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ABSTRACT 

 

 We analyze the spatiotemporal behavior of species concentrations in a diffusion-

mediated conversion reaction which occurs at catalytic sites within linear pores of 

nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion 

within such narrow pores. Both transient and steady-state behavior is precisely 

characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas 

model for this reaction–diffusion process considering various distributions of catalytic 

sites. Exact hierarchical master equations can also be developed for this model. Their 

analysis, after application of mean-field type truncation approximations, produces 

discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, 

we further develop coarse-grained continuum hydrodynamic reaction–diffusion 

equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in 

this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then 

develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which 

incorporates an unconventional description of chemical diffusion in mixed-component 

quasi-single-file systems based on a refined picture of tracer diffusion for finite-length 

pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant 

concentration into the pore and the non-mean-field scaling of the reactant penetration 

depth. Then an extended model of a catalytic conversion reaction within a functionalized 

nanoporous material is developed to assess the effect of varying the reaction product – 

pore interior interaction from attractive to repulsive. The analysis is performed utilizing 
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the generalized hydrodynamic formulation of the reaction-diffusion equations which can 

reliably capture the complex interplay between reaction and restricted transport for both 

irreversible and reversible reactions.  
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CHAPTER 1. GENERAL INDROCUTION 

 

Background 

Anomalous transport can be induced by the feature that molecules or particles 

within the narrow pores of mesoporous catalytic material either cannot pass each other, 

resulting in so-called single-file diffusion (SFD). Anomalous behavior may persist even 

if molecules just have difficulty in passing each other. Such mesoporous (or more 

accurately nanoporous) systems are realized by materials incorporating arrays of linear 

pores which are sufficiently narrow. This no-passing feature results in anomalous tracer 

diffusion [1–3]. There have been extensive studies motivated by studies of transport and 

catalytic reaction in zeolites [4] and other functionalized nanoporous materials, 

emphasizing the anomalous nature of tracer- or self-diffusion [4,5]. Diffusion-mediated 

reaction processes have traditionally been modeled with mean-field (MF) reaction-

diffusion equations (RDE) [6, 7]. These RDE include a conventional treatment of 

chemical kinetics that ignores spatial correlations between reactants. This approach has 

been effectively applied to heterogeneous catalysis on extended surfaces, where reactant 

species reside at a periodic array of adsorption sites on the nanoscale, and complex 

spatial concentration patterns can develop on the micron scale [8]. Actually, for such 

catalytic surface reactions, it has been recognized that mean-field kinetics has limitations 

due to nonrandom reactant distributions. However, there has been less appreciation of 

the complexity of diffusion in mixed reactant adlayers. 

For the reaction-diffusion phenomena which are of interest here, it is actually 
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chemical diffusion [9] which controls behavior [10], and for which the connection to 

tracer diffusion is not well recognized. Another key aspect of these open reaction-

diffusion systems is that steady-state behavior is not described by a classic Gibbs 

thermodynamic ensemble. In fact, a fundamental understanding of these steady-states, 

which depend on both the reaction kinetics and transport, remains a significant challenge 

[6,11,12]. One goal here is to use these exact results to assess the consequences of 

single-file diffusion for the transient behavior in conversion reactions, a relatively 

unexplored issue. We will also analyze behavior for various distributions of catalytic 

sites within the pore. In addition, regarding steady-state behavior, we will assess 

fundamental scaling behavior of quantities related to reactivity as a function of key 

model parameters. 

In the basic model for AB conversion [13] (see Fig.1), reactants A (products B 

re-enter if allowed) enter the pore from the surrounding fluid and are converted to 

products, B, at catalytic sites (c). Reactants and products within the pore are localized to 

sites of a 1D linear lattice traversing that pore (and outside the pore can be regarded as 

localized to a 3D lattice). The simplest prescription for diffusion within the pores is that 

A and B hop to adjacent empty (E) sites at rate h. This would correspond to single-file 

diffusion with a strict no-passing constraint. We can also allow positional exchange of 

adjacent A and B at rate Pex h to relax the strict single-file constraint, noting that 

exchange of adjacent particles of the same type has no effect. Conversion reaction at 

catalytic sites (c) occurs at rate k. In addition, we must specify adsorption and desorption 

processes at the pore openings (as discussed further below).  
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Advances in synthesis of nanomaterials have led to broad capabilities for 

multifunctionalization of mesoporous or nanoporous catalysts. Such capabilities allow 

for not only effective functionalization with catalytic groups, but also the possibility to 

tune the interaction between reaction products and the interior pore environment [14-16]. 

This can in turn significantly impact and potentially enhance catalytic reactivity. For 

example, creation of an unfavorable environment for product species within pores can 

lead to enhanced product extrusion or inhibited product re-entry. This feature would shift 

the equilibrium of reversible reactions towards completion.  

Accounting for detailed balance requirements, it follows that creating an 

unfavorable environment for a reaction product within the pore increases the ratio of the 

rate of product desorption from the pore opening to that for product (re)adsorption. One 

should note that product readsorption can become significant for substantial conversion 

of reactant to product in the surrounding fluid. Thus, in our modeling, we can account 

for the effects of multifunctionalization and for different behavior with increasing 

conversion during the reaction, by suitable specification of the adsorption and desorption 

rates at the pore openings. We note that modifying the interior pore environment can 

change loading of product in the pore even for irreversible reactions. The loading can 

have a dramatic effect on effective transport for narrow pores, especially in the SFD 

regime where species cannot pass each other in the pore, and this in turn greatly impacts 

reactivity.   

In these models, a key factor impacting reactivity is the extent to which reactants 

and products A and B can pass each other. Previous analyses for SFD or highly 
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restricted passing [10,13,17,18,19-22] reveal that reactivity in these systems can be 

strongly inhibited as reactant (and thus reaction) is strongly localized near the pore 

openings [18]. The reason is that except near their ends, the pores tend to be exclusively 

populated by product which is not readily extruded. Thus, the pore center does not 

participate in the conversion AB. Kinetic Monte Carlo (KMC) simulation (which is 

often computationally expensive) can always be utilized to provide a precise 

characterization of model behavior. However, in this thesis we focus on the development 

of analytic formulations. While simple mean-field type reaction-diffusion equations 

[10,17,19,20] are not adequate in systems with strongly inhibited passing, our studies 

show that behavior in this regime is captured by a “generalized hydrodynamic” (GH) 

formulation which accounts for both the effect of restricted passing on chemical 

diffusion as well as fluctuation effects in adsorption-desorption at pore openings [21].  

 

Thesis organization 

The main body of this dissertation is based on three published papers (Chapter 2, 

3 and 4), and three additional parts (Chapter 5, 6 and 7). 

Chapter 2 reprints the published paper “Catalytic conversion reaction mediated 

by single-file diffusion in linear nanopore: Hydrodynamic versus stochastic behavior”, 

by D. M. Ackerman,
 
J. Wang,

 
J. H. Wendel, D.-J Liu,

 
M. Pruski, and J. W. Evans in the 

Journal of Chemical Physics 134, 114107 (2011). David Ackerman performed the 

kinetic Monte Carlo simulations for the models, and I performed the analytic 

investigations and related numerical simulations of discrete reaction-diffusion equations. 
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This paper gives a detailed description and analysis of the simple reaction conversion 

AB model with single-file constraint. MF approximations are applied into a system of 

discrete RDE and a classic hydrodynamic treatment is used in to associate continuum 

RDE. MF-type treatment can capture the fluctuation near the pore openings but 

overestimate the fluxes within the pore, especially the pore center. Hydrodynamic 

method captures the correct behavior but fails near the pore openings. A set of more 

precise KMC results is used as the exact behavior. 

Chapter 3 reprints the published paper “Generalized hydrodynamic treatment of 

the interplay between restricted transport and catalytic reaction in nanoporous 

materials”, by D. Ackerman, J. Wang, and J.W. Evans, in Phys. Rev. Lett. 108, 228301 

(2012). David Ackerman performed the kinetic Monte Carlo simulations for the models, 

and I performed the analytic investigations and related numerical simulations of discrete 

reaction-diffusion equations. This paper develops a reliable generalized hydrodynamic 

treatment as noting the shortcomings of MF-type approximation and classic 

hydrodynamic treatment. The generalized hydrodynamic method successfully captures 

both fluctuation at the ends of pore and the correct behavior in the pore center. 

Chapter 4 reprints the published paper “Controlling reactivity of nanoporous 

catalyst materials by tuning reaction product-pore interior interactions: Statistical 

mechanical modeling”, by J. Wang, D. M. Ackerman, V. S.-Y. Lin, M. Pruski, and J. W. 

Evans in the Journal of Chemical Physics 138, 134705 (2013). This paper uses 

generalized hydrodynamic treatment to deal with the effect of varying the reaction 
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product-pore interior interaction from attractive to repulsive. Both irreversible and 

reversible reaction conversions are considered. 

Chapter 5 is a discussion on “Higher-order truncation approximation” for the 

tracer diffusion coefficient Dtr with MF-type approximation in semi-infinite pores. 

Chapter 6 is a discussion on “Taylor expansion results for tracer diffusion”. This 

is the only analytic way to figure out Dtr as in my knowledge. 

Chapter 7 is a discussion on “Improved analysis of the steady-state continuum 

reaction-diffusion equations”. 
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Figures 

 
Fig.1. Schematic of the AB conversion reaction model illustrating processes within a 

single pore (shaded blue), as well as the surrounding fluid. ‘c’ denotes catalytic sites. 
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CHAPTER 2. CATALYTIC CONVERSION REACTION MEDIATED BY 

SINGLE-FILE DIFFUSION IN LINEAR NANOPORE: HYDRODYNAMIC 

VERSUS STOCHASTIC BEHAVIOR 

 

A paper published in the Journal of Chemical Physics 
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 1,2,*

 Jing Wang,
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 1
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1, 3,4

 

1
Ames Laboratory – USDOE, Iowa State University, Ames, Iowa 50011, USA 

2
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA 

3
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4
Department of Physics and Astronomy, Iowa State University, Ames Iowa 50011, USA 

*
David Ackerman performed the kinetic Monte Carlo simulations for the models, and I 

performed the analytic investigations and related numerical simulations of discrete 

reaction-diffusion equations. 

 

Abstract 

We analyze the spatiotemporal behavior of species concentrations in a diffusion-

mediated conversion reaction which occurs at catalytic sites within linear pores of 

nanometer diameter. Diffusion within the pores is subject to a strict single-file (no 

passing) constraint. Both transient and steady-state behavior is precisely characterized by 

kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this 

reaction–diffusion process considering various distributions of catalytic sites. Exact 
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hierarchical master equations can also be developed for this model. Their analysis, after 

application of mean-field type truncation approximations, produces discrete reaction–

diffusion type equations (mf-RDE). For slowly varying concentrations, we further 

develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) 

incorporating a precise treatment of single-file diffusion in this multispecies system. The 

h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the 

mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. 

However, steady-state reactivity, which is localized near the pore ends when those 

regions are catalytic, is controlled by fluctuations not incorporated into the 

hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but 

cannot describe scaling behavior of the reactivity. © 2011 American Institute of Physics. 

[doi:10.1063/1.3563638] 

 

I. Introduction 

Diffusion-mediated reaction processes have traditionally been modeled with 

mean-field (MF) reaction-diffusion equations (RDE) [1, 2]. These RDE include a 

conventional treatment of chemical kinetics which ignores spatial correlations between 

reactants, and also a simple description of diffusion typically with constant Fickian 

diffusion coefficients. This approach has been effectively applied to heterogeneous 

catalysis on extended surfaces, where reactant species reside at a periodic array of 

adsorption sites on the nanoscale, and complex spatial concentration patterns can 

develop on the micron scale [3]. Actually, for such catalytic surface reactions, it has 
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been recognized that mean-field kinetics has limitations due to nonrandom reactant 

distributions. However, there has been less appreciation of the complexity of diffusion in 

mixed reactant adlayers. This complexity arises even in simple lattice–gas (LG) reaction 

models with no interactions between reactants on different adsorption sites (but 

exclusion of multiple occupancy of sites) [4]. There are further complications in the 

treatment of diffusion in these mixed systems when one accounts for interactions 

between reactants [5]. 

In contrast, the nontrivial nature of diffusion is well-recognized for transport and 

possible reaction in so-called single-file systems. Such mesoporous (or more accurately 

nanoporous) systems are realized by materials incorporating arrays of linear pores which 

are sufficiently narrow that molecules cannot pass each other inside the pores. This no-

passing feature results in anomalous tracer diffusion [6–8]. To assess the interplay 

between such anomalous transport and reaction, there have been several studies of a 

basic conversion reaction model and its variants [9–15]. In this basic model, the reactant, 

A, adsorbs at the end of pore, converts to product, B, at catalytic sites within the pore, 

and both reactants and products can exit the pore. 

In an early study considering possibly reversible conversion reactions, 

Tsikoyiannis and Wei [9] developed hierarchical rate equations for a general class of 

lattice–gas models. They analyzed behavior for the canonical irreversible reaction model 

A→ B with all sites catalytic by kinetic Monte Carlo (KMC) simulation and compared 

results against predictions from first-order mean-field and second-order pair truncation 

approximations of the hierarchy [9]. The model was revisited by Okino et al. [10] who 



11 

 

refined the pair or doublet truncation approximation and analyzed behavior of the 

reversible A↔ B as well as irreversible A→ B conversion reaction. Kärger and co-

workers [11–13] examined model behavior via KMC simulation and included the 

possibility of attractive interactions between participating molecules. Finally, Nedea et 

al. [14, 15], also considered behavior of the canonical irreversible reaction model A→ B 

without interactions, exploiting both KMC simulation and truncation of hierarchical rate 

equations. They further considered behavior for different distributions of catalytic sites 

within the pore, and also analyzed nontrivial limiting behavior for rapid diffusion (but 

with finite exchange rates at the pore ends). These studies have focused primarily on 

elucidating steady-state reactivity. 

While the anomalous aspects of tracer diffusion in single-file systems are well 

characterized, the behavior of chemical diffusion, which is of particular relevance for 

reaction-diffusion phenomena, is less completely characterized. It has been recognized 

that Onsager’s classic theory of transport can be applied to assess chemical diffusion 

fluxes in multi-species systems with and without single-file constraints [16,17]. Also, 

some of the above studies of single-file conversion reactions have described the 

corresponding discrete RDE, but only based on approximate mean-field treatments 

[9,14]. However, what has not been exploited is the existence of exact results for 

diffusion fluxes in multi-species lattice-gas models with site exclusion and species-

independent hop rates and interactions [18]. One can apply these results to single-file 

systems. One goal here is to use these exact results to assess the consequences of single-

file diffusion for the transient behavior in conversion reactions, a relatively unexplored 
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issue. We will also analyze behavior for various distributions of catalytic sites within the 

pore. In addition, regarding steady-state behavior, we will assess fundamental scaling 

behavior of quantities related to reactivity as a function of key model parameters. 

In Sec. II, we specify in detail the single-file conversion reaction model, the 

associated hierarchical rate equations and mean-field-type RDE (mf-RDE), and discuss 

basic model properties. Then, in Sec. III, we formulate a treatment for the 

“hydrodynamic regime” where the evolution of slowly varying species concentrations 

might be described by continuum hydrodynamic RDE (h-RDE). Both steady-state and 

transient behavior is described in Sec. IV for a “canonical” conversion reaction model 

where all sites within the pore are catalytic. Behavior where either the peripheral or the 

central sites are catalytic is described in Sec. V. Finally, we offer some comments on 

more general models, and present conclusions in Sec. VI. 

 

II. Reaction-diffusion model: prescription and basic properties 

The model considered in this study was developed previously to describe the 

diffusion-mediated catalytic conversion of a reactant to a product (A  B) inside linear 

pores which are sufficiently narrow as to allow only single-file diffusion [9-15]. To treat 

the spatial aspects of this process, the model incorporates the feature that both reactants 

and products inside the pore reside at the sites of a linear lattice. The introduction of a 

discrete spatial structure should not affect the basic aspects of model behavior, at least 

for concentration profiles varying smoothly over several lattice constants. Such LG 

modeling also greatly facilitates both analytic investigation and simulation. The key 
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mechanistic steps in the model are: adsorption of “external” (ext) reactant species A at 

terminal sites (t) of the pore provided that these sites are unoccupied or empty, E; 

subsequent diffusion of A within the pore by hopping to nearest-neighbor (NN) empty 

sites; conversion reaction A  B at catalytic sites (c) within the pore. The product, B, 

also undergoes diffusion by hopping to NN empty sites, and both the reactant and 

product undergo desorption from terminal sites (t) of the pore. Thus, to summarize, the 

mechanistic steps of the reaction are: 

A(ext) + Et  At (adsorption);  An + En+1  En + An+1 (diffusion);  and 

At  A(ext) + Et (desorption) 

Ac  Bc (reaction);  Bn + En+1  En + Bn+1 (diffusion);  and 

Bt  B(ext) + Et (desorption), 

where we label the sites in the pore by n=1, 2,…, L (for pore length L). Thus, the 

terminal sites t are n=1 and n=L. The catalytic sites may constitute all sites or various 

subsets of sites within the pore, as described below. Total reactivity (i.e., the total 

production rate of B), R
B

tot, is simply proportional to the total amount of A within the 

catalytic regions of the pore. The system geometry and these mechanistic steps are also 

illustrated in Fig.1. 

Rates for the various processes described above will be denoted by W
A

ads = Wads 

for adsorption of A, W
K

des for desorption of species K = A or B; W
K

diff for hopping of 

species K to NN empty sites, and Wrx for A  B conversion. An exact analytical 

description of such stochastic Markov processes is provided by the master equation for 

the evolution of probabilities of various configurations for the entire system [19]. Often 



14 

 

these are written in hierarchical form. Here, we use <Kn> to denote the probability or 

ensemble averaged concentration for species K at site n, <KnEn+1> for the probability 

that K is at site n and for site n+1 to be empty (E), etc.. Then, the lowest order-equations 

describe the probabilities that individual sites are occupied by various species. When all 

sites are catalytic, one has that 

d/dt <A1> = Wads<E1> - W
A

des<A1> -Wrx<A1> - JA
1>2

,    (1a) 

d/dt <B1> = - W
B

des<B1> +Wrx<A1> - JB
1>2

,      (1b) 

d/dt <An> = -Wrx<An> - JA
n>n+1

 + JA
n-1>n

, for 1<n<L, and   (1c) 

d/dt <Bn> = +Wrx<An> - JB
n>n+1

 + JB
n-1>n

,  for 1<n<L,   (1d) 

and similar equations for the terminal site n=L to those for n=1. In these equations,  

JK
n>n+1

 = W
K

diff [<KnEn+1> - <EnKn+1>],     (2) 

denotes the net diffusive flux of K = A or B from n to n+1 (i.e., the difference between 

the flux from n to n+1 and that from n+1 to n). The total reactivity is given by R
B

tot = 

Wrx n=c<An>, where the sum is over all catalytic sites (i.e., over the entire pore in the 

above example). 

These equations (1) are coupled to probabilities for various configurations of 

pairs of sites. Equations for pair probabilities couple to those for various triples, etc., 

thus generating a hierarchy. Pair, triplet, etc., probabilities are not trivially related to 

single-site probabilities due to the presence of spatial correlations. In these models, 

correlations derive from the interplay of adsorption-desorption and diffusion with 

reaction. Implementing a simple mean-field (MF) factorization approximation, <KnEn+1> 
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 <Kn><En+1>, etc., produces a closed set of discrete mf-RDE’s for single site 

concentrations, <An> and <Bn> noting that <An> + <Bn> + <En> =1.  

A more accurate pair approximation retains pair quantities like <KnEn+1>, but 

factorizes triplet quantities, e.g., <KnMn+1Nn+2>  <KnMn+1><Mn+1Nn+2>/<Mn+1>, with 

K, M, N = A, B, or E.  This generates a closed set of equations for single site quantities, 

<An> and <Bn>, together with the pair quantities, <AnAn+1>, <AnBn+1>, <BnAn+1>, and 

<BnBn+1>. See, for example, [9,10,14]. Note that there exist various exact relations 

determined by conservation of probability, i.e.,  <AnBn+1> + <AnAn+1> + <AnEn+1> = 

<An>, allowing one to determine <AnEn+1> from the set of the six selected quantities 

above. Higher-order approximations are also possible retaining probabilities of 

configurations of strings of n>2 sites, although the gain in accuracy with increasing 

order, n, may be slow [20]. 

A precise determination of model behavior is obtained by standard KMC 

simulation implementing processes with probabilities proportional to their rates. More 

specialized simulation algorithms may be applied to assess behavior in limiting regimes 

[15]. 

Following previous studies [10,12,14,15], to reduce the number of parameters in 

the model and also to induce some special features of model behavior, we will primarily 

consider the case where desorption rates and diffusion rates for both species are equal, 

i.e., W
K

des = Wdes and W
K

diff = Wdiff, for K = A and B. There is an important 

consequence of this rate choice. Suppose one does not discriminate between the identity 

of particles, but only considers whether sites are empty, E, or filled, X=A+B (i.e., if one 
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just considers the total concentration at various sites). Then, the dynamics corresponds to 

a pure adsorption-desorption-diffusion process for particles X with no reaction. 

