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ABSTRACT

In forensics, fingerprints can be used to uniquely identify suspects in a crime. Sim-

ilarly, a tool mark left at a crime scene can be used to identify the tool that was used.

However, the current practice of identifying matching tool marks involves visual inspec-

tion of marks by forensic experts which can be a very subjective process. As a result,

declared matches are often successfully challenged in court, so law enforcement agencies

are particularly interested in encouraging research in more objective approaches. Our

analysis is based on comparisons of profilometry data, essentially depth contours of a

tool mark surface taken along a linear path. In current practice, for stronger support of

a match or non-match, multiple marks are made in the lab under the same conditions

by the suspect tool.

We propose the use of a likelihood ratio test to analyze the difference between a

sample of comparisons of lab tool marks to a field tool mark, against a sample of com-

parisons of two lab tool marks. Chumbley et al. (2010) point out that the angle of

incidence between the tool and the marked surface can have a substantial impact on the

tool mark and on the effectiveness of both manual and algorithmic matching procedures.

To better address this problem, we describe how the analysis can be enhanced to model

the effect of tool angle and allow for angle estimation for a tool mark left at a crime

scene. With sufficient development, such methods may lead to more defensible forensic

analyses.

We then consider the effect of using multiple tool marks made in the lab. Specifically,

we consider how flaws in the mark surface or error in the mark making process make
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it is possible for tool marks to be made under the same conditions using the same tool

that do not resemble one another. Thus it is necessary to incorporate a quality control

step in the tool mark matching process. Toward this end, we describe a method that

could be used to verify that all the lab marks made do in fact match each other well

enough to be considered reliable for comparing to a field tool mark, or to identify those

that should be eliminated.

Finally, we return to the proposed use of a likelihood ratio test to compare multiple

tool marks made in the lab to a single field tool mark. In that analysis, a one-sided

hypothesis test was used for which the null hypothesis states that the means of the two

samples are the same, and the alternative hypothesis states that they are different and

appropriately ordered. The weakness of this approach is that the hypotheses are reversed

from the desired analysis; we must assume that the null hypothesis is true until we can

prove otherwise, which equates to assuming the tool marks were made by the same tool

(i.e. the evidence supports the suspect’s guilt) until we can prove otherwise. Using

synthetic tool marks generated from a statistical model fitted to the lab tool marks,

we propose a method for comparing marks that reverses the hypotheses to achieve the

desired test.
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CHAPTER 1. INTRODUCTION

In forensics, patterns of fingerprints can be used to uniquely identify suspects in

a crime. Similarly, the striae on a tool mark can be used to identify a tool. The

grinding process used in manufacturing tools such as screwdrivers creates fine-grain

parallel scratch marks on the tool called striae. If a striated tool mark is used to

commit a crime, the negative impression of the tool surface left at a crime scene can

be used to identify the tool that was used. Currently, trained forensic examiners use

comparison microscopes to examine the details of a tool mark found in the field and

compare it to a tool mark made in the lab to determine the match status. However,

in 2009 a report by the National Research Council stated that “With the exception

of nuclear DNA analysis... no forensic method has been rigorously shown to have the

capacity to consistently, and with a high degree of certainty, demonstrate a connection

between evidence and a specific individual or source,” (N.R.C. 2009, p. 7). This finding

suggests that expert testimony alone is no longer sufficient to classify match status of

tool marks and there is a need to make this process more objective.

When tool marks are compared, forensic examiners take into account both large scale

signal of the tool mark, known as class characteristics and subclass characteristics, and

the small scale microscopic characteristics known as individual characteristics. Class

and subclass characteristics are thought to be those that are common to tools made

consecutively by the same manufacturing process. Traits such as the length of the tool

mark and the general shape go into the class and subclass characteristics. Individual

characteristics are thought to be those that are unique and specific to the tool, such as
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the fine details that occur during the final grinding process of the tool. When foren-

sic examiners compare tool marks, they first verify that they share the same class and

subclass characteristics, then verify microscopically that they match in individual char-

acteristics before concluding that the tool marks match. The same considerations go

into the statistical comparison of tool marks; methods must take into account the class,

subclass and individual characteristics when computing a numeric comparison value.

Many scientific researchers have proposed methods for statistically comparing tool

marks, some of which are summarized more thoroughly in Chapter 2. Several of these

algorithms compare two tool marks and return a single numerical index of similarity to

be compared. Each approach not only specifies a unique comparison method, but also

calls for particular analysis techniques; there are currently “no standard methods for the

application of probability and statistics to the analysis of tool mark evidence,” (Petraco

et al. 2012, p. 901). Most methods rely on comparison of a single field tool mark to a

few tool marks made in the laboratory to determine the match status. However, even

with the multiple tool marks available, single comparisons are made between lab and

field tool marks and are used individually to determine a match. This is an area of

concern since researchers would prefer not to rely on a sample of size one to conclude a

match. There is also no method of controlling the error rates for these analyses since it

is still not known how similar any two consecutively made tools could be. In this thesis,

we address the common concern of a single data value and propose adjustments that

can be made to resolve other potential concerns with tool mark comparisons.

In Chapter 2, we begin with a summary of some of the analyses that have been pro-

posed by other researchers. For demonstration throughout the thesis, we use data values

from Chumbley’s algorithm proposed in Chumbley et al. (2010), so we also describe the

details of this algorithm. We then introduce a method of analysis that uses multiple lab

tool marks and their pairwise comparisons, as well as the pairwise comparisons of lab

tool marks to the field tool mark, and compares the samples of data values. A likelihood
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ratio test compares the two samples (lab with field comparisons, and lab with other

lab comparisons) and returns evidence of a match based on whether or not the samples

have the same mean. We provide examples of known matches and known non-matches

to demonstrate how the proposed analysis can successfully distinguish between the two

samples of tool marks.

We then illustrate how attributes of the tool marks, such as the angle at which the

tool is held, have a significant impact on the appearance of the tool mark. That is,

tool marks made at different angles with respect to the surface on which they are made

can appear as non-matching marks although they were made by the same tool. This

suggests that when making tool marks in the lab with the suspect tool, marks should

be made at multiple angles since the angle of the field tool mark is always unknown.

We propose a model that accounts for the angle of the lab tool marks and predicts the

angle of the field tool mark. Examples are provided using tool marks made at 30◦, 45◦,

60◦, 75◦, and 85◦ from both known matching and known non-matching tool marks. The

angle predictions and the results of the likelihood ratio tests are given for each example.

Another attribute of tool marks that can affect the results of a comparison is the

quality of the marks that have been made in the laboratory; this is addressed in Chapter

3. Although mark-to-mark variation is to be expected due to the difference in individual

characteristics, we provide examples in the beginning of this paper of marks that are

known matches but differ enough to be falsely identified as non-matches. If there is

a flaw in the surface the mark is made on, or only a partial segment of the mark is

transfered for various reasons, the mark-to-mark variation can be large enough so as to

affect the comparison values of the lab tool marks to one another. Thus, we propose the

addition of a quality control step to the tool mark comparison process in which the lab

tool marks are tested against one another, checking for outliers, before being compared

to the lab tool mark. The model and analyses are provided, as well as examples of both

matching and non-matching lab tool marks showing the varying degrees of match status.
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Unfortunately the data set available to us contains only four tool marks per matching

set, so although the quality model seems to be able to identify poorly made tool marks,

the variance between lab tool marks has a significant effect on the analysis; tool marks

that are very similar can falsely determine the existence of an outlier and those with a

larger variation that you would expect to be different can falsely return a match.

