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ABSTRACT

We analyze the spatiotemporal behavior of species concentrations in a diffusion-
mediated conversion reaction which occurs at catalytic sites within linear pores of
nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion
within such narrow pores. Both transient and steady-state behavior is precisely
characterized by kinetic Monte Carlo simulations of a spatially discrete lattice—gas
model for this reaction—diffusion process considering various distributions of catalytic
sites. Exact hierarchical master equations can also be developed for this model. Their
analysis, after application of mean-field type truncation approximations, produces
discrete reaction—diffusion type equations (mf-RDE). For slowly varying concentrations,
we further develop coarse-grained continuum hydrodynamic reaction—diffusion
equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in
this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then
develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which
incorporates an unconventional description of chemical diffusion in mixed-component
quasi-single-file systems based on a refined picture of tracer diffusion for finite-length
pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant
concentration into the pore and the non-mean-field scaling of the reactant penetration
depth. Then an extended model of a catalytic conversion reaction within a functionalized
nanoporous material is developed to assess the effect of varying the reaction product —

pore interior interaction from attractive to repulsive. The analysis is performed utilizing
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the generalized hydrodynamic formulation of the reaction-diffusion equations which can
reliably capture the complex interplay between reaction and restricted transport for both

irreversible and reversible reactions.



CHAPTER 1. GENERAL INDROCUTION

Background

Anomalous transport can be induced by the feature that molecules or particles
within the narrow pores of mesoporous catalytic material either cannot pass each other,
resulting in so-called single-file diffusion (SFD). Anomalous behavior may persist even
if molecules just have difficulty in passing each other. Such mesoporous (or more
accurately nanoporous) systems are realized by materials incorporating arrays of linear
pores which are sufficiently narrow. This no-passing feature results in anomalous tracer
diffusion [1-3]. There have been extensive studies motivated by studies of transport and
catalytic reaction in zeolites [4] and other functionalized nanoporous materials,
emphasizing the anomalous nature of tracer- or self-diffusion [4,5]. Diffusion-mediated
reaction processes have traditionally been modeled with mean-field (MF) reaction-
diffusion equations (RDE) [6, 7]. These RDE include a conventional treatment of
chemical kinetics that ignores spatial correlations between reactants. This approach has
been effectively applied to heterogeneous catalysis on extended surfaces, where reactant
species reside at a periodic array of adsorption sites on the nanoscale, and complex
spatial concentration patterns can develop on the micron scale [8]. Actually, for such
catalytic surface reactions, it has been recognized that mean-field kinetics has limitations
due to nonrandom reactant distributions. However, there has been less appreciation of
the complexity of diffusion in mixed reactant adlayers.

For the reaction-diffusion phenomena which are of interest here, it is actually



chemical diffusion [9] which controls behavior [10], and for which the connection to
tracer diffusion is not well recognized. Another key aspect of these open reaction-
diffusion systems is that steady-state behavior is not described by a classic Gibbs
thermodynamic ensemble. In fact, a fundamental understanding of these steady-states,
which depend on both the reaction kinetics and transport, remains a significant challenge
[6,11,12]. One goal here is to use these exact results to assess the consequences of
single-file diffusion for the transient behavior in conversion reactions, a relatively
unexplored issue. We will also analyze behavior for various distributions of catalytic
sites within the pore. In addition, regarding steady-state behavior, we will assess
fundamental scaling behavior of quantities related to reactivity as a function of key
model parameters.

In the basic model for A—B conversion [13] (see Fig.1), reactants A (products B
re-enter if allowed) enter the pore from the surrounding fluid and are converted to
products, B, at catalytic sites (c). Reactants and products within the pore are localized to
sites of a 1D linear lattice traversing that pore (and outside the pore can be regarded as

localized to a 3D lattice). The simplest prescription for diffusion within the pores is that

A and B hop to adjacent empty (E) sites at rate h. This would correspond to single-file
diffusion with a strict no-passing constraint. We can also allow positional exchange of
adjacent A and B at rate P h to relax the strict single-file constraint, noting that
exchange of adjacent particles of the same type has no effect. Conversion reaction at
catalytic sites (c) occurs at rate k. In addition, we must specify adsorption and desorption

processes at the pore openings (as discussed further below).



Advances in synthesis of nanomaterials have led to broad capabilities for
multifunctionalization of mesoporous or nanoporous catalysts. Such capabilities allow
for not only effective functionalization with catalytic groups, but also the possibility to
tune the interaction between reaction products and the interior pore environment [14-16].
This can in turn significantly impact and potentially enhance catalytic reactivity. For
example, creation of an unfavorable environment for product species within pores can
lead to enhanced product extrusion or inhibited product re-entry. This feature would shift
the equilibrium of reversible reactions towards completion.

Accounting for detailed balance requirements, it follows that creating an
unfavorable environment for a reaction product within the pore increases the ratio of the
rate of product desorption from the pore opening to that for product (re)adsorption. One
should note that product readsorption can become significant for substantial conversion
of reactant to product in the surrounding fluid. Thus, in our modeling, we can account
for the effects of multifunctionalization and for different behavior with increasing
conversion during the reaction, by suitable specification of the adsorption and desorption
rates at the pore openings. We note that modifying the interior pore environment can
change loading of product in the pore even for irreversible reactions. The loading can
have a dramatic effect on effective transport for narrow pores, especially in the SFD
regime where species cannot pass each other in the pore, and this in turn greatly impacts
reactivity.

In these models, a key factor impacting reactivity is the extent to which reactants

and products A and B can pass each other. Previous analyses for SFD or highly



restricted passing [10,13,17,18,19-22] reveal that reactivity in these systems can be
strongly inhibited as reactant (and thus reaction) is strongly localized near the pore
openings [18]. The reason is that except near their ends, the pores tend to be exclusively
populated by product which is not readily extruded. Thus, the pore center does not
participate in the conversion A—B. Kinetic Monte Carlo (KMC) simulation (which is
often computationally expensive) can always be utilized to provide a precise
characterization of model behavior. However, in this thesis we focus on the development
of analytic formulations. While simple mean-field type reaction-diffusion equations
[10,17,19,20] are not adequate in systems with strongly inhibited passing, our studies
show that behavior in this regime is captured by a “generalized hydrodynamic” (GH)
formulation which accounts for both the effect of restricted passing on chemical

diffusion as well as fluctuation effects in adsorption-desorption at pore openings [21].

Thesis organization

The main body of this dissertation is based on three published papers (Chapter 2,
3 and 4), and three additional parts (Chapter 5, 6 and 7).

Chapter 2 reprints the published paper “Catalytic conversion reaction mediated
by single-file diffusion in linear nanopore: Hydrodynamic versus stochastic behavior”,
by D. M. Ackerman, J. Wang, J. H. Wendel, D.-J Liu, M. Pruski, and J. W. Evans in the
Journal of Chemical Physics 134, 114107 (2011). David Ackerman performed the
kinetic Monte Carlo simulations for the models, and | performed the analytic

investigations and related numerical simulations of discrete reaction-diffusion equations.



This paper gives a detailed description and analysis of the simple reaction conversion
A—B model with single-file constraint. MF approximations are applied into a system of
discrete RDE and a classic hydrodynamic treatment is used in to associate continuum
RDE. MF-type treatment can capture the fluctuation near the pore openings but
overestimate the fluxes within the pore, especially the pore center. Hydrodynamic
method captures the correct behavior but fails near the pore openings. A set of more
precise KMC results is used as the exact behavior.

Chapter 3 reprints the published paper “Generalized hydrodynamic treatment of
the interplay between restricted transport and catalytic reaction in nanoporous
materials”, by D. Ackerman, J. Wang, and J.W. Evans, in Phys. Rev. Lett. 108, 228301
(2012). David Ackerman performed the kinetic Monte Carlo simulations for the models,
and | performed the analytic investigations and related numerical simulations of discrete
reaction-diffusion equations. This paper develops a reliable generalized hydrodynamic
treatment as noting the shortcomings of MF-type approximation and classic
hydrodynamic treatment. The generalized hydrodynamic method successfully captures
both fluctuation at the ends of pore and the correct behavior in the pore center.

Chapter 4 reprints the published paper “Controlling reactivity of nanoporous
catalyst materials by tuning reaction product-pore interior interactions: Statistical
mechanical modeling”, by J. Wang, D. M. Ackerman, V. S.-Y. Lin, M. Pruski, and J. W.
Evans in the Journal of Chemical Physics 138, 134705 (2013). This paper uses

generalized hydrodynamic treatment to deal with the effect of varying the reaction



product-pore interior interaction from attractive to repulsive. Both irreversible and
reversible reaction conversions are considered.

Chapter 5 is a discussion on “Higher-order truncation approximation” for the
tracer diffusion coefficient Dy with MF-type approximation in semi-infinite pores.

Chapter 6 is a discussion on “Taylor expansion results for tracer diffusion”. This
is the only analytic way to figure out Dy, as in my knowledge.

Chapter 7 is a discussion on “Improved analysis of the steady-state continuum

reaction-diffusion equations”.
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Fig.1. Schematic of the A—B conversion reaction model illustrating processes within a
single pore (shaded blue), as well as the surrounding fluid. ‘c’ denotes catalytic sites.



CHAPTER 2. CATALYTIC CONVERSION REACTION MEDIATED BY
SINGLE-FILE DIFFUSION IN LINEAR NANOPORE: HYDRODYNAMIC

VERSUS STOCHASTIC BEHAVIOR

A paper published in the Journal of Chemical Physics
David M. Ackerman, **” Jing Wang, " Joseph H. Wendel, * Da-Jiang Liu, * Marek
Pruski, ! and James W. Evans™**

!Ames Laboratory — USDOE, lowa State University, Ames, lowa 50011, USA
2Department of Chemistry, lowa State University, Ames, lowa 50011, USA
Department of Mathematics, lowa State University, Ames, lowa 50011, USA
*Department of Physics and Astronomy, lowa State University, Ames lowa 50011, USA
“David Ackerman performed the kinetic Monte Carlo simulations for the models, and |
performed the analytic investigations and related numerical simulations of discrete

reaction-diffusion equations.

Abstract

We analyze the spatiotemporal behavior of species concentrations in a diffusion-
mediated conversion reaction which occurs at catalytic sites within linear pores of
nanometer diameter. Diffusion within the pores is subject to a strict single-file (no
passing) constraint. Both transient and steady-state behavior is precisely characterized by
kinetic Monte Carlo simulations of a spatially discrete lattice—gas model for this

reaction—diffusion process considering various distributions of catalytic sites. Exact



hierarchical master equations can also be developed for this model. Their analysis, after
application of mean-field type truncation approximations, produces discrete reaction—
diffusion type equations (mf-RDE). For slowly varying concentrations, we further
develop coarse-grained continuum hydrodynamic reaction—diffusion equations (h-RDE)
incorporating a precise treatment of single-file diffusion in this multispecies system. The
h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the
mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior.
However, steady-state reactivity, which is localized near the pore ends when those
regions are catalytic, is controlled by fluctuations not incorporated into the
hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but
cannot describe scaling behavior of the reactivity. © 2011 American Institute of Physics.

[d0i:10.1063/1.3563638]

I. Introduction

Diffusion-mediated reaction processes have traditionally been modeled with
mean-field (MF) reaction-diffusion equations (RDE) [1, 2]. These RDE include a
conventional treatment of chemical kinetics which ignores spatial correlations between
reactants, and also a simple description of diffusion typically with constant Fickian
diffusion coefficients. This approach has been effectively applied to heterogeneous
catalysis on extended surfaces, where reactant species reside at a periodic array of
adsorption sites on the nanoscale, and complex spatial concentration patterns can

develop on the micron scale [3]. Actually, for such catalytic surface reactions, it has
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been recognized that mean-field kinetics has limitations due to nonrandom reactant
distributions. However, there has been less appreciation of the complexity of diffusion in
mixed reactant adlayers. This complexity arises even in simple lattice—gas (LG) reaction
models with no interactions between reactants on different adsorption sites (but
exclusion of multiple occupancy of sites) [4]. There are further complications in the
treatment of diffusion in these mixed systems when one accounts for interactions
between reactants [5].

In contrast, the nontrivial nature of diffusion is well-recognized for transport and
possible reaction in so-called single-file systems. Such mesoporous (or more accurately
nanoporous) systems are realized by materials incorporating arrays of linear pores which
are sufficiently narrow that molecules cannot pass each other inside the pores. This no-
passing feature results in anomalous tracer diffusion [6-8]. To assess the interplay
between such anomalous transport and reaction, there have been several studies of a
basic conversion reaction model and its variants [9-15]. In this basic model, the reactant,
A, adsorbs at the end of pore, converts to product, B, at catalytic sites within the pore,
and both reactants and products can exit the pore.

In an early study considering possibly reversible conversion reactions,
Tsikoyiannis and Wei [9] developed hierarchical rate equations for a general class of
lattice—gas models. They analyzed behavior for the canonical irreversible reaction model
A— B with all sites catalytic by kinetic Monte Carlo (KMC) simulation and compared
results against predictions from first-order mean-field and second-order pair truncation

approximations of the hierarchy [9]. The model was revisited by Okino et al. [10] who
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refined the pair or doublet truncation approximation and analyzed behavior of the
reversible A— B as well as irreversible A— B conversion reaction. Karger and co-
workers [11-13] examined model behavior via KMC simulation and included the
possibility of attractive interactions between participating molecules. Finally, Nedea et
al. [14, 15], also considered behavior of the canonical irreversible reaction model A— B
without interactions, exploiting both KMC simulation and truncation of hierarchical rate
equations. They further considered behavior for different distributions of catalytic sites
within the pore, and also analyzed nontrivial limiting behavior for rapid diffusion (but
with finite exchange rates at the pore ends). These studies have focused primarily on
elucidating steady-state reactivity.

While the anomalous aspects of tracer diffusion in single-file systems are well
characterized, the behavior of chemical diffusion, which is of particular relevance for
reaction-diffusion phenomena, is less completely characterized. It has been recognized
that Onsager’s classic theory of transport can be applied to assess chemical diffusion
fluxes in multi-species systems with and without single-file constraints [16,17]. Also,
some of the above studies of single-file conversion reactions have described the
corresponding discrete RDE, but only based on approximate mean-field treatments
[9,14]. However, what has not been exploited is the existence of exact results for
diffusion fluxes in multi-species lattice-gas models with site exclusion and species-
independent hop rates and interactions [18]. One can apply these results to single-file
systems. One goal here is to use these exact results to assess the consequences of single-

file diffusion for the transient behavior in conversion reactions, a relatively unexplored
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issue. We will also analyze behavior for various distributions of catalytic sites within the
pore. In addition, regarding steady-state behavior, we will assess fundamental scaling
behavior of quantities related to reactivity as a function of key model parameters.

In Sec. I, we specify in detail the single-file conversion reaction model, the
associated hierarchical rate equations and mean-field-type RDE (mf-RDE), and discuss
basic model properties. Then, in Sec. I11, we formulate a treatment for the
“hydrodynamic regime” where the evolution of slowly varying species concentrations
might be described by continuum hydrodynamic RDE (h-RDE). Both steady-state and
transient behavior is described in Sec. IV for a “canonical” conversion reaction model
where all sites within the pore are catalytic. Behavior where either the peripheral or the
central sites are catalytic is described in Sec. V. Finally, we offer some comments on

more general models, and present conclusions in Sec. VI.

I1. Reaction-diffusion model: prescription and basic properties

The model considered in this study was developed previously to describe the
diffusion-mediated catalytic conversion of a reactant to a product (A — B) inside linear
pores which are sufficiently narrow as to allow only single-file diffusion [9-15]. To treat
the spatial aspects of this process, the model incorporates the feature that both reactants
and products inside the pore reside at the sites of a linear lattice. The introduction of a
discrete spatial structure should not affect the basic aspects of model behavior, at least
for concentration profiles varying smoothly over several lattice constants. Such LG

modeling also greatly facilitates both analytic investigation and simulation. The key
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mechanistic steps in the model are: adsorption of “external” (ext) reactant species A at
terminal sites (t) of the pore provided that these sites are unoccupied or empty, E;
subsequent diffusion of A within the pore by hopping to nearest-neighbor (NN) empty
sites; conversion reaction A — B at catalytic sites (c) within the pore. The product, B,
also undergoes diffusion by hopping to NN empty sites, and both the reactant and
product undergo desorption from terminal sites (t) of the pore. Thus, to summarize, the
mechanistic steps of the reaction are:
A(ext) + E; — Aq (adsorption); A, + Ens1 <> En + Ansg (diffusion); and
A; — A(ext) + E; (desorption)
Ac — B (reaction); By + Ens1 <> En + Bpsg (diffusion); and
B: — B(ext) + E; (desorption),
where we label the sites in the pore by n=1, 2,..., L (for pore length L). Thus, the
terminal sites t are n=1 and n=L. The catalytic sites may constitute all sites or various
subsets of sites within the pore, as described below. Total reactivity (i.e., the total
production rate of B), R®, is simply proportional to the total amount of A within the
catalytic regions of the pore. The system geometry and these mechanistic steps are also
illustrated in Fig.1.
Rates for the various processes described above will be denoted by W24 = Wags
for adsorption of A, WX for desorption of species K = A or B; WXt for hopping of
species K to NN empty sites, and W\, for A — B conversion. An exact analytical

description of such stochastic Markov processes is provided by the master equation for

the evolution of probabilities of various configurations for the entire system [19]. Often
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these are written in hierarchical form. Here, we use <K,> to denote the probability or

ensemble averaged concentration for species K at site n, <K,En+1> for the probability
that K is at site n and for site n+1 to be empty (E), etc.. Then, the lowest order-equations
describe the probabilities that individual sites are occupied by various species. When all

sites are catalytic, one has that

d/dt <A1> = Wiage<E1> - Wges<Ar> -Wip<A> - Ja72 (1a)
d/dt <By> = - WB3ee<B1> +W,<A> - Jg772 (1b)
d/dt <An> = -Wi<Ap> - JaAT™ + M for 1<n<L, and (1c)
d/dt <By> = +Wix<Ap> - Jg™™ + 1", for 1<n<L, (1d)

and similar equations for the terminal site n=L to those for n=1. In these equations,

I = W-itr [<KnEne1> - <EqKis>], (2)
denotes the net diffusive flux of K = A or B from n to n+1 (i.e., the difference between
the flux from n to n+1 and that from n+1 to n). The total reactivity is given by R%; =
Wi 2n=c<An>, Where the sum is over all catalytic sites (i.e., over the entire pore in the
above example).

These equations (1) are coupled to probabilities for various configurations of
pairs of sites. Equations for pair probabilities couple to those for various triples, etc.,
thus generating a hierarchy. Pair, triplet, etc., probabilities are not trivially related to
single-site probabilities due to the presence of spatial correlations. In these models,
correlations derive from the interplay of adsorption-desorption and diffusion with

reaction. Implementing a simple mean-field (MF) factorization approximation, <KE,+;>
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~ <K,><E,+1>, etc., produces a closed set of discrete mf-RDE’s for single site
concentrations, <A,> and <B,> noting that <A,> + <B,> + <E> =1.

A more accurate pair approximation retains pair quantities like <KEn+1>, but
factorizes triplet quantities, e.g., <KnMp+1Np+2> ~ <K Mp+1><Mp:1Nps2>/<Mpi1>, with
K, M, N =A, B, or E. This generates a closed set of equations for single site quantities,
<A,> and <B,>, together with the pair quantities, <ApAn+1>, <AnBn+1>, <B An+1>, and
<BnBn:+1>. See, for example, [9,10,14]. Note that there exist various exact relations
determined by conservation of probability, i.e., <A;Bn+1> + <ApAni1> + <AEni> =
<A,>, allowing one to determine <A,E,.1> from the set of the six selected quantities
above. Higher-order approximations are also possible retaining probabilities of
configurations of strings of n>2 sites, although the gain in accuracy with increasing
order, n, may be slow [20].