Correspondingly, from Eqs. (1), one obtains the exact equations 

d/dt <X1> = Wads<E1> - Wdes<X1> - JX
1>2

,      (3a) 

d/dt <Xn> = - JX
n>n+1

 + JX
n-1>n

, for 1<n<L,     (3b) 

d/dt <XL> = Wads<EL> - Wdes<XL> + JX
L-1>L

,     (3c) 

where JK
n>n+1

 = Wdiff [<XnEn+1> - <EnXn+1>] = Wdiff [<Xn> - <Xn+1>].  (4) 

The exact relation corresponding to the last equality in Eq. (4) expressing JK
n>n+1

 in 

terms of single-site quantities amounts to an exact reduction of a many (X) particle 

problem to a single-particle problem. This feature was first noted by Kutner for an 

infinite lattice [21]. Extension of this reduction to semi-infinite and finite lattices has 

also been recognized previously [14,22]. Thus, the evolution of <Xn> is described 

exactly by standard discrete diffusion Eq. (3b), augmented by adsorption and desorption 

terms at the end sites in equations (3a) and (3c). The equations are closed noting that 

<En> = 1 - <Xn>. 

It is thus straightforward to visualize the evolution of the total concentration 

starting from an empty pore. The total concentration will first build up near the ends of 

the pore, then spread by diffusion to the interior, and finally achieve a spatially uniform 

steady-state. Since there is no reaction in the dynamics of particles X, the steady-state 

corresponds to a conventional grand canonical equilibrium state with activity z = 

Wads/Wdes [23]. Furthermore, since there are no interactions between particles X in this 

model, they are randomly distributed (i.e., there are no spatial correlations) in this trivial 
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equilibrium state. The equilibrium concentration at each site satisfies <Xn>eq = Xeq = 

z/(1+z) = Wads/(Wads+Wdes) (cf. [9,15]).  As an aside, we note that while the equilibrium 

steady-state is free of spatial correlations just considering the distribution of filled sites, 

X, such correlations do develop during filling of the pore. Remarkably, an exact closed 

set of equations can be obtained for pair probabilities, <XnXn+m>, or associated 

correlations, as these decouple from triplet correlations [24]. Likewise, an exact closed 

set of equations can be obtained for the triplet correlations which decouple from the 

quartet correlations, etc. The nature of this decoupling is analogous to that described for 

Eq. (4). 

In our analyses below, we will choose Wads + Wdes =1 which sets the time-scale. 

We will present results only for: (i) Wads = 0.2, Wdes = 0.8 [low loading]; (ii) Wads = 0.8 

(or 0.9), Wdes = 0.2 (or 0.1) [high loading]. Single-file effects are stronger for high 

loading. Parameters Wrx and Wdiff will either have suitably-selected fixed values when 

comparing predictions of various treatments, or will be systematically varied in scaling 

studies. Note that well-defined limiting behavior is found in the regimes where: (a) 

Wads+Wdes (with fixed z = Wads/Wdes) far exceeds Wrx and Wdiff  [12], so that reaction is 

not limited by adsorption and desorption at the ends at the pore; (b) Wdiff far exceeds all 

other parameters. In contrast to typical reaction-diffusion systems where concentrations 

become uniform in this limit, nontrivial behavior is found in this single-file system [15]; 

(c) Wdiff is far smaller than other parameters, so then only the terminal sites have a non-

zero population of A in the steady-state [25]. 
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III. Hydrodynamic regime and reaction-diffusion equations  

In discrete LG reaction-diffusion systems, it is common to consider behavior in 

the “hydrodynamic regime” of substantial diffusion (on the time scale of other 

adsorption-desorption and reaction processes) and slowly varying particle concentrations 

(on the length scale of lattice constants) [4,5,26]. Within this framework, one might 

describe behavior by continuum hydrodynamic reaction-diffusion equations (h-RDE) 

after coarse-graining the discrete spatial variable to a continuous variable. Specifically, 

for linear lattices, one sets x = na, where n is the lattice site label and “a” is the lattice 

constant. (As an aside, it is often convenient to set a=1 in the following.) Then, species 

concentrations per unit length become functions of a continuous variable K(x=na)  a
-1

 

<Kn>, where we leave implicit the t-dependence. To develop h-RDE, one needs an 

appropriate description of collective or chemical diffusion in this multi-species lattice-

gas system [4,5,16,17,26] incorporating the single-file nature of diffusion.  

Before addressing this major challenge, we comment on the much simpler task of 

describing the behavior of the coarse-grained total particle concentration per unit length, 

X(x=na)  a
-1

 <Xn>, in the hydrodynamic regime. As noted in Sec.II, the dynamics of 

this concentration profile is described by a reaction-free discrete diffusion equation. If JX 

denotes the corresponding diffusion flux, then in the hydrodynamic regime, one has that  

/t X(x) = -/x JX with JX = -DX /x X(x) and DX = a
2
Wdiff .   (5) 

The feature that the chemical diffusion coefficient, DX, is independent of 

concentration is well known for this single-component problem [21]. Thus, the single-

file nature of the system does not reveal itself when considering chemical diffusion for a 
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single species X. Eq. (5) is augmented with the appropriate Robin boundary conditions 

JX = aWads(Xm -X) - aWdesX at the pore ends, a relation derived from a steady-state 

form of Eq. (1a). Here, Xm = 1/a is the maximum concentration per unit length. 

For the case where all sites are catalytic, the h-RDE in our conversion reaction 

model for individual species concentrations, A(x) for A, and B(x) for B (leaving implicit 

the t-dependence), have the form 

/t A(x) = -Wrx A(x) -/x JA and /t B(x) = +Wrx A(x) -/x JB.  (6) 

where X(x) = A(x)+B(x). If sites within the pore are catalytic only in specific (e.g., 

peripheral) regions, then the reaction terms appear only for those locations. Description 

of the diffusion fluxes, JA and JB, for species A and B, respectively, is non-trivial in 

mixed lattice-gases even in the absence of interactions beyond site exclusion.  The 

appropriate Robin boundary conditions for Eq. (6) at the pore ends have the form JA = 

aWads(Xm -X) - aWdesA, and JB = -aWdesB. 

           Onsager’s transport theory ensures that the diffusive flux of A has the form 

[4,5,16,17,26] 

JA = - DA,A /x A(x) - DA,B /x B(x),      (7) 

where in general the diffusion coefficients DA,K depend on species concentrations. Thus, 

the flux JA is induced by gradients in both <A> and <B>. A similar expression applies 

for the flux, JB, of B. The four diffusion coefficients, DK,K, with K, K = A or B, can be 

conveniently collected into a 2x2 diffusion tensor D. Onsager’s theory [16,17,26] further 

shows that this tensor involves both a thermodynamic “inverse compressibility” factor 

and a kinetic “conductivity” factor [27].  
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A. Exact hydrodynamic diffusion fluxes 

As indicated above, there is a general appreciation that in principle the 

components of D can be determined using the statistical mechanical formulation of 

Onsager theory. However, what has not been exploited is the existence of an exact result 

for the case of a multi-species lattice-gas with no interactions beyond site exclusion and 

for equal hop rates, Wdiff [4,18,26]. For one-dimensional (1D) systems with single-file 

diffusion, one has the simple and intuitive exact form 

JA = -DX [A(x)X(x)
-1

] /x X(x),  JB = -DX [B(x)X(x)
-1

] /x X(x).  (8) 

In obtaining Eq. (8) from more general results [18,26], we have exploited the 

feature that the tracer diffusion coefficient vanishes for 1D single-file systems. See 

Appendix A. 

There is an important consequence of the form (8) of the diffusion fluxes for the 

steady-states of the h-RDE. From Eq. (8), it is clear that fluxes JA and JB vanish for states 

with uniform total concentration, X(x) = constant, irrespective of whether there are 

gradients in individual species concentrations. This reflects the lack of intermixing in 

single-file systems. Since the steady-state of the reaction model is characterized by 

constant X(x) = a
-1

 Xeq = a
-1

 Wads/(Wads+Wdes), JA and JB must vanish for long times. 

Consequently, in this regime, concentrations interior to the pore change only due to 

reaction. As a result, any A is converted to B in regions with catalytic sites, so that 

<A>=0 and <B> = Xeq in the steady-state in such regions. For example, if all sites are 

catalytic, then the steady-state is completely unreactive in the hydrodynamic picture. In 
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the actual model with all sites catalytic, reactivity does actually persist near pore ends in 

the steady state, but only due to fluctuations absent in the hydrodynamic treatment.  

In the transient regime, as noted above, the evolution of <Xn> or X(x) is simply 

described by the nonreactive diffusion problem. A gradient develops as particles diffuse 

into the pore, and thus the diffusion fluxes JA and JB in Eq. (8) are nonzero and always in 

the direction towards the center of the pore. We will show that the correct description of 

diffusion in hydrodynamic RDE does capture key aspects of transient behavior. For such 

comparisons with KMC simulation results, we utilize discrete hydrodynamic RDE which 

incorporate a discrete version of Eq. (8) as described in Appendix B.  

 

B. Mean-field diffusion fluxes 

In contrast to the above hydrodynamic treatment, a mean-field (MF) treatment of 

chemical diffusion fluxes yields the distinct form  

JA(MF) = -DX [1 - B(x)Xm
-1

] /x A(x) -DX [A(x)Xm
-1

] /x B(x),  (9) 

and an analogous expression applies for JB
MF

. Again Xm=1/a is the maximum 

concentration per unit length. This previously utilized result [16,17,28] can be obtained 

from Onsager theory accounting for the known thermodynamics of a non-interacting 

lattice-gas, but also incorporating a crude approximation for species conductivity [27]. 

However, it is instructive to note that an alternative simple kinetic derivation of the MF 

result (9) is also possible [14,29]: one simply applies the MF factorization to JA
n>n+1

 and 

JB
n>n+1

 in Eqs. (1c,d) and recasts the results in terms of continuous derivatives for slowly 

varying concentrations.  
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Clearly, this MF form of the diffusion fluxes which applies for any lattice 

dimension fails to capture the single-file nature of diffusion, and thus also fails to 

capture aspects of the correct hydrodynamic behavior. For example, the form (9) allows 

nonzero diffusion fluxes for constant X,  and this can produce artificially enhanced 

intermixing of A and B. Specifically, one has that 

JK(MF)  -DX(1-Xeq) /x K(x), 

when X  a
-1

 Xeq (steady-state) for K = A or B.                                 (10) 

The MF form also allows diffusion of species away from the center of the pore. 

Severe failure can be anticipated in the regime of large Wdiff where the MF formulation 

predicts complete intermixing [14,15], but the actual single-file nature of diffusion 

prohibits such behavior. 

For comparison with results of KMC simulation for both transient and steady-

state behavior, we will implement the mf-RDE associated with the MF truncation 

approximation to Eq. (1). These constitute the natural discrete version of Eq. (9). See 

Appendix B. In addition, we will implement discrete mf-RDE associated with the pair 

approximation which might be regarded as providing a refined treatment of diffusion. 

(As an aside, it is nontrivial to extract continuum h-RDE for the pair-approximation 

[30].) We shall see that both the MF and pair approximations do capture some aspects of 

fluctuation effects near the end of the pore in contrast to the hydrodynamic treatment. 

 

IV. Canonical model: all sites catalytic 

A. Steady-state behavior 
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Fig. 2 shows a “typical” example of the evolution of concentration profiles 

towards the steady-state for the parameter choice Wads=0.2, Wdes=0.8, Wrx=1, Wdiff=1, 

and pore length L=30. Precise results of KMC simulations in Fig.2a are compared 

against those from various approximate analytic formulations in Fig.2b-d. The mean-

field and pair approximation are quite effective in capturing behavior near the pore end 

as noted previously [9,10,14].  These approximations and the hydrodynamic treatment 

all describe effectively exactly evolution in the interior of the pore where there is just 

one species (B). Note that the A-concentration profile reaches a non-trivial steady-state 

form (with significant population only on the four sites closest to the pore end) long 

before the steady-state of the entire system is reached (for which <Xn>=0.2). This can be 

anticipated since all that is required for development of steady-state <An> is sufficient 

diffusion into the pore end so that <Xn> is close to its steady state value at sites near the 

pore end. Filling of the interior of the pore by species B occurs on a slower time scale. 

Simulation with the same rate parameters but for longer pores produces essentially 

identical steady-state <An> distribution, but just take longer for the interior of the pore to 

fill with B.  

As noted above, hydrodynamic analysis predicts that in the steady-state, the 

central region will contain just B and no A, so that <Bn> = Wads/(Wads+Wdes)  Xeq and 

<An>  0. Only the end sites have significant A population in our discrete formulation. 

Thus, the nonzero population of A near the pore ends observed in simulations can be 

associated with fluctuation effects not included in the hydrodynamic formulation. Since 
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the reactivity of the system is determined by the population of A in the pore, these 

fluctuations are entirely responsible for the steady-state reactivity.  

This observation motivates more detailed analysis of the dependence of this 

steady-state <An> concentration profile on model parameters. Steady-state profiles 

appear to have an exponential form,  

<An>  c· r
n
 = c·exp(-n) = c·exp(-n/Lp1), at least for larger n <L/2.    (11) 

In Eq. (11),  = - ln r is the decay rate, and Lp1=1/ is a measure of the 

penetration depth of A into the pore. In our analysis of KMC data below, we do find 

deviations from simple exponential decay for smaller n, most clearly in cases where Lp1 

is large (so decay is slow). The behavior (11) also implies that the production rate, RB
tot

, 

should converge exponentially to a finite value with increasing pore length. We note that 

another natural measure a penetration depth, Lp, at least in the regime where Lp is large 

is Lp2 = n<L/2 <An>/<A1>. Yet another alternative is Lp3 = -1/ln( 1- 1/Lp2), which would 

correspond exactly to Lp1 for perfect exponential decay where <An> = <A1> r
n-1

. See 

Table I. 

First, we examine the dependence on reaction rate, Wrx, of steady-state 

penetration depth Lp (considering all of Lp1, Lp2, and Lp3). We set Wdiff  =1 and vary Wrx 

from 1 to 10
-3

 for a system of size L=100. The lower the reaction rate, the greater the 

extent of penetration of A into the pore, and the greater Lp. Fig.3a-b show concentration 

profiles for Wads=0.8 and Wdes=0.2 for various Wrx. Analysis of this data and analogous 

data for Wads=0.2 and Wdes=0.8 to extract Lp versus Wrx is shown in Fig.3c-d. One finds 

that Lp increases with decreasing Wrx much more slowly than (Wrx)
-1/2

. Instead, we 
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suggest that Lp ~ (Wrx)
-1/4

, as Wrx  0, corresponding to asymptotically linear behavior 

in Fig.c-d for large abscissa. This behavior might be anticipated from the postulate that 

Lp should reflect the root-mean-square displacement for single-file diffusion on a time-

scale corresponding to the reaction time, rx = 1/Wrx. This implies that (Lp)
4
 ~ rx and thus 

that Lp ~ (Wrx)
-1/4

. This result for Lp immediately yields scaling of the total reactivity per 

pore as R
B

tot ~ Wrx Lp ~ (Wrx)
3/4

. 

Second, we examine the dependence on diffusion rate, Wdiff, of steady-state 

behavior. For a conventional reaction-diffusion system, increase of hopping rates 

ultimately produces spatial uniformity of species concentrations due to “efficient 

stirring” corresponding to Lp . One also achieves randomization of configurations in 

the absence of interactions [4,30].  A special feature of the single-file system being 

considered here [14,15] is the existence of nontrivial spatially non-uniform limiting 

behavior as Wdiff  (but retaining finite Wads, Wdes, and Wrx) [31]. One obtains a well-

defined limiting concentration profile with finite penetration depth, Lp(Wdiff) < , in 

this regime. More detailed analysis of steady-state concentration profiles for increasing 

Wdiff suggests that Lp1 ~ Lp1(Wdiff ) + c(Wdiff)
-1/4

. See Fig.4. Limiting values of 

Lp1(Wdiff ) was obtained from a tailored simulation algorithm (cf. [15]). Separate 

analysis indicates that Lp2 and Lp3 are fairly insensitive to Wdiff. 

Next, we consider the predictions of MF-type analytic treatments regarding the 

above behavior. The simplest MF approximation exhibits precise exponential decay for 

long pores. This behavior, noted previously [14], is a result of the feature that <En> =1-

<Xn> is constant, which in turn allows reduction of the steady-state form of Eq. (1c) to a 
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linear coupled set of equations. Setting  = Wrx/Wdiff and Xeq = Wads/(Wads+Wdes), then 

seeking a solution to these linear equations of the form <An>  r
n
 yields for r, the 

quadratic equation (cf. [14]) 

(1-Xeq)(r + r
-1

 -2) = .        (12) 

Consequently, one has that  = 1-r ~ (1-Xeq)
-1/2

 
1/2

, for small , so that (cf. [14]) 

Lp1(MF) ~ 
-1

 ~ (1-Xeq)
1/2

 (Wrx)
-1/2

(Wdiff)
1/2

, for Wrx  0 or Wdiff .  (13) 

The result (13) can be obtained more directly from the continuum MF 

formulation [32]. This result reveals a fundamental failure of the MF treatment to 

describe asymptotic behavior of Lp. The failure to describe scaling as Wrx0 or Wdiff 

 reflects an inability to capture single-file aspects of diffusion. Since concentration 

profiles become spatially uniform within the MF approximation as Wdiff , this 

enables simple direct analysis of MF behavior, e.g., showing that MF reactivity 

converges such as 1/L rather than exponentially as L. See Appendix C. 

It is instructive to assess the predictions of the higher-order pair approximation 

for the behavior of the penetration length, Lp. The complex nonlinear form of pair 

equations [14] excludes exact exponential decay. However, there should be asymptotic 

exponential decay <An> ~ exp(-n/Lp1) for large n <L/2. In the steady-state, one has the 

relations <An> + <Bn> = Xeq and <BnBn+1> + <BnAn+1> + <AnBn+1> + <AnAn+1> = (Xeq)
2
. 

Since one expects that <AnAn+1> decreases more quickly than <An>, <AnBn+1>, or     

<Bn-1An> for increasing n, it follows that one can just analyze equations for the latter 

quantities. Anticipating solutions of the form <An>  c·r
n
, <AnBn+1>  c··r

n
, and      
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<Bn-1An>  c··r
n
 and substituting into the rate equations for the pair approximation 

yields three coupled equations  

(1-)(r-1) + (1-)(r
-1

-1) = ,   (1-)(
-1

Xeq)(r
-1

+1) - (1-Xeq) - (1-) = , 

and (1-)(
-1

Xeq)(r+1) - (1-Xeq) - (1-) = .      (14) 

Seeking solutions for small  and  = 1-r with   Xeq + B and   Xeq + C 

yields C = -B = Xeq(1-Xeq)(2+Xeq)
-1

 [33] and 

Lp1(pair) ~ 
-1

 ~ (2-Xeq)
1/2

(2+Xeq)
-1/2

Lp(MF) , for large Lp1.    (15) 

Thus, Lp1(pair) is smaller than Lp1(MF) and closer to the exact Lp1, but still has the 

incorrect asymptotic functional form as Wrx  0 or Wdiff . 

 

B. Transient behavior 

In this subsection, we characterize the evolution of concentration profiles during 

filling of a very long (semi-infinite) pore with an emphasis on scaling behavior for 

increasing time, t. Recall that the total concentration satisfies a standard discrete 

diffusion equation which reduces to the conventional continuum equation in the 

hydrodynamic regime. Thus, it follows that this profile has the “classic” scaling form  

<Xn(t)>  <X(t=)> F(n/(Wdiff t)
1/2

), for n<L/2, where F(y) = erfc(y/2), (16)  

and where erfc is the complementary error function [34]. Thus, concentration profiles 

collapse onto a single curve for increasing t after rescaling the n-axis by (Wdiff t)
1/2

. 

However, when considering the individual species A and B, the system is dominated by 

B for increasing time due to reaction (when keeping all parameters fixed). After 

rescaling the spatial variable, one obtains <Bn> ~ <Xn> and <An> ~ 0. To achieve non-
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trivial scaling profiles with significant populations of both species inside the pore, it is 

natural to reduce the reaction rate as time is increased so that Wrxt remains constant. 

More precisely, we seek scaling solutions for the individual species concentrations of the 

form 

<An(t)>  <X(t=)> F
A
(n/(Wdiff t)

1/2
, Wrxt) and     (17a) 

<Bn(t)>  <X(t=)> F
B
(n/(Wdiff t)

1/2
, Wrxt),     (17b) 

for n<L/2, where F
A
 + F

B
 = F. Support for the existence of such solutions comes from 

substitution of these forms into the hydrodynamic reaction-diffusion equations of 

Sec.III. One then obtains a closed coupled pair of partial differential equations for the 

scaling functions F
A,B

(y, u). The specific form of the equations depends on the choice of 

diffusion fluxes (e.g., hydrodynamic versus MF), as do the solutions F
A,B

. See Appendix 

D. 

From the earlier discussion of hydrodynamic versus fluctuation effects, one 

might anticipate the following: (i) The MF and pair approximations should capture exact 

KMC behavior better for shorter times when most particles are relatively close to the 

pore opening. In this regime, behavior is more influenced by fluctuations. (ii) The 

hydrodynamic treatment should provide a better description of exact KMC behavior for 

longer times where the concentration profiles vary smoothly over many lattice constants. 

Indeed, this is the case as shown in Fig.5. For the selected parameters, the peak <An>-

concentration of around 0.08 in the MF and pair approximations for smaller times (larger 

Wrx) matches KMC results, but these approximations retain this value for longer times.  

In contrast, the peak in hydrodynamic treatment increases to about 0.13-0.14 for longer 
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times (smaller Wrx) in good agreement with long-time KMC results. This peak is far 

above the converged MF and pair approximation value of 0.08. 

 

V. Peripheral or central catalytic sites 

A. Peripheral catalytic sites 

Here, we consider situations where contiguous strings of sites at each end of the 

pore are catalytic, but sites in the central region are not. One can imagine this type of 

distribution might result where catalytic sites are created by grafting after formation of a 

meso- or nano-porous material and where diffusion into the pores is inhibited. (An 

alternative co-condensation process for mesoporous silica materials tends to produce a 

more uniform distribution of catalytic sites [35].) An example of the results of KMC 

simulations for evolution to the steady-state is shown in Fig.6. The parameter choices is 

Wads = 0.8, Wdes =0.2, Wrx =0.017, and Wdiff =10 for a pore of length L=100 with 20 

catalytic sites at each end. 

Characterization of behavior in this system is most appropriately divided into two 

regimes (provided that the reaction rate is not too large). In the first transient regime of 

“pore filling”, a significant amount of A may avoid reaction in the peripheral catalytic 

regions and diffuse into the central non-catalytic region, i.e., A will successfully run the 

gauntlet passing catalytic sites without conversion. After the pore has filled so that the 

total concentration <Xn> ~ Xeq is roughly constant, one expects a peak in the 

concentration of A (i.e., a “blob” of A) in the center of the pore, and strongly decreasing 

A concentrations approaching and entering the peripheral regions from the center of the 
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pore. Indeed, in a hydrodynamic treatment, one achieves a stationary state with a frozen 

blob of A in the central non-catalytic region of the pore, and the peripheral catalytic 

regions occupied only by B and completely devoid of A. (Note that this hydrodynamic 

steady-state is not unique, the specific form of the frozen A-distribution in the central 

region will depend on the initial conditions.) However, this is not a true steady-state of 

the stochastic model, although it might be regarded as a metastable state. 

Fluctuations at the end of the pore ensure that the A-concentration profile always 

has a local maximum at this location which does not diminish for long times (contrasting 

the hydrodynamic description). In fact, this part of the concentration profile is very 

similar to that for pore with all sites reactive (and with the same rate parameters).  

However, more dramatically, in the second late-stage regime, fluctuation effects 

mean that the blob of A formed during the transient regime in the central non-catalytic 

region is not frozen. The entire blob can undergo anomalous diffusion, and is thus 

guaranteed to reach the peripheral catalytic regions. As a result, eventually essentially all 

of the A in this blob will be converted to B leading to the true steady-state with the 

central non-catalytic region, and indeed most of the interior of the pore, devoid of A. 

Indeed, the true steady-state for this case is very similar to that for the case where all 

sites are catalytic (with the same rate parameters). The reason is that for the case with all 

sites catalytic, it is only the end of the pore where one has conversion AB in the steady 

state. 

Fig.7 compares the predictions of the hydrodynamic treatment and other 

approximations with exact KMC simulations for a finite time selected to correspond to 
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the end of the first transient regime in the KMC results. The parameter choices is Wads = 

0.8, Wdes =0.2, Wrx =0.017, and Wdiff =10. Specifically, we choose the time t = 420 

where the A-concentration at the center of the pore has roughly reached its maximum.  

In Fig.7, the concentration profile of the central A-blob in the KMC simulations is 

reasonably described by the hydrodynamic treatment. Small discrepancies presumably 

result from the feature that we have chosen a fairly small system, so fluctuation effects 

are still significant. In contrast, the MF and pair approximations fail to predict a 

significant peak in the concentration of A in central region. This is a consequence of the 

tendency of these approximations to allow artificially enhanced mixing of A and B. The 

pair approximation prediction is slightly closer to KMC behavior, reflecting the 

somewhat improved description of diffusion relative to MF. 

In Fig.8, we show a series of snapshots from KMC simulations for fluctuation-

dominated evolution in the late-stage regime. These fluctuations lead to diminution and 

removal of the significant A-concentration in the central non-reactive region of the pore. 

The diffusion of the A-blob within the non-catalytic region is clear, as well as its 

ultimate complete annihilation after several “collisions” with the peripheral catalytic 

region.  

 

B. Central catalytic sites 

Here, we consider situations where a contiguous string of sites in the center of 

the pore is catalytic, but sites in the peripheral regions are not. This geometry of catalytic 

sites has been considered in previous studies [14]. Toward the end of the first transient 
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stage of pore filling, a central catalytic region with reactant A largely converted to 

product B has been created, with non-catalytic regions on both sides primarily occupied 

by reactant A. Then, in the second late-stage regime, the central catalytic region remains 

essentially exclusively populated by B, but the concentration of product B in the non-

catalytic end regions increases and that of reactant A decreases to achieve the final 

steady-state form. The details of this fluctuation-dominated process are described below. 

It should be noted that there is very low reactivity in the steady-state for this system 

(compared with a pore with all sites catalytic and the same parameters) since there is 

little population by A of the central catalytic region.   

Fig.9 compares evolution in exact KMC simulations with the predictions of the 

hydrodynamic treatment and also the MF and pair approximations for a finite time 

selected to correspond roughly to the end of the first transient regime. In the 

hydrodynamic treatment, since diffusion fluxes are always towards the center of the 

pore, it is impossible to populate the non-catalytic end regions with B. Thus for long 

times in this treatment one has <An>  Xeq and <Bn>=0 in the non-catalytic end regions, 

and <An>  0 and <Bn>  Xeq in the central catalytic region. This is a steady-state in the 

hydrodynamic treatment, which might be described as a metastable state for the 

stochastic model. In fact, this simple hydrodynamic picture describes quite well the 

KMC results, deviations being due to fluctuations. In contrast, the MF and pair 

approximations predict a B-population in the non-catalytic end regions which is far too 

high. This is again a consequence of the tendency of these approximations to allow 

artificially enhanced mixing of A and B. The pair approximation prediction is slightly 
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closer to KMC behavior, again reflecting the somewhat improved description of 

diffusion relative to MF. 

Fig. 10 shows KMC results for more complete evolution to the reactive steady-

state. This occurs quite quickly for Xeq=0.1 (left frame). But for the case with Xeq=0.9 

(right frame), this evolution is much slower. In either case, one finds the development of 

quasi-linear concentration profiles in non-catalytic end regions. Note that the MF 

treatment predicts linear concentration profiles in the non-catalytic end regions. This 

result follows from Eq. (10) noting that the steady-state JK(MF) must be constant in 

these regions, which yields the relation /x K(x) = constant for K = A or B. Further 

insight into this behavior comes from the analysis immediately following.  

In Fig.11, we show a series of snapshots from KMC simulations for fluctuation-

dominated evolution in the late-stage regime for a case similar to Fig.9 where Xeq=0.9. 

These fluctuations lead to the development of a significant B-population in the 

peripheral non-catalytic regions of the pore (while the central catalytic region remains 

essentially exclusively populated by B). The simplest case is where the reaction rate Wrx 

is fairly large. Then, in any single realization of the reaction system, there is relatively 

little intermixing of the A and B species, i.e., the peripheral regions are essentially all A 

and the central region is essentially all B. (There is strictly no intermixing in the limit 

Wrx.) Thus, evolution in this regime simply involves the interface between A- and 

B-regions undergoing an (anomalous) random walk within the non-catalytic end regions, 

where this random walk is effectively subject to reflecting boundary conditions. When 

the interface and thus A species attempts to move into the central catalytic region, those 
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A are quickly converted to B, so the interface effectively cannot pass into the catalytic 

region and eventually meanders back into the non-catalytic region. When the interface 

and thus the B species reach the end of the pore, they can desorb and are replaced by 

adsorbing A species, so that the interface eventually wanders back toward the center of 

the pore. Thus, the quasi-linear steady-state concentrations in non-catalytic region shown 

in Fig.9, and also in previous studies [14], correspond to an ergodic-like time-average 

over the interface position.  

 

VI. Generalizations and conclusions 

There are many instructive generalizations of the above model and analyses. 

Here, we briefly comment on a few of these. It is natural to consider other distributions 

of catalytic sites not necessarily involving contiguous strings of such site. Simple 

examples would be periodic or spatially homogeneous random distributions. For a 

conventional reaction-diffusion system (without single-file diffusion), a coarse-grained 

continuum description of the form (6) would simply reduce the reaction rate by a factor 

proportional to the local density of catalytic sites. However, in single-file systems with 

steady-state reactivity localized at the end of the pore, this procedure might not be 

effective unless the penetration depth is very large. 

Other natural generalizations include the introduction of unequal hop rates for 

reactant and product species in the absence of interactions between species. Then, the 

behavior of the non-equilibrium steady-state will be more complex, but key features 

induced by single-file diffusion persist [36]. One could also introduce interactions 
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between these species where all rates must be chosen to satisfy detailed-balance [13]. 

For simplicity, one might choose the strength of the interactions and also the adsorption-

desorption rates to be species-independent (cf. [13]).  Then, just focusing on whether 

sites are occupied by particles X=A+B, the steady-state is a conventional grand 

canonical equilibrium state with a uniform total particle density away from the pore 

ends. In the hydrodynamic regime, the chemical diffusion fluxes must still vanish in this 

steady-state as a consequence of the single-file nature of diffusion [36]. Thus, just as for 

our simpler model, one can conclude that catalytic regions inside the pore will be 

unreactive (as all reactant A will be converted to product), and that steady-state 

reactivity will be controlled by fluctuations [36].  

Yet another class of generalizations of the above process include sequential 

conversion reactions A  B  C  or parallel conversion reactions A  B,  A  C, 

etc., at catalytic sites. For simplicity, consider the special choice of rates, W
K

des = Wdes 

and W
K

diff = Wdiff, for all species types, K. Again, if one does not discriminate between 

the identity of particles, but only considers whether sites are empty, E, or filled, 

X=A+B+…, then evolution of X is described by a standard discrete diffusion equation. 

Furthermore, significantly, the exact hydrodynamic treatment of diffusion for the two-

species case readily generalizes to treat this more complex case (cf. [37]). Thus, 

effective analysis of transient behavior should be possible with appropriate h-RDE, and 

again we expect steady-state reactivity to be controlled by fluctuation effects [36]. 

In summary, the transient and steady-state behavior of single-file conversion 

reaction systems displays some general features. Transient evolution of concentration 
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profiles is effectively described by hydrodynamic RDE which properly incorporate the 

single-file nature of diffusion. However, steady-state reactivity is controlled by 

fluctuation effects not incorporated in the hydrodynamic treatment. MF-type treatments 

can capture some aspects of this steady-state behavior, but not scaling properties for 

extreme choices of reaction and diffusion rates. 
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Appendix A: Exact hydrodynamic diffusion fluxes  

Consider a two-component lattice-gas where species A and B have equal hop 

rates, Wdiff, to NN empty sites, and there are no interactions beyond site exclusion. Set 

DX = a
2
Wdiff. Then, for hyper-cubic lattice of any dimension, the diffusion flux for 

species A in the hydrodynamic regime of slowly varying concentrations has the exact 

form [4,18,26] 

JA = -DX X
-1

[A + B Ftr(X)] A - DX X
-1

A [1– Ftr(X)] B 

          = -DX [AX
-1

] X - DX Ftr(X) X
-1

 [B A – A B],   (18) 
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with an analogous expression for JB. Here, A, B and X=A+B represent concentrations 

per unit length, and  denotes the spatial gradient. The quantity Ftr represents the tracer 

diffusion coefficient for a tagged particle with hop rate of unity within a dense single-

component lattice-gas on the hyper-cubic lattice of concentration X. Generalizations 

have been explored for the case of unequal hop rates of A and B [4,38].  

For an infinite 1D lattice, JA is a scalar,  = /x, and Ftr = 0, recovering the 

result (8). Ftr vanishes since diffusion is anomalous in 1D, the root-mean-square 

displacement of the tagged particle increasing like t
1/4

 rather than t
1/2

 [6-8]. It is 

instructive to note that the MF form of the diffusion fluxes (9) is recovered by choosing 

Ftr = (1- X/Xm). This offers the possibility of developing a hybrid expression for the 

diffusion fluxes capturing both aspects of the MF description near the pore ends and the 

hydrodynamic description in the pore interior [36]. 

 

Appendix B: Discrete forms of diffusion fluxes  

For comparison of KMC results sometimes for relatively short pores with 

predictions based on a hydrodynamic treatment of diffusion, we naturally incorporate an 

appropriate discrete version, JK
n>n+1

, of the hydrodynamic diffusion fluxes (8) into the 

discrete RDE’s (1). We have utilized discrete forms 

JK
n>n+1

 = -Wdiff PK
n,n+1 

<Xn> with <Xn> = <Xn+1>-<Xn> for K=A or B,  (19) 

with PK
n,n+1

 = 1 if <Xn><Xn+1> = 0. For <Xn><Xn+1>  0, one standard choice would set  

PK
n,n+1

 = ½ (<Kn>/<Xn> + <Kn+1>/<Xn+1>).      (20) 
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However, other reasonable choices have the form PK
n,n+1

 = <Kn,n+1>/<Xn,n+1>  where 

<Kn,n+1> =   ½ (<Kn>+<Kn+1>), or  2<Kn><Kn+1>/(<Kn>+<Kn+1>)], or <Kn><Kn+1>. 

Analysis of evolution typically finds only small differences between results from these 

different choices. 

 One case requiring special treatment is where just the central sites are catalytic. 

Then, there is a sharp boundary between a central region with finite population of B and 

peripheral regions devoid of B (in a continuum treatment). Choice (20) produces a 

substantial B-flux from the site just outside to that just inside the catalytic region, 

producing an unphysical negative B-concentration for the former. The same behavior 

occurs to varying degrees in the other choices. However, in our analysis, we eliminate 

this problem by setting to zero the B-flux between these two sites (and identifying the A-

flux with the total particle flux).  

 As an aside, for the continuum MF diffusion flux (9), a standard numerical PDE 

treatment would implement various discretizations, e.g., analogous to (20). However, 

our analysis starting with the discrete master equations and applying a factorization 

approximation suggests the natural form 

JA
n>n+1

(MF) = -Wdiff [(1-<Bn>)<An>  + <An><Bn>].   (21)

     

Appendix C: Mean-field behavior as Wdiff  

The MF prediction for Wdiff  of spatially uniform concentration profiles 

enables simple analysis of the MF steady-state. Summing all of the equations for <An> 

implies   
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0 = d/dt (n <An>)          

              = Wads(<E1>+<EL>) –Wdes(<A1>+<AL>)  

                 – Wrx (n <An>) + (n JA
n>n+1

=0),                                                           (22) 

where n JA
n>n+1

=0 by symmetry. Consequently, using spatial homogeneity yields 

  <An>|MF = 2Wads Eeq/(2Wdes + LWrx) ~ 1/L where Eeq = Wdes/(Wads+Wdes).          (23) 

and <An>|MF + <Bn> |MF = Xeq=1-Eeq. Thus, the MF total reactivity, Rtot
MF

 = 

WrxL<An>|MF, converges like 1/L, as L, rather than displaying the correct 

exponential convergence. 

 

Appendix D: Scaling forms for pore filling  

For the total concentration X(x,t), substitution of the form X(x,t)  F(x/(Dxt)
1/2

) 

into the standard diffusion equation yields  

-½ yF(y) = F(y),        (24) 

which is satisfied by the “classic” erfc solution. Next, consider the scaling forms A(x,t)           

F
A
(x/(Dxt)

1/2
, Wrxt) and B(x,t)  F

B
(x/(Dxt)

1/2
, Wrxt) for the concentrations of A and B. 

Substitution into the hydrodynamic RDE yields 

-½ y F
A

1(y,u) + uF
A

2(y,u) = - uF
A
(y,u) + K(F

A
, F

B
),           (25a) 

-½ y F
B

1(y,u) + uF
B

2(y,u) = + uF
B
(y,u) + K(F

B
, F

A
),      (25b) 

where the subscripts 1(2) denote partial differentiation with respect to the first (second) 

variable y (u). The “diffusion terms” K have the form 

K(F
A
, F

B
) = [1-F

B
]F

A
11 + F

A
F

B
11 (MF),      (26a) 

K(F
A
, F

B
) = F

A
1F

B
1/F – F

A
 (F)

-2
 (F1)

2
 + F

A
 (F)

-1
 F11 (exact hydrodynamic). (26b) 
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Tables 

 

Table I. Tabulation of Lp-values from KMC simulations, and the MF and pair-

approximations, for the cases analyzed in Fig.3. 

 

               Wads = 0.8 and Wdes = 0.2                          Wads =0.2 and Wdes = 0.8 

Wrx 1 0.1 0.01 0.001  1 0.1 0.01 0.001 

Lp1(KMC) 0.41 0.69 1.00 2.56  0.88 2.13 5.56 16.7 

Lp2(KMC) 1.10 1.47 2.64 5.21  1.47 2.92 6.77 15.2 

Lp3(KMC) 0.42 0.88 2.10 4.69  0.87 2.39 6.25 14.7 

Lp1,3(MF) 0.520 1.44 4.48 14.1  0.937 2.84 8.95 28.29 

Lp2(MF) 1.17 2.00 5.00 14.7  1.53 3.37 9.46 27.78 

Lp1(pair) 0.432 1.23 2.92 9.26  0.882 2.59 8.11 27.89 

Lp2(pair) 1.11 1.79 3.47 9.77  1.48 3.12 8.61 27.84 

Lp3(pair) 0.433 1.23 2.94 9.26  0.882 2.59 8.10 27.33 
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Figures 

 

 

Fig.1. Schematic of catalytic conversion reaction AB in a single-file system. Catalytic 

sites (c) are located near the pore ends in this illustration. The configuration shown 

represents the transient regime. See Sec.IV. 

 

 

Fig.2. Evolution of concentration profiles to the steady-state in a pore with all sites 

reactive: A (blue solid lines); B (red dashed lines); X=A+B (black dotted lines). This 

format is used in subsequent figures. Parameters are Wads = 0.2, Wdes = 0.8, Wrx = 1, Wdiff 

= 1, and L = 30. Time increments are t = 100. (a) KMC results averaged over 2.5x10
5
 

simulations; (b) hydrodynamic, (c) MF, and (d) pair approximation results. The B-

concentration increases with time. 
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Fig.3. Steady-state behavior for a mesopore with all sites catalytic. (a) Concentration 

profiles for Wads=0.8, Wdes=0.2, and Wdiff=1, with L=100 for Wrx=1, 0.1, 0.01, and 

0.001; (b) ln <An> versus n<<L/2 for the data in (a); data for smaller Wrx has greater 

penetration in (a) and smaller slopes in (b); Lp versus (Wrx)
-1/4

 with Wdiff=1 for: (c) 

Wads=0.8, Wdes=0.2; and for (d) Wads=0.2, Wdes=0.8. Squares, diamonds, and triangles 

denote Lp1, Lp2, and Lp3, respectively. 

 

 

  

Fig.4. Dependence of Lp1 on Wdiff (but retaining fixed finite Wads, Wdes, and Wrx) 

demonstrating the nature of the convergence to Lp1(Wdiff ) as Wdiff . 
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Fig.5. Diffusion into an initially empty semi-infinite pore with all sites catalytic. 

Parameters: Wads=0.2, Wdes=0.8, Wdiff = 1, and Wrx t = 4 (ensuring comparable amounts 

of A and B in the pore). Rescaled concentration profiles for: (a) KMC simulation; (b) 

hydrodynamic; (c) MF; and (d) pair approximations. KMC results are shown for Wrx = 

0.1, 0.01,… and 0.000001 (6 cases), where convergence to the limiting profile shapes is 

very slow. Convergence is fast for the MF and pair approximations (by Wrx~0.01), and 

moderate for the hydrodynamic treatment (by Wrx~0.001 where data is shown for Wrx = 

0.1, 0.01, and 0.001).  

 



45 

 

 

 

Fig.6. KMC results for the complete evolution of species concentrations for a pore of 

length L=100 with 20 sites at each end catalytic. Parameters are Wads = 0.8, Wdes =0.2, 

Wrx =0.017, and Wdiff =10. The left frame shows the transient pore-filling regime for 

time increments of 60 up to t=600 where the peak <A50> is growing significantly to 

reach a maximum. The following “metastable regime” has little change over ~10
3
 time 

units. The right frame shows slow late-stage evolution for times t = 1000, 5000, 10000, 

14000, 20000, and 100000 where <A50> decreases below its maximum. The steady-state 

(with <An>0 in the central region) is reached after ~10
5
 time units. Black dotted arrows 

indicate evolution with increasing time. 
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Fig. 7. Behavior roughly at the end of the transient regime t = 420 for a pore of length 

L=100 with 20 peripheral sites catalytic at each end. The parameter choices is Wads = 

0.8, Wdes =0.2, Wrx =0.017, and Wdiff =10. Reactant A in the pore center has “run the 

gauntlet” through the peripheral catalytic regions. Results from: KMC (solid); 

hydrodynamic (dashed); pair (dot-dashed); MF (dotted).  
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Fig. 8. Later-stage evolution in a pore of length L=50 with 10 catalytic sites (grey) on 

each end catalytic. Dark blue circles are reactant A. Lighter red circles are product B. 

Sequence of images separated by 42 time units from a single KMC simulation run. 

Parameters: Wads=0.1, Wdes=0.9, Wrx=0.08, and Wdiff=100. The central A-blob diffuses 

to the peripheral catalytic regions ultimately being converted to product. Higher Xeq=0.9 

makes the A-blob more visible. 
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Fig.9. KMC of concentration profile evolution for the central 60 sites catalytic in a pore 

of length L=100. Parameters are Wrx = 0.33, Wdiff = 10, and for (a) Wads = 0.1, Wdes = 

0.9; (b) Wads = 0.9, Wads = 0.1. Time increments are 50 and the final time is t=500. 
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Fig. 10. KMC results for the complete evolution of species concentrations for the central 

60 sites catalytic in a pore of length L=100 with Wrx = 0.33, Wdiff = 10 for two cases. (a) 

Wads = 0.1, Wdes = 0.9 (so Xeq=0.1) with time-evolution in increments of 100, so the 

steady-state is achieved quickly by t ~700; (b) Wads = 0.9, Wads = 0.1 (so Xeq=0.9) and 

profiles are shown at times t=50, 100, 200, 500, 1500, 15000. Thus in (b), the steady-

state is achieved slowly, where <An> again finally achieves a quasi-linear steady-state 

variation in the end non-catalytic regions. 
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Fig. 11. Later-stage evolution in a pore of length L=50 with the 30 central catalytic sites 

(grey). Dark blue circles are reactant A. Lighter red circles are product B. Sequence of 

images separated by 300 time units from a single KMC simulation run. Parameters: Wads 

= 0.9, Wdes = 0.1, Wrx = 0.6, and Wdiff  = 3. The interface between A- and B-dominated 

regions diffuses within the non-catalytic end regions. Higher Xeq=0.9 makes the interface 

more visible. 
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Abstract 

Behavior of catalytic reactions in narrow pores is controlled by a delicate 

interplay between fluctuations in adsorption-desorption at pore openings, restricted 

diffusion, and reaction.  This behavior is captured by a generalized hydrodynamic 

formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate 

an unconventional description of chemical diffusion in mixed-component quasi-single-

file systems based on a refined picture of tracer diffusion for finite-length pores. The 

RDE elucidate the nonexponential decay of the steady-state reactant concentration into 

the pore and the non-mean-field scaling of the reactant penetration depth. 
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Text 

Anomalous tracer diffusion of a “tagged” particle in a single-file system, where 

particles within narrow pores cannot pass each other, was proven in the 1960’s for hard-

core interactions [1] and later for general interactions [2]. Often motivated by early 

investigations of biological transport across membranes [3,4], numerous studies have 

considered single-file tracer diffusion in finite open [5], periodic [6,7], or closed [8] 

“pores”, and in other systems [9]. This type of inhibited transport has also been 

recognized to impact reactivity for catalysis in zeolites and other functionalized 

nanoporous materials [10-15]. For the latter reaction-diffusion phenomena which are of 

interest here, it is actually chemical diffusion [16] which controls behavior [15], and for 

which the connection to tracer diffusion is not well recognized. Another key aspect of 

these open reaction-diffusion systems is that steady-state behavior is not described by a 

classic Gibbs thermodynamic ensemble. In fact, a fundamental understanding of these 

steady-states, which depend on both the reaction kinetics and transport, remains a 

significant challenge [17-19]. 

 

Our specific focus is on first-order conversion reactions, AB, occurring inside 

a parallel array of linear nanopores of a catalytically functionalized material such as 

mesoporous silica. Reactants, A, enter the pore openings, diffuse to catalytic sites, 

convert to a product, B, with microscopic rate k, and both reactants and products can 

diffuse out of the pore [11-15]. Furthermore, we assume that these pores are sufficiently 

narrow that passing of reactant and product species is inhibited or even excluded. It was 

recognized that reactivity can be strongly inhibited for single-file diffusion (SFD) 



53 

 

relative to unhindered passing [12]. The reason is that except near their ends, the pores 

tend to be exclusively populated by product which is not readily extruded. Thus, the pore 

center does not participate in the conversion AB.  

Some studies have suggested that this type of behavior, even for inhibited 

transport, can be captured by mean-field-type treatments of reaction-diffusion [13] 

which predict an exponential decay of reactant concentration into the pore with 

penetration depth scaling like Lp ~ k

 with  = -½ [14,15]. However, we will find 

fundamental shortcomings in these mean-field treatments, noting that exact behavior for 

SFD even exhibits different scaling of Lp with   -½.  A deterministic hydrodynamic 

treatment [20] accounting for SFD [15] can describe reaction-diffusion behavior in the 

regime of slowly varying concentration profiles (for long pores) even for SFD, but this 

treatment completely fails to describe steady-state reactivity [15]. The reason for this 

failure is that steady-state behavior is controlled by the stochastic nature of adsorption 

and desorption of species at the pore openings. Thus, to correctly capture behavior, in 

this Letter, we pursue a generalized hydrodynamic formalism. This formalism requires 

an appropriate description of chemical diffusion in mixed-component systems, including 

the case of SFD, based on a relationship between chemical and tracer diffusion deriving 

from interacting particle systems theory. However, it also requires a refined picture of 

tracer diffusion for finite-length pores. 

In our model for AB conversion (Fig.1), we consider a catalytic material 

composed of an array of similar parallel linear nanopores. Species within any pore are 

localized at a linear array of cells (or sites) labeled n=1 - L traversing the pore. The cell 
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width “a” is chosen as a~1 nm comparable to species size. To describe the surrounding 

fluid, we can extend the 1D lattice inside the pores to a 3D lattice outside. But the fluid 

is assumed well stirred, so that cells of the 3D lattice are randomly occupied with 

specified probabilities, <Aout> and <Bout>, corresponding to the suitably normalized 

external reactant and product concentrations, respectively. The total concentration, 

<Xout> = <Aout> + <Bout> = , say, is fixed, whereas <Bout> slowly increases from an 

initial value of zero during extended reaction. This slow time-scale is controlled by the 

fluid volume and far exceeds that for relaxation of the concentration profile within the 

pore. 

In the simplest prescription corresponding to SFD within the pores, A and B hop 

to adjacent empty (E) cells at rate h per direction. We can also allow positional exchange 

of adjacent A and B at rate hex = h Pex to relax the strict SFD constraint, noting that 

exchange of adjacent particles of the same type has no effect.  The passing propensity, 

Pex, will increase with pore diameter d from Pex = 0 below a SFD-threshold to Pex ~ 1 for 

unhindered passing. Other mechanistic steps in the model are:  (i) Impingement of 

external species at terminal cells n=1 and n=L of the pore at rate iA = h <Aout>  (iB = h 

<Bout>) for the reactant A (product B), successful adsorption occurring if these end cells 

are unoccupied or empty (E), (ii) Attempted desorption of both A and B from terminal 

cells of the pore at rate h, success occurring with probability <Eout> = 1 - <Xout> for the 

neighboring fluid site to be unoccupied (Eout), and (iii) Conversion A  B at rate k at 

catalytic cells.  
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For the above rate choice, which follows previous studies [11-15], the “species 

blind” dynamics for particles X = A or B corresponds to a non-reactive diffusion 

process. In the steady-state, cells within the pore are randomly occupied by particles X 

with probability <Xout> =  [14]. We will assess typical concentration profiles within a 

pore, corresponding to averaging over many pores. Both time evolution and steady-state 

behavior (see Fig.2 for examples for the initial stages of reaction with <Bout>  0) can be 

assessed precisely by Kinetic Monte Carlo (KMC) simulation.  

An exact description of our discrete reaction-diffusion model is provided by 

hierarchical master equations for the evolution of probabilities of various configurations 

of subsets of cells within the pore [11,13-15]. Let <Cn> denote the probability that 

species C = A or B is at cell n, <CnEn+1> that C is at cell n and that cell n+1 is empty (E), 

etc. Then, the total conversion rate is Rtot = k n=c<An> with the sum extending over all 

catalytic cells. Below we consider only the case of all cells catalytic (c). Then, the 

lowest-order equations in the hierarchy are [14,15] 

                d/dt <An> =  -k <An> - JA
n>n+1

, 

                d/dt <Bn> =  +k <An> - JB
n>n+1

,  for 1<n<L.                                            (1) 

Separate equations for terminal cells reflect adsorption-desorption boundary conditions 

(BC’s), e.g.,  d/dt <A1> = h(<Aout> <E1> - <Eout> <A1>) - k <A1> - JA
1>2

.  In (1), we have 

defined the discrete derivative, Kn = Kn – Kn-1. The net flux, JA
n>n+1

, of A from site n to 

n+1 is given by 

JA
n>n+1

 = h [<AnEn+1> - <EnAn+1>] + hex [<AnBn+1> - <BnAn+1>].  (2) 
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The first term gives the contribution from hopping to adjacent empty cells, and the 

second from exchange. The expression for the net flux, JB
n>n+1

, of B is analogous. In the 

special case of unhindered transport where Pex =1 so hex = h, (2) reduces exactly to 

JA
n>n+1

 = -h <An> [15,21]. 

Equations (1) couple to pair probabilities in (2). Pair probability evolution 

couples to that of triples, etc., producing a hierarchy. Multisite probabilities are not 

simply related to single-cell probabilities due to spatial correlations. The lowest-order 

site-approximation, <CnEn+1>  <Cn><En+1>, etc., produces a closed set of discrete 

reaction-diffusion equations (RDE) for single-cell concentrations. A pair approximation 

factorizes triples in terms of pair and single-cell quantities generating a closed set of 

equations for these [13-15]. The triplet approximation factorizes quartets in terms of 

triplets, etc. [22]. However, these and all higher-order mean-field (MF) like truncation 

approximations suffer fundamental shortcomings. While accuracy increases with the 

order of the approximation, convergence to exact behavior can be slow. See Fig.2(a). 

An alternative coarse-grained description considers concentrations per unit 

length, C(x=na, t)  a
-1

 <Cn>, for C = A or B, smoothly varying with position x, which 

satisfy the continuum RDE 

/t A(x, t) = -k A(x, t) - /x JA,  /t B(x, t) = +k A(x, t) - /x JB.  (3) 

BC’s for (3) at the pore ends reflect the adsorption-desorption dynamics [15]. 

Description of the diffusion fluxes, JA and JB, is critical. Setting X(x,t)=A(x,t)+B(x,t), we 

exploit a little-used result from interacting particle systems theory for mixtures of 

particles with identical dynamics [23] 
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 JA  = -D(A/X)X/x - Dtr[(B/X)A/x - (A/X)B/x] 

       -Dtr A/x for uniform X=a
-1
,                                                           (4) 

The form of JB is analogous. Here D = a
2
h is the chemical diffusion coefficient for 

particles X, and Dtr =D Ftr is a tracer diffusion coefficient. The site-approximation 

described above implies the mean-field form Ftr = 1 –  [14,15] after simple coarse-

graining of the discrete RDE. This choice overestimates fluxes for SFD. A classic 

analysis of SFD for infinite systems [1] finds that Ftr = 0. The associated 

“hydrodynamic” RDE can describe the evolution of slowly varying profiles during 

filling of long pores [15]. However, this formulation which sets the diffusion fluxes to 

zero and neglects fluctuations near pore openings completely fails to describe steady-

state profiles [15] as show in Fig.2 (a). A refined treatment setting Ftr ~ 1/L, motivated 

by studies of finite-sized SFD systems [3,4,6,7], does not resolve this basic shortcoming. 

Thus, our strategy is to develop a “generalized hydrodynamic” form for Ftr which 

captures the mesoscale fluctuations near pore openings being enhanced in these regions. 

A discrete form of (4) incorporating this Ftr then provides fluxes in (1) which are 

integrated to determine steady-state behavior. One strategy to determine this Ftr(n) at cell 

n [24] for a pore with uniform <Xn>=  is based analysis of the “exit time”, tn(), for a 

tagged particle starting at this cell to reach a pore opening in the sense that its root-

mean-square (rms) displacement grows to match the distance from the nearest pore 

opening. Specifically, we set Ftr(n) = tn(0+)/tn() since diffusivity is inversely 

proportional to the time for the rms displacement to reach some specified value. This 

recovers the correct limiting value Ftr(n)1 as 0+. Results for Ftr(n) in Fig.3 (a) for 
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SFD in finite pores reveal a central plateau of magnitude ~1/L (consistent with [3-7]), 

but with significantly larger values near pore openings. Use of this variable Ftr(n) in 

appropriate RDE to determine steady-state profiles yields excellent agreement with 

precise results from KMC simulation for SFD with L=100, in marked contrast to other 

treatments.  See Fig.4 for profiles with <Bout>  0 (the initial stages of the reaction), and 

results in Table I for the penetration depth Lp, naturally defined as Lp = 1nL/2 

<An>/<A1>. 

Next, we turn to the fundamental issue of the form of the concentration profiles 

and the scaling of the penetration depth Lp for SFD in a semi-infinite pore with 1n<. 

Clearly now Ftr(n)0, as n, but how? Deep inside the pore where classic SFD 

should apply, the rms displacement increases like t
1/4

 [1], so one expects that tn(>0) ~ 

n
4
. In contrast, tn(0+) ~ n

2
 for conventional diffusion. This suggests that Ftr(n) ~ 1/n

2
 as 

n. Simulation results indicate that this behavior is achieved quickly for high total 

concentration =0.8, but more slowly for low =0.2 which displays an intermediate 

regime better described by Ftr(n) ~1/n scaling. Data in both cases is fit well for all n by 

the form Ftr(n) = Ftr(1)(1-++)/(1-n
1/2

+n+n
2
). See Fig.3 (b). 

Insight into the consequences of this decay of Ftr(n) comes from analysis of the 

steady-state solutions of the continuum RDE for a semi-infinite pore x0 using (4) with 

the form Ftr(x) ~ 1/x
p
. One finds solutions which for small k and large Lp have the 

dominant form  

                 A(x) ~ exp[-(x/Lp)
q
] where q=(2+p)/2,  

                          and Lp ~(k/D)

 with  = -1/(2+p).                                (5) 
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Thus, the true asymptotic scaling exponent is  = -1/4 (p=2), but behavior mimicking     

  -1/3 (p=1) might be seen for lower , both contrasting MF behavior  = -1/2 (p=0) 

[14,15]. These predictions are confirmed by numerical analysis of discrete generalized 

hydrodynamic RDE’s exploiting the capability of this deterministic treatment to obtain 

much more precise -values than possible by KMC. See Fig.5. Concentration profiles 

also exhibit the predicted non-exponential decay, a feature which is already indicated in 

the nonlinear form of the log-linear plots in Fig.4 (the downward bend corresponding to 

an effective exponent q>1 due to p>0). 

We now mention various extensions of the above analysis. All results were 

presented for initial stages of reaction where <Bout> 0. However, analysis is readily 

extended to treat arbitrary fraction of conversion f = <Bout>/<Xout> and we find an exact 

linear variation with f of the total conversion rate Rtot(f) =Rtot(0)(1-f)  by virtue of the 

linearity of the RDE’s and BC’s. Dropping the SFD constraint, we have also analyzed 

Ftr(n) which still decreases with increasing n but now retains a substantial nonzero L-

independent value in the pore center corresponding to tracer diffusion with exchange  in 

an infinite pore. The corresponding generalized hydrodynamic treatment readily 

recovers behavior shown in Fig.2 (b). The greatest challenge in developing a predictive 

analytic treatment is for complete or near SFD, as other cases have more MF-like 

behavior. One can also readily extend the analysis to treat reversible reaction AB 

using the same Ftr(n) as determined above.  

Finally, we consider more general diffusional dynamics with unequal 

coefficients, DA and DB, for A and B, respectively. Analysis for SFD reveals behavior 
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entirely analogous to the case of equal hop rates with penetration of reactant into the 

pore, but the pore center populated only by product. Again, MF treatments overestimate 

diffusion fluxes and fail to describe steady-state behavior. The key is to describe 

chemical diffusion for the mixed system (cf. [19,25]). We apply Onsager theory to 

determine the hydrodynamic form (corresponding to zero tracer diffusion) of JA =           

-A(A/ DA+B/ DB)
-1
X/x for SFD, and JB is analogous. Since the total flux, JX= JA+ JB, 

must vanish in the steady-state, this implies that X is constant, so JA vanishes which in 

turn implies that A must be absent from the pore interior due to conversion to B. This 

failure of the hydrodynamic description to describe reactant penetration must again be 

overcome by accounting for fluctuation effects at the pore openings. 

In summary, the location dependence of tracer diffusion near the openings of 

narrow pores is shown to control non-MF scaling of reactant penetration depth and thus 

reactivity for conversion reactions. Generalized hydrodynamic RDE’s provide a 

powerful tool with which to analyze this behavior.  

This work is supported by the U.S. Department of Energy, Office of Basic 

Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through 

the Ames Laboratory.  The Ames Laboratory is operated for the U.S. Department of 

Energy by Iowa State University under Contract No. DE-AC02-07CH11358. 

Note added in proof.—Recently, Dr. P.H. Nelson alerted us to [26], which also 

performs the same type of alternative analysis of Dtr as described in [24]. 
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Tables 

 

Table I. Comparison of reactant penetration depths, Lp (in units of ‘a’), with h=1 and 

L=100, for KMC, generalized hydrodynamic (GHydro) and mean-field site-

approximation (MF) analyses. 

=0.2 k=1 k=0.1 k=0.01 k=0.001 =0.8 k=1 k=0.1 k=0.01 k=0.001 

KMC 1.47 2.92 6.77 15.2 KMC 1.10 1.47 2.64 5.21 

GHydro 1.49 3.10 7.19 15.8 GHydro 1.06 1.43 2.61 5.15 

MF 1.53 3.37 9.46 27.8 MF 1.17 2.00 5.00 14.7 

 

 

 

 

Figures 

 

 

Fig.1 (Color online). Schematic of the key steps in our AB catalytic conversion 

reaction model. “c” denotes catalytic cells where reaction occurs at rate k. Behavior is 

shown in two adjacent pores which should be regarded as part of a larger array of pores. 
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Fig.2 (Color online). Steady-state concentration profiles (A=solid, blue; B=red, dashed) 

for pore length L=100, k= 0.001, h=1, and =0.8: (a) predictions of site, pair, triplet 

approximations and the standard hydrodynamic treatment (hydro) versus precise KMC 

results for SFD (Pex=0); (b) KMC results for restricted passing with various Pex≥0. 

 

 

 

Fig.3 (Color online). KMC results for Dtr(n) =Ftr(n) for a=h=1: (a) n-dependence for 

various pore lengths L for =0.8 (inset shows L-dependence of central plateau value of 

Dtr for =0.2); (b) fitting of the decay of Dtr(n) with n for semi-infinite pore. Using the 

form in text, we choose =0, =1.543, =0.944 for =0.8 (inset: =0.753, =0.371, 

=0.0064 for =0.2). 
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Fig.4 (Color online). Comparison of results for steady-state concentration values for 

L=100, k=0.001 (inset: k=0.01), and h=1 from KMC (symbols + line) with generalized 

hydrodynamic RDE predictions (thicker blue curves): (a) =0.2; (b) =0.8 (log is base 

10). 

 

 

 

Fig.5 (Color online). Predictions of generalized hydrodynamic RDE for the effective 

scaling exponent  = dlog(Lp)/dlog(k) for a semi-infinite pore: (a) =0.2; (b) =0.8. 

Upper insets: Lp versus k. 
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Abstract 

Statistical mechanical modeling is performed of a catalytic conversion reaction 

within a functionalized nanoporous material to assess the effect of varying the reaction 

product – pore interior interaction from attractive to repulsive. A strong enhancement in 

reactivity is observed not just due to the shift in reaction equilibrium towards 

completion, but also due to enhanced transport within the pore resulting from reduced 

loading. The latter effect is strongest for highly restricted transport (single-file 

diffusion), and applies even for irreversible reactions. The analysis is performed utilizing 

a generalized hydrodynamic formulation of the reaction-diffusion equations which can 

reliably capture the complex interplay between reaction and restricted transport. © 2013 

American Institute of Physics. 
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I. Introduction  

Advances in synthesis of nanomaterials have led to broad capabilities for 

multifunctionalization of mesoporous or nanoporous catalysts. Such capabilities allow 

for not only effective functionalization with catalytic groups, but also the possibility to 

tune the interaction between reaction products and the interior pore environment [1-3]. 

This can in turn significantly impact and potentially enhance catalytic reactivity. For 

example, creation of an unfavorable environment for product species within pores can 

lead to enhanced product extrusion or inhibited product re-entry. This feature would shift 

the equilibrium of reversible reactions towards completion. Other possible scenarios are 

discussed below. 

One class of examples of the above type is provided by dehydration reactions 

such as esterification (acid + alchohol  ester + water) in mesoporous silica 

nanoparticles (MSN). Multifunctionalization of MSN to include hydrophobic groups, as 

well as catalytic groups, has been observed to significantly enhance reactivity in several 

such systems [4-6]. This effect has been explained as a result of functionalization 

converting an intrinsically hydrophilic interior pore surface of MSN into a hydrophobic 

environment thereby “expelling” the product water and shifting the equilibrium of the 

reversible esterification reaction. The greatest enhancement to date has been achieved 

through solvent-mediated control of the configuration of hydrophobic 3-

(pentafluorophenyl) propyl groups which are induced to lie prone on silica surface 
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thereby minimizing the interaction of the product water with the hydrophilic MSN 

surface groups [6,7].  

In fact, there are several possible scenarios wherein functionalization to tune 

product-pore interactions can influence both the thermodynamics and the kinetics of 

transport and reaction, and thereby impact reactivity in meso- or nanoporous reaction 

systems. First, we discuss thermodynamic factors. Accounting for detailed balance 

requirements, it follows that creating an unfavorable environment for a reaction product 

within the pore increases the ratio of the rate of product desorption from the pore 

opening to that for product (re)adsorption. One should note that product readsorption can 

become significant for substantial conversion of reactant to product in the surrounding 

fluid. However, even constraining rates to satisfy detailed balance, there are still many 

distinct possibilities for rate behavior: (i) the product desorption rate could be tied to the 

rate of diffusion within the pore, and thus the rate of readsorption would be inhibited for 

stronger interior pore-product repulsion; (ii) the product readsorption rate could be tied 

to the rate of external diffusion, and thus the rate of desorption would be enhanced for 

stronger interior pore-product repulsion; (iii) more general cases where both rates 

change.  Any of these cases will result in a shift of equilibrium for reversible reactions. 

Second, we discuss other kinetic factors that can impact reactivity, but which are 

unrelated to shift of equilibrium for reversible reactions. Although not dictated by 

thermodynamic considerations, diffusive transport within the pore can also be modified 

by multifunctionalization. An unfavorable environment could enhance diffusion 

removing localized regions of strong binding and thereby “smoothing” interaction with 
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the pore walls. Another possible scenario is that modifying the interior pore environment 

can change loading of product in the pore even for irreversible reactions. The loading 

can have a dramatic effect on effective transport for narrow pores, especially in the 

single-file diffusion (SFD) regime where species cannot pass each other in the pore, and 

this in turn greatly impacts reactivity.  To test this latter effect, we will naturally consider 

the special case of irreversible reactions. 

Our focus in this contribution is on exploring the effects of multifunctionalization 

for simple first-order catalytic conversion reactions (A to B) in mesoporous or 

nanoporous materials such as MSN consisting of parallel arrays of effectively identical 

linear nanopores. A key factor impacting reactivity is the extent to which reactants and 

products A and B can pass each other. Previous analyses for SFD or restricted passing 

[8-15] reveal that reaction is strongly localized near the pore openings [9]. While simple 

mean-field type reaction-diffusion equations [8,11-13] are not adequate, recent studies 

have shown that behavior in this regime is captured by a “generalized hydrodynamic” 

(GH) formulation which accounts for both the effect of restricted passing on chemical 

diffusion as well as fluctuation effects in adsorption-desorption at pore openings [14]. 

Here, we adopt the latter rather than computationally more expensive Kinetic Monte 

Carlo (KMC) simulation which could also provide a precise characterization of model 

behavior. 

In Sec. II, we describe our model for conversion reaction in linear nanopores, the 

associated exact master equations, and associated generalized hydrodynamic reaction-

diffusion equations (RDE). In Sec.III, we present results for both irreversible and 
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reversible conversion reactions focusing on reactivity (i.e., turn-over frequency) per pore 

as a function of the fraction of reactant converted to product, and contrasting behavior 

for pores where product entry in enhanced versus inhibited. Our conclusions are 

presented in Sec.IV. 

 

II. Spatially-discrete model for catalytic conversion inside linear nanopores  

A. Spatially discrete stochastic reaction-diffusion model prescription  

Our model for catalytic conversion describes nanoporous materials which consist 

of a parallel array of linear pores by partitioning the continuous-space pores into 

adjacent cells labeled n = 1 to L [8-14]. The cell width “a” is selected to be comparable 

to the species size ~1 nm. Species within pores are regarded as localized to specific cells, 

and diffusive transport is treated as hopping or exchange between adjacent cells. To 

describe the surrounding fluid, we extend the 1D lattice of cells inside the pores to a 3D 

lattice outside. See Fig. 1. We specify “external” reactant and product concentrations in 

the surrounding fluid at each stage of the reaction as <Aout> and <Bout>, for a fixed total 

concentration <Xout>  =  <Aout> + <Bout>. These correspond to the probabilities that sites 

or cells on the 3D lattice are occupied by various species, where fluid cell occupation is 

assumed random due to efficient stirring. Then, <Aout> will decrease from an initial 

value of <Xout>, and <Bout> will increase from zero with increasing fraction, F = 

<Bout>/<Xout> (= 1- <Aout>/<Xout>), of the initial reactant converted to product [14,15].  

Following most previous stochastic modeling of reaction-diffusion processes in 

linear nanopores [8-15], the simplest prescription for diffusion dynamics within the 
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pores is that A and B hop to adjacent empty (E) sites at rate h, corresponding to a 

diffusion rate of D0 = a
2
h for isolated particles. This simple prescription would 

correspond to single-file diffusion with a strict no-passing constraint. For a more general 

treatment of diffusional dynamics, we also allow positional exchange of adjacent A and 

B at rate Pex h, thereby relaxing the strict single-file constraint. (Note that exchange of 

adjacent particles of the same type has no effect.)  The passing propensity, Pex, will 

increase with the effective pore diameter, d, from Pex = 0 for d below a threshold for 

SFD, to Pex = 1 for large d and unhindered passing.   

In addition to hopping or exchange within the pore, the other mechanistic steps in 

the model (see Fig. 1) are as follows: (i) Adsorption of external reactant A (product B) to 

terminal pore sites n=1 and n=L at rate h (h), provided that these end sites are 

unoccupied or empty (E). We emphasize that the factor  will account for the effects of 

multifunctionalization modifying the interior pore-reaction product interaction. (ii) 

Desorption of both the reactant, A, and product, B, from terminal sites of the pore at rate 

h provided that the fluid site just outside the pore is unoccupied (Eout). The probability 

for this fluid site to be unoccupied is given by <Eout> = 1 - <Xout>.  (iii) Conversion A  

B at catalytic (c) sites within the pore at rate k, as well as the reverse reaction BA at 

rate k. Our model can treat general distributions of catalytic sites, but here we shall 

assume that all sites are catalytic. (iv) One could also consider exchange in and out of 

the pore. One choice is to ignore such processes. Another plausibly more realistic choice 

is to specify that A (B) just outside exchanges with B (A) inside at n = 1 or L at rate Pexh 

(Pexh). Both choices (and others) are consistent with detailed balance. We expect that 
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the choice will not greatly effect of reactivity (except in the special regime of both high 

Pex and high loading). 

It should be emphasized that there is a natural “separation of time scales” for 

“local” relaxation (in time) of concentration profiles within the pore, and for “global” 

equilibration of the entire system including the fluid. Relaxation of concentration 

profiles to a local steady state form determined by the current values of <Aout> and 

<Bout> should be effectively instantaneous on the time scale of global equilibration of 

the entire system (which in experiments is on the order of hours). Thus, the main 

challenge is to solve the non-trivial statistical mechanical local steady-state problem to 

determine reactant and product concentration profiles, and thus the reactivity, as a 

function of the fractional conversion, F=<Bout>/<Xout> , of reactant to product. It should 

also be noted that the global equilibrium values of <Aout> and <Bout>, and thus of F = 

Feq, are determined not just by the equilibrium constant Kc = k/k for the conversion 

reaction within the pores, but also by the parameter . This issue is addressed 

immediately below. 

For the above model, it is clear that the “color-blind” dynamics for particles X = 

A+B (i.e., A or B) is described by a non-reactive diffusion process where particles hop 

within the pore and desorb at rate h. At a specified fractional conversion, F, particles 

adsorb at an effective rate hads = hads(F) = eads(F) h with eads = eads(F) = (1-F) + F, where 

the first (second) term is the weighted contribution from A (B) adsorption. In the local 

steady state for fixed F, all sites within the pore are randomly occupied by particles, X, 
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with equal probability <Xin> = <Xin(F)>, say. Then, balancing the adsorption flux, Jads, 

and desorption flux, Jdes, for particles X where 

Jads = hads(F)<Xout>(1-<Xin>) and Jdes = h(1-<Xout>)<Xin> yields  (1) 

<Xin> = eads<Xout>/[1+(eads-1)<Xout>]  

          = [1+(-1)F]<Xout>/[1 + (-1)F<Xout>].                                             (2) 

We recall that <Xout> remains constant at its initial value. As expected, (2) demonstrates 

that <Xin> exceeds <Xout> for >1 (enhanced product reentry), and that <Xout> exceeds 

<Xin> for <1 (inhibited reentry). 

A simple analysis of individual species concentrations in the local steady state is 

not possible since these concentrations exhibit non-trivial spatial profiles within the 

pore. However, in the final global equilibrium state, concentrations of both species 

within the pore, <Ain>eq and <Bin>eq, are spatially uniform, and satisfy <Bin>eq/<Ain>eq = 

Kc. Then, separately balancing the adsorption and desorption fluxes for species A and 

for species B yields 

    <Aout>eq(1-<Xin>eq) = <Ain>eq(1-<Xout>) and  

    <Bout>eq(1-<Xin>eq) = <Bin>eq(1-<Xout>),                                             (3) 

so that  

              <Bout>eq/<Aout>eq = 
-1

 <Bin>eq/<Ain>eq = Kc/, and  

                                    Feq = Kc/(Kc + ).                                             (4) 

 

The latter result characterizes the shift in equilibrium for our model associated 

with tuning of the reaction product-pore interior interaction via multifunctionalization. 
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We thus find that <Xin> changes from its initial value of <Xout> at the onset of the 

reaction (F=0) to  

<Xin>eq = (1+Kc)<Xout>/[(1+Kc<Xout>)+Kc(1-<Xout>)],                 (5) 

when F=Feq, at completion of the reaction. This result (5) recovers the requirement that 

<Xin>eq =0 for blocked product reentry =0. It also shows that for enhanced reentry 

with, e.g., =5 and <Xout>=0.8 (the case considered below), one has <Xin>eq/<Xout> = 

(1+Kc)/(1+0.84Kc) >1. 

 

B. Exact master equations and discrete reaction-diffusion equations 

An exact description of our discrete reaction-diffusion model is provided by the 

master equations for the evolution of probabilities of various configurations within the 

pore. Often these are written in hierarchical form [8,11-15]. Here, we use <Cn> to denote 

the probability or ensemble averaged concentration for species C = A or B at site n (or 

for this site to be empty when C = E), <CnEn+1> for the probability that C is at site n and 

for site n+1 to be empty (E), etc. Then, the lowest-order equations in the hierarchy 

describe the evolution of single-site occupancies.  

For A to B conversion in the case where all sites are catalytic, one has that 

d/dt <An> =  -k<An> + k<Bn> - JA
n>n+1

 and    (6a) 

d/dt <Bn> =  +k<An> -k<Bn> - JB
n>n+1

  for 1<n<L,    (6b) 

where we have defined the discrete derivative, Gn = Gn – Gn-1. The net diffusion flux, 

JA
n>n+1

, of A from site n to n+1 due to both hopping and exchange is given by 

JA
n>n+1

 = h [<AnEn+1> - <EnAn+1>] + Pex h [<AnBn+1> - <BnAn+1>].  (7) 
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The expression for the net flux, JB
n>n+1

, of B is analogous. Separate equations for 

terminal sites reflect adsorption-desorption boundary conditions (BC’s). In the presence 

of in-out exchange with rates as specified in Sec. IIA, one has that 

d/dt <A1> = h<Aout> <E1> - h<Eout> <A1> + Pex h <Aout><B1>  

                   - Pex h <Bout><A1> - k <A1> + k<B1> - JA
1>2

, and    (8a) 

d/dt <B1> = h<Bout> <E1> - h<Eout> <B1> + Pex h <Bout><A1>  

                  - Pex h <Aout><B1> + k <A1> - k<B1> - JB
1>2

,     (8b) 

with analogous equations for concentrations at site n=L. If some sites are not catalytic, 

then the reaction terms are absent for such sites. Defining <An> = <An> - Kc
-1

<Bn> as 

the “excess” reactant concentration, the net overall rate of production of B per pore is 

given by  

R
B

rxn = n=c (k<An> - k<Bn>) = k n=c <An>    (9) 

summing over all catalytic sites, c. 

Equations (6a) and (6b) couple to various pair probabilities in (7). Pair 

probability evolution is coupled to triples, etc., producing a hierarchy. Pair and multisite 

probabilities are not simply related to single-site probabilities due to spatial correlations. 

A simple mean-field (MF) factorization approximation, <CnEn+1>  <Cn><En+1>, etc., 

produces a closed set of discrete reaction-diffusion equations (RDE) for single-site 

concentrations. However, this approximation, and even higher-order pair, triplet, etc., 

approximations, fundamentally fail to capture model behavior, at least for low reactivity 

k/h<<1 when Pex <<1 [13-15]. Thus, below we discuss an alternative “generalized 

hydrodynamic” approach which does reliably describe model behavior. As an aside, in 
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the special case Pex =1 (unhindered passing of A and B), (7) reduces exactly to JA
n>n+1

 = 

h [<An> - <An+1>] = -h  <An>, and similarly for JB
n>n+1

 [14-16]. This yields an exact set 

of discrete RDE matching the MF approximation. 

 

C. Generalized hydrodynamic reaction-diffusion equations 

For smoothly varying concentrations within the pore, it is natural to consider a 

coarse-grained description of the spatially-discrete reaction-diffusion model which 

regards the species concentrations per unit length, C(x=na)  a
-1

 <Cn>, as functions of a 

continuous spatial variable x (leaving the t-dependence implicit), and denote the total 

concentration by X(x) = A(x) + B(x). The continuum RDE for our A to B conversion 

reaction model with all sites catalytic then have the form 

/t A(x) = -k A(x) + k B(x) - /x JA, and  

/t B(x) = +k A(x) - k B(x) - /x JB.                                       (10) 

If only portions of the pore are catalytic, then reaction terms appear just for those 

locations. BC’s for (10) at the pore ends reflect the adsorption-desorption dynamics, i.e., 

one balances the diffusion fluxes at the end of the pore with the net adsorption-

desorption rate for each species. Description of the diffusion fluxes, JA and JB, is non-

trivial.  

Analysis from the theory of interacting particle systems [17,18] for the 

hydrodynamic regime of slowly varying concentrations suggests the general form 

[13,14,17,18]  

JA = -D0[1- X
-1

(1-Ftr)B] A/x - D0 X
-1

(1-Ftr)A B/x.   (11) 
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In this expression, one has D0 = a
2
h and Ftr is related to a tracer diffusion coefficient for 

particles within the pore by Dtr = D0Ftr. In applying the form (11), we utilize the feature 

that the diffusive dynamics for both A and B within the pore is identical. An analogous 

expression applies for JB. Here, it suffices to consider the local steady-state regime with 

uniform total concentration, X = <Xin> = <Xin(F)>, corresponding to a counter-diffusion 

mode [19] where A/x = -B/x. Then, (11) and the analogous expression for JB simply 

reduce to [13,19] 

JA = -Dtr A/x and JB = -Dtr B/x.      (12) 

In the MF treatment, X
-1

(1-Ftr) in (11) is replaced by 1-Pex which corresponds to 

the assignment Ftr = Ftr(MF) =  1- (1-Pex)X. However, this MF choice overestimates 

diffusion fluxes within the pore, and thus overestimates overall reactivity, especially for 

the quasi-SFD regime, Pex<<1 and Ftr(MF)  1 - X [12,13]. A contrasting deterministic 

hydrodynamic (DH) formulation of Ftr, applicable for large systems (very long pores) 

with slowly varying concentrations and negligible fluctuation effects, follows from a 

precise analysis of tracer diffusion for effectively infinite systems. One finds that the 

corresponding Ftr = Ftr(DH) = Ftr(X, Pex) has the form shown in Fig.2. Simple limiting 

behavior includes:  

Ftr(DH) 1, as Pex 1; Ftr(DH)  Pex, as X1; and  

Ftr(DH) 0, as Pex 0 (for X>0).                                                                (13) 

The latter behavior for Pex =0 is in marked contrast to the MF form, and reflects 

the anomalous nature of SFD wherein the mean-square displacement of a tagged particle 

increases sub-linearly [20]. To account for the finite length of pores, we have considered 
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a refinement of the DH choice where Ftr ~ 1/L for SFD when Pex =0 [21]. This modified 

choice was motivated by analyses of transport through channels across membranes of 

finite width [22]. However, choosing either Ftr = 0 or Ftr ~ 1/L for SFD underestimates 

diffusion fluxes at least near pore openings, and thus underestimates underestimates the 

overall reactivity [21]. 

To address the shortcomings of the MF and DH approaches described above, we 

will utilize a generalized hydrodynamic (GH) treatment [23] which incorporates a 

position-dependent Ftr(x=na) = Ftr(GH). This Ftr(x=na) is enhanced near pore openings 

above the deterministic hydrodynamic value of Ftr(DH) [14]. This enhancement of 

Ftr(DH) reflects the influence of stochastic adsorption-desorption processes which 

facilitate transport in and out of the pore near these pore openings [14]. Results are 

shown in Fig.3 where Ftr(x) approaches Ftr(DH) for x or n corresponding to the central 

region of the pore. The algorithm which we use to determine this location-dependent 

Ftr(GH) is described in Ref. [14] and also in the Appendix. Roughly speaking, we set 

Ftr(x=na) = t0(x=na)/ tX(x=na) where tX is time for a tagged particle starting at a specific 

location, x=na, in a pore with concentration X of other particles to reach the closest pore 

opening. This choice is based on the classic result that diffusivity scales like the mean-

square displacement divided by time.  See Ref. [19] for an alternative formulation. Thus, 

it is immediately clear that Ftr(x) 1, as X0 (as required). Introducing these variable 

Ftr(x=na) = Ftr(n) into a discrete form of (10) and (11) [24] recovers almost exactly the 

results of precise KMC simulations of model behavior, but much more efficiently [14]. 

This formalism will be used to generate results in Secs. III A and III B. 
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III. Catalytic reaction kinetics: reactivity versus conversion  

In this section, we present simulation results for the reactivity (i.e., the turn-over 

frequency) per pore as a function of fractional conversion of reactant to product. We also 

provide more detailed information on concentration profiles within the pores. In all cases 

below, we consider a pore of length L=100 a in which all cells are catalytic. The hop rate 

is set to unity h=1, which determines the time scale. The rate of the forward reaction 

AB chosen as k=0.001. The initial reactant concentration, and thus the total 

concentration in the exterior fluid, is set to <Xout> = 0.8. This high <Xout> results in a 

high loadings inside the pore, and thus strong SFD effects in the absence of exchange 

diffusion when Pex = 0. We will consider and compare behavior for three cases:  (i) 

significantly enhanced product reentry with =5 (mimicking hydrophilic pores for 

dehydration reactions); (ii) neutral product reentry with =1; (iii) blocked product 

reentry with =0 (mimicking strongly hydrophobic pores for dehydration reactions). 

 

A. Irreversible reaction  

For irreversible reaction, AB, where k=0, Fig.4(a) shows the local steady state 

concentration profiles for <An> and <Bn> versus n at the onset of the reaction (F=0) for 

various passing probabilities ranging from SFD (Pex = 0) to completely unhindered 

passing (Pex = 1). Behavior for F = 0 is independent of  due to the lack of product in the 

exterior fluid.  Note the strongly enhanced penetration of reactant into the pore with 

increasing passing propensity, Pex. This results in a strong increase in reactivity, R
B

net, as 



79 

 

discussed further below. Fig.4(b)-4(d) show the concentration profiles for AB when F 

= 0.625 for  = 5, 1, and 0, respectively. Here the -dependence on behavior is seen 

clearly not just in the increased values of <Xin> for larger , but also in the increased 

dominance of product over reactant within the pore. 

Our main focus here is on a comprehensive characterization of the variation of 

reactivity during the “extended reaction”. Of particular significance is our demonstration 

of a dramatic difference between behavior for enhanced versus blocked product reentry 

to the pore. In Fig.5, we show the reactivity, R
B

rxn, as a function of the fraction, F, of 

reactant outside the pore converted to product for the irreversible reaction AB. The 

key observation is the contrasting strong decrease of R
B

rxn with increasing F for 

enhanced product reentry (=5) versus the slow decrease of R
B

tot (or even an initial 

slight increase with Pex=0) for blocked product reentry (=0). Thus, blocking reentry 

greatly enhances the effective reactivity of the system. The neutral case where reentry is 

neither enhanced or inhibited (=1) exhibits intermediate behavior with a linear decrease 

of R
B

rxn(F) = (1-F) R
B

rxn(0) versus F, as explained below.  

The enhanced reactivity upon converting from enhanced reentry (>1) to 

blocked reentry (=0) reflects the reduction in pore loading <Xin>. For example, when 

<Xout> = 0.8 and F=1/2, one has <Xin> = 0.92 for =0 versus <Xin> = 0.67 for =5. 

Lower <Xin> (or higher <Ein>) impacts the rate of adsorption of reactant A via hopping 

into the pores, 

RA
ads

(hop) = h<Aout><Ein> = h<Xout><Eout>(1-F)/[1+(-1)F<Xout>] . (14) 
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Thus, RA
ads

(hop) increases with decreasing , for F>0, which naturally boosts reactivity. 

Note, however, that the rate of exchange adsorption of reactant for Pex>0 may decrease 

for lower <Xin>. More significantly, lower <Xin> greatly increases the tracer diffusion 

coefficient Ftr(GH) which strongly increases penetration of reactant into the pore, and 

thus also boosts reactivity. This strong increase in reactivity in changing from enhanced 

to blocked product readsorption is purely kinetic in origin rather than thermodynamic 

(noting that the reaction is irreversible). 

Finally, we provide some further comments on reaction kinetics. First, for the 

neutral case =1, we describe the origin of the linear decrease of R
B

net(F)  (1-F) with F. 