Although the model and method described in Chapter 2 is able to correctly predict

the angle of the field mark, and the likelihood ratio test can often distinguish between

matching and non-matching samples of comparisons, there is an inherent issue with the

use of this test based on the hypotheses used. In Chapter 2, a standard hypothesis test

for the difference in means of two samples is used in which the null hypothesis states the

means of the samples are the same, and the alternative hypothesis states the mean of

the comparisons between two lab marks is larger. Since we assume the null hypothesis is

true until we can provide sufficient evidence to support the alternative hypothesis, this

means we must assume the two samples of tool marks are the same until we can provide

evidence to support they are not. This is equivalent to assuming the suspect is guilty

(the suspect tool was used to make the field mark), until we can provide evidence to

support he is not guilty (the suspect tool was not used to make the field mark). Since

this is the reverse of the hypotheses we would like to test, we address this concern in

Chapter 4.

To “reverse” the hypotheses, in Chapter 4 we propose using the lab tool mark to

create synthetic tool marks which are statistically generated to match the lab mark in

class and subclass characteristics and vary subtly in individual characteristics. Using a

Loess smooth, we model the class characteristics and generate residuals for the individual

characteristics. Parameters for the synthetic tool marks are chosen such that comparison

between two synthetic tool marks and comparison between a synthetic mark and a lab

mark are indistinguishable from one another as determined by a Kolmogorov-Smirnoff

statistic. We then compare the field tool mark to the lab tool mark and conclude there
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is evidence of a match if the data value from comparing the field tool mark to the lab

tool mark is an outlier in the sample of comparisons between the field tool mark and the

synthetic tool marks. Again, examples of both matching and non-matching field and

lab tool marks are provided to demonstrate the analyses.

Chapter 5 provides a summary of the results presented in Chapters 2, 3 and 4. We

also provide suggestions for future research.
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CHAPTER 2. SIGNIFICANCE OF ANGLE IN THE

STATISTICAL COMPARISON OF FORENSIC TOOL

MARKS

A paper Submitted to Technometrics

Amy B. Hoeksema 1 2 and Max D. Morris3 4

Abstract

In forensics, fingerprints can be used to uniquely identify suspects in a crime. Sim-

ilarly, a tool mark left at a crime scene can be used to identify the tool that was used.

However, the current practice of identifying matching tool marks involves visual inspec-

tion of marks by forensic experts which can be a very subjective process. As a result,

declared matches are often successfully challenged in court, so law enforcement agencies

are particularly interested in encouraging research in more objective approaches. Our

analysis is based on comparisons of profilometry data, essentially depth contours of a

tool mark surface taken along a linear path. Chumbley et al. (2010) point out that

the angle of incidence between the tool and the marked surface can have a substan-

tial impact on the tool mark and on the effectiveness of both manual and algorithmic

matching procedures. To better address this problem, we describe how the analysis can

1Graduate student, Department of Statistics, Iowa State University
2Primary researcher and author
3Department of Statistics, Iowa State University
4Department of Industrial and Manufacturing Systems Engineering, Iowa State University
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be enhanced to model the effect of tool angle and allow for angle estimation for a tool

mark left at a crime scene. With sufficient development, such methods may lead to more

defensible forensic analyses.

2.1 Introduction

When a crime is committed using a machined metal tool, such as breaking into a

house with a screwdriver, evidence is often left behind in the form of a striated tool mark.

Once a suspect is identified and found to own such a tool or have one in his possession,

it is up to forensic examiners to determine whether or not that tool was the one used to

create the mark found at the crime scene. Using a process analogous to that of matching

fingerprints, forensic examiners compare the tool mark left at the scene to others made

in the lab using the suspect tool to look for similar microscopic characteristics with the

goal of determining whether the tool marks match, i.e., were made by the same tool.

The marks made by any tool that leaves a striated pattern can be compared using these

techniques; however, for this paper we will focus on marks made by screwdrivers.

Although visual comparison of firearms and tool marks has been performed since the

early 1900s, in recent years the process has come under scrutiny. In 2009, a National

Research Council (N.R.C.) Report was published stating that “With the exception of

nuclear DNA analysis... no forensic method has been rigorously shown to have the ca-

pacity to consistently, and with a high degree of certainty, demonstrate a connection

between evidence and a specific individual or source,” (N.R.C. 2009, p. 7). This, along

with other proceedings such as the Daubert Case (Daubert v. Merrell Dow Pharma-

ceuticals, Inc., 1993) has led to numerous instances of expert testimony on tool mark

matching being disallowed as inadmissible in court. The current process is considered

to be subjective and thus it is necessary to find a way to make it more objective and

conclusive.
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Many researchers, both in the forensics and statistics communities, have taken on

this challenge and proposed numerical methods for comparing tool marks, some of which

we will discuss in Section 2.1.1. Although these algorithms provide a way to quantify

the similarity between two tool marks, little work has been done to examine the effects

of attributes of the tool mark on the matching process, such as the angle at which the

tool was held when making the mark. In this article, we will address the issue of the

significance of tool angle to the tool mark matching process. We will first give a brief

background of the tool mark comparison process and describe the quantitative process

and the resulting data we will be using (Section 2.2). We describe the basic statistical

model we use in forensic applications in Section 2.3. We will then show the important

influence that angle has on tool mark matching and suggest a modified model that

incorporates these effects (Section 2.4). Finally we will show some results using the new

model (Section 2.5) and discuss conclusions and future research directions (Section 2.6).

2.1.1 Tool Mark Comparison Background

When making a tool such as a screwdriver, one step is a grinding process during

which the end of the tool is ground down creating fine-grain parallel scratch marks that

are called striae. The “negative” impression of the striae is left behind when the rela-

tively hard tool comes in contact with a softer metal surface such as a metal window

frame. Similar marks are left on bullets by the “rifling” pattern cut into gun barrels,

and the forensic inspection methods used for tool marks and firearms are closely related.

Any striated tool mark is made up of what are known as class characteristics, subclass

characteristics and individual characteristics. According to the N.R.C., class character-

istics are “distinctive features that are shared by many items of the same type... such

as the width of the head of the screwdriver” and individual characteristics are “the fine

microscopic markings and textures that are said to be unique to an individual tool or

firearm. Between these two extremes are ‘subclass characteristics’ that may be com-
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mon to a small group of firearms and that are produced by the manufacturing process,

such as when a worn or dull tool is used to cut barrel rifling” (N.R.C. 2009, p. 152).

Nichols summarized it well when he distinguished between the different types as “class

characteristics which are intentional; subclass characteristics which are unintentional

but common to a select group; and individual characteristics which are accidental and

unique” (Nichols 1997, p. 466).

The current practice of examining striated tool marks is based on a forensic examiner

comparing the evidence mark to the reference tool mark side-by-side under a comparison

microscope, such as that shown in Figure 2.1. Before the tool marks are placed on the

two stages of the microscope, the examiner must confirm that the tool marks resemble

one another closely enough to justify a more detailed comparison. By doing so, he

can visually discount similarity due to both class and subclass characteristics. The

National Institute of Justice (NIJ) states in their on-line Firearm Examiner Training

module that “Examination of the tool allows the examiner to assess the level of subclass

characteristics...The examiner compares the class characteristics of the two objects; if

all class characteristics correspond, the examiner proceeds to compare the individual

characteristics” (National Institute of Justice). It is the individual characteristics of the

tool marks that are critical in quantifying and analyzing for evidence of a match.
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Figure 2.1: Comparison microscope, Tamasflex (2012).

The first quantitative method for comparing tool marks was proposed by Biasotti

(1959). His method, based on a concept known as consecutive matching striae (CMS),

provided a way for examiners to describe the extent of matching striae that could be

understood universally, and thus removed some of the subjectivity from the process.

In his initial empirical study, he counted the number of striae that lined up between

non-matching bullets all fired from the same kind of gun, and found that in the material

he examined there were no runs of CMS that exceeded four. Biasotti and Murdock

(1997) proposed a conservative quantitative criterion for identification which is used for

matching in the forensic community that states there is evidence of identification “when

at least two different groups of at least three consecutive matching striae appear in the

same relative position, or one group of six consecutively matching striae are in agreement

in an evidence tool mark compared to a test tool mark.” Since then, many other studies

have been done confirming this criterion and using the CMS as a quantitative comparison

tool. Neel and Wells (2007) propose using the relative frequency of CMS runs to perform

a test of proportions. In this test they compare the “most conservative known match”

to the “best known non-match” and determine a match if the proportions of CMS in
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both situations are different.

