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ABSTRACT

To study the electronic anisotropy in iron based superconductors, the temperature depen-

dent London penetration depth, ∆λ(T), have been measured in several compounds, along with

the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of

Ba(Fe1−xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase di-

agram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation

with matching field doses of 6 T and 6.5 T respectively, were used to create columnar de-

fects and to study their effect on the temperature ∆λ(T ). The variation of the low-temperature

penetration depth in both pristine and irradiated samples was fitted with a power-law func-

tion ∆λ(T ) = AT n. Irradiation increases the magnitude of the pre-factor A and decreases the

exponent n, similar to the effect on the optimally doped samples. This finding supports the

universal s± scenario for the whole doping range. Knowing that the s± gap symmetry exists

across the superconducting dome for the electron doped systems, we next looked at λ(T ),

in optimally - doped, SrFe2(As1−xPx)2, x =0.35. Both, as-grown (Tc ≈25 K) and annealed

(Tc ≈35 K) single crystals of SrFe2(As1−xPx)2 were measured. Annealing decreases the ab-

solute value of the London penetration depth from λ(0) = 300± 10 nm in as-grown samples

to λ(0) = 275±10 nm. At low temperatures, λ(T )∼ T indicates a superconducting gap with

line nodes. Analysis of the full-temperature range superfluid density is consistent with the line

nodes, but differs from the simple single-gap d−wave. The observed behavior is very similar to

that of BaFe2(As1−xPx)2, showing that isovalently substituted pnictides are inherently different

from the charge-doped materials. In-plane resistivity measurements as a function of tempera-

ture, magnetic field, and its orientation with respect to the crystallographic ab-plane were used

to study the upper critical field, Hc2, of two overdoped compositions of Ba(Fe1−xNix)2As2,
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x=0.054 and x=0.072. Measurements were performed using precise alignment (with accuracy

less than 0.1o) of the magnetic field with respect to the Fe-As plane. The dependence of the

Hc2 on angle θ between the field and the ab-plane was measured in isothermal conditions in a

broad temperature range. We found that the shape of the Hc2 vs. θ curve clearly deviates from

the Ginzburg-Landau theory.
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CHAPTER 1. Introduction

One of the most interesting and possibly technically useful phenomenon in condensed mat-

ter physics is that of superconductivity. It was discovered by H. K. Onnes in 1911 when he

observed that the electrical resistance of Mercury dropped to zero when cooled to 4.2 K. Super-

conductivity is observed as a sudden drop of resistance to zero when material is cooled below

a critical temperature known as Tc. Because this is one of the main parameters of a supercon-

ductor, the search for materials with higher transition temperates is one of the main lines of

research in materials and condensed matter physics. An important discovery in superconduct-

ing science was made in 2008 when LaFeAO1−x was found to superconduct below Tc ∼ 26 K

[Kamihara et al. [2008]]. This discovery opened up the world of high temperature iron based

superconductors or iron pnictides. Five of the most heavily studied groups of compounds are,

FeSe known as “11”, AFeAs ( A refers to Alkaline metals) known as “111”, RFeAsO ( R refers

to Rare Earth) known as “111”, AEFe2Pn2 ( again AE is Alkaline Earth and Pn refers to a Pnic-

togen) known as “122”, and finally Sr3Sc2O5Fe2As2. This work is entirely concerned with the

122 Fe based superconductors, more specifically Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2, and

SrFe2(As1−xPx)2 )(see figure 1.1) [Canfield and Bud’ko [2010],Johnston [2010],Paglione and

Greene [2010]].

It took nearly 50 years after the initial discovery of superconductivity for a microscopic the-

ory to come about, published by John Bardeen, Leon Neil Cooper, and John Robert Schriefer

(BCS theory) [J. Bardeen [1957]] in 1957. In some ways its successes can not be over stated

even to the point of being given the Nobel Prize in 1972.
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Figure 1.1 Crystal structure of iron based superconductors with Fe-As units highlighted.
FeSe “11”, LiFeAs “111”, SrFe2Pn2 “122”, LiFeAsO “1111”, and finally
Sr3Sc2O5Fe2As2 [Paglione and Greene [2010]]

The superconductors described by BCS theory became known as BCS superconductors. In

the simplest case BCS superconductors have a single superconducting energy gap that forms

at the Fermi level, when cooled below a critical transition temperature. In BSC theory the

electrons form bound pairs on cooling below the transition temperature. These bound electron

pairs became known as Cooper pairs. The pairing mechanism which overcomes the Coulomb

repulsion for these systems is an electron-phonon interaction. The magnitude of the energy gap

is directly related to the superconducting transition temperature Tc. While the Tc varies widely

across superconducting systems, BCS theory sets an approximate upper limit of Tc ∼30 K.

Similar to sufficiently high temperature being able to destroy superconductivity, a large enough

magnetic field can not only reduce the transition temperature but also destroy superconductiv-

ity. This field is known as the critical field Hc. There are two types of superconductors. Type I
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superconductors are characterized by a single critical field Hc. Type II superconductors have

a lower critical field Hc1, above Hc1 field penetrates the sample in the form of vortices, each

vortex containing a single flux quantum[Abrikosov [1957]]. As the field increases, it becomes

more energetically favorable to form more vortices, due to negative surface energy at the su-

perconducting and normal interface, it is favorable to create the largest possible interface. As

there are more and more vortices, the whole of the superconducting volume is taken up by the

normal cores of neighboring vortices and at some field known as the second critical field, Hc2,

superconductivity is fully suppressed. Even in the case of an extremely small magnetic field,

there will be some penetration into the bulk of the sample. The field screening occurs at some

distance known as the London penetration depth [London [1950]] which is a characteristic

distance in both type I and type II systems.

The understanding of full-gap, s-wave, superconductors (see fig 1.2) seemed to be com-

plete, when IBM physicists Müller and Bednorz discovered superconductivity in La2−xBaxCuO4

with a Tc=35 K [Müller and Bednorz [1987]]. Within a year the maximum Tc for this new class

of superconductor had risen to Tc ∼ 93 K Y-Ba-Cu-O. This limit has been pushed even further

in the past 26 years up to 156 K in the mercury based material under pressure. Not only does

this new class have Tc significantly higher than conventional BCS estimations, they turned out

to be of a very different kind.

As was stated earlier, s-wave superconductors have a spherical symmetric energy gap that

governs their properties. It turned out that the new class of superconductors, cuprates, do not

have the same type of an energy gap. These system became known as d-wave superconductors

due to the x-y plane lobed symmetry of there gap (see fig1.2) [Tsuei and Kirtley [2000]]. To

many researchers this difference in gap symmetry along with the other differences in properties

implied that the mechanism generating the pairing of electrons into Cooper pairs was not the

same as in BCS superconductors. It has been shown that a magnetic spin interaction may be
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Figure 1.2 A schematic representation of the superconducting gap with sign change in gap
function between different Fermi surface: conventional s-wave gap(a); d-wave(b);
two-band s-wave with the same sign of the gap function (c); s± two-band s-wave
with a sign change between in the gap function(d). [Mazin [2010]]

responsible for this pairing [Taillefer [2010]].

Because the cuprate systems must be doped to induce superconductivity, we can look at

their doping phase diagram to better understand the family. Starting with the parent compound

at room temperature we see a Mott insulator and antiferromagnetism once cooled below TN . As

hole doping increases, the TN decreases and is eventually suppressed to zero. There is a clear

gap between the end of the antiferomagnetic domain and the first signs of superconductivity.

This gap is a region of spin glass with no long range order. Above some critical concentration,

superconductivity appears, first with very low temperatures, moving to higher doping levels

the superconducting Tc increases to a maximum at optimal doping . At a temperature above

Tc there exists a not well understood pseudo-gap phase extending to almost room tempera-

ture. As doping continues to increase, Tc decreases from its peak value, at the same time the

pseudo gap phase disappears and is replaced by a normal metal. At some concentration the

superconductivity is suppressed and the normal metal persists to zero temperature, see Figure
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1.3. As shown in this phase diagram, the superconductivity is formed in close proximity to a

magnetically ordered state, which further enhances the likelihood of a magnetically mediated

pairing mechanism.

Figure 1.3 Schematic phase diagram representative of a generic cuprate superconductor.
[Norman [2011]]

The discovery of superconductivity in Fe based materials by [Kamihara et al. [2008]] set

off a scramble to quickly identify whether they are similar to the Cuprates. In general, Fe based

superconductors are considered high temperature superconductors with correspondingly high

upper critical fields. The superconductivity forms a dome in the doping phase diagram with

maximum Tc observed close to a point where magnetism vanishes Fig. 1.4. The proximity to

a magnetically ordered state pointed research toward the possibility of a d-wave and of mag-

netically mediated superconductivity. The iron based superconductors start as paramagnetic

metals until they are cold and stripe type antiferromagnetism sets in. As doping is added, the

TN and Ts decreases but the compounds remain metallic. At some concentration supercon-

ductivity appears with no gap between the magnetic phase and the superconducting phase. In
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some systems there is a documented magnetic order within the superconducting dome. At the

edge of the magnetically ordered phase there is a peak in the superconducting transition tem-

perature and then s decreases to zero. If doping continues after superconductivity is suppressed

the system will remain in a paramagnetic metallic phase, see Figure 1.4. One major difference

between Fe based systems and the Cuprates is seen as we move across the dome, the Cuprates

pairing symmetry remains constant from one dome edge to the other. In the case of the Iron

based superconductors there have been observations of a changing symmetry as one moves

across the dome.