This behavior is a consequence of two features. One is the homogeneous F-independent 

linear form of the steady-state master equations, 0 = -k<An> - JA
n>n+1

, noting that 

Ftr(GH) = Ftr(n) is independent of F when =1. The other relates to the feature that the 

BC terms for <An> when n=1 or n=L adopt an inhomogeneous linear form with driving 

term proportional to 1-F [25]. This implies that all <An>  (1-F) and thus one has 

R
B

rxn(F) = (1-F) R
B

rxn(0). A detailed derivation of the analogous result for the more 

general reversible case is provided in Sec. III B.  

Second, we note that if 1, RA
ads

(hop) in (14) exhibits a non-linear decrease 

with F, and also the position-dependent tracer diffusion coefficient adopts a non-trivial 

non-linear dependence of F. As a result, it is not possible to provide a simple analytic 

expression for the nonlinear dependence of R
B

rxn(F) on F when 1. 

Third, we emphasize that our results for the F-dependence of R
B

rxn(F) encode 

complete information about the reaction kinetics through the equation 
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d/dt <Aout> =  R
B

rxn(F), where F = 1- <Aout>/<Xout>.   (15) 

Here, the constant  equals the number of pores in the system divided by the total 

number of 3D lattice sites associated with the fluid. Thus, for no product reentry =0 

where R
B

rxn(F)  R
B

rxn(0) is roughly independent of F (up to F  ¾), one has a sustained 

fast linear decrease in time t of  <Aout>  <Xout>[1- R
B

rxn(0)<Xout>
-1

 t] . For =1 where 

R
B

rxn(F)  (1-F), one has exponential decay <Aout>  <Xout> exp[- R
B

rxn(0)<Xout>
-1

 t]. 

For >1, one has slower decay. All cases exhibit the same -independent initial decay 

rate. 

 

B. Reversible reaction 

Next, consider the reversible reaction, AB, with k=0.001 as above, but now 

k=0.0005 is non-zero corresponding to a finite equilibrium constant Kc = 2. Fig.6(a) 

shows the local steady state concentration profiles for <An> and <Bn> versus n at the 

onset of the reaction (F=0) for various passing probabilities Pex. Behavior for F = 0 is 

independent of  as for reversible reaction, and penetration of “excess” reactant, <An> 

= <An> - Kc
-1

<Bn>, into the pore is strongly enhanced with increasing passing 

propensity, Pex. Fig.6(b)-6(d) show the concentration profiles for AB when F/Feq = 

0.625 for  = 5, 1, and 0, respectively. Here, the reduction in excess reactant with 

increasing  is evident. 

In Fig.7, we show the reactivity, R
B

rxn, versus F for the reversible reaction. The 

contrast between the strong decrease of R
B

rxn with increasing F for enhanced product 
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reentry (=5) versus the slow decrease or even slight increase of R
B

tot for blocked 

product reentry (=0) is even greater than for irreversible reaction. This is due to 

opposite shifts in the global equilibrium for enhanced versus blocked reentry. The 

neutral case (=1) exhibits intermediate behavior with a linear decrease of R
B

rxn(F) =  

(1-F/Feq) R
B

rxn(0) versus F, as explained below.  

The enhanced reactivity upon converting from enhanced reentry (>1) to 

blocked reentry (=0) partly reflects kinetic effects due to the reduction in pore loading 

<Xin>. RA
ads

(hop) is still given by (14) and increases with decreasing , thus boosting 

reactivity. More significant is that lower <Xin> greatly increases the tracer diffusion 

coefficient Ftr(GH) which boosts reactant penetration of excess reactant and thus 

reactivity. However, a synergistic factor is the strong shift in equilibrium with varying , 

noting that blocked reentry allows completion of the reversible reaction to F=1! 

Finally, we provide some further comments on reaction kinetics. First, for the 

neutral case =1, we describe the origin of the linear decrease R
B

net(F)  (1-F/Feq) where 

Feq = Kc/(Kc +1). To this end, it is instructive to consider steady-state equations for 

<An> = <An> - Kc
-1

<Bn>. Subtracting Kc
-1 

times (6b) from (6a) yields the 

homogeneous F-independent equations 

0 = -k(1+Kc
-1

) <An> - JA
n>n+1

                                                  (16) 

where JA
n>n+1

 = -h Ftr (<An>). 

For the BC at n=1, subtracting Kc
-1 

times (8b) from (8a) yields 

0 = h<Eout> <Aout> - [h<Eout>+ k(1+Kc
-1

)] <A1>  
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      + (1+Kc
-1

) RA
ads-des

(ex) - JA
1>2

.                                                                 (17) 

where <Aout> = <Xout>(1- F/Feq) and RA
ads-des

(ex) denotes the net rate of exchange of 

reactant A into the pore at n=1. Using that <A1> + <B1> = <Xout> for =1, one can also 

write  

(1+Kc
-1

) RA
ads-des

(ex) = Pex h<Xout>
2
(1- F/Feq) - Pex h<Xout><A1>.  (18) 

Thus, the BC adopts an inhomogeneous linear form with driving term 

proportional to   1-F/Feq. This implies that all <An>  (1-F/Feq), and thus one has 

R
B

rxn(F) = (1-F/Feq) R
B

rxn(0). 

Second, the above analysis is useful for understanding the change in initial 

reactivity (for F=0 where behavior is independent of ) going from irreversible reaction 

(where 1+Kc
-1 

=1) to reversible reaction (where 1+Kc
-1

 >1). Equation (17) indicates that 

one should have quite similar values of <A1> since k<<h (with <A1> marginally 

lower in the reversible case), and (16) indicates that <An> should decay somewhat 

faster into the pore for the reversible case. Mainly the latter effect produces a slightly 

lower initial reactivity for the reversible case.  In Fig.8, we compare <An> profiles for 

F=0 and =1 to confirm this picture. 

Third, nonlinear variation of R
B

rxn(F) on F when 1 has similar origins to those 

for the irreversible case. Fourth, our results for the F-dependence of R
B

rxn(F) encode 

complete information about the reaction kinetics as discussed for the irreversible case. 

 

IV. Conclusions 
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The catalytic activity of nanoporous materials containing multifunctionalized 

linear nanopores is shown to be strongly dependent on the tunable interaction between 

reaction products and the interior pore environment. Making the pore interior 

unfavorable to products not only modifies the reaction equilibrium towards completion, 

but also reduces pore loading which can significantly enhance diffusivity and thus 

reactivity especially in the SFD regime. As noted in previous studies, catalytic activity is 

also strongly dependent on the propensity for passing of reactants and products within 

the pores [9,14,15,21]. Our generalized hydrodynamic formulation of reaction-diffusion 

phenomena provides an efficient tool to explore behavior over a broad phase-space of 

model parameters. This approach can reliably capture the complex interplay between 

reaction and restricted transport which results in subtle spatial correlations and 

fluctuations of reactants and products within the pore. These effects are not described by 

traditional mean-field approaches. 

There are numerous possible modifications and extensions of our modeling 

which could be performed either utilizing refined generalized hydrodynamic RDE or 

with KMC simulation.  

In this contribution, we have considered the benchmark case of equal mobility of 

reactants and products within the pore, following previous studies of conversion 

reactions in nanoporous systems [8-14]. However, the basic features of the reaction-

diffusion process and the variation for enhanced versus blocked product reentry to the 

pore will be preserved for unequal mobilities. Some comments pertaining to the required 

refinement of refined GH formulation are found in Ref. [14]. Another natural extension 
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of our modeling is to consider different reaction mechanisms, e.g., A+BC+D better 

matching esterification reactions, and to consider the scenario where pore reentry of just 

one of the two products is enhanced versus blocked. The approximate MF and precise 

GH formalism described above are readily extended to treat this more complex situation, 

and preliminary studies reveal analogous behavior to that discussed above for the 

simpler AB conversion reaction mechanism.  
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Appendix: Random walk analysis of GH tracer diffusivity Ftr(n) 

The position-dependent tracer diffusion coefficient, Ftr(x=na) = Ftr(n), for a 

tagged particle starting at cell n in a pore with a concentration X of other particles is 

central to our generalized hydrodynamic formulation. This quantity is determined by 

simulations involving a finite concentration of a single type of particle in the pore with 

dynamics of all particles identical to the tagged particle. This dynamics is naturally 

selected to match the (equivalent) dynamics A or B particles within the pore: hopping to 

neighboring empty sites at rate h; exchange with adjacent particles within the pore at rate 

Pex h; desorption from end sites n=1 and n=L by hopping to empty sites just outside the 

pore. If the reaction model excludes (includes) exchange in and out of the pore, then this 
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process is excluded (included) in the simulations to determine Ftr. If included with rates 

described in Sec. II A, then the corresponding single-particle dynamics includes 

exchange in and out of the pore at rate eadsPexh. This choice recovers the appropriate 

values for =1 (where eads =1) and for F=1 with only B in the fluid (where eads =). 

Our explicit algorithm to determine Ftr(n) is based on a suitably defined “exit 

time” tX(x=na) for the tagged particle to exit the pore (where exiting the pore 

corresponds to reaching a site just outside the pore opening). Given anomalous features 

of random walks in one-dimension, such as long time-tails in return-time distributions 

[26], a judicious choice of definition for tX is appropriate. Rather than simply average 

exit times over many simulation trials, we define tX(x=na) as the time when the root-

mean-square displacement of the tagged particle reaches the distance to the closest pore 

opening (i.e., a distance n for n<L/2). Then, we assign Ftr(n) = t0(n)/tX(n), motivated by 

the classic result that diffusivity scales like the mean-square displacement divided by 

time. Here, t0(n) corresponds to the exit time for an isolated particle in the pore, which 

can be determined analytically. Thus, one has that tX(n) ~ t0(n) and Ftr(n)1 for all n, as 

X0.  

For a semi-infinite pore L, it is clear that Ftr(n)  Ftr(DH) = Ftr(X, Pex), as 

n, recalling that Ftr(DH) is the standard tracer diffusion coefficient for an infinite 

system. Thus, one has that Ftr(n)  0, as n for SFD (Pex=0) when X > 0. The 

anomalous diffusion observed for SFD in infinite systems [20] suggests that tX(n) ~ n
4
 

[14] versus t0(n) ~ n
2
 for classic diffusion. Together, these imply that Ftr(n) ~ 1/n

2
, as 

n, for SFD. Numerical studies show that behavior for SFD is fit well by a more 
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general form Ftr(n)  1/(n
2
 + a n + bn

1/2
 +c) over a broad range of n [14]. For finite pores 

L<, usually Ftr(n)  Ftr(DH) quickly upon entering the pore interior if Pex >0. See Fig. 

3(b). For SFD (Pex=0), numerical studies reveal that Ftr(na  L/2) ~ 1/L at the pore 

center.  

To generate optimal numerical data for Ftr(n), we sometimes smooth simulation 

results using a fit Ftr(n) = Ftr(n) – Ftr(DH)  1/(n
2
 + an +c), for larger n. Simulations are 

typically used to generate Ftr(n) data for a selected set of values of X = <Xin>. Data for 

other intermediate X-values can be readily and reliably obtained by interpolation.  
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Figures 

 

 

 
 

Fig.1. Schematic of the A to B conversion reaction model illustrating processes within 

pores (shaded light blue), as well as coupling to the surrounding fluid. In-out exchange 

processes are not shown (but are active in our modeling). ‘c’ denotes catalytic sites. 
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Fig.2. Behavior of the conventional (DH) tracer diffusion coefficient, Ftr(DH), for 

infinite systems as a function of pore loading <Xin> for various passing probabilities, Pex 

(shown). 

 

 
 

Fig.3. Variation of the generalized hydrodynamic tracer diffusion coefficient, Ftr(n) = 

Dtr(n)/D0, with distance x=na into the left end of the pore for a pore on length L=100 a. 

The plateau value near the pore center corresponds to Ftr(DH). Results are shown for 

fixed <Xout> = 0.8 and varying <Xin> for: (a) single-file diffusion, Pex =0; and (b) 

exchange with Pex=0.25. 
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Fig. 4. Local steady-state concentration profiles for irreversible reaction AB with 

L=100 a, k = 0.001, h = 1, and <Xout> = 0.8. A (B) is blue, solid (red, dashed).  Behavior 

for: the onset of the reaction F=0 (a) for all ; and for F = 0.625 with (b) =5; (c) =1; 

(d) =0. 

 

 

 

 
 

Fig. 5. Net reactivity per pore, R
B

net, as a function of the fraction F of reactant converted 

to product for irreversible reaction AB with L=100 a, k = 0.001, h = 1, and <Xout> = 

0.8. (a) enhanced product reentry =5; (b) neutral reentry =1; (c) blocked reentry =0. 
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Fig.6. Local steady state concentration profiles for reversible reaction AB with  

L=100 a, k = 0.001, k=0.0005, h = 1, and <Xout> = 0.8. A (B) is blue, solid (red, 

dashed). Behavior for: the onset of the reaction F=0 (a) for all ; and for F/Feq = 0.625 

with (b) =5; (c) =1; (d) =0. 

 

  

 

 
 

Fig. 7. Net reactivity per pore, R
B

rxn, as a function of the fraction F of reactant converted 

to product for reversible reaction AB with L=100 a, k = 0.001, k=0.0005, h = 1, and 

<Xout> = 0.8. (a) enhanced product reentry =5; (b) neutral reentry =1; (c) blocked 

reentry =0. 
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Fig.8. Comparison of excess reactant concentration, <An>, for irreversible reaction 

(where <An> = <An>) and reversible reaction at the onset of reaction (F=0) with  

L=100 a, k = 0.001, k=0.0005, h = 1, =1, and <Xout> = 0.8. The net reactivity R
B

rxn 

corresponds to the area under these curves. 
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CHAPTER 5. HIGHER-ORDER TRUNCATION APPROXIMATIONS TO THE 

MASTER EQUATIONS FOR SINGLE-FILE REACTION-DIFFUSION 

PROCESSES: APPLICATION TO TRACER DIFFUSION ANALYSIS 

  

I. Introduction 

Traditional mean-field (MF) reaction-diffusion equations (RDE) have been used 

to model diffusion-mediated reaction processes [1,2]. These RDE include a conventional 

treatment of chemical kinetics which ignores spatial correlations between reactants. For 

transport and reaction in single-file systems, the non-trivial nature of diffusion is well-

recognized. Such systems are realized by mesoporous or nanoporous materials 

incorporating arrays of linear pores which are sufficiently narrow that molecules (or 

particles) cannot pass each other inside the pores. This no-passing feature results in 

anomalous tracer diffusion [3-5]. There have been several studies of a basic conversion 

reaction model and its variants [6-12]. In this basic model, the reactant, A, adsorbs at the 

ends of pore, converts to product, B, at catalytic sites within the pore, and both reactants 

and products can exit the pore. We are interested in asymptotic decay of reactant 

concentration as a function of distance into the pore in a semi-infinite SFD system, as 

well as the related behavior of the tracer diffusion coefficient. These issues are addressed 

utilizing the traditional mean-field type approximation as well as higher-level 

approximations.  

In Sec. II, we specify in detail the single-file conversion reaction model, the 

associated hierarchical rate equations and mean-field-type RDE (mf-RDE). Then, in Sec. 
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III, we analyze the asymptotic decay of the reactant concentration <An> at site n for 

small reaction rate. The associated tracer of diffusion coefficient is also extracted. The 

conclusions will be presented in Sec.IV. 

 

 

II. Reaction-diffusion model 

In our model for AB conversion (Fig.1), reactants A enter the pore from the 

surrounding fluid at rate Wads and are converted to products, B, at catalytic sites (c). 

Reactants and products within the pore are localized to sites of a 1D linear lattice 

traversing that pore, and both A and B exit the pore at rate Wdes. The simplest 

prescription for diffusion within the pores is that A and B hop to adjacent empty (E) sites 

at rate h. This would correspond to single-file diffusion with a strict no-passing 

constraint. We also allow positional exchange of adjacent A and B at rate Pex h to relax 

the strict single-file constraint, noting that exchange of adjacent particles of the same 

type has no effect. Conversion reaction at catalytic sites (c) occurs at rate k.  

We consider the development of the master equations for the reaction-diffusion 

model for the evolution of probabilities of various configurations within the pore [13]. 

Sites within the pore(s) are labeled by n, and <An> (<Bn>) denotes the probability that A 

(B) is at site n, etc. Then, for AB conversion in the case where all sites are catalytic, 

one has that 

d/dt <An> =  -k<An> - JA
n>n+1

, d/dt <Bn> =  +k<An> - JB
n>n+1

,  for 1<n<L.       (1) 

with separate equations for terminal sites reflecting adsorption-desorption boundary 

conditions. In (1), the net flux, JA
n>n+1

, of A from site n to n+1 is given by (E=empty) 
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JA
n>n+1

 = h [<AnEn+1> - <EnAn+1>] + Pex h[<AnBn+1> - <BnAn+1>].        (2) 

where the first half denotes the diffusion and the rest associates the position exchange. 

Analogous form of flux JB
n>n+1

can be obtained easily. The key is to find accurate, 

useable expressions for the fluxes. 

These equations (1) are coupled to probabilities for various configurations of 

pairs of sites. Equations for pair probabilities couple to those for various triples, etc., 

thus generating a hierarchy. Pair, triplet, etc., probabilities are not trivially related to 

single-site probabilities due to the presence of spatial correlations. In these models, 

correlations derive from the interplay of adsorption-desorption and diffusion with 

reaction. Implementing a simple mean-field (MF) factorization approximation, <KnEn+1> 

 <Kn><En+1>, etc., produces a closed set of discrete mf-RDE’s for single site 

concentrations, <An> and <Bn> noting that <An> + <Bn> + <En> =1.  

A more accurate pair approximation retains pair quantities like <KnEn+1>, but 

factorizes triplet quantities, e.g., <KnMn+1Nn+2>  <KnMn+1><Mn+1Nn+2>/<Mn+1>, with 

K, M, N = A, B, or E.  This generates a closed set of equations for single site quantities, 

<An> and <Bn>, together with the pair quantities, <AnAn+1>, <AnBn+1>, <BnAn+1>, and 

<BnBn+1>. See, e.g., [6,7,12]. Higher-order approximations are also possible retaining 

probabilities of configurations of strings of n>2 sites, although the gain in accuracy with 

increasing order, n, may be slow [13]. 

It is natural to consider a coarse-grained description of the spatially-discrete 

reaction-diffusion model which regards the species concentrations per unit length, 

C(x=na)  a
-1

 <Cn>, as functions of a continuous spatial variable x (leaving the t-
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dependence implicit), and denote the total concentration by X(x) = A(x) + B(x). Here “a” 

denotes the lattice constant (i.e., the distance between sites of cells in the pore.) The 

continuum RDE for our A to B conversion reaction model with all sites catalytic then 

have the form 

/t A(x) = – k A(x) – /x JA, and /t B(x) = +k A(x) – /x JB.                    (3) 

Boundary conditions for (3) at the pore ends reflect the adsorption-desorption dynamics. 

Description of the diffusion fluxes, JA and JB, is non-trivial [13-15]. However, for the 

special situation applying in the steady-state where X = constant (i.e., independent of x), 

hydrodynamic theories for diffusion in mixed systems suggest the simple form  

JA = – Dtr(X) /x A and JB = – Dtr(X) /x B. Then, if Dtr(X) is actually independent of 

x, simple analysis of (3) in the steady-state reveals that  

A(x) ~ exp[–x/Lp] where Lp = (Dtr/k)
1/2

.           (4) 

Where Lp is the penetration depth of the reactant A and Dtr = a
2
 h Ftr is the tracer 

diffusion coefficient. 

 

III. Analysis of asymptotic decay of reactant  

As noted in previous studies [13], classic hydrodynamic analysis predicts that in 

the steady-state, the central region will contain just B and no A, so that  

<Bn> = Wads/(Wads+Wdes)  Xeq and <An>  0. Only the end sites have significant A 

population in our discrete formulation. Thus, the non-zero population of A near the pore 

ends observed in simulations can be associated with fluctuation effects not included in 

the hydrodynamic formulation. Since the reactivity of the system is determined by the 
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population of A within the pore, these fluctuations are entirely responsible for the 

steady-state reactivity.  

This situation motivates more detailed analysis of the dependence of this steady-

state <An> concentration profile on model parameters. Steady-state profiles appear to 

have an exponential form,  

<An>  c· r
n
 = c·exp(-n) = c·exp(-n/Lp1), at least for larger n <L/2.        (5) 

In (5),  = - ln r is the decay rate, and Lp1=1/ is a measure of the penetration depth of A 

into the pore. Comparison with (5) above indicates that Lp1 corresponds to Lp if we make 

the identification of n with x. Thus, we naturally write 

            Dtr = k (Lp1)
2
 = a

2
 h Ftr, where a = 1 and Ftr = (k/h)(Lp1)

2
 = k/(h

2
).        (6) 

Analysis below will show that Ftr is independent of h and k, depending only on Xeq. 

Here, we focus on considering the predictions of MF-type analytic treatments 

regarding the above behavior. The simplest MF approximation exhibits precise 

exponential decay for long pores. This behavior, noted previously [11], is a result of the 

feature that <En> =1-<Xn> is constant, which in turn allows reduction of the steady-state 

form of the first equation in (1) to a linear coupled set of equations. Setting  = k/h and 

Xeq = Wads/(Wads+Wdes), then seeking a solution to these linear equations of the form 

<An>  r
n
 yields for r the quadratic equation (cf. [11]) 

             (1-Xeq)(r + r
-1

 -2) = .             (7) 

Consequently, one has that  = 1-r ~ (1-Xeq)
-1/2

 
1/2

, for small , so that (cf. [11]) 

     Lp1(MF) ~ 
-1

 ~ (1-Xeq)
1/2

 (k)
-1/2

(h)
1/2

, for k  0 or h .                    (8) 
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which implies a relation between the tracer diffusion coefficient and the total 

concentration in the steady-state,  

                                               Ftr (Xeq) = (1-Xeq) = f(Xeq) (1-Xeq)                                      (9) 

where f(X) = 1. 