More recently, as newer technology has come available, researchers have begun to

develop algorithms to compare entire marks digitally rather than having to rely on

microscopic counting methods. Using a stylus profilometer or optical profilometer, or a

confocal microscope, the depths of the grooves of striated tool marks can be measured

resulting in a quantified tool mark that we will refer to as a digitized mark. Quantifying

the entire tool mark opens the door to more objective methods of mark comparison

which result in a single numerical index of similarity between two marks. Bachrach et

al. (2010) proposed using the cross correlation function, which he calls the relative

distance between two marks, to quantify the degree of match. Chumbley et al. (2010)

suggested using a Mann-Whitney U-statistic, which is described in the next subsection,

to quantify the match. Another quantitative approach proposed by Petraco et al. (2012)

quantifies tool marks into binary matrices, which identify where the lines of the striae

start and stop, and uses principle components analysis to determine groupings of tools.

In their paper, Petraco et al. state “There are no standard methods for the application

of probability and statistics to the analysis of tool mark evidence,” (Petraco et al. 2012,

p. 901). The method that we propose in Section 2.3 assumes we have a single numerical

index of similarity for every tool mark comparison available. Although many of the

methods mentioned above would suffice for our research, we have chosen to use the U-

statistic proposed by Chumbley et al. since it meets the requirements for our technique

and mirrors the current practice that examiners use for comparison.

2.1.2 Chumbley’s U-Statistic

To fully understand the approach of the Chumbley algorithm, we will first look more

closely at the current practice of tool mark matching followed by forensic examiners.

The NIJ’s on-line Firearm Examiner Training module breaks down the process that

examiners use; we have summarized the process here to remove some of the technical
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details. Once an examiner has a mark made by a suspect tool in the lab to compare to

an evidence mark, he begins by visually comparing the marks to verify they merit more

careful microscopic comparison. He then places both marks on a comparison microscope

and identifies a small area of the lab specimen that seems to have the “best” marks and

indexes this area.

The next step is to align the two marks to confirm the “consistency of class charac-

teristics.” At this point, if the class characteristics match, he will proceed to move the

evidence mark on the microscope stage to identify an area of the evidence mark that

matches the “best” area of the test mark. If such an area is found, so the individual

striae of the two marks align in the best marked regions, he locks the two tool marks

in this relative orientation and examines the remaining areas of the two tool marks in

question to verify that the surrounding areas are also similar. Because the striae are

essentially parallel patterns of scratches in each mark, the emphasis is on finding small

areas in each mark for which the “cross striae” patterns are similar. It is important

to reiterate that once the marks have been aligned by identification of segments that

appear to match, further examination is made along corresponding segments of the tool

mark to confirm (or otherwise) this apparent match. The examiner’s conclusion is based

on how well these additional segments match after the tool marks have been aligned.

As was previously mentioned, we chose to use Chumbley’s algorithm as it was specif-

ically designed to mimic the examiner’s process. To quantify the comparison of the tool

marks, they must first be digitized. The stylus of a surface profilometer, shown in Figure

2.2(a), is used to trace the surface of the tool mark along a linear path perpendicular to

the striae as indicated in Figure 2.2(b). Arrows on both figures illustrate the direction

of movement by the stylus. The depths of the grooves are recorded at a set of “pixel”

locations of fixed separation. When the numeric depths are plotted by pixel location,

the result is a digital tool mark like that shown in Figure 2.2(c). The vertical axis of

this graph is on a dramatically different scale than the horizontal axis to amplify the
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depth of the striae across the tool mark. Because the striated surface is essentially a set

of parallel ridges, most of the useful information about the individual characteristics of

the tool can be characterized by this single-index data series.

(a) (b) (c)

Figure 2.2: Using a profilometer to digitize a tool mark. (a) Stylus profilometer, (b)
magnified tool mark showing the location of a profilometer scan and (c) the resulting
digitized tool mark.

The key to the forensic examiner’s process is to find an area of “best” match in both

tool marks being compared and verify a match based on how well the surrounding areas

align. In an analogous strategy, the algorithm proposed by Chumbley et al. (2010) uses

numerical optimization to determine the “best” matching subset of digitized tool mark

in each profilometer trace. An index of similarity is computed for all possible pairs of

windows of a set length between the two marks along the entirety of both tool marks.

The length of this best match window is chosen as part of a preliminary experiment

which maximizes the Chumbley statistic for a pair of tool marks. The best matching

windows are chosen to be the two areas of tool marks for which the index of similarity

is maximized; Chumbley et al. refer to this first step as the Optimization step and they

use Pearson’s correlation coefficient as the index of similarity. Due to the large number

of pixels present in both marks (around 9000 in each), and the relatively small size of

the best matching window (usually 300 to 500 pixels), even marks made by different

tools tend to include areas with large correlation.
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Once the best matching windows have been found, the algorithm performs a Val-

idation step. This step begins by moving corresponding windows a random distance

from the best match window but the same distance on each mark, and computing the

index of similarity (correlation) for these windows. We will refer to these corresponding

windows as coordinated shifts. Although this correlation is lower than the best match

window, if the two marks were made by the same tool, it should be relatively high since

these windows should physically correspond. Finally, a third set of windows is identi-

fied at random locations in each tool mark which we will call independent shifts. That

is, windows are shifted independently of one another on each tool mark and likely in

different distances from the best match. Since these windows do not correspond, there

is no reason to believe they should return a large correlation value. Both the coordi-

nated shifts and the independent shifts are repeated many times using different random

shift amounts, and correlations between tool marks are computed for each set of win-

dows. These validation windows are chosen to be much smaller than the best match

window; usually 50 pixels each. A primary reason for the relatively small size of the

optimization and validation windows is, again, the intent that this process mimic what

tool mark examiners currently do. Current practice does not require that striae patterns

correspond across the entire width of the tool marks, but focuses on matching relatively

small sub-regions and follow-up examination of segments in the (physical) vicinity of

that match.

Figure 2.3 illustrates the optimization and validations steps of Chumbley’s algorithm

on a pair of matching tool marks. Although the entire tool mark is used for both steps

in the algorithm, we have zoomed in on the portions of tool mark that contain the best

match windows, which are represented by the solid connecting lines; the correlation for

this pair of windows is 0.999. Two sets of coordinated windows are shown by the dashed

connecting lines; the first pair of windows have a correlation of 0.997 and the second pair

of have a correlation of 0.967. The boxes connected by dotted lines represent two sets of
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independent windows; the first windows have a correlation of 0.557 and the second pair

have a correlation of 0.202. In this example, both coordinated windows have a higher

correlation than the independently shifted windows, which is what we would expect since

the tool marks are known matches.

Figure 2.3: Matching segments of two tool marks showing the best match window (solid
lines), two coordinated shifts (dashed lines) and two independent shifts (dotted lines)
and their correlations.

Finally, a single similarity index is computed, specifically, a Mann-Whitney U-

statistic (e.g., Kowalski and Tu (2007)) is the basis of a non-parametric two-sample

test used to determine whether the two samples of correlation coefficients (from co-

ordinated and independent shifts) were drawn from a common distribution. The null

hypothesis for this test states that the two samples have the same distribution, so the

probability of an element from one sample being larger than an element from the other

sample is 0.5. The alternative hypothesis states that the underlying distributions are

different, so the probability that an observation from one sample is larger than one from

the other sample is greater than or less than 0.5. Using the correlations from the co-

ordinated shifts and independent shifts as the two samples, if the tool marks match,

we would expect that the coordinated shifts would yield larger correlations than the

independent shifts, as illustrated in Figure 2.3. However if the marks do not match,

then none of the validation windows should physically correspond, and there should be
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no systematic difference between the correlations generated through coordinated and

independent shifts. As a final step, the U-statistic is standardized so that under the

null hypothesis it asymptotically follows a standard normal distribution; Chumbley et

al. refer to this value as T1. For these data, the null hypothesis that the two samples

come from the same distribution simplifies to “no match” between the two tool marks.