Figure 1.4 Doping phase diagram of Ba(Fe1−xCox)2As2, showing domains antiferromag-
netism, and proceeding it orthorhombic distortion.

Several different measurements can be used to identify the pairing symmetry, however

in the Prozorov lab we use the functional form of the low temperature London penetration

depth. The early studies of London penetration depth on iron based superconductors showed

somewhat contradicting results. In 2009 Malone found that the London penetration depth in

LaFeAsO1−xFy is exponential in temperature dependence corresponding to a full-gapped sys-
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tem[Malone et al. [2009]]. It was theorized that this full gap may not be the standard s-wave

but another fully gapped state known as s±, see fig 1.2, [Mazin [2010]]. On the other hand,

Felttcher et.. al. found that LaFePO shows a linear temperature dependence suggesting the

presence of line nodes similar to d-wave case [Fletcher et al. [2009]]. There have been many

follow-up studies trying to identify the underlying gap symmetry in many iron based super-

conducting compounds. After several years and a lot of effort by several groups a pattern did

start to appear.

With the iron based materials requiring doping to become superconducting, it was thought

that doping was not only fostering superconductivity but also adds to the scattering and break-

ing of the Cooper pairs. It is very difficult to quantify the amount of the impurity scattering

caused by the doping alone. If we could add a known amount of scattering we could use well

known theoretical works to differentiate the underlying pairing symmetries. Anderson showed

that for single gap s-wave systems the addition of non-magnetic impurities does not change the

superconductivity [Anderson [1959]]. One year later Abrikosov and Gorkov showed that when

magnetic impurities are added to single gap s-wave superconductors, they would decrease the

Tc and could also change the low temperature penetration depth from λ ∼ e−
∆

T to a power

law dependence λ ∼ T n with n as low as 2 [Abrikosov and Gor’kov [1960]]. On the other

hand, Hirschfeld and Goldenfeld showed that for the nodal systems, such as d-wave, adding

non-magnetic impurities would change λ(T )∼ T in the clean limit toward T2 [Hirschfeld and

Goldenfeld [1993]]. It has already been suggested that iron based superconductors may not be

single gap s-wave or nodal d-wave but some other gap symmetry such as s±[Mazin [2010]].

In that case Yunkyu Bang [Bang [2009]] and Vorontsov in [Vorontsov et al. [2009]] showed

that the temperature dependence of λ will change from exponential λ ∼ e−
∆

T to a power law

λ∼ T n with exponent n as low as 1.6 in the dirty limit.

This naturally sets up an experiment that can be preformed, if a suitable way to add a
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known amount of impurity scattering can be found. One suggestion from the days of cuprate

studies was to use heavy-ion irradiation [Zhu et al. [1993]] to control the number of defects

added. The first study of irradiated Fe based superconductors was preformed by Kim et. al.

[Kim et al. [2010]]. The authors found that for Ba(Fe1−xYx)2As2 with Y=Co or Ni not only

does the Tc decrease as the dose of heavy-ions increases, but the power-law exponent n de-

creases. The penetration depth study of this thesis extends the work of Kim et. al. to higher

doses of irradiation and to the over doped edge of the superconducting dome. There were sug-

gestions of an increase in the gap anisotropy as one moves toward the over doped edge [Reid

et al. [2010],Martin et al. [2010]]. The works by Reid et. al. and Martin et. al. also showed a

change in the gap structure between parallel and perpendicular to the c-axis [Reid et al. [2010],

Martin et al. [2010]].

Knowing the works of Reid et. al. and Martin et. al. we started looking for a complemen-

tary way to observe this difference in the direction of possible nodes in the gap of Fe bases

superconductors. There was a previous work done on the anisotropy of the upper critical

field in Ba(Fe1−xCox)2As2[Altarawneh et al. [2008]] showing that the anisotropy of the upper

critical field, γH=
Hc2,‖
Hc2.⊥

, changes greatly between the under and over doped sides of the super-

conducting dome. We choose to not only measure the the upper critical field for both principal

crystallographic directions but to study in detail the angular dependence which can reflect the

superconductor modulation. We used the theoretical works of Kogan and Prozorov [V.G. Ko-

gan [2012]] to understand the underlying gap structure.

In Fe-based superconductors, the states at the Fermi energy mostly come form the orbitals

of Fe. Therefore doping by Fe substitution with other transition metals (Co, Ni) can be accom-

panied by the highest disruption of the electronic system and strong scattering. Doping into the

alternative sites (Ba and As) does not bring as much scattering and allows for cleaner materials.

In this thesis I studied the superconducting gap structure of optimally doped SrFe2(As1−xPx)2

and compared its properties with those of the transition-metal doped systems. We additionally
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lowered the scattering rate in P-doped substantially by low-temperature annealing.
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CHAPTER 2. Experimental techniques

2.1 The tunnel diode resonator circuit as a probe of the London

Penetration depth

The tunnel diode resonator (T DR) circuit operates as a simple extension of a LC tank cir-

cuit. If an ideal inductor and capacitor are connected they will oscillate forever with no loss of

energy. However, all real components have some resistive loss. If a negative resistance equal

to the resistance of the components of the oscillator were added in parallel with this circuit

these losses could be sompensated. This negative resistance is what is gained by the use of the

tunnel diode. When an appropriate bias voltage is added to a tunnel diode a region of differen-

tial negative resistance occurs (see fig 2.1). A negative resistance is defined as an increase in

voltage generating a decrease in current; see figure 2.1. The tunnel diode biased to this region

acts as an ac power source and compensates for losses in the oscillating components. While

tunnel diode driven oscillators can operate at frequencies well into the microwave region our

system is tuned to operate at 14MHz.

To allow for the most stable operating frequency and the most accurate measurements pos-

sible, the experiment circuit used in our lab, seen in Fig 2.2, consists of an oscillator and two

built in filters. The voltage divider created by R1 and R2 allows for the room temperature con-

trol box to establish the proper dc bias voltage across the diode. If R1 is large enough, it acts as

an additional rf filter. The capacitor CB acts to filter out frequencies in the range of the 14 MHz

resonance frequency. The final capacitor Cp restricts the amount of the ac power allowed back

up to the bias control box and other room temperature electronics. As can be seen in Fig 2.2
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Figure 2.1 I-V curve of a diode used in the Prozorov lab. The region of negative differential
resistance compensates for a increase in V with a corresponding decrease in I.

Figure 2.2 TDR Circuit diagram. (Vannette 2008)

there are two inductors labeled L and LTap. The Tap coil is chosen to be approximately 1/3 the

inductance of the sample inductor. The Tap coil is used to kill upper harmonics created in the

LC circuit. The final piece of the experimental circuit is the parasitic resistor RP, which kills

possible oscillations created between the capacitance of the diode and the Tap coil.

The TDR circuit is optimized for the use in the temperature range below 30K. After much

experimenting, it was found that keeping the circuit at 5K gives the best frequency stability.

Our circuit is split into 3 segments and mounted into a machined block of copper that was

then gold platted. Using the proper proportional-integral-derivative (PID) control setting on
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the temperature controller we are able to achieve temperature accuracy of (5.000 ± 0.001)K.

With this level of temperature control we are able to achieve a frequency stability of .02Hz on

top of a 14MHz signal.

With an optimized circuit in place we now need to go from changes in the resonate frequency

of our circuit due to the presence of the sample in the measurement coil to changes in the value

of the London Penetration depth (∆λ). The empty coil frequency can be written as Eq. 2.1.

f0 =
1

2π
√

LC
(2.1)

Here L is the inductance of the empty coil and C is the capacitance of the tank capacitor. The

inductance of the coil can be expressed in terms of the magnetic flux in the inductor, with H

being the magnetic field inside coil produced be the circuit and Vc is the volume of the coil.

Φ≈ HVc (2.2)

The textbook definition of the inductance L can then be written as

L =
dΦ

dI
(2.3)

If we now place the sample inside the coil the change in frequency ∆f becomes

∆ f =
1

2π
√

(L+∆L)C
(2.4)

The square root can be expanded using a binomial expansion to find a direct relation between

∆f and ∆L
∆ f
f0
≈−1

2
∆L
L0

(2.5)
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L is still determined by the flux through the coil. Now with the sample in place we need to

subtract its volume form Φ in Eq. 2.2 but add back in the sample volume Vs multiplied by B

the magnetic field in the sample.

Φ
′ = H (Vc−Vs)+BVs (2.6)

The magnetic field inside the sample is the sum of the applied magnetic field (H) from the

TDR circuit and the magnetization M of the sample itself.

B = H +4πM (2.7)

If we now plug this back into Eq. 2.6 we are left with the total flux inside the coil.

Φ
′ = HVc +4πVsM (2.8)

The total inductance of the coil with the sample in place can be written as

L′ =
dΦ′

dI
=

dΦ′

dH
dH
dI

=
(dHVc)

dI
+4πVs

dM
dH

dH
dI

= L+∆L (2.9)

This will let us relate ∆L to the magnetic susceptibility χ of the sample.

∆L
L

=
4πVs

Vc
χ (2.10)

Therefore ∆f/f can be directly related to χ

∆ f
f
≈ 4πVs

Vc
χ (2.11)

Now we have to relate χ to the London penetration depth (∆λ). In the simplest case of a
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spherical sample with s-wave symmetry λ is defined as

λ =
1

H0

∫
∞

0
B(x)dx (2.12)

In this case B(x) is the magnetic field inside the sample and H0 is the field at the interface

of the semi-infinite sample. When the real size of the sample is taken into account, we need

to account for demagnetization effects. In 2000 R. Prozorov published a model that would

relate the dynamic magnetic susceptibility χ to the in-plane magnetic penetration depth λab.

[Prozorov et al. [2000a]] The model works in the limit of thin slab single crystals with the field

parallel to the crystallographic c-axis, perpendicular to the slab. The generalized expression in

this model can be written as,

−4πχ =
1

1−N

[
1− λab

R
tanh

(
R

λab

)]
(2.13)

The slab sample has a thickness of 2d in the x-direction, width 2w in the y-direction and

considered infinite in the z-direction, with the field applied in the y-direction. N represents the

effective demagnetization factor. Written in this form R is an effective dimension that is used

to map the dimensions of the sample under study with the penetration depth. The original and

to this point most successful mapping has been for rectangular samples of dimension 2a × 2b

with b a and thickness written as 2d. For the most successful mapping R can be written as,

R∼ w

2
[
1+
[
1+
(2d

w

)2
]

arctan
( w

2d

)] (2.14)

with

w =
ab

a+b
(2.15)

For a physical sample R>> λab, from this it is clear that the tanh
(

R
λab

)
→ 1 plugging this
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information into equation 2.13 and then χ into 2.11 we get.

λab(T )−λab(Tmin) =
2VcR(1−N)

f0VS
[∆ f (Tmin)−∆ f (T )]≡ G [∆ f (Tmin)−∆ f (T )] (2.16)

Tmin represent the base temperature of the experiment, in the case of the 3He cryostat this is

approximately 0.5 K. The proportionality factor G can be determined in two different ways.

The simplest one, which is used in our lab is to measure frequency shift when the sample is

physically removed from the coil at base temperature. In the 3He cryostat we have a simple

micrometer that allows for the sample and sample holder to move fully out of the coil. With

this method the full frequency change at the base temperature can be measured and directly

used as f0. The only complication comes from the magnetic susceptibility in the sapphire rod

used to hold the sample. At temperatures ∼ 0.5K sapphire is a paramagnet and contributes

on a very small change in frequency on the order of 148Hz which has been measured in a

background measurement.

If the sample cannot be removed from the coil, the normal state skin depth may be used to

convert from changes in frequency to changes in the penetration depth. The general expression

for the normal state skin depth is given as.

δ =

√
2ρ

µω
(2.17)

The equation for the change in the resonance frequency of the circuit due to changes in the

normal state skin depth in the presence of a small ac magnetic field is

∆ f
f

=
Vs

2Vc

[
1−Re

[
tanh(αc)

αc

]]
. (2.18)

The complementary equation relating the same change in frequency to the superconducting

penetration depth is

∆

(
1
Q

)
=

Vs

Vc
Im
[

tanh(αc)
αc

]
(2.19)
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For both these equations c is the thickness of the given sample. On the other hand α is different

for different materials. For a normal metal α is given by

α =
(1− i)

δ
(2.20)

and for a superconductor α is given by

α =
1
λ
. (2.21)

For the calibration we need to relate the δ f
f0

and δ

(
1
Q

)
to zero magnetic penetration depth. This

is straight forward in the first case δ

(
1
Q

)
=∆

(
1
Q

)
and in the frequency domain δ f

f0
=∆ f

f0
− Vs

2Vc
.

This gives in the case of a normal metal

δ f
f
=

Vsδ

4Vcc
(2.22)

and in the case of a superconductor
δ f
f0

=
Vsλ

4Vcc
. (2.23)

These last two equations give enough information to calibrate the full change in frequency at

Tc to the change in the magnetic penetration depth from base temperature to Tc.

2.2 Heavy Ion Irradiation

All heavy ion irradiation for this work was preformed at the Argonne National Laboratory

in the Argonne Tandem Linear Accelerator System (ATLAS). At ATLAS Lead ions 208Pb56
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were used to irradiated these samples. Prior to being irradiated, all samples where character-

ized and measured using the TDR setup in 3He cryostat. Samples were mounted on copper foil

using conductive carbon paste. The sample mounts were then mounted on a aluminum frame

to be mounted in the vacuum chamber. The chamber and the samples were at ambient temper-

ature. The aluminum frame can move vertically without opening the chamber. This gives the

ability to move samples in and out of the beam. Along with vertical motion, the frame has the

ability to rotate a full 360◦ in situ. For this work the rotation capability was not used. To en-

sure the uniform exposure of all samples in the beam, one of the aluminum rungs of the ladder

setup is covered with a piece of reactive film. The film can be viewed both while the system is

in vacuum and again after the run. The beam was collimated to make a 1.0 cm diameter circle,

the most uniform region was a 3.0 mm circle. With the beam properly collimated the next

thing needed is to know the beam current. With the aluminum frame lowered the beam fell

on a copper cup that was to measure the current. The currents measured for these irradiation

runs were on the order of 400 pA. The time needed for a particular dose of irradiation can be

calculated as

n =
tIe−

nQqA
(2.24)

In this case Q is the charge of the ion, q is the charge of the electron, A is the area of the

collimated hole, Ie− is the measured beam current, and t is the exposure time in seconds for the

sample is in the beam. If n represents the number of columnar defects, for a typical exposure

it is 1014 defects/m2. For a sample of size .5 mm x .5 mm this is ∼ 107 defects created in the

sample. It is a convention, from the study of vortex properties, to refer to the number of defects

in reference to the matching field that would penetrate the sample if each defect held a single

vortex. The conversion between defects the matching field is straight forward.

n =
B(T )
Φn

(2.25)

With the field measured in Tesla and Φn is equal to the 1 flux quanta.

Φn = 2.07∗10−15 T
m2 (2.26)
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Samples for this study were irradiated with 6 T for the x=0.108 sample and 6.5 T for the

x=0.127 sample. As has been discussed before irradiation with heavy-ions produces large,

nearly 5 nm, diameter columnar defects propagating through the whole sample thickness. For

heavy-ion irradiation done at Argonne with energy of 1.56GeV the ions can penetrate up to

60-70 µm . These values calculated from a commercially available software package and are

slightly different for different materials and different ions.

2.3 Measuring the absolute value of λab

In the section 3.1 the tunnel diode resonator technique (TDR) was discussed as a tool to

measure the change in the London penetration depth ∆λ(T ) between the base temperature of

the measurement system and the superconducting transition temperature Tc. While ∆λ(T ) can

be used to determine the presents of noes in the gap, theoretical calculations need determina-

tion of a superfluid density ρs = [λ(0)/λ(T )]2, which require the absolute value of the London

penetration depth λ(T ). A method was developed to measure λ(0) by R. Prozorov for the use

on cuprate superconductors [Prozorov et al. [2000b]] then translated for use on pnictide mate-

rials by R. T. Gordon and R. Prozorov [Gordon et al. [2010]]. This method requires the sample

to be coated with a thin layer of a referance superconductor with a Tc,coating << Tc,sample and

a known λ(0). The coating layer must be thin enough so that when placed in an inductor coil

with resonate frequency of 14 MHz the r f skin depth is much greater than the layer thickness.

This thin layer of the coating material is nearly invisible to the ac magnetic field and therefore

does not affect the measurement above the Tc of the coating material. Along with this require-

ment the coating material needs to also be thick enough to screen the field below Tc of Al

layer. With these and other requirements in mind R. Prozorov [Prozorov et al. [2000b]] choose

Aluminum with a Tc ≈ 1.2 K.

To understand this technique on a more quantitative level we need to start with considering
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an Al coated sample inside the inductor coil of the TDR circuit. We will take the thickness of

the coating material dAl , an applied ac magnetic field will be taken as

−→H (r, t) = H0(r)eiωt ŷ (2.27)

Here the ŷ direction is taken to be along the axis of the coil and perpendicular to the interface

between the coating and sample. When at the base temperature both materials are in the su-

perconducting state and the London equation can be written as

∇
2H =

1
λ2 H (2.28)

Figure 2.3 Schematic diagram of sample before and after Al coating. [Gordon [2011]]

To go from λe f f to λ(0) we need to use a more realistic example. The sample used in

this work have been coated with a layer of Aluminum at the University of Illinois in the

group of R. W. Geaneta. The coating thickness was measured using an SEM and found to
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be dAl = 1000±100Å. To ensure the thickness is small enough not to screen the r f once the

Al is in the normal state, we need to calculate its skin depth. The skin depth equation Eq.

2.17 given in section 3.1 needs not only the ω but ρ. For Aluminum just above Tc ρ ≈ 10µΩ.