It is instructive to assess the predictions of the higher-order pair approximation 

for the behavior of the penetration length, Lp. The complex non-linear form of pair 

equations [11] excludes exact exponential decay. However, there should be asymptotic 

exponential decay <An> ~ exp(-n/Lp1) for large n <L/2. In the steady-state, one has the 

relations <An> + <Bn> = Xeq and <BnBn+1> + <BnAn+1> + <AnBn+1> + <AnAn+1> = (Xeq)
2
. 

Since one expects that <AnAn+1> decreases more quickly than <An>, <AnBn+1>, or  

<Bn-1An> for increasing n, it follows that one can just analyze equations for the latter 

quantities. Anticipating solutions of the form <An>  c·r
n
, <AnBn+1>  c·α1·r

n
, and    

<Bn-1An>  c·α2·r
n
 and substituting into the rate equations for the pair approximation 

yields three coupled equations  

(1-α2)(r-1) + (1-α1)(r
-1

-1) = ,    

(1-α1)(α1
-1

Xeq)(r
-1

+1) - (1-Xeq) - (1-α2) = , and                                                  (10) 

(1-α2)(α2
-1

Xeq)(r+1) - (1-Xeq) - (1-α1) = .       

Seeking solutions for small  and  = 1-r with α1  Xeq + B and α2  Xeq + C yields  

     Lp1(pair) ~ 
-1

 ~ (2-Xeq)
1/2

(2+Xeq)
-1/2

Lp(MF) , for large Lp1.       (11) 

and  

                                  Ftr (Xeq) = (1-Xeq) (2-Xeq)
 
/ (2+Xeq) = f(Xeq) (1-Xeq)                      (12) 

where f(X) = (2-X)
 
/ (2+X). 
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Thus, Lp1(pair) is smaller than Lp1(MF) and closer to the exact Lp1, but still has the 

incorrect asymptotic functional form as k  0 or h . The result C = -B = Xeq 

(1-Xeq)(2+Xeq)
-1

 obtained in previous study [13] is not necessarily true here. 

For even higher-order, say, triplet approximation, in the steady-state, one has the 

relations <An> + <Bn> = Xeq, <BnBn+1> + <BnAn+1> + <AnBn+1> + <AnAn+1> = (Xeq)
2
 and  

<BnBn+1An+2> + <BnAn+1An+2>  + <AnBn+1An+2> + <AnAn+1An+2> + <BnBn+1Bn+2> + 

<BnAn+1Bn+2> + <AnAn+1Bn+2> + <AnBn+1Bn+2> = (Xeq)
3
. Since one expects that 

<AnAn+1>, <AnAn+1An+2>, <AnAn+1Bn+2>, <AnBn+1An+2> and <BnAn+1An+2> decreases 

more quickly than <An>, <AnBn+1>, <Bn-1An>, <AnBn+1Bn+2>, <Bn-1AnBn+2>, or        

<Bn-2Bn-1An> for increasing n, it follows that one can just analyze equations for the latter 

quantities. We also add <AnEn+1Bn+2> and <Bn-2En-1An> to the above six quantities, since 

there is no way to rewrite these two quantities in terms of those six. Anticipating 

solutions of the form <An>  c·r
n
, <AnBn+1>  c·α1·r

n
, <Bn-1An>  c·α2·r

n
, 

<AnBn+1Bn+2> c·β1·r
n
, <Bn-1AnBn+2> c·β2·r

n
, <Bn-2Bn-1An> c·β1·r

n
, <AnEn+1Bn+2> 

c·γ1·r
n
 and <Bn-2En-1An> c·γ2·r

n
, and substituting into the rate equations for the triplet 

approximation yields eight coupled equations  

(1– α2)(r –1) + (1 – α1)(r
-1 

– 1) = ,    

γ1α1
-1

(r
-1 

+ 1) – (α1 – β1)α1
-1 

– (α1 – β2)α1
-1

 = ,                            

γ2α2
-1

(r + 1) – (α2 – β2)α2
-1 

– (α2 – β3)α2
-1

 = ,  

(α1 – β2)β1
-1

Xeq – (1– Xeq) + γ1 β1
-1

 r
-1 

Xeq – (α1 – β2)α1
-1

 = ,                                          (13) 

(α2 – β2)γ1(1 – α1)
-1

β2
-1

 – (α1 – β1)α1
-1

 + (α1 – β1)γ2 (1 – α2)
-1

β2
-1

 – (α2 – β2)α2
-1

 = ,  

γ2 β3
-1

r
 
Xeq – (α2 – β2)α2

-1
 + (α2 – β3)β3

-1
Xeq – (1– Xeq) = ,  
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(α1 – β1)γ1
-1 

+ (α1 – β2)γ1
-1

r – 2 + (1 – α1 –  γ1) γ1
-1

(r
-1 

+ 1) Xeq  

                   – (1– Xeq) – (1 – α1 – α2 + β2) (1 – α1)
-1 

= , and 

(α2 – β2)γ2
-1 

r
-1

 + (α2 – β3)γ2
-1

 – 2 + (1 – α2 –  γ2) γ2
-1

(r
 
+ 1) Xeq  

                                – (1– Xeq) – (1 – α1 – α2 + β2) (1 – α2)
-1 

= .   

Seeking solutions for small  and  = 1-r with α1  Xeq + B1, α2  Xeq + B2, β1   (Xeq)
2

 

+ C1,  β2   (Xeq)
2

 + C2,  β3   (Xeq)
2

 + C3,  γ1   Xeq(1– Xeq) + E1, and γ2   Xeq(1– Xeq) 

+ E2 yields  

      Lp1(triplet) ~ 
-1

 ~ (2-Xeq)
1/2

(4-3 Xeq+Xeq
2
)
1/2

 (8+6Xeq-5Xeq
2
+Xeq

3
)
-1/2

Lp(MF) ,        (14) 

for large Lp1. And,  

          Ftr (Xeq) = (1-Xeq) (2-Xeq)
 
(4-3 Xeq+Xeq

2
) / (8+6Xeq-5Xeq

2
+Xeq

3
)= f(Xeq) (1-Xeq),   (15) 

where f(X) = (2-X)
 
(4-3X+X

2
) / (8+6X-5X

2
+X

3
). 

For the quartet approximation additional multisite probabilities are needed to 

follow the analogous procedure. In the steady-state, we have 

Lp1(quartet) ~ 
-1

  

                    ~ (1600-1680Xeq -1660Xeq
2
 +3180Xeq

3
 -1963Xeq

4
 +601Xeq

5
 -365Xeq

6
 

+277Xeq
7
 -88 Xeq

8
 + 9Xeq

9
)
1/2

 (1600+3120Xeq -6060Xeq
2
 +4760Xeq

3
 -2453Xeq

4
 +871Xeq

5
 -

167Xeq
6
 - 3Xeq

7
 +8Xeq

8
 - Xeq

9
)
-1/2

Lp(MF), for large Lp1.                                                  (16)  

And,  

           Ftr (Xeq) = f(Xeq) (1-Xeq) = (1-Xeq) (1600-1680Xeq -1660Xeq
2
 +3180Xeq

3
 -1963Xeq

4
 

+601Xeq
5
 -365Xeq

6
 +277Xeq

7
 -88 Xeq

8
 + 9Xeq

9
) / (1600+3120Xeq -6060Xeq

2
 +4760Xeq

3
  

-2453Xeq
4
 +871Xeq

5
 -167Xeq

6
 - 3Xeq

7
 +8Xeq

8
 - Xeq

9
)                                                        (17) 
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where f(X) = (1600 - 1680X - 1660X
2
 + 3180X

3
 - 1963X

4
 + 601X

5
 - 365X

6
 + 277X

7
 -88 

X
8
 + 9X

9
) / (1600 + 3120X - 6060X

2
 + 4760X

3
 - 2453X

4
 + 871X

5
 - 167X

6
 - 3X

7
 + 8X

8
 - 

X
9
). 

Based on the above calculation, Lp1(triplet) is smaller than Lp1(MF) and Lp1(pair) 

and Lp1(quartet) is smaller than Lp1(triplet). To analyze the tracer diffusion coefficient 

Dtr (Xeq) (or Ftr (Xeq)), one can look at f(Xeq) 

f(Xeq)MF = 1,  

f(Xeq)pair = (2-Xeq) (2+Xeq)
-1

,   

f(Xeq)triplet = (2-Xeq)(4-3 Xeq+Xeq
2
) (8+6Xeq-5Xeq

2
+Xeq

3
)
-1

,                                               (18) 

f(Xeq)quartet = (1600-1680Xeq -1660Xeq
2
 +3180Xeq

3
 -1963Xeq

4
 +601Xeq

5
 -365Xeq

6
 +277Xeq

7
 -

88 Xeq
8
 + 9Xeq

9
) (1600+3120Xeq -6060Xeq

2
 +4760Xeq

3
 -2453Xeq

4
 +871Xeq

5
 -167Xeq

6
 - 

3Xeq
7
 +8Xeq

8
 - Xeq

9
)
 -1

.                                                     

Assuming that approximations become more accurate with order increasing, we expect 

the behavior of f(Xeq) MF-type converges to the correct limiting behavior f(Xeq) = 0 for SFD 

for  positive Xeq. From Fig.2, we can see that the behavior of the pair and triplet 

approximations is consistent with this trend; however, the mis-behavior in the tail of 

quartet (where f <0) seems to break the anticipated tendency of convergence to exact 

behavior. 

 

IV. Conclusions 

The MF-type approximations are traditional and widely used approach in the 

analysis of discrete RDE. In general, they are expected to converge to the correct 
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behavior with increasing order, although perhaps slowly. However, the analysis for our 

model of the forth-order quartet approximation suggests another possibility, specifically 

that uncontrolled MF-type methods can fail to capture the correct behavior with 

increasing order.  
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Figures 

 
Fig 1. Schematic of the AB conversion reaction model illustrating processes within a 

single pore (shaded blue), as well as the surrounding fluid. ‘c’ denotes catalytic sites. 
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Fig 2. f(Xeq)MF-type behavior for MF (Site), pair, triplet and quartet approximation. 
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CHAPTER 6. TAYLOR EXPANSION ANALYSIS OF A GENERALIZED 

POSITION-DEPENDENT TRACER DIFFUSION COEFFICIENT FOR 

TRASNPORT IN SEMI-INFINITE PORES 

 

I. Introduction 

Anomalous tracer diffusion of a “tagged” particle in a single-file diffusion (SFD) 

system, where particles within narrow pores cannot pass each other, was proven in the 

1960’s for hard-core interactions [1] and later for general interactions [2]. Numerous 

studies have considered single-file tracer diffusion in finite open [3], periodic [4,5], or 

closed [6] “pores”, and in other systems [7]. For the reaction-diffusion phenomena with 

functionalized nanoporous materials which are of broad interest in the catalysis 

community, it is actually chemical diffusion [8] which controls behavior [9]. However, 

there is a connection between chemical and tracer diffusion (although this connection is 

not well recognized). It is also the case here that analysis of tracer diffusion in finite 

length systems is of importance (in contrast to the traditional analysis for infinite 

systems). Thus, for these important applications there is considerable motivation to 

provide a more detail understanding and characterization of tracer diffusion for transport 

in finite systems (noting that tracer diffusion is independent of the details of the reaction 

model). 

The traditional mean-field approximation in a SFD system implies that the tracer 

diffusion coefficient Dtr = 1 –  [9,10] where  is the total concentration of particles 

within the pore in the steady state. This choice overestimates chemical diffusion fluxes 
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for SFD. A standard SFD-analysis for a system of length L indicates that Dtr ~ 1/L 0, 

as L [3,4]. This recovers the familiar exact result that Dtr = 0 in infinite systems due 

to the SFD constraint. The associated “hydrodynamic” reaction-diffusion equations 

(RDE) with constant Dtr ~ 1/L can describe, e.g., the evolution of slowly varying profiles 

during filling of long pores [12]. However, this formulation neglects fluctuations near 

pore openings, and thus underestimates associated effective chemical diffusion fluxes. 

These observations prompt our development of a more general formulation of position-

dependent tracer diffusion in finite or semi-infinite systems. 

In Sec. II, we generalize a standard definition of the tracer diffusion coefficient 

Dtr for infinite systems to finite or semi-infinite systems (pores) motivated by the 

expectation that tracer diffusion is effectively enhanced near pore openings. These Dtr 

are determined from analysis of a complex many-particle transport problem for which 

exact analytic solution is not viable. One possible strategy for their determination is 

kinetic Monte Carlo simulation. However, here we develop and alternative Taylor 

expansion analysis which can be effectively applied to assess the Dtr at least close to the 

pore openings and for low loading .  

 

II. Taylor expansion for tracer diffusion coefficient Dtr(n) 

As a natural generalization of tracer diffusion for infinite systems, we determine 

Dtr(n) at site n for a pore with uniform loading <Xn>= . Our definition and 

determination of Dtr(n) is based analysis of the time, tn(), for a tagged particle starting 

at this cell to “reach a pore opening” in the sense that its suitably defined root-mean-
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square (rms) displacement grows to match the distance from the nearest pore opening 

(See Fig.1). For a finite pore of length L, this distance is the smaller of n or L – n. For a 

semi-infinite pore of interest here, this distance is always n. Specifically, we set Dtr(n) = 

D0 tn(0+)/tn() = tn(0+)/tn() as D0=1 since diffusivity is inversely proportional to the 

time for the rms displacement to reach a certain value. This recovers the correct limiting 

value Dtr(n)1 as 0+.  

In our model, particles in a finite or semi-infinite pore hop to adjacent empty site 

at rate Whop =1. A single tagged particle starting at site n has the same hopping dynamics 

within the pore as all the other particles. To maintain a pore with uniform concentration 

<Xn>=, we allow the untagged particles to hop into the pore at rate Wads and the tagged 

and all untagged particles to hop out of the pore at rate Wdes which follows <Xn> =  = 

Wads / (Wads + Wdes). (The tagged particle cannot hop back in to the pore.) Without loss 

of generality, assume Wads + Wdes = 1 resulting in Wads =  and Wdes = 1 – . Let Pj 

denote the probability that the tagged particle is at site j, P(xj oj+1) that the tagged particle 

x is at site j and that site j+1 is empty (o), etc. Also, P0 denotes the probability that the 

tagged particle has hopped out of the pore. Then we can determine the mean position, 

<j>, the mean-squared position, <j
2
>, etc. for the tagged particle as moments of Pj via 

<j
n
> = j (j

n 
Pj). 

Since the average position of the tagged particle inside the pore may “drift” for   

 > 0, there is more than one reasonable way to define mean-square displacement. One 

could consider the mean-square (ms) displacement about the average (time-varying) 
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position, although we do not do so here. Instead, one could consider the mean-square 

displacement from the initial position j0 = n via 

         ms displacement = <(j-j0)
2
> = <j

2
> - 2j0<j> + (j0)

2
.         (1) 

This definition was used in our previous simulation studies [11,12]. An alternative, 

which neglects drift in the mean position, is to use 

         ms type displacement = <j
2
> – <j

2
>0 = <j

2
> - (j0)

2
.         (2) 

The exact Taylor expansion for these quantities expansions for <j> and <j
2
>, e.g., 

<j
2
> =  

<j
2
>0 + d/dt <j

2
>0 t+ d

2
/dt

2 
<j

2
>0 t

2
/ 2! + d

3
/dt

3 
<j

2
>0 t

3
/ 3! + d

4
/dt

4 
<j

2
>0 t

4
/ 4! + …        (3)   

for analysis of which determination of the initial values of d/dt <j
2
>, d

2
/dt

2 
<j

2
>,       

d
3
/dt

3 
<j

2
>, etc. is required. 

This analysis proceeds from the exact master equations for this many-particle 

system with a single tagged particle which have the form 

d/dt
 
P0 = Wdes P1, 

d/dt
 
P1 = – Wdes P1 – P(x1 o2) + P(o1 x2), 

d/dt
 
P2 = P(x1 o2) – P(o1 x2) – P(x2 o3) + P(o2 x3), 

d/dt
 
P3 = P(x2 o3) – P(o2 x3) – P(x3 o4) + P(o3 x4),                                                 (4) 

d/dt
 
P4 = P(x3 o4) – P(o3 x4) – P(x4 o5) + P(o4 x5), 

…  

d/dt
 
Pj = P(xj-1 oj) – P(oj-1 xj) – P(xj oj+1) + P(oj xj+1), 

...  

Examples of the next higher-order equations for pair quantities are 
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d/dt P(x1 o2) = – Wdes P(x1 o2) – P(x1 o2) + P(o1 x2)  

                        – P(x1 o2 3) + P(x1 2 o3)                                                            (5a) 

…         

d/dt P(xj oj+1) = – P(xj oj+1) + P(oj xj+1) – P(oj-1 xj oj+1) + P(xj-1 oj oj+1)  

                         – P(xj oj+1 j+2) + P(xj j+1 oj+2)                                                   (5b) 

where P(xj oj+1 j+2) denotes the probability that the tagged particle (x) is at site j, site j+1 

is empty (o) and another particle () is at site j+2. 

Note that from these equations, it immediately follows that 

                                          d/dt j (Pj) = 0                                                            (6) 

so it follows that j (Pj) =1 (consistent with the initial conditions). More generally, one 

can generate rate equations for the moments <j
n
> = j (j

n
 Pj). As noted above, of 

particular importance here is the behavior of <j> and <j
2
> as this is used to determine 

Dtr(n). 

In (4), if the equation of Pj is multiplied by j, the master equations become 

0 d/dt
 
P0 = 0 Wdes P1 

1 d/dt
 
P1 = 1 [– Wdes P1 – P(x1 o2) + P(o1 x2)] 

2 d/dt
 
P2 = 2 [P(x1 o2) – P(o1 x2) – P(x2 o3) + P(o2 x3)] 

3 d/dt
 
P3 = 3 [P(x2 o3) – P(o2 x3) – P(x3 o4) + P(o3 x4)]                                         (7) 

4 d/dt
 
P4 = 4 [P(x3 o4) – P(o3 x4) – P(x4 o5) + P(o4 x5)]  

…  

j d/dt
 
Pj = j [P(xj-1 oj) – P(oj-1 xj) – P(xj oj+1) + P(oj xj+1)] 

...  
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Summing over equations in (7), one has 

d/dt
 
<j> = d/dt j (j

 
Pj) = – Wdes P1 + P(x1 o2) 

                                         + P(x2 o3) – P(o1 x2) 

                                          + P(x3 o4) – P(o2 x3) + … 

                                          + P(xj oj+1) – P(oj-1 xj) + …                                         (8) 

Similarly multiplying the jth equation in (4) by j
2
 yields  

0
2
 d/dt

 
P0 = 0

2
 Wdes P1 

1
2
 d/dt

 
P1 = 1

2
 [– Wdes P1 – P(x1 o2) + P(o1 x2)] 

2
2
 d/dt

 
P2 = 2

2
 [P(x1 o2) – P(o1 x2) – P(x2 o3) + P(o2 x3)] 

3
2
 d/dt

 
P3 = 3

2
 [P(x2 o3) – P(o2 x3) – P(x3 o4) + P(o3 x4)]                                      (9) 

4
2
 d/dt

 
P4 = 4

2
 [P(x3 o4) – P(o3 x4) – P(x4 o5) + P(o4 x5)]  

…  

j
2
 d/dt

 
Pj = j

2
 [P(xj-1 oj) – P(oj-1 xj) – P(xj oj+1) + P(oj xj+1)] 

...  

Taking the summation of equations in (9), one has, 

d/dt
 
<j

2
> = d/dt j (j

2 
Pj) = 3 P(x1 o2) –  Wdes P1  

                                        + 5 P(x2 o3) – 3 P(o1 x2) 

                                        + 7 P(x3 o4) – 5 P(o2 x3) + … 

                                        + (2j + 1) P(xj oj+1) – (2j – 1) P(oj-1 xj) + …               (10) 

Clearly one can continue this procedure to obtain an equation for d/dt <j
n
>.  

Determination of a Taylor expansion for <j> motivates the differentiation  

d
2
/dt

2 
<j> = d/dt (d/dt <j>)  
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                = – Wdes d/dt P1 + d/dt P(x1 o2) + d/dt P(x2 o3) – d/dt P(o1 x2)  

                   + d/dt P(x3 o4) – d/dt P(o2 x3) + …+ d/dt P(xj oj+1) – d/dt P(oj-1 xj) + …                          

               = – 2 P(x1 o2) + Wdes
2
 P1 + (3 – 2Wdes) P(o1 x2) – P(x1 o2 3)  

                  + P(x1 2 o3)+ P(x1 o2 o3) – P(o1 o2 x3) – 2 P(x2 o3) + 2 P(o2 x3)  

                  – P(x2 o3 4) + P(x2 3 o4)– Wdes P(1 x2) + P(x2 o3 o4) – P(x3 o4)  

                  + P(o3 x4) – P(x3 o4 5) + P(x3 4 o5) + …                                         (11) 

where we use (5b) for  d/dt P(xj oj+1), etc. Further differentiation yields equations for 

d
3
/dt

3 
<j>, d

4
/dt

4 
<j> and higher order terms.  