The intent of Chumbley et al. was that a single U-statistic, calculated in this way,

might be used to assess the similarity of two tool marks, by comparison to the standard

large-sample distribution theory for this statistic. While empirical work showed that

these indices were approximately normally distributed (due to their linear form), and

statistics computed using tool marks made with the same tool were typically larger than

those made with different tools (as would be hoped), the moments of the apparent null

distribution were not always as would be suggested by the standard theory. This is likely

due, at least in part, to a lack of independence between correlations in each sample

stemming from the finite population of pixels in each tool mark, and the correlation

pattern evident within each trace. In addition, experimental work indicated that physical

factors, such as the overall smoothness of the marked surfaces, had some effect on the

moments of the null distribution.

The present research was carried out primarily to construct a “self-calibrating” test

to overcome this weakness in the Chumbley et al. proposal. While we continue to use the

U-statistics described by Chumbley et al. in comparing individual pairs of tool marks,

we expand the comparison by relying on multiple lab marks, so that the analysis can

be based on multiple lab-to-lab comparisons and multiple lab-to-evidence comparisons.

In the illustrative calculations that follow, individual U-statistics were computed using

“best match” windows of either 300, 400 or 500 pixels (out of about 9000 in each series)

and validation windows of 50 pixels. Fifty correlations from coordinated shifts and 50

from independent shifts were compared within each U-statistic. Because we will not

depend on the asymptotic moments of the U-statistics here, the datum representing
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each comparison of two tool marks was computed as the average of 200 such U-statistics

to minimize variation in the analyzed index values.

2.2 Data

An important physical characteristic of this problem is that there is generally only

one field tool mark available. Depending on the circumstances of the crime, additional

evidence tool marks may occasionally be available, but in any case, this cannot be con-

trolled by the forensic examiner, who must work with what is available. The restriction

to a single field tool mark is an obvious limitation on the available information, but one

that is inherent in the physical problem. On the other hand, a large number of compar-

ison tool marks may be made in a forensics laboratory using a suspect tool; in fact, this

is common practice among tool mark examiners. Multiple laboratory tool marks may

be made under the same conditions or under different conditions, depending on what is

known or suspected regarding the particular use of the tool at the crime scene. Again,

it should be recognized that while this is useful, no amount of replication in the labo-

ratory sample can entirely compensate for the limit imposed by the physical constraint

of a single field mark. Because information is in this sense unavoidably incomplete,

it is important to understand that it will not be possible to effectively detect all true

matches; there will always be cases in which the suspect tool actually was used at the

crime scene, but that the limited evidence will not support a definitive conclusion that

the marks were made by the same tool.

We focus here on the case in which a single field tool mark is available, and a suspect

tool has been used to produce multiple tool marks in the laboratory. In this section and

in Section 3, the lab tool marks are regarded as experimental replicates, in that they

are made under the same conditions. In Section 4 this will be expanded to a setting in

which an important covariate, tool angle, is systematically varied.
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2.2.1 Data for Multiple Lab Marks

Suppose a single tool mark was found at the crime scene. A suspect tool is obtained

and forensic examiners make several marks using the suspect tool in the lab under

controlled conditions. As previously mentioned, comparing multiple marks all known to

be made by the same tool under the same conditions in the lab, we can create a sample

of matching mark-pairs from that tool. The same lab tool marks can be compared to

the field mark to create a smaller sample of mark-pairs with an unknown matching

status. Rather than evaluating only one mark-pair, we now have two samples that we

can compare. If there is no apparent systematic difference between these two samples,

this supports the argument that the marks were all made by the same tool, i.e., that the

crime scene tool mark and lab tool marks “match.”

A single data value, as we will refer to it in this paper, is the numerical index of

similarity that results from comparing two tool marks. Let x0 represent the tool mark

that was found at the crime scene. Let x1, ..., xn represent the n tool marks that were

made by the suspect tool in the lab. Note that all comparisons of the marks not including

x0 are known matches, since all were made by the same tool. Let yij, i < j, represent

the numerical index of similarity that results from comparing xi to xj. Once we make

all pairwise comparisons of available tool marks we will have two different types of data.

The first set, y0j for j = 1, ..., n, includes all comparisons of the field mark to the lab

marks. We will call this type of data field-lab comparisons. The second set is yij for

i, j = 1, ..., n and i < j. These data values represent indices of similarity for a known

match from the suspect tool which we will call lab-lab comparisons.

The collection of all data values will be denoted by the vector y which is of length

N . For purposes of organization, y will always be ordered such that i < j and each

index follows standard numerical ordering, 0 through n. When all possible comparisons

are made there are n field-lab comparisons and
(
n
2

)
lab-lab comparisons, so N = n+

(
n
2

)
.
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When describing data, we will discuss a dataset in terms of the number of lab marks,

such as a dataset of size n. Note that this means there are n + 1 tool marks under

comparison since the complete set includes the field mark as well as lab marks.

2.2.2 Data Used In This Study

The data used for demonstration in this paper were not actual forensic data, but

were generated under laboratory conditions using similar tools. All tool marks were

made in a lab by a professional forensic examiner. Hence, “matching” data sets were

generated by comparisons of tool marks known to have been made by the same tool,

while “non-matching” data sets were generated from n tool marks made by one tool

and a field mark made by another. For our study, six screwdrivers were chosen out

of a batch of fifty sequentially manufactured screwdrivers. For each screwdriver, four

physical scrapes were made at set lab conditions on a piece of lead. This was repeated

under five different sets of lab conditions (the exact settings are explained in Section

2.4.1). Ten profilometer traces were taken along the each of the marks and were then

visually observed as digitized tool marks looking for flaws in the individual traces. The

first of the ten profilometer traces of each was chosen to represent that physical scrape

once it was verified that all ten were the same in appearance and there were no visual

distinctions or flaws between the traces.

A further word of explanation should be offered concerning the rationale for how

tools were selected for this study. As just noted, the six screwdrivers used were selected

from a set of consecutively manufactured tools; this was done to minimize variation

in manufacturing conditions (including wear of the manufacturing tools) so that the

resulting screwdrivers are as identical as possible. For other similar studies, custom tools

are sometimes produced in more tightly controlled conditions than can be obtained in

a manufacturing environment, again to minimize variation among the tools. This may

at first seem to be an odd approach to the design of these studies, since the eventual
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aim is to produce techniques that can be used across a much broader population of

tools. However, the single most important consideration in forensic examination is that

false “match” declarations be made as seldom as possible. (As noted at the beginning

of this section, the physical limits of forensic evidence available make it inevitable that

some true matches cannot be confirmed.) Experiments conducted with near-identical

tools offer the most severe test of whether an analytical method can be trusted to yield

few false “match” conclusions. Because credible methods must pass this test, it is a

generally safe bet that they will not lead to erroneous “match” determinations when the

tools are more physically different. Of course, it is also important that studies based

on different kinds of near-identical tools eventually be undertaken, to demonstrate that

good performance can be expected across a variety of relevant tool types. But given

the need to effectively discriminate between tool marks made by very similar tools, the

common use of sequentially produced tools in forensic testing is easily understood.