A precise determination of model behavior is obtained by standard KMC
simulation implementing processes with probabilities proportional to their rates. More
specialized simulation algorithms may be applied to assess behavior in limiting regimes
[15].

Following previous studies [10,12,14,15], to reduce the number of parameters in
the model and also to induce some special features of model behavior, we will primarily
consider the case where desorption rates and diffusion rates for both species are equal,
i.e., WXies = Waes and W isr = Waisr, for K = A and B. There is an important
consequence of this rate choice. Suppose one does not discriminate between the identity

of particles, but only considers whether sites are empty, E, or filled, X=A+B (i.e., if one
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just considers the total concentration at various sites). Then, the dynamics corresponds to
a pure adsorption-desorption-diffusion process for particles X with no reaction.

Correspondingly, from Egs. (1), one obtains the exact equations

d/dt <X1> = Wige<E1> - Wes<X1> - I, (3a)
d/dt <X,> = - 3™ + 3", for 1<n<L, (3b)
d/dt <X> = Wags<EL> - Wies< X > + I, (3c)
where J™"™ = Wigr [<XnEnet> - <EnXne1>] = Waier [<Xn> - <Xper>]. (4)

n>n+1 i

The exact relation corresponding to the last equality in Eq. (4) expressing Jx n
terms of single-site quantities amounts to an exact reduction of a many (X) particle
problem to a single-particle problem. This feature was first noted by Kutner for an
infinite lattice [21]. Extension of this reduction to semi-infinite and finite lattices has
also been recognized previously [14,22]. Thus, the evolution of <X,> is described
exactly by standard discrete diffusion Eq. (3b), augmented by adsorption and desorption
terms at the end sites in equations (3a) and (3c). The equations are closed noting that
<E,>=1-<Xp>.

It is thus straightforward to visualize the evolution of the total concentration
starting from an empty pore. The total concentration will first build up near the ends of
the pore, then spread by diffusion to the interior, and finally achieve a spatially uniform

steady-state. Since there is no reaction in the dynamics of particles X, the steady-state

corresponds to a conventional grand canonical equilibrium state with activity z =

Wags/Wees [23]. Furthermore, since there are no interactions between particles X in this

model, they are randomly distributed (i.e., there are no spatial correlations) in this trivial
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equilibrium state. The equilibrium concentration at each site satisfies <Xp>eq = Xeq =
2/(1+2) = Wags/ (WagstWaes) (Cf. [9,15]). As an aside, we note that while the equilibrium
steady-state is free of spatial correlations just considering the distribution of filled sites,
X, such correlations do develop during filling of the pore. Remarkably, an exact closed
set of equations can be obtained for pair probabilities, <X,X,+m>, or associated
correlations, as these decouple from triplet correlations [24]. Likewise, an exact closed
set of equations can be obtained for the triplet correlations which decouple from the
quartet correlations, etc. The nature of this decoupling is analogous to that described for
Eq. (4).

In our analyses below, we will choose W,gs + Wges =1 Which sets the time-scale.
We will present results only for: (i) Wags = 0.2, Wges = 0.8 [low loading]; (ii) Wags = 0.8
(or 0.9), Wyes = 0.2 (or 0.1) [high loading]. Single-file effects are stronger for high
loading. Parameters W\, and Wy;ss will either have suitably-selected fixed values when
comparing predictions of various treatments, or will be systematically varied in scaling
studies. Note that well-defined limiting behavior is found in the regimes where: (a)
WagstWees (With fixed z = W,gs/Wees) far exceeds Wy, and Wi [12], so that reaction is
not limited by adsorption and desorption at the ends at the pore; (b) Wi far exceeds all
other parameters. In contrast to typical reaction-diffusion systems where concentrations
become uniform in this limit, nontrivial behavior is found in this single-file system [15];
(c) Wi is far smaller than other parameters, so then only the terminal sites have a non-

zero population of A in the steady-state [25].
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I11. Hydrodynamic regime and reaction-diffusion equations

In discrete LG reaction-diffusion systems, it is common to consider behavior in
the “hydrodynamic regime” of substantial diffusion (on the time scale of other
adsorption-desorption and reaction processes) and slowly varying particle concentrations
(on the length scale of lattice constants) [4,5,26]. Within this framework, one might
describe behavior by continuum hydrodynamic reaction-diffusion equations (h-RDE)
after coarse-graining the discrete spatial variable to a continuous variable. Specifically,
for linear lattices, one sets X = na, where n is the lattice site label and “a” is the lattice
constant. (As an aside, it is often convenient to set a=1 in the following.) Then, species
concentrations per unit length become functions of a continuous variable K(x=na) ~ a™
<K,>, where we leave implicit the t-dependence. To develop h-RDE, one needs an
appropriate description of collective or chemical diffusion in this multi-species lattice-
gas system [4,5,16,17,26] incorporating the single-file nature of diffusion.

Before addressing this major challenge, we comment on the much simpler task of
describing the behavior of the coarse-grained total particle concentration per unit length,
X(x=na) ~ a™* <X,>, in the hydrodynamic regime. As noted in Sec.ll, the dynamics of
this concentration profile is described by a reaction-free discrete diffusion equation. If Jx
denotes the corresponding diffusion flux, then in the hydrodynamic regime, one has that

Alat X(X) = -0ldx Ix with Jx = -Dx d/dx X(x) and Dx = a®Wiits - (5)

The feature that the chemical diffusion coefficient, Dy, is independent of
concentration is well known for this single-component problem [21]. Thus, the single-

file nature of the system does not reveal itself when considering chemical diffusion for a
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single species X. Eq. (5) is augmented with the appropriate Robin boundary conditions
+Jx = aWags(Xm -X) - aWgesX at the pore ends, a relation derived from a steady-state
form of Eq. (1a). Here, X, = 1/a is the maximum concentration per unit length.

For the case where all sites are catalytic, the h-RDE in our conversion reaction
model for individual species concentrations, A(x) for A, and B(x) for B (leaving implicit
the t-dependence), have the form

olot A(X) = -Wix A(X) -0/0x Ja and o/ot B(x) = +Wx A(X) -0/0X . (6)
where X(x) = A(X)+B(x). If sites within the pore are catalytic only in specific (e.g.,
peripheral) regions, then the reaction terms appear only for those locations. Description
of the diffusion fluxes, Ja and Jg, for species A and B, respectively, is non-trivial in
mixed lattice-gases even in the absence of interactions beyond site exclusion. The
appropriate Robin boundary conditions for Eq. (6) at the pore ends have the form +Ja =
aWgs(Xm -X) - aWgesA, and +Jg = -aWgesB.

Onsager’s transport theory ensures that the diffusive flux of A has the form
[4,5,16,17,26]

Ja=-Daa 0lox A(X) - Dag 0/0x B(X), @)
where in general the diffusion coefficients Da k depend on species concentrations. Thus,
the flux Ja is induced by gradients in both <A> and <B>. A similar expression applies
for the flux, Jg, of B. The four diffusion coefficients, Dk k-, with K, K’ = A or B, can be
conveniently collected into a 2x2 diffusion tensor D. Onsager’s theory [16,17,26] further
shows that this tensor involves both a thermodynamic “inverse compressibility” factor

and a kinetic “conductivity” factor [27].
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A. Exact hydrodynamic diffusion fluxes

As indicated above, there is a general appreciation that in principle the
components of D can be determined using the statistical mechanical formulation of
Onsager theory. However, what has not been exploited is the existence of an exact result
for the case of a multi-species lattice-gas with no interactions beyond site exclusion and
for equal hop rates, Wyt [4,18,26]. For one-dimensional (1D) systems with single-file
diffusion, one has the simple and intuitive exact form

Ja = -Dx [AX)X(X) ] a/ox X(x), Js = -Dx [BX)X(X)™] &/ox X(x). (8)

In obtaining Eg. (8) from more general results [18,26], we have exploited the
feature that the tracer diffusion coefficient vanishes for 1D single-file systems. See
Appendix A.

There is an important consequence of the form (8) of the diffusion fluxes for the
steady-states of the h-RDE. From Eq. (8), it is clear that fluxes Ja and Jg vanish for states
with uniform total concentration, X(X) = constant, irrespective of whether there are
gradients in individual species concentrations. This reflects the lack of intermixing in
single-file systems. Since the steady-state of the reaction model is characterized by
constant X(x) = a™ Xeq = @™ Waas/(Wads+Wies), Ja and Jg must vanish for long times.
Consequently, in this regime, concentrations interior to the pore change only due to
reaction. As a result, any A is converted to B in regions with catalytic sites, so that
<A>=0 and <B> = X¢q in the steady-state in such regions. For example, if all sites are

catalytic, then the steady-state is completely unreactive in the hydrodynamic picture. In
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the actual model with all sites catalytic, reactivity does actually persist near pore ends in
the steady state, but only due to fluctuations absent in the hydrodynamic treatment.

In the transient regime, as noted above, the evolution of <X,> or X(x) is simply
described by the nonreactive diffusion problem. A gradient develops as particles diffuse
into the pore, and thus the diffusion fluxes Ja and Jg in Eq. (8) are nonzero and always in
the direction towards the center of the pore. We will show that the correct description of
diffusion in hydrodynamic RDE does capture key aspects of transient behavior. For such
comparisons with KMC simulation results, we utilize discrete hydrodynamic RDE which

incorporate a discrete version of Eq. (8) as described in Appendix B.

B. Mean-field diffusion fluxes

In contrast to the above hydrodynamic treatment, a mean-field (MF) treatment of
chemical diffusion fluxes yields the distinct form

JA(MF) = -Dx [1 - B(X)Xm™] 8/ox A(X) -Dx [AX)Xw™] 6/6x B(X), 9)
and an analogous expression applies for Jg"". Again X,=1/a is the maximum
concentration per unit length. This previously utilized result [16,17,28] can be obtained
from Onsager theory accounting for the known thermodynamics of a non-interacting
lattice-gas, but also incorporating a crude approximation for species conductivity [27].
However, it is instructive to note that an alternative simple kinetic derivation of the MF
result (9) is also possible [14,29]: one simply applies the MF factorization to JA”"* and
JBn>n+l

in Egs. (1c,d) and recasts the results in terms of continuous derivatives for slowly

varying concentrations.
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Clearly, this MF form of the diffusion fluxes which applies for any lattice
dimension fails to capture the single-file nature of diffusion, and thus also fails to
capture aspects of the correct hydrodynamic behavior. For example, the form (9) allows
nonzero diffusion fluxes for constant X, and this can produce artificially enhanced
intermixing of A and B. Specifically, one has that

JK(MF) — -Dx(1-Xeq) 0/0X K(X),

when X — a* Xeq (Steady-state) for K = A or B. (10)

The MF form also allows diffusion of species away from the center of the pore.
Severe failure can be anticipated in the regime of large Wi Wwhere the MF formulation
predicts complete intermixing [14,15], but the actual single-file nature of diffusion
prohibits such behavior.

For comparison with results of KMC simulation for both transient and steady-
state behavior, we will implement the mf-RDE associated with the MF truncation
approximation to Eq. (1). These constitute the natural discrete version of Eq. (9). See
Appendix B. In addition, we will implement discrete mf-RDE associated with the pair
approximation which might be regarded as providing a refined treatment of diffusion.
(As an aside, it is nontrivial to extract continuum h-RDE for the pair-approximation
[30].) We shall see that both the MF and pair approximations do capture some aspects of

fluctuation effects near the end of the pore in contrast to the hydrodynamic treatment.

IVV. Canonical model: all sites catalytic

A. Steady-state behavior
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Fig. 2 shows a “typical” example of the evolution of concentration profiles
towards the steady-state for the parameter choice W,4s=0.2, Wes=0.8, Wix=1, Wir=1,
and pore length L=30. Precise results of KMC simulations in Fig.2a are compared
against those from various approximate analytic formulations in Fig.2b-d. The mean-
field and pair approximation are quite effective in capturing behavior near the pore end
as noted previously [9,10,14]. These approximations and the hydrodynamic treatment
all describe effectively exactly evolution in the interior of the pore where there is just
one species (B). Note that the A-concentration profile reaches a non-trivial steady-state
form (with significant population only on the four sites closest to the pore end) long
before the steady-state of the entire system is reached (for which <X,>=0.2). This can be
anticipated since all that is required for development of steady-state <A,> is sufficient
diffusion into the pore end so that <X,> is close to its steady state value at sites near the
pore end. Filling of the interior of the pore by species B occurs on a slower time scale.
Simulation with the same rate parameters but for longer pores produces essentially
identical steady-state <A,> distribution, but just take longer for the interior of the pore to
fill with B.

As noted above, hydrodynamic analysis predicts that in the steady-state, the
central region will contain just B and no A, so that <Bp> = Wgs/(WagstWies) = Xeq and
<A,> = 0. Only the end sites have significant A population in our discrete formulation.
Thus, the nonzero population of A near the pore ends observed in simulations can be

associated with fluctuation effects not included in the hydrodynamic formulation. Since
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the reactivity of the system is determined by the population of A in the pore, these
fluctuations are entirely responsible for the steady-state reactivity.

This observation motivates more detailed analysis of the dependence of this
steady-state <A,> concentration profile on model parameters. Steady-state profiles
appear to have an exponential form,

<Ap>~c- 1" = c-exp(-An) = c-exp(-n/Lpy), at least for larger n <L/2. (11)

In Eq. (11), A = - Inr is the decay rate, and L,;=1/A is a measure of the
penetration depth of A into the pore. In our analysis of KMC data below, we do find
deviations from simple exponential decay for smaller n, most clearly in cases where Lp;
is large (so decay is slow). The behavior (11) also implies that the production rate, Rg"”,
should converge exponentially to a finite value with increasing pore length. We note that
another natural measure a penetration depth, L, at least in the regime where L, is large
IS Lp2 = 2nerz <Ap>/<Aq;>. Yet another alternative is Lyz = -1/In( 1- 1/L,,), which would
correspond exactly to Ly for perfect exponential decay where <Ap> = <A;> ! See

Table I.

First, we examine the dependence on reaction rate, W, of steady-state

penetration depth L, (considering all of L1, Lyz, and Lyz). We set Wyige =1 and vary Wiy
from 1 to 10°° for a system of size L=100. The lower the reaction rate, the greater the

extent of penetration of A into the pore, and the greater L,. Fig.3a-b show concentration
profiles for W,¢s=0.8 and Ws=0.2 for various W,,. Analysis of this data and analogous
data for W,¢s=0.2 and Wes=0.8 to extract L, versus Wiy is shown in Fig.3c-d. One finds

that L, increases with decreasing Wy, much more slowly than (W) ™2, Instead, we
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suggest that L ~ (W)™, as Wi — 0, corresponding to asymptotically linear behavior
in Fig.c-d for large abscissa. This behavior might be anticipated from the postulate that
L, should reflect the root-mean-square displacement for single-file diffusion on a time-
scale corresponding to the reaction time, tx = 1/W This implies that (Lp)4 ~ 1rx and thus
that L, ~ (W) ™. This result for L, immediately yields scaling of the total reactivity per
pore as R% ~ Wix Ly ~ (Wix)*"™.

Second, we examine the dependence on diffusion rate, Wi, Of steady-state

behavior. For a conventional reaction-diffusion system, increase of hopping rates
ultimately produces spatial uniformity of species concentrations due to “efficient
stirring” corresponding to L, —c0. One also achieves randomization of configurations in
the absence of interactions [4,30]. A special feature of the single-file system being
considered here [14,15] is the existence of nontrivial spatially non-uniform limiting
behavior as Wi —co (but retaining finite Wags, Waes, and W) [31]. One obtains a well-
defined limiting concentration profile with finite penetration depth, L,(Wiif—>0) < oo, in
this regime. More detailed analysis of steady-state concentration profiles for increasing
Witr suggests that Ly ~ Ly (Wair—> o) + ¢(Wair) . See Fig.4. Limiting values of
Ly1(Wair— oo) was obtained from a tailored simulation algorithm (cf. [15]). Separate
analysis indicates that Ly, and Lz are fairly insensitive to Wis.

Next, we consider the predictions of MF-type analytic treatments regarding the

above behavior. The simplest MF approximation exhibits precise exponential decay for
long pores. This behavior, noted previously [14], is a result of the feature that <E,>=1-

<Xp> is constant, which in turn allows reduction of the steady-state form of Eq. (1c) to a
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linear coupled set of equations. Setting & = Wi /W it and Xeq = Wads/(WagstWoes), then
seeking a solution to these linear equations of the form <A,> o r" yields for r, the
quadratic equation (cf. [14])

(1-Xeg)(r + 11 -2) = &. (12)
Consequently, one has that 8 = 1-r ~ (1-Xeq) 2 €2, for small ¢, so that (cf. [14])

Lpt(MF) ~ 8 ~ (1-Xeq)"® (Wix) "2(Wairr) %, for Wi — 0 or Wiigr 0. (13)

The result (13) can be obtained more directly from the continuum MF
formulation [32]. This result reveals a fundamental failure of the MF treatment to
describe asymptotic behavior of L. The failure to describe scaling as Wx—0 or Wi
—oo reflects an inability to capture single-file aspects of diffusion. Since concentration
profiles become spatially uniform within the MF approximation as Wiz —0, this
enables simple direct analysis of MF behavior, e.g., showing that MF reactivity
converges such as 1/L rather than exponentially as L—o0. See Appendix C.

It is instructive to assess the predictions of the higher-order pair approximation
for the behavior of the penetration length, L,. The complex nonlinear form of pair
equations [14] excludes exact exponential decay. However, there should be asymptotic
exponential decay <A,> ~ exp(-n/Lyp;) for large n <L/2. In the steady-state, one has the
relations <Ap> + <B;> = Xeq and <B;Bp+1> + <BpAn+1> + <ApBni1> + <AnAm1> = (Xeq)z.
Since one expects that <A,An+1> decreases more quickly than <A,>, <A,Bn+1>, or
<B,.1A,> for increasing n, it follows that one can just analyze equations for the latter

quantities. Anticipating solutions of the form <A,> ~ c-r", <A;Bp:+1> = ¢-B-1", and
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<Bn1A> ~ c-y-r" and substituting into the rate equations for the pair approximation
yields three coupled equations

(L-B)(r-1) + (1n(7-1) =&, (11 Keq)(r+1) - (1-Xeq) - (1-B) = &,

and (1-B)(B"Xeq) (r+1) - (1-Xeq) - (1-7) = &. (14)

Seeking solutions for small € and & = 1-r with B = Xeq+ Bd and y = Xeq+ C5
yields C = -B = Xeq(1-Xeq) (2+Xeq) ™ [33] and

Lp1(pair) ~ 8 ~ (2-Xeq)*(2+Xeq) *Lo(MF) , for large Lp;. (15)
Thus, Lpa(pair) is smaller than Ly (MF) and closer to the exact Ly, but still has the

incorrect asymptotic functional form as W — 0 or Wig —>o0.

B. Transient behavior

In this subsection, we characterize the evolution of concentration profiles during
filling of a very long (semi-infinite) pore with an emphasis on scaling behavior for
increasing time, t. Recall that the total concentration satisfies a standard discrete
diffusion equation which reduces to the conventional continuum equation in the
hydrodynamic regime. Thus, it follows that this profile has the “classic” scaling form

<Xn(t)> ~ <X(t=00)> F(n/(Wqirt)?), for n<L/2, where F(y) = erfc(y/2),  (16)
and where erfc is the complementary error function [34]. Thus, concentration profiles
collapse onto a single curve for increasing t after rescaling the n-axis by (Waiss t)*2.
However, when considering the individual species A and B, the system is dominated by

B for increasing time due to reaction (when keeping all parameters fixed). After

rescaling the spatial variable, one obtains <B,> ~ <X,> and <A,> ~ 0. To achieve non-
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trivial scaling profiles with significant populations of both species inside the pore, it is
natural to reduce the reaction rate as time is increased so that Wt remains constant.
More precisely, we seek scaling solutions for the individual species concentrations of the
form

<An(t)> ~ <X(t=00)> FAN/(Wairr t) 2, Wint) and (172)

<By(t)> & <X(t=00)> FB(n/(Waitt t) 2, W), (17b)
for n<L/2, where F* + F® = F. Support for the existence of such solutions comes from
substitution of these forms into the hydrodynamic reaction-diffusion equations of
Sec.Ill. One then obtains a closed coupled pair of partial differential equations for the

scaling functions F*2

(y, u). The specific form of the equations depends on the choice of
diffusion fluxes (e.g., hydrodynamic versus MF), as do the solutions F*®. See Appendix
D.

