
Automatic Energy Schemes for High Performance Applications

by

Vaibhav Sundriyal

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Masha Sosonkina, Co-major Professor

Zhao Zhang, Co-major Professor

Philip Jones

Ahmed Kamal

Mark Gordon

Iowa State University

Ames, Iowa

2013

Copyright c© Vaibhav Sundriyal, 2013. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vii

ACKNOWLEDGEMENTS . xii

ABSTRACT . 1

CHAPTER 1. INTRODUCTION . 2

1.1 Effects of Dynamic Voltage and Frequency Scaling and CPU Throttling on Com-

munication . 5

1.1.1 Power Consumption Estimate for Multicore Nodes. 9

1.1.2 Types of Distributed Communication Operations 10

1.1.3 Runtime System Encompassing Point-to-point and Collective Communi-

cations . 11

1.2 Thesis Organization . 12

CHAPTER 2. Energy-Aware Collective Communication Algorithms 13

2.1 All-to-all . 13

2.2 Allgather . 16

CHAPTER 3. Runtime Procedure . 19

3.1 Analysis . 19

3.1.1 Sequence . 20

3.1.2 Watching . 22

3.1.3 Recording . 22

3.1.4 Scaling . 23

iii

CHAPTER 4. GAMESS . 30

4.1 Overview of Quantum Chemistry Package GAMESS 30

4.2 GAMESS Energy Characteristics . 31

4.2.1 The 4x4 Execution Configuration . 32

4.2.2 The 4x1 Execution Configuration . 34

4.2.3 Power profile of Self Consistent Field Phases 35

4.2.4 Energy Consumption Model . 37

4.2.5 Model Verification . 42

4.3 Mapping . 45

CHAPTER 5. Modified Runtime System . 49

5.1 Communication Phase Detection . 49

5.2 System Design . 51

5.2.1 Phase Detection . 51

5.2.2 Recording . 53

5.2.3 Frequency Scaling . 53

CHAPTER 6. Experimental Results . 61

6.1 Energy Aware Collective Communication Algorithms 63

6.2 Runtime System . 69

6.2.1 Phase Characterization of the Applications Tested 69

6.2.2 NAS Benchmarks: Energy Savings with DVFS 70

6.2.3 GAMESS: Energy Savings with DVFS 72

6.2.4 Throttling . 76

6.3 Modified Runtime System . 76

6.3.1 Characterization of the Applications Tested 76

6.3.2 CPU and Memory Power Consumption 78

6.3.3 Frequency Scaling with DVFS and Throttling 79

CHAPTER 7. Related Work . 84

iv

CHAPTER 8. Conclusions and Future Work 87

8.1 Power Consumption Aware Techniques . 89

8.2 Frequency Scaling in GPUs . 90

v

LIST OF TABLES

1.1 Given performance loss tolerance δ=10%, the selection (Case) of core

throttling levels (Level) based on the communication type (Type) and

message size (Size L) from 0 to the largest possible L̂. 9

4.1 Input set of molecules. 32

4.2 Regression coefficients for determining the average power consumption

at a given frequency. 39

4.3 CN and PE power for Saxitoxin direct mode. 43

4.4 On-chip and off-chip times for input molecules in the FScal platform. . 43

4.5 CN energy consumption in the direct mode on three lower frequencies

for the input molecules in the FScal platform, normalized with respect

to the highest frequency. Frequencies (in GHz) are f1 = 3.0, f2 = 2.67,

f3 = 2.33, and f4 = 2.0. 44

4.6 Data substituted into the theoretical model to determine the feasibility

of the CN energy consumption for different frequencies. 44

6.1 Effective operational frequency (fop) at a combination of the 2 GHz

P-state and one of the T-states (Level) used. 64

6.2 Average percentage of the EDP reductions in all the experiments for

the three energy saving strategies. 68

6.3 Application characterizations by the runtime procedure. (The average

call and phase lengths, CallLen and PhaseLen, are given in microseconds.) 69

vi

6.4 Energy-delay product (EDP) values for the three proposed bindings

under the aggressive frequency scaling strategy normalized to the EDP

of the Disjoint-I binding operated at the highest frequency. 75

6.5 Characterization of NAS, CPMD, and pARMS tests (column TName)

by the proposed runtime system. The number of phases detected is

shown in column PhN. The average call and phase lengths, CLen and

PhLen, are in microseconds, respectively. The column CTypes gives

the MPI call types as observed in the phases. 78

vii

LIST OF FIGURES

1.1 DVFS (2 GHz) with different throttling states affecting idle power con-

sumption of a node. 3

1.2 MPI ping-pong test to determine the effect of the lowest DVFS (2 GHz)

on the internode communication (left) and intranode communication

(right). The performance loss percentage of the highest DVFS frequency

is shown in the y-axis. 6

1.3 MPI ping-pong test to determine the effect of the lowest DVFS (2 GHz)

and CPU throttling on intranode communication. Vertical lines indicate

the message sizes at which the performance loss of 10% is reached. . . 7

1.4 CPU throttling with DVFS at 2 GHz in internode communications for

messages (left) smaller and (right) larger than 8 KB. Vertical line indi-

cates the message size at which the performance loss of 10% is reached. 8

2.1 The first four communication steps of the Bruck Index all-to-all algo-

rithm on three nodes with two sockets (shown as rectangles) and eight

cores (ovals) each. Internode communications are shown as straight

arrows across the node boundaries. 14

2.2 Energy saving strategy for the all-to-all operations with the throttling

level selection based on the message size (per Table 1.1). 15

2.3 Energy saving strategy for the allgather operations with the throttling

level selection based on the message size (per Table 1.1). 17

2.4 The RA communication pattern for the block (left) and cyclic (right)

rank placements. Arrows indicate the communication direction. 18

viii

3.1 Sequence recognition and phase grouping 20

3.2 State diagram for runtime procedure to apply energy savings efficiently.

The transitions are labeled with Lt, where L takes a value of the first

11 letters of the alphabet The transition of a state into itself (At, Et,

Ft, It) indicate ongoing state action. 21

3.3 Trace of an MPI application invoking eight MPI Send and MPI Recv

calls with a phase length of four. (The calls within a phase are ordered

lexicographically from a to d.) . 23

3.4 An Intel Xeon E5450 processor within one socket, having four physical

cores. A physical core has an L1 cache and a shared L2 cache, such that

pairs of core processing units (PUs)—(P#0, P#4), (P#2, P#6)—each

share an L2 cache. 26

3.5 Overlapping of communication phases in a pair twin-cores that share

the L2 cache. The phase boundaries are marked as vertical dashed and

dash-dotted for core 0 and core 4, respectively. 27

3.6 Grouping of the communication phases detected for rank 0 of the MG

NAS benchmark. The capital letters followed by the double dots rep-

resent communication phases followed by interphase gaps, respectively.

A single group (shown as solid oval) has been found and the two corre-

sponding subsequences are enclosed into the ovals denoting this group. 28

4.1 4x4 configuration: (a) Execution time, (b) Average power consumption,

and (c) Energy consumption normalized with respect to the direct mode

for the input molecules shown on the x axes in the ascending order of

their I/O requirements. 33

4.2 4x1 configuration: (a) Execution time, (b) Average power consumption,

and (c) Energy consumption normalized with respect to the direct mode

for the input molecules shown on the x axes in the ascending order of

their I/O requirements. 35

ix

4.3 Power profiles for some molecules in the 4x4 configuration. 36

4.4 Power profiles for some molecules in the 4x1 configuration. 37

4.5 Average power consumption of input molecules for direct mode on the

four frequencies of FScal platform. 39

4.6 Computation times ratio τ for input molecules normalized with τ for

Quinine (FScal platform). 39

4.7 Normalized energy consumption of PE and CN for Saxitoxin in direct

mode. 45

4.8 Variation of energy consumption with performance loss for Saxitoxin in

direct mode. 46

4.9 Three bindings of GAMESS data server (D) and compute (C) processes:

(a) Disjoint-I, (b) Disjoint-II, and (c) Slave, for Each compute node has

two quad-core processors arranged as two sockets. Twin cores share the

L2 cache. 46

5.1 Phase detection and string manipulation for master string with (a) con-

secutive and (b) nonconsecutive communication phases. 50

5.2 State diagram for runtime system to apply frequency scaling efficiently.

The transitions are labeled with Lt, where L takes a value A–G. The

transition of a state into itself (At, Bt, Ct) indicate ongoing state action. 51

5.3 Trace of an MPI application invoking eight MPI calls with a phase length

of four. (The calls within a phase are ordered lexicographically from a

to d.) . 54

5.4 Grouping of the communication phases detected for rank 0 of the MG

NAS benchmark. The capital letters followed by the double dots rep-

resent communication phases followed by interphase gaps, respectively.

A single group (shown as solid oval) has been found and the two corre-

sponding subsequences are enclosed into the ovals denoting this group. 57

x

6.1 3D geometrical structure of the TCMS molecule (silicon, carbon, oxy-

gen, nitrogen, chlorine and hydrogen atoms are shown as pink, gray,

red, blue, green, and white balls, respectively). The molecular skeletal

formula is inserted on the right. 63

6.2 The all-to-all performance degradation on 80 cores (left) for three cases

and the power consumption across a compute node (right) for the four

cases: Executing at the highest frequency and no throttling (Full power);

only frequency scaling without throttling (DVFS only); only CPU throt-

tling without frequency scaling Throttling only; and using the energy

saving strategies proposed for all-to-all (Proposed). 64

6.3 The allgather performance degradation on 80 processes (left) for three

cases and the power consumption across a compute node (right) for the

four cases: Executing at the highest frequency and no throttling (Full

power); only frequency scaling without throttling (DVFS only); only

CPU throttling without frequency scaling Throttling only; and using

the energy saving strategies proposed for allgather (Proposed). 66

6.4 Execution time (top) and energy consumption (bottom) of 11 CPMD

inputs on 80 cores and of 2 NAS benchmarks on 64 processes for the

DVFS only, Throttling only, and Proposed cases normalized to the

Full power. The last set of bars (Average) represent the average of

the respective y-axis values across all the CPMD and NAS tests. . . . 67

6.5 Execution time (left) and energy consumption (right) of five Elemen-

tal algorithms—Cholesky (Chol), Triangular inverse (Inv), LU decom-

position (LU), Hermitian eigensolver (Hegst), and LDLT factorization

(LDLT)—on 80 cores for the DVFS only, Throttling only, and Proposed

cases normalized to the Full power. The last set of bars (Average)

represent the average of the respective y-axis values across the five Ele-

mental algorithms. 68

xi

6.6 Execution time and energy consumption of the NAS MG and CG bench-

marks for the different DVFS strategies normalized to the case when all

the processes operate at the highest frequency. (Results below 1 are

better.) . 71

6.7 (a) Execution time and (b) energy consumption of the two Silatrane

computations under Disjoint-I process mapping for the different DVFS

strategies, normalized to the case when Disjoint-I binding is operated

at the highest frequency. (Results below 1 are better.) 73

6.8 (a) Execution time and (b) energy consumption of the two Silatrane

computations under Slave process mapping for the different DVFS

strategies, normalized to the case when Disjoint-I binding is operated

at the highest frequency. (Results below 1 are better.) 74

6.9 (a) Execution time and (b) energy consumption of the two Silatrane

computations under Disjoint-II process mapping for the different DVFS

strategies, normalized to the case when Disjoint-I binding is operated

at the highest frequency. (Results below 1 are better.) 75

6.10 CPU power consumption for CG benchmark. 79

6.11 Normalized execution time of the NAS, pARMS, and CPMD tests for

the different frequency scaling strategies. (Results below 1 are better.) 81

6.12 Normalized energy consumption of the NAS, pARMS, and CPMD tests

for the different frequency scaling strategies. (Results below 1 are better.) 82

8.1 Frequency scaling range for the K20 Tesla GPU obtained through nvidia-

smi . 90

xii

ACKNOWLEDGEMENTS

I am very grateful to Dr. Masha Sosonkina for being an understanding guide who is always

willing to hear the other person and, for supporting me through ups and downs of my research.

I thank her for her numerous hours spent on revising the manuscripts to bring them to the

highest standards — providing me an invaluable learning experience in the process. She has

always managed to give me time for discussions in spite of her busy schedule, yet, our meetings

have never been during the late hours or the weekends. This balanced approach towards work

and personal life is one of the most admirable things about her. I am also grateful to Dr. Zhao

Zhang for providing me useful inputs in my research through out my stint at Ames Laboratory.

His lectures proved to be a major factor in choosing my area of research for this thesis.

I am very thankful to my other committee members Dr. Philip Jones, Dr. Ahmed Kamal

and Dr. Mark Gordon for their valuable time and inputs on my research. I am very thankful

to my lab members for providing me with a friendly environment and for their support in my

research. I thank all the departmental staff for their timely help.

I gratefully acknowledge the support received from in part by Ames Laboratory and Iowa

State University under the contract DE-AC02-07CH11358 with the U.S. Department of Energy,

by the Air Force Office of Scientific Research under the AFOSR award FA9550-12-1-0476, and

by the National Science Foundation grants NSF/OCI—0941434, 0904782, 1047772.

I am very grateful to my parents and family members for supporting me to come here for

PhD and, for their love and care in my life.

I am very grateful to God for always arranging the best for me and for all the gifts in

life. I am very grateful to my friends in Ames, whose unconditional support has helped me in

countless ways in my PhD and in leading a wholesome life.

1

ABSTRACT

Although high-performance computing traditionally focuses on the efficient execution of

large-scale applications, both energy and power have become critical concerns when approach-

ing exascale. Drastic increases in the power consumption of supercomputers affect significantly

their operating costs and failure rates. In modern microprocessor architectures, equipped with

dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the

power consumption may be controlled in software. Additionally, network interconnect, such

as Infiniband, may be exploited to maximize energy savings while the application performance

loss and frequency switching overheads must be carefully balanced. This work first studies two

important collective communication operations, all-to-all and allgather and proposes energy

saving strategies on the per-call basis. Next, it targets point-to-point communications to group

them into phases and apply frequency scaling to them to save energy by exploiting the ar-

chitectural and communication stalls. Finally, it proposes an automatic runtime system which

combines both collective and point-to-point communications into phases, and applies throttling

to them apart from DVFS to maximize energy savings. The experimental results are presented

for NAS parallel benchmark problems as well as for the realistic parallel electronic structure

calculations performed by the widely used quantum chemistry package GAMESS. Close to the

maximum energy savings were obtained with a substantially low performance loss on the given

platform.

2

CHAPTER 1. INTRODUCTION

The last few decades have witnessed a tremendous rise in the design of scalable applications

for various scientific domains. Their computational requirements force system engineers to de-

velop ever more performance-efficient architectures. As a result, power consumption is rapidly

becoming a critical design constraint in modern high-end computing systems. For example,

according to an U.S. Department of Energy guidelines [44], to sustain an exaflops machine, its

power consumption cannot go beyond ten-fold that of the current petaflops machines, meaning

that for a 1000-fold increase in performance, the increase in power consumption may not accede

ten-fold. Moreover, if the focus of the high-performance computing (HPC) community is only

to maximize application performance, the computing system operating costs and failure rates

can reach prohibitive levels.

A wide range of HPC applications rely on the communication libraries implementing the

Message Passing Interface1 (MPI), which has become a de facto standard for the design of par-

allel applications. It defines both point-to-point and collective communication primitives widely

used in parallel applications. Researchers in the past have proposed energy-aware techniques in

MPI [32, 16] by identifying communication phases in the execution of parallel application which

are not compute intensive and then applying dynamic voltage and frequency scaling (DVFS)

during those phases. However, most of these studies do not apply energy saving strategies

within collective operations. For example, in [32], authors identify the communication phase

as several MPI calls, all lasting long enough to apply DVFS without a significant overhead.

Conversely, collective operations are studied in this work on the per-call (fine-grain) basis as

opposed to a “black-box” approach, which treats communication phase as indivisible operation

contributing to the parallel overhead. The appeal of fine-grain per-call approach to energy

1MPI Forum: http://www.mpi-forum.org

http://www.mpi-forum.org

3

T0 T1 T2 T3 T4 T5 T6 T7
142

144

146

148

150

152

154

156

158

160

Throttling States

P
ow

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Figure 1.1 DVFS (2 GHz) with different throttling states affecting idle power consumption of
a node.

saving grows with the advent of large-scale computing platforms in which the the number of

communicating processes is increasing rapidly. In particular, for such platforms a collective op-

eration would amount to a large multitude of point-to-point communications grouped together

and essentially present a communication phase in itself. Furthermore, to retain algorithmic

efficiency, energy saving strategies are being incorporated within the existing algorithms used

for executing the collective operations. In this work, the initial steps of which were described

in [48], both the type of a collective communication and the amount of data to be transferred

are considered to obtain energy saving with the DVFS in conjunction with the CPU throttling.

Being widespread in parallel applications, the all-to-all and allgather operations are addressed

here. By definition, a collective operation requires the participation of all the processes in a

given communicator. Hence, such operations incur a significant amount of the network phase

during which there exist excellent opportunities for applying energy saving techniques, such as

DVFS and CPU throttling.

CPU Throttling and Idle Power Consumption. It was noticed that idle power con-

sumption of a node increases as a higher level of throttling is applied. In the idle state of the

system a loop executes which consists of the HLT assembly language instruction to save power.

For example, Fig. 1.1 shows the change in the idle power consumption of a node at 2 GHz with

various T-states. Note that, although the idle power of a node refers to the power consumed

when the processor is idle, an augmentation in the T-states increases this power. This increase

may be attributed to the CPU throttling causing the CPU to reach a higher CPU power mode,

4

also called C-state2, less often and, thus, to draw more power. The operating system kernel in-

stalled on the node does not have a tickless scheduler and has frequency of 1000 Hz. Not having

a tickless scheduler may also affect this power consumption as suggested in [45], for example.

However, contrary to a popular view that throttling is useless for the processors equipped with

DVFS and despite this negative effect, it is a viable option when used in conjunction with

DVFS.

CPU Throttling and Dynamic Voltage and Frequency Scaling(DVFS) in In-

tel Architectures. The current generation of Intel processors provides various P-states for

DVFS and T-states for throttling. In particular, the Intel “Core” microarchitecture, which

provides four P-states and eight T-states from T0 to T7, where state Tj refers to introducing

j idle cycles per eight cycles in CPU execution. The delay of switching from one P-state to

another can depend on the current and desired P-state and is discussed in [37]. The user may

write a specific value to model-specific registers (MSRs) to change the P- and T-states of the

system.

The CPU throttling can be viewed as equivalent to dynamic frequency scaling (DFS) [4]

because, by inserting a given number of idle cycles in the CPU execution, a particular operating

frequency is obtained without changing the operating voltage of the cores. Hence, DFS is less

effective than DVFS in terms of power saving but, when used with conjunction with DVFS, it

may result in significant reduction of power across a compute node.

Notes on Infiniband. The Infiniband interconnect has become one of most popular

standards marking its presence in more that 43% of the systems in the TOP 5003 list. Several

network protocol layers are offloaded to the host channel adapters (HCA) in an Infiniband4

network. Here, MVAPICH25 implementation of MPI, which is designed for Infiniband networks,

is considered. Infiniband offers two modes of message progression: polling and blocking. Even

though blocking mode consumes less power than polling, a lower communication overhead is

2Advanced Configuration and Power Interface: http://www.acpi.info
3http://www.top500.org
4http://www.infinibandta.org
5http://mvapich.cse.ohio-state.edu

http://www.acpi.info
http://www.top500.org
http://www.infinibandta.org
http://mvapich.cse.ohio-state.edu

5

incurred with the polling mode, in which an MPI process constantly samples for the arrival

of a new message rather than the with blocking, which causes CPU to wait for an incoming

message. Therefore, MVAPICH2 uses the polling communication mode by default. A detailed

comparison of these two modes for the all-to-all operation is done in [26], where the high

overhead introduced by blocking mode is demonstrated. Additionally, on the platform used in

this work, the average performance loss observed was 19%–340% with power savings of 2%–34%

for the blocking mode when compared to polling one.

1.1 Effects of Dynamic Voltage and Frequency Scaling and CPU

Throttling on Communication

Since collective operations are developed on top of point-to-point communication operations,

it is reasonable to analyze first the DVFS and CPU throttling effects on the latter operations.

In particular, this section explores possibilities to apply these frequency scaling techniques with

respect to two factors, message size and communication type (inter- or intranode), which are

deemed to affect significantly the energy saving potential in any multicore computing environ-

ment. Although the investigation was performed with a certain Intel processor architecture

using the Infiniband to connect the nodes, the obtained results lead nevertheless to general

conclusions since there were no assumptions made on particular values or the number of the

C-states (only their relative ordering was used).

According to the theoretical models [54] estimating the time spent in a collective operation,

any increase in the point-to-point communication time should proportionally increase the time

spent in the collective operation. Therefore, a user may judiciously choose a performance loss

for the collectives by analyzing the behavior of point-to-point communications. Then appro-

priate DVFS and CPU throttling levels may be selected to minimize the energy consumption

during a collective operation with the chosen performance loss. In this work, a performance

loss threshold of δ=10% is considered and the collective communication algorithms are studied

in detail to exploit opportunities for energy savings within them on a fine-grain level. Alterna-

tively, one may consider the so-called energy-delay product (EDP) and its variants in order to

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.2

0.4

0.6

0.8

1

1.2

Message Size (KB)

Pe
rfo

rm
an

ce
 L

os
s

(%
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

Message Size (KB)

Pe
rfo

rm
an

ce
 L

os
s

(%
)

Figure 1.2 MPI ping-pong test to determine the effect of the lowest DVFS (2 GHz) on the
internode communication (left) and intranode communication (right). The perfor-
mance loss percentage of the highest DVFS frequency is shown in the y-axis.

measure the energy savings (see, e.g., [34]). EDP has a clear advantage over measuring “raw”

power consumption since it accounts for the execution time as well. So, there is no tempta-

tion to run an application as slow as possible to gain in energy efficiency. Although EDP is a

preferred general-use metric for high-performance applications, adhering to a performance loss

tolerance set by a knowledgeable application user or keeping the performance loss as small as

possible may work just as rigorously.