Determination of a Taylor expansion for <j
2
> motivates the differentiation  

d
2
/dt

2 
<j

2
> = d/dt (d/dt <j

2
>)  

     = 3 d/dt P(x1 o2) –  Wdes d/dt P1 + 5 d/dt P(x2 o3) – 3 d/dt P(o1 x2) 

        + 7 d/dt P(x3 o4) – 5 d/dt P(o2 x3) + … 

        + (2j + 1) d/dt P(xj oj+1) – (2j – 1) d/dt P(oj-1 xj) + …      

     = (– 2Wdes – 6) P(x1 o2) + Wdes
2
 P1 + (9 – 4Wdes) P(o1 x2)  

        – 3 P(x1 o2 3) + 3 P(x1 2 o3)+ 5 P(x1 o2 o3) – 2 P(o1 x2 o3) – 3 P(o1 o2 x3)  

        – 10 P(x2 o3) + 10 P(o2 x3)– 5 P(x2 o3 4) + 5 P(x2 3 o4) 

        – 3Wdes P(1 x2) + 7 P(x2 o3 o4) – 2 P(o2 x3 o4) – 14 P(x3 o4) + 14 P(o3 x4) 

        – 7 P(x3 o4 5) + 7 P(x3 4 o5) + 9 P(x3 o4 o5) + …                                      (12) 

where we use (5b) for  d/dt P(xj oj+1), etc. Further differentiation yields equations for 

d
3
/dt

3 
<j

2
>, d

4
/dt

4 
<j

2
> and higher order terms.  

Suppose that the tagged particle is initially located at site 1, and then the 

corresponding derivatives of <j> and <j
2
> are as below: 
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d/dt
 
<j>0 = 0,   

d
2
/dt

2 
<j>0 = 2Wdes

2
 – 2Wdes = – 2 (1 – ),        

 d
3
/dt

3 
<j>0 = – 2Wdes

3
 – 4Wdes

2 
+ 6Wdes 

                   = 2 (1 – )  (4 – ),
 

d
4
/dt

4 
<j>0 = 4Wdes

4
 + 3Wdes

3
 +12Wdes

2 
– 19Wdes 

                   =  (1 – ) (– 30 + 15 – 4
2
), 

d
5
/dt

5 
<j>0 = – 4Wdes

5
 – 13Wdes

4
 – 24Wdes

3
 – 21Wdes

2 
+ 62Wdes  

                   =  (1 – ) (124 – 87 + 29
2
 – 4

3
),                                       (13) 

and 

d/dt
 
<j

2
>0 = 2Wdes = 2(1 – ),   

d
2
/dt

2 
<j

2
>0 = 4Wdes

2
 – 6Wdes = 2(1 – ) (– 1 – 2),   

d
3
/dt

3 
<j

2
>0 = 2Wdes

3
 – 16Wdes

2 
+ 18Wdes 

                   = 2(1 – )  (2 + 6 + 
2
),

 

d
4
/dt

4 
<j

2
>0 = 8Wdes

4
 – 15Wdes

3
 + 44Wdes

2 
– 47Wdes 

                   = (1 – ) (– 10 – 38 + 9
2 

–8
3
), 

d
5
/dt

5 
<j

2
>0 = 2Wdes

5
 – 40Wdes

4
 + 52Wdes

3
 – 135Wdes

2 
+ 186Wdes  

                   = (1 – ) (65 + 143 – 56
2
 + 32

3
 + 2

4
).                                    (14) 

Next, we describe the estimation of t1() for various total concentrations . Here 

we focus on three cases: (i) low loading =0.2 with Wdes = 0.8, (ii) high lowing =0.8 

with Wdes = 0.2, and (iii)  = 0+ as there is no other particles within the pore. In Fig. 2 
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and Fig. 3, illustrate our approach to obtaining t1() values with  = 0+ and  =0.2 

respectively by solving the fifth-order polynomial equations 

              ms displacement = <(j-j0)
2
> = <j

2
> – 2j0<j> + (j0)

2
  

                                         = <j
2
> – <j

2
>0 – 2j0 (<j> – j0) =1.                              (15) 

and 

          ms type displacement = <j
2
> – <j

2
>0  

                                                d/dt <j
2
>0 t+ d

2
/dt

2 
<j

2
>0 t

2
/ 2! + d

3
/dt

3 
<j

2
>0 t

3
/ 3!  

                                                 + d
4
/dt

4 
<j

2
>0 t

4
/ 4! + d

5
/dt

5 
<j

2
>0 t

5
/ 5!  = 1.                 (16) 

Moreover, comparison of the results obtained from (15) with the t1() values obtained by 

Kinetic Monte Carlo (KMC) simulation in a semi-infinite pore is appropriate and is 

provided in Table 1. The procedure to obtain estimates of t2(), t3(), etc. is analogous, 

although estimates will be less accurate due to the longer times involved.   

 

III. Conclusions 

The Taylor expansion analysis of tn() offers a way to estimate the generalized position-

dependent tracer diffusion coefficient effectively at least for sites close to the pore 

opening. The shortcoming of the truncated Taylor expansion analysis is that it is never 

exact and must give artificial behavior for long times. However, it is a way, probably the 

only way, to estimate tracer diffusion analytically. It is reasonably good for low loading, 

e.g. =0.2, and not too good for high loading, e.g. =0.8. An appropriate rearrangement 

of Taylor expansion may boost the convergence.  
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Tables  
 

Table 1. Dtr (1) = t1(0+)/t1() comparison of KMC simulation and Taylor Expansion 

Analysis (TEA) for both lowing loading  = 0.2, high loading  = 0.8 and  = 0+. 

 

 KMC TEA with 1
st
 

term 

TEA with first 

3
rd

 terms 

TEA with first 

5
th

 terms 

t1(0.2) 0.798407 0.625 0.7976 0.78513 

t1(0.8) 6.96930 2.5 1.8217 1.48871 

t1(0+) 0.64673 0.5 0.6105 0.61834 

Dtr(1) =  

t1(0+)/ t1(0.2) 

0.810025 0.8 0.7654 0.78756 

Dtr(1) = 

t1(0+)/ t1(0.8)  

0.092797 0.2 0.3351 0.41535 
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Figures 

 

 
 

Fig.1. Schematic of a tagged particle to escape the pore with a finite density  of other 

particles. 
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Fig.2. The point of intersection gives the time t1() in the case =0+ with a truncation 

error in order o(t
6
). 

 

 



115 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

t

<(
j-

j 0
)2

>

Taylor expansion 
of <(j - j

0
)2>

 

Fig.3. The point of intersection gives the time t1() in the case =0.2 with a truncation 

error in order o(t
6
). 
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CHAPTER 7. ANALYSIS OF THE STEADY-STATE CONTINUUM 

REACTION-DIFFUSION EQUATIONS FOR CATALYTIC CONVERSION 

REACTIONS IN 1D PORES WITH SINGLE-FILE DIFFUSION 

 

I. Introduction 

The nontrivial nature of diffusion is well recognized in single-file systems, and 

there is appreciation that this will impact reaction-diffusion processes in nanoporous 

systems. The no-passing feature results in anomalous tracer diffusion [1-4]. There have 

been extensive studies often motivated by studies of transport and catalytic reaction in 

zeolites [5] and other functionalized nanoporous materials, emphasizing the anomalous 

nature of tracer- or self-diffusion [5,6]. This anomaly is reflected in a sub-linear increase 

with time in the mean-square displacement of a specific “tagged” particle [2,7]. Our 

interest is in the interplay between this type of anomalous transport and the catalytic 

reaction kinetics. Such behavior is traditionally described by reaction-diffusion 

equations (RDE). However, characterization of chemical diffusion (rather than tracer 

diffusion), which provides key input to these equations, has received relatively little 

attention for quasi-single-file systems. Its correct description is a non-trivial statistical 

mechanical challenge. 

Our specific focus is on simple first-order conversion reactions, A –> B (see 

Fig.1), occurring inside a parallel array of linear nanopores of a catalytically 

functionalized material such as mesoporous silica. Reactants, A, enter the pore openings, 

diffuse to adjacent empty cells of a 1D linear lattice at rate h, convert to a product at 
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catalytic cells (c), B, with microscopic rate k, and both reactants and products can 

diffuse out of the pore [8-14]. The cell width “a” is chosen as 1 nm comparable to 

species size. This would correspond to single-file diffusion (SFD) with a strict no-

passing constraint.  

In Sec. II, we first describe our continuum model for conversion reaction in 

linear nanopores, and the associated reaction-diffusion equations (RDE). Then, we 

present the results for improved analysis of the steady-state continuum RDE. Our 

conclusions are presented in Sec. III. 

 

II. Analysis of the steady-state continuum reaction-diffusion equations 

A. Continuum reaction-diffusion equations 

The exact master equations for stochastic lattice-gas (LG) reaction-diffusion 

model for the evolution of probabilities of various configurations within the pore have 

been developed [12, 14] where we used <Cn> to denote the probability or ensemble 

averaged concentration for species C = A or B at site n (or for this site to be empty when 

C = E). For smoothly varying concentrations within the pore, it is natural to consider a 

coarse-grained description of the spatially-discrete reaction-diffusion model which 

regards the species concentrations per unit length, C(x=na)  a
-1

 <Cn>, as functions of a 

continuous spatial variable x (leaving the t-dependence implicit), and denote the total 

concentration by X(x) = A(x) + B(x). The continuum RDE for our A to B conversion 

reaction model with all sites catalytic then have the form 

/t A(x) = – k A(x) – /x JA, and /t B(x) = +k A(x) – /x JB.                    (1) 
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Boundary conditions for (1) at the pore ends reflect the adsorption-desorption dynamics. 

Description of the diffusion fluxes, JA and JB, is non-trivial, actually critical.  

Analysis from the theory of interacting particle systems [16, 22] for the 

hydrodynamic regime of slowly varying concentrations suggests the general form [16]  

JA  = – D0 (A/X)X/x – Dtr[(B/X)A/x - (A/X)B/x].                    (2) 

Here D0 = a
2
h is the chemical diffusion coefficient for particles X, and Dtr =D0 Ftr is a 

tracer diffusion coefficient. Here, it suffices to consider the local steady-state regime 

with uniform total concentration, X = a
-1
, corresponding to a counter-diffusion mode 

[17] where A/x = – B/x. Then, (2) and the analogous expression for JB simply 

reduce to [12,17] 

                         JA = – Dtr A/x and JB = – Dtr B/x.                                (3) 

Given the shortcomings of the mean-field (MF) approximation [12, 14] and the classic 

“hydrodynamic” approach [14] for Dtr or Ftr, we have developed a “generalized 

hydrodynamic” treatment [14] which incorporates a position-dependent Ftr(x=na). This 

Ftr is enhanced near pore openings and decays to a value ~1/L in the pore center for 

pores of length L. Thus, for semi-infinite pores of interest here, Ftr(x) 0, as x0. 

Further discussion of Ftr(x) appears in the following section. 

 

 B. Lowest-order analysis of A(x) in the steady state 

Insight into the consequences of decay of Ftr(x) comes from analysis of the 

steady-state solutions of the continuum RDE for a semi-infinite pore x0 using (3) with 
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the form Ftr(x) ~ 1/x
p
. Assume A(x) ~ exp[-(x/Lp)

q
] = exp(-αx

q
) where Lp denotes the 

penetration depth of reactant A, then in the steady-state one finds,  

            0 = /t A(x) = – k A(x) – /x (– Dtr A/x)                                           (4) 

which implies 

                  k/D0 exp[– (x/Lp)
q
] = /x {1/x

p
 /x (exp[– (x/Lp)

q
])}                    (5) 

After differentiating and dropping of non-dominant part, one obtains 

                  k/D0 = q
2
 (x

2q-p-2
)/ Lp

2q
                                                                       (6) 

It follows that 

                 2q – p – 2 = 0, and Lp = (k/D0/q
2
)
 -1/(2q)

~(k/D0)
-1/(2q)

                           (7) 

Hence, for small reaction rate k and large penetration depth Lp, we have the dominant 

form  

             A(x) ~ exp[– (x/Lp)
q
] where q=(2+p)/2, and Lp ~(k/D0)

ζ
 with ζ = –1/(2+p).      (8) 

The true asymptotic scaling exponent for Lp is ζ = – 1/4 corresponding to the true 

asymptotic exponent for decay of Ftr of p = 2. However, behavior mimicking ζ = –1/3 for 

non-asymptotic effective exponent p = 1 might be seen for lower X. Both contrast MF 

behavior ζ = – 1/2 corresponding to p = 0 (i.e., constant Ftr) [11,12]. These predictions 

are confirmed by numerical analysis of discrete generalized hydrodynamic RDE’s 

exploiting the capability of this deterministic treatment to obtain much more precise ζ-

values than possible by KMC simulation [14].  

 

C. Improved analysis of A(x) in the steady state 
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Success in the lowest-order analysis motivates an attempt to develop the next 

order correction to A(x). We continue using (3) with the form Ftr(x) = f x
-p

 ~ 1/x
p
. 

Assume A(x) ~ (1+c x
-s
) exp[-(x/Lp)

q
] = (1+c x

-s
) exp(-αx

q
), then we have,  

 A/x = [– cs x
-s-1

 – αq x
q-1

 (1+c x
-s
)] exp(-αx

q
),  

 Ftr A/x = [– fcs x
-s-p-1

 – fαq x
q-p-1

 (1+c x
-s
)] exp(-αx

q
), and 

        /x (Ftr A/x) = [fcs(s+p+1) x
-s-p-2

 – fαq (q–p–1) x
q-p-2

 (1+c x
-s
)  

                                       + fαqcs x
q-p-s-2

] exp(-αx
q
)  

                                      – αq x
q-1

 [– fcs x
-s-p-1

 – fαq x
q-p-1

 (1+c x
-s
)] exp(-αx

q
)     

                                 = [fcs(s+p+1) x
-s-p-2

 – fαq (q–p–1) x
q-p-2

 – fαqc (q–p+2s–1) x
q-p-s-2

                   

                                     + fα
2
q

2
 x

2q-p-2
 + cfα

2
q

2
 x

2q-p-s-2
 ] exp(-αx

q
)                                  (9)    

In the steady-state,                      

                     (k/D0)  A(x) = /x (Ftr A/x)                                                      (10)      

Hence, after substituting the above results into both sides, one obtains 

(k/D0) (1+c x
-s
) exp(-αx

q
) = [fcs(s+p+1) x

-s-p-2
 – fαq (q–p–1) x

q-p-2
  

        – fαqc (q–p+2s–1) x
q-p-s-2

 + fα
2
q

2
 x

2q-p-2
 + cfα

2
q

2
 x

2q-p-s-2
 ] exp(-αx

q
)        (11) 

which implies the dominant relationship for large x of 

                                     k/D0 x
0
 = fα

2
q

2
 x

2q-p-2
                                                                 (12) 

Therefore, k/D0 = fα
2
q

2
 and q = (p+2)/2, and (11) becomes  

cx
-s
 (k/D0) = fcs(s+2q–1) x

-s-2q
 – fαq (–q+1) x

-q
 – fαqc (–q+2s+1) x

-q-s
 + cfα

2
q

2
 x

-s
     (13) 

For s>0, it is natural to choose s=q to balance dominant terms for large x. But then, using 

the identity k/D0 = fα
2
q

2
 yields 

                             c fα
2
q

2
 = – fαq (–q+1) + cfα

2
q

2
, (for s=q)                                         (14) 
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which can only be satisfied setting q=1 (p=0) which contradicts the assumption of A(x).  

This failure prompts alternative strategies to determine higher-order behavior. 

An alternative more general approach to assess higher-order behavior starts by 

assuming the form A(x) = G(x) exp[– (x/Lp)
q
] = G(x) exp(–αx

q
), with Ftr(x) = f x

-p
. From 

(10), we obtain a relation involving G(x), 

          (k/D0) G(x) = f G’’(x)x
-p

 – f G’(x) (p x
-p-1

 + 2αq x
q-p-1

)  

                                 – f G(x) [αq(q-p-1) x
q-p-2

 – α
2
 q

2
 x

2q-p-2
],                                       (15)                     

from which follows a second order differential equation of G(x) 

        G’’(x) – G’(x) (p x
-1

 + 2αq x
q-1

)  

                  – G(x) [αq(q-p-1) x
q-2

 – α
2
 q

2
 x

2q-2
 + (k/D0/f) x

p
] = 0                                   (16)     

In principle, numerical solution of this equation with an appropriate choice of parameters 

and initial values can provide more detailed insight into behavior of A(x).    

          

D. Removal of singularity of A(x) in the steady state 

Returning to analysis at the lowest-order as in Subsection B, in order to avoid 

singularity, we assume that Ftr(x) = f (1+x/xd)
-p

 = f u
-p

  with a nonzero number xd and 

A(x) ~ exp[-(u/Lp)
q
] = exp(-αu

q
), then du = dx/xd and in the steady-state,  

                 k/D0 exp[-(u/Lp)
q
] = /x {fu

-p
 /x (exp[-(u/Lp)

q
])}                        (17) 

Differentiating we have,   

        k/D0 exp[-(u/Lp)
q
] = xd

-2
 f q

2
 (u

2q-p-2
)/ Lp

2q  
exp[-(u/Lp)

q
] + lower order terms

  
     (18) 

Hence the dominant form is                

         q = (p + 2) / 2 , α = (k/f/D0)
1/2

 xd/q and Lp = (k xd
2
/f/D0/q

2
)
 -1/(2q)

~(k/D0)
-1/(p+2)      

(19) 
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This recovers the same exponents as obtained in the singular case. Here, the value of xd 

is critical in changing variables. Ftr for a semi-infinite pore can be obtained by KMC 

simulation and the parameter xd therefore can be determined. As in Fig.2, p ≈ 2 and      

xd = 1. 

 

III. Conclusions  

An analysis is provided of the decay of the reactant concentration A(x) in the 

steady-state with utilizing the relevant continuum RDE incorporating a location-

dependent of tracer diffusion coefficient. The lowest-order analysis is quite effective at 

elucidating the non-exponential decay and scaling of the penetration depth with key 

model parameters. However, extension to higher-order of this analysis is problematic.  
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Figures 

 

 
 

Fig.1. Schematic of the key steps in our AB catalytic conversion reaction model. “c” 

denote catalytic cells where reaction occurs at rate k. Behavior is shown in two adjacent 

pores which should be regarded as part of a larger array of pores. 

 



124 

 

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

x

F tr
 (

x)

F
tr

 (x) = f (1+x / x
d
)
-p

 

where f = 0.3391, 
x

d
 = 1.0427 and

p = 2.0484

 

Fig.2. Blue stars are the Ftr values from KMC simulation when the total concentration is 

X=0.8 in the steady-state in a semi-infinite pore with a = h = 1 and red curve is the least 

square fitting curve in form Ftr (x) = 0.3391 (1 + x/1.0427)
-2.0484

. 
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CHAPTER 8. GENERAL CONCLUSION 

 

The studies in this thesis focus on analysis of interplay between single-file 

diffusion and conversion reaction in mesoprous systems (or nanopores). The transient 

and steady-state behavior of single-file conversion reaction systems displays some 

general features. Transient evolution of concentration profiles is effectively described by 

hydrodynamic RDE which properly incorporate the single-file nature of diffusion. 

However, steady-state reactivity is controlled by fluctuation effects not incorporated in 

the hydrodynamic treatment. MF-type treatments can capture some aspects of this 

steady-state behavior, but not scaling properties for extreme choices of reaction and 

diffusion rates. Then we turn to the so-called generalized hydrodynamic formulation. 

The location dependence of tracer diffusion near the openings of narrow pores is shown 

to control non-MF scaling of reactant penetration depth and thus reactivity for 

conversion reactions. Generalized hydrodynamic RDE’s provide a powerful tool with 

which to analyze this behavior. Taking account of strong dependence of catalytic activity 

on the tunable interaction between reaction products and the interior pore environment. 

Making the pore interior unfavorable to products not only modifies the reaction 

equilibrium towards completion, but also reduces pore loading which can significantly 

enhance diffusivity and thus reactivity especially in the SFD regime. Our generalized 

hydrodynamic formulation of reaction-diffusion phenomena provides an efficient tool to 

explore behavior over a broad phase-space of model parameters. This approach can 

reliably capture the complex interplay between reaction and restricted transport which 
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results in subtle spatial correlations and fluctuations of reactants and products within the 

pore. These effects are not described by traditional mean-field approaches. 

There are numerous possible modifications and extensions of our modeling 

which could be performed either utilizing refined generalized hydrodynamic RDE or 

with KMC simulation. Another natural extension of our modeling is to consider different 

reaction mechanisms, e.g., A+BC+D better matching esterification reactions, and to 

consider the scenario where pore reentry of just one of the two products is enhanced 

versus blocked. The approximate MF and precise GH formalism are readily extended to 

treat this more complex situation, and preliminary studies reveal analogous behavior to 

that discussed above for the simpler AB conversion reaction mechanism.  

Furthermore, the tracer diffusion plays an important role in our model. Tracer 

diffusion coefficients associated with MF-type approximation have been studied and 

thus show the uncontrolled behavior of MF-type treatment. Taylor expansion has been 

applied to the study of tracer diffusion coefficient that is independent of reactions but 

dependent on transport. Improved analysis of the steady-state continuum RDE are 

offered but can be further developed. 

 

 

 

 

 

 