From the earlier discussion of hydrodynamic versus fluctuation effects, one
might anticipate the following: (i) The MF and pair approximations should capture exact
KMC behavior better for shorter times when most particles are relatively close to the
pore opening. In this regime, behavior is more influenced by fluctuations. (ii) The
hydrodynamic treatment should provide a better description of exact KMC behavior for
longer times where the concentration profiles vary smoothly over many lattice constants.
Indeed, this is the case as shown in Fig.5. For the selected parameters, the peak <Ap>-
concentration of around 0.08 in the MF and pair approximations for smaller times (larger

W) matches KMC results, but these approximations retain this value for longer times.

In contrast, the peak in hydrodynamic treatment increases to about 0.13-0.14 for longer
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times (smaller W) in good agreement with long-time KMC results. This peak is far

above the converged MF and pair approximation value of 0.08.

V. Peripheral or central catalytic sites

A. Peripheral catalytic sites

Here, we consider situations where contiguous strings of sites at each end of the
pore are catalytic, but sites in the central region are not. One can imagine this type of
distribution might result where catalytic sites are created by grafting after formation of a
meso- or nano-porous material and where diffusion into the pores is inhibited. (An
alternative co-condensation process for mesoporous silica materials tends to produce a
more uniform distribution of catalytic sites [35].) An example of the results of KMC
simulations for evolution to the steady-state is shown in Fig.6. The parameter choices is
Woags = 0.8, Wyes =0.2, Wi =0.017, and Wiz =10 for a pore of length L=100 with 20
catalytic sites at each end.

Characterization of behavior in this system is most appropriately divided into two

regimes (provided that the reaction rate is not too large). In the first transient regime of

“pore filling”, a significant amount of A may avoid reaction in the peripheral catalytic
regions and diffuse into the central non-catalytic region, i.e., A will successfully run the
gauntlet passing catalytic sites without conversion. After the pore has filled so that the
total concentration <X,> ~ Xeq is roughly constant, one expects a peak in the
concentration of A (i.e., a “blob” of A) in the center of the pore, and strongly decreasing

A concentrations approaching and entering the peripheral regions from the center of the
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pore. Indeed, in a hydrodynamic treatment, one achieves a stationary state with a frozen
blob of A in the central non-catalytic region of the pore, and the peripheral catalytic
regions occupied only by B and completely devoid of A. (Note that this hydrodynamic
steady-state is not unique, the specific form of the frozen A-distribution in the central
region will depend on the initial conditions.) However, this is not a true steady-state of
the stochastic model, although it might be regarded as a metastable state.

Fluctuations at the end of the pore ensure that the A-concentration profile always
has a local maximum at this location which does not diminish for long times (contrasting
the hydrodynamic description). In fact, this part of the concentration profile is very

similar to that for pore with all sites reactive (and with the same rate parameters).

However, more dramatically, in the second late-stage regime, fluctuation effects
mean that the blob of A formed during the transient regime in the central non-catalytic
region is not frozen. The entire blob can undergo anomalous diffusion, and is thus
guaranteed to reach the peripheral catalytic regions. As a result, eventually essentially all
of the A in this blob will be converted to B leading to the true steady-state with the
central non-catalytic region, and indeed most of the interior of the pore, devoid of A.
Indeed, the true steady-state for this case is very similar to that for the case where all
sites are catalytic (with the same rate parameters). The reason is that for the case with all
sites catalytic, it is only the end of the pore where one has conversion A—B in the steady
state.

Fig.7 compares the predictions of the hydrodynamic treatment and other

approximations with exact KMC simulations for a finite time selected to correspond to
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the end of the first transient regime in the KMC results. The parameter choices is Wgs =

0.8, Wyes =0.2, W\ =0.017, and Wi =10. Specifically, we choose the time t = 420
where the A-concentration at the center of the pore has roughly reached its maximum.
In Fig.7, the concentration profile of the central A-blob in the KMC simulations is
reasonably described by the hydrodynamic treatment. Small discrepancies presumably
result from the feature that we have chosen a fairly small system, so fluctuation effects
are still significant. In contrast, the MF and pair approximations fail to predict a
significant peak in the concentration of A in central region. This is a consequence of the
tendency of these approximations to allow artificially enhanced mixing of A and B. The
pair approximation prediction is slightly closer to KMC behavior, reflecting the
somewhat improved description of diffusion relative to MF.

In Fig.8, we show a series of snapshots from KMC simulations for fluctuation-

dominated evolution in the late-stage regime. These fluctuations lead to diminution and

removal of the significant A-concentration in the central non-reactive region of the pore.
The diffusion of the A-blob within the non-catalytic region is clear, as well as its
ultimate complete annihilation after several “collisions” with the peripheral catalytic

region.

B. Central catalytic sites
Here, we consider situations where a contiguous string of sites in the center of
the pore is catalytic, but sites in the peripheral regions are not. This geometry of catalytic

sites has been considered in previous studies [14]. Toward the end of the first transient
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stage of pore filling, a central catalytic region with reactant A largely converted to
product B has been created, with non-catalytic regions on both sides primarily occupied

by reactant A. Then, in the second late-stage regime, the central catalytic region remains

essentially exclusively populated by B, but the concentration of product B in the non-
catalytic end regions increases and that of reactant A decreases to achieve the final
steady-state form. The details of this fluctuation-dominated process are described below.
It should be noted that there is very low reactivity in the steady-state for this system
(compared with a pore with all sites catalytic and the same parameters) since there is
little population by A of the central catalytic region.

Fig.9 compares evolution in exact KMC simulations with the predictions of the
hydrodynamic treatment and also the MF and pair approximations for a finite time

selected to correspond roughly to the end of the first transient regime. In the

hydrodynamic treatment, since diffusion fluxes are always towards the center of the
pore, it is impossible to populate the non-catalytic end regions with B. Thus for long
times in this treatment one has <Ap> = X¢q and <B,>=0 in the non-catalytic end regions,
and <A,> =~ 0 and <B,> = X¢q in the central catalytic region. This is a steady-state in the
hydrodynamic treatment, which might be described as a metastable state for the
stochastic model. In fact, this simple hydrodynamic picture describes quite well the
KMC results, deviations being due to fluctuations. In contrast, the MF and pair
approximations predict a B-population in the non-catalytic end regions which is far too
high. This is again a consequence of the tendency of these approximations to allow

artificially enhanced mixing of A and B. The pair approximation prediction is slightly
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closer to KMC behavior, again reflecting the somewhat improved description of
diffusion relative to MF.

Fig. 10 shows KMC results for more complete evolution to the reactive steady-
state. This occurs quite quickly for Xeq=0.1 (left frame). But for the case with X¢q=0.9
(right frame), this evolution is much slower. In either case, one finds the development of
quasi-linear concentration profiles in non-catalytic end regions. Note that the MF
treatment predicts linear concentration profiles in the non-catalytic end regions. This
result follows from Eq. (10) noting that the steady-state Jx(MF) must be constant in
these regions, which yields the relation 6/0x K(x) = constant for K = A or B. Further
insight into this behavior comes from the analysis immediately following.

In Fig.11, we show a series of snapshots from KMC simulations for fluctuation-

dominated evolution in the late-stage regime for a case similar to Fig.9 where Xeq=0.9.
These fluctuations lead to the development of a significant B-population in the
peripheral non-catalytic regions of the pore (while the central catalytic region remains
essentially exclusively populated by B). The simplest case is where the reaction rate W
is fairly large. Then, in any single realization of the reaction system, there is relatively
little intermixing of the A and B species, i.e., the peripheral regions are essentially all A
and the central region is essentially all B. (There is strictly no intermixing in the limit
W, x—0.) Thus, evolution in this regime simply involves the interface between A- and
B-regions undergoing an (anomalous) random walk within the non-catalytic end regions,
where this random walk is effectively subject to reflecting boundary conditions. When

the interface and thus A species attempts to move into the central catalytic region, those
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A are quickly converted to B, so the interface effectively cannot pass into the catalytic
region and eventually meanders back into the non-catalytic region. When the interface
and thus the B species reach the end of the pore, they can desorb and are replaced by
adsorbing A species, so that the interface eventually wanders back toward the center of
the pore. Thus, the quasi-linear steady-state concentrations in non-catalytic region shown
in Fig.9, and also in previous studies [14], correspond to an ergodic-like time-average

over the interface position.

V1. Generalizations and conclusions
There are many instructive generalizations of the above model and analyses.

Here, we briefly comment on a few of these. It is natural to consider other distributions

of catalytic sites not necessarily involving contiguous strings of such site. Simple

examples would be periodic or spatially homogeneous random distributions. For a
conventional reaction-diffusion system (without single-file diffusion), a coarse-grained
continuum description of the form (6) would simply reduce the reaction rate by a factor
proportional to the local density of catalytic sites. However, in single-file systems with
steady-state reactivity localized at the end of the pore, this procedure might not be
effective unless the penetration depth is very large.

Other natural generalizations include the introduction of unequal hop rates for

reactant and product species in the absence of interactions between species. Then, the
behavior of the non-equilibrium steady-state will be more complex, but key features

induced by single-file diffusion persist [36]. One could also introduce interactions
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between these species where all rates must be chosen to satisfy detailed-balance [13].
For simplicity, one might choose the strength of the interactions and also the adsorption-
desorption rates to be species-independent (cf. [13]). Then, just focusing on whether
sites are occupied by particles X=A+B, the steady-state is a conventional grand
canonical equilibrium state with a uniform total particle density away from the pore
ends. In the hydrodynamic regime, the chemical diffusion fluxes must still vanish in this
steady-state as a consequence of the single-file nature of diffusion [36]. Thus, just as for
our simpler model, one can conclude that catalytic regions inside the pore will be
unreactive (as all reactant A will be converted to product), and that steady-state
reactivity will be controlled by fluctuations [36].

Yet another class of generalizations of the above process include sequential
conversion reactions A - B — C —... or parallel conversion reactions A - B, A — C,
etc., at catalytic sites. For simplicity, consider the special choice of rates, WK jes = Wies
and W"ir = Wairr, for all species types, K. Again, if one does not discriminate between
the identity of particles, but only considers whether sites are empty, E, or filled,
X=A+B+..., then evolution of X is described by a standard discrete diffusion equation.
Furthermore, significantly, the exact hydrodynamic treatment of diffusion for the two-
species case readily generalizes to treat this more complex case (cf. [37]). Thus,
effective analysis of transient behavior should be possible with appropriate h-RDE, and
again we expect steady-state reactivity to be controlled by fluctuation effects [36].

In summary, the transient and steady-state behavior of single-file conversion

reaction systems displays some general features. Transient evolution of concentration
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profiles is effectively described by hydrodynamic RDE which properly incorporate the
single-file nature of diffusion. However, steady-state reactivity is controlled by
fluctuation effects not incorporated in the hydrodynamic treatment. MF-type treatments
can capture some aspects of this steady-state behavior, but not scaling properties for

extreme choices of reaction and diffusion rates.
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Appendix A: Exact hydrodynamic diffusion fluxes

Consider a two-component lattice-gas where species A and B have equal hop
rates, Waisr, to NN empty sites, and there are no interactions beyond site exclusion. Set
Dx = a®Waitr. Then, for hyper-cubic lattice of any dimension, the diffusion flux for
species A in the hydrodynamic regime of slowly varying concentrations has the exact
form [4,18,26]

Ja = -Dx XA + B F(X)] VA - Dx XA [1- Fy(X)] VB

= -Dx [AX™] VX - Dx Fu(X) X [B VA - A VB], (18)
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with an analogous expression for Jg. Here, A, B and X=A+B represent concentrations
per unit length, and V denotes the spatial gradient. The quantity F; represents the tracer
diffusion coefficient for a tagged particle with hop rate of unity within a dense single-
component lattice-gas on the hyper-cubic lattice of concentration X. Generalizations
have been explored for the case of unequal hop rates of A and B [4,38].

For an infinite 1D lattice, Ja is a scalar, V = d/0x, and F = 0, recovering the
result (8). Fi vanishes since diffusion is anomalous in 1D, the root-mean-square
displacement of the tagged particle increasing like t* rather than t*2 [6-8]. It is
instructive to note that the MF form of the diffusion fluxes (9) is recovered by choosing
Fi = (1- X/Xn). This offers the possibility of developing a hybrid expression for the
diffusion fluxes capturing both aspects of the MF description near the pore ends and the

hydrodynamic description in the pore interior [36].

Appendix B: Discrete forms of diffusion fluxes
For comparison of KMC results sometimes for relatively short pores with
predictions based on a hydrodynamic treatment of diffusion, we naturally incorporate an

n>n+1

appropriate discrete version, Jx -, of the hydrodynamic diffusion fluxes (8) into the
discrete RDE’s (1). We have utilized discrete forms
I = Wi ™™ A<Xp> with A<X> = <Xpip>-<X> for K=A or B, (19)

with P™™? = 1 if <X,><X,+1> = 0. For <X,><X;+1> # 0, one standard choice would set

PKn'n+1 =% (KKp>/<Xp> + <Kp1>/<Xne1>). (20)
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n,n+1

However, other reasonable choices have the form P = <K, +1>/<Xpn+1> Where
<Kpne1> = ¥ (<Kp>+<Kpir>), or 2<K><Kpe>/(<Kp>+<Kni>)], or V<K>V<K 1>,
Analysis of evolution typically finds only small differences between results from these
different choices.

One case requiring special treatment is where just the central sites are catalytic.
Then, there is a sharp boundary between a central region with finite population of B and
peripheral regions devoid of B (in a continuum treatment). Choice (20) produces a
substantial B-flux from the site just outside to that just inside the catalytic region,
producing an unphysical negative B-concentration for the former. The same behavior
occurs to varying degrees in the other choices. However, in our analysis, we eliminate
this problem by setting to zero the B-flux between these two sites (and identifying the A-
flux with the total particle flux).

As an aside, for the continuum MF diffusion flux (9), a standard numerical PDE
treatment would implement various discretizations, e.g., analogous to (20). However,
our analysis starting with the discrete master equations and applying a factorization

approximation suggests the natural form

JIAPHMF) = Wit [(1-<Bp>)A<Ap> + <A>A<B>]. (21)

Appendix C: Mean-field behavior as Wi —>
The MF prediction for Wit —oo of spatially uniform concentration profiles
enables simple analysis of the MF steady-state. Summing all of the equations for <A,>

implies
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0 =d/dt Xn<Ar>)

= Wags(SE1>+<E [ >) —Wes(KAL>+<A>)

— Wix (Zn <An>) + (Zn \]An>n+1:0), (22)
where 3, Ja""1=0 by symmetry. Consequently, using spatial homogeneity yields
<Anr>|MF = 2Wags Eeg/ (2Waes + LWix) ~ 1/L where Eeq = Wies/(WadstWoes). (23)

and <Ap>|mr + <Bn> |wiF = Xeq=1-Eeq. Thus, the MF total reactivity, Ryt =
WL<An>|mE, converges like 1/L, as L—oo, rather than displaying the correct

exponential convergence.

Appendix D: Scaling forms for pore filling
For the total concentration X(x,t), substitution of the form X(x,t) ~ F(x/(Dxt)*?)
into the standard diffusion equation yields
Y2 yF'(y) = F(y), (24)
which is satisfied by the “classic” erfc solution. Next, consider the scaling forms A(x,t) =
FAXI(Dy) Y2, Wit) and B(x,t) ~ FB(x/(Dxt)"', Wit) for the concentrations of A and B.
Substitution into the hydrodynamic RDE yields
Yoy FA(y,u) + uF"(y,u) = - uFA(yu) + K(F", F%), (252)
sy FBi(y,u) + uFBy(y,u) = + uFB(y,u) + K(F2, F*), (25b)
where the subscripts 1(2) denote partial differentiation with respect to the first (second)
variable y (u). The “diffusion terms” K have the form
K(F*, F®) = [1-F?]F*y; + FAFPy (MF), (26a)

K(FA, FB) = FAFBUF — FA (F)2 (F1)? + FA (F)™ Fu (exact hydrodynamic). (26b)
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Tables

Table I. Tabulation of Ly-values from KMC simulations, and the MF and pair-
approximations, for the cases analyzed in Fig.3.

Wads = 08 and Wdes = 02 Wads :02 and Wdes = 08

Wiy 1 0.1 0.01 |0.001 1 0.1 0.01 |0.001
Lp1(KMC) 0.41 069 |1.00 |256 0.88 213 | 556 |16.7
Lp2(KMC) 1.10 147 264 |521 1.47 292 |6.77 |152
Ly3(KMC) 0.42 088 |210 |4.69 0.87 239 |6.25 |14.7
Lp1,3(MF) 0.520 144 448 |14.1 0.937 284 |8.95 |28.29
Lp2(MF) 1.17 200 |5.00 |14.7 1.53 337 |9.46 |27.78
Lp1(pair) 0.432 123 292 |9.26 0.882 259 |811 |27.89
Lp2(pair) 1.11 1.79 | 347 |9.77 1.48 312 |861 |27.84
Lps(pair) 0.433 123 | 294 |9.26 0.882 259 810 |27.33
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Figures
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Fig.1. Schematic of catalytic conversion reaction A—B in a single-file system. Catalytic
sites (c) are located near the pore ends in this illustration. The configuration shown
represents the transient regime. See Sec.IV.
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Fig.2. Evolution of concentration profiles to the steady-state in a pore with all sites
reactive: A (blue solid lines); B (red dashed lines); X=A+B (black dotted lines). This
format is used in subsequent figures. Parameters are Wygs = 0.2, Wyes = 0.8, Wi = 1, Wist
=1, and L = 30. Time increments are At = 100. (a) KMC results averaged over 2.5x10°
simulations; (b) hydrodynamic, (c) MF, and (d) pair approximation results. The B-
concentration increases with time.
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Fig.3. Steady-state behavior for a mesopore with all sites catalytic. (a) Concentration
profiles for Wegs=0.8, Wges=0.2, and Wyi=1, with L=100 for W,=1, 0.1, 0.01, and
0.001; (b) In <A,> versus n<<L/2 for the data in (a); data for smaller W has greater
penetration in (a) and smaller slopes in (b); L, versus (W)™ with Wyir=1 for: (c)
Wogs=0.8, Wyes=0.2; and for (d) Wags=0.2, Wyes=0.8. Squares, diamonds, and triangles
denote Lpi, Ly, and Lys, respectively.
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Fig.4. Dependence of Ly on Wy (but retaining fixed finite Wags, Waes, and W)
demonstrating the nature of the convergence to Lyi(Waifr—> o0) as Wits —o0.
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Fig.5. Diffusion into an initially empty semi-infinite pore with all sites catalytic.
Parameters: Wygs=0.2, Wes=0.8, Wyigs = 1, and Wi t = 4 (ensuring comparable amounts
of A and B in the pore). Rescaled concentration profiles for: (a) KMC simulation; (b)
hydrodynamic; (c) MF; and (d) pair approximations. KMC results are shown for W, =
0.1, 0.01,... and 0.000001 (6 cases), where convergence to the limiting profile shapes is
very slow. Convergence is fast for the MF and pair approximations (by W~0.01), and
moderate for the hydrodynamic treatment (by Wx~0.001 where data is shown for W, =
0.1, 0.01, and 0.001).