Fig. 1.2(left) and Fig. 1.2(right) depict the degradation in the point-to-point internode and

intranode communication time, respectively, when two communicating processes are operated

at the the lowest frequency as compared with the highest. A ping-pong communication test

is chosen to evaluate the effect of frequency scaling because this is a typical way to use point-

to-point communications in MPI. The plots in Fig. 1.2 show the average performance loss

of about 1%; thus, the effect of the DVFS on both internode and intranode point-to-point

communications is minimal. Therefore, they can safely be operated at the lowest frequency

of the processor. It can be noted here that the DVFS and CPU throttling for evaluating

point-to-point communications were applied only on the cores on which the processes were

executing.

If a DVFS switch is applied for every single communication call, it may result in a sig-

nificant performance loss because of the DVFS overhead which is present in the majority of

the commodity processor types from Intel and AMD processor types. For this reason, the

research in [32] focuses on developing a phase-detection framework that dynamically identifies

the communications phases in an application and applies DVFS per phase rather than per

7

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
0

5

10

15

20

25

30

35

 T1
T2

Message Size (KB)

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

100 KB 1.4 MB

Figure 1.3 MPI ping-pong test to determine the effect of the lowest DVFS (2 GHz) and CPU
throttling on intranode communication. Vertical lines indicate the message sizes
at which the performance loss of 10% is reached.

communication call. For collective communications, however, the impact of DVFS overhead on

overall performance decreases rapidly as the number of communicating cores increases because

the collectives may be viewed as a bundle of several point-to-point communications from an

algorithm implementation viewpoint.

Selecting Appropriate CPU Throttling Levels. Since DVFS reduces both frequency

and voltage of the processor cores, it saves more power than CPU throttling, which reduces

only the frequency, if both are used separately. Thus, DVFS should be always reduced first to

its lowest value and only after that the throttling level should be increased.

The drawback of the CPU throttling is that it may result in significant performance loss for

the intranode communication. Fig. 1.3 depicts the performance degradation in intranode point-

to-point communication from the case when the communicating cores operate at the highest

frequency to the one at the lowest frequency, while in different T-states. The results are shown

for the states T1 and T2 only because higher T-states produce a performance degradation greater

than 10% for all the message sizes. By comparing Fig. 1.2(right) and Fig. 1.3, it is observed

that, with just one idle CPU cycle, the average performance loss increases from 1.5% to 15%.

Fortunately, as the message size grows, the performance loss decreases when CPU throttling is

applied, which also has been noticed in [33].

Fig. 1.4 shows the performance degradation in the internode communication time with

DVFS and various throttling states. This communication time is much less affected by the

8

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

 T1
T2
 T3
 T4
 T5
 T6
 T7

Message Size (KB)

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

16 516 1016 1516 2016 2516 3016 3516 4016 4516
0

2

4

6

8

10

12

14

16

18

20

 T1
 T2
T3
 T4
 T5
 T6
T7

Message Size (KB)

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

0.6 MB

Figure 1.4 CPU throttling with DVFS at 2 GHz in internode communications for messages
(left) smaller and (right) larger than 8 KB. Vertical line indicates the message size
at which the performance loss of 10% is reached.

CPU throttling as compared with the intranode communication because, for the internode

message transfers, the remote dynamic-memory access (RDMA) offloads a large part of the

communication processing to the network interface cards (NICs) (see [33]). Thus, the processor

involvement in internode message transfers is minimal and higher throttling states may be used

safely.

Fig. 1.3 indicates (see vertical lines) that the performance loss is no higher than 10% when

the throttling state T1 is applied to the messages greater than 100 KB and, after the 1.4 MB,

the state T2 may be used during the intranode communication. Similarly, from Fig. 1.4, it may

be inferred that 0.6 MB is the message size corresponding to the throttling level switch (from T5

to T7) so the chosen performance loss is not exceeded for the internode communication. If a

processing core is not involved in any communication during the collective operation, then it

can be operated at the highest throttling level T7. It can be noted that performance loss of

10% is the maximum performance loss that an application suffers from since the collective

communication may form only a portion of the parallel execution of that application.

For the given computing environment and performance loss of 10%, Table 1.1 summarizes

the appropriate CPU throttling levels depending on the type of communication and message

size. In a different environment, the message size intervals and the throttling level numbers may

differ. However, the deduced general principles of the DVFS and CPU throttling application

9

Table 1.1 Given performance loss tolerance δ=10%, the selection (Case) of core throttling
levels (Level) based on the communication type (Type) and message size (Size L)
from 0 to the largest possible L̂.

Case Type Size L Level

I
Intranode

[100KB, 1.4MB[T1
II [1.4MB, L̂] T2
III

Internode
[1B, 0.6MB[T5

IV [0.6MB, L̂] T7
V None 0 T7

will hold. Specifically,

◦ DVFS may remain at the lowest state during the entire communication regardless of the

message size.

◦ Intranode communications may suffer from high throttling levels. while the internode com-

munications are not affected as much by throttling.

◦ For the intranode, choose the lowest T-state for small message sizes, while the next level up

may be selected for bigger ones.

◦ For the internode, choose the highest T-state for large message sizes and decrease it for small

messages.

◦ If a core is idle during the communication it may be operated at the highest T-state.

Finally, note that collective communications are blocking in nature and, therefore, reducing

the processor frequency during their operation will not slow down the computational portion

of an application.

1.1.1 Power Consumption Estimate for Multicore Nodes.

Both DVFS and CPU throttling are employed in this work to obtain energy saving, so there

is need to understand the relationship between these two techniques and their relative efficacy.

In addition, it would be beneficial to predict how the proposed energy saving strategies work

a platform with a large number of cores. Therefore, a theoretical power consumption estimate

is presented and experimentally verified here for a multicore node.

Let a multicore compute node have frequencies fi, (i = 1, . . . ,m), such that f1 < . . . < fm,

and throttling states Tj , (j = 0, 1 . . . , n). When all the c cores of the node execute an application

10

at the frequency fi, each core consumes the dynamic power pi proportional to f3i as has been

shown in [8]. Let Pi,j be the power consumed by the entire node at the frequency fi and

throttling state Tj ; P̄i,j be the total idle power consumption of a node at the frequency fi and

throttling level Tj , and Pd be the dynamic power consumption of the compute node components

different from the processor (e.g., memory, disk, and NIC). Then, the power consumption of a

node with no idle cycles, i.e., at T0, may be defined as

Pi,0 = c× pi + P̄i,0 + Pd (1.1)

to give an idea how the frequency scaling affects the power consumption. This expression may

vary with the application characteristics since each application may have a different power

consumption pattern depending of its utilization of the compute node components. When the

nonzero level of throttling Tj , (j 6= 0) is used, equation Equation (1.1) becomes

Pi,j =
j × (P̄i,j + Pd) + (n− j)Pi,0

n
. (1.2)

To determine the idle power consumption of a node P̄i,j , Fig. 1.1 and equation Equation (1.2)

may be used. For example, the node power consumptions at the lowest frequency f1 and no

throttling, P1,0, and with the T7 throttling level, P1,7, are 148 and 158 watts, respectively,

according to Fig. 1.1. Then, the idle power P̄1,7 at f1 and T7 is found to be around 160 watts

by substitution into equation Equation (1.2) and with assumptions of eight T-states and no

dynamic power consumption. To predict the entire node power for the proposed energy saving

strategies, the Pd of such components as memory and NICs has to be also considered. For the

memory dynamic power consumption, an extrapolation method discussed in [14] has been used

to obtain 10 watts consumed by memory in the all-to-all operation for 1 MB message size.

1.1.2 Types of Distributed Communication Operations

A collective operation is considered as a multitude of point-to-point communications grouped

together, essentially presenting a single communication stream. Since the rank6 sequences of

6For the sake of brevity throughout this work, the “rank” will denote either the destination or source neighbor

rank depending on whether the sending or receiving operation is considered, respectively.

11

the point-to-point transfers within a collective communication are typically known during the

collective algorithm execution, the places to apply DVFS and throttling may be determined

in advance for a given message size. For example, an a priori algorithmic analysis of the

MPI Alltoall algorithms reveals that, for a few initial iterations, every core undergoes intran-

ode communications after which the communication becomes purely internode. Thus, different

throttling states may be preselected while the DVFS is lowered to the maximum at the start of

MPI Alltoall and raised back to the highest level in the end. A single point-to-point commu-

nication is, on the other hand, just one call per given processor rank. Therefore, its frequency

scaling on the percall basis, as was done for collectives, may easily result in a significant parallel

performance degradation due to the switching overhead. Nevertheless, it is desirable to decrease

the energy consumption during the point-to-point communications, in addition to collectives,

because they may constitute a significant portion of the execution (often more than 10%); and

applications communicating heavily in the point-to-point fashion are abundant. Therefore, this

work focuses on a class of point-to-point communications as provided by the MPI standard.

By considering test cases from the NAS benchmark suite [5], this work validates a proposed

runtime procedure that groups several point-to-point communications, aiming to reduce the

overhead from the DVFS and throttling. Next, it applies this procedure to realistic electronic

structure calculations performed by the widely-used GAMESS quantum chemistry package [19,

43], which is capable of performing molecular structure and property calculations by a rich

variety of ab initio methods. An estimated user base of 150, 000 comes from more than 100

countries. The GAMESS communication library, which has been custom-built, is based on the

partitioned global address space (PGAS) concepts.

1.1.3 Runtime System Encompassing Point-to-point and Collective Communica-

tions

The phase-detection mechanism proposed in [51] cannot be simply extended to encompass

both point-to-point and collective communications and the proposed frequency scaling strategies

did not combine DVFS and throttling. A modified runtime system is proposed here that detects

communication phases in parallel applications transparently to the application code and com-

12

munication library and without any prior knowledge of the parallel application communication

characteristics. Once the communication phases are detected, a particular frequency is chosen

based on the proposed frequency scaling strategies and the library-specific implementations of

communication calls. To illustrate the latter, a few examples from an MPI implementation of

collective calls are provided. By considering test cases from the NAS benchmark suite [5], as

well as real-world applications in molecular dynamics (CPMD7) and iterative parallel linear

system solver (pARMS [31]), the proposed runtime system is validated.

1.2 Thesis Organization

This thesis is organized as follows: In Chapter 2, the design and implementation of energy

aware collective communication algorithms is discussed.

In Chapter 3, the runtime procedure to obtain energy saving in point-to-point communications

is proposed.

In chapter 4, the energy characteristics and the application of the runtime procedure to the

quantum chemistry software GAMESS is discussed.

In Chapter 5, the modified design of the runtime procedure which applies frequency scaling to

both point-to-point and collective communications is discussed.

In Chapter 6, the experimental results are presented.

In Chapter 7, existing related works are reviewed.

In Chapter 8, the conclusions and future work regarding obtaining energy saving in GPUs is

discussed.

7CPMD Consortium: http://www.cpmd.org

http://www.cpmd.org

13

CHAPTER 2. Energy-Aware Collective Communication Algorithms

In this chapter, the algorithms for two collective operations, all-to-all and allgather as

implemented in MVAPICH2, are studied and strategies are proposed to minimize the energy

consumption during their algorithmic steps. For the findings from Section 1.1 to be employed

here, the intra- and internode communication types need to be determined within the collective

algorithms used as well as different message sizes considered in their implementations. Thus,

the proposed strategies will contain stages in accordance with the communication types and

each stage will have several cases based on possible message sizes.

Rank placement is directly related to the communication type. MVAPICH2 provides two

formats of rank placements on multicores, namely block and cyclic. In the block strategy, ranks

are placed such that any node j (j = 0, 1, . . . , N − 1) having c cores contains ranks from c× j

to c× (j + 1)− 1. In the cyclic strategy, all the ranks i belong to j if (i mod N) equals j. The

block rank placement has been chosen for the rest of the work due to several considerations,

outlined in the end of this section.

2.1 All-to-all

The MVAPICH2 implementations of all-to-all are based on three algorithms: 1) Bruck

Index, used for small (less than or equal to 8KB) messages with at least eight participating

processes; 2) Pairwise Exchange, used for large messages and when the number of processes

is a power of two; 3) Send To rank i + k and Receive From rank i − k, used for all the other

processor numbers and large messages. These algorithms are referred further in text as BIA,

PEA, and STRF, respectively.

14

4567 0123

8*N-48*N-38*N-28*N-1 8*N-88*N-78*N-68*N-5

12131415 891011

Node 1

Node 2

Node N

4567 0123

8*N-48*N-38*N-28*N-1 8*N-88*N-78*N-68*N-5

12131415 891011

Node 1

Node 2

Node N

Step 0 Step 1

4567 0123

8*N-48*N-38*N-28*N-1 8*N-88*N-78*N-68*N-5

12131415 891011

Node 1

Node 2

Node N

4567 0123

8*N-48*N-38*N-28*N-1 8*N-88*N-78*N-68*N-5

12131415 891011

Node 1

Node 2

Node N

Step 2 Step 3

Figure 2.1 The first four communication steps of the Bruck Index all-to-all algorithm on three
nodes with two sockets (shown as rectangles) and eight cores (ovals) each. Intern-
ode communications are shown as straight arrows across the node boundaries.

Bruck Index Algorithm first makes a local copy and then does an upward shift of the

data blocks from the input to output buffer. Specifically, a process with the rank i rotates its

data up by i blocks. The communication starts in a way such that, for all the p communicating

processes, in each communication step k (0 ≤ k < dlog2 pe), process i, (i = 0, . . . , p− 1), sends

to (i+ 2k) mod p (with wrap-around) all those data blocks whose kth bit is 1 and who receive

from (i − 2k) mod p. The incoming data is stored into the blocks whose kth bit is 1. Finally,

the local data blocks are shifted downward to place them in the right order. Fig. 2.1 shows N

nodes with c = 8 cores arranged as two sockets and the total number of p = 8N processors

performing the first four steps of the BIA. The rank placement is performed in block manner

using consecutive core ordering. It can be observed that, until the kth step where 2k < c, the

communication is still intranode for any core in the cluster. However, after the kth step, the

communication becomes purely internode for all the participating cores.

If M is the data size to be exchanged in the all-to-all operation, then in each step, a process

receives and sends L = (M × p)/2 amount of data. Therefore, appropriate throttling levels

15

Stage 1 At the start of all-to-all, scale down the frequency of

all the cores involved in the communication to the min-

imum. Throttle all the cores to Ti if

◦ BIA

− Case I: 100KB ≤ L < 1.4MB and i = 1.

− Case II: L ≥ 1.4MB and i = 2.

− Case III: i = 0.

◦ STRF and PEA

− Case I: 100KB ≤ L < 1.4MB and i = 1.

− Case II: L ≥ 1.4MB and i = 2.

− Case III: i = 0.

Stage 2 In step k of communication, throttle all the cores to Tj
if

◦ BIA: 2k ≥ c.
− Case I: L < 0.6MB and j = 5.

− Case II: L ≥ 0.6MB and j = 7.

◦ STRF: c ≤ k < p− c.
− Case I: L < 0.6MB and j = 5.

− Case II: L ≥ 0.6MB and j = 7.

◦ PEA: k > c.

− Case I: L < 0.6MB and j = 5.

− Case II:L ≥ 0.6MB and j = 7.

Stage 3 For STRF: throttle all the cores to Ti at step k = p−c.
Stage 4 At the end of all-to-all, throttle all the cores to T0 (if

needed) and restore their operating frequency to the

maximum.

Figure 2.2 Energy saving strategy for the all-to-all operations with the throttling level selec-
tion based on the message size (per Table 1.1).

can be selected from Table 1.1 according to the communication type, given performance loss

tolerance, and the message size.

“Send-To Receive-From” and Pairwise Exchange. For the block placement of ranks,

in each step k (1 ≤ k < p) of STRF, a process with rank i sends data of size L = M to

(i+k) mod p and receives from (i−k+p) mod p. Therefore, for the initial and final c−1 steps,

the communication is intranode while between these steps the communication is internode for

any core in the cluster. The PEA uses exclusive or operation to determine the rank of processes

for data exchange. It is similar to the BIA in terms of communication phase since after step k

where k = c, the communication operation remains internode until the end.

16

Energy Saving Strategy. Because all three algorithms exhibit purely internode com-

munications at a certain step k, the energy saving strategy as shown in Fig. 2.2 may be applied

in stages to each of them. Following [35], the DVFS and CPU throttling policies are defined

by the specific points within an algorithm where these techniques are applied and by a set of

conditions indicating when to apply them. The invocation and the finishing point of the all-

to-all operation determine the stages where DVFS is applied and the proposed energy saving

strategy defines the set of conditions as to how throttling is applied depending on the type

(intra- or internode) of the given collective algorithm.

2.2 Allgather

MVAPICH2 uses three algorithms for performing allgather operation: 1) Bruck Concatena-

tion algorithm for the nonpower of two number of processes and message size smaller than or

equal to 1 KB, 2) Recursive Doubling algorithm for the power of two number of processes and

message size larger than or equal to 1 KB, and 3) Ring algorithm for the message size greater

than 1 KB and any number of processes. These algorithms are referred further in text as BCA,

RDA, and RA, respectively.

Bruck Concatenation Algorithm copies the input data in each process to the top of

the output buffer. Then, the communication phase proceeds as follows. In each step k, the

process of rank i sends to the rank i − 2k all the data it currently possesses followed by the

receive operation from the rank i+ 2k. The data from the rank i+ 2k is then appended to the

data already residing in the rank i. This procedure continues for log2 p steps. If the number of

processes is not a power of two, an additional step is needed, such that each process sends the

first (p− 2blog2 pc) blocks from the top of its output buffer to the destination and appends the

data it receives to the data it already has. For BCA algorithm, in each step, a process receives

and sends L = (M × p)/2 amount of data.

Recursive Doubling Algorithm. In the first step, the processes that are a distance-

one apart exchange their data of size M . In the second step, the processes that a distance-two

17

Stage 1 At the start of allgather, scale down the frequency of

all the cores involved in the communication to the min-

imum. Throttle all the cores to Ti if

◦ RDA and BCA: i = 0.

◦ RA:

− Case I: 100KB ≥ L < 1.4MB and i = 1.

− Case II: L ≥ 1.4MB and i = 2.

− Case III: i = 0.

Stage 2 In step k of communication, throttle all the cores to Tj
if

◦ RDA: 2k ≥ c.
− Case I: L < 0.6MB and j = 5. Throttle all

the cores to state T7 for a step x > k where

L ≥ 0.6MB.

− Case II: L ≥ 0.6MB and j = 7.

◦ BCA: 2k ≥ c.
− Case I: L < 0.6MB and j = 5.

− Case II: L ≥ 0.6MB and j = 7.

Stage 3 At the end of all-to-all, throttle all the cores to T0 (if

needed) and restore their operating frequency to the

maximum.

Figure 2.3 Energy saving strategy for the allgather operations with the throttling level selec-
tion based on the message size (per Table 1.1).

apart exchange their own data along with the data that they have received in the first step.

In the third step, the processes that are a distance-four apart exchange their own data and

also the data they have received in the previous two steps. Continuing in this manner, for a

power of two number of processes p, all the processes receive all the data in log2 p steps. For a

communication step i (i ≤ log2 p), the message size exchanged by each process is L = 2i−1M .

Note that, until the kth step where 2k < c, the communication type is intranode for any

communicating core while, after this step, the communication becomes purely internode.

Ring Algorithm. The data from each process is sent around a virtual ring of processes.

In the first step, each rank i sends its contribution to rank i+ 1 and receives the contribution

from rank i − 1 (with wrap-around). From the second step onward each rank i forwards to

rank i + 1 the data it received from rank i − 1 in the previous step. In each of p − 1 steps, a

message of L = M size is sent and received by each process.

18

4567 0123

8*N-48*N-38*N-28*N-1 8*N-88*N-78*N-68*N-5

12131415 891011

Node 1

Node 2

Node N

4*N5*N6*N7*N 0N2*N3*N

5*N-16*N-17*N-18*N-1 N-12*N-13*N-14*N-1

4*N+15*N+16*N+17*N+1 1N+12*N+13*N+1

Node 1

Node 2

Node N

ccccccc

Figure 2.4 The RA communication pattern for the block (left) and cyclic (right) rank place-
ments. Arrows indicate the communication direction.

Energy Saving Strategy. All the algorithms except the RA exhibit internode commu-

nication after a certain communication step. Therefore, the energy saving strategy outlined

in Fig. 2.3 may be applied to each of them. The RDA and BCA are used for a message size

smaller than 1 KB, therefore no throttling is applied for their intranode communication steps.

Since the Ring Algorithm does not make purely internode communication at any step (see the

left side of Fig. 2.4), the throttling level chosen at its start throughout the collective operation.

Rank Placement Considerations. The block rank placement calls for only two DVFS

and up to four throttling switches in the proposed energy saving strategies. Hence, it minimizes

the switching overhead. In the cyclic rank placement, however, after a fixed number of steps,

the communication would oscillate between intra- and internode, and will require a throttling

switch at every such step. Therefore, the block rank placement has been considered for the

energy savings application.

In the RA implementation of the allgather operation, the communication is purely intranode

for block and internode for cyclic rank placement as shown in Fig. 2.4. Thus, the cyclic rank

placement does offer a better opportunity of applying a relatively higher level of throttling.

However, it was found experimentally that, for RA, the allgather operation takes much less

time to execute for the block rank placement compared with the cyclic one, so the energy saving

potential has been foregone here in favor of the overall performance.

19

CHAPTER 3. Runtime Procedure

In this chapter, a runtime procedure to obtain energy saving in point-to-point communica-

tions is discussed which proposes three frequency scaling strategies.