Upon inspection of the digitized tool marks, it was noted that a few anomalies were

occurring on the edges of several of the marks. Occasionally during the profilometer

scan, part of the flat lead plate that does not contain information about the physical

tool mark was read resulting in a sharp peak at the edges of the digitized mark from

the stylus transitioning between the flat lead surface to the start of the tool mark. We

refer to this as a sharp peak anomaly in the data. Another anomaly occurred when the

stylus reached the maximum or minimum allowable depth while it was scanning the tool

mark. As a result, the maximum or minimum depth value was recorded for the length of

tool mark for which the mark was too deep or too shallow. In these areas, the digitized

mark shows a flat horizontal line on this segment of tool mark, which we refer to as a

flatline anomaly. Examples of both of these anomalies are shown in Figure 2.4 where a

sharp peak is visible on the right edge of the tool mark in Figure 2.4(a) and a flatline is

visible on the right edge of the tool mark in Figure 2.4(b); both are shown in the boxes.
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(a) A sharp peak anomaly. (b) A flatline anomaly.

Figure 2.4: Examples of anomalies on the edges of tool marks before pre-processing.

The primary concern of anomalies such as these is that even though they are not a

part of the actual tool mark we are interested in comparing, their features make them

likely for matching other similar parts of other tool marks resulting in large correlation.

The best match window could be chosen to include these areas which would result

in false information from the corresponding coordinated and independent validation

windows. For this reason, and since these areas are not part of the signal from the tool

mark, we included a pre-processing step in which the portion of any tool mark from a

detected anomaly to the nearest end was deleted, so long as this left at least 80% of

the tool mark intact. For these purposes, a sharp peak was defined to be a section of

200 consecutive pixel locations that have a variance greater than 100. Flatlines were

defined to be sections of tool mark that reached the profilometer’s maximum or minimum

measurement value.

After pre-processing, pairs of tool marks were evaluated using the Chumbley proce-

dure, resulting in the data to be analyzed (yij). Visualizing the available data, we can

see how they might be used to determine match status. Recall for this study we had

six tools available and made four tool marks under each lab setting; a total of 30 sets of



22

four tool marks made under the same conditions. To examine the distributions of yij,

we consider a few examples. For the distribution of matching yijs, a single tool mark

from each set of matching marks was chosen to be the field tool mark and compared to

the remaining three in the set. Thus for a full analysis, there were three field-lab com-

parisons and three lab-lab comparisons that resulted from data known to match. The

field-lab and lab-lab comparisons for each example are shown in the boxplots of Figure

2.5. Note there were 90 yijs in each boxplot, three from each of the thirty matching sets.

We can see from the plot that the samples of field-lab comparisons are indistinguishable

from the samples of lab-lab comparisons when the field mark was made under the same

set of conditions and by the same tool as the lab marks.

(a) Known match. (b) Known non-match.

Figure 2.5: Boxplots of field-lab comparisons with lab-lab comparisons under known
match (a) and known non-match conditions (b).

For a non-match distribution, we compared all four tool marks within a matching set

to a field mark which is a mark chosen from a set made by another tool. Non-matching

data sets have n = 4 - four field-lab comparisons and six lab-lab comparisons. For each

match set, a non-matching set was made using one mark from the each of the five sets

made by each of the other five screwdrivers as the “field mark;” thus 25 non-matching

sets were made for each match set. The aggregated comparison values for all of the sets
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are shown in the boxplots in Figure 2.5(b) and have again been grouped by field-lab

comparisons and lab-lab comparisons. Since the a single match set was compared to 25

different field tool marks, there is repetition in the lab-lab yijs, so the duplicates have

been removed. There are a total of 180 distinct comparisons in the lab-lab boxplot and

2,625 distinct comparisons in the field-lab boxplot. We can see from these boxplots that

the the field-lab comparisons tend to be smaller than the lab-lab comparisons, and they

are centered at zero.

Examining the boxplots in Figure 2.5, we can make a few conclusions about how to

determine evidence of a match using these data. If the field-lab comparisons are indis-

tinguishable from the lab-lab comparisons, such as shown in Figure 2.5(a), then there

is no evidence that the tool marks are different, and the data are therefore consistent

with the hypothesis that all marks were created using the same tool. However, if the

field-lab comparisons are relatively small compared to the lab-lab comparisons, as in

Figure 2.5(b), then there is evidence that the field mark and the lab marks were created

using different tools.

2.3 The Basic Model

Since we would like to determine whether or not tool marks were made by the same

tool, a hypothesis test can be used to compare the two samples of field-lab comparisons

and lab-lab comparisons. Toward development of such a test, let µ0 be the mean for

a field-lab comparison, that is E(y0j) = µ0 for j = 1, ..., n. Let µ1 be the mean for a

lab-lab comparison, so E(yij) = µ1 for i, j = 1, ..., n and i < j. We will assume that all

data values have a common variance defined as V ar(yij) = σ2 for i, j = 0, 1, ..., n and

i < j. We further assume that each yij is normally distributed. The similarity index

of Chumbley et al. (2010) is a standardized U-statistic, for which an assumption of

approximate normality is justifiable. The assumption may also be reasonable for other
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similarity measures.

To verify the assumption of normality is reasonable for the data we have available,

we refer back to the field-lab comparisons that produced the boxplots in Figure 2.5.

The U-statistic theory states that under the null hypothesis of the two samples being

from the same distribution, the large-sample distribution of the standardized U-statistic

is standard normal. For the Chumbley algorithm, the two samples are the coordinated

shifts and the independent shifts so if the null hypothesis is true, there is no difference

in the two types of shifts which indicates evidence of a non-match. A histogram of the

non-matching field-lab data is shown in Figure 2.6(a). We can see the plot is symmetric,

centered at zero and has a standard deviation slightly less than one. However, the tails

of the distribution are longer than would be expected of a standard normal distribution.

The Q-Q plot is shown in Figure 2.6(b) verifies this concern, even though the middle

appears very linear.
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(a) (b)

(c) (d)

Figure 2.6: Relative frequency histograms of the (a) field-lab comparisons from non-
matches and (b) it’s associated Q-Q plot; (c) field-lab comparisons from matches and
(d) it’s associated Q-Q plot.

A histogram of the matching field-lab comparisons is shown in Figure 2.6(c). Here,

the mean for the matching comparisons is much larger, around 2, and the spread is

larger as well. This is due, in part, to the variability in the quality of matching tool

marks. There were a handful of tool marks that are substantially different from the

others within their match set and this results in the minor mode near 0. A Q-Q plot

is shown next to the histogram in Figure 2.6(d) which confirms the data are relatively
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normally distributed.

Although these specifications are sufficient to fully define the distribution for a single

data value, we also need to address the joint distribution of all pairwise comparisons.

To facilitate this, we will further assume that the joint distribution of y is multivariate

normal. The mean of y is a vector of means µ0 and µ1 with the form µ = (µ01
′
n, µ11

′
N−n)′

and the variance of each element of y is σ2. To finish defining the joint distribution of

y, we need to develop an appropriate dependency structure reflecting the way the data

are generated.

2.3.1 Correlation

Each yij is the result of comparing two tool marks, specifically xi with xj. Thus, at

most four physical tool marks are involved in the consideration of covariance between

two data values. Since these four tool marks are not necessarily distinct, we will say

two data values are correlated with correlation ρ if a common tool mark is involved in

both comparisons. That is, yij is correlated with ykl if i = k, i = l, j = k or j = l, but

not (i, j) = (k, l). Two comparisons with no marks in common are uncorrelated. We do

not consider the case of two comparisons made on the same pair of tool marks because

those similarity values would be identical, i.e., there is no measurement-specific “error”

in this system, and so no point in replication. Let R be the N × N correlation matrix

of y defined by the following entries

Corr(yij, ykl) =


0 if i 6= k, i 6= l, j 6= k and j 6= l

ρ if i = k or i = l or j = k or j = l, but not (i, j) = (j, k)

1 if i = k and j = l.