45

Concentrations
&
F SN

20 40 60 80 100
Site index (n) Site index (n)

Fig.6. KMC results for the complete evolution of species concentrations for a pore of
length L=100 with 20 sites at each end catalytic. Parameters are Wygs = 0.8, Wges =0.2,
W« =0.017, and Wit =10. The left frame shows the transient pore-filling regime for
time increments of 60 up to t=600 where the peak <Asy> is growing significantly to
reach a maximum. The following “metastable regime” has little change over ~10° time
units. The right frame shows slow late-stage evolution for times t = 1000, 5000, 10000,
14000, 20000, and 100000 where <Aso> decreases below its maximum. The steady-state
(with <A,>=0 in the central region) is reached after ~10° time units. Black dotted arrows
indicate evolution with increasing time.
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Fig. 7. Behavior roughly at the end of the transient regime t = 420 for a pore of length
L=100 with 20 peripheral sites catalytic at each end. The parameter choices is Wygs =
0.8, Wyes =0.2, Wi =0.017, and Wi =10. Reactant A in the pore center has “run the
gauntlet” through the peripheral catalytic regions. Results from: KMC (solid);
hydrodynamic (dashed); pair (dot-dashed); MF (dotted).
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Fig. 8. Later-stage evolution in a pore of length L=50 with 10 catalytic sites (grey) on
each end catalytic. Dark blue circles are reactant A. Lighter red circles are product B.
Sequence of images separated by 42 time units from a single KMC simulation run.
Parameters: Wags=0.1, W4es=0.9, W,=0.08, and Wir=100. The central A-blob diffuses
to the peripheral catalytic regions ultimately being converted to product. Higher Xe=0.9
makes the A-blob more visible.
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Fig.9. KMC of concentration profile evolution for the central 60 sites catalytic in a pore
of length L=100. Parameters are W, = 0.33, Wiz = 10, and for (a) Wags = 0.1, Wes =
0.9; (b) Wags = 0.9, Wygs = 0.1. Time increments are 50 and the final time is t=500.
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Fig. 10. KMC results for the complete evolution of species concentrations for the central
60 sites catalytic in a pore of length L=100 with Wy, = 0.33, Wiz = 10 for two cases. (a)
Woads = 0.1, Wyes = 0.9 (S0 Xeq=0.1) with time-evolution in increments of 100, so the
steady-state is achieved quickly by t ~700; (b) Wags = 0.9, Wags = 0.1 (S0 Xeq=0.9) and
profiles are shown at times t=50, 100, 200, 500, 1500, 15000. Thus in (b), the steady-
state is achieved slowly, where <A,> again finally achieves a quasi-linear steady-state
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Catalytic

Fig. 11. Later-stage evolution in a pore of length L=50 with the 30 central catalytic sites
(grey). Dark blue circles are reactant A. Lighter red circles are product B. Sequence of
images separated by 300 time units from a single KMC simulation run. Parameters: Wgs
= 0.9, Wyes = 0.1, W= 0.6, and Wisr = 3. The interface between A- and B-dominated
regions diffuses within the non-catalytic end regions. Higher Xe,=0.9 makes the interface
more visible.
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Abstract

Behavior of catalytic reactions in narrow pores is controlled by a delicate
interplay between fluctuations in adsorption-desorption at pore openings, restricted
diffusion, and reaction. This behavior is captured by a generalized hydrodynamic
formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate
an unconventional description of chemical diffusion in mixed-component quasi-single-
file systems based on a refined picture of tracer diffusion for finite-length pores. The
RDE elucidate the nonexponential decay of the steady-state reactant concentration into

the pore and the non-mean-field scaling of the reactant penetration depth.
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Text

Anomalous tracer diffusion of a “tagged” particle in a single-file system, where
particles within narrow pores cannot pass each other, was proven in the 1960’s for hard-
core interactions [1] and later for general interactions [2]. Often motivated by early
investigations of biological transport across membranes [3,4], numerous studies have
considered single-file tracer diffusion in finite open [5], periodic [6,7], or closed [8]
“pores”, and in other systems [9]. This type of inhibited transport has also been
recognized to impact reactivity for catalysis in zeolites and other functionalized
nanoporous materials [10-15]. For the latter reaction-diffusion phenomena which are of
interest here, it is actually chemical diffusion [16] which controls behavior [15], and for
which the connection to tracer diffusion is not well recognized. Another key aspect of
these open reaction-diffusion systems is that steady-state behavior is not described by a
classic Gibbs thermodynamic ensemble. In fact, a fundamental understanding of these
steady-states, which depend on both the reaction kinetics and transport, remains a

significant challenge [17-19].

Our specific focus is on first-order conversion reactions, A—B, occurring inside
a parallel array of linear nanopores of a catalytically functionalized material such as
mesoporous silica. Reactants, A, enter the pore openings, diffuse to catalytic sites,
convert to a product, B, with microscopic rate k, and both reactants and products can
diffuse out of the pore [11-15]. Furthermore, we assume that these pores are sufficiently
narrow that passing of reactant and product species is inhibited or even excluded. It was

recognized that reactivity can be strongly inhibited for single-file diffusion (SFD)
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relative to unhindered passing [12]. The reason is that except near their ends, the pores
tend to be exclusively populated by product which is not readily extruded. Thus, the pore
center does not participate in the conversion A—B.

Some studies have suggested that this type of behavior, even for inhibited
transport, can be captured by mean-field-type treatments of reaction-diffusion [13]
which predict an exponential decay of reactant concentration into the pore with
penetration depth scaling like L, ~ K° with ¢ = -% [14,15]. However, we will find
fundamental shortcomings in these mean-field treatments, noting that exact behavior for
SFD even exhibits different scaling of L, with £ # -%2. A deterministic hydrodynamic
treatment [20] accounting for SFD [15] can describe reaction-diffusion behavior in the
regime of slowly varying concentration profiles (for long pores) even for SFD, but this
treatment completely fails to describe steady-state reactivity [15]. The reason for this
failure is that steady-state behavior is controlled by the stochastic nature of adsorption
and desorption of species at the pore openings. Thus, to correctly capture behavior, in
this Letter, we pursue a generalized hydrodynamic formalism. This formalism requires
an appropriate description of chemical diffusion in mixed-component systems, including
the case of SFD, based on a relationship between chemical and tracer diffusion deriving
from interacting particle systems theory. However, it also requires a refined picture of
tracer diffusion for finite-length pores.

In our model for A—B conversion (Fig.1), we consider a catalytic material
composed of an array of similar parallel linear nanopores. Species within any pore are

localized at a linear array of cells (or sites) labeled n=1 - L traversing the pore. The cell
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width “a” is chosen as a~1 nm comparable to species size. To describe the surrounding
fluid, we can extend the 1D lattice inside the pores to a 3D lattice outside. But the fluid
is assumed well stirred, so that cells of the 3D lattice are randomly occupied with
specified probabilities, <A,> and <B,,>, corresponding to the suitably normalized
external reactant and product concentrations, respectively. The total concentration,
<Kout> = <Aou™> + <Bou> = g, say, is fixed, whereas <B,,> slowly increases from an
initial value of zero during extended reaction. This slow time-scale is controlled by the
fluid volume and far exceeds that for relaxation of the concentration profile within the
pore.

In the simplest prescription corresponding to SFD within the pores, A and B hop
to adjacent empty (E) cells at rate h per direction. We can also allow positional exchange
of adjacent A and B at rate hex = h Pey to relax the strict SFD constraint, noting that
exchange of adjacent particles of the same type has no effect. The passing propensity,
Pex, Will increase with pore diameter d from Pe = 0 below a SFD-threshold to Pex ~ 1 for
unhindered passing. Other mechanistic steps in the model are: (i) Impingement of
external species at terminal cells n=1 and n=L of the pore at rate ia = h <A,> (is=h
<Bou>) for the reactant A (product B), successful adsorption occurring if these end cells
are unoccupied or empty (E), (ii) Attempted desorption of both A and B from terminal
cells of the pore at rate h, success occurring with probability <Eq> = 1 - <Xq> for the
neighboring fluid site to be unoccupied (Eoyt), and (iii) Conversion A — B at rate k at

catalytic cells.
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For the above rate choice, which follows previous studies [11-15], the “species
blind” dynamics for particles X = A or B corresponds to a non-reactive diffusion
process. In the steady-state, cells within the pore are randomly occupied by particles X
with probability <X, = y [14]. We will assess typical concentration profiles within a
pore, corresponding to averaging over many pores. Both time evolution and steady-state
behavior (see Fig.2 for examples for the initial stages of reaction with <B,> ~ 0) can be
assessed precisely by Kinetic Monte Carlo (KMC) simulation.

An exact description of our discrete reaction-diffusion model is provided by
hierarchical master equations for the evolution of probabilities of various configurations
of subsets of cells within the pore [11,13-15]. Let <C,> denote the probability that
species C = A or B is at cell n, <C,E,+;> that C is at cell n and that cell n+1 is empty (E),
etc. Then, the total conversion rate is Ryt = K 2n=c<An> with the sum extending over all
catalytic cells. Below we consider only the case of all cells catalytic (c). Then, the
lowest-order equations in the hierarchy are [14,15]

didt <A> = -k <Ap> - VI,

d/dt <B,> = +k <Ap> - VJg™"™!, for 1<n<L. (1)
Separate equations for terminal cells reflect adsorption-desorption boundary conditions
(BC’s), e.g., d/dt <A;> = h(<Ag> <E1> - <Eque> <Ar>) - k<Ap> - ]2 In (1), we have
defined the discrete derivative, VK, = K, — Ky.1. The net flux, JA”™*, of A from site n to
n+1 is given by

JAn>n+1 =h [<AnEn+1> - <EnAn+l>] + hey [<Aan+1> - <BnAn+1>]. (2)
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The first term gives the contribution from hopping to adjacent empty cells, and the

n>n+1

second from exchange. The expression for the net flux, Jg -, of B is analogous. In the
special case of unhindered transport where Pex =1 S0 hex = h, (2) reduces exactly to
Ja™™ = -h V<A> [15,21].

Equations (1) couple to pair probabilities in (2). Pair probability evolution
couples to that of triples, etc., producing a hierarchy. Multisite probabilities are not
simply related to single-cell probabilities due to spatial correlations. The lowest-order
site-approximation, <C,En+1> ~ <C,><E,+1>, etc., produces a closed set of discrete
reaction-diffusion equations (RDE) for single-cell concentrations. A pair approximation
factorizes triples in terms of pair and single-cell quantities generating a closed set of
equations for these [13-15]. The triplet approximation factorizes quartets in terms of
triplets, etc. [22]. However, these and all higher-order mean-field (MF) like truncation
approximations suffer fundamental shortcomings. While accuracy increases with the
order of the approximation, convergence to exact behavior can be slow. See Fig.2(a).

An alternative coarse-grained description considers concentrations per unit
length, C(x=na, t) ~ a™* <C,>, for C = A or B, smoothly varying with position x, which
satisfy the continuum RDE

olot A(x, t) = -k A(X, t) - 0/OX Ja, olot B(x, t) = +k A(X, t) - 0/ox Jg. 3)
BC’s for (3) at the pore ends reflect the adsorption-desorption dynamics [15].
Description of the diffusion fluxes, Ja and Jg, is critical. Setting X(x,t)=A(x,t)+B(x,t), we
exploit a little-used result from interacting particle systems theory for mixtures of

particles with identical dynamics [23]
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Ja = -D(A/X)0XI0x - Dy[(B/X)0AIOX - (AIX)0B/oX]
— -Dy 6AIOX for uniform X=ay, (4)

The form of Jg is analogous. Here D = a*h is the chemical diffusion coefficient for
particles X, and Dy =D Fy is a tracer diffusion coefficient. The site-approximation
described above implies the mean-field form F, = 1 — y [14,15] after simple coarse-
graining of the discrete RDE. This choice overestimates fluxes for SFD. A classic
analysis of SFD for infinite systems [1] finds that Fi, = 0. The associated
“hydrodynamic” RDE can describe the evolution of slowly varying profiles during
filling of long pores [15]. However, this formulation which sets the diffusion fluxes to
zero and neglects fluctuations near pore openings completely fails to describe steady-
state profiles [15] as show in Fig.2 (a). A refined treatment setting Fi ~ 1/L, motivated
by studies of finite-sized SFD systems [3,4,6,7], does not resolve this basic shortcoming.

Thus, our strategy is to develop a “generalized hydrodynamic” form for Fi which
captures the mesoscale fluctuations near pore openings being enhanced in these regions.
A discrete form of (4) incorporating this F then provides fluxes in (1) which are
integrated to determine steady-state behavior. One strategy to determine this Fy(n) at cell
n [24] for a pore with uniform <X,>=y is based analysis of the “exit time”, t,(y), for a
tagged particle starting at this cell to reach a pore opening in the sense that its root-
mean-square (rms) displacement grows to match the distance from the nearest pore
opening. Specifically, we set Fy(n) = t,(0+)/tn(y) since diffusivity is inversely
proportional to the time for the rms displacement to reach some specified value. This

recovers the correct limiting value Fy(n)—1 as y—0+. Results for Fy(n) in Fig.3 (a) for
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SFD in finite pores reveal a central plateau of magnitude ~1/L (consistent with [3-7]),
but with significantly larger values near pore openings. Use of this variable F(n) in
appropriate RDE to determine steady-state profiles yields excellent agreement with
precise results from KMC simulation for SFD with L=100, in marked contrast to other
treatments. See Fig.4 for profiles with <B,,> ~ 0 (the initial stages of the reaction), and
results in Table | for the penetration depth L, naturally defined as L, = >1<n<1s2
<A>I<Ap>.

Next, we turn to the fundamental issue of the form of the concentration profiles
and the scaling of the penetration depth L, for SFD in a semi-infinite pore with 1<n<oo.
Clearly now Fy(n)—0, as n—o0, but how? Deep inside the pore where classic SFD

should apply, the rms displacement increases like t*/*

[1], so one expects that t,(%>0) ~
n*. In contrast, t,(0+) ~ n? for conventional diffusion. This suggests that F(n) ~ 1/n? as
n—oco. Simulation results indicate that this behavior is achieved quickly for high total
concentration %=0.8, but more slowly for low yx=0.2 which displays an intermediate
regime better described by Fy(n) ~1/n scaling. Data in both cases is fit well for all n by
the form Fy(n) = Fy(1)(1-a+B+y)/(1-a-nY>+B-n+y-n?). See Fig.3 (b).

Insight into the consequences of this decay of Fy(n) comes from analysis of the
steady-state solutions of the continuum RDE for a semi-infinite pore x>0 using (4) with
the form Fy(x) ~ 1/xP. One finds solutions which for small k and large L, have the
dominant form

A(x) ~ exp[-(x/Ly)%] where gq=(2+p)/2,

and L, ~(k/D)" with ¢ = -1/(2+p). (5)
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Thus, the true asymptotic scaling exponent is = -1/4 (p=2), but behavior mimicking

¢ ~ -1/3 (p=1) might be seen for lower ¥, both contrasting MF behavior { = -1/2 (p=0)
[14,15]. These predictions are confirmed by numerical analysis of discrete generalized
hydrodynamic RDE’s exploiting the capability of this deterministic treatment to obtain
much more precise C-values than possible by KMC. See Fig.5. Concentration profiles
also exhibit the predicted non-exponential decay, a feature which is already indicated in
the nonlinear form of the log-linear plots in Fig.4 (the downward bend corresponding to
an effective exponent g>1 due to p>0).

We now mention various extensions of the above analysis. All results were
presented for initial stages of reaction where <B,> ~0. However, analysis is readily
extended to treat arbitrary fraction of conversion f = <Bg,;>/<Xo,> and we find an exact
linear variation with f of the total conversion rate Ri(f) =Rio:(0)(1-f) by virtue of the
linearity of the RDE’s and BC’s. Dropping the SFD constraint, we have also analyzed
Fi(n) which still decreases with increasing n but now retains a substantial nonzero L-
independent value in the pore center corresponding to tracer diffusion with exchange in
an infinite pore. The corresponding generalized hydrodynamic treatment readily
recovers behavior shown in Fig.2 (b). The greatest challenge in developing a predictive
analytic treatment is for complete or near SFD, as other cases have more MF-like
behavior. One can also readily extend the analysis to treat reversible reaction A<>B
using the same F¢(n) as determined above.

Finally, we consider more general diffusional dynamics with unequal

coefficients, Da and Dg, for A and B, respectively. Analysis for SFD reveals behavior
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entirely analogous to the case of equal hop rates with penetration of reactant into the
pore, but the pore center populated only by product. Again, MF treatments overestimate
diffusion fluxes and fail to describe steady-state behavior. The key is to describe
chemical diffusion for the mixed system (cf. [19,25]). We apply Onsager theory to
determine the hydrodynamic form (corresponding to zero tracer diffusion) of Ja=
-A(A/ Da+B/ Dg)*0X/ox for SFD, and Jg is analogous. Since the total flux, Jx= Ja+ Jg,
must vanish in the steady-state, this implies that X is constant, so Ja vanishes which in
turn implies that A must be absent from the pore interior due to conversion to B. This
failure of the hydrodynamic description to describe reactant penetration must again be
overcome by accounting for fluctuation effects at the pore openings.

In summary, the location dependence of tracer diffusion near the openings of
narrow pores is shown to control non-MF scaling of reactant penetration depth and thus
reactivity for conversion reactions. Generalized hydrodynamic RDE’s provide a
powerful tool with which to analyze this behavior.

This work is supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through
the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of
Energy by lowa State University under Contract No. DE-AC02-07CH11358.