3.1 Runtime Communication Analysis

To apply frequency scaling in point-to-point communications, it is helpful to first categorize

them as to the reappearances of rank sequences and message sizes; more generally, to determine

the point-to-point recurring patterns. Then, by analyzing the obtained recurring patterns, it

may be decided whether or not the frequency switching overhead is amortized and thus, whether

or not the CPU frequency scaling is warranted. In this section, the ranks recurring during a

certain time period are termed sequence, which together with its corresponding set of message

sizes, is called phase. The length of a sequence measured as its number of point-to-point ranks

is called the phase length. A phase can be uniquely identified by the rank and message size of

the call that commences the phase. For each call in the phase, the parameters, such as call

duration and time gap between the calls, are recorded to make the frequency scaling decisions.

Once the point-to-point communication phases are determined, they may be efficiently

exploited for those applications that are based on iterative computations. Specifically, the

frequency scaling is performed in the next iteration containing a given phase. All the chosen test

applications exhibit an iterative behavior with point-to-point phases. However, if an application

has no iterative communication, the sequence recognition will not be applicable.

The blocking point-to-point communications are selected in this work since reducing the

processor frequency during their operation will not slow down the computational portion of

the application and will result in a minimal system overhead as has been shown by the au-

20

a b c d e f a b c d e f g …......... A A g ….........

Sequence Phase Grouping Phase Group

Figure 3.1 Sequence recognition and phase grouping

thors earlier [48]. Specifically, paired communication primitives, MPI Send and MPI Recv,

are considered here to explore the fundamental design aspects that may be applied to other

MPI operations in the future. However, since non-blocking operations do not provide Infini-

band CPU offload, this analysis cannot be extended for them. For tapping their energy saving

potential, one may be able to employ only performance counters.

A general design of the runtime analysis procedure consists of four major states: sequence

recognition, watching, recording, and application frequency scaling. Figure 3.2 outlines these

four states along with their transitions, which are detailed in sections 3.1.1 to 3.1.4. The idea

to use a state machine comes from the work of Freeh et. al [16], where a similar one was

proposed.

3.1.1 Sequence Recognition

First, the initial recurring pattern of the ranks is to be determined, which may be achieved

using a simple string matching algorithm performed during the application execution. Specif-

ically, such an algorithm attempts to find two identical substrings of a certain length, after

which a new sequence is declared as starting from the first matching rank and finishing with

the rank preceding the start of the second identical substring. Figure 3.1 shows the sequence

recognition process along with phase grouping. The point-to-point communication ranks are

depicted by lower case letters and their sequences are enclosed into ovals. After recognizing

the repeating pattern of the ranks, i.e, the sequence, the phase grouping takes place, which

simply records maximal repeating substrings of phases as a group. For example in fig. 3.1, if

an upper-case letter is assigned to depict a phase uniquely, then, a substring of the phases,

21

Sequence
Recognition

Frequency
Scaling

Recording

Watching

AAAt

Ht
Dt

It

Et

Ct

Ft

Bt
Gt

Jt

Kt

Figure 3.2 State diagram for runtime procedure to apply energy savings efficiently. The tran-
sitions are labeled with Lt, where L takes a value of the first 11 letters of the
alphabet The transition of a state into itself (At, Et, Ft, It) indicate ongoing
state action.

denoted as AA, forms group. Grouping of phases is important for certain frequency scaling

strategies as discussed further in section 3.1.4.4. Alternatively, more sophisticated algorithms,

such as the supermaximal repeat string algorithm [20], may be used. However, for simple rank

patterns, those with a single maximal repeat string, and a moderate number of communicating

processors this is not necessary. Note that a simple rank pattern means here that there is only

a single sequence of ranks per each communicating process and that there are no other (out

of sequence) calls between the end of one sequence and start of another. The substring length

to match may be chosen experimentally, as was done in this work. As soon as the sequence is

determined, the state changes to the watching state (transition Bt in fig. 3.2). Since this is the

initial sequence, it is deemed to be also the first phase.

22

3.1.2 Watching

The aim of this state is to monitor call after call and, if certain conditions are met, attribute

the current call to either the frequency scaling or the recording states. Specifically, in this state,

the rank and the message size of the current call are compared with the information for the

first call in all the previously recorded phases. Once a match, at least partial, is found the

comparison is aborted and a state transition takes place as follows:

◦ If a complete match exists (i.e., both the rank and message size are matched), then go to

the frequency scaling state since an occurrence of an existing phase has been found (Ct

in fig. 3.2).

◦ If no complete match exists—only do the communicating ranks match,—then go to the

recording state in search for a new phase (Dt in fig. 3.2).

Otherwise, the next call is considered in the watching state (Et in fig. 3.2).

3.1.3 Recording

If only the rank matches some previously recorded phase but not the message size, then this

may indicate the beginning of a new phase. The new phase then starts with the recording of

the rank, message size, call duration, and time gap between each pair of the calls. In addition,

depending on the chosen frequency scaling strategy (see section 3.1.4), the needed performance-

counter values are recorded. Figure 3.3 provides an example of the recorded phases, where a

phase is represented by calls a, b, c, and d. The time gap between successive phases is termed

interphase gap, while a time gap within a phase is denoted as intraphase.

Simultaneously, the rank of the current call is checked against the corresponding rank within

the initial sequence. If there is a mismatch, the recording of the new phase is aborted with two

resulting state transitions:

→ frequency scaling, if both the rank and message size of the current call are equal to those of

the first call in some previously recorded phase (Gt in fig. 3.2).

→ watching, otherwise (Ht in fig. 3.2).

If only the rank matches, then the recording state is re-entered for the next new phase recording

23

b c da b c d a

 phase interphase
gap

intraphase gaps

Figure 3.3 Trace of an MPI application invoking eight MPI Send and MPI Recv calls with a
phase length of four. (The calls within a phase are ordered lexicographically from
a to d.)

(It in fig. 3.2). Once a new phase is recorded, the transition to the watching state happens

(Ht in fig. 3.2).

3.1.4 Frequency Scaling

In the frequency scaling state, the calls are continuously checked whether or not their

communicating ranks match the initial sequence. If there is a mismatch, frequency of the

processor is restored to its highest value fmax and the call causing the mismatch either remains

in the current state (Ft in fig. 3.2), if both its rank and message size match the beginning of any

already recorded phase, or enters the recording state (Kt in fig. 3.2), if only its rank matches.

Otherwise, if both rank and the message size do not match, a transition to the watching state

occurs (Jt in fig. 3.2).

The frequency scaling operation is performed such that frequency is reduced at the begin-

ning of the phase and generally raised in the end of the phase. Three different strategies are

discussed in the rest of section 3.1.4 for applying frequency scaling to the intra- and interphase

time gaps.

3.1.4.1 Conservative Strategy

This strategy is applied if the interphase time gaps are conservatively assumed to be entirely

compute-intensive, so their durations would scale linearly with the decrease in frequency. A

performance loss γ must be defined (possibly by the user) to constrain the amount of the

performance degradation that is tolerated when the CPU frequency is scaled down. In [53],

an appropriate frequency is selected for a single (collective) communication call by taking into

24

account just the message size while exploiting the Infiniband CPU offload feature and certain

communication characteristics. In the case of a multicall phase, the gaps between call pairs

must be examined and evaluated as to their performance losses at a lower frequency.

Consider the execution at the highest frequency fmax. Then, let Tcall(f
max), T ′(fmax), and

Tmax denote the total duration of the communication calls, of the intraphase time gaps, and

of the entire phase, respectively, at the highest frequency, such that

Tmax = Tcall(f
max) + T ′(fmax) . (3.1)

Let f∗γ be a suitable frequency (as made available by a P-state) when the performance loss is

γ; Ocall(f
∗
γ) and Os(f

∗
γ) be the communication call and frequency switching overheads, respec-

tively, when the frequency is changed from f∗γ to fmax. Then the desired available frequency

f∗γ is determined as

f∗γ =
⌈ T ′(fmax)× fmax

γ×Tmax−Ocall(f∗γ)−Os(f∗γ)

⌉
, (3.2)

where the ceiling operation is needed because the CPU provides only a number of P-states,

among which the closest upper bound will be selected. This algorithm will work irrespectively

of the specific number of P-states. The communication call overhead Ocall(f
∗
γ) varies with the

message size and the inter- and intranode communication type, and its value may be taken as

suggested in [48]. The frequency switching overhead Os(f
∗
γ) may be precomputed in advance

for all the P-states in a given platform.

3.1.4.2 Intermediate Strategy

Since the intraphase time gaps may have architectural (resource-related) stalls, such as

memory or I/O, an assumption of their high computational intensity may be too conservative

in achieving maximum energy savings. Thus, a quantitative analysis is desirable to estimate

the CPU usage between communication calls within a phase (i.e., during the intraphase time

gaps). To this end, performance counters may be employed to measure the architectural stalls

in modern processors. However, the number and applicability of these counters are typically

limited. For example, the Intel Xeon E5450 processor, which is used in this work, provides

only two general-purpose performance counters, and thus, hinders the construction of sophis-

25

ticated models, such as the one proposed in [22], which relies on four performance counters.

Nevertheless, fewer counters are still useful if the frequency calculation is distilled to the most

critical parameters that the available performance counters can measure. In particular, this

work proposes to count both the micro-operations retired µτ and memory accesses m mainly

because the operation rate may be higher for memory-intensive applications than for compute-

intensive applications, which is counterintuitive without considering the memory accesses. By

using an a priori analysis, the number of micro-operations retired µτ(f∗) at an available CPU

frequency f∗ µτ(f∗) has been predicted based on both µτ(fmax) and m(fmax) [29] through the

following relation:

µτ(f∗) =
f∗ × µτ(fmax)

fmax
+ b×m(fmax) , (3.3)

where the b is dependent on the number of memory accesses per second and was determined

experimentally. Then, for the intraphase time gap t′i (i = 0, . . . , n− 1, where n is the number

of calls in a phase), µτi(f
∗) may be determined and the corresponding performance loss γi for

f∗ < fmax calculated as

γi ≈
µτi(f

max)− µτi(f∗)
µτi(fmax)

≈ t′i(f
∗)− t′i(fmax)

t′i(f
∗)

. (3.4)

Since the total overhead for executing the intraphase time gaps at a frequency f∗ is O′(f∗) =

T ′(f∗) − T ′(fmax) and by considering eq. (3.1) the suitable frequency f∗γ may be calculated

from

γ ≥
O′(f∗γ) +Ocall(f

∗
γ) +Os(f

∗
γ)

Tmax
. (3.5)

3.1.4.3 Shortcomings of Conservative and Intermediate Strategies

The conservative and intermediate strategies do not take into account application of fre-

quency scaling in the interphase time gaps, which they assume to be computationally intensive.

Additionally, they derive frequencies on a per-core basis. In practice, however, the DVFS is

applied only in pairs of cores, i.e., in any two cores sharing an L2 cache, termed “twin cores” in

26

Figure 3.4 An Intel Xeon E5450 processor within one socket, having four physical cores. A
physical core has an L1 cache and a shared L2 cache, such that pairs of core
processing units (PUs)—(P#0, P#4), (P#2, P#6)—each share an L2 cache.

authors’ previous work [49]. DVFS supports only a twin-core granularity on certain processors,

meaning that it produces energy savings only when any two cores sharing the same L2 cache

(as in fig. 3.4) are scaled to the same P-state. This was expected since the off-chip DVFS

regulators are typical in current microprocessors [28]. Since cores are grouped around the L2

cache for the effectiveness of DVFS, the conservative and intermediate strategies are expected

to work similarly in the case of three cache levels.

For the point-to-point communications, it is important to detect communication phases

sufficiently long to be able to apply the dynamic frequency scaling without much overhead and

to first determine a communication phase overlap φo. Figure 3.5 illustrates how φo is found for

twin-cores 0 and 4. On core 0, the phase starts at time t1 and ends at t2. Similarly for core 4,

the phase starting and ending times are t3 and t4, respectively. Then, φo = (t2 − t3)/(t4 − t1).

Only if the value of this phase overlap is reasonably large does DVFS provide substantial energy

savings for either conservative or intermediate strategies.

27

 t1 t2

Core 0

Core 4 t3 t4

Figure 3.5 Overlapping of communication phases in a pair twin-cores that share the L2 cache.
The phase boundaries are marked as vertical dashed and dash-dotted for core 0
and core 4, respectively.

Additionally, when the phase boundaries are assumed, as in [32], to simply be not sensitive

to context—rather than compute intensive—meaning that their detection may not be known

from the previous iterations, the frequency scaling is applied only for the MPI communication

phases. For a single-core processor, such an approach may provide substantial energy savings.

In a multicore system, however, if the application communications exhibit very low phase

overlap, it may not save any energy, similarly to the conservative or intermediate strategy

when used without the phase overlap consideration in twin cores.

3.1.4.4 Aggressive Strategy

To overcome the often tedious provisioning for the phase overlap in multicore platforms,

an aggressive strategy is proposed here, so that it targets interphase time gaps for frequency

reduction and extends to them the performance-counter usage of the intermediate strategy.

Specifically, it calculates the micro-operations retires and memory accesses in the interphase

gaps and applies to them an appropriate frequency f∗γ in a manner similar to that of the

intermediate strategy. Then, the performance loss is calculated as in eq. (3.4).

Once a phase ends, the current frequency f c is compared with f∗γ and is left unchanged if

they are the same. Otherwise, f c takes the value of f∗γ if, in addition, the switching overhead

Os(f
∗
γ) is less than the performance overhead O′′(f c) from executing the interphase gap at

the current frequency f c. By considering the switching and performance overheads during the

28

A..A..B..C..D..E..F..G..G..F..F..E..E..D..D..C..C..B..B.. A..A.. A..A..B..C..D..E..F..G..G..F..F..E..E..D..D..C..C..B..B..A..A

Figure 3.6 Grouping of the communication phases detected for rank 0 of the MG NAS bench-
mark. The capital letters followed by the double dots represent communication
phases followed by interphase gaps, respectively. A single group (shown as solid
oval) has been found and the two corresponding subsequences are enclosed into
the ovals denoting this group.

interphase time gaps, the aggressive strategy avoids unnecessary frequency scaling switches

that the other two strategies incur when a mandatory frequency scaling is applied at the phase

boundaries.

To account for the cases when the interphase gap is too long or when no other commu-

nication phase is observed further in the execution, an additional two-step guard has been

incorporated into the aggressive strategy:

Step 1. Record the current interphase gap duration t
′′
j .

Step 2. If j > 0 and t
′′
j ≥ K × max

0≤k<j
t
′′
k , then restore fmax.

The value of K (in Step 2) may be chosen as 2 based on the following two general assump-

tions. (1) All the interphase gaps are of similar lengths and (2) the length of an interphase

gap is comparable to that of a phase. With this guard of the aggressive strategy, potentially

compute-intensive tasks are not executed at a lower frequency, and thus, experience no signifi-

cant performance degradation.

Since the runtime phase characterization procedure processes phases sequentially in a com-

municating processor, it should apply the frequency scaling to the interphase gap before the

next phase is detected. Thus, the procedure may have difficulties in recognizing properly this

gap, which, by definition, is uniquely identified by the end and the start of two adjacent phases.

In particular, such a situation occurs when the two phases are different or for complicated rank

sequence patterns. For the communications of a repeating nature, however, this difficulty may

be alleviated by grouping communication phases in the overall phase sequence. In a sense,

each group is akin to a macrophase, as defined in [23]. As an example, fig. 3.6 depicts such a

29

grouping of the phases detected for rank 0 of the MG NAS benchmark. Observe that there are

recurring subsequences of phases, which may be grouped. (In fig. 3.6, the two subsequences

are enclosed into identical ovals to emphasize that they belong to the same group.). Once such

a grouping is achieved, the interphase gap recognition becomes the matter of determining to

which phase group it belongs. Note that the runtime procedure from section 3.1.1 is extended

to find the phase grouping in a manner similar to how the initial sequence was determined.

30

CHAPTER 4. GAMESS

In this chapter, the energy characteristics and the application of runtime system proposed

in Chapter 3 to the quantum chemistry application GAMESS is discussed.

4.1 Overview of Quantum Chemistry Package GAMESS

GAMESS [43] is one of the most representative quantum chemistry applications used world-

wide to do ab-initio electronic structure calculations. GAMESS iteratively approximates the

solution to the Schrödinger equation in the form of the Self Consistent Field (SCF) method

followed by higher levels of theory, such as Density Functional and Many Body Perturbation.

Although GAMESS may be considered as a part of SPECCPU 2006 benchmark suite, studying

GAMESS as a stand-alone package yields itself to an investigation of a rich spectrum of quan-

tum chemistry methods and their execution modes. The SCF method is implemented in two

forms, namely direct and conventional, which differ in the handling of the two-electron (2-e)

integrals. Specifically, the conventional mode calculates them once at the beginning of the the

SCF and stores them on disk for subsequent reuse, whereas the direct mode recalculates the

2-e integrals for each iteration. After the SCF, the gradient and Hessian of the energy may be

calculated. In this work, the power and energy characteristics of these two implementations

are investigated for a set of molecules.

Data-Server Communications The parallel model used in GAMESS evolves constantly

based on the HPC hardware and software advances. Initially, it was based on replicated-data

message passing and later moved to MPI-1. Fletcher et al. [15] developed the Distributed Data

Interface (DDI) in 1999, which has been the parallel communication interface for GAMESS

ever since. Later, the DDI has been adapted to symmetric-multiprocessor environments fea-

31

turing shared memory communications within a node [36], and was generalized in [13] to form

groups out of the available nodes and schedule tasks to these groups. DDI ensures that all

the processes independently access and modify any element in a logically global but possibly

physically distributed data array. In essence, DDI implements the PGAS programming model

by employing a data-server concept. Specifically, an additional process, called data server, is

created for each compute process of GAMESS. While the compute process performs electronic

structure calculations, the data server services requests for the data associated with the dis-

tributed arrays. Although these requests do not have a structured pattern of array locations

to access (i.e., they are irregular), they are, nevertheless, repeating in nature meaning that

the same locations accessed in the initial iterations of the quantum chemistry methods, such

as SCF-HF, will be accessed again in the subsequent iterations. Thus, the frequency scaling

strategies considered here may be applied to GAMESS.

Depending on the installation options, communications between the compute and data

server processes occur either via TCP/IP or MPI. A data server responds to data requests

initiated by the corresponding compute process, for which it constantly waits. If this waiting is

implemented with MPI, then the CPU is polled continuously for the incoming message, thereby

being always busy. Therefore, in multicore platforms, it is preferred that a compute process

and data server do not share a core to avoid significant performance degradation. This is not

a taxing restriction in typical HPC environments with hundreds of cores. Since TCP/IP is

hardly ever used for HPC and since this work focuses on MPI communications, the DDI over

MPI is considered, such that only one GAMESS process is mapped to a core. Now, assume

a multicore platform having 2N cores. Then, each core ci (i = 0, . . . , N − 1) with a compute

process has a corresponding core dj (j = N, . . . , 2N−1) with a data server, such that j = i+N .

4.2 GAMESS Energy Characteristics

A set of molecules (Table 4.1), is used as inputs to determine the power consumption

characteristics of the two SCF implementations. The molecules (column Molecule) are listed

in the increasing order of their I/O requirements (column I/O), as specified in their input files,

for the conventional mode. For the experiments, the Ames Lab cluster called “Borges” was

32

Table 4.1 Input set of molecules.
Molecule I/O,(GB)

Silatrane 1.0

Luciferin 3.8

Amg221 5.9

cAMP 7.5

Saxitoxin 9.8

Qinghaousu 11.1

Quinine 13.0

Rotenone 17.1

Ergosterol 22.7

used. It consists of four nodes, each having two dual-core 2 GHz Xeon “Woodcrest” CPUs and

8 GB of RAM. The nodes are interconnected with both Gigabit Ethernet and DDR Infiniband.

Each processor has a shared 4 MB L2 cache and a 32 KB L1 instruction and data cache per

core. Another computing platform (denoted “FScal”) comprises two Dell Optiplex 960 nodes,

each of which has an Intel core 2 Duo processor with 2 GB of RAM. This platform was chosen

since it allows the CPU frequency scaling for the DVFS optimization. To measure the system

power and energy consumption in either platform, a Wattsup power meter [1] was employed.

The power consumption characteristics of GAMESS are explored for a set of input molecules

run on Borges. In each node of the four nodes, four processes were executed (denoted as the

“4x4” execution configuration), whereas the notation “4x1” stands for executing one process

in each node.

4.2.1 The 4x4 Execution Configuration

Fig. 4.1 depicts the execution time, average power consumption, and energy consumption

observed for the various input molecules in the 4x4 configuration.

It can be seen in Fig. 4.1(a) that, when the I/O requirement is rather low (see Table 4.1), as

in the case of Silatrane, the conventional mode performs better than the direct one. However, as

the I/O requirement increases, the direct mode begins to outperform greatly the conventional.

The situation is exacerbated by a slow I/O rate of around 107 MB/s on Borges. For instance,

in another computer with the I/O rate of approximately 226MB/s, the execution time for the

33

Silatrane Luciferin Amg221 Camp Saxitoxin Qinghaosu Quinine Rotenone Ergosterol
0

500

1000

1500

2000

2500

3000

Direct
Conventional

E
xe

cu
tio

n
Ti

m
e

(s
)

Silatrane Luciferin Amg221 Camp Saxitoxin Qinghaosu Quinine Rotenone Ergosterol
0

50

100

150

200

250

300

Direct
Conventional

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Silatrane Luciferin Amg221 Camp Saxitoxin Qinghaosu Quinine Rotenone Ergosterol
0

2

4

6

8

10

12

14

16

Direct
Conventional

No
rm

al
iz

ed
 E

ne
rg

y
C

on
su

m
pt

io
n

 (a)

 (b)

 (c)

Figure 4.1 4x4 configuration: (a) Execution time, (b) Average power consumption, and (c)
Energy consumption normalized with respect to the direct mode for the input
molecules shown on the x axes in the ascending order of their I/O requirements.