(2.1)

With this correlation structure in place, we can finish defining the joint distribu-

tion of all pairwise comparisons of tool marks. Let y be the vector of all pairwise

comparisons ordered so that each yij is such that i < j. Then y ∼ N(µ, σ2R) where
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µ = (µ01
′
n, µ11

′
N−n)′ and R is as defined in (2.1). The complete model for a data set of

size n = 4 is shown in (2.2) through (2.4).

y = (y01, y02, y03, y04, y12, y13, y14, y23, y24, y34)
′ (2.2)

E(y) = µ = (µ0, µ0, µ0, µ0, µ1, µ1, µ1, µ1, µ1, µ1)
′ (2.3)

V ar(y) = σ2R with R =



1 ρ ρ ρ ρ ρ ρ 0 0 0

ρ 1 ρ ρ ρ 0 0 ρ ρ 0

ρ ρ 1 ρ 0 ρ 0 ρ 0 ρ

ρ ρ ρ 1 0 0 ρ 0 ρ ρ

ρ ρ 0 0 1 ρ ρ ρ ρ 0

ρ 0 ρ 0 ρ 1 ρ ρ 0 ρ

ρ 0 0 ρ ρ ρ 1 0 ρ ρ

0 ρ ρ 0 ρ ρ 0 1 ρ ρ

0 ρ 0 ρ ρ 0 ρ ρ 1 ρ

0 0 ρ ρ 0 ρ ρ ρ ρ 1



(2.4)

We require that ρ be non-negative because correlation is used to model the effect of

a tool mark common to two pairs. The structure of the correlation matrix presented in

(2.1) forces stricter boundaries on the range of values for ρ. In particular for n ≥ 3,

V ar(y01 − y12 + y23 − y03) = 4σ2(1− 2ρ) (2.5)

which implies that ρ < 0.5. Combining this with our requirement that ρ not be negative,

we can say ρ ∈ [0, 0.5).

2.3.2 Likelihood Analysis

The model described previously suggests there could be separate means for the two

available samples, field-lab comparisons and lab-lab comparisons, if they were made by

different tools. We saw that this difference in means is supported by our data in Figures



28

2.5(b) since the field-lab comparisons are markedly smaller than the lab-lab comparisons.

To test whether the same tool made the field and lab tool marks, we can set up a test

for the hypotheses

H0 : µ0 = µ1 vs HA : µ0 < µ1. (2.6)

Using normal model theory and generalized least squares, maximum likelihood estimates

(MLEs) can be easily derived under the null model for µ(= µ0 = µ1) and σ2 given a

value for ρ as follows

µ̂|ρ = (X′R−1X)−1X′R−1y (2.7)

σ̂2|µ̂, ρ = (y −Xµ̂)′R−1(y −Xµ̂)/N (2.8)

where X = 1N . The constraint in the alternative model requires the use of constrained

least squares to maximize µ = (µ0, µ1)
′. The R function pcls() within the MGCV package

does this for us (Wood 2012). To fit the alternative model for a fixed ρ and using

X =

 1n 0

0 1N−n

, we use pcls() to obtain estimates of µ that maximize the likelihood

and use (2.8) to estimate the variance. Finally we use a grid search for ρ and can compute

parameter estimates as the values that maximize the normal likelihood.

Using a likelihood ratio test (LRT) for the null and alternative models described

in (2.6), the resulting p-value will determine whether or not there is evidence of a

match. The likelihood ratio statistic is defined as λ =
`(µ̂, σ̂2, ρ̂)

`(µ̂0, µ̂1, σ̂2, ρ̂)
, where `(·) denotes

the normal likelihood function for the indicated set of parameter estimates. Due to

the inequality constraint in the alternative hypothesis, the asymptotic distribution of

2 ln(λ) is a chi-bar distribution Chernoff (1954). For this particular single constraint,

it is a mixture with half of the density on a point mass at 0 and half of the density on

a chi-squared distribution with 1 degree of freedom since there is only one parameter

difference in the models.
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To demonstrate this process, we return to the data that was used in Figures 2.5 and

2.6. In the known match examples, Figures 2.5(a) and 2.6(c), we aggregated many data

sets that were each made by the same tool under the same set of lab conditions. One

of those sets has been chosen to demonstrate the LRT. Recall we have n = 3 marks

(one field mark and three lab marks), resulting in a total of three field-lab comparisons

and three lab-lab comparisons. Table 2.1 shows the parameter values and maximized

log likelihood for both the null and alternative models. For these data −2 ln(λ) = 0.941

resulting in a large p-value of 0.166. We fail to reject the null hypothesis that the means

are equal and conclude there is no evidence that the tools are different.

Null Model Alternative Model

ln `(µ̂, σ̂2, ρ̂) -4.457 -3.986

ρ̂ 0.450 0.450

µ̂0 2.524 1.870

µ̂1 3.178

σ̂2 2.949 2.520

−2 ln(λ) = 0.941, p-value = 0.166

Table 2.1: MLEs for matching data displayed in Figure 2.5(a).

For the non-match data from Figures 2.5(b) and 2.6(a), the field tool mark was

chosen from a different screwdriver than the lab marks it was tested against. One

set of non-matching data has been chosen out of the data shown for this example.

Now we have n = 4 so there was one field mark and four lab tool marks for a total

of 10 data values. Table 2.2 shows the parameter estimates from maximizing the log

likelihood for these data under the null and alternative hypotheses and the likelihood

ratio statistic, −2 ln(λ) = 8.378. The small p-value of 0.002 indicates we should reject

the null hypothesis that the means of the two samples are equal. From this we would
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conclude there is strong evidence that the two samples were created using different tools.

Null Model Alternative Model

ln `(µ̂, σ̂2, ρ̂) -12.508 -9.082

ρ̂ 0.100 0.050

µ̂0 1.267 -0.669

µ̂1 3.119

σ̂2 4.609 1.955

−2 ln(λ) = 8.378, p-value = 0.002

Table 2.2: MLEs for non-matching data displayed in Figure 2.5(b)

The two examples provided show two estimates for the correlation coefficient which

are both non-zero and happen to span the range of possible values. To show the sig-

nificance of the correlation coefficient in these models, we consider all the examples of

matches that were discussed previously. The correlation coefficient from all matching

data sets are shown in Figure 2.7 grouped by the tool that was used. We can see that

the correlation for examples made by a given tool are all very similar. We also note that

all of the correlation values are within the range and different from zero.

Figure 2.7: Correlation coefficients for all matching examples grouped by tool.
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2.4 Angle Model

2.4.1 Angle Influence

We saw from the examples in Section 2.3.2 that the likelihood analysis is effective

in providing evidence of a match between tool marks when the marks are made under

controlled lab settings in which they are all produced the same way. However, to be

useful in practice, it must also perform well when tool marks are made under different

conditions or more specifically, for unknown field conditions. When a screwdriver is

scraped against a metal surface, specific circumstances, such as the pressure exerted on

the tool and the angle between the tool and the surface, can affect the appearance of

the tool mark. Here we will consider the angle at which a mark is made, a measurable

quantity that can be analyzed and accounted for to enhance the model and analysis

described in Section 2.3. The jig shown in Figure 2.8(a) can be used to make controlled

tool marks in the lab at various angles. For clarity, the angle at which a mark is made

is measured as the smallest angle the tool makes with respect to the marked surface,

illustrated in Figure 2.8(b).

(a) (b)

Figure 2.8: (a) Photograph of the jig used to make tool marks at specific angles in the
lab. (b) Visual defining the angle between a screwdriver and a marked surface.
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Although there are many attributes of a tool mark that could effect the tool mark

comparisons, tool angle is the most consistently cited and accounted for in comparison

models. The NIJ training manual lists a “number of variables [that] must be considered”

when making tool marks in a lab to compare to a field mark. The variables they list are

the action, amount of force, direction the tool moved, angle and physical circumstances.