Note added in proof.—Recently, Dr. P.H. Nelson alerted us to [26], which also

performs the same type of alternative analysis of Dy as described in [24].
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Table I. Comparison of reactant penetration depths, L (in units of ‘a’), with h=1 and

L=100, for KMC, generalized hydrodynamic (GHydro) and mean-field site-

approximation (MF) analyses.

v=0.2 k=1 | k=0.1 | k=0.01 | k=0.001 | v=0.8 k=1 | k=0.1 | k=0.01 | k=0.001
KMC 1.47 | 2.92 6.77 15.2 KMC 1.10 | 1.47 2.64 5.21
GHydro | 1.49 | 3.10 |7.19 15.8 GHydro | 1.06 | 1.43 | 2.61 5.15
MF 1.53 | 3.37 9.46 27.8 MF 1.17 | 200 |5.00 14.7
Figures
| A =3B rxn B diffusii B, A diffusii "uiq
A A adsorption k <—=h usf::'l Peh h us;j:‘h Bdesor;lﬁon A
c[ cX /fk c[ FcM 7 ¢ C| ‘c\‘ c[] dvc] ¢ c
AlAm |AA B |[d B BB |A B|Al |ABTH | AA
A . B diffusion A diffusion
A de: t h h k JA =B rxn A A
lh 5°':”°-':: c ‘\..{i c c[ cY 7c c c {\"{\ c] ¢ |
AA NerA | B A B B B|B|A gl B | A [ne4-E|A
A A PethA-B exchange adsordti AlA
J—HE 1 2 3 ...L1 L —

linear nanopores

Fig.1 (Color online). Schematic of the key steps in our A—B catalytic conversion
reaction model. “c”” denotes catalytic cells where reaction occurs at rate k. Behavior is
shown in two adjacent pores which should be regarded as part of a larger array of pores.
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Fig.2 (Color online). Steady-state concentration profiles (A=solid, blue; B=red, dashed)
for pore length L=100, k= 0.001, h=1, and %=0.8: (a) predictions of site, pair, triplet
approximations and the standard hydrodynamic treatment (hydro) versus precise KMC
results for SFD (Pex=0); (b) KMC results for restricted passing with various Pe,>0.
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Fig.3 (Color online). KMC results for Dy(n) =F(n) for a=h=1: (a) n-dependence for
various pore lengths L for y=0.8 (inset shows L-dependence of central plateau value of
Dy for ¢=0.2); (b) fitting of the decay of Dy(n) with n for semi-infinite pore. Using the
form in text, we choose a=0, f=1.543, y=0.944 for y=0.8 (inset: «=0.753, 3=0.371,
v=0.0064 for %=0.2).
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Fig.4 (Color online). Comparison of results for steady-state concentration values for
L=100, k=0.001 (inset: k=0.01), and h=1 from KMC (symbols + line) with generalized
hydrodynamic RDE predictions (thicker blue curves): (a) x=0.2; (b) x=0.8 (log is base
10).
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Fig.5 (Color online). Predictions of generalized hydrodynamic RDE for the effective
scaling exponent ¢ = dlog(L)/dlog(k) for a semi-infinite pore: (a) x=0.2; (b) x=0.8.
Upper insets: L, versus k.
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CHAPTER 4. CONTROLLING REACTIVITY OF NANOPOROUS CATALYST
MATERIALS BY TUNING REACTION PRODUCT-PORE INTERIOR

INTERACTIONS: STATISTICAL MECHANICAL MODELING

A paper published in the Journal of Chemical Physics
Jing Wang*?, David M. Ackerman®? Victor S.-Y. Lin**?, Marek Pruski*?,
and James W. Evans®#*

'Ames Laboratory — USDOE, and Department of “Mathematics, *Chemistry,and
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AVictor S.-Y. Lin, Professor of Chemistry and Director of the IPRT Center for Catalysis
at lowa State University, and Director of the Division of Chemical and Biological
Sciences at Ames Laboratory — USDOE, passed away on May 4, 2010.
Abstract

Statistical mechanical modeling is performed of a catalytic conversion reaction
within a functionalized nanoporous material to assess the effect of varying the reaction
product — pore interior interaction from attractive to repulsive. A strong enhancement in
reactivity is observed not just due to the shift in reaction equilibrium towards
completion, but also due to enhanced transport within the pore resulting from reduced
loading. The latter effect is strongest for highly restricted transport (single-file
diffusion), and applies even for irreversible reactions. The analysis is performed utilizing
a generalized hydrodynamic formulation of the reaction-diffusion equations which can
reliably capture the complex interplay between reaction and restricted transport. © 2013

American Institute of Physics.
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I. Introduction

Advances in synthesis of nanomaterials have led to broad capabilities for
multifunctionalization of mesoporous or nanoporous catalysts. Such capabilities allow
for not only effective functionalization with catalytic groups, but also the possibility to
tune the interaction between reaction products and the interior pore environment [1-3].
This can in turn significantly impact and potentially enhance catalytic reactivity. For
example, creation of an unfavorable environment for product species within pores can
lead to enhanced product extrusion or inhibited product re-entry. This feature would shift
the equilibrium of reversible reactions towards completion. Other possible scenarios are
discussed below.

One class of examples of the above type is provided by dehydration reactions
such as esterification (acid + alchohol <> ester + water) in mesoporous silica
nanoparticles (MSN). Multifunctionalization of MSN to include hydrophobic groups, as
well as catalytic groups, has been observed to significantly enhance reactivity in several
such systems [4-6]. This effect has been explained as a result of functionalization
converting an intrinsically hydrophilic interior pore surface of MSN into a hydrophobic
environment thereby “expelling” the product water and shifting the equilibrium of the
reversible esterification reaction. The greatest enhancement to date has been achieved
through solvent-mediated control of the configuration of hydrophobic 3-

(pentafluorophenyl) propyl groups which are induced to lie prone on silica surface
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thereby minimizing the interaction of the product water with the hydrophilic MSN
surface groups [6,7].

In fact, there are several possible scenarios wherein functionalization to tune
product-pore interactions can influence both the thermodynamics and the kinetics of
transport and reaction, and thereby impact reactivity in meso- or nanoporous reaction
systems. First, we discuss thermodynamic factors. Accounting for detailed balance
requirements, it follows that creating an unfavorable environment for a reaction product
within the pore increases the ratio of the rate of product desorption from the pore
opening to that for product (re)adsorption. One should note that product readsorption can
become significant for substantial conversion of reactant to product in the surrounding
fluid. However, even constraining rates to satisfy detailed balance, there are still many
distinct possibilities for rate behavior: (i) the product desorption rate could be tied to the
rate of diffusion within the pore, and thus the rate of readsorption would be inhibited for
stronger interior pore-product repulsion; (ii) the product readsorption rate could be tied
to the rate of external diffusion, and thus the rate of desorption would be enhanced for
stronger interior pore-product repulsion; (iii) more general cases where both rates
change. Any of these cases will result in a shift of equilibrium for reversible reactions.

Second, we discuss other kinetic factors that can impact reactivity, but which are
unrelated to shift of equilibrium for reversible reactions. Although not dictated by
thermodynamic considerations, diffusive transport within the pore can also be modified
by multifunctionalization. An unfavorable environment could enhance diffusion

removing localized regions of strong binding and thereby “smoothing” interaction with
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the pore walls. Another possible scenario is that modifying the interior pore environment
can change loading of product in the pore even for irreversible reactions. The loading
can have a dramatic effect on effective transport for narrow pores, especially in the
single-file diffusion (SFD) regime where species cannot pass each other in the pore, and
this in turn greatly impacts reactivity. To test this latter effect, we will naturally consider
the special case of irreversible reactions.

Our focus in this contribution is on exploring the effects of multifunctionalization
for simple first-order catalytic conversion reactions (A to B) in mesoporous or
nanoporous materials such as MSN consisting of parallel arrays of effectively identical
linear nanopores. A key factor impacting reactivity is the extent to which reactants and
products A and B can pass each other. Previous analyses for SFD or restricted passing
[8-15] reveal that reaction is strongly localized near the pore openings [9]. While simple
mean-field type reaction-diffusion equations [8,11-13] are not adequate, recent studies
have shown that behavior in this regime is captured by a “generalized hydrodynamic”
(GH) formulation which accounts for both the effect of restricted passing on chemical
diffusion as well as fluctuation effects in adsorption-desorption at pore openings [14].
Here, we adopt the latter rather than computationally more expensive Kinetic Monte
Carlo (KMC) simulation which could also provide a precise characterization of model
behavior.

In Sec. I, we describe our model for conversion reaction in linear nanopores, the
associated exact master equations, and associated generalized hydrodynamic reaction-

diffusion equations (RDE). In Sec.111, we present results for both irreversible and
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reversible conversion reactions focusing on reactivity (i.e., turn-over frequency) per pore
as a function of the fraction of reactant converted to product, and contrasting behavior
for pores where product entry in enhanced versus inhibited. Our conclusions are

presented in Sec.IV.

1. Spatially-discrete model for catalytic conversion inside linear nanopores

A. Spatially discrete stochastic reaction-diffusion model prescription

Our model for catalytic conversion describes nanoporous materials which consist
of a parallel array of linear pores by partitioning the continuous-space pores into
adjacent cells labeled n = 1 to L [8-14]. The cell width “a” is selected to be comparable
to the species size ~1 nm. Species within pores are regarded as localized to specific cells,
and diffusive transport is treated as hopping or exchange between adjacent cells. To
describe the surrounding fluid, we extend the 1D lattice of cells inside the pores to a 3D
lattice outside. See Fig. 1. We specify “external” reactant and product concentrations in
the surrounding fluid at each stage of the reaction as <Aq,> and <Bg>, for a fixed total
concentration <Xo,> = <Ag> + <Boy>. These correspond to the probabilities that sites
or cells on the 3D lattice are occupied by various species, where fluid cell occupation is
assumed random due to efficient stirring. Then, <Aq,> will decrease from an initial
value of <X,,>, and <B,,> will increase from zero with increasing fraction, F =
<Bou>/<Xout> (= 1- <Anue>/<Xou>), Of the initial reactant converted to product [14,15].

Following most previous stochastic modeling of reaction-diffusion processes in

linear nanopores [8-15], the simplest prescription for diffusion dynamics within the
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pores is that A and B hop to adjacent empty (E) sites at rate h, corresponding to a
diffusion rate of Do = a’h for isolated particles. This simple prescription would
correspond to single-file diffusion with a strict no-passing constraint. For a more general
treatment of diffusional dynamics, we also allow positional exchange of adjacent A and
B at rate Py h, thereby relaxing the strict single-file constraint. (Note that exchange of
adjacent particles of the same type has no effect.) The passing propensity, Pex, Will
increase with the effective pore diameter, d, from Pe = 0 for d below a threshold for
SFD, to Pex = 1 for large d and unhindered passing.

In addition to hopping or exchange within the pore, the other mechanistic steps in
the model (see Fig. 1) are as follows: (i) Adsorption of external reactant A (product B) to
terminal pore sites n=1 and n=L at rate h (ah), provided that these end sites are
unoccupied or empty (E). We emphasize that the factor o will account for the effects of
multifunctionalization modifying the interior pore-reaction product interaction. (ii)
Desorption of both the reactant, A, and product, B, from terminal sites of the pore at rate
h provided that the fluid site just outside the pore is unoccupied (Eqyt). The probability
for this fluid site to be unoccupied is given by <Eq,> =1 - <Xq¢>. (iii) Conversion A —
B at catalytic (c) sites within the pore at rate k, as well as the reverse reaction B—>A at
rate k’. Our model can treat general distributions of catalytic sites, but here we shall
assume that all sites are catalytic. (iv) One could also consider exchange in and out of
the pore. One choice is to ignore such processes. Another plausibly more realistic choice
is to specify that A (B) just outside exchanges with B (A) inside at n = 1 or L at rate Pech

(aPexh). Both choices (and others) are consistent with detailed balance. We expect that
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the choice will not greatly effect of reactivity (except in the special regime of both high
Pex and high loading).

It should be emphasized that there is a natural “separation of time scales” for
“local” relaxation (in time) of concentration profiles within the pore, and for “global”
equilibration of the entire system including the fluid. Relaxation of concentration
profiles to a local steady state form determined by the current values of <A,> and
<Bou> should be effectively instantaneous on the time scale of global equilibration of
the entire system (which in experiments is on the order of hours). Thus, the main
challenge is to solve the non-trivial statistical mechanical local steady-state problem to
determine reactant and product concentration profiles, and thus the reactivity, as a
function of the fractional conversion, F=<B,>/<Xqu> , Of reactant to product. It should
also be noted that the global equilibrium values of <A,> and <B,,>, and thus of F =
Feq, are determined not just by the equilibrium constant K. = k/k’ for the conversion
reaction within the pores, but also by the parameter a.. This issue is addressed
immediately below.

For the above model, it is clear that the “color-blind” dynamics for particles X =
A+B (i.e., A or B) is described by a non-reactive diffusion process where particles hop
within the pore and desorb at rate h. At a specified fractional conversion, F, particles
adsorb at an effective rate hags = hags(F) = €ads(F) h with e,qs = €ags(F) = (1-F) + oF, where
the first (second) term is the weighted contribution from A (B) adsorption. In the local

steady state for fixed F, all sites within the pore are randomly occupied by particles, X,
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with equal probability <X;,> = <X;n(F)>, say. Then, balancing the adsorption flux, Jags,
and desorption flux, Jqes, for particles X where

Jads = Nads(F)<Xou>(1-<Xin>) and Jges = h(1-<Xou>)<Xin> yields (1)

<Xin> = €ags<Xout>/[1+(€ags~1) <Xout™>]

= [1+(a-1)F]<Xou>/[1 + (o-1)F<Xqu>]. (2)
We recall that <X,,> remains constant at its initial value. As expected, (2) demonstrates
that <Xj,> exceeds <Xq,> for a>1 (enhanced product reentry), and that <Xq,> exceeds
<Xin> for a<1 (inhibited reentry).

A simple analysis of individual species concentrations in the local steady state is
not possible since these concentrations exhibit non-trivial spatial profiles within the
pore. However, in the final global equilibrium state, concentrations of both species
within the pore, <Ain>eq and <Bin>¢q, are spatially uniform, and satisfy <Bin>eq/<Ain>eq =
K.. Then, separately balancing the adsorption and desorption fluxes for species A and
for species B yields

<Aout>eq(1-<Xin>eq) = <Ain>eq(1-<Xour>) and
a<Bout>eq(1-<Xin>eq) = <Bin>eq(1-<Xout>), (3)
so that
<BouPeq/<Aour>eq = & <Bin>eq/<Ain>eq = Koo, and

I:eq = Ko/ (K¢ + o). (4)

The latter result characterizes the shift in equilibrium for our model associated

with tuning of the reaction product-pore interior interaction via multifunctionalization.



73

We thus find that <X;,> changes from its initial value of <X, at the onset of the
reaction (F=0) to

NKin>eq = A(1+Ke)<Xoue>/[ou(1+K<Xoue>) +Ke(1-<Xoue>)], (5)
when F=F¢q, at completion of the reaction. This result (5) recovers the requirement that
<Xin>eq =0 for blocked product reentry a=0. It also shows that for enhanced reentry
with, e.g., a=5 and <X,,>=0.8 (the case considered below), one has <X >eq/<Xou> =

(1+K)/(1+0.84K,) >1.

B. Exact master equations and discrete reaction-diffusion equations

An exact description of our discrete reaction-diffusion model is provided by the
master equations for the evolution of probabilities of various configurations within the
pore. Often these are written in hierarchical form [8,11-15]. Here, we use <C,> to denote
the probability or ensemble averaged concentration for species C = A or B at site n (or
for this site to be empty when C = E), <C,E,+,> for the probability that C is at site n and
for site n+1 to be empty (E), etc. Then, the lowest-order equations in the hierarchy
describe the evolution of single-site occupancies.

For A to B conversion in the case where all sites are catalytic, one has that

d/dt <A,> = -k<A,> + k'<B,> - VI, and (6a)

d/dt <B,> = +k<A,> -k'<B,> - VJg""*! for 1<n<L, (6b)
where we have defined the discrete derivative, VG, = G, — Gp.1. The net diffusion flux,
Ja™™L of A from site n to n+1 due to both hopping and exchange is given by

JAV™ = h [<AREni1> - <EnAnis>] + Pey h [<ABni1> - <BpAnis>]. ©)
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n>n+1

The expression for the net flux, Jg~ -, of B is analogous. Separate equations for
terminal sites reflect adsorption-desorption boundary conditions (BC’s). In the presence
of in-out exchange with rates as specified in Sec. I1A, one has that

d/dt <A1> = h<Agu> <E1> - h<Eq > <A1> + Py h <Agi><B1>

- Pex 0th <Bou><Ar> - k<Ay> + k'<By> - a2, and (8a)
d/dt <B1> = ah<Bgy> <E1> - h<Eqy> <B1> + Peyx ath <Bgy><Ar>
- Pey h <Ay ><B1> + k<A;> - K'<B;> - Jg+™2, (8b)
with analogous equations for concentrations at site n=L. If some sites are not catalytic,
then the reaction terms are absent for such sites. Defining <AA;> = <Ap> - K.'<B,> as
the “excess” reactant concentration, the net overall rate of production of B per pore is
given by

R0 = Ynee (K<AR> - K'<Bp>) = K Ypee <AAL> 9)
summing over all catalytic sites, c.

Equations (6a) and (6b) couple to various pair probabilities in (7). Pair
probability evolution is coupled to triples, etc., producing a hierarchy. Pair and multisite
probabilities are not simply related to single-site probabilities due to spatial correlations.
A simple mean-field (MF) factorization approximation, <C,E;.+;> ~ <Cp><E,+;>, etc.,
produces a closed set of discrete reaction-diffusion equations (RDE) for single-site
concentrations. However, this approximation, and even higher-order pair, triplet, etc.,
approximations, fundamentally fail to capture model behavior, at least for low reactivity
k/h<<1 when Pex <<1 [13-15]. Thus, below we discuss an alternative “generalized

hydrodynamic” approach which does reliably describe model behavior. As an aside, in
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n>n+l _

the special case Pex =1 (unhindered passing of A and B), (7) reduces exactly to Ja
h [<An> - <An+1>] = -h V <A,>, and similarly for Jg""** [14-16]. This yields an exact set

of discrete RDE matching the MF approximation.

C. Generalized hydrodynamic reaction-diffusion equations

For smoothly varying concentrations within the pore, it is natural to consider a
coarse-grained description of the spatially-discrete reaction-diffusion model which
regards the species concentrations per unit length, C(x=na) ~ a™* <C,>, as functions of a
continuous spatial variable x (leaving the t-dependence implicit), and denote the total
concentration by X(x) = A(x) + B(x). The continuum RDE for our A to B conversion
reaction model with all sites catalytic then have the form

olot A(x) = -k A(x) + k' B(x) - d/ox Ja, and

olot B(x) = +k A(X) - k' B(X) - 0/0x Jg. (10)
If only portions of the pore are catalytic, then reaction terms appear just for those
locations. BC’s for (10) at the pore ends reflect the adsorption-desorption dynamics, i.e.,
one balances the diffusion fluxes at the end of the pore with the net adsorption-
desorption rate for each species. Description of the diffusion fluxes, Jaand Jg, is non-
trivial.

Analysis from the theory of interacting particle systems [17,18] for the
hydrodynamic regime of slowly varying concentrations suggests the general form
[13,14,17,18]

Ja = -Do[1- X (1-Fy)B] dA/OX - Do X1(1-Fy)A 6BIox. (11)
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In this expression, one has Dy = a’h and Fy is related to a tracer diffusion coefficient for
particles within the pore by Dy = DoFy. In applying the form (11), we utilize the feature
that the diffusive dynamics for both A and B within the pore is identical. An analogous
expression applies for Jg. Here, it suffices to consider the local steady-state regime with
uniform total concentration, X = <X;,> = <Xj,(F)>, corresponding to a counter-diffusion
mode [19] where 0A/ox = -0B/ox. Then, (11) and the analogous expression for Jg simply
reduce to [13,19]

Ja= -Dy 6AIOX and Jg = -Dy, 0B/oX. (12)

In the MF treatment, X*(1-Fy) in (11) is replaced by 1-Pex which corresponds to
the assignment Fy, = F(MF) = 1- (1-Pex)X. However, this MF choice overestimates
diffusion fluxes within the pore, and thus overestimates overall reactivity, especially for
the quasi-SFD regime, Pex<<1 and Fy(MF) ~ 1 - X [12,13]. A contrasting deterministic
hydrodynamic (DH) formulation of F, applicable for large systems (very long pores)
with slowly varying concentrations and negligible fluctuation effects, follows from a
precise analysis of tracer diffusion for effectively infinite systems. One finds that the
corresponding Fy = F(DH) = Fi(X, Pex) has the form shown in Fig.2. Simple limiting
behavior includes:

Fi(DH) —1, as Pex > 1; Fy(DH) — Pex, as X—1; and

Fi(DH) —0, as Pex —0 (for X>0). (13)

The latter behavior for Pey =0 is in marked contrast to the MF form, and reflects
the anomalous nature of SFD wherein the mean-square displacement of a tagged particle

increases sub-linearly [20]. To account for the finite length of pores, we have considered
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a refinement of the DH choice where F, ~ 1/L for SFD when Pex =0 [21]. This modified
choice was motivated by analyses of transport through channels across membranes of
finite width [22]. However, choosing either Fy = 0 or F, ~ 1/L for SFD underestimates
diffusion fluxes at least near pore openings, and thus underestimates underestimates the
overall reactivity [21].