34

conventional mode was almost halved. In spite of the direct mode reducing execution time

under the high I/O requirements, conventional mode is more preferable from the computational

accuracy point of view and may lead to faster method convergence. Fig. 4.1(b) depicts the

average power consumption for both conventional and direct modes. It can be observed here

that the average power consumption of the conventional mode is less than that of direct. This

is so because the conventional mode, being I/O intensive, consumes less power as compared

with the direct mode, which is more PE and memory intensive. Moreover, as discussed, the

PE goes into the idle state quite frequently for the conventional mode, and thus lowering the

power consumption. On average, the conventional mode consumes 16% less power as compared

with the direct one.

Fig. 4.1(c) shows that, except for Silatrane, direct mode is more energy efficient than that

of conventional in spite of its power consumption being higher. This is mainly due to the fact

that the conventional mode suffers from I/O stalls and thus, takes much longer to execute. To

summarize, the conventional mode is seemingly more power efficient whereas the direct mode

is more energy efficient.

4.2.2 The 4x1 Execution Configuration

Transition to the 4x1 configuration increases the execution time, shown in Fig. 4.2(a), of

the direct mode as compared to the 4x4 direct mode since, being more PE intensive, this mode

takes longer to execute on a reduced number of cores. On the other hand, the execution time

of the conventional mode decreases in this configuration as compared to the 4x4 configuration.

This can be attributed to the fact that when only one process is executing on a single node, the

I/O contention is also less and, hence, the execution time is reduced. However, for Ergosterol,

the conventional 4x1 execution time is greater than that of the 4x4 configuration since the

iteration phase is computationally intensive and thus, takes longer to execute on fewer cores.

The 4x1 average power consumption (Fig. 4.2(b)) of the conventional mode is almost the

same as that for the 4x4 configuration but is lower for Silatrane, which has low I/O require-

ments. For the direct mode in the 4x1 configuration, the average power is reduced noticeably

compared with that in the 4x4 configuration because only one core is active in each node.

35

 (a)

 (b)

 (c)

Silatrane Luciferin Amg221 Camp Saxitoxin Qinghaosu Quinine Rotenone Ergosterol
0

500

1000

1500

2000

2500

3000

Direct
Conventional

Ex
ec

ut
io

n
Ti

m
e

(s
)

Silatrane Luciferin Amg221 Camp Saxitoxin Qinghaosu Quinine Rotenone Ergosterol
190

195

200

205

210

215

Direct
Conventional

Av
er

ag
e

P
ow

er
 C

on
su

m
pt

io
n

(W
at

ts
)

Silatrane Luciferin Amg221 Camp Saxitoxin Qinghaosu Quinine Rotenone Ergosterol
0

1

2

3

4

5

6

Direct
Conventional

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Figure 4.2 4x1 configuration: (a) Execution time, (b) Average power consumption, and (c)
Energy consumption normalized with respect to the direct mode for the input
molecules shown on the x axes in the ascending order of their I/O requirements.

The energy consumption of the direct mode remains less than that of conventional, as seen

in Fig. 4.2(c). However, the gap between them is reduced because the direct mode consumes

more energy—due to a longer execution—and the conventional consumes less as compared to

4x4 configuration.

4.2.3 Power profile of Self Consistent Field Phases

For the conventional mode, the Calculation phase is where the 2-e integrals are calculated

and stored on the disk. The Iteration phase represents the SCF iterations and Gradient is

where the gradient of the energy is computed. Since the direct mode recomputes integrals for

each iteration, it only consists of the Iteration and Gradient phases. Fig. 4.3 shows the power

profiles of the phases across a node during the entire execution time in the 4x4 configuration.

Fig. 4.3(a) and Fig. 4.3(b) depict the power profile of Luciferin. It can be observed that the

conventional mode for Luciferin has a very smooth power curve as conventional mode is quite

36

 (a) Luciferin (Conventional) (b) Luciferin (Direct)

 (c) Ergosterol (Conventional) (d) Silatrane (Conventional)

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
) Calculation Iteration

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

 Iteration Gradient

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

Time (s)
Po

w
er

 C
on

su
m

pt
io

n
(W

at
ts

)

 Calculation Iteration

1"

 Calculation Iteration

Figure 4.3 Power profiles for some molecules in the 4x4 configuration.

I/O intensive. A molecule executing in the conventional mode suffers from the PE stalls. As a

result, PE power consumption is quite low [18] and PE often goes into the idle state. Therefore,

the power consumption of the whole CN is reduced considerably. For the Gradient phase, the

power consumption increases since it is PE intensive. On the other hand, the power curve for

the direct mode has spikes and valleys with power varying between 221 and 255 watts. The

PE is idle most of the time during the Calculation phase in the conventional mode. Therefore,

the average power consumptions of PE and CN conventional modes are quite low comparing

with those of the direct mode.

Fig. 4.3(c) shows the power profile for only the Ergosterol conventional mode. As the I/O

requirements of Ergosterol are quite high, the PE spends more time idling as compared with

the molecules having lower I/O requirements. Conversely, for Silatrane (Fig. 4.3(d)), the I/O

requirements are low, and the power consumption varies from 225 to 253 watts.

Fig. 4.4 depicts the power profiles for the molecules executed in the 4x1 configuration. Since

the three cores remain idle, the peak power consumption is considerably less than that in the

4x4 configuration throughout the experiments. The overall reduction is seen in the direct mode

(Fig. 4.4(b)) which is compute-intensive and suffers when fewer processes are employed. For the

37

0 50 100 150 200 250 300
0

50

100

150

200

250

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

0 20 40 60 80 100 120 140
0

50

100

150

200

250

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

Time (s)

Po
w

er
 C

on
su

m
pt

io
n

(W
at

ts
)

0 5 10 15 20 25 30
0

50

100

150

200

250

Time (s)
Po

w
er

 C
on

su
m

pt
io

n
(W

at
ts

)

 (a) Luciferin (conventional) (b) Luciferin (direct)

 (c) Ergosterol (conventional) (d) Silatrane (conventional)

 Calculation Iteration Iteration Gradient

 Calculation Iteration
 Calculation Iteration

Figure 4.4 Power profiles for some molecules in the 4x1 configuration.

conventional mode to which the molecules with high I/O requirements are input (Fig. 4.4(a)

and Fig. 4.4(c)), there is not much difference in the overall power consumption. On the other

hand, for Silatrane with low I/O, the power consumption is also reduced for the conventional

mode as seen in Fig. 4.4(d) comparing with Fig. 4.3(d).

4.2.4 Energy Consumption Model

The execution time of a program can be divided into two separate parts, on-chip time ton

and off-chip time toff , such that ton and toff are non-overlapping [9]. The time toff consists of

stall cycles, such as memory, I/O, branch misprediction, and reservation station stalls, during

which the PE is not doing any useful work. In an out-of-order processor, the stall cycles can

also overlap with the on-chip execution. DVFS affects only ton of the program execution. For

example, if the execution time of a program at the highest frequency f1 is t1=ton+toff , then,

on a frequency fi (f1 > fi), the execution time would be

38

ti = ton(f1/fi) + toff . (4.1)

Typically, during a DVFS-based optimization, a performance loss tolerance is prescribed

by the user for a given application, and the energy savings are maximized under this tolerance.

Much research focused on applying such an optimization to the PE-only energy savings. How-

ever, an optimization resulting in some PE energy savings may actually have a higher overall

energy consumption for the whole CN.

Let a DVFS-based optimization increase ton by a factor of k, so that t
′
= kton + toff . The

total energy saving may appear if

P1t > Pt′ , (4.2)

P1(ton + toff) > P (kton + toff) , (4.3)

where P1 is the average power consumption of the CN at the highest frequency and P is

the average power consumption when DVFS is applied. The inequality (4.3) may be used to

determine the feasibility of total energy saving, being re-written for convenience, as

toff
ton

>
kP − P1

P1 − P
. (4.4)

Specifically, Fig. 4.5 depicts the average power consumption of the input molecules executed in

the direct mode on the FScal platform on four available frequencies. Fig. 4.6 shows the ratio

toff/ton (denote it as τ) of the off-chip and on-chip computation times for the input molecules

normalized with respect to τ of Quinine. It can be observed that the average power consumption

varies inversely with τ , which is understandable. As the off-chip accesses increase, the power

consumption goes down. Therefore, the average power consumption Pi at a frequency fi may

be written as

Pi = aτ + b , (4.5)

where a and b are some constants, which may be determined using a regression analysis of (4.5).

Their values are shown in Table 4.2 along with the correlation coefficient R2, which is close to

unity. Thus, there is a strong correlation between the ratio τ and the average power consump-

tion at a given frequency.

39

49

54

59

64

69

74

3 GHz
2.67 GHz
2.33 GHz
2 GHz

Av
er

ag
e

Po
we

r C
on

su
m

pt
io

n
(W

at
ts

)

Silatrane Luciferin Amg221 cAMP Saxitoxin Qinghaousu Quinine Rotenone Ergosterol

Figure 4.5 Average power consumption of input molecules for direct mode on the four fre-
quencies of FScal platform.

0

2

4

6

8

10

12

14

No
rm

al
iz

ed
 R

at
io

 o
f o

ff-
ch

ip
 a

nd
 o

n-
ch

ip
 ti

m
e

Silatrane Luciferin Amg221 cAMP Saxitoxin Qinghaousu Quinine Rotenone Ergosterol

Figure 4.6 Computation times ratio τ for input molecules normalized with τ for Quinine
(FScal platform).

Table 4.2 Regression coefficients for determining the average power consumption at a given
frequency.

Frequency b a R2

3.00 74.4 -17.575 0.983

2.67 66 -10.76 0.99

2.33 59 -12.722 0.981

2.00 54 -8.387 0.994

40

The PE power consumption consists of two components, static and dynamic. The static

power is the power consumption of a PE in the idle state. The dynamic power is directly

proportional to the product of the operating frequency and the square of the core voltage

[37]. In (4.4), the power consumptions P1 and P can be replaced by the respective PE power

consumption values [37] to obtain the feasibility of energy savings for the PE under a DVFS-

based optimization.

Since the DVFS affects only the on-chip time, an upper bound of energy savings for a

DVFS-based optimization, can be determined. For the maximum energy savings, toff should

be executed at the lowest frequency. Therefore, the minimum energy consumption E∗off during

the off-chip execution is

E∗off = Pntoff , (4.6)

where Pn is the average CN power consumption at the lowest frequency fn. The performance

loss tolerance δ can be defined as

δ =
t
′ − t
t

=
(k − 1)ton
ton + toff

, (4.7)

k = 1 + δ(1 +
toff
ton

) . (4.8)

For a user-defined performance loss δ, the execution time ton minimizing the energy con-

sumption on the different frequencies may be determined using linear programming (LP). Let

P1, P2, . . . , Pn be the average power consumptions of the CN or PE and t1, t2, . . . , tn be the on-

chip execution times at frequencies f1, f2, . . . , fn, respectively, where f1 > f2 > . . . > fn. By

defining fij as the scaling factor, which is the ratio fi/fj , the LP problem may be formulated

as

41

min
ti
Eon =

n∑
i=1

Pif1iti , (4.9)

such that

n∑
i=1

ti = ton , (4.10)

n∑
i=1

tif1i = ton(1 + δ
′
) , (4.11)

ti ≥ 0 , (4.12)

where

δ
′

= δ(1 +
toff
ton

) . (4.13)

The objective function Eon describes the minimum energy consumption of the CN (or PE)

during the on-chip work when the DVFS is applied. Note that, during the execution time ti

on the frequency fi, DVFS changes the average power consumption from P1 to Pif1i. The

formulation (4.9)–(4.12) has n variables and two equality constraints and may be solved by

using the two-phase Simplex method [55]. In this method, artificial variables are added to the

constraints of the original LP and the solution is obtained in two phases in the form of basic

and non basic variables. The non basic variables, forming the non basis set, are equal to zero

and the basic variables, forming the basis set, provide the optimal solution. For the FScal

platform, there are four frequency levels for which the LP (4.9)–(4.12) is to be solved here.

Case I: If 0 < 1 + δ
′ ≤ f12, the basis set B = (1, 2), the optimal solution is obtained when

t1 = ton −
tonδ

′

f12 − 1
and t2 =

tonδ
′

f12 − 1
.

Case II: If f12 < 1 + δ
′
< f14 and B = (2, 4), the optimal solution is obtained when

t2 =
ton(f14 − 1− δ′)

f14 − f12
and t4 =

ton(1 + δ
′ − f12)

f14 − f12
.

42

Case III: If f14 = 1 + δ
′
, and B = (4), the optimal solution is obtained when

t4 = ton .

Once the minimum E∗on is calculated in each of the three cases, the minimum power con-

sumption P ∗ may be expressed as

P ∗ =
E∗on + E∗off

ton(1 + δ′) + toff
(4.14)

for each of the three cases considered. This value of P ∗ can be used in (4.4) in place of P to

ascertain the feasibility of energy savings for a DVFS-based optimization since P ∗ provides a

lower bound on P (i.e., P ≥ P ∗).

4.2.5 Model Verification

Table 4.3 shows the PE and CN power consumptions at different frequencies for Saxitoxin

direct mode execution. The PE power consumption is determined by using the analytical model

proposed in [37], in which authors have accurately determined the static and dynamic power

consumption of an Intel Core 2 duo CPU. CN power consumption is calculated by using (4.3).

Using Table 4.3 and the Eon expression (4.9), it may be inferred that, for i > j, Pif1i > Pjf1j

in the case of the CN power consumption and Pif1i < Pjf1j in that for PE. The minimum E∗on

is suited for both the CN and PE energy consumption minimizations. However, the CN energy

consumption increases with the increase in the performance loss tolerance while the PE energy

consumption decreases at the same time.

To determine the times toff and ton for the input molecules, a regression analysis was done

on the equation

ti = tonf1i + toff , (4.15)

where ti is the execution time on frequency fi, i = 1, 2, . . . , n and ton and toff are constants.

The correlation coefficient R2 ranged from 0.998 to 0.9996 for this regression analysis. Table 4.4

lists toff and ton for the set of input molecules executed in the direct mode on FScal. From

43

Table 4.3 CN and PE power for Saxitoxin direct mode.
Frequency CN Power Voltage PE Power

(GHz) (W) per core (V) (W)

3.00 73.4 1.23 52

2.67 65.4 1.20 43

2.33 58.2 1.16 36

2.00 53.4 1.12 28

Table 4.4 On-chip and off-chip times for input molecules in the FScal platform.
Molecule ton toff τ

(s) (s)

Silatrane 19.2 9.2 0.48

Luciferin 74.2 6.6 0.09

Amg221 83.2 9.5 0.11

cAMP 110.0 6.9 0.06

Saxitoxin 119.0 7.0 0.06

Qinghaousu 128.8 15.1 0.12

Quinine 199.6 7.8 0.04

Rotenone 230.4 12.9 0.06

Ergosterol 283.4 20.4 0.07

the ratio τ=toff/ton, it can be seen that except for Silatrane, direct mode is quite compute

intensive. In fact, its execution time scales almost linearly with the change in frequency.

Table 4.5 depicts the CN energy consumptions of all the input molecules on the three lower

frequencies (columns f2, f3, f4) obtained experimentally in the FScal platform. The energy

consumption values are normalized with respect to the energy consumption at the highest

frequency f1. It can be seen that the variation in energy consumption is non-uniform. The

theoretical model proposed in Section 4.2.4 may be used to explain this phenomenon.

Fig. 4.7 provides an example of the variations in the PE and CN energy consumption at

different frequencies for Saxitoxin executed in the direct mode. The values on y axis are normal-

ized with respect to the highest frequency operating point for PE and CN energy, respectively.

From the PE energy consumption, it is clear that, as the frequency increases, the energy con-

sumption of PE also increases. This can be verified by putting the values of P1 and P from

Table 4.3 into inequality (4.4) for the respective frequencies.

From Table 4.4, τ ratio of Saxitoxin equals 0.06. To determine the feasibility of the PE

44

Table 4.5 CN energy consumption in the direct mode on three lower frequencies for the input
molecules in the FScal platform, normalized with respect to the highest frequency.
Frequencies (in GHz) are f1 = 3.0, f2 = 2.67, f3 = 2.33, and f4 = 2.0.

Molecule f2 f3 f4
Silatrane 0.97 0.98 1.01

Luciferin 0.99 1.04 1.09

Amg221 0.99 1.01 1.08

cAMP 0.99 1.04 1.10

Saxitoxin 0.99 1.01 1.03

Qinghaousu 0.98 1.03 1.08

Quinine 1.01 1.04 1.10

Rotenone 1.01 1.04 1.09

Ergosterol 1.01 1.04 1.08

Table 4.6 Data substituted into the theoretical model to determine the feasibility of the CN
energy consumption for different frequencies.

Frequency rhs k P

2.00 0.335 1.5 65.4

2.33 0.1 1.288 58.2

2.67 0.01 1.1236 53.4

energy savings at some frequency, say 2 GHz, the appropriate values may be substituted into

inequality (4.4), such that P1 = 52, P = 28 (as provided in Table 4.3), and k = 3/2. Then, the

right-hand side of (4.4) is equal to −0.714 which is smaller than 0.06, and thus, the PE energy

saving is obtained for 2 GHz, as seen in Fig. 4.7. The same calculation may be performed

for other frequencies leading to the conclusion that, for Saxitoxin, the PE energy consumption

decreases as the frequency is decreased.

In contrast, the CN energy consumption exhibits non-monotonic behavior for Saxitoxin. It

first decreases at 2.67 GHz followed by an increase at lower frequencies. Such a behavior is

supported theoretically. In particular, the right-hand side of (4.4) was calculated for the three

lower frequencies, such that their respective P values were taken from Table 4.3. The obtained

right-hand sides (column rhs) as well as the corresponding frequencies (column Frequency),

average power P , and time increase factors k are presented in Table 4.6 while P1 is fixed at

73.4 for 3 GHz. As shown in Table 4.6, the condition of CN energy saving is met only at 2.67

GHz, when rhs is 0.01. At the other two operating points, 2.33 GHz and 2 GHz, the energy

45

1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

0.2

0.4

0.6

0.8

1

1.2

CN
PE

Frequency (GHz)
N

or
m

al
iz

ed
 E

ne
rg

y
C

on
su

m
pt

io
n

Figure 4.7 Normalized energy consumption of PE and CN for Saxitoxin in direct mode.

consumption of the CN increases.

Fig. 4.8 plots the optimum energy consumption E∗on of Saxitoxin (direct mode), as calculated

using the model from Section 4.2.4, for PE and CN versus the performance loss. All the y axis

values are normalized with respect to the energy consumption at the highest frequency. The

energy consumption for the CN increases with the performance loss increase while the PE is

consuming less energy at the same time. Nevertheless, the energy savings are achieved for CN

while the performance loss is below 13%, at which point the slope of energy consumption curve

increases drastically. These results tally well with the experimental findings for the energy

consumption of Saxitoxin shown in Fig. 4.7. For example, the CN energy consumptions at

2.33 GHz and 2 GHz are no less than that at the highest frequency while energy savings are

achieved above 2.67 GHz. The values of the performance loss tolerance δ are, respectively,

27.15%, 47.2%, and 11.68%, marked as vertical straight lines in Fig. 4.8.

4.3 GAMESS Process Mapping within a Node

Beyond accessing distributed arrays on remote nodes, GAMESS processes take advantage

of the shared arrays on the local nodes. Although such arrays are still accessed using DDI,

the communication happens only among the local compute processes without the data server

involvement. Furthermore, most of these communications are blocking point-to-point, so they

are usually fast and have two compute processes participating in a “handshake” (send-receive)

46

 2.67 GHz 2.33 GHz 2 GHz

0 5 10 15 20 25 30 35 40 45 50
0.78

0.89

1

1.11

CN
PE

Performance Loss (%)

No
rm

al
iz

ed
 E

ne
rg

y
C

on
su

m
pt

io
n

 2.67 GHz 2.33 GHz 2 GHz

Figure 4.8 Variation of energy consumption with performance loss for Saxitoxin in direct
mode.

DDDD

L2 L2

CCCC

L2 L2

CCDD

L2 L2

CCDD

L2 L2

(a)

(b)

CDCD

L2 L2

CDCD

L2 L2

(c)

Figure 4.9 Three bindings of GAMESS data server (D) and compute (C) processes: (a) Dis-
joint-I, (b) Disjoint-II, and (c) Slave, for Each compute node has two quad-core
processors arranged as two sockets. Twin cores share the L2 cache.

47

fashion as opposed to PGAS model.

In GAMESS, only compute processes show the phase behavior, as was determined by the

authors previously [50]. Specifically, they present a repeating pattern when the ranks and

message sizes for the point-to-point operations are analyzed, regardless of the total size of the

GAMESS calculation. Since only half of the GAMESS processes depict phase behavior, it has

been determined in [50] that to obtain energy savings under the DVFS twin-core granularity

requires careful consideration of process-to-core mappings in addition to the compute-process

phase characterization by the runtime procedure. This work builds on the findings of [50] by

analyzing an additional GAMESS process-to-core mapping and by proposing novel frequency

scaling strategies and applying them to GAMESS. These enhancements deliver more energy

savings than what was shown in the authors’ previous work with a similar performance loss.

Since data servers used in GAMESS are involved in global communications only, i.e., they

do not perform any calculations, reducing the frequency of the cores to which data servers

are mapped will not affect much the overall execution. Therefore, it may be tempting to

just reduce their frequency to the minimum level. However, this delivers no energy saving

for certain mappings of data server relative to compute process within a node because the

DVFS switch is efficient on the twin-core basis only. Thus, it is necessary to determine certain

relative mappings (also referred to as bindings) of data servers and compute processes for the

phase-based frequency scaling to work efficiently in the compute processes.