A North Carolina State Crime Lab procedural manual also lists physical features that

must be considered which are type of mark, width/diameter of the tool, directoin of

motion, angle, trace evidence and irregularities. Burd and Kirk (1942) state the factors

that will influence the character of the mark are the degree of edge irregularity, verti-

cal angle, horizontal angle, change of vertical or horizontal angle, change of direction,

presence of debris and type of material the mark is made on. However, they further

state “Of these factors only [vertical angle, horizontal angle and change of vertical or

horizontal angle] need to be considered in detail,” (p. 681). Their reasoning is that the

other factors either will change over time, or complicate the comparison process but do

not invalidate the match. In their study, Bachrach et al. (2010) empirically tested the

effect of angle and medium that a mark is made on and concluded “the variation of the

angle of attack has a significant effect on the resulting tool mark even if the medium is

the same.”

In the case of the Chumbley algorithm, Chumbley et al. (2010) demonstrated that

when two tool marks are made by the same tool, similarity indices are generally much

larger when the tool angle is the same in each case. To demonstrate this effect with our

own data, we return to the data we have available. It was previously mentioned that

for each tool, four marks were made under the same set of lab conditions and this was

repeated for five different lab conditions. The five lab conditions correspond to different

tool-surface angles, specifically 30◦, 45◦, 60◦, 75◦ and 85◦. To illustrate how the angle

affects the comparison values, pairwise comparisons, yij, were made between all of the

120 available marks for each tool mark across the five different angles. This process was
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repeated for all six screwdrivers available; Figure 2.9 displays boxplots of the comparison

values for all pairs of marks made by a common tool grouped by the difference in the

tool angles.

Figure 2.9: Boxplots for comparisons from the same tool made at different angles.

We can see that when tool marks are made at the same angle, the boxplot resembles

that of the matches from Figure 2.5 since it is centered around 2 and has a standard

deviation around 1. However, as the difference in angle gets larger, the boxplots all

center around zero, resembling the non-matching boxplot, Figure 2.5(b). Specifically,

this seems to be true for tool marks that were made at angles differing by more than

10◦. In other words, even when marks are made by the same tool, if the tool angles

differ by more than 10◦, the comparison values resemble those from non-matching tool

marks. Bachrach et al. (2010) found a similar result in their study when they state

“the total [empirical] error rates are pronounced enough that comparison of tool marks

created at 15◦ with those created at 45circ is not better than guessing”

To better demonstrate the similarities between comparing matches to non-matches

and comparing matches made at the same angle to those made at different angles, we
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refer to Figure 2.10. For comparing matches to non-matches, we recall the non-match

boxplot, Figure 2.5(b), which is shown again in Figure 2.10(a). We then took all the

matching comparisons used in Figure 2.9 but grouped all the data made from the same

angle together, and those made from different angles together; the boxplots are shown

in Figure 2.10(b). Side-by-side, the similarities between comparing matches to non-

matches, and comparing matches made at the same and differing tool angles is more

apparent. We can see that there are more larger data values in the different angles

boxplot of Figure 2.10(b) than in the field-lab comparisons of the non-match boxplot

in Figure 2.10(a). This is not surprising since we noted in Figure 2.9 that some of the

comparisons made by tool marks only differing by 10◦ still slightly larger than those

differing by more degrees. Overall, these boxplots further show that for tool angles that

differ by 10◦ or more, the data are no longer identifiable as a match.

(a) Boxplots of non-matches. (b) Boxplots of marks made using the same tool,
at the same and different angles.

Figure 2.10: Boxplots showing the similarities between data from different tools made
at the same angle and data from the same tool made at different angles.

Knowing that tool angle has a significant effect on the data, it is important to gen-

eralize the approach described in Section 2.3 to account for these effects. One difficulty

in incorporating angle information is that it is impossible to know the tool angle that

was used to make a mark left at the crime scene. However, in a lab, tool marks can be
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made by the suspect tool at any angle to try to better match a crime scene mark. Note

here that with current procedures, tool mark examiners often do make marks at multiple

angles for this purpose. If enough tool marks are made in the lab at angles differing by

10◦ or less, one or more of them should be expected to yield a high comparison value to

the field mark if it was made with the same tool. Likewise, if the field mark does not

match the lab marks well at any angle, we can conclude that the tool marks were made

by different tools.

2.4.2 Model with Angle

Before we modify the basic model of Section 2.3 to account for angle information, we

need to introduce more notation. Let ai be the tool angle, in degrees, at which tool mark

xi is made for i = 0, 1, ..., n. Since we know that similar angles between two matching

tool marks tend to produce relatively large values of yij, we will incorporate tool angles

as a function of their difference.

We saw from Figure 2.9, that the mean response for data values is large when the

angles are the same and approaches zero as the difference in angles increases. We also

observed that comparisons of matching tool marks made at angles differing by more

than 10◦ resemble non-matches. The function we chose to represent the difference in

angles was d(ai, aj) = exp[−θ(ai − aj)2]. We chose this function so that d(ai, aj) = 1

when tool angles match, and approaches zero as |ai − aj| increases. Although we would

prefer to estimate θ in the model, the relatively small amount of data available to us, in

particular the small number of available angles, makes this difficult. For this reason, we

chose to fix θ = 0.01 which makes d(ai, aj) much closer to zero when the difference in

angles is 10 degrees or more. Figure 2.11 shows this behavior of d(ai, aj) as a function

of the difference in angles, |ai − aj|.
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Figure 2.11: Plot of d(ai, aj) as a function of the absolute distance between angles,

|ai − aj|.

A modified data model incorporating tool angle is

yij ∼ N(µij, σ
2) where (2.9)

µ0j = µ+ α0d(a0, aj) for j = 1, ..., n

µij = µ+ α1d(ai, aj) for i, j = 1, ..., n and i < j

subject to the constraint α0 ≤ α1.

Each yij is normally distributed with a separate mean determined by whether the com-

parison is a field-lab comparison, µ0j, or a lab-lab comparison, µij. In both types of

comparisons, µ represents the baseline mean of all the yijs computed from tool marks

made at different angles. This mean tends to be near zero. The model also includes

an additional mean component based on the similarity measure d(·, ·); α0 represents the

difference in means from the field-lab comparisons and the baseline mean, and α1 repre-

sents the difference in means between the lab-lab comparisons made at the same angle

and the baseline mean. If the field mark and lab marks were made by the same tool,

both α0 and α1 should be around 2 or 3. However, note that the field-lab comparisons

should fit as well as, but no better than the lab-lab comparisons. For this reason, we
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have placed the restriction that α0 ≤ α1. If the tool marks were not made by the same

tool, α1 should stay around 2 or 3, but α0 should be considerably smaller than α1, and

close to zero.

Using this model, we can again make inference about whether or not the suspect tool

made the crime scene marks with a likelihood ratio test. However, a difference in means

now will be determined by whether α0 is less than α1. We are interested in comparing

the hypotheses

H0 : α0 = α1 vs HA : α0 ≤ α1. (2.10)

The alternative model was defined in (2.9); the null model does not differentiate between

field-lab and lab-lab comparisons and is defined as

yij ∼ N(µij, σ
2) where (2.11)

µij = µ+ αd(ai, aj) for i, j = 0, 1, ..., n and i < j.

Both the null and alternative models assume that we have known angles for every

tool mark made in the lab; that is a1, ..., an are known. The angle of the mark made in

the field, a0, is unknown. Thus, a0 is a parameter in the model along with µ, α, α0, α1,

σ2 and ρ. The correlation structure described in Section 2.3.1 remains for this model

and ρ will still be chosen using a grid search between 0 and 0.5. Since we know the tool

angle needs to be accurate within 10◦ to see evidence of a match, we will perform a grid

search for a0 in increments of 5◦ between 20◦ and 90◦. These angle bounds were chosen

as reasonable angles for which a viable tool mark could be made.