The frequency for this TRD circuit ω = 2π(14MHz). This gives a skin depth δ = 75µm, much

larger than the coating thickness, which will make the Al coating transparent to the frequency

once above the Tc of Al. If we take an example of a superconductor with ∆λsample(T ) =CT n

and a value of n≈3 and a base temperature on the system Tmin ≈ 0.5 K we can take the induc-

tance L to be

L = ∆λe f f

(
T Al

c

)
−∆λe f f (Tmin) . (2.29)

Using this for the effective lambda for our system we get

λe f f = λAl (T )

λsample (T )+λAl (T ) tanh dAl
λAl(T )

λAl (T )+λsample (T ) tanh dAl
λAl(T )

 (2.30)

On the other end of the measurement at T = Tc,Al the coating does not interfere with the r f

signal but does contribute to the sample size and therefore λe f f .

λe f f
(
Tc,Al

)
= dAl +λsample

(
Tc,Al

)
(2.31)

As stated before, ∆λsample(T ) =CT n with this Eq. 2.31 now becomes

λe f f
(
Tc,Al

)
= dAl +C

(
Tc,Al

)n
+λsample (0) (2.32)
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To get to a final value we need to be able to accurately evaluate the penetration depth of the

Al coating λAl (Tmin). Knowing that Al is a s-wave superconductor we can use the BCS fitting

[J. Bardeen [1957], Poole et al. [2007]]

λAl,BCS (Tmin)≈ λAl (0)

1+

√
π∆Al (0)
2kBTmin

e−
∆Al (0)
kBTmin

= λAl (0)

(
1+

√
π0.85Tc,Al

Tmin
e
−1.7Tc,Al

Tmin

)
(2.33)

For Aluminum λAl (0) = 500±100Å [N. W. Ashcroft [1976]]. If we now go back and plug

this into Eq. 2.29 we get

L = dAl +C
(
Tc,Al

)n
+λsam (0)−λ

BCS
Al (0)

C (Tmin)
n +λsam (0)+λBCS

Al (0) tanh dAl
λsample(0)

λsam (Tmin)+(C (Tmin)
n)λsam (0) tanh dAl

λsam(0)


(2.34)

All of these values except for λsample (0) have been measured or calculated. This equation can

be rewritten in a vary careful way to be in the form of a simple quadratic to solve for λsample (0).

λsample (0) =
−b−

√
b2−4ac

2a
(2.35)

The coefficients would need to be

a =− tanh
dAl

λAl (Tmin)
(2.36)
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b =
[
L−dAl−C

(
Tc,Al

)n−C (Tmin)
n] tanh

dAl

λAl (Tmin)
(2.37)

c =−a
[
(L−dAl)C (Tmin)

n−C2
(

T Al
c Tmin

)n
+λ

2
Al (Tmin)

]
+λAl (Tmin)

[
L−dAl−C

(
T Al

c

)n
+C (Tmn)

n
]

(2.38)

If L is taken to be L≈0.33µm we find values in the range of λsample ≈ 300nm. This value

falls right in line with values obtained from complimentary measurements [Williams et al.

[2010],Luan et al. [2010],NakaJima et al. [2010]]

Use of the Al coating technique in our group has produced reliable results of the absolute

value of the London penetration depth in iron based materials see [Gordon et al. [2010],Kim

et al. [2010],Murphy et al. [2013]] for details

2.4 Angular Dependent Hc2

Upper critical field was determined from the standard 4-probe resistivity measurements.

Samples for in-plane resistivity, ρ, measurements were cleaved with a razor blade into rect-

angular strips with typical dimensions, 2× (0.1− 0.3)× (0.03− 0.1) mm3 and the long side

corresponding to the tetragonal a-axis. All sample dimensions were measured with an accuracy

of about 10%. Contacts to the samples were made by attaching silver wires using ultra-pure
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Figure 2.4 During experiments in single axis rotation system of 35 T magnet, the direction
of magnetic field was aligned parallel to the conducting plane by resistivity mea-
surements in field H slightly lower than Hc2‖, in which sample resistance shows
strong angular dependence, black line in the left panel. The curve was measured
in one-sided motion of the rotator to avoid backlash, with deep minimum cor-
responding to H ‖ ab or θ=0 condition. The red open symbols show alignment
measurements, taken in a second angular sweep of the same rotation direction,
and stopped at θ=0. H and T sweeps were used to determine the phase diagrams
in H ‖ ab condition, and then magnetic field angle θ with respect to the plane was
changed by continuing rotation of the sample in the same direction as during align-
ment. Because the orientation of the sample in the third direction, perpendicular
to the rotation plane, was set by eye, there may exist non-zero angle ϕ between the
field-rotation plane and the plane of the normal to the sample. In most cases this
angle should be less than 5o.

tin, resulting in an ultra low contact resistance (less than 10 µΩ) [Tanatar et al. [2010a]]. Re-

sistivity measurements were made using a standard four-probe technique, producing the ρ(T )

curves as shown in Fig. 4.1. After initial preparation, samples were characterized in PPMS

system, and then glued by GE-varnish to a plastic platform, fitting single axis rotator of the

35 T DC magnet in National High Magnetic Field Laboratory in Tallahassee, Florida. Sample

resistance was checked after mounting and found to be identical to the initial value. High-

field measurements were made in He-cryostat with variable temperature control inset (VTI)

allowing for temperatures down to 1.5 K.

The stepping motor driven rotator enabled in situ rotation with 0.05o resolution around a

horizontal axis in single axis rotation system of vertical 35 T magnetic field. During this rota-
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tion the direction of magnetic field with respect to the crystal stays in a plane of rotation, see

Fig. 2.4. We can precisely align the direction of the magnetic field parallel to the sample plane

within the rotation plane, defined as θ=0, using angular dependence of resistivity, measured in

magnetic field slightly below Hc2‖. This alignment is illustrated in Fig. 2.4. In an ideal case

of the second sample axis coinciding with the rotation axis, field-rotation plane should contain

c-axis of the sample. There may been non-zero uncontrolled angle ϕ between the field-rotation

plane and the plane of the normal to the sample, see Fig. 2.4. We estimate that ϕ < 5◦.

2.5 Sample growth and characterization

Single crystals of BaFe2As2 doped with Co were grown from a starting load of metallic

Ba, FeAs and CoAs, as described in detail elsewhere [Ni et al. [2008]]. Crystals were thick

platelets with sizes as big as 12×8×1 mm3 and large faces corresponding to the tetragonal

(001) plane. The actual content of Co in the crystals was determined with wavelength dis-

persive electron probe microanalysis and is the x-value used throughout this text. The two

compositions studied were x=0.108 (Tc ≈16 K) and x=0.127 (Tc ≈8 K), from the same batches

used in previous penetration depth [Gordon et al. [2009a, 2010]] and thermal conductivity

[Tanatar et al. [2010c],Reid et al. [2010]] studies. They were on the overdoped side of the

doping phase diagram (see inset in Fig. 4.1), notably above optimal doping level xopt=0.07 (Tc

≈23 K).

Single crystals of SrFe2(As1−xPx)2 were grown using the self-flux method [T. Kobayashi

[2012]]. Samples were characterized by x-ray, magnetization and transport measurements and

the composition was determined using EDX analysis, which yielded x =0.35. For London

penetration depth measurements samples were selected from different batches by measuring

the transition curves and finding the sharpest transition. The best samples were cut to a typical

sample size of 0.5 × 0.5 × (0.02-0.1) mm3. Annealing was shown to improve Tc from 31 K

to 34.8 K and to increase the residual resistivity ratio, RRR=R(300 K)/R(Tc) from 4.5 to 6.4.
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Annealing at 500C did not affect sample composition within accuracy of EDX measurements,

so its effect is mainly to reduce the density of thermodynamically metastable defects formed

at high growth temperature, predominantly pairs of vacancies and interstitial atoms [Liu et al.

[2013]]. A lesser increase of Tc from 30 K to 31 K and of RRR from 4.8 to 5.2 after the anneal-

ing was reported for close to the optimal doping (x =0.32) BaP122 samples [Nakajima et al.

[2012]], see insets in Fig. 3.6. Furthermore, if we extrapolate linearly the resistivity curves

to T = 0, we obtain RRR(0) = 10.2 and 15.1 for as-grown and annealed SrP122, and RRR(0)

= 7.1 and 8.1 for as-grown and annealed BaP122, respectively. By these measures, SrP122

appears to be cleaner than BaP122.
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CHAPTER 3. Penetration depth measurements

3.1 Introduction

In this chapter I will present London penetration depth data on two iron based super-

conducting compounds Ba(Fe1−xCox)2As2 with two Co dopings and SrFe2(As1−xPx)2. The

two concentrations of Ba(Fe1−xCox)2As2 are x=0.108 and x=0.127 respectively 3.1 and the

SrFe2(As1−xPx)2 has x=0.35. For both materials the London penetration depth was measured

using the tunnel diode resonator technique (TDR). For the Ba(Fe1−xCox)2As2 materials heavy-

ion irradiation was used to add controlled damage to the crystallographic lattice, following this

the samples were measured again using (TRD). The SrFe2(As1−xPx)2 material was measured

in the as grown state (Tc∼25 K), and in the annealed state (Tc∼35 K). Both types of samples

were remeasured after Al coating.

3.2 Ba(Fe1−xCox)2As2

In Fig. 3.2 we show the temperature-dependent variation of the London penetration depth

in pristine samples of BaCo122 with x = 0.108 (Top panel) and x = 0.127 (bottom panel). Due

to rather low Tc≈ 8 K of the sample with x = 0.127, measurements down to T≈ 0.5 K, the base

temperature of our 3He system, do not cover a broad enough range to give reliable power-law

analysis. We extended the temperature range by taking the data in a dilution refrigerator down

to≈ 0.05 K,Tc/160. The data sets taken in the two systems perfectly match in the overlapping

range 0.5 to 3.5 K providing support for the reliability of the measurements. It is clear from

the inspection of the raw data, that the temperature variation of the London penetration depth
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is much stronger than the exponential variation expected in a full-gap superconductor. In fact

the dependence is close to T 2, as shown in Fig. 3.3, in which the data for two compositions

are plotted vs. (T/Tc)
2 which is similar to the earlier data by Grordon et.al.[ Gordon et al.

[2009a]]. As can be seen from Fig.3.3, the exponent n is larger for closer to the optimal

doping composition x=0.108. Using a power-law fit over a temperature range up to Tc/3, we

obtain n = 2.5 for sample with x = 0.108 and n = 2.0 for x = 0.127. These values and their

change with doping follow general trend in iron-pnictides [Cho et al. [2012]]. In BaCo122 this

evolution is in line with the results of thermal conductivity[Tanatar et al. [2010c],Reid et al.

[2010]] and heat capacity[Bud’ko et al. [2009]] studies.
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Figure 3.1 Temperature dependent electrical resistivity of reference samples x=0.108 and
x=0.127 and of the irradiated sample of x=0.127. The irradiated sample x=0.127
is the same sample as used in penetration depth measurements, with contacts at-
tached. Inset shows the doping phase diagram for BaCo122 with position of the
samples used in this study.

3.3 Heavy ion irradiated Ba(Fe1−xCox)2As2

Figure 3.4 shows the London penetration depth from base temperature to ∼ Tc/3 in the

sample x=0.108 (Top panel) before (black curve) and after 6.5T irradiation (red curve). Inset
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Figure 3.2 Low temperature London penetration depth ∆λ(T) for samples of
Ba(Fe1−xCox)2As2 with x=0.108 (Top panel) and x=0.127 (bottom panel).
Data were taken in both 3He-cryostat (down to ∼0.5 K, black curves) and in a
dilution refrigerator (∼0.05 K< T <3 K, red curve), showing good matching
between the data sets taken in two systems and the robustness of the power-law
dependence.

shows the data for the whole temperature range, revealing small but clear decrease of Tc. Ir-

radiation significantly increases the total ∆λ(T ) change from base temperature to Tc/3. The

similar data for sample x=0.127 in pristine (black line) and 6 T irradiated (red line) states are

shown in the bottom panel of Fig. 3.5. The Tc decrease in sample x=0.127 is somewhat larger

than in sample x=0.108, and similarly, overall change in the penetration depth to Tc/3 is larger

as well.

In standard analysis of the penetration depth in single gap superconductors, the power-law

fit is done in the range from base temperature to Tc/3, over the temperature range in which
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Figure 3.3 Low temperature London penetration depth ∆λ(T) for samples of
Ba(Fe1−xCox)2As2 with x=0.108 (green and blue curves) and x=0.127 (black and
red curves) plotted vs. square of the reduced temperature, (T/Tc)

2 . Linear plot
for x=0.127 shows that the dependence is very close to T 2, consistent with more
detailed fitting analysis using floating fitting range, see figures . 3.4 and 3.5 below.
Clear deviations for sample x=0.108 suggest n > 2.

the superconducting gap itself can be considered as constant. This assumption may be not

valid for multi-band superconductors, in which case the high-temperature end of the fitting

range can be reduced proportionally to the ratio of the smaller and larger gaps. Since this ratio

is a priori unknown, we varied the high temperature range of the fit. We used a power-law

function ∆λ(T ) = AT n and determined n and A as a function of the high-temperature end of

the fitting range, always starting fit at the base temperature. The results of this fitting analysis

for pristine and irradiated samples are shown in Fig. 3.4, for samples with x=0.108 sample

and Fig. 3.5 for the x=0.127 sample. The top panels show evolution of the exponent n and the

bottom panels show evolution of the pre-factor A.

The results of the fitting analysis, Fig. 3.4 show that for sample with x=0.108 the exponent

n weakly depends on the fitting range, changing from 2.7 to 2.6. In irradiated samples the

exponent decreases to n=2.2 for Tc/4.5, and slightly increases to 2.3 for Tc/3. The decrease

of the exponent with irradiation is not expected in either s++ or d-wave states, it is a hallmark

signature of the s± pairing.
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Figure 3.4 Left: Modification of the temperature dependent London penetration depth, ∆λ(T),
with heavy ion irradiation in samples with x = 0.108. Black curves show pristine
samples, red- irradiated with matching fields of 6.5 T. Insets show variation of
London penetration depth in the whole range up to Tc. Right: Dependence of the
fitting parameters, n (Top panels) and A (bottom panels), of the power-law func-
tion, ∆λ =AT n, on the temperature of the high-temperature boundary of the fitting
interval. Data are shown for pristine (black squares) and irradiated (yellow-brown
circles) sample with x=0.108

The effect of irradiation is even more dramatic in sample with x=0.127 see figure 3.5.

Here the exponent in the pristine sample is n=2.0, a value possible to explain in both dirty

d-wave and dirty s± scenarios [Hirschfeld and Goldenfeld [1993], Gordon et al. [2009b]]. In

the former the exponent is expected to be insensitive to increase of scattering, in the latter it is

expected to decrease further down to about 1.6. As can be clearly seen, irradiation decreases

n to 1.8, suggesting an increase of anisotropy. Simultaneously, the pre-factor in these samples

also increases after irradiation, clearly showing the appearance of excess quasi-particles.

3.4 Absolute Value of the Penetration depth in SrFe2(As1−xPx)2

For London penetration depth measurements samples were selected from different batches

by measuring the transition curves and finding the sharpest transition. The best samples were

cut to a typical sample size of 0.5 × 0.5 × (0.02-0.1) mm3. Annealing was shown to improve

Tc from 31 K to 34.8 K and to increase the residual resistivity ratio, RRR=R(300 K)/R(Tc)
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Figure 3.5 Left: Modification of the temperature dependent London penetration depth, ∆λ(T),
with heavy ion irradiation in samples with x = 0.127. Black curves show pristine
samples, red- irradiated with matching fields of 6 T. Insets show variation of Lon-
don penetration depth in the whole range up to Tc. Right: Dependence of the
fitting parameters, n (Top panels) and A (bottom panels), of the power-law func-
tion, ∆λ = AT n, on the temperature of the high-temperature boundary of the fitting
interval. Data are shown for pristine (black squares) and irradiated (yellow-brown
circles) sample with x=0.127 (right).

from 4.5 to 6.4. Annealing at 500C did not affect sample composition within accuracy of EDX

measurements, so its effect is mainly to reduce the density of thermodynamically metastable

defects formed at high growth temperature, predominantly pairs of vacancies and interstitial

atoms [Liu et al. [2013]]. A lesser increase of Tc from 30 K to 31 K and of RRR from 4.8 to

5.2 after the annealing was reported for close to the optimal doping (x =0.32) BaP122 sam-

ples [Nakajima et al. [2012]], see insets in Fig. 3.6. Furthermore, if we extrapolate linearly

the resistivity curves to T = 0, we obtain RRR(0) = 10.2 and 15.1 for as-grown and annealed

SrP122, and RRR(0) = 7.1 and 8.1 for as-grown and annealed BaP122, respectively. By these

measures, SrP122 appears to be cleaner than BaP122.

Figure 3.6 shows the full temperature range variation of the in-plane London penetration

depth, ∆λ(T ), measured in an as - grown (Tc = 27 K) and two annealed (Tc = 34.8 K) single

crystals of SrFe2(As1−xPx)2, x=0.35 see [Nakajima et al. [2012]]. The insets show normalized
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Figure 3.6 Main pane: In-plane London penetration depth in single crystals of
SrFe2(As1−xPx)2, x =0.35, in the full temperature range showing one as–
grown and two annealed samples. Top inset: shows normalized resistivity,
R(T )/R(300 K) for as-grown and annealed SrFe2(As1−xPx)2 (this work) and
BaFe2(As1−xPx)2 [Nakajima et al. [2012]]. Lower inset: shows the same data
zoomed on in the vicinity of Tc.

resistivity, R(T )/R(300 K) for as-grown and annealed SrP122 (this work) and BaP122 [Naka-

jima et al. [2012]] samples. Lower inset shows the data zoomed in the vicinity of Tc. Overall,

the resistivity curves for SrP122 and BaP122 are virtually the same showing clear deviation

from the Fermi liquid T 2 dependence at all temperatures, indicating proximity to the quantum

critical point at the optimal doping [Hashimoto et al. [2012], Carrington [2011], Nakai et al.

[2010], T. Kobayashi [2012], Tanatar et al. [2013]].

Figure 3.7 shows the low temperature behavior of the penetration depth for three samples of

SrFe2(As1−xPx)2. Two of the curves are shifted vertically by 0.06 and 0.12 nm to avoid overlap.

The linear temperature dependence is evident. Some rounding off at the low temperatures is

due to impurity scattering as was shown for nodal Cuprate superconductors by Hirschfeld

and Goldenfeld [Hirschfeld and Goldenfeld [1993]]. Within their model the behavior at low

temperatures can be approximated by ∆λ(T ) =At2/(t∗+t) where t∗ is a crossover temperature
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scale determined by unitary limit impurity scattering. Solid red curves in Fig. 3.7 show best

fits to the data resulting in the crossover temperatures t∗ =0.068, 0.101 and 0.285 for the three

curves from bottom up. The amplitude A also increases from the bottom to the top curve,

A =88, 97 and 130 nm, respectively. A straightforward interpretation is that we are dealing

with samples with different degrees of scattering from the cleanest (lowest curve) to the dirtiest

(top curve) and such assignment is in line with the effect of annealing on resistivity and Tc.

Good quality fits to the Hirschfeld - Goldenfeld formula, as shown in Fig. 3.7, would appear to

indicate the presence of line nodes. However, this is not sufficient for the determination of the

topology of the nodal lines on the multi-band warped Fermi surface. For a full analysis we must

determine the superfluid density over the entire temperature range. Knowing the variation of

∆λ(T ), the superfluid density is given by ρs(T ) = λ2(0)/λ2(T ) = (1+∆λ(T )/λ(0))−2, so we

need to know the absolute value of zero - temperature penetration depth, λ(0). To obtain this

value we used TDR measurements of Al coated samples[ Prozorov et al. [2000a]]. After initial

measurement of ∆λ(T ) each sample is uniformly coated with Al using magnetron sputtering

and then remeasured [Prozorov et al. [2000a], Gordon et al. [2010]]. To ensure a uniform Al

film thickness the sample is suspended by a fine wire from a rotating stage inside the sputter

deposition chamber. The thickness of the Al layer, d, was measured using focused - ion beam

cross-sectioning and imaging in SEM [Gordon et al. [2010]]. In our case d =73 nm is greater

than the Al London penetration depth, λAl(0) = 52 nm. At T < T Al
c , the effective penetration

depth is given by:

λe f f (T ) = λ
Al(T )

λ(T )+λAl(T ) tanh d
λAl(T )

λAl(T )+λ(T ) tanh d
λAl(T )

(3.1)

where λ(T ) is the London penetration depth of the material of interest. When Al becomes

normal at T Al
c ≈ 1.28 K, λe f f (T ) = d−λ(T Al

c ). Extrapolation of ∆λ(T ) to T = 0 shows that

λ(T Al
c ) ≈ λ(0)+ 0.7 nm and by using the BCS s-wave form of λ(T ) for Al, we can estimate

the difference,L = λ(0)−λe f f (0). Solving numerically Eq. 3.1 we obtain λ(T ). Considering

all the uncertainties, we estimate the accuracy as ±10 nm.
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Figure 3.7 Low - temperature part of ∆λ(T ) for the three samples of SrFe2(As1−xPx)2,
x =0.35. Solid lines show the best fits to the Hirschfeld - Goldenfeld model
Hirschfeld and Goldenfeld [1993], see text for discussion.

Figure 3.8 illustrates the procedure to estimate the absolute value of λ(0). Main panel

shows full temperature - range ∆λ(T ) for the same annealed sample measured before and

after aluminum coating. Evidently, the curves reproduce each other perfectly for T > T Al
c

indicating a good repeatability and stability of our measurements. The low - temperature part

in the vicinity of the superconducting transition of the aluminum layer is shown in the inset in

Fig. 3.8. The curves are offset vertically, so that BCS extrapolation (shown my the solid line)

to T = 0 gives effective penetration depth of λe f f (T ) = d−λ(T Al
c ) = 21.3 nm. The difference

between the uncoated sample and the coated sample at T = 0 gives a rough visual estimate of

λ(0) = 271 nm and the numerical solution of Eq. 3.1 (with the discussed above uncertainty

of 10 nm) finally gives λ(0) ≈ 275± 10 nm. Applying the same procedure, we obtained

λ(0) = 300±10 nm for the as-grown sample, consistent with the assumption of an enhanced

pair - breaking compared to the annealed samples. In BaP122 at the optimal doping, x =0.30,

we obtained a comparable magnitude of λ(0)≈ 330 nm, but the situation is complicated by the

strong doping dependence of λ(0) due to the quantum critical point hidden beneath the dome
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[Hashimoto et al. [2012]]. Whether the same features exist in SrP122 requires a systematic

doping study.

Combining the results presented in Fig. 3.7 and Fig. 3.8 we can compare the rate of change

of the penetration depth with temperature observed in other clean nodal superconductors with

the current work. In a d−wave superconductor with vertical line nodes, the amplitude of the

(T-linear) low - temperature variation of the penetration depth is given by [Xu et al. [1995]]:

d (λ/λ(0))
d (T/Tc)

≡ dλ

dt
=

2ln2
(d∆/dϕ)

ϕ→node
(3.2)

where (d∆/dϕ)
ϕ→node is the slope of the angle - dependent superconducting gap approaching

the node position on the Fermi surface. In the case of d−wave pairing, ∆(ϕ) = ∆(0)cos(2ϕ)

and dλ/dt = Tc ln2/∆(0) = ln2/2.14 = 0.32. For YBCO, the measured dλ/dt = 0.33 [Zhang

et al. [1994], Prozorov et al. [2000a]] and for BSCCO 2212 the observed value is dλ/dt = 0.39

[Jacobs et al. [1995], Prozorov et al. [2000a]], - both are quite close to the theoretical pre-
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diction. In the present case of SrFe2(As1−xPx)2 , we obtained dλ/dt = 0.28. For compari-

son, in BaFe2(As1−xPx)2, dλ/dt =0.42 and 0.38 for x = 0.30 (λ(0) =330 nm) and x = 0.33

(λ(0) =215 nm), respectively Hashimoto et al. [2012]. These values are in a reasonable agree-

ment with the theoretical value of 0.32 showing that the node topology is not much different

from that of a standard d−wave symmetry.
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Figure 3.9 Comparison of the superfluid density, ρ(T ), for three samples of SrFe2(As1−xPx)2
with the prediction of a two - dimensional d−wave pairing (short-dashed line -
clean and dashed line - dirty limits) and isotropic s−wave (dot-dashed line). We
also show ρ(T ) for BaFe2(As1−xPx)2(gray line, x =0.30, λ(0) =330 nm). (Inset)
Expanded view of low temperature region.

Figure 3.9 shows experimental superfluid densities constructed with the estimated values

of λ(0). The data are compared with the expectations for d−wave pairing (short-dashed line -

clean and dashed line - dirty limits) and isotropic s−wave (dot-dashed line). The data are in a

complete disagreement with the exponentially saturating s−wave curve. Instead, the data show

a clear T−linear variation at low temperatures. For comparison, the data for BaFe2(As1−xPx)2

are also shown by the gray line. The curves for BaFe2(As1−xPx)2 and SrFe2(As1−xPx)2 overlap

at the low temperatures (below T/Tc=0.2, see inset), but deviate at higher temperatures. This

difference must be due to the difference in the gap magnitudes and anisotropies in these multi-

gap systems, but the low - temperature behavior is determined by the nodal quasiparticles and
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the similarity of the data implies that the nodal structure of SrP122 and BaP122 is similar. The

deviation from the 2D d−wave could be due to geometry of the nodal lines, - perhaps forming

the loops in the electron bands [Carrington [2011], Graser et al. [2010], Maiti and Chubukov

[2010], Shimojima et al. [2012], Suzuki et al. [2011], Hirschfeld et al. [2011]].
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CHAPTER 4. Measurements of the upper critical field Hc2

4.1 Introduction

In this chapter I present upper critical field data for two Iron-based superconducting com-

pounds Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2. The two concentrations of Ba(Fe1−xCox)2As2

are x=0.108 and x=0.127 respectively and the Ba(Fe1−xNix)2As2 are x=0.054 and x=0.072. In

both cases the upper critical field was was measured as a function of temperature for fields

both parallel and perpendicular to the crystallographic c-axis. For Ba(Fe1−xNix)2As2 a de-

tailed analysis of the upper critical field as a function of angle between the crystallographic

c-axis and the applied magnetic field is given.

4.2 Ba(Fe1−xNix)2As2

The two compositions studied were on the overdoped side of the phase diagram, slightly

overdoped x=0.054 (Tc=16 K) and strongly overdoped x=0.072 (Tc=7.5 K), whereas maximum

Tc=19 K is achieved at optimal doping, xopt=0.046 [Ni et al. [2010]], see doping phase diagram

in inset in Fig. 4.1.