Disjoint Bindings One way to achieve energy savings is to dedicate each pair of twin

cores to either compute or data server processes, as in fig. 4.9(a). Then the compute processes

are operated under the phase detection procedure while the frequency of data servers is simply

reduced to the maximum through DVFS at runtime. This binding is termed here as Disjoint

to stress its independent nature of the frequency scaling in different process types of GAMESS.

Furthermore, there are two different variants of the Disjoint binding. (I) Data servers and

compute processes are on different sockets, as in fig. 4.9(a). (II) Data servers and compute

processes are mixed on the same socket in such a way that pairs of data servers and compute

processes operate on pairs of twin cores, as shown in fig. 4.9(b).

48

Slave Binding Another process binding may be considered, such that it puts one data

server and one compute process together on the same pair of twin cores as in fig. 4.9(c).

Then, the compute processes are still operated under the phase detection procedure, and the

frequency of the twin-core pair is reduced per DVFS application prescribed by this procedure.

This strategy is called Slave because the decision regarding frequency scaling is done only

through the compute process and data server simply follows it.

49

CHAPTER 5. Modified Runtime System

In this chapter, a modified design of the runtime system proposed in Chapter 3 which

applies frequency scaling to both point-to-point and collective communications is discussed.

5.1 Communication Phase Detection

Many HPC parallel applications exhibit recurring communication phases occurring at the

communication-call granularity. The phase detection-mechanism identifies such recurring com-

munication phases by using a string matching algorithm performed during the application

execution. In this work, for detecting communication phases per core, each MPI call is inter-

cepted by exploiting PMPI [41], the profiling interface of MPI, and assigned a unique callid.

The callid identifies each communication call by its parameters, such as rank and message

size. The call program counter (PC) has been used by others [32] to identify a call. Since the

proposed runtime system has to identify different types of communications (i.e., collective and

point-to-point) and differentiate among their message sizes, the use of PC becomes inadequate.

Therefore, the callid assigned to each call for unique identification.

These callids are stored in a master string ; and finding a communication phase is equiv-

alent to finding various maximal repeats [20] in this string because a communication phase,

as defined here, is nothing but a sequence of callids that repeats itself during the application

execution. The time duration of a phase is denoted as phase length. The maximal repeats are

determined by finding two identical substrings, after which a new phase is declared as starting

from the first matching callid and lasting while the callid continues to match in the two sub-

strings. The substring length to match may be chosen experimentally, as done in this work.

After recording the identical substrings as a phase, the master string is modified by purging

50

a b c d e f a b c d e f g …......... A A g ….........

Sequence Phase Grouping Phase Group

Figure 5.1 Phase detection and string manipulation for master string with (a) consecutive
and (b) nonconsecutive communication phases.

their instances and the search for another new phase continues. Such a simple process of deter-

mining communication phases obviates the need for a costly construction of a suffix tree and

the supermaximal repeat string algorithm [23], which may quickly become unacceptable for a

runtime system examining parallel applications with many communication calls.

Figure 5.1 shows an example of the phase detection and master string manipulation for

two cases of consecutive (fig. 5.1(a)) and nonconsecutive (fig. 5.1(b)) phase instances. The

callids are depicted by the lowercase letters and the communication phases are enclosed into

ovals. In fig. 5.1(a), after the string manipulation, the recorded phase instances are removed

and the subsequent callids are shifted to the starting position into the place of removed phase

instances to form the resultant master string. This deletion of the recorded phase instances

from the master string avoids the repeated detection of a phase. In the case of nonconsecutive

phase instances (fig. 5.1(b)), there is also a position shift of the callids between the two phase

instances in addition to the callids after the second phase instance to get the resultant master

string.

To apply DVFS, reference points within the communication phase are taken as the start

and end of the phase, which is similar to the idea of reducible regions [32]. This means that the

frequency is lowered to a suitable level at the start of the first call in a phase and is increased

to the original value at the end of the last call.

51

Sequence
Recognition

Frequency
Scaling

Recording

Watching

AAAt

Ht
Dt

It

Et

Ct

Ft

Bt
Gt

Jt

Kt

Figure 5.2 State diagram for runtime system to apply frequency scaling efficiently. The tran-
sitions are labeled with Lt, where L takes a value A–G. The transition of a state
into itself (At, Bt, Ct) indicate ongoing state action.

5.2 System Design

A general design of the runtime system consists of the following major states: phase detec-

tion, recording, and frequency scaling. Figure 5.2 outlines these three states along with their

transitions, which are detailed in sections 5.2.1 to 5.2.3. To use a state machine is proposed

here following the work of Freeh et. al [16], which considers various states during the phase

detection and frequency scaling.

5.2.1 Phase Detection

The communication phase-detection mechanism has been explained in section 5.1. While

the first communication phase is undetermined, the runtime system remains in the phase-

detection state (transition At in fig. 5.2). As soon as a communication phase is detected, there

is a transition (Gt) to the recording state to record different parameters associated with the

52

communication calls. After that, the phase-detection state is re-entered (transition Ft) to

detect next phases while checking the callid of every upcoming call. If the current call matches

the callid of the starting call of an already recorded phase, the system makes a transition (Et)

to the frequency-scaling state since this match marks the beginning of some previously recorded

phase, otherwise the phase-detection state persists (At) while trying to find new phases.

To amortize the DVFS overhead, the duration of the recorded phase should be rather long.

Therefore, after detecting a communication phase, its duration is compared with a certain

bound L defined as follows:

L =
O(fp → fP) +O(fP → fp)

γ
, (5.1)

where O(fx → fy) is the DVFS overhead for the hardware platform when transitioning from

level x to y; p and P are the lowest and highest P-states, available; and γ is the (user-defined)

performance loss, which constrains the amount of the performance degradation tolerated when

the CPU frequency is scaled down. The rationale behind eq. (5.1) is that the maximum DVFS

overhead should not result in a performance loss higher than γ for any phase. If the duration of

the found phase is smaller than L, then another instance of this phase is appended to it to form

a new phase if these two instances are consecutive, as in fig. 5.1(a), for example. Conversely,

when there exist some other calls between the two instances, as calls g,h,i,j,k,l, and m do in

the example from fig. 5.1(b), they are appended to the first instance of the phase followed by

the second instance to form a new phase. Such a phase enlargement continues until the phase

length exceeds the bound L. There may also be the case when an individual call is longer than

the bound L but is not part of a phase yet. Then, this single call is recorded as a phase by

itself for applying frequency scaling.

In general, to minimize the DVFS switching overhead in parallel applications, the proposed

runtime system distinguishes their communication phases inside which the same (typically lower

than maximum) frequency is kept while a different frequency may be used on the outside. The

aim is to obtain the phases of the longest possible duration.

53

5.2.2 Recording

After the matching substrings have been determined in the master string, the system tran-

sitions (Gt) to the recording state, which continues while the callids are matching in the two

substrings. The callids, message sizes, and other call parameters, such as call duration and

time gaps between the calls are recorded in this state. In addition, depending on the chosen

frequency scaling strategy, the needed performance-counter values, as explained in section 5.2.3,

are recorded.

The recording of a new phase is aborted with two resulting state transitions:

→ frequency scaling, if the callid of the current call equals to that of the first call in some

previous phase (Ht in fig. 5.2).

→ phase detection, otherwise (Ft in fig. 5.2).

5.2.3 Frequency Scaling

In the frequency scaling state, the calls are continuously checked as to whether or not their

callids match the ones of a previously recorded phase. If there is a mismatch, frequency of the

processor is restored to its highest value fh and the call causing the mismatch remains in the

current state (Bt in fig. 5.2) if its callid matches the beginning of any already recorded phase.

Otherwise, a transition to the phase-detection state occurs (Dt in fig. 5.2).

The frequency-scaling state changes the processor frequency based on communication phase

boundaries, such that the frequency is reduced at the beginning of the phase for the communi-

cation operations and generally raised in the end of the phase. Figure 5.3 provides an example

of the phase definition for the purpose of frequency scaling, where a phase is represented by calls

a, b, c, and d. The time gap between successive phases is termed interphase gap, while a time

gap within a phase is denoted as intraphase. Three strategies—termed DVFS-Ph, DVFS-PhI,

and DVFS-PhIT—are discussed next as distinguished by their application of frequency scaling

to the intra- and interphase time gaps.

54

b c da b c d a

 phase interphase
gap

intraphase gaps

Figure 5.3 Trace of an MPI application invoking eight MPI calls with a phase length of four.
(The calls within a phase are ordered lexicographically from a to d.)

5.2.3.1 DVFS-Ph

The DVFS-Ph strategy applies DVFS only to the communication phases and not to the

interphase gaps. When the communication phase finishes, all the callids associated with it

are removed from the master string. In [53], an appropriate frequency is selected for a single

communication call by taking into account just the message size while exploiting the Infiniband

CPU offload feature [33] and the communication characteristics. In the case of a multicall phase,

the gaps between call pairs must be examined to evaluate their performance losses at a lower

frequency.

Denote as Tcall(f
h) the duration of all the communication calls in a phase and T ′(fh) the

total duration of the intraphase time gaps when executed at the maximum frequency of the

processor. Then the total phase time T h at the maximum frequency equals Tcall(f
h) + T ′(fh).

Let f∗γ be a suitable frequency, selected among the existing P-states, for the phase when the

(user-defined) performance loss is γ. Then, let Ocall(f
∗
γ) and Os(f

∗
γ) be the communication-

call and frequency-switching overheads [37], respectively, when f∗γ is attained from the highest

available CPU frequency fh. Note that, in this work, these overheads have been predetermined

in a separate set of experiments for various communication operations for a given range of the

available P-states.

Since the intraphase time gaps may have architectural stalls, such as memory, I/O, or other

resource-related stalls, during the computations possibly present in these gaps, a quantitative

analysis is desirable to estimate the CPU usage in-between communication calls in a phase.

In modern processors, performance counters may be employed to measure architectural stalls

during the time gaps. However, the number and applicability of these counters may be limited.

For example, the Intel Xeon E5450 processor, used in this work, provides only two general-

55

purpose performance counters, and thus, hinders the utilization of a sophisticated model, such

as the one suggested in [22] that relies on four performance counters. A small number of

the counters may still be useful if the frequency calculation is distilled to those most critical

parameters that the available program counters can measure. In particular, this work proposes

to count both the rate of micro-operations retired µτ and the number of memory accesses m.

The authors have observed experimentally that, for some memory-intensive applications, the

rate µτ was higher than for the compute-intensive ones tested, which is counter intuitive if only

the micro-operations retired were considered, as was done in [32].

The rate of micro-operations retired µτ(f∗) at an available CPU frequency f∗ can be pre-

dicted based on both µτ(fh) and m(fh) through the following relation:

µτ(f∗) =
f∗ · µτ(fh)

fh
+ b ·m(fh) , (5.2)

where the parameter b is dependent on the number of memory accesses per second and can be

determined experimentally. Then, for the intraphase time gap t′i (i = 0, . . . , N − 1, where N is

the number of calls in a phase), µτi(f
∗) may be determined and the corresponding performance

loss γi for f∗ < fh may be calculated as

γi ≈
µτi(f

h)− µτi(f∗)
µτi(fh)

≈ t′i(f
∗)− t′i(fh)

t′i(f
∗)

. (5.3)

When the frequency scaling of a particular phase is performed for the first time, the in-

traphase time gaps are all assumed to be memory-intensive, i.e., µτi(f
h) ≈ µτi(f

1), and the

rate of micro-operations retired is recorded to solve eq. (5.2) for b. This value of b is used

when the phase is encountered next time to predict the rate of micro-operations retired, which

is updated with the actual rate of micro-operations retired once the phase frequency-scaling

takes place.

Since the total overhead O′(f∗) for executing the intraphase time gaps at a frequency f∗ is

O′(f∗) = T ′(f∗)− T ′(fh), the suitable frequency for a phase f∗γ may be calculated from

γ ≥
O′(f∗γ) +Ocall(f

∗
γ) +Os(f

∗
γ)

T h
. (5.4)

56

5.2.3.2 DVFS-PhI

To overcome the often tedious provisioning for the phase overlap in multicore platforms as

discussed in Section 3.1.4.3, the DVFS-PhI (denoting “DVFS in the phase and interphase”)

strategy is proposed next. This strategy augments DVFS-Ph with targeting interphase time

gaps for frequency reduction and extends for them the performance-counter utilization. Specif-

ically, it calculates the micro-operations retired and memory accesses in the interphase gaps

and applies to them an appropriate frequency f?γ in a manner similar to that of the DVFS-Ph

strategy. Then, the performance loss is calculated as in eq. (5.3).

Once a phase ends, the current frequency f c is compared with f∗γ and is left unchanged if

they are the same. Otherwise, f c takes the value of f∗γ if the switching overhead Os(f
∗
γ) is less

than the performance overhead O′′(f c) from executing the interphase gap at the current fre-

quency f c. By considering the switching and performance overheads during the interphase time

gaps, the DVFS-PhI strategy avoids unnecessary frequency scaling switches that the DVFS-Ph

strategy incurs when a mandatory frequency scaling is applied at the phase boundaries.

To account for the cases when the interphase gap is too long or when no other commu-

nication phase is observed further in the execution, an additional two-step guard has been

incorporated into the DVFS-PhI strategy:

Step 1. Record the current interphase gap duration t
′′
j .

Step 2. If j > 0 and t
′′
j ≥ K · max

0≤k<j
t
′′
k , then restore fh.

In this work, the value of K = 2 has been chosen (in Step 2) based on the assumption that all

the interphase gaps are of similar lengths and that the length of the interphase gap is comparable

to that of the phase. With this guard of the DVFS-PhI strategy, potentially compute-intensive

tasks are not executed at a lower frequency, and thus, experience no significant performance

degradation.

Since the proposed runtime system examines each phase sequentially in a communicating

processor, it should apply the frequency scaling to the interphase gap before the next phase

57

A..A..B..C..D..E..F..G..G..F..F..E..E..D..D..C..C..B..B.. A..A.. A..A..B..C..D..E..F..G..G..F..F..E..E..D..D..C..C..B..B..A..A

Figure 5.4 Grouping of the communication phases detected for rank 0 of the MG NAS bench-
mark. The capital letters followed by the double dots represent communication
phases followed by interphase gaps, respectively. A single group (shown as solid
oval) has been found and the two corresponding subsequences are enclosed into
the ovals denoting this group.

is detected. Thus, the runtime system may have difficulties in recognizing properly this gap,

which, by definition, is uniquely identified by the start and the end of two adjacent phases. In

particular, such a situation occurs when the two phases are different or when the complicated

rank sequence patterns are present. For the communications of a repeating nature, however, this

difficulty may be alleviated by grouping communication phases in the overall phase sequence.

In a sense, finding each group is akin to determining the longest repeated substring (LRS)

or the recurring sequence of phases, as defined in [20]. As an example, fig. 5.4 depicts such a

grouping of the phases detected for rank 0 of the MG NAS benchmark. Observe that there

are recurring subsequences of phases, which may be grouped. In fig. 5.4, the two subsequences

are enclosed into identical ovals to emphasize that they belong to the same group. The phase

detection mechanism from section 5.1 is used to find the LRS for parallel applications. Once

such a grouping is achieved, the interphase gap recognition becomes a matter of determining to

which phase group it belongs. While LRS is undefined, the interphase gap is assumed to have

the same characteristics as what it had the last time when the current phase was encountered.

5.2.3.3 DVFS-PhIT

Although the DVFS-PhI strategy examines the whole execution of an application (its com-

munication and computation) it uses only DVFS and does not fine-tune the communication

frequency scaling further to the (eight) levels of throttling. Many communication operations,

such as collective calls, however, present opportunities for throttling as was shown by the au-

thors in [48]. Moreover, superior energy savings may be delivered when both the DVFS and

throttling are in use rather than when each is applied separately. Note that throttling can

be viewed as equivalent to dynamic frequency scaling (DFS) [4] because, by inserting a given

58

number of idle cycles in the CPU execution, a particular operating frequency is obtained with-

out changing the operating voltage of the cores. Therefore, by itself, throttling is often less

effective than DVFS.

DVFS versus CPU Throttling. Even though the CPU throttling is supported on

a per-core granularity as opposed to DVFS, which is supported on a twin-core granularity,

its power saving capabilities are inferior to those of DVFS. Throttling does not reduce the

actual clock rate but rather inserts the STPCLK (stop clock) signals thereby omitting the duty

cycles, and throttling does not change the operating voltage of the cores. Moreover, it results

in considerable performance loss for intra-node communications as compared to DVFS [48].

When different frequency scaling strategies were tested using the CPU throttling only, the

total energy consumption actually increased at times because the power consumption remained

rather high while the performance loss was significant, up to the allowed 10% in certain cases of

multiple switches. On the other hand, if an application exhibits poor phase overlap among the

twin cores and the phases consist mostly of the inter-node communications—the two conditions

under which a simple application of DVFS to communication phases is not effective—throttling

may give more energy savings than DVFS.

In the DVFS-PhIT strategy, once a suitable P-state is found, each communication call is

then checked as to whether the application of throttling is possible. (A checking procedure

aiming to select, for each call, a suitable throttling level Tk is discussed in section 5.2.3.4 that

follows.) If τ is the duration of a given call without energy saving techniques, i.e., at the highest

frequency and no throttling, then the maximum overhead from throttling should not exceed

the performance loss γ. Thus, for the throttling level Ti to be applied to the call, the following

relation should hold

γ ≥ O(T0 → Ti) +O(Ti → T0)

τ
, (5.5)

where Ti is the highest level that is less or equal to Tk and O(Tx → Ty) is the throttling system

overhead to switch from level x to y. Equation (5.5) attempts to amortize the total throttling

overhead over the duration of the call for the given γ.

59

5.2.3.4 Estimation of Throttling Level

Since, by design, the proposed runtime system is transparent to both the application code

and communication library, throttling has to be performed independently from the communica-

tion library implementation. On the other hand, as has been shown in [53], different throttling

levels must be applied to different stages of a collective call algorithm for throttling to be effi-

cient and incur a small switching overhead. It was concluded that inter-node communication

provides better opportunities for throttling than intra-node does so, which owes to the CPU

offload by the Infiniband. Aiming for transparency, stage-based throttling is not feasible since

it requires changes in the source code of the communication library functions [48]. Therefore,

communication calls have to be re-examined with the purpose to estimate a throttling level that

may be applied to the entire call without much overhead. In a sense, this estimation is based

on a cumulative view of intra- or inter-node communication stages in specific communication

algorithms.

Next, a few sample MPI operations and their underlying algorithms are presented to walk

through the estimation procedure. For other communication libraries and for additional MPI

operations similar steps may be taken.

Blocking point-to-point operations, such as MPI Send and MPI Recv, have been already

examined by the authors in [48]. Since these operations require no complex implementations,

the throttling levels were applied based mainly on the message sizes and the initial topology

of the ranks. Throttling may be applied to such operations when the communication is inter-

node [48]. For the nonblocking point-to-point operations, such as MPI Isend, an overlap of

computation and communication exists, which precludes efficient application of throttling.

MPI collectives. MPI Alltoall and MPI Allgather are easily the most communication

intensive among all the MPI operations and provide excellent opportunities for applying throt-

tling in their algorithmic stages to maximize energy saving as was shown in [53]. For the

runtime system, a lower bound for the possible performance loss is computed here based on

the overheads of point-to-point communications that comprise each collective call for a given

message size and the number of cores in a node.

60

For example, consider the Send-To Receive-From (STRF) algorithm used for the MPI Alltoall

operation on n processes. If a compute node has c cores, there are 2 · (c− 1) intra-node com-

munication stages and n − 2 · (c − 1) inter-node communication stages [48]. Let O′k(M) and

O′′k(M) be the overheads for intra-node and inter-node point-to-point operation, respectively,

which use the message size M and the throttling level Tk. Then, Tk is chosen for the entire

MPI Alltoall (implemented with the STRF algorithm) as follows:

γ ≥ 2 · (c− 1) · O′
k(M) + (n− 2 · (c− 1)) · O′′

k(M)

τ
, (5.6)

while ignoring the effects of network and memory contention. Throttling levels may be deter-

mined for other collective algorithms in a similar fashion. Such an approximation is feasible

because all the collective-call implementations comprise several point-to-pointfor sufficiently

large number of processes n. For example, for MPI Alltoall and MPI Allgather operations,

throttling levels T1 or T2 are usually selected using eq. (5.6) except for the Ring algorithm that

has mostly intra-node communication and does not provide enough room for throttling.

The MPI Bcast, MPI Scatter, and MPI Gather operations use the leader based algorithm [26]

in which the communication happens first between a chosen leader process in each compute

node and then the leaders distribute the data to other processes present in the same compute

node. For this type of algorithms, inter- and intra-node communication stages are separated

and, thus, dealt with in a manner similar to eq. (5.6).

The MPI Reduce and MPI Allreduce operations perform computation interleaved with com-

munication using recursive algorithms [54]. Therefore, these operations do not provide much

opportunity for throttling, which was also observed through experiments.

61

CHAPTER 6. Experimental Results

In this chapter, the experimental results are presented for energy aware collective commu-

nication algorithms, runtime system for point-to-point communications and modified runtime

system for point-to-point and collective communications.