Maximum likelihood estimates for µ, α and σ2 in the null model are computed

using weighted least squares provided values of a0 and ρ, as in the basic model. In

the alternative model, the inequality constraint on α0 and α1 requires the use of con-

strained least squares fit to maximize µ, α0 and α1. To fit the null model, let d0 =

(d(a0, a1), d(a0, a2), ..., d(a0, an))′ and d1 = (d(a1, a2), d(a1, a3), ..., d(an−1, an))′. Then
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the MLEs can be computed as

β̂|a0, ρ = (X′R−1X)−1X′R−1y (2.12)

σ̂2|β̂, a0, ρ = (y −Xβ̂)′R−1(y −Xβ̂)/N (2.13)

where β =

 µ

α

 and X =

[
1N (d0

′,d1
′)′
]
. To fit the alternative model for fixed

ρ and a0, we first use pcls() to obtain maximized estimates for β = (µ, α0, α1)
′ by

supplying the data matrix X =

 1n d0 0n

1N−n 0N−n d1

. We then use (2.13) to estimate

the variance component. Likelihood values are computed for parameters computed this

way over a grid of ρ and a0.

As with the basic model, the null distribution of the likelihood ratio statistic from

comparing these angle models will follow a chi-bar distribution with half of the density

on a point mass at 0 and half of the density on a chi-squared distribution with 1 degree

of freedom. As a result, when doing many tests, if the null hypothesis is true, we would

expect 50% of the p-values to be approximately uniform between 0 and 0.5, and the

other half to have a point mass at 1. If the alternative hypothesis is true, we would still

expect the p-values to be systematically smaller.

2.5 Results

To test the modified models, we used all the data we had available: four tool marks

made at each of the possible tool angles of 30◦, 45◦, 60◦, 75◦ and 85◦ for all six screw-

drivers. Thus we have a total of 5(angles) × 4(marks) × 6(tools) = 120 tool marks.

We will consider two scenarios, one where the field mark has been chosen out of the

available marks made by the same tool which reflects a situation where the analysis

should indicate a match and a second scenario where the field mark was chosen from
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the marks made by a different tool. The matching results are discussed in Section 2.5.1

and the non-matching results are discussed in Section 2.5.2.

2.5.1 Results for Matches

Data sets for matches were compiled using all 20 tool marks for a given tool: four

marks from each of the five available angles. Each tool mark within a set was chosen one-

at-a-time to be the field mark leaving the remaining n = 19 lab marks for comparison,

three of which are made at the same tool angle as the field mark. This process was

repeated for all six tools and the likelihood ratio test described in Section 2.4.2 was

performed on each for a total of 120 tests.

Since we know all the tool marks used in each analysis are made by the same tool, we

would expect the field-lab comparisons and lab-lab comparisons to result in similar data

values as long as the field angle has been estimated correctly. Thus only one regression

slope for the similarity measure, d(ai, aj), would be needed for an adequate model fit

so the null model described in (2.11) should fit the data as well, or nearly as well, as

the alternative model (9). Based on this assumption, we would expect that half of

the distribution of p-values from these likelihood ratio tests should be approximately

uniform between 0 and 0.5 with the other half of the p-values to have a point mass at

1. A hypothesis test was performed to test whether or not the proportion of p-values

with a density of 1 was equal to 0.5. The resulting p-value was 0.2012, so we conclude

the assumption is valid. Furthermore, a Kolmogorov-Smirnov test was performed on

the p-values less than 0.5 comparing them to a Uniform(0, 0.5) distribution. This test

also failed to reject the null hypothesis which states the distributions are the same with

a p-value of 0.2801. Thus, the histogram of p-values for all 120 LRTs, shown in Figure

2.12, is consistent with the asymptotic distribution.
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Figure 2.12: Histogram of p-values for all matching data.

In addition to checking that the LRT is returning the results we would expect for

matching data, it is also necessary to check that the angle estimation is performing

correctly. We can check this by plotting the estimates for a0 grouped by the actual

value of the field angle. The five plots, one for each of the tool angles, are shown in

Figure 2.13 with a vertical line representing the actual tool angle. Recall that the grid

search used to estimate the field angle only considered angles at 5◦ increment between

20◦ and 90◦.
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(a) Estimates â0 when a0 = 30◦ (b) Estimates â0 when a0 = 45◦

(c) Estimates â0 when a0 = 60◦ (d) Estimates â0 when a0 = 75◦

(e) Estimates â0 when a0 = 85◦

Figure 2.13: Estimated values of a0 grouped by the true value of a0 for matching data.
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With the exception of the 60◦ tool marks, the estimation appears to be very accurate

and rather precise. The angles are consistently estimated within five degrees of the true

angle the majority of the time. Within the data available to us, a few marks were flawed

so as to be dissimilar to others made by the same tool at the same angle. This occurred

more in 60◦ tool marks than in any other angle. For this reason it is not surprising that

those estimates are not as precise as the other angles. Overall, methodology based on

the new model leads to expected test results and informative angle estimates when the

tool marks are indeed matches.

2.5.2 Results for Non-Matches

To create non-matching data sets, we used all n = 20 tool marks made from the

same tool as before and considered these the lab marks. The field marks were chosen

out of the remaining five tools, one mark from each of the five angles available for each

tool. The data sets were assembled by one-at-a-time comparing the field mark with each

of the lab marks and comparing the lab marks pairwise with one another. This process

was repeated for all six screwdrivers, resulting in a total of 150 non-match data sets.

For non-matching data, all of the field-lab comparisons should be close to zero re-

gardless of the tool angles since the marks were made by different tools. However, the

lab-lab comparisons that were made at the same angle should result in larger compari-

son values since they are true matches. This discrepancy should show up in the models

through the α0 and α1 values. Thus we would expect the alternative model to be a bet-

ter fit to these data and so the p-values from the likelihood ratio tests should be small,

i.e., the distribution of p-values should be skewed with greater frequencies associated

with smaller p-values. The p-values that resulted from these 150 tests are shown in

the histogram in Figure 2.14. As expected, the p-values are mostly small and have an

overall right skewed shape. This supports the alternative hypothesis, and is interpreted

as evidence that the lab and field marks were made with different tools.
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Figure 2.14: Histogram of p-values for non-matching data.

2.6 Conclusion

There has been work done by several researchers to show the difference in tool marks

quantitatively. The Chumbley algorithm is one example that is effective qualitatively at

distinguishing between a match and non-match in tool marks. However, the null distri-

bution of the standardized U-statistic varies depending on many factors. The analysis

presented in this paper overcomes this problem by simultaneously modeling Chumbley

indices from comparisons of a field sample with multiple lab samples. This approach

might also be used with other indices that have approximately normal distributions.

We have shown that the angle at which a tool is used can have a significant effect

on the similarity of the tool marks. Since it is these similarities that are crucial to the

tool mark matching process, it is necessary to account for these effects in the models

and analyses used to examine tool marks. Including the tool angle in the model as a

function of the difference in angles of marks being compared does seem to yield positive

results, both in the ability of the likelihood ratio tests to choose an appropriate model,

reflecting a match or non-match, and in estimating the unknown field angle when the

field and lab tool marks are actually matches. Our research indicates that as long as
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lab tool marks are made at angles within 10◦ of the field angle, the estimation process is

reasonably accurate when the tool marks match, and the likelihood ratio test performs

appropriately for both matching and non-matching cases.

Due to the constraints of available resources, we had access to tool marks made at

only a few angles, those being 30◦, 45◦, 60◦, 75◦, and 85◦. As a result, we chose a

parameter value for θ in the similarity function of the modified models. Having tool

marks made at more angles would allow us to include θ in the estimation process and

might also improve the precision with which a0 could be estimated when lab and field

marks are made with the same tool. A case can be made for simply setting α0 to zero

in the expression of the alternative hypothesis. Here, we’ve left this parameter value

unspecified so that the hypