials is that there is no fitting and all the terms are derived

from first-principle with truncated expansions. Consequently EFP can be improved
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systematically, not through ad hoc attempts (e.g. the R dispersion term is a systematic
improvement). Another more subtle point is that clearly defined approximations allow users
to decide whether a method can be applied to a specific system, e.g. EFP would not be
employed for the SiH4---BH3 complex since the intermolecular interactions between core

orbitals of different molecules are considered tiny and are neglected in EFP.
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