To address the shortcomings of the MF and DH approaches described above, we
will utilize a generalized hydrodynamic (GH) treatment [23] which incorporates a
position-dependent Fy(x=na) = F(GH). This Fy(x=na) is enhanced near pore openings
above the deterministic hydrodynamic value of F(DH) [14]. This enhancement of
Fi«(DH) reflects the influence of stochastic adsorption-desorption processes which
facilitate transport in and out of the pore near these pore openings [14]. Results are
shown in Fig.3 where Fy(x) approaches Fy(DH) for x or n corresponding to the central
region of the pore. The algorithm which we use to determine this location-dependent
F«(GH) is described in Ref. [14] and also in the Appendix. Roughly speaking, we set
Fi(X=na) = to(x=na)/ tx(x=na) where tx is time for a tagged particle starting at a specific
location, x=na, in a pore with concentration X of other particles to reach the closest pore
opening. This choice is based on the classic result that diffusivity scales like the mean-
square displacement divided by time. See Ref. [19] for an alternative formulation. Thus,
it is immediately clear that Fi(X) —1, as X—0 (as required). Introducing these variable
Fi(x=na) = F(n) into a discrete form of (10) and (11) [24] recovers almost exactly the
results of precise KMC simulations of model behavior, but much more efficiently [14].

This formalism will be used to generate results in Secs. 111 A and 111 B.
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I11. Catalytic reaction Kkinetics: reactivity versus conversion

In this section, we present simulation results for the reactivity (i.e., the turn-over
frequency) per pore as a function of fractional conversion of reactant to product. We also
provide more detailed information on concentration profiles within the pores. In all cases
below, we consider a pore of length L=100 a in which all cells are catalytic. The hop rate
is set to unity h=1, which determines the time scale. The rate of the forward reaction
A—B chosen as k=0.001. The initial reactant concentration, and thus the total
concentration in the exterior fluid, is set to <Xy.,> = 0.8. This high <X, results in a
high loadings inside the pore, and thus strong SFD effects in the absence of exchange
diffusion when P¢, = 0. We will consider and compare behavior for three cases: (i)
significantly enhanced product reentry with a=5 (mimicking hydrophilic pores for
dehydration reactions); (ii) neutral product reentry with a=1; (iii) blocked product

reentry with a=0 (mimicking strongly hydrophobic pores for dehydration reactions).

A. Irreversible reaction

For irreversible reaction, A—>B, where k'=0, Fig.4(a) shows the local steady state
concentration profiles for <A,> and <B,> versus n at the onset of the reaction (F=0) for
various passing probabilities ranging from SFD (P = 0) to completely unhindered
passing (Pex = 1). Behavior for F = 0 is independent of o due to the lack of product in the
exterior fluid. Note the strongly enhanced penetration of reactant into the pore with

increasing passing propensity, Pex. This results in a strong increase in reactivity, R® e, as
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discussed further below. Fig.4(b)-4(d) show the concentration profiles for A—B when F
=0.625 for a =5, 1, and 0, respectively. Here the a-dependence on behavior is seen
clearly not just in the increased values of <X;,> for larger o, but also in the increased
dominance of product over reactant within the pore.

Our main focus here is on a comprehensive characterization of the variation of
reactivity during the “extended reaction”. Of particular significance is our demonstration
of a dramatic difference between behavior for enhanced versus blocked product reentry
to the pore. In Fig.5, we show the reactivity, R®, as a function of the fraction, F, of
reactant outside the pore converted to product for the irreversible reaction A—B. The
key observation is the contrasting strong decrease of R®,, with increasing F for
enhanced product reentry (a.=5) versus the slow decrease of R® (or even an initial
slight increase with P¢,=0) for blocked product reentry (a.=0). Thus, blocking reentry
greatly enhances the effective reactivity of the system. The neutral case where reentry is
neither enhanced or inhibited (a=1) exhibits intermediate behavior with a linear decrease
of R®n(F) = (1-F) R®,n(0) versus F, as explained below.

The enhanced reactivity upon converting from enhanced reentry (o>1) to
blocked reentry (a=0) reflects the reduction in pore loading <X;,>. For example, when
<Xout> = 0.8 and F=1/2, one has <X;,> = 0.92 for a=0 versus <X;,> = 0.67 for o.=5.
Lower <Xi,> (or higher <E;,>) impacts the rate of adsorption of reactant A via hopping
into the pores,
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Thus, Ra?®(hop) increases with decreasing o, for F>0, which naturally boosts reactivity.
Note, however, that the rate of exchange adsorption of reactant for Pe>0 may decrease
for lower <X;,>. More significantly, lower <X;j,> greatly increases the tracer diffusion
coefficient Fy(GH) which strongly increases penetration of reactant into the pore, and
thus also boosts reactivity. This strong increase in reactivity in changing from enhanced
to blocked product readsorption is purely kinetic in origin rather than thermodynamic
(noting that the reaction is irreversible).

Finally, we provide some further comments on reaction Kinetics. First, for the
neutral case a=1, we describe the origin of the linear decrease of R®.(F) o (1-F) with F.
This behavior is a consequence of two features. One is the homogeneous F-independent
linear form of the steady-state master equations, 0 = -k<A,> - VIa""*! noting that
Fi(GH) = Fy(n) is independent of F when a=1. The other relates to the feature that the
BC terms for <A,> when n=1 or n=L adopt an inhomogeneous linear form with driving
term proportional to 1-F [25]. This implies that all <A,> o (1-F) and thus one has
RExn(F) = (1-F) R®,(0). A detailed derivation of the analogous result for the more
general reversible case is provided in Sec. I11 B.

Second, we note that if o1, Rx®

(hop) in (14) exhibits a non-linear decrease
with F, and also the position-dependent tracer diffusion coefficient adopts a non-trivial
non-linear dependence of F. As a result, it is not possible to provide a simple analytic
expression for the nonlinear dependence of R ,(F) on F when a=1.

Third, we emphasize that our results for the F-dependence of R®,,,(F) encode

complete information about the reaction kinetics through the equation
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d/dt <Agu> = & REn(F), Where F = 1- <Agu>/<Xou>. (15)

Here, the constant € equals the number of pores in the system divided by the total
number of 3D lattice sites associated with the fluid. Thus, for no product reentry o=0
where R, (F) = R®(0) is roughly independent of F (up to F ~ %4), one has a sustained
fast linear decrease in time t of <Aou> = <Xou>[1-€ R%xn(0)<Xou>" t] . For a=1 where
RE,n(F) o (1-F), one has exponential decay <Acu> & <Xour> eXp[-€ REyn(0)<Xou> t].
For a>1, one has slower decay. All cases exhibit the same a-independent initial decay

rate.

B. Reversible reaction

Next, consider the reversible reaction, A«<>B, with k=0.001 as above, but now
k’=0.0005 is non-zero corresponding to a finite equilibrium constant K. = 2. Fig.6(a)
shows the local steady state concentration profiles for <A,> and <B,> versus n at the
onset of the reaction (F=0) for various passing probabilities P.x. Behavior for F = 0 is
independent of o as for reversible reaction, and penetration of “excess” reactant, <AA,>
= <A,> - K. '<B,,>, into the pore is strongly enhanced with increasing passing
propensity, Pex. Fig.6(b)-6(d) show the concentration profiles for A<>B when F/F¢ =
0.625 for a =5, 1, and 0, respectively. Here, the reduction in excess reactant with
increasing o is evident.

In Fig.7, we show the reactivity, R® .., versus F for the reversible reaction. The

contrast between the strong decrease of R, with increasing F for enhanced product
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reentry (a=5) versus the slow decrease or even slight increase of R®; for blocked
product reentry (a=0) is even greater than for irreversible reaction. This is due to
opposite shifts in the global equilibrium for enhanced versus blocked reentry. The
neutral case (a=1) exhibits intermediate behavior with a linear decrease of R®,(F) =
(1-F/Feq) R®.n(0) versus F, as explained below.

The enhanced reactivity upon converting from enhanced reentry (o>1) to
blocked reentry (a=0) partly reflects kinetic effects due to the reduction in pore loading
<Xin>. Ra*®(hop) is still given by (14) and increases with decreasing o, thus boosting
reactivity. More significant is that lower <X;,> greatly increases the tracer diffusion
coefficient F(GH) which boosts reactant penetration of excess reactant and thus
reactivity. However, a synergistic factor is the strong shift in equilibrium with varying a,
noting that blocked reentry allows completion of the reversible reaction to F=1!

Finally, we provide some further comments on reaction Kinetics. First, for the
neutral case a=1, we describe the origin of the linear decrease R®.e(F) o (1-F/Feq) Where
Feq = Ko/(Kc +1). To this end, it is instructive to consider steady-state equations for
<AA> = <A,> - K. '<B,>. Subtracting K™ times (6b) from (6a) yields the
homogeneous F-independent equations

0 = -k(1+K: 1) <AA> - V™ (16)
where J,a"" = -h By V(<AAS).

For the BC at n=1, subtracting K™ times (8b) from (8a) yields

0= h<Eout> <AAout> - [h<E0ut>+ k(1+KC_1)] <AA1>
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+ (1+K ) RA S ®5(ex) - Jaa™2 (17)
where <AAu> = <Xou>(1- FIFe) and RA***(ex) denotes the net rate of exchange of
reactant A into the pore at n=1. Using that <A;> + <B;> = <X,> for a=1, one can also
write

(1+K ™) RA* 5 (ex) = Pey h<Xou>(1- FIFeq) - Pex h<Xou><AAL>. (18)

Thus, the BC adopts an inhomogeneous linear form with driving term
proportional to  1-F/Feq. This implies that all <AA,> o (1-F/F¢g), and thus one has
R®n(F) = (1-F/Feq) R%xn(0).

Second, the above analysis is useful for understanding the change in initial
reactivity (for F=0 where behavior is independent of o)) going from irreversible reaction
(where 1+K ™ =1) to reversible reaction (where 1+K.* >1). Equation (17) indicates that
one should have quite similar values of <AA;> since k<<h (with <AA;> marginally
lower in the reversible case), and (16) indicates that <AA,> should decay somewhat
faster into the pore for the reversible case. Mainly the latter effect produces a slightly
lower initial reactivity for the reversible case. In Fig.8, we compare <AA.> profiles for
F=0 and a=1 to confirm this picture.

Third, nonlinear variation of R®x,(F) on F when a=1 has similar origins to those
for the irreversible case. Fourth, our results for the F-dependence of R®,(F) encode

complete information about the reaction kinetics as discussed for the irreversible case.

IV. Conclusions
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The catalytic activity of nanoporous materials containing multifunctionalized
linear nanopores is shown to be strongly dependent on the tunable interaction between
reaction products and the interior pore environment. Making the pore interior
unfavorable to products not only modifies the reaction equilibrium towards completion,
but also reduces pore loading which can significantly enhance diffusivity and thus
reactivity especially in the SFD regime. As noted in previous studies, catalytic activity is
also strongly dependent on the propensity for passing of reactants and products within
the pores [9,14,15,21]. Our generalized hydrodynamic formulation of reaction-diffusion
phenomena provides an efficient tool to explore behavior over a broad phase-space of
model parameters. This approach can reliably capture the complex interplay between
reaction and restricted transport which results in subtle spatial correlations and
fluctuations of reactants and products within the pore. These effects are not described by
traditional mean-field approaches.

There are numerous possible modifications and extensions of our modeling
which could be performed either utilizing refined generalized hydrodynamic RDE or
with KMC simulation.

In this contribution, we have considered the benchmark case of equal mobility of
reactants and products within the pore, following previous studies of conversion
reactions in nanoporous systems [8-14]. However, the basic features of the reaction-
diffusion process and the variation for enhanced versus blocked product reentry to the
pore will be preserved for unequal mobilities. Some comments pertaining to the required

refinement of refined GH formulation are found in Ref. [14]. Another natural extension
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of our modeling is to consider different reaction mechanisms, e.g., A+B<«>C+D better
matching esterification reactions, and to consider the scenario where pore reentry of just
one of the two products is enhanced versus blocked. The approximate MF and precise
GH formalism described above are readily extended to treat this more complex situation,
and preliminary studies reveal analogous behavior to that discussed above for the

simpler A«<>B conversion reaction mechanism.
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Appendix: Random walk analysis of GH tracer diffusivity Fy(n)

The position-dependent tracer diffusion coefficient, Fy(x=na) = Fy(n), for a
tagged particle starting at cell n in a pore with a concentration X of other particles is
central to our generalized hydrodynamic formulation. This quantity is determined by
simulations involving a finite concentration of a single type of particle in the pore with
dynamics of all particles identical to the tagged particle. This dynamics is naturally
selected to match the (equivalent) dynamics A or B particles within the pore: hopping to
neighboring empty sites at rate h; exchange with adjacent particles within the pore at rate
Pex h; desorption from end sites n=1 and n=L by hopping to empty sites just outside the

pore. If the reaction model excludes (includes) exchange in and out of the pore, then this
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process is excluded (included) in the simulations to determine Fy. If included with rates
described in Sec. Il A, then the corresponding single-particle dynamics includes
exchange in and out of the pore at rate e,gsPexh. This choice recovers the appropriate
values for a=1 (where ey4s =1) and for F=1 with only B in the fluid (where eags =at).

Our explicit algorithm to determine Fy(n) is based on a suitably defined “exit
time” tx(x=na) for the tagged particle to exit the pore (where exiting the pore
corresponds to reaching a site just outside the pore opening). Given anomalous features
of random walks in one-dimension, such as long time-tails in return-time distributions
[26], a judicious choice of definition for ty is appropriate. Rather than simply average
exit times over many simulation trials, we define tx(x=na) as the time when the root-
mean-square displacement of the tagged particle reaches the distance to the closest pore
opening (i.e., a distance n for n<L/2). Then, we assign Fy(n) = to(n)/tx(n), motivated by
the classic result that diffusivity scales like the mean-square displacement divided by
time. Here, to(n) corresponds to the exit time for an isolated particle in the pore, which
can be determined analytically. Thus, one has that tx(n) ~ to(n) and Fy(n)—1 for all n, as
X—0.

For a semi-infinite pore L—oo, it is clear that Fi(n) — Fy(DH) = Fi(X, Pex), as
n—oo, recalling that Fi(DH) is the standard tracer diffusion coefficient for an infinite
system. Thus, one has that Fy(n) — 0, as n—oo for SFD (Pex=0) when X > 0. The
anomalous diffusion observed for SFD in infinite systems [20] suggests that tx(n) ~ n*
[14] versus ty(n) ~ n? for classic diffusion. Together, these imply that Fy(n) ~ 1/n as

n—oo, for SFD. Numerical studies show that behavior for SFD is fit well by a more
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general form Fy(n) oc 1/(n + a n + bn*? +c) over a broad range of n [14]. For finite pores

L<oo, usually Fy(n) — Fy(DH) quickly upon entering the pore interior if Pex >0. See Fig.
3(b). For SFD (Pe&x=0), numerical studies reveal that Fy(na ~ L/2) ~ 1/L at the pore
center.

To generate optimal numerical data for Fy(n), we sometimes smooth simulation
results using a fit 8F(n) = Fy(n) — Fu(DH) oc 1/(n? + an +c), for larger n. Simulations are
typically used to generate Fy(n) data for a selected set of values of X = <X;,>. Data for

other intermediate X-values can be readily and reliably obtained by interpolation.
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Fig.1. Schematic of the A to B conversion reaction model illustrating processes within
pores (shaded light blue), as well as coupling to the surrounding fluid. In-out exchange
processes are not shown (but are active in our modeling). ‘¢’ denotes catalytic sites.
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Fig.3. Variation of the generalized hydrodynamic tracer diffusion coefficient, Fy(n) =
D1 (n)/Dy, with distance x=na into the left end of the pore for a pore on length L=100 a.
The plateau value near the pore center corresponds to Fi(DH). Results are shown for
fixed <Xqu,> = 0.8 and varying <X;,> for: (a) single-file diffusion, Pex =0; and (b)
exchange with Pg,=0.25.
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0.8. (a) enhanced product reentry a=5; (b) neutral reentry a=1; (c) blocked reentry o=0.
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CHAPTER 5. HIGHER-ORDER TRUNCATION APPROXIMATIONS TO THE
MASTER EQUATIONS FOR SINGLE-FILE REACTION-DIFFUSION

PROCESSES: APPLICATION TO TRACER DIFFUSION ANALYSIS

I. Introduction

Traditional mean-field (MF) reaction-diffusion equations (RDE) have been used
to model diffusion-mediated reaction processes [1,2]. These RDE include a conventional
treatment of chemical kinetics which ignores spatial correlations between reactants. For
transport and reaction in single-file systems, the non-trivial nature of diffusion is well-
recognized. Such systems are realized by mesoporous or nanoporous materials
incorporating arrays of linear pores which are sufficiently narrow that molecules (or
particles) cannot pass each other inside the pores. This no-passing feature results in
anomalous tracer diffusion [3-5]. There have been several studies of a basic conversion
reaction model and its variants [6-12]. In this basic model, the reactant, A, adsorbs at the
ends of pore, converts to product, B, at catalytic sites within the pore, and both reactants
and products can exit the pore. We are interested in asymptotic decay of reactant
concentration as a function of distance into the pore in a semi-infinite SFD system, as
well as the related behavior of the tracer diffusion coefficient. These issues are addressed
utilizing the traditional mean-field type approximation as well as higher-level
approximations.

In Sec. I, we specify in detail the single-file conversion reaction model, the

associated hierarchical rate equations and mean-field-type RDE (mf-RDE). Then, in Sec.
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I11, we analyze the asymptotic decay of the reactant concentration <A,> at site n for
small reaction rate. The associated tracer of diffusion coefficient is also extracted. The

conclusions will be presented in Sec.IV.

I. Reaction-diffusion model

In our model for A—B conversion (Fig.1), reactants A enter the pore from the
surrounding fluid at rate W,gs and are converted to products, B, at catalytic sites (c).
Reactants and products within the pore are localized to sites of a 1D linear lattice
traversing that pore, and both A and B exit the pore at rate Wges. The simplest
prescription for diffusion within the pores is that A and B hop to adjacent empty (E) sites
at rate h. This would correspond to single-file diffusion with a strict no-passing
constraint. We also allow positional exchange of adjacent A and B at rate Pe h to relax
the strict single-file constraint, noting that exchange of adjacent particles of the same
type has no effect. Conversion reaction at catalytic sites (c) occurs at rate k.

We consider the development of the master equations for the reaction-diffusion
model for the evolution of probabilities of various configurations within the pore [13].
Sites within the pore(s) are labeled by n, and <A,> (<B,>) denotes the probability that A
(B) is at site n, etc. Then, for A—B conversion in the case where all sites are catalytic,
one has that
d/dt <Ay> = -k<Ap> - VIAT™ d/dt <Bp> = +k<Ap> - Vg™ for 1<n<L. (1)
with separate equations for terminal sites reflecting adsorption-desorption boundary

conditions. In (1), the net flux, JA""**, of A from site n to n+1 is given by (E=empty)
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JAn>n+1 = h [<AREra> - <EpAna>] + Pex N[<ARBn+1> - <BpAn+>]. 2
where the first half denotes the diffusion and the rest associates the position exchange.

n>n+1

Analogous form of flux Jg~ “can be obtained easily. The key is to find accurate,
useable expressions for the fluxes.

These equations (1) are coupled to probabilities for various configurations of
pairs of sites. Equations for pair probabilities couple to those for various triples, etc.,
thus generating a hierarchy. Pair, triplet, etc., probabilities are not trivially related to
single-site probabilities due to the presence of spatial correlations. In these models,
correlations derive from the interplay of adsorption-desorption and diffusion with
reaction. Implementing a simple mean-field (MF) factorization approximation, <K,Ep+1>
~ <K ><E+1>, etc., produces a closed set of discrete mf-RDE’s for single site
concentrations, <A,> and <B,> noting that <A,> + <B,> + <E> =1.