Samples for in-plane resistivity, ρ, measurements were cleaved with a razor blade into

rectangular strips with typical dimensions, 2×(0.1−0.3)×(0.03−0.1) mm3 and the long side

corresponding to tetragonal a-axis. All sample dimensions were measured with an accuracy

of about 10%. Contacts to the samples were made by attaching silver wires using ultrapure

tin, resulting in an ultra low contact resistance (less than 10 µΩ) [Tanatar et al. [2010a]].
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Resistivity measurements were made using a standard four-probe technique, producing the

ρ(T ) curves as shown in Fig. 4.1. After initial preparation, samples were characterized in

PPMS system, and then glued by GE-varnish to a plastic platform, fitting single axis rotator

of the 35 T DC magnet in National High Magnetic Field Laboratory in Tallahassee, Florida.

Sample resistance was checked after mounting and found to be identical to the initial value.

High-field measurements were made in He-cryostat with variable temperature control inset

(VTI) allowing for temperatures down to 1.5 K.
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Figure 4.1 Temperature-dependent resistivity of two samples of BaFe1−xNixAs2 used in this
study, with x=0.054 (slightly overdoped) and x=0.072 (strongly overdoped), with
doping level indicated with arrows with respect to temperature-doping phase dia-
gram of BaNi122 after [Ni et al. [2010]] shown in the inset. Note pronounced cur-
vature of the ρ(T ) for T > Tc, typical of overdoped compositions [Doiron-Leyraud
et al. [2009]]. Sample resistivity value is defined with accuracy of about 20% due
to uncertainty of geometric factors, see Ref. [Tanatar et al. [2009, 2010b]] for
details.

In Fig. 4.2 raw ρ(T) data are shown for a set of magnetic elds aligned approximately

along the c axis (θ = 90◦ , top panels) and precisely along the conducting plane (θ=0◦, bottom

panels), for BaNi122 samples with x = 0.054 and x = 0.072, respectively. We show also the

lines corresponding to 20%, 50%, and 80% of the resistivity value immediately above the
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transition, ρ(Tc ), used as criteria to determine the transition temperature as a function of

magnetic eld and construct the phase diagrams, bottom panels (c) of Fig. 4.2. The use of

these criteria is justified by small variation of the resistive transition width on application of

the magnetic eld, and its independence on the extrapolation, a typical problem for onset and

offset criteria.

As can be most clearly seen from the bottom panel of Fig. 4.2, the shapes of the Hc2 (T) phase

diagrams in parallel and perpendicular elds orientations share the same features as found in

previous studies of other Fe based systems. The Hc2,ab (T ) flattens at low temperatures, while

Hc2,c(T ) maintains positive curvature down to the lowest temperatures of our experiment. Both

these features are typical for layered materials; see, for example, [See [2000] and Mackenzie

et al. [1993]].

In Fig. 4.3 we show eld dependences of in-plane resistivity taken at fixed temperatures with

inclination angle θ as a parameter for slightly overdoped sample with x = 0.054 and strongly

overdoped sample x = 0.072, respectively. The data analysis will be presented in the next

section.

Angular dependence of Hc2 BaFe1−xNixAs2

Hc2(θ) =
Hc2,ab√

(γ2
H−1)sin2

θ+1
, γH =

Hc2,a

Hc2,c
. (4.1)

To check if Eq. 4.1 describes our data, instead of commonly used data fitting, as shown in

the bottom panels of Fig. 4.3, we used an approach based on data transformation so as to make

possible deviations clearly visible. According to[Helfand and Werthamer [1966]] Eq. 4.1, the

Hc2 vs (sin2
θ) should be a straight line, and in Fig. 4.5 we plot the data this way for samples

with x = 0.054 and x = 0.72, respectively. The data show clear deviation from linear trend,

irrespective of the criterion of Hc2 determination from the resistivity data, with the deviation

being the strongest close to H2 axis or sin2
θ = 1.
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To check if the deviation from Eq. 4.1 in Fig. 4.5 can be caused by a finite inclination angle

φ (see Fig.2.4 for the definition), here we provide the angular dependence of Hc2 for arbitrary

φ.

Choosing the cross section of the plane, in which H is rotated, with the ab crystal plane

(see Fig. 2.4) as the x axis, we obtain in the crystal frame ĉ (̄0,0,1) and the unit vector along

the eld ĥ = (cosθ,sinθsinφ, sinθcosφ). This gives, for the angle θc between the eld and c axis,

cosθc = ĉ · ĥ = sinθcosφ. We then obtain for geometry of our experiment

Hc2(θ,ϕ) =
Hc2,ab√

(γ2
H−1)cos2 ϕ sin2

θ+1
. (4.2)

It is seen that constant φ, as determined by our experimental geometry, does not change the

linear relation of H2
c2vssin2θ , despite changing the magnitude of the variation, vanishing for

φ = 90◦ , corresponding to eld rotation parallel to the conducting plane. Therefore, the linear

dependence of H2
c2 on sin2

θ is not affected by a misalignment φ. The Hc2 (φ) described by Eq.

4.1 is a direct consequence of the linearized Ginzburg-Landau (GL) equation for anisotropic

materials at Hc2:

− (ξ2)ikΠiΠkΨ = Ψ , (4.3)

where Π =∇+2πiA/φ0, A is the vector potential and φ0 is the flux quantum; summation is im-

plied over repeating indices. Both sides of this equation are scalars, so that (ξ2)ik is a second

rank tensor with the standard angular dependence which is reflected in Eq.(4.1).

We note that, in the original papers, the angular dependence, Eq. (4.1), has been derived for

single band s-wave superconductors. It has also been recently shown that this behavior is ex-

pected for arbitrary Fermi surface, the superconducting gap modulation, and for multiband

materials [V.G. Kogan [2012]]. However, this conclusion is achieved assuming the explicit

factorization of the pairing potential and order parameter, V (k,k′ ) = V0 Ω(k) Ω(k’) and ∆(T
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,k) =Ψ (r,T) Ω(kF ). There is no microscopic justification for such factorization in complex

superconductors and deviations from Eq. (4.1) can be naturally explained by violation of this

procedure. In addition, for iron pnictides the importance of the paramagnetic effects for mag-

netic fields parallel to the Fe-As plane was suggested to explain the unusual shape of the Hc2

(T ) [Cho et al. [2011],Yuan et al. [2009],Terashima et al. [2009]]. This may also lead to the

deviation from Eq. (4.1) with the maximum effect expected at low temperatures and for orien-

tations close to H || ab planes.

Clearly, “separable” potentials do not exhaust all possible interactions and, therefore, other

forms of the angular dependence Hc2 (θ) can exist. An example of such a potential has been

studied in Ref. 4.4. Such potentials may lead to gradient terms in GL equations different from

the standard form Eq. (4.3) and, therefore, different from Eq. (4.1) angular dependencies; see,

e.g., [Gor’kov [1987]]. We should also mention deviations from the angular dependence Eq.

4.1 which arise in two- and one-dimensional situations [Tinkham [1996], Lebed and Sepper

[2012]]. We therefore may conclude that deviations of the observed angular dependence from

Hc2 of the form (1) (or deviations of H−2
c2 plotted vs sin2

θ from the straight line) signal that

the coupling potential cannot be written in the separable form. On the other hand, the example

of separable potentials (for any Fermi surface and any order parameter symmetry) shows that

there is no direct relation between the angular dependence of Hc2 , Fermi surfaces, and order

parameter symmetries. However, deviations of Hc2 (θ) from the form (4.1) may carry such

information. To investigate this question further one would need better data on these devi-

ations, in particular, criterion-independent determination of Hc2, which is hard to achieve in

resistive measurements. On the theoretical side, of course, one should go beyond the weak

coupling and separable coupling potentials.

Motivated by these considerations, we compile in Fig. 4.4 the published data for various

layered materials, analyzed by plotting H−2
c2 vs sin2

θ . The data are arranged with decreasing
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anisotropy from top to bottom. The most anisotropic materials, staged graphite intercalation

compounds (top panel, data from [Iye and Tanuma [1982]]) and layered Sr2RuO4 (data from

[Deguchi et al. [2002]]), closely follow Eq. (4.1). Interestingly, clear deviations from this

behavior in Sr2RuO4 , arising due to an unusual limiting mechanism in magnetic fields close

to H|| ab,[Deguchi et al. [2002]] are very difculte to recognize in a limited angular range near

θ = 0, as the dependence in the whole range is dominated by the anisotropy of the Fermi sur-

face. On the other hand, two materials in which superconductivity shows strong multiband

features, MgB2 [Kim et al. [2006]] and NbSe2 ,[Morris et al. [1972]] show distinctly different

angular dependences. The H−2
c2 (sin2

θ) in pure MgB2 [Posazhennikova et al. [2002]] shows a

downward bent as the field approaches c axis, θ = 90◦ , similar to but much less pronounced

than our observations in BaNi122. On the other hand, doped Mg(B1−x Alx )2 closely fol-

lows the linear H−2
c2 (sin2

θ) dependence, Eq. (4.1), which may suggest that doping diminishes

multiband effects due to enhanced interband scattering. For pure NbSe2 the H−2
c2 (sinθ ) plot

shows most clear deviations from linearity among all materials, with an upward curvature to-

wards θ = 90◦, an opposite trend to pure MgB2 and BaNi122. The two angular data sets

for profoundly multiband iron pnictide superconductors, slightly underdoped BaK12260 and

heavily overdoped K122,[Terashima et al. [2009]] generally follow linear dependence despite

a profound difference in the superconducting gap structure, nodeless in the former case[Reid

et al. [2012a]] and with vertical line nodes in the latter[Reid et al. [2012b]]. Considering that,

among all the materials for which we were able to find published Hc2 (θ ), only pure multiband

MgB2 and NbSe2 reveal clear deviations from Eq. (4.1), it is tempting to relate the observed

deviations to the multiband superconductivity in the clean limit. This might be quite natural

that in these systems the factorization of the pairing potential and of the order parameter does

not hold given the complexity of the in- and inter-band interactions. This explanation, how-

ever, is not universal, since multiband effects are very pronounced in high purity crystals of

KFeAs2 , but no clear deviations from Eq. (4.1) are found there. On the other hand, it is hard

to consider overdoped BaNi122 as a clean system, since scattering due to substitutional dis-
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order, especially on the Fe site, is significant in these compositions. The observation that the

deviations from the linear plot in MgB2 diminish with disorder suggest that the k dependence

of the gap magnitude, rather than the multiband nature of the Fermi surface itself, is important

for the unusual angular dependence. This conclusion is in line with the recent extension of

the Helfand and Werthamer (HW) theory for multi-band superconductors with arbitrary Fermi

surfaces. [V.G. Kogan [2012]]

In discussing these results we should keep in mind that, in all cases, except for Sr2 RuO4 ,

the Hc2 was measured resistively, so that inevitably its determination is approximate since the

resistive transition as a rule has finite width and hence the Hc2 values depend on a criterion

chosen. Finite resistivity in the ux-ow regime (most pronounced in the clean systems) broad-

ens the transition making resistive determination difcult. From this point of view, assertions

of Kim et al.[Kim et al. [2006]] that their data allow one to distinguish between two models,

GL and two-band Usadel approach by Gurevich,[Kamihara et al. [2008]] are hard to accept.

In compounds with relatively high Tc , the determination of Hc2 from resistive measurements

is also complicated by the phenomenon of vortex lattice melting: above the melting point, the

resistivity is close to that of the normal phase and Hc2 per se becomes invisible in resistivity

measurements. This complication in a given material might affect the measurements stronger

near Tc than at low temperatures.

As can be seen from Figs. 4.2 the upper critical fields in H||ab configuration are higher

than the weak-limit paramagnetic limiting Hp , equal to 32.2 T (x = 0.054) and 13.8 T (x =

0.072). These high values may come from the strong coupling nature of superconductivity in

iron pnictides, or indeed reflect paramagnetic limiting at low temperatures, as was suggested

in several studies[Cho et al. [2011],Yuan et al. [2009],Terashima et al. [2009]].
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Figure 4.2 Right: In-plane resistivity ρa vs. temperature for slightly overdoped
Ba(Fe1−xNix)2As2, x=0.054 in magnetic fields (a) parallel to the conducting ab
plane; (b) parallel to the c-axis. Lines indicate 20, 50, and 80 % of the resistivity
value immediately above the superconducting transition. Bottom panel (c) shows
Hc2(T ) phase diagrams for both directions of magnetic field. Left: In-plane re-
sistivity ρa vs. temperature for heavily overdoped Ba(Fe1−xNix)2As2, x=0.072 in
magnetic fields (a) parallel to the conducting ab plane; (b) parallel to the c-axis.
Lines indicate 20, 50, and 80 % of the resistivity value immediately above the su-
perconducting transition. Bottom panel (c) shows Hc2(T ) phase diagrams for both
directions of magnetic field.
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Figure 4.3 Right: Field dependence of in-plane resistivity ρ(H) of slightly overdoped
Ba(Fe1−xNix)2As2, x=0.054 sample at T =13 K (panel (a)) and T =9 K (panel (b))
with magnetic field inclination angle θ as a parameter. (c) Isotherms Hc2(θ), ob-
tained at 9 K and 13 K, using 80%, 50% and 20% criteria. Solid line shows fit to
Eq. 4.1. Left: Field dependence of in-plane resistivity ρ(H) of strongly overdoped
Ba(Fe1−xNix)2As2, x=0.072 sample at T =1.5 K (panel (a)) and T =4 K (panel (b))
with magnetic field inclination angle θ as a parameter. (c) Isotherms Hc2(θ), ob-
tained 1.5 K and 4 K, using 80%, 50% and 20% criteria. Solid line shows fit to
Eq. 4.1.
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Figure 4.4 Analysis of the isothermal angular dependence of Hc2 on inclination angle to the
highly conducting plane θ, using linearization plot H−2

c2 (sin2
θ). Left panels show

digitized Hc2(θ), right panels plot the same data as H−2
c2 (sin2

θ): (a) Graphite in-
tercalation compounds [Iye and Tanuma [1982]] C4RbHg (Tc=0.99 K, measure-
ments taken at Th=0.44 K, open circles) and C4KHg (Tc=0.73 K, Th=0.40 K,
solid squares); (b) Sr2RuO4 (Tc=1.43 K, Th=0.10 K,[Deguchi et al. [2002]]);
(c) Mg(B1−xAlx)2, [Kim et al. [2006]], x=0.12 (Tc=30.8 K, Th=14 K, black
solid squares, and Th=23 K, red solid circles) and x=0.21 (Tc=25.5 K, Th=10 K,
blue open circles); (d) NbSe2,[Morris et al. [1972]], (Tc= 7.2 K, Th=4.2 K); (e)
(Ba1−xKx)Fe2As2, [Yuan et al. [2009]], (Tc=28 K, Th=20 K, using different criteria
for resistive transition, zero resistance- black triangles, midpoint- red circles, onset
- green squares); (f) KFe2As2, [Terashima et al. [2009]], (Tc=3.8 K, Th=0.5 K).
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Figure 4.5 Left: Angular dependence Hc2(θ), determined from fixed temperature ρ(H) of
Fig. 4.3 using 20%, 50% and 80% criteria (top to bottom), for slightly overdoped
Ba(Fe1−xNix)2As2, x=0.054 at 9 K (top panel) and 13 K (bottom panel). The data
are plotted as H−2

c2 (sin2
θ), which according to Eq. 4.1 should be a straight line.

Right: Angular dependence Hc2(θ), determined from fixed temperature ρ(H) of
Fig. 4.3 using 20%, 50% and 80% criteria (top to bottom), for strongly overdoped
Ba(Fe1−xNix)2As2, x=0.072 at 1.5 K (top panel) and 4 K (bottom panel). The data
are plotted as H−2

c2 (sin2
θ), which according to Eq. 4.1 should be a straight line.



49

CHAPTER 5. Conclusion

5.1 Penetration depth of heavy-ion irradiated Ba(Fe1−xCox)2As2

The temperature-dependent London penetration depth in overdoped samples of BaCo122,

are best fit with power-law dependence ∆λ = ATn. The exponent n decreases with x towards the

overdoped edge of the superconducting dome, consistent with development of gap anisotropy

at the dome edge. The power law exponent n decreases from n≈ 2.7 in the x=0.108 down to

n≈2.0 in the x=0.127. Heavy-ion irradiation decreases the exponent of the power law depen-

dence in both x=0.108 from n≈2.7 down to n≈ 2.2, and in x=0.127 from n≈2 down to n≈ 1.8.

Both this decrease of exponent and the value n=1.8, less than expected in s-wave accidental-

node scenario, strongly supports a s± pairing state universally over the whole doping range in

electron-doped BaCo122.

5.2 Penetration depth of SrFe2(As1−xPx)2

Measurements of the London penetration depth, λ(T ), in optimally-doped as-grown and

annealed single crystals of SrFe2(As1−xPx)2 iron-based superconductor provide clear evidence

for line nodes. The absolute value of London penetration depth decreases with annealing

from λ(0) = 300±10 nm to λ(0) = 275±10 nm. The slope dλ/dt=0.28 is consistent with

the expectations for the superconducting gap with line nodes, dλ/dt=ln2/2.14=0.32 which is

comparable to the measured values in YBCO and BSCCO 2212.

Analysis of the temperature-dependent superfluid density, calculated using measured values
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of the London penetration depth at T=0 regime , that the superfluid density ρ(T ) differs from

the prediction for the vertical line nodes (as in a simple single - band d−wave) and requires

an analysis within a full three - dimensional band-structure. Overall, our results indicate that

SrFe2(As1−xPx)2 behaves very similarly to BaFe2(As1−xPx)2 both from transport and super-

fluid response points of view and it seems that isovalently substituted pnictides are inherently

different from the charge - doped materials.

5.3 Angular-dependent upper critical field of Ba(Fe1−xNix)2As2

By performing high angular resolution study of the upper critical field in two overdoped

compositions of iron pnictide superconductor BaFe1−xNixAs2, we find clear deviations from

the anisotropic Ginzburg-Landau form. Implementing linearization plot analysis of our and

previously published data, we find clear deviations from the form only in the case of multi-

band superconductivity in pure NbSe2 and MgB2, but not in dirty MgB2. We speculate, that

the dependence may reflect c-axis modulation of the superconducting gap, as suggested by

anisotropic penetration depth and thermal conductivity measurements [Tanatar et al. [2010c],

Reid et al. [2010], Martin et al. [2010]].
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