Experimental Setup The experiments were performed on the computing platform Dy-

namo1, which comprises 35 Infiniband DDR-connected compute nodes, each of which has 16

GB of main memory and two Intel Xeon E5450 Quad core processors arranged as two sockets

with the operating frequency in the interval from 2 to 3 GHz including four P-states in the

steps of 0.33 GHz and eight levels of throttling from T0 to T7. Table 6.1 presents the effective

operational frequency achieved when the throttling levels (T-states) were applied in this work

along with the DVFS that scales CPU to the lowest P-state of 2 GHz. For measuring the node

power and energy consumption, a Wattsup2 power meter is used with a sampling rate of 1 Hz,

having an accuracy of ±1.5% and granularity of Watts. The Wattsup meter was connected to a

compute node Nw and its power consumption was measured through a profiling node. Since all

the Dynamo nodes are homogeneous in terms of their hardware configuration, the MPI ranks

were assigned in turns to the node Nw, so that the power consumption for an entire application

is measured. In measuring the power consumption of a compute node, no process variation

among the homogeneous nodes is assumed. Due to a low measuring resolution of Wattsup and

for consistency, a large number of collective operations were performed. For determining the

average power consumption, 100 samples are taken for a particular message size followed by

averaging. Specifically, at first the time spent in the collective operation is measured for a given

1funded and operated jointly by Iowa State University and Ames Laboratory.
2https://www.wattsupmeters.com

https://www.wattsupmeters.com

62

message size then the number of iterations is determined, so that the collective executes for

100 seconds on Dynamo. A higher resolution meter will be considered in the future.

The MPI implementation is MVAPICH23 with the default block mode for MPI rank place-

ment and bunch mode for process mapping. (Refer to the MVAPICH2 User Guide for the

explanation of these parameters.) The experiments were executed with 32 MPI processes,

one per core of four Dynamo nodes using the MPI profiling layer PMPI [41, 57]. The runtime

phase-detection procedure has been first tested on the CG and MG NAS benchmarks [5], which

were chosen as representative of widely used efficient parallel applications with a large number

of blocking point-to-point communications. Then, the real-word quantum chemistry package

GAMESS was considered.

For measuring the CPU power a Fluke i410 current probe connected to an Agilent 34410A

digital multimeter (DMM) was used [24]. The current probe measures the total current through

the 12V power lines and then the DMM sends the obtained readings to a logging machine via

Ethernet. For measuring the memory power consumption, a linear extrapolation method [18]

is used.

The input to the GAMESS program was constructed to perform the MP2 energy and gra-

dient calculation—in the direct mode—of substituted silatrane, the 1-trichloromethylsilatrane

(TCMS) molecule, shown in fig. 6.1. From the quantum chemistry viewpoint, silatrane and

its derivatives belong to an interesting class of silicon-based biologically active substances lack-

ing carbon-based natural analogs. Silatrane and its derivatives have numerous biological and

non-biological applications [40]. They have been recently investigated using computational

chemistry methods [46], such as MP2, to elucidate reaction mechanisms essential to those

applications.

Two sets of MP2 computations were performed on 32 cores of four nodes: with 6-31G(d)

basis set (265 basis functions) and 6-31G(d,p) basis set (301 basis functions). These two sets are

referred to as Silatrane-265 and Silatrane-301, respectively, in the rest of this work. From the

computational point of view, silatrane derivatives represent typical test cases with modest run

times. For example, the wallclock times were around 113 and 160 seconds for Silatrane-265 and

3MVAPICH Project: http://mvapich.cse.ohio-state.edu

http://mvapich.cse.ohio-state.edu

63

Figure 6.1 3D geometrical structure of the TCMS molecule (silicon, carbon, oxygen, nitrogen,
chlorine and hydrogen atoms are shown as pink, gray, red, blue, green, and white
balls, respectively). The molecular skeletal formula is inserted on the right.

Silatrane-301, respectively, when run on Dynamo at the highest frequency. In the experiments,

since the results were averaged over ten runs for each silatrane computation, and since the

relative sizes of the basis sets used do not differ much, some fluctuations may appear in the

relative timings of Silatrane-265 and Silatrane-301 when averaging, which, however, do not

affect frequency scaling decisions or observed performance loss percentages. Approaches and

techniques developed using these test cases may be readily extended to larger computations.

6.1 Energy Aware Collective Communication Algorithms

MPI Alltoall. OSU MPI Benchmarks 4 are used here to determine the change in execu-

tion time and power consumption of the “stand alone” all-to-all operations. From Fig. 6.2(left),

it can be observed that the execution time for all-to-all has very low performance penalty when

the proposed energy savings are used. The performance loss and power consumption have been

evaluated for four cases of execution:

◦ at the highest frequency and no throttling (Full power),

◦ only frequency scaling without throttling (DVFS only),

4OSU MPI Benchmarks: http://mvapich.cse.ohio-state.edu

http://mvapich.cse.ohio-state.edu

64

Table 6.1 Effective operational frequency (fop) at a combination of the 2 GHz P-state and
one of the T-states (Level) used.

Level T1 T2 T5 T7

fop, GHz 1.75 1.50 0.75 0.25

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6

7

8

DVFS Only
Throttling Only
Proposed

Message Size (KB)

P
e

rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
ti

o
n

 (
%

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
170

190

210

230

250

270

290

Full Power DVFS only Throttling only Proposed

Message Size (KB)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
at

ts
)

Figure 6.2 The all-to-all performance degradation on 80 cores (left) for three cases and the
power consumption across a compute node (right) for the four cases: Executing
at the highest frequency and no throttling (Full power); only frequency scaling
without throttling (DVFS only); only CPU throttling without frequency scaling
Throttling only; and using the energy saving strategies proposed for all-to-all
(Proposed).

◦ only CPU throttling without frequency scaling (Throttling only),

◦ using the energy saving strategies proposed for all-to-all (Proposed).

The performance loss averaged for various message sizes was just 5% of that for the Full power

case. While somewhat higher than in the DVFS only and Throttling only case, which was 2%

and 3.2% respectively, it is quite acceptable taking into the consideration large reductions in

the power consumption achieved (Fig. 6.2(right)) with the Proposed strategy. The DVFS only

case can be compared to the techniques presented in [12] in which the authors make use of

DVFS alone to conserve power during collective operations.

From Fig. 6.2(right), it can be observed that the proposed strategy has the lowest power

consumption among all the strategies. The DVFS only and Throttling only cases have power

saving of 17.4% and 16.2% respectively on an average for various message sizes, as compared

to the Full Power case. The Throttling only case saves lesser power than DVFS only as it does

reduce the clock rate but does not change the working voltage of the cores whereas DVFS does

both simultaneously. It is only at for the large messages (> 0.6 MB) when throttling level goes

up to to T7 and at that point Throttling only does save more power that DVFS only but incurs

65

a higher performance loss. The Proposed case has the highest average power saving of 26% as

it makes use of both DVFS and CPU throttling. Note that for message larger than 0.6 MB,

the average power saving is 34%.

MPI Allgather. Intel MPI Benchmarks5 are used here to determine the change in ex-

ecution time and power consumption of the “stand alone” allgather operations. Fig. 6.3(left)

presents the percentage of performance degradation of the allgather operation for the three

cases of the CPU frequency settings. The maximum performance losses observed were 2%,

4.1%, and 5.9% for DVFS only, Throttling only, and Proposed, respectively, as compared with

the Full power case. Therefore, the Proposed for allgather strategy performance is well below

the chosen margin of the 10%. Observe that all the frequency downscaling techniques take less

time than the highest frequency execution of allgather for large message sizes (shown as ovals

in Fig. 6.3(left)), which may be attributed to the operating system noise effects as suggested

in [38].

The DVFS only and Throttling only cases have maximum power savings of 17% and 7.1%,

respectively, on an average for various message sizes whereas the Proposed strategy results in

the highest power savings of 21%, as seen from Fig. 6.3(right). The significantly lower power

savings achieved in the Throttling only case are due to the intranode type of communication

employed in the ring algorithm, which is the preferred choice for large general message sizes,

since it permits only up to T2 level of throttling (see Fig. 2.3).

Application Testing. CPMD (Car-Parrinello molecular dynamics)6 is an ab-initio quan-

tum mechanical molecular dynamics real-world application using pseudopotentials and a plane

wave basis set. Eleven input sets from the CPMD application are used here. MPI Alltoall is

the key collective operation in CPMD. Since most messages have the sizes in the range of 128 B

to 8 KB, the BIA is used. From the NAS benchmarks [5], the FT and IS Class C benchmarks

are chosen because they use the all-to-all operation.

5Intel MPI Benchmarks: http://software.intel.com/en-us/articles/intel-mpi-benchmarks
6CPMD Consortium: http://www.cpmd.org

http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://www.cpmd.org

66

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-1

0

1

2

3

4

5

6

DVFS Only
Throttling Only
Proposed

Message Size (KB)

P
e

rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
ti

o
n

 (
%

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
180

200

220

240

260

280

300

Full Power DVFS only Throttling only Proposed

Message Size (KB)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
at

ts
)

Figure 6.3 The allgather performance degradation on 80 processes (left) for three cases and
the power consumption across a compute node (right) for the four cases: Executing
at the highest frequency and no throttling (Full power); only frequency scaling
without throttling (DVFS only); only CPU throttling without frequency scaling
Throttling only; and using the energy saving strategies proposed for allgather
(Proposed).

Fig. 6.4(top) and Fig. 6.4(bottom) show the execution time and energy consumption, re-

spectively, of CPMD inputs and NAS benchmarks normalized to the Full power case. CPMD

has been run on 80 cores while NAS benchmarks have been on 64. For the CPMD with the

Proposed strategies, the performance loss ranges from 0.4% to 4.3% averaging 2.4% leading to

the energy savings in the range of 9.8% to 15.7% (13.4% on average). In all the benchmarks

tested, the DVFS only case has lower performance loss and saves more energy than the Throt-

tling only case. The DVFS Only case has an average performance loss of 1.2% whereas the

Throttling only case results in an average performance loss of only 1.8%. As to the energy

consumption, the DVFS Only case saves 8.4% and Throttling only saves 7.2% energy on an

average for the CPMD and NAS benchmarks.

For the NAS benchmarks, the performance loss ranges from 1.1% to 4.5% and the average

energy savings are about 10%. The NAS IS benchmark uses the MPI Alltoallv collective in

which message size is nonuniform among different processes. Therefore, a naive solution is

proposed to deal with this nonuniformity: During the intranode communication, only DVFS is

applied once the communication becomes internode, the throttling level T5 is added to account

for both smaller and larger messages. This is similar to the technique proposed and evaluated

by authors previously in [48]. A more detailed analysis of the energy savings potential in the

MPI Alltoallv collective with respect to the nonuniform message sizes is left as future work.

67

wat-32-inp-1wat-32-inp-1 wat-32-inp-2wat-32-inp-2 c120-inp-1c120-inp-1 c120-inp-2c120-inp-2 Si512-inp-1Si512-inp-1 Vdb-inp-1Vdb-inp-1 lanczos.inplanczos.inp davidson.inpdavidson.inp annealing.inpannealing.inp Path-int-inp-1Path-int-inp-1 Tddft-inp-1Tddft-inp-1 NAS FT CNAS FT C NAS IS CNAS IS C AverageAverage
0.95

0.98

1

1.03

1.05

Throttling only DVFS only Proposed

N
o

rm
al

iz
ed

E

xe
cu

ti
o

n
 T

im
e

wat-32-inp-1wat-32-inp-1 wat-32-inp-2wat-32-inp-2 c120-inp-1c120-inp-1 c120-inp-2c120-inp-2 Si512-inp-1Si512-inp-1 Vdb-inp-1Vdb-inp-1 lanczos.inplanczos.inp davidson.inpdavidson.inp annealing.inpannealing.inp Path-int-inp-1Path-int-inp-1 Tddft-inp-1Tddft-inp-1 NAS FT CNAS FT C NAS IS CNAS IS C AverageAverage
0.75

0.8

0.85

0.9

0.95

1

N
o

rm
al

iz
ed

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

Figure 6.4 Execution time (top) and energy consumption (bottom) of 11 CPMD inputs on 80
cores and of 2 NAS benchmarks on 64 processes for the DVFS only, Throttling
only, and Proposed cases normalized to the Full power. The last set of bars
(Average) represent the average of the respective y-axis values across all the CPMD
and NAS tests.

Elemental [39] is a C++ package for distributed-memory dense linear algebra and may be

considered as a generalization of PLAPACK [3] to the element-by-element matrix distributions.

Elemental relies heavily on the MPI collectives, such as allgather and all-to-all and is, therefore,

well-suited to demonstrate the effectiveness of the proposed energy saving strategies. Five

different linear algebra algorithms from Elemental were executed on 80 cores for a matrix size

of 10,000 with the algorithm block size of 128 and and with the local matrix block size of 32 for

triangular rank k update. Fig. 6.5 shows the timings and energy consumption of the five chosen

Elemental algorithms normalized to the Full power case. The average performance loss and

average energy saving for the Proposed strategy are 4.3% and 4.5% respectively. The DVFS

only case performs better than the Throttling only one since it has an average performance loss

of 3.5% with the energy savings of 2% whereas throttling delivers 1.7% of savings with the

performance decreased by 3.1%. On the other hand, the Proposed strategies have the highest

energy savings (4.3%) with a little more performance degradation (4.8%).

68

Chol Inv LU Hegst LDLT Average
0.98

1

1.02

1.04

1.06

Throttling only DVFS only Proposed

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Chol Inv LU Hegst LDLT Average
0.9

0.92

0.94

0.96

0.98

1

1.02

Throttling only DVFS only Proposed

N
o

rm
al

iz
ed

 E
n

er
g

y

Figure 6.5 Execution time (left) and energy consumption (right) of five Elemental algorithm-
s—Cholesky (Chol), Triangular inverse (Inv), LU decomposition (LU), Hermitian
eigensolver (Hegst), and LDLT factorization (LDLT)—on 80 cores for the DVFS

only, Throttling only, and Proposed cases normalized to the Full power. The
last set of bars (Average) represent the average of the respective y-axis values
across the five Elemental algorithms.

Table 6.2 Average percentage of the EDP reductions in all the experiments for the three
energy saving strategies.

Experiment
DVFS Throttling

Proposed
Only Only

MPI Alltoall 13 10 18.5

MPI Allgather 14 7 16.0

Applications 7 3 11.0

Energy Delay Product (EDP). Table 6.2 shows the EDP reductions for different en-

ergy saving strategies in all the experiments. For the all-to-all and allgather benchmarks, the

averages were taken over various message sizes in Fig. 6.2 and 6.3; and they were computed

across all the test cases of the three applications (CPMD, NAS, and Elemental) in Fig. 6.4

and 6.5. Observe that the EDP reduction is always higher for the Proposed strategy. Thus, it

appears the winner among the three strategies and improves considerably the energy efficiency

of the system.

Validation of the Proposed Power Consumption Estimate. Since the Infiniband

card installed in Dynamo draws no significant power7, its consumption may be ignored. Hence,

inter- and intranode all-to-all algorithmic steps are considered as consuming approximately

equal power. By substituting P̄1,7 = 160W , the “memory-only” Pd = 10W , and P1,0 = 220

for 1 MB message from Fig. 6.2(right) into Equation (5.6), the power P1,7 of the entire node

at f1 and T7 may be calculated as 176 watts. This value is close to the experimental findings

7http://mellanox.com/related-docs/user_manuals/IH3Lx_PCIex4_HCA__user_manual_1_05.pdf

http://mellanox.com/related-docs/user_manuals/IH3Lx_PCIex4_HCA__user_manual_1_05.pdf

69

Table 6.3 Application characterizations by the runtime procedure. (The average call and
phase lengths, CallLen and PhaseLen, are given in microseconds.)

Name CallLen NumSeq NumPhase PhaseGrp PhaseLen

MG 423.07 1 7 1 5,987

CG 87.32 1 1 1 29,991

Silatrane-265 550.00 1 7 3 175,918

Silatrane-301 700.00 1 12 4 188,206

as evident from Fig. 6.2(right) for the messages of 1 MB in the curve corresponding to the

Proposed strategy.

6.2 Runtime System

6.2.1 Phase Characterization of the Applications Tested

Table 6.3 depicts the results for the 0th MPI rank obtained when the procedure was executed

on Dynamo with 32 MPI processes. (Similar phases were characterized on the other ranks.)

Observe that the average blocking point-to-point call duration (column CallLen) is much higher

for MG, Silatrane-265, and Silatrane-301 than for CG. Thus, it could be inferred that the

frequency scaling, if applied separately to each call in CG, will produce a higher performance loss

than when the same is done in for the other three test cases. (The performance results shown

later (section 6.3.3) confirm this supposition.) All the applications listed have a single initial

sequence per communicating process (column NumSeq). While CG provides only a single phase

throughout its execution, all other applications exhibit multiple phases (column NumPhase),

which are distinguished by their different message sizes. The number of phase groups is shown

in column PhaseGrp. The average phase length (column PhaseLen) of all the applications

is much larger than the DVFS switching overhead for Dynamo, which experimentally was

determined to be between 17 and 26 µs and to be larger for upscaling than for downscaling

frequency transitions (as suggested also in [37]). Thus, this overhead may be amortized when

the DVFS is applied on the per-phase rather than percall basis.

70

6.2.2 NAS Benchmarks: Energy Savings with DVFS

The effects of applying DVFS through several frequency scaling strategies have been ob-

served for the NAS benchmarks first. In addition to the three frequency scaling strategies

described in section 3.1.4, the percall one was evaluated. In the latter, the frequency scaling is

applied to each MPI Send and MPI Recv call, such that the frequency is reduced at its start to

the level prescribed as suggested in the authors’ previous work [53] and restored to its highest

level when the call ends. These four frequency scaling strategies are also compared with a

scheme known as CPU Miser [17].

The CPU Miser technique divides the execution of an application into intervals (time slices)

of a particular duration (typically 250 µs) and predicts the execution characteristics, such as

memory stalls, of the upcoming interval based on recent intervals. The CPU Miser strategy

primarily depends on the memory accesses, even though it may use the I/O and idle times

(provided by the /proc/stat file in Linux) to choose a suitable frequency for a given time

slice. CPU Miser provides for a user to define the performance loss, given which it attempts

to save energy; and it has been shown to attain significant energy gains [17]. Similarly to the

proposed work, CPU Miser requires no modification to the application source code. However,

it does not consider the Infiniband CPU offloading.

Figure 6.6(a) shows the execution time for the MG and CG NAS benchmarks, normalized to

the case when these benchmarks are executed at the highest frequency of the processor. It can

be observed that, among all the strategies, the conservative one has the least (about 1%) and the

percall has the highest (about 5.5%) average performance degradation for the two benchmarks.

The percall strategy incurs a huge DVFS switching overhead, which is accumulated over the

DVFS applications to every call. On the other hand, the conservative strategy has only two

DVFS switches per phase (see section 6.3.1 for the phase counts and call lengths) and, therefore,

minimizes the DVFS overhead. The average performance loss for the intermediate, CPU Miser,

and aggressive strategies is approximately 2% each, which is well below the chosen threshold

of 10%.

Figure 6.6(b) depicts the respective normalized energy consumption. The percall strategy

71

MG CG
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

MG CG
0.8

0.85

0.9

0.95

1

1.05

1.1
Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
a

liz
e

d
 E

n
e

rg
y

C
o

n
s

u
m

p
ti

o
n

Figure 6.6 Execution time and energy consumption of the NAS MG and CG benchmarks
for the different DVFS strategies normalized to the case when all the processes
operate at the highest frequency. (Results below 1 are better.)

saves 1% of energy for the MG benchmark but increases the energy consumption of the CG

benchmark by 5%. The conservative strategy schedules all the phases at 2.66 GHz and saves

2.5% energy for the CG benchmark but only 1% for MG. This is because CG exhibits an overall

large value of the phase overlap (φo > 90%) whereas MG has a lower phase overlap (φo < 30%),

as determined experimentally for different twin-core pairs. Since the DVFS is applied only to

the phase overlaps in twin cores, it is proved more effective for the CG benchmark.

The CPU Miser schedules the whole execution at 2.66 GHz for both benchmarks, owing

to their uniform memory access pattern throughout their execution, and reduces their energy

consumption by approximately 3.6%. Even though the conservative and CPU Miser strategies

choose the same frequency, CPU Miser saves more energy since it covers the whole execution

time, including the interphase gaps. Additionally, the CPU Miser applies DVFS uniformly

across the twin cores, which means a near 100% phase overlap.

After determining the architectural stalls in the intraphase time gaps, the intermediate

strategy picks the lowest frequency (2 GHz) as the suitable frequency f∗ for each phase of the

two benchmarks. It saves 8% of energy for the CG benchmark, which is more than what was

achieved by CPU Miser, but saves only 1.5% for MG due to poor phase overlap.

The aggressive strategy schedules the whole execution at 2 GHz. Since it picks a suitable

72

(typically less than the maximum) frequency for the interphase gaps as well—essentially cre-

ating a continuous execution coverage by the frequency downscaling—the problem of the low

phase overlap is mitigated in applications, such as MG. Specifically, the aggressive strategy

saves energy close to 11% for either benchmark and thus, provides the most energy savings

among all the strategies on the computing platform considered here. To assess this amount of

energy savings in absolute terms, note that the power consumption of a Dynamo node at the

highest and lowest P-states of 3 GHz and 2 GHz, respectively, equals to around 270 and 234

watts in the experiments conducted here. Hence, the theoretical peak of energy savings is 13%,

which is rather close to the 11% obtained with the aggressive strategy. The latter also results

in a minimal performance loss of 2%, hereby confirming that a runtime procedure is possible

(in lieu of a static analysis of the application performance) to arrive at an optimal frequency.

6.2.3 GAMESS: Energy Savings with DVFS

Before analyzing the energy efficiency and performing frequency scaling of the three binding

types considered here, they were compared with each other in terms of their execution times at

the highest frequency. It was observed that the execution time decreased as compute processes

were spread more evenly across the two sockets when using the bindings other than Disjoint-I.

In particular, there was a decrease in execution time of about 1.8% and 4.5% for the Disjoint-II

and Slave, respectively, as compared to the Disjoint-I binding. This can be attributed to the

fact that, in the Slave binding, there is little contention to access the L2 cache by the compute

processes because they are paired with data servers, which do not use L2 cache significantly.

Being the default, Disjoint-I at the highest processor frequency is chosen as the baseline case

for comparing other bindings at different frequencies in the rest of the paper.

Disjoint-I Figure 6.7(a) depicts the execution time of the two Silatrane computations for

the various frequency scaling strategies in the Disjoint-I process mapping, normalized to the

baseline case. It may be observed that the execution time never exceeds the 10% performance

threshold for all the frequency scaling strategies: The performance loss varies from 0.3% to

6.6% for the two silatrane computations.

73

Silatrane-265 Silatrane-301
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Silatrane-265 Silatrane-301
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
al

iz
ed

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(a) (b)

Figure 6.7 (a) Execution time and (b) energy consumption of the two Silatrane computations
under Disjoint-I process mapping for the different DVFS strategies, normalized
to the case when Disjoint-I binding is operated at the highest frequency. (Results
below 1 are better.)

Figure 6.7(b) shows the corresponding normalized energy consumption of the two molecule

computations. As in the case of the NAS benchmarks, the percall strategy increases the energy

consumption of both the molecule computations due to excessive frequency scaling overhead and

poor phase overlap associated with the GAMESS execution. The CPU Miser strategy schedules

the execution at 2.66 GHz on all the cores except for the compute-intensive gradient calculation,

at which it again increases the frequency to the maximum of 3 GHz. Therefore, it ends up saving

4% of energy for either molecule computation. Since the data servers are operated at 2 GHz

throughout the execution and compute processes undergo per-phase frequency scaling, all the

proposed strategies—conservative, intermediate, and aggressive—save more energy than CPU

Miser does. Specifically, the average energy savings are 7%, 7.5%, and 10.2% for conservative,

intermediate, and aggressive, respectively.

Slave For the Slave binding, the execution time is reduced with respect to the baseline

case for all the frequency scaling strategies but for the percall one, as seen in the results

presented in fig. 6.8(a). Recall that this decrease is due to a more even distribution of the

compute processes across the node and, thus, less contention for the L2 cache. As far as energy

saving is concerned for the Slave binding (fig. 6.8(b)), the CPU Miser saves more energy (7%)

74

Silatrane-265 Silatrane-301
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Silatrane-265 Silatrane-301
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
al

iz
ed

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

 (a) (b)

Figure 6.8 (a) Execution time and (b) energy consumption of the two Silatrane computations
under Slave process mapping for the different DVFS strategies, normalized to the
case when Disjoint-I binding is operated at the highest frequency. (Results below
1 are better.)

than the conservative strategy does (6%) because the former also benefits from the decrease in

the execution time offered by the Slave binding while its power consumption remains uniformly

low among all the cores, irrespective of the binding strategy used. The intermediate and

aggressive strategies, however, save more energy (7.2 and 8%, respectively) than the CPU

Miser does because they choose the lowest frequency of 2 GHz for the most part of the compute

process execution except when the compute-intensive tasks are performed, such as the gradient

calculation, which amounts to about 25% of the execution time.

Disjoint-II The normalized execution time under the Disjoint-II process mapping for

different frequency scaling strategies can be observed in fig. 6.9(a). Except for the percall

strategy, all the other strategies enjoy virtually no performance degradation. The percall

strategy increases the energy consumption by 1% whereas the CPU Miser saves 6% energy as

seen from fig. 6.9(b). The conservative, intermediate, and aggressive strategies decrease the

energy consumption by 8%, 8.6%, and 10%, respectively.

Comparison of the Disjoint Variants and Slave Mappings The energy savings ob-

tained for the three proposed frequency scaling strategies under the Disjoint bindings are higher

than those for the Slave because the data servers are always operated at 2 GHz throughout the

75

Silatrane-265 Silatrane-301
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Silatrane-265 Silatrane-301
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Percall
Conservative
CPU Miser
Intermediate
Aggressive

N
o

rm
al

iz
ed

 E
n

er
g

y
C

o
n

su
m

p
ti

o
n

(a) (b)

Figure 6.9 (a) Execution time and (b) energy consumption of the two Silatrane computations
under Disjoint-II process mapping for the different DVFS strategies, normalized
to the case when Disjoint-I binding is operated at the highest frequency. (Results
below 1 are better.)

Table 6.4 Energy-delay product (EDP) values for the three proposed bindings under the ag-
gressive frequency scaling strategy normalized to the EDP of the Disjoint-I binding
operated at the highest frequency.

Name Disjoint-I Disjoint-II Slave

Silatrane-265 0.908 0.900 0.911

Silatrane-301 0.915 0.892 0.895

execution in the Disjoint unlike in the Slave, where they follow the compute processes operating

at the highest frequency during the gradient calculation.

Table 6.4 depicts the normalized Energy-delay product (EDP) [34] for the two silatrane

computations for aggressive frequency scaling strategy under three different bindings. There

is a close competition between Disjoint-I and Disjoint-II as far as energy saving is concerned

since both save a maximum of 10% with the aggressive frequency scaling strategy. However, on

the basis of the EDP metric, Disjoint-II is marginally better than Disjoint-I since it provides

the energy savings with a slight improvement in performance over Disjoint-I.

In MVAPICH2, the default (bunch) process mapping is implemented as Disjoint-I and the

other one (scatter) as Slave. The Disjoint-II binding was achieved by giving suitable values to

the run-time variable MV2 CPU MAPPING used along with the mpirun command in MVAPICH2.

76

6.2.4 DVFS versus CPU Throttling

Even though CPU throttling is supported on a per-core granularity as opposed to DVFS,

which is supported on a twin-core granularity, its power saving capabilities are inferior to those

of DVFS. Throttling does not reduce the actual clock rate but rather inserts the STPCLK (stop

clock) signals, thereby omitting the duty cycles and does not change the operating voltage of

the cores. Moreover, it results in considerable performance loss as compared to DVFS [53]

for the intranode communications. For example, any frequency reduction in the GAMESS

data-server processes has to be done with DVFS as opposed to throttling because they per-

form a considerable amount of intranode communications of the globally distributed arrays, so

throttling would incur a substantial switching overhead, as has been observed by the authors

in [48].

Consider an example of the throttling usage in MG and CG benchmarks. The reduction

in power consumption at T-states T1 and T2 is 2% and 5%, respectively, across a node for

each benchmark with the achieved operational frequency for these states of 2.625 and 2.25

GHz. Observe that these decreases in power consumption are much lower than those provided

by DVFS. When different frequency scaling strategies were tested using the CPU throttling

only, the total energy consumption actually increased at times because the power consumption

remained rather high while the performance loss was significant, up to the allowed 10% in the

percall strategy that incurs the largest number of frequency switches. However, if an application

exhibits poor phase overlap among the twin cores or the phases consist mostly of the internode

communications—the two conditions under which DVFS is not effective—throttling may give

more savings than DVFS.

6.3 Modified Runtime System

6.3.1 Characterization of the Applications Tested

The experiments were executed on 32 MPI processes, one per core of four Dynamo nodes,

using the lightweight tool MPE [57] with the MPI profiling layer PMPI [41]. (MPE introduced

an overhead of less than 1% for the NAS benchmarks.) The NAS class C benchmarks along with

77

the CPMD and pARMS applications are used to verify the operation of the proposed runtime

phase-detection mechanism and the efficacy of the proposed frequency-scaling strategies.

6.3.1.1 pARMS

pARMS is a library of parallel solvers for distributed sparse linear systems of equations. It is

based on a preconditioned Krylov subspace approach, using a domain decomposition viewpoint.

The plural in ”Solvers” is due to the fact that pARMS offers a large selection of preconditioners

for distributed sparse linear systems and a few of the best known accelerators. The basic

methodology used relies on a Recursive Multi-level ILU factorization which allows to develop

many of the standard domain-decomposition type iterative solvers in a single framework. For

example, the standard Schwarz procedures are included as are a number of Schur complement

techniques.

6.3.1.2 CPMD

CPMD is an ab initio electronic structure and molecular dynamics (MD) program us-

ing a plane wave/pseudopotential implementation of density functional theory (DFT). It is

mainly targeted at Car-Parrinello MD simulations, but also supports geometry optimizations,

Born-Oppenheimer MD, path integral MD, response functions, QM/MM, excited states and

calculation of some electronic properties.

6.3.1.3 Application Phase Characterization

Five inputs from NAS (MG, CG, FT, and IS), three inputs from CPMD (wfopt-davidson,

wfopt-lanczos, wat32-inp2), and two from pARMS (two 2D regular grids having total 5.12 and

20.48 million nodes each) are used in this work. Table 6.5 depicts the results of the phase-

detection process in the 0th MPI rank when the tests were run with 32 MPI processes on

Dynamo. (Similar phases were characterized on other ranks.) Note that the input cases for

CPMD and pARMS are termed in table 6.5 as CPMD-m1, CPMD-m2, CPMD-p2, and as

pARMS-g1 and pARMS-g2, respectively. It was observed that, for all the test cases but CG,

the average call duration (column CLen) is much larger than the DVFS overhead, which is on

78

Table 6.5 Characterization of NAS, CPMD, and pARMS tests (column TName) by the pro-
posed runtime system. The number of phases detected is shown in column PhN.
The average call and phase lengths, CLen and PhLen, are in microseconds, re-
spectively. The column CTypes gives the MPI call types as observed in the phases.

TName CLen PhN PhLen CTypes

MG 298.7 11 8,587 Allreduce, Send, Bcast

CG 75 1 21,240 Send

FT 818,664 1 9,178,124 Alltoall

IS 321 1 595,619.9 Alltoall, Alltoallv, Bcast

CPMD-m1 2,148.5 105 70,000 Alltoall, Recv, Bcast

CPMD-m2 2,417.6 102 110,000 Alltoall, Recv, Bcast

CPMD-p2 2,500 25 270,000 Alltoall, Recv, Bcast

pARMS-g1 497.1 1 404,412 Allreduce

pARMS-g2 3,113 1 1,667,656.1 Allreduce

the order of several microseconds. Thus, the frequency scaling, if applied separately to each

call in CG, will produce a higher performance loss than when the same is done for the rest of

the test cases. The performance results shown later (section 6.3.3) confirm this supposition.

Except for MG and the three CPMD inputs, a single phase (column PhN) was detected

for the rest of the inputs and the average duration (column PhLen) of a phase was much

higher than the amount of the DVFS overhead. Therefore, this overhead is well amortized

even when the frequency scaling is applied to the determined phases only, as in the DVFS-

Ph strategy. The phase composition from the MPI call types (column CTypes) reveals that,

in the MG and CG benchmarks, much of the phase communication is due to the MPI Send

calls, which does not allow for efficient application of throttling unless large message sizes

are used. Another observation is that all the test cases, but MG, CG, and pARMS, have the

collective operations that include no computation. For example, FT, IS, and CPMD use heavily

MPI Alltoall. Conversely, the pARMS phase comprises MPI Allreduce, which is a compute-

intensive collective operation. Therefore, pARMS is expected to be quite sensitive to frequency

scaling.

6.3.2 CPU and Memory Power Consumption

The static power consumption values are 66 watts and 22 watts, for the CPU and memory,

respectively. Figure 6.10 depicts the CPU power trace of the CG benchmark, in which the

CPU power varies from 93 to 150 watts. Among all the NAS benchmarks, the average CPU

79

80

90

100

110

120

130

140

150

160

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
W

at
ts

)

Time (in ms)

CG

CG

Figure 6.10 CPU power consumption for CG benchmark.

power is ranging from 121 watts (for FT) to 136 watts (for MG) and the memory power is

41 watts. The average CPU power at the various frequency levels for the benchmarks is 135

watts (at 3.0 GHz), 123 watts (at 2.67 GHz), 110 watts (at 2.33 GHz), and 98 watts (at 2.0

GHz). The total power consumption of a compute node in Dynamo is close to 270 watts (at 3.0

GHz). Therefore, the CPU and memory power consumptions comprise about 50% and 15%,

respectively, of the total.

6.3.3 Frequency Scaling with DVFS and Throttling

The effects of applying the frequency scaling through DVFS and throttling for different

strategies have been observed for the NAS, pARMS, and CPMD test cases.

In addition to the three frequency scaling strategies described in section 5.2.3, the percall

one was evaluated. In the latter, the frequency scaling is applied to each MPI call, such that

the frequency is reduced at its start to the level prescribed as suggested in the authors’ previous

work [53] and restored to its highest level when the call ends. These four frequency scaling

strategies are also compared with a scheme known as CPU Miser [17].

80

CPU Miser The CPU Miser technique divides the execution of an application into inter-

vals of a particular duration (typically 250 µs) and predicts the execution characteristics, such

as memory stalls, of the upcoming interval, called time slice, based on recent intervals. The

CPU Miser strategy primarily depends on the memory accesses, even though it may use the

I/O and idle times (provided by the /proc/stat file in Linux) to choose a suitable frequency

for a given time slice. CPU Miser provides for a user to define the performance loss, given which

it attempts to save energy; and it has been shown to attain significant energy gains [17]. Note

that, similarly to the proposed work, CPU Miser requires no modification to the application

source code. However, it does not consider the Infiniband capabilities of the CPU offloading.

Figure 6.11 shows the execution time for the NAS, pARMS, and CPMD test cases nor-

malized to their execution at the highest frequency of the processor. It can be observed that

CPU Miser has the least (about 1.5%) and the DVFS-PhIT has the highest (about 4%) average

performance degradation for all the inputs. The DVFS-PhIT strategy incurs a relatively higher

frequency scaling overhead due to its use of both throttling and DVFS for saving energy. Since

the DVFS-Ph strategy applies the same DVFS level to the entire phase, it may minimize the

DVFS overhead across the proposed strategies, especially for relatively long phases and for a

small number of phases. The DVFS-PhI strategy, while applying DVFS to a larger part of the

application execution, has its performance loss offset by the unnecessary DVFS switches when

a phase and its next interphase gap may be operated at the same frequency.

The average performance loss for the percall, DVFS-Ph, and DVFS-PhI strategies is ap-

proximately 2.5%, 2.8%, and 3.5%, respectively, which is well below the acceptable threshold

of 10%.

Figure 6.12 depicts the respective normalized energy consumption. The percall strategy

saves on average 3.1% of energy across all inputs with a maximum of about 8% for the IS

benchmark. However, for the MG and CG benchmarks, it increases the energy consumption

by 1% and 4%, respectively, owing to their relatively smaller call lengths, and provides little

savings of 1% for pARMS.

The CPU Miser schedules the whole execution at 2.66 GHz for almost all the inputs, owing

to their uniform memory access pattern throughout their execution, and reduces their energy

81

MG CG FT IS pARMS-g1 pARMS-g2 CPMD-m1 CPMD-m2 CPMD-p2
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Percall
CPU Miser
DVFS-Ph
DVFS-PhI
DVFS-PhIT

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Figure 6.11 Normalized execution time of the NAS, pARMS, and CPMD tests for the different
frequency scaling strategies. (Results below 1 are better.)

consumption by approximately 4.5% on average. Even though the percall strategy chooses

lower frequency than CPU Miser does so, the latter saves more energy since it covers the whole

execution time, including interphase gaps and not just communication calls. Additionally, the

CPU Miser applies DVFS uniformly across the twin cores, which means a near 100% phase

overlap.

After determining the architectural stalls in the intraphase gaps and considering CPU of-

fload of Infiniband, the DVFS-Ph strategy picks the lowest frequency (2 GHz) as the suitable

frequency f∗ for each phase of all the inputs. It saves 6% of energy on average, which is higher

than what was achieved by CPU Miser and the percall frequency application. Specifically, the

DVFS-Ph savings range from 3% (for the pARMS-g2 test case) to 9% (for the CPMD-m1).

The DVFS-PhI strategy schedules almost the entire execution at 2 GHz for all the inputs.

Since it picks a suitable (typically less than the maximum) frequency for the interphase gaps too,

essentially creating a continuous execution cover by the frequency downscaling, the problem of

the low phase overlap is mitigated. Specifically, the DVFS-PhI strategy saves close to 9% of

energy on average and provides more energy savings than the DVFS-Ph strategy does as the

benchmarks are fairly communication and memory intensive.

By carefully applying DVFS and throttling to the inputs, the DVFS-PhIT saves the highest

82

MG CG FT IS pARMS-g1 pARMS-g2 CPMD-m1 CPMD-m2 CPMD-p2
0.8

0.85

0.9

0.95

1

1.05

1.1
Percall
CPU Miser
DVFS-Ph
DVFS-PhI
DVFS-PhIT

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Figure 6.12 Normalized energy consumption of the NAS, pARMS, and CPMD tests for the
different frequency scaling strategies. (Results below 1 are better.)

amount of energy (11.2% on average) among all the strategies tested. The CG benchmark

undergoes heavy intra-node point-to-point communication. Therefore, CG (as well as pARMS)

do not give much opportunity to apply throttling along with DVFS. Note that, for pARMS,

only the MPI Allreduce calls were detected (see table 6.5), which contain computations and,

thus, are quite sensitive to the CPU throttling. As a result, these three test cases show no

significant change in energy saving from the application of the DVFS-PhIT strategy. The

MG benchmark exhibits considerable inter-node point-to-point communication and allows for

applying throttling level T1 often, so the DVFS-PhIT strategy saves 14% energy. The minimum

and maximum energy savings are 5% and 14% for pARMS-g1 and MG, respectively, with the

DVFS-PhIT strategy. Note that the peak of energy savings with DVFS alone is calculated

experimentally to be 12.5%, which is rather close to the average of 11.2% and lower than the

highest of 14% obtained with the DVFS-PhIT strategy for the MG and CG benchmarks.

In terms of the CPU energy savings alone, the lowest and the highest are about 19.5% and

30% for pARMS-g1 and MG, respectively. Even though these numbers seem to suggest that

a significant amount of energy has been saved, without considering the overall energy saving,

they may be misleading. In their previous work [52], the authors have shown that a strategy

resulting in some energy saving for the CPU alone can actually lead to an overall increase in

83

the energy consumption for a compute node. Therefore, the overall energy savings have been

emphasized in this work as well.

84

CHAPTER 7. Related Work

In [26], algorithms to save energy in the collectives, such as MPI Alltoall and MPI Bcast, are

proposed. They differ significantly with the approach presented in this work. Specifically, [26]

views throttling as affecting negatively the internode communication and thus, redesigns the

all-to-all operation such that a certain set of sockets does not participate in the communication

at some point of time in order to be throttled. However, since the number of cores within a

node continues to increase, forcing some sockets to remain idle during the communication can

introduce significant performance overheads. The power savings achieved in [26] are equivalent

to operating two sockets at the minimum frequency and throttling state T4, whereas the ap-

proach proposed here achieves power saving by keeping both sockets at the minimum frequency

while throttling them to a state T5 and higher depending on the message size. An experimental

comparison of the two algorithms is left as future work.

There are two general approaches to obtaining energy saving during parallel application

execution. The first approach is to focus on identifying stalls during the execution by measur-

ing architectural parameters from performance counters as proposed in [17, 21, 22]. Rountree

et. al [42], apart from using performance counters, do the critical path analysis to determine

which tasks may be slowed down to minimize the performance loss in the parallel execution.

This analysis appears beneficial when applications have computation or communication im-

balances among participating processes, which is typically not the case for a highly efficient

parallel application and which was not observed in the NAS benchmarks considered in this

work.

The second approach determines the communication phases to apply DVFS as, for example,

in [32] and [16]. DVFS is combined in [10] with concurrency throttling on multicore platforms to

obtain energy savings. In [26], algorithms to save energy in the collectives, such as MPI Alltoall

85

and MPI Bcast, are proposed. The work in [23] describes a runtime system for the Intel Single-

chip Cloud Computer (SCC) processor. This system detects repeatable communication phases

followed by an application of frequency scaling. In [33], a detailed comparison of the benefits

offered by RDMA versus TCP/IP is given in terms of power efficiency.

The proposed runtime system differs from the related work in several aspects:

◦ The proposed frequency-scaling strategies are interconnect-aware, i.e., they take into account

the Infiniband communication characteristics and its capability to offload the CPU.

◦ Two computer-architecture parameters are considered by using all the available performance

counters rather than just one as done, e.g., in [32].

◦ Unlike [32], in which a single-core architecture is considered, the present focus is on the

multicore architectures that have limited power management in each core and in which core

pairing is necessary for the DVFS application. Thus, the communication phase overlap is

emphasized here.

◦ The two frequency-scaling techniques, DVFS and throttling, are clearly distinguished and

compared as to their application in various communication calls.

◦ This work addresses in detail the behavior of various types of communication calls and

differentiates among them to apply throttling, rather than considering all communication

operations to be the same.

◦ Communication call parameters, such as rank and message size, along with a unique callid

are considered to identify the call uniquely instead of using stack addresses.

The energy saving work often aims to reduce the CPU power consumption since the pro-

cessor consumes more power than other components in the existing computing platforms, as

noted in [18, 47], for example. Much research has also focused on exploring system component

level power profiling techniques. In [18], authors have developed a tool, PowerPack, which

estimates power consumption characteristics of a parallel application in terms of various CPU

components. Song et. al [47] use PowerPack to perform the energy profiling of the HPCC1

benchmark. The energy efficiency delivered by the modern interconnects in high performance

clusters is discussed in [59]. In [33], a detailed comparison of the benefits offered by RDMA

1http://icl.cs.utk.edu/hpcc

http://icl.cs.utk.edu/hpcc

86

versus TCP/IP is given in terms of their power efficiency. David et. al [11] present a framework

for measuring memory power consumption which is featured in the Intel SandyBridge microar-

chitecture. The power profiling of various components of a processor is done in [6] by making

use of the performance counters.

Authors in [56] present a Power Aware One-Sided Communication Llibrary(PASCoL) which

detects communication slack, uses Dynamic Voltage and Frequency Scaling (DVFS), and In-

terrupt driven execution to exploit the detected slack for energy efficiency in one-sided commu-

nication primitives. The power profiles of two high performance one-sided dense linear algebra

factorizations, namely Cholesky and QR, on distributed memory systems in the context of

ScaLAPACK and DPLASMA libraries is studied in [7]. In [30], a novel software-controlled

execution scheme that consider the effects of dynamic concurrency throttling (DCT) and dy-

namic voltage and frequency scaling (DVFS) in the context of hybrid programming models by

using predictive models based on statistical analysis is discussed. There are many approaches

which use templates and are widespread and used in many existing works which focus basi-

cally on the characterization of communication requirements for both application and system

exploration. This includes determining commonly used communication patterns [25], creating

simplified descriptions for the application [58] etc. By combining many of the principles of

templates and using them with energy saving principles the authors in [27] determine energy

template for a wavefront algorithm that has a complex processing pattern.

87

CHAPTER 8. Conclusions and Future Work

In this work, energy saving strategies are presented for the all-to-all and allgather collec-

tive operations implemented in MVAPICH2 without modifying the underlying algorithms. All

their MVAPICH2 implementations have been considered. The sensitivity of inter and intran-

ode message transfers to DVFS and CPU throttling has been assessed and the message sizes

found such that the chosen performance loss of 10% is not exceeded. It was also observed that

applying throttling results in less performance degradation for the internode communications

as compared to the intranode ones. These findings lead to the application of DVFS and the

appropriate nonzero levels of the CPU throttling within the internode communication algo-

rithmic steps depending on the message size involved while DVFS and no throttling is applied

in the case of intranode communication steps. A formula to predict the power consumption

of the entire node with DVFS and different levels of CPU throttling has been proposed and

then verified experimentally for a particular message size transfer in all-to-all operating on the

lowest frequency and the highest throttling level. The experiments have been conducted with

NAS benchmarks as well as realistic applications in molecular dynamics (CPMD) and paral-

lel dense linear algebra package (Elemental). The proposed strategies resulted in the highest

energy savings with a small performance degradation compared with applying either DVFS or

throttling uniformly throughout the application. The energy gains and performance observed

in the tests are representative of the potential benefits to scientific applications in general.

Then, a runtime procedure has been proposed to detect communication phases in blocking

point-to-point communications. Different strategies have been proposed to select a suitable

frequency for the communication phases as well as for the time gaps between the commu-

nication calls. For the maximum energy savings, the time gaps are recorded and classified

into intranode interphase; and the strategies differ as to their treatment of these time gaps in

88

point-to-point communications. It has been shown experimentally that to assume these gaps

as compute-intensive is too conservative and that there exist good opportunities to lower the

frequency during the gaps under a careful investigation of architectural parameters, such as

micro-instructions retired and memory accesses. The frequency scaling is performed without

any changes to the user application or MPI library. DVFS and CPU throttling were compared

as to their hardware-level applicability, energy consumption during communication phases,

and switching overheads. Although the DVFS effectiveness depends on the processing core

topology within a multicore node, it is much more potent in saving energy than throttling is,

especially when used in conjunction with the proposed frequency scaling strategies. Since both

the Infiniband offload of the CPU and architectural parameters are analyzed dynamically, more

energy savings have been achieved with the more aggressive among the proposed strategies as

compared to the existing state-of-the-art techniques, such as CPU Miser, in the test cases con-

sidered. For the NAS benchmarks, the aggressive DVFS strategy has resulted in about 11%

of savings, which is very close to the maximum achievable energy reduction of 13% in this

test-platform combination. For the realistic quantum chemistry package GAMESS, various

process-to-core mappings were studied under the proposed three frequency scaling strategies.

As a result, up to 10% of energy was saved for the computation of silatrane molecule with as

low as 2% of the performance loss.

This work also studies the power and energy consumption characteristics of GAMESS when

performing SCF calculations in two different ways, direct and conventional. By considering

them in stages and using different numbers of processing elements (PEs), it has been observed

that the direct mode is more energy efficient although its performance suffers when fewer cores

are used and has less potential for the DVFS optimization due to the less time spent off-chip.

A general theoretical model for evaluating a DVFS-based optimization is proposed and verified

experimentally using GAMESS. The model demonstrates that the energy consumption for the

on-chip time, increases with the performance loss increase. Therefore, care must be taken when

choosing a performance loss tolerated for energy savings. The ratio of the off-chip and on-chip

execution is critical in determining the performance loss. The results emphasize that applying

DVFS may actually lead to a higher total energy consumption as compared with always keeping

89

the highest frequency.

Finally a modified automatic runtime system is proposed which possesses the following novel

features: Detects the communication phases transparently in parallel applications; Chooses

among three frequency-scaling strategies that differ by their treatment of the communication

calls and time gaps between the them; Uses both DVFS and CPU throttling; Calculates the

suitable frequency values based on the Infiniband offload and on several architectural param-

eters obtained from the performance counters; Scales frequency without any changes to the

user application or communication (MPI) library. The experiments have shown that up to

14% of energy was saved with a low performance loss of 2% by employing the newly proposed

frequency-scaling strategy (called DVFS-PhIT) that calculates a suitable DVFS level within

the phases and interphase time gaps as well as selects a proper level of throttling for the

communication calls within the detected phases.

8.1 Power Consumption Aware Techniques

Past researches although have dealt with achieving energy efficiency in both CPUs and

GPUS, both do so without considering the instantaneous power consumption of these devices.

With the result, they choose a particular value of a performance loss and then try to maximize

energy saving under that envelope using frequency scaling. This can have adverse results as

the energy saving technique becomes completely dependent on the chosen performance loss

and the type of workload as shown in a previous work [50]. Modern CPU processors(e.g.

SandyBridge) [2] and GPUs provide power draw capabilities which enable users to get the

instantaneous power consumption at a high resolution. These capabilities are to be used in the

decision making for applying frequency scaling so that the process becomes independent of the

chosen performance loss.

90

Figure 8.1 Frequency scaling range for the K20 Tesla GPU obtained through nvidia-smi

8.2 Frequency Scaling in GPUs

Modern GPUs provide capabilities to perform frequency scaling for GPU cores and memory.

The NVClock tool1 enables GPU frequency scaling for GPU series upto GTX 2xx as per the

experiments. Therefore, the nvidia-smi utility2 is widely used to change the GPU core and

memory frequency. Figure 8.1 shows the supported core and memory clocks on a K20 Tesla

GPU. It can be observed a very low range of frequencies are supported by the K20. This can

actually limit the energy saving capability of a technique e.g in case of a GPU core intensive

task, the memory frequency cannot be reduced unless the memory frequency is reduced together

with the core frequency. As a result of discussion with NVIDIA experts, it was concluded that

a change in BIOS is needed to increase the clock range. Therefore, the current work looks for

an option to modify the BIOS of the K20 to enable more frequency levels.

1NVClock: http://www.linuxhardware.org/nvclock/
2NVClock: developer.nvidia.com/nvidia-system-management-interface

http://www.linuxhardware.org/nvclock/
developer.nvidia.com/nvidia-system-management-interface

91

BIBLIOGRAPHY

[1] https://www.wattsupmeters.com.

[2] http://download.intel.com/products/processor/manual/325384.pdf.

[3] P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, R. van de Geijn,

and Y.J.J. Wu. Plapack: parallel linear algebra package design overview. In Proceedings

of the 1997 ACM/IEEE conference on Supercomputing (CDROM), Supercomputing ’97,

pages 1–16, New York, NY, USA, 1997. ACM.

[4] M. Annavarami, E. Grochowski, and J. Shen. Mitigating Amdahl’s Law through EPI

Throttling. In Proceedings of the 32nd annual international symposium on Computer

Architecture, ISCA’05, pages 298–309, Washington, DC, USA, 2005. IEEE Computer So-

ciety.

[5] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A. Fatoohi,

P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakrishnan, and

S.K. Weeratunga. The NAS Parallel Benchmarks–Summary and Preliminary Results. In

Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages 158–165, 1991.

[6] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. Decomposable

and responsive power models for multicore processors using performance counters. In

Proceedings of the 24th ACM International Conference on Supercomputing, ICS’10, pages

147–158, New York, NY, USA, 2010. ACM.

[7] G. Bosilca, H. Ltaief, and J. Dongarra. Power profiling of cholesky and qr factorizations

on distributed memory systems. Computer Science - Research and Development, pages

1–9, 2012.

http://download.intel.com/products/processor/manual/325384.pdf

92

[8] S. Cho and R. Melhem. Corollaries to amdahl’s law for energy. IEEE Comput. Archit.

Lett., 7:25–28, January 2008.

[9] Kihwan Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and frequency

scaling for precise energy and performance tradeoff based on the ratio of off-chip access to

on-chip computation times. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 24(1):18 – 28, 2005.

[10] M. Curtis-Maury, A. Shah, F. Blagojevic, D.S. Nikolopoulos, B.R. de Supinski, and

M. Schulz. Prediction Models for Multi-dimensional Power-Performance Optimization

on Many Cores. In Proceedings of the 17th international conference on Parallel architec-

tures and compilation techniques, PACT ’08, pages 250–259, New York, NY, USA, 2008.

ACM.

[11] H. David, E. Gorbatov, U.R. Hanebutte, R. Khannal, and C. Le. RAPL: Memory Power

Estimation and Capping. In Proceedings of the 16th ACM/IEEE international symposium

on Low power electronics and design, ISLPED’10, pages 189–194, New York, NY, USA,

2010. ACM.

[12] Y. Dong, J. Chen, X. Yang, C. Yang, and L. Peng. Low power optimization for MPI collec-

tive operations. In Young Computer Scientists, 2008. ICYCS 2008. The 9th International

Conference for, pages 1047–1052, nov. 2008.

[13] D.G. Fedorov, R.M. Olson, K. Kitaura, M.S. Gordon, and S. Koseki. A new hierarchical

parallelization scheme: Generalized distributed data interface (GDDI), and an application

to the fragment molecular orbital method (FMO). Journal of Computational Chemistry,

25, Issue 6:872–880, 2004.

[14] X. Feng, R. Ge, and K.W. Cameron. Power and energy profiling of scientific applications

on distributed systems. In Proceedings of the 19th IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS’05) - Papers - Volume 01, IPDPS ’05, pages 34–,

Washington, DC, USA, 2005. IEEE Computer Society.

93

[15] G.D. Fletcher, M.W. Schmidt, B.M. Bode, and M.S. Gordon. The Distributed Data

Interface in GAMESS. Computer Physics Communications, 128(1–2):190–200, 2000.

[16] V.W. Freeh and D.K. Lowenthal. Using Multiple Energy Gears in MPI Programs on

a Power-Scalable Cluster. In Proceedings of the tenth ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 164–173, 2005.

[17] R. Ge, X. Feng, W. Feng, and K.W. Cameron. CPU MISER: A Performance-Directed,

Run-Time System for Power-Aware Clusters. In Parallel Processing, 2007. ICPP 2007.

International Conference on, page 18, Sep. 2007.

[18] R. Ge, X. Feng, S. Song, H.C. Chang, D. Li, and K.W. Cameron. PowerPack: Energy

Profiling and Analysis of High-Performance Systems and Applications. Parallel and Dis-

tributed Systems, IEEE Transactions on, 21:658–671, 2010.

[19] M.S. Gordon and M.W. Schmidt. Advances in Electronic Structure Theory: GAMESS a

Decade Later. Theory and Applications of Computational Chemistry:the first forty years,

C.E.Dykstra, G.Frenking, K.S.Kim, G.E.Scuseria (Editors), 2005.

[20] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-

putational Biology. Cambridge University Press, New York, NY, USA, 1997.

[21] C.H. Hsu and W. Feng. A Power-Aware Run-Time System for High-Performance Com-

puting. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference,

page 1, nov 2005.

[22] S. Huang and W. Feng. Energy-Efficient Cluster Computing via Accurate Workload Char-

acterization. In Cluster Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM

International Symposium on, pages 68–75, May 2009.

[23] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra. Phase-Based Application-Driven Hier-

archical Power Management on the Single-chip Cloud Computer. In Parallel Architectures

and Compilation Techniques (PACT), 2011 International Conference on, pages 131–142,

oct. 2011.

94

[24] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors: Method-

ology and empirical data. In Proceedings of the 36th annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 36, pages 93–, Washington, DC, USA, 2003.

IEEE Computer Society.

[25] G. Johnson, D.K. Kerbyson, and M. Lang. Optimization of infiniband for scientific appli-

cations. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pages 1–8, 2008.

[26] K. Kandalla, E.P. Mancini, S. Sur, and D.K. Panda. Designing Power-Aware Collective

Communication Algorithms for InfiniBand Clusters. In Parallel Processing (ICPP), 2010

39th International Conference on, pages 218–227, 2010.

[27] D. J. Kerbyson and K. J. Barker. Automatic identification of application communication

patterns via templates. In ISCA PDCS’05, pages 114–121, 2005.

[28] W. Kim, M.S. Gupta, G. Wei, and D. Brooks. System Level Analysis of Fast, Per-Core

DVFS using On-Chip Switching Regulators. In in International Symposium on High-

Performance Computer Architecture, 2008.

[29] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson. Scheduling Processor Voltage and Fre-

quency in Server and Cluster Systems. In Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 11 - Volume 12,

IPDPS ’05, pages 234.2–, Washington, DC, USA, 2005. IEEE Computer Society.

[30] D. Li, B. R. de Supinski, M. Schulz, D. S. Nikolopoulos, and K. W. Cameron. Strategies

for energy-efficient resource management of hybrid programming models. IEEE Trans.

Parallel Distrib. Syst., pages 144–157, 2013.

[31] Z. Li, Y. Saad, and M. Sosonkina. pARMS: A parallel version of the algebraic recursive

multilevel solver. Numerical Linear Algebra with Applications, 10:485–509, 2003.

[32] M.Y. Lim, V.W. Freeh, and D.K. Lowenthal. Adaptive, Transparent Frequency and

95

Voltage Scaling of Communication Phases in MPI Programs. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, 2006.

[33] J. Liu, D. Poff, and B. Abali. Evaluating High Performance Communication: a Power

Perspective. In Proceedings of the 23rd International Conference on Supercomputing, pages

326–337, 2009.

[34] A.J. Martin, M. Nyström, and P.I. Pénzes. ET2: A Metric for Time and Energy Efficiency

of Computation, pages 293–315. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[35] M. Martonosi, S. Malik, and F. Xie. Efficient behavior-driven runtime dynamic volt-

age scaling policies. In Hardware/Software Codesign and System Synthesis, 2005.

CODES+ISSS ’05. Third IEEE/ACM/IFIP International Conference on, pages 105–110,

sept. 2005.

[36] R.M. Olson, M.W. Schmidt, M.S. Gordon, and A.P. Rendell. Enabling the Efficient Use

of SMP Clusters: The GAMESS/DDI Model. In SC, page 41, 2003.

[37] J. Park, D. Shin, N. Chang, and M. Pedram. Accurate Modeling and Calculation of

Delay and Energy Overheads of Dynamic Voltage Scaling in Modern High-Performance

Microprocessors. In 2010 International Symposium on Low-Power Electronics and Design

(ISLPED), pages 419–424, 2010.

[38] F. Petrini, D.J. Kerbyson, and S. Pakin. The case of the missing supercomputer perfor-

mance: Achieving optimal performance on the 8,192 processors of asci q. In Proceedings

of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, pages 55–, New York, NY,

USA, 2003. ACM.

[39] J. Poulson, B. Marker, J.R. Hammond, N. A. Romero, and R. van de Geijn. Elemental:

A new framework for distributed memory dense matrix computations. ACM Transactions

on Mathematical Software, 2011. submitted.

[40] J.K. Puri, R. Singh, and V.K. Chahal. Silatranes: a review on their synthesis, structure,

reactivity and applications. Chem. Soc. Rev., 40:1791–1840, 2011.

96

[41] R. Rabenseifner. Automatic Profiling of MPI Applications with Hardware Performance

Counters. In Proceedings of the 6th European PVM/MPI Users’ Group Meeting on Re-

cent Advances in Parallel Virtual Machine and Message Passing Interface, pages 35–42,

London, UK, 1999. Springer-Verlag.

[42] B. Rountree, D.K. Lownenthal, B.R. de Supinski, M. Schulz, V.W. Freeh, and T. Bletsch.

Adagio: Making DVS Practical for Complex HPC Applications. In Proceedings of the 23rd

international conference on Supercomputing, ICS’09, pages 460–469, New York, NY, USA,

2009. ACM.

[43] M. W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,

S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and Jr. J.A.

Montgomery. General Atomic and Molecular Electronic Structure System. J. Comput.

Chem., 14:1347–1363, November 1993.

[44] Scientific grand challengies: Crosscutting technologies for computing at the exascale. In

U.S. Department of Energy sponsored workshop, Washington, DC, Feb. 2010.

[45] S. Siddha, V. Pallipadi, and A. Van De Ven. Getting maximum mileage out of tickless. In

Proceedings of the Linux Symposium. Intel Open Source Technology Center, June 2007.

[46] S. Sok and M.S. Gordon. A dash of protons: A theoretical study on the hydrolysis

mechanism of 1-substituted silatranes and their protonated analogs. Computational and

Theoretical Chemistry, 987(0):2–15, 2012.

[47] S. Song, R. Ge, X. Feng, and K.W. Cameron. Energy Profiling and Analysis of the HPC

Challenge Benchmarks. Int. J. High Perform. Comput. Appl., 23:265–276, August 2009.

[48] V. Sundriyal and M. Sosonkina. Per-call Energy Saving Strategies in All-to-all Commu-

nications. In Proceedings of the 18th European MPI Users’ Group conference on Recent

advances in the message passing interface, EuroMPI’11, pages 188–197, Berlin, Heidelberg,

2011. Springer-Verlag.

97

[49] V. Sundriyal, M. Sosonkina, and A. Gaenko. Runtime Procedure for En-

ergy Savings in Applications with Point-to-point Communications. In

http://archives.ece.iastate.edu/archive/00000622/.

[50] V. Sundriyal, M. Sosonkina, and A. Gaenko. Energy Efficient Communications in Quantum

Chemistry Applications. In International Conference on Energy-Aware High Performance

Computing, 2012.

[51] V. Sundriyal, M. Sosonkina, and A. Gaenko. Runtime procedure for energy savings in

applications with point-to-point communications. In to appear in International Symposium

on Computer Architecture and High Performance Computing, 2012,.

[52] V. Sundriyal, M. Sosonkina, F. Liu, and M.W Schmidt. Dynamic frequency scaling and

energy saving in quantum chemistry applications. In Proceedings of the 2011 IEEE Inter-

national Symposium on Parallel and Distributed Processing Workshops and PhD Forum,

IPDPSW ’11, pages 837–845, Washington, DC, USA, 2011. IEEE Computer Society.

[53] V. Sundriyal, M. Sosonkina, and Z. Zhang. Achieving Energy Efficiency during Collective

Communications. Concurrency and Computation-Practice and Experience, in press.

[54] R. Thakur and R. Rabenseifner. Optimization of collective communication operations

in mpich. International Journal of High Performance Computing Applications, 19:49–66,

2005.

[55] Robert J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Aca-

demic Publishers, 2001.

[56] A. Vishnu, S. Song, A. Marquez, K. Barker, D. Kerbyson, K. Cameron, and P. Balaji.

Designing energy efficient communication runtime systems: a view from pgas models. J.

Supercomput., 63(3):691–709, March 2013.

[57] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. Lusk, and

W. Gropp. From Trace Generation to Visualization: A Performance Framework for

98

Distributed Parallel Systems. In Proc. of SC2000: High Performance Networking and

Computing, November 2000.

[58] Q. Xu, J. Subhlok, Z. Rong, and S. Voss. Logicalization of communication traces from

parallel execution. In Proceedings of the 2009 IEEE International Symposium on Workload

Characterization (IISWC), IISWC ’09, pages 34–43, Washington, DC, USA, 2009. IEEE

Computer Society.

[59] R. Zamani, A. Afsahi, Y. Qian, and C. Hamacher. A Feasibility Analysis of Power-

Awareness and Energy Minimization in Modern Interconnects for High-Performance Com-

puting. In Proceedings of the 2007 International Conference on Cluster Computing, pages

118–128, 2007.

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Effects of Dynamic Voltage and Frequency Scaling and CPU Throttling on Communication
	1.1.1 Power Consumption Estimate for Multicore Nodes.
	1.1.2 Types of Distributed Communication Operations
	1.1.3 Runtime System Encompassing Point-to-point and Collective Communications

	1.2 Thesis Organization

	2. Energy-Aware Collective Communication Algorithms
	2.1 All-to-all
	2.2 Allgather

	3. Runtime Procedure
	3.1 Analysis
	3.1.1 Sequence
	3.1.2 Watching
	3.1.3 Recording
	3.1.4 Scaling

	4. GAMESS
	4.1 Overview of Quantum Chemistry Package GAMESS
	4.2 GAMESS Energy Characteristics
	4.2.1 The 4x4 Execution Configuration
	4.2.2 The 4x1 Execution Configuration
	4.2.3 Power profile of Self Consistent Field Phases
	4.2.4 Energy Consumption Model
	4.2.5 Model Verification

	4.3 Mapping

	5. Modified Runtime System
	5.1 Communication Phase Detection
	5.2 System Design
	5.2.1 Phase Detection
	5.2.2 Recording
	5.2.3 Frequency Scaling

	6. Experimental Results
	6.1 Energy Aware Collective Communication Algorithms
	6.2 Runtime System
	6.2.1 Phase Characterization of the Applications Tested
	6.2.2 NAS Benchmarks: Energy Savings with DVFS
	6.2.3 GAMESS: Energy Savings with DVFS
	6.2.4 Throttling

	6.3 Modified Runtime System
	6.3.1 Characterization of the Applications Tested
	6.3.2 CPU and Memory Power Consumption
	6.3.3 Frequency Scaling with DVFS and Throttling

	7. Related Work
	8. Conclusions and Future Work
	8.1 Power Consumption Aware Techniques
	8.2 Frequency Scaling in GPUs