A more accurate pair approximation retains pair quantities like <K,E,+;>, but
factorizes triplet quantities, e.g., <KnMp+1Np+2> ~ <K Mp+1><Mp:1Nps2>/<Mpi1>, with
K, M, N =A, B, or E. This generates a closed set of equations for single site quantities,
<A,> and <B,>, together with the pair quantities, <ApAn+1>, <AnBn+1>, <B An+1>, and
<B,Bn+1>. See, e.0., [6,7,12]. Higher-order approximations are also possible retaining
probabilities of configurations of strings of n>2 sites, although the gain in accuracy with
increasing order, n, may be slow [13].

It is natural to consider a coarse-grained description of the spatially-discrete

reaction-diffusion model which regards the species concentrations per unit length,

C(x=na) ~a™ <C,>, as functions of a continuous spatial variable x (leaving the t-
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dependence implicit), and denote the total concentration by X(x) = A(x) + B(x). Here “a”
denotes the lattice constant (i.e., the distance between sites of cells in the pore.) The
continuum RDE for our A to B conversion reaction model with all sites catalytic then
have the form

olot A(X) = — k A(X) — 0/ox Ja, and oot B(x) = +k A(X) — 0/oX Jg. 3)
Boundary conditions for (3) at the pore ends reflect the adsorption-desorption dynamics.
Description of the diffusion fluxes, Jaand Jg, is non-trivial [13-15]. However, for the
special situation applying in the steady-state where X = constant (i.e., independent of x),
hydrodynamic theories for diffusion in mixed systems suggest the simple form
Ja =— Dy(X) 0lox A and Jg = — Dy(X) d/ox B. Then, if Dy(X) is actually independent of
X, simple analysis of (3) in the steady-state reveals that

A(X) ~ exp[x/L,] where L, = (Dy/k)". (4)
Where L, is the penetration depth of the reactant A and Dy, = a° h Fy, is the tracer

diffusion coefficient.

I11. Analysis of asymptotic decay of reactant

As noted in previous studies [13], classic hydrodynamic analysis predicts that in
the steady-state, the central region will contain just B and no A, so that
<Bn> = Wags/ (WadstWoaes) = Xeq and <A,> =~ 0. Only the end sites have significant A
population in our discrete formulation. Thus, the non-zero population of A near the pore
ends observed in simulations can be associated with fluctuation effects not included in

the hydrodynamic formulation. Since the reactivity of the system is determined by the



97

population of A within the pore, these fluctuations are entirely responsible for the
steady-state reactivity.

This situation motivates more detailed analysis of the dependence of this steady-
state <A,> concentration profile on model parameters. Steady-state profiles appear to
have an exponential form,

<Ap>~C- 1" = c-exp(-An) = c-exp(-n/Lpy), at least for larger n <L/2. 5)
In (5), A = - Inr is the decay rate, and L,;=1/A is a measure of the penetration depth of A
into the pore. Comparison with (5) above indicates that Ly, corresponds to L, if we make
the identification of n with x. Thus, we naturally write

Dy = k (L) = @ h Fy, where a = 1 and Fy = (k/h)(Lp1)* = k/(hA?). (6)
Analysis below will show that Fy is independent of h and k, depending only on Xeq.

Here, we focus on considering the predictions of MF-type analytic treatments

regarding the above behavior. The simplest MF approximation exhibits precise

exponential decay for long pores. This behavior, noted previously [11], is a result of the
feature that <E,>=1-<X,> is constant, which in turn allows reduction of the steady-state
form of the first equation in (1) to a linear coupled set of equations. Setting ¢ = k/h and
Xeq = Wags/(WadstWaes), then seeking a solution to these linear equations of the form
<Aq> o 1" yields for r the quadratic equation (cf. [11])

(1-Xeg)(r +1r*-2) = e. (7
Consequently, one has that 8 = 1-r ~ (1-Xeq) ™ "2, for small €, so that (cf. [11])

Lp1(MF) ~ 8™ ~ (1-Xeq) 2 (k) 2(h)"?, for k — 0 or h —co. (8)
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which implies a relation between the tracer diffusion coefficient and the total
concentration in the steady-state,

Fir (Xeq) = (1-Xeq) = f(Xeq) (1-Xeg) 9
where f(X) = 1.

It is instructive to assess the predictions of the higher-order pair approximation

for the behavior of the penetration length, L,. The complex non-linear form of pair
equations [11] excludes exact exponential decay. However, there should be asymptotic
exponential decay <A,> ~ exp(-n/Lyp;) for large n <L/2. In the steady-state, one has the
relations <Ap> + <By> = Xeq and <B,Bps+1> + <BpAnir> + <AnBnir> + <AnAni> = (Xeg)’.
Since one expects that <ApAn+1> decreases more quickly than <A,>, <A;B+1>, or
<Bn.1An> for increasing n, it follows that one can just analyze equations for the latter
quantities. Anticipating solutions of the form <A,> = ¢-", <A;Bn+1> ~ c-oy-1", and
<Bn.1An> = c-ap-r" and substituting into the rate equations for the pair approximation
yields three coupled equations
(1-ap)(r-1) + (L-0q)(r'-1) = ¢,
(1-01) (o1 Ke) (FH+1) - (1-Xeg) - (1-012) = &, and (10)
(L-02)(02 Xeg)(r+1) - (1-Xeq) - (1-01) = &.
Seeking solutions for small € and § = 1-r with a; = Xeq + BS and ap = Xeg + C3 yields
Lp1(pair) ~ 8™ ~ (2-Xeq)"*(2+Xeq) *Lo(MF) , for large Lp;. (11)
and
Fir (Xeq) = (1-Xeq) (2-Xeq) / (2+Xeq) = f(Xeq) (1-Xeq) (12)

where f(X) = (2-X) / (2+X).
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Thus, Lyi(pair) is smaller than L,;(MF) and closer to the exact Ly, but still has the
incorrect asymptotic functional form as k — 0 or h —co. The result C = -B = X¢q
(1-Xeq)(2+xeq)'1 obtained in previous study [13] is not necessarily true here.

For even higher-order, say, triplet approximation, in the steady-state, one has the

relations <Ap> + <By> = Xeq, <BnBps1> + <BpAns1> + <ABnir> + <AnAns> = (Xeq)® and
<BiBn+1Ani2> + <BrAni1Ani2> + <AnBni1Ani2> + <AAR1AN> + <BpBpi1Brio> +
<BpAn+1Bn+2> + <A AR 1Bhi2> + <AnBpiBrio> = (Xeq)3. Since one expects that
<AnAn+1>, <AA1AN>, <ARAN1B2>, <ANBh+1An+2> and <BhAn+1An+2> decreases
more quickly than <A.>, <ABn+1>, <Bp-1An>, <AnBp+1Bn+2>, <Bp.1AnBn+2>, Or
<Bn.2Bn-1An> for increasing n, it follows that one can just analyze equations for the latter
quantities. We also add <A,En+1Bn+2> and <B,2En.1As> to the above six quantities, since
there is no way to rewrite these two quantities in terms of those six. Anticipating
solutions of the form <A,> = ¢-1", <ABn1> ~ croy-1", <BpiAn> ~ cropI",
<AnBn+1Bn2>= cB1-1", <Bn1AnBnio>= c-Ba-I", <Bn2BniAn>x c-Pi-I", <AREn+1Bnio>~
cy1-r" and <Bpn2En1An>~ cy,-1", and substituting into the rate equations for the triplet
approximation yields eight coupled equations

(1-a)(r-1) + (L —a)(r' - 1) =,

y1o01 (™ + 1) — (0a— Br)on " — (0a— Bt =&,

You2 (r + 1) = (02— Bo)oz™ — (a2~ Ba)az ™ =g,

(01— B2)B1 Xeq — (1 Xeq) + 71 B1™ I Xeq — (@1~ o)™ = ¢, (13)
(02— B2)ya(1 — 0x) "B — (0u— Po)o™ + (0a— By (1 — a2) "B — (02— o)™ =&,

¥2 B3 Xeq— (02— B2)o2™ + (02— B3)B3 ™ Xeqg — (1 Xeg) = &,
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(@—Bovi™+ (@— By =2+ (L —0a— y2) 717 (" + 1) Xeq
~ (1~ Xeq) ~ (1 —oa— 02+ B2) (1 —ou) ' = ¢, and
(02— Bo)y2 I+ (02— Ba)y2 " — 2+ (1 — 02— v2) 72 (1 + 1) Xeq
—(1-Xeq) —(L—ar—az+Po) 1 —ap) ' =&

Seeking solutions for small € and & = 1-r with ay = Xeq+ B18, a2 = Xeq+ B2, B1~ (Xeg)?
+C18, Bax (Xeg)® + C28, Pa~ (Xeg)* + C38, Y1~ Xeg(1— Xeg) + E18, and y2 =~ Xeg(1— Xeg)
+ E»0 yields

Lps(triplet) ~ 87 ~ (2-Xeq) "2(4-3 XeqtXeqD) ™ (8+6Xeq-BXeq +Xeq?) Lp(MF) ,  (14)
for large L. And,

Fir (Xeg) = (1-Xeq) (2-Xeq) (4-3 Xeq+Xeq’) / (8+6Xeq-5Xeq +Xeq )= f(Xeq) (1-Xeg), (15)

where f(X) = (2-X) (4-3X+X?) / (8+6X-5X*+X?).

For the guartet approximation additional multisite probabilities are needed to

follow the analogous procedure. In the steady-state, we have
Lp:(quartet) ~ 87
~ (1600-1680Xeq -1660Xeq” +3180Xeq° -1963Xeq” +601Xeq” -365Xeq”

+277Xeq" -88 Xeg® + 9Xeq®) M (1600+3120Xeq -6060Xeq? +4760Xeq° -2453Xeq” +871Xeq° -
167Xeq” - 3Xeq +8Xeq® - Xeg) M2Ly(MF), for large Ly;. (16)
And,

Fir (Xeq) = f(Xeq) (1-Xeq) = (1-Xeq) (1600-1680Xeq -1660Xeq” +3180Xeq” -1963Xeq”
+601Xeq” -365Xeq” +277Xeq” -88 Xeg® + Xeq®) / (1600+3120Xeq -6060Xeq” +4760X e

-2453Xeq" +871Xeq” -167Xeq’ - 3Xeq +8Xeq® - Xeq®) (17)
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where f(X) = (1600 - 1680X - 1660X? + 3180X> - 1963X* + 601X° - 365X° + 277X’ -88
X8 +9X%) / (1600 + 3120X - 6060X? + 4760X° - 2453X* + 871X° - 167X° - 3X" + 8X® -
X9).

Based on the above calculation, Ly (triplet) is smaller than Ly (MF) and Ly (pair)
and Lyi(quartet) is smaller than Ly (triplet). To analyze the tracer diffusion coefficient
Dir (Xeq) (O Fr (Xeg)), one can look at f(Xeq)
f(Xeq)mr = 1,
f(Xeq)pair = (2-Xeq) (2+Xeq) ™,
f(xeq)triplet: (Z'Xeq)(4'3 Xeq+xeq2) (8+6Xeq'5xeq2+xeq3)-l’ (18)
f(Xeq)quartet = (1600-1680Xeq -1660Xeq” +3180Xeq° ~1963Xeq” +601Xeq” -365Xeq” +277Xeq -
88 Xeq® + 9Xeq”) (1600+3120Xeq -6060Xeq> +4760Xeq” -2453Xeq" +871Xeq” -167Xeq” -
3Xeq' +8Xeq - Xeq)

Assuming that approximations become more accurate with order increasing, we expect
the behavior of f(Xeq) mr-type CONVerges to the correct limiting behavior f(Xeq) = 0 for SFD
for positive Xeq. From Fig.2, we can see that the behavior of the pair and triplet
approximations is consistent with this trend; however, the mis-behavior in the tail of
quartet (where f <0) seems to break the anticipated tendency of convergence to exact

behavior.

IV. Conclusions
The MF-type approximations are traditional and widely used approach in the

analysis of discrete RDE. In general, they are expected to converge to the correct
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behavior with increasing order, although perhaps slowly. However, the analysis for our
model of the forth-order quartet approximation suggests another possibility, specifically
that uncontrolled MF-type methods can fail to capture the correct behavior with

increasing order.
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CHAPTER 6. TAYLOR EXPANSION ANALYSIS OF A GENERALIZED
POSITION-DEPENDENT TRACER DIFFUSION COEFFICIENT FOR

TRASNPORT IN SEMI-INFINITE PORES

I. Introduction

Anomalous tracer diffusion of a “tagged” particle in a single-file diffusion (SFD)
system, where particles within narrow pores cannot pass each other, was proven in the
1960’s for hard-core interactions [1] and later for general interactions [2]. Numerous
studies have considered single-file tracer diffusion in finite open [3], periodic [4,5], or
closed [6] “pores”, and in other systems [7]. For the reaction-diffusion phenomena with
functionalized nanoporous materials which are of broad interest in the catalysis
community, it is actually chemical diffusion [8] which controls behavior [9]. However,
there is a connection between chemical and tracer diffusion (although this connection is
not well recognized). It is also the case here that analysis of tracer diffusion in finite
length systems is of importance (in contrast to the traditional analysis for infinite
systems). Thus, for these important applications there is considerable motivation to
provide a more detail understanding and characterization of tracer diffusion for transport
in finite systems (noting that tracer diffusion is independent of the details of the reaction
model).

The traditional mean-field approximation in a SFD system implies that the tracer
diffusion coefficient Dy, = 1 — ¢ [9,10] where y is the total concentration of particles

within the pore in the steady state. This choice overestimates chemical diffusion fluxes
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for SFD. A standard SFD-analysis for a system of length L indicates that Dy ~ 1/L —0,
as L—o [3,4]. This recovers the familiar exact result that Dg = 0 in infinite systems due
to the SFD constraint. The associated “hydrodynamic” reaction-diffusion equations
(RDE) with constant Dy ~ 1/L can describe, e.g., the evolution of slowly varying profiles
during filling of long pores [12]. However, this formulation neglects fluctuations near
pore openings, and thus underestimates associated effective chemical diffusion fluxes.
These observations prompt our development of a more general formulation of position-
dependent tracer diffusion in finite or semi-infinite systems.

In Sec. I, we generalize a standard definition of the tracer diffusion coefficient
Dy for infinite systems to finite or semi-infinite systems (pores) motivated by the
expectation that tracer diffusion is effectively enhanced near pore openings. These Dy
are determined from analysis of a complex many-particle transport problem for which
exact analytic solution is not viable. One possible strategy for their determination is
kinetic Monte Carlo simulation. However, here we develop and alternative Taylor
expansion analysis which can be effectively applied to assess the Dy at least close to the

pore openings and for low loading .

I1. Taylor expansion for tracer diffusion coefficient D¢(n)

As a natural generalization of tracer diffusion for infinite systems, we determine
Dy (n) at site n for a pore with uniform loading <X,>=y . Our definition and
determination of Dy(n) is based analysis of the time, tn(y), for a tagged particle starting

at this cell to “reach a pore opening” in the sense that its suitably defined root-mean-
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square (rms) displacement grows to match the distance from the nearest pore opening
(See Fig.1). For afinite pore of length L, this distance is the smaller of n or L —n. For a
semi-infinite pore of interest here, this distance is always n. Specifically, we set Dy(n) =
Do ta(0+)/ta(x) = ta(0+)/t1(y) as Do=1 since diffusivity is inversely proportional to the
time for the rms displacement to reach a certain value. This recovers the correct limiting
value Dy(n)—1 as y—0+.

In our model, particles in a finite or semi-infinite pore hop to adjacent empty site
at rate Whop =1. A single tagged particle starting at site n has the same hopping dynamics
within the pore as all the other particles. To maintain a pore with uniform concentration
<Xp>=y, we allow the untagged particles to hop into the pore at rate Wyqs and the tagged
and all untagged particles to hop out of the pore at rate Wges which follows <X,> =y =
Wags/ (Wags + Waes). (The tagged particle cannot hop back in to the pore.) Without loss
of generality, assume Wags + Wes = 1 resulting in Wags =y and Wges = 1 — . Let P;
denote the probability that the tagged particle is at site j, P(x; 0j+1) that the tagged particle
X is at site j and that site j+1 is empty (0), etc. Also, Py denotes the probability that the
tagged particle has hopped out of the pore. Then we can determine the mean position,
<j>, the mean-squared position, <j*>, etc. for the tagged particle as moments of P;j via
<j"™> =% ("Py).

Since the average position of the tagged particle inside the pore may “drift” for
x> 0, there is more than one reasonable way to define mean-square displacement. One

could consider the mean-square (ms) displacement about the average (time-varying)
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position, although we do not do so here. Instead, one could consider the mean-square
displacement from the initial position jo = n via
ms displacement = <(j-jo)*> = <j*> - 2jo<j> + (jo)*. (1)
This definition was used in our previous simulation studies [11,12]. An alternative,
which neglects drift in the mean position, is to use
ms type displacement = <j*> — <j*>( = <j*> - (jo)> (2)
The exact Taylor expansion for these quantities expansions for <j> and <j*>, e.g.,
<j?> =
<j?> + dfdt <j?>q t+ d¥/dt2 <j?>o 1 21 + dYdt <j?>o £ 31 + d¥dt? <jP>o tY 41+ ... (3)
for analysis of which determination of the initial values of d/dt <j%>, d%/dt® <j*>,
d®/dt® <j*>, etc. is required.
This analysis proceeds from the exact master equations for this many-particle
system with a single tagged particle which have the form
d/dt Py = Wes Py,
d/dt Py = — Wyes P1 — P(X102) + P(01 X2),
d/dt P, = P(x1 02) — P(01X2) — P(X2 03) + P(02 X3),
d/dt P3 = P(x2 03) — P(02X3) — P(X3 04) + P(03 X4), 4)

d/dtP, = P(X3 04) — P(03 X4) — P(X4 05) + P(O4 X5),

d/dt P = P(Xj.1 0j) — P(0j1 Xj) — P(X; 0j+1) + P(0j Xj+1),

Examples of the next higher-order equations for pair quantities are
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d/dt P(X1 02) = — Waes P(X1 02) — P(X1 02) + P(01X2)

—P(X1 02 #3) + P(X1 ¢203) (5a)

d/dt P(X; 0j+1) = — P(X; 0j+1) + P(0j Xj+1) — P(0j-1 X; Oj+1) + P(Xj-1 0j 0j+1)

— P(Xj 0j+1 *js2) + P(X; *j+1 0j+2) (5b)
where P(X; 0j+1 *j+2) denotes the probability that the tagged particle (x) is at site j, site j+1
is empty (0) and another particle () is at site j+2.

Note that from these equations, it immediately follows that

didt > (Py) =0 (6)

so it follows that % (P;) =1 (consistent with the initial conditions). More generally, one
can generate rate equations for the moments <j™> = ¥ (j" P;). As noted above, of
particular importance here is the behavior of <j> and <j*> as this is used to determine
Du(n).
In (4), if the equation of P; is multiplied by j, the master equations become

0 d/dt Py = 0 Wyes Py

1 d/dtPy = 1 [~ Waes P1 — P(X105) + P(01X2)]

2 d/dt P, = 2 [P(x1 02) — P(01X2) — P(X2 03) + P(02X3)]

3 d/dtPs = 3 [P(X2 03) — P(02X3) — P(X504) + P(03X4)] (7)

4 d/dt P4 =4 [P(X304) — P(03X4) — P(X405) + P(04 X5)]

J d/dt Py = j [P(Xj.1 0j) — P(0j-1 Xj) — P(X; 0j+1) + P(0j Xj+1)]
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Summing over equations in (7), one has
d/dt<j> = d/dt 2 (j Pj) = — Wes P1 + P(X1 02)
+ P(X203) — P(01 X2)
+ P(X304) — P(02X3) + ...
+ P(X; 0j+41) — P(0j1 X)) + ...
Similarly multiplying the jth equation in (4) by j? yields
0% d/dt Pg = 0° Wees P4
12 d/dt Py = 1% [ Waes P1 — P(X1 02) + P(01 X2)]
22 d/dt P, = 22 [P(x1 05) — P(01X2) — P(X2 03) + P(02X3)]
3% d/dt P3 = 3° [P(x2 03) — P(02 X3) — P(X3 04) + P(03X4)]

42 d/dt P4 = 42 [P(X3 04) — P(03X4) — P(X4 05) + P(04Xs)]

j? didtP; = j [P(xj1 0}) — P(0j.1 ;) — P(X; Oj+1) + P(0j Xj+1)]

Taking the summation of equations in (9), one has,
d/dt <j*> = d/dt 3 (j° Pj) = 3 P(x102) — Waes P1
+5 P(Xz 03) -3 P(01 Xg)

+7 P(X304) —5P(02X3) + ...

+ (2] + 1) P(x; 0541) — (2] — 1) P(0j.1 %)) + ...
Clearly one can continue this procedure to obtain an equation for d/dt <j">.

Determination of a Taylor expansion for <j> motivates the differentiation

d?/dt® <j> = d/dt (d/dt <j>)

(8)

9)

(10)
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= — Woes d/dt Py + d/dt P(x; 0,) + d/dt P(x, 03) — d/dt P(01X2)

+ d/dt P(x3 04) — d/dt P(02X3) + ...+ d/dt P(x; 0j:1) — d/dt P(0j.1 Xj) + ...

=— 2 P(X102) + Waes” P + (3 — 2Wqes) P(01X2) — P(X10; ¢3)

+ P(X1 #203)+ P(X1 02 03) — P(0102 X3) — 2 P(X203) + 2 P(02 X3)

—P(X2 03 *4) + P(X2 #304)— Waes P(¢1 X2) + P(X2 03 04) — P(X304)

+ P(03X4) — P(X304 *5) + P(X3¢405) + ... (11)
where we use (5b) for d/dt P(x;0j+1), etc. Further differentiation yields equations for
d*/dt® <j>, d*/dt* <j> and higher order terms.

Determination of a Taylor expansion for <j*> motivates the differentiation
d?/dt? <j*> = d/dt (d/dt <j*>)
= 3 d/dt P(x1 02) — Wges d/dt Py + 5 d/dt P(xz 03) — 3 d/dt P(01 X2)
+7 d/dt P(x304) — 5 d/dt P(02X3) + ...
+(2j + 1) d/dt P(xj0j:1) — (2j — 1) d/dt P(0j.1 X)) + ...
= (~ 2Wges — 6) P(X1 02) + Wees” P1 + (9 — 4Wies) P(01 X2)

— 3 P(X102 ¢3) + 3 P(X1 ¢203)+ 5 P(X1 0203) — 2 P(01 X2 03) — 3 P(01 02 X3)

— 10 P(x203) + 10 P(02 X3)— 5 P(X2 03 ¢4) + 5 P(X2 ¢304)

— 3Wes P(®1 X2) + 7 P(X20304) — 2 P(02 X3 04) — 14 P(X3 04) + 14 P(03X4)

— 7 P(X304 *5) + 7 P(X39405) + 9 P(X30405) + ... (12)
where we use (5b) for d/dt P(x;0j+1), etc. Further differentiation yields equations for
d*/dt® <j*>, d*/dt* <j*> and higher order terms.

Suppose that the tagged particle is initially located at site 1, and then the

corresponding derivatives of <j> and <j*> are as below:
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d/dt<j> = 0,
d4/dt? <j>¢ = 2Wies” — 2Wies = — 2 (1 — %),
d%/dt® <j>p = — 2Wiges® — 4Woes” + 6Woes
=2% (1-%) 4-x)
d*/dt* <j>o = 4AWes® + 3Waes® +12W s> — 19Wiges
=% (L—7) (- 30 + 157 — 4y%),
d°/dt® <j>¢ = — AWiges” — 13Waes” — 24Wies® — 21 Wees” + 62Woges

=5 (L—7) (124 — 87y + 29y — 4), (13)

d/dt <j?>o = 2Waes = 2(1 - ),
d?/dt? <?>0 = AWes” — 6Wiges = 2(1 — %) (— 1 2),
d3/dt® <j?>0 = 2Wies® — 16Woes” + 18Wges
=2(1-y) +6y+%),
d*/dt* <j>>0 = 8Wies' — 15Wies® + 44Wes? — 47Weges
= (L-%) (- 1038y + 9x*-8x),
d°/dt® <j?>¢ = 2Wies” — 40Wqes” + 52Woes® — 135Wees” + 186W es
= (1—y) (65 + 143y — 56y% + 32y> + 2y%). (14)

Next, we describe the estimation of ty(y) for various total concentrations . Here

we focus on three cases: (i) low loading x=0.2 with Wy = 0.8, (ii) high lowing x=0.8

with Wyes = 0.2, and (iii) ¢ = 0+ as there is no other particles within the pore. In Fig. 2
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and Fig. 3, illustrate our approach to obtaining t;(y) values with y = 0+ and y =0.2
respectively by solving the fifth-order polynomial equations
ms displacement = <(j-jo)*> = <j*> — 2jo<j> + (jo)*

= <j*> = <> - 2jo (<> — jo) =L. (15)

and
ms type displacement = <j*> — <j*>,
~ d/dt <j?>g t+ d¥dt? <j?>q 7/ 21 + d¥/dt <j®>o £ 3!
+ d¥/dt? <j?>q tY 41 + d°/dt® <j?>o £/ 51 = 1. (16)

Moreover, comparison of the results obtained from (15) with the t;() values obtained by
Kinetic Monte Carlo (KMC) simulation in a semi-infinite pore is appropriate and is
provided in Table 1. The procedure to obtain estimates of t,(y), t3(y), etc. is analogous,

although estimates will be less accurate due to the longer times involved.

I11. Conclusions

The Taylor expansion analysis of t,(y) offers a way to estimate the generalized position-
dependent tracer diffusion coefficient effectively at least for sites close to the pore
opening. The shortcoming of the truncated Taylor expansion analysis is that it is never
exact and must give artificial behavior for long times. However, it is a way, probably the
only way, to estimate tracer diffusion analytically. It is reasonably good for low loading,
e.g. x=0.2, and not too good for high loading, e.g. x=0.8. An appropriate rearrangement

of Taylor expansion may boost the convergence.
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Tables

Table 1. Dy (1) = t1(0+)/t1(y) comparison of KMC simulation and Taylor Expansion
Analysis (TEA) for both lowing loading x = 0.2, high loading y = 0.8 and y = 0+.

KMC TEA with 1% | TEA with first | TEA with first

term 3" terms 5" terms
t1(0.2) 0.798407 | 0.625 0.7976 0.78513
t1(0.8) 6.96930 |25 1.8217 1.48871
t1(0+) 0.64673 | 0.5 0.6105 0.61834
Du(1) = 0.810025 | 0.8 0.7654 0.78756
t(04)/ 1,(0.2)
Dy(1) = 0.092797 | 0.2 0.3351 0.41535
t,(0+)/ ,(0.8)
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Fig.2. The point of intersection gives the time t;(y) in the case x=0+ with a truncation
error in order o(t°).
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CHAPTER 7. ANALYSIS OF THE STEADY-STATE CONTINUUM
REACTION-DIFFUSION EQUATIONS FOR CATALYTIC CONVERSION

REACTIONS IN 1D PORES WITH SINGLE-FILE DIFFUSION

I. Introduction

The nontrivial nature of diffusion is well recognized in single-file systems, and
there is appreciation that this will impact reaction-diffusion processes in nanoporous
systems. The no-passing feature results in anomalous tracer diffusion [1-4]. There have
been extensive studies often motivated by studies of transport and catalytic reaction in
zeolites [5] and other functionalized nanoporous materials, emphasizing the anomalous
nature of tracer- or self-diffusion [5,6]. This anomaly is reflected in a sub-linear increase
with time in the mean-square displacement of a specific “tagged” particle [2,7]. Our
interest is in the interplay between this type of anomalous transport and the catalytic
reaction kinetics. Such behavior is traditionally described by reaction-diffusion
equations (RDE). However, characterization of chemical diffusion (rather than tracer
diffusion), which provides key input to these equations, has received relatively little
attention for quasi-single-file systems. Its correct description is a non-trivial statistical
mechanical challenge.

Our specific focus is on simple first-order conversion reactions, A —> B (see
Fig.1), occurring inside a parallel array of linear nanopores of a catalytically
functionalized material such as mesoporous silica. Reactants, A, enter the pore openings,

diffuse to adjacent empty cells of a 1D linear lattice at rate h, convert to a product at
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catalytic cells (c), B, with microscopic rate k, and both reactants and products can
diffuse out of the pore [8-14]. The cell width “a” is chosen as 1 nm comparable to
species size. This would correspond to single-file diffusion (SFD) with a strict no-
passing constraint.

In Sec. I1, we first describe our continuum model for conversion reaction in
linear nanopores, and the associated reaction-diffusion equations (RDE). Then, we
present the results for improved analysis of the steady-state continuum RDE. Our

conclusions are presented in Sec. I11.

I1. Analysis of the steady-state continuum reaction-diffusion equations

A. Continuum reaction-diffusion equations

The exact master equations for stochastic lattice-gas (LG) reaction-diffusion
model for the evolution of probabilities of various configurations within the pore have
been developed [12, 14] where we used <C,> to denote the probability or ensemble
averaged concentration for species C = A or B at site n (or for this site to be empty when
C = E). For smoothly varying concentrations within the pore, it is natural to consider a
coarse-grained description of the spatially-discrete reaction-diffusion model which
regards the species concentrations per unit length, C(x=na) ~ a™* <C,>, as functions of a
continuous spatial variable x (leaving the t-dependence implicit), and denote the total
concentration by X(x) = A(x) + B(x). The continuum RDE for our A to B conversion
reaction model with all sites catalytic then have the form

olot A(X) = —k A(x) — 0/ox Ja, and o/ot B(x) = +k A(X) — 0/0X Jg. 1)
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Boundary conditions for (1) at the pore ends reflect the adsorption-desorption dynamics.
Description of the diffusion fluxes, Jaand Jg, is non-trivial, actually critical.

Analysis from the theory of interacting particle systems [16, 22] for the
hydrodynamic regime of slowly varying concentrations suggests the general form [16]

Ja =— Do (A/X)0X/0x — Dy[(B/X)0A/OX - (AIX)OBIoX]. )
Here Do = a*h is the chemical diffusion coefficient for particles X, and Dy =Dq Fy is a
tracer diffusion coefficient. Here, it suffices to consider the local steady-state regime
with uniform total concentration, X = a™y, corresponding to a counter-diffusion mode
[17] where 0A/ox = — 0B/ox. Then, (2) and the analogous expression for Jg simply
reduce to [12,17]

Ja=— Dy 0A/0x and Jg = — Dy, OB/0OX. 3)

Given the shortcomings of the mean-field (MF) approximation [12, 14] and the classic
“hydrodynamic” approach [14] for Dy or Fy, we have developed a “generalized
hydrodynamic” treatment [14] which incorporates a position-dependent Fi(x=na). This
Fi is enhanced near pore openings and decays to a value ~1/L in the pore center for
pores of length L. Thus, for semi-infinite pores of interest here, Fi(x) —0, as x—0.

Further discussion of Fy(x) appears in the following section.

B. Lowest-order analysis of A(x) in the steady state

Insight into the consequences of decay of F(x) comes from analysis of the

steady-state solutions of the continuum RDE for a semi-infinite pore x>0 using (3) with
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the form Fy(x) ~ 1/xP. Assume A(x) ~ exp[-(x/Ly)"] = exp(-ax?) where L, denotes the
penetration depth of reactant A, then in the steady-state one finds,
0 = alot A(x) = — k A(X) — 0/0x (— Dy 0AIOX) 4)
which implies
k/Do exp[— (X/Lp)"] = olox {1/xP dlox (exp[— (x/Lp)™ )} (5)
After differentiating and dropping of non-dominant part, one obtains
K/Do = 2 (x*P2)/ Ly (6)
It follows that
29—-p—2=0,and L, = (k/Do/q®) D~(k/Dg) (7)
Hence, for small reaction rate k and large penetration depth L,, we have the dominant
form
A(X) ~ exp[- (x/Lp)?] where g=(2+p)/2, and L, ~(k/Dg)* with { =—1/(2+p).  (8)
The true asymptotic scaling exponent for L, is { = — 1/4 corresponding to the true
asymptotic exponent for decay of Fi of p = 2. However, behavior mimicking { = —1/3 for
non-asymptotic effective exponent p = 1 might be seen for lower X. Both contrast MF
behavior { =— 1/2 corresponding to p = 0 (i.e., constant Fy) [11,12]. These predictions
are confirmed by numerical analysis of discrete generalized hydrodynamic RDE’s
exploiting the capability of this deterministic treatment to obtain much more precise C-

values than possible by KMC simulation [14].

C. Improved analysis of A(x) in the steady state




120

Success in the lowest-order analysis motivates an attempt to develop the next
order correction to A(x). We continue using (3) with the form Fy(x) = f x® ~ 1/x".
Assume A(x) ~ (1+¢ X°) exp[-(x/Lp)] = (1+c x°) exp(-ax?), then we have,
OAIOX = [~ s x ™t — ag XTI (1+c x®)] exp(-ax?),
Fy 0AIOX = [ fes x P — fag P (1+c x)] exp(-ax?), and
dlox (Fy 0AIOX) = [fes(s+p+1) X572 — foq (g—p-1) XTP2 (1+c x7°)
+ fages x¥P 2] exp(-ox9)
— aq ¥ [~ fes x 5P — fag x¥P (1+¢ )] exp(-0xY)
= [fes(s+p+1) x P2 — faq (q—p-1) X*P2 — faqc (q-p+2s5-1) xTPS2
2 2 L 20-p-s-2

+ fo’g® X°4P? + cfa’g’ x ] exp(-0x9) (9)

In the steady-state,
(k/Do) A(X) = dlox (Fy 0AIOX) (10)
Hence, after substituting the above results into both sides, one obtains
(k/Do) (1+c x®) exp(-ox?) = [fes(s+p+1) X2 — faq (q—p-1) xTP2
—foqe (g—p+25-1) X2 + falq? X292 + cfalq” X*9P? exp(-ax?)  (11)
which implies the dominant relationship for large x of
k/Dg X° = foq? x*4P? (12)
Therefore, k/Dg = fo?q? and g = (p+2)/2, and (11) becomes
cx® (k/Dy) = fes(s+20-1) x5 — faq (—q+1) X9 — faqe (—q+2s+1) x & + cfa’g? x®  (13)
For s>0, it is natural to choose s=q to balance dominant terms for large x. But then, using
the identity k/Dg = foq? yields

¢ foq? = — foq (—q+1) + cfo’q?, (for s=q) (14)
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which can only be satisfied setting g=1 (p=0) which contradicts the assumption of A(x).
This failure prompts alternative strategies to determine higher-order behavior.

An alternative more general approach to assess higher-order behavior starts by
assuming the form A(x) = G(x) exp[- (X/Lp)"] = G(X) exp(—ox?), with Fy(x) = f x. From
(10), we obtain a relation involving G(x),

(k/Dg) G(x) = f G’ (X)XP = f G’(x) (p xP* + 20q x*P™)
- G(x) [0g(g-p-1) X*™* — o® ¢* x*17], (15)
from which follows a second order differential equation of G(x)
G’(X) - G’(x) (p X" + 2ag x*Y)
— G(x) [aq(q-p-1) ™2 — a® g% x*¥% + (k/Do/f) x"] = 0 (16)
In principle, numerical solution of this equation with an appropriate choice of parameters

and initial values can provide more detailed insight into behavior of A(x).

D. Removal of sinqularity of A(x) in the steady state

Returning to analysis at the lowest-order as in Subsection B, in order to avoid
singularity, we assume that Fy(x) = f (1+x/x¢)® = f u® with a nonzero number x4 and
A(X) ~ exp[-(u/Lp)?] = exp(- « u), then du = dx/x4 and in the steady-state,

k/Dg exp[-(u/Lp)™ = olox {fu® dlox (exp[-(u/Lp)™ )} (17)
Differentiating we have,
k/Dyo exp[-(u/Lp)™] = x4 f g7 (U*P%)/ L, exp[-(u/Ly)"] + lower order terms  (18)
Hence the dominant form is

q=(p+2)/2,a=(K1De)"* x4q and L, = (k x4/f/Do/q?) Y®~(k/IDg) P*?  (19)
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This recovers the same exponents as obtained in the singular case. Here, the value of x4
is critical in changing variables. Fy, for a semi-infinite pore can be obtained by KMC
simulation and the parameter x4 therefore can be determined. As in Fig.2, p = 2 and

Xq=1.

I11. Conclusions

An analysis is provided of the decay of the reactant concentration A(X) in the
steady-state with utilizing the relevant continuum RDE incorporating a location-
dependent of tracer diffusion coefficient. The lowest-order analysis is quite effective at
elucidating the non-exponential decay and scaling of the penetration depth with key

model parameters. However, extension to higher-order of this analysis is problematic.
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Fig.1. Schematic of the key steps in our A—B catalytic conversion reaction model. “c”
denote catalytic cells where reaction occurs at rate k. Behavior is shown in two adjacent
pores which should be regarded as part of a larger array of pores.
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Fig.2. Blue stars are the F; values from KMC simulation when the total concentration is
X=0.8 in the steady-state in a semi-infinite pore with a = h = 1 and red curve is the least
square fitting curve in form Fy (x) = 0.3391 (1 + x/1.0427)%%4%,
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CHAPTER 8. GENERAL CONCLUSION

The studies in this thesis focus on analysis of interplay between single-file
diffusion and conversion reaction in mesoprous systems (or nanopores). The transient
and steady-state behavior of single-file conversion reaction systems displays some
general features. Transient evolution of concentration profiles is effectively described by
hydrodynamic RDE which properly incorporate the single-file nature of diffusion.
However, steady-state reactivity is controlled by fluctuation effects not incorporated in
the hydrodynamic treatment. MF-type treatments can capture some aspects of this
steady-state behavior, but not scaling properties for extreme choices of reaction and
diffusion rates. Then we turn to the so-called generalized hydrodynamic formulation.
The location dependence of tracer diffusion near the openings of narrow pores is shown
to control non-MF scaling of reactant penetration depth and thus reactivity for
conversion reactions. Generalized hydrodynamic RDE’s provide a powerful tool with
which to analyze this behavior. Taking account of strong dependence of catalytic activity
on the tunable interaction between reaction products and the interior pore environment.
Making the pore interior unfavorable to products not only modifies the reaction
equilibrium towards completion, but also reduces pore loading which can significantly
enhance diffusivity and thus reactivity especially in the SFD regime. Our generalized
hydrodynamic formulation of reaction-diffusion phenomena provides an efficient tool to
explore behavior over a broad phase-space of model parameters. This approach can

reliably capture the complex interplay between reaction and restricted transport which
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results in subtle spatial correlations and fluctuations of reactants and products within the
pore. These effects are not described by traditional mean-field approaches.

There are numerous possible modifications and extensions of our modeling
which could be performed either utilizing refined generalized hydrodynamic RDE or
with KMC simulation. Another natural extension of our modeling is to consider different
reaction mechanisms, e.g., A+B«>C+D better matching esterification reactions, and to
consider the scenario where pore reentry of just one of the two products is enhanced
versus blocked. The approximate MF and precise GH formalism are readily extended to
treat this more complex situation, and preliminary studies reveal analogous behavior to
that discussed above for the simpler A<>B conversion reaction mechanism.

Furthermore, the tracer diffusion plays an important role in our model. Tracer
diffusion coefficients associated with MF-type approximation have been studied and
thus show the uncontrolled behavior of MF-type treatment. Taylor expansion has been
applied to the study of tracer diffusion coefficient that is independent of reactions but
dependent on transport. Improved analysis of the steady-state continuum RDE are

offered but can be further developed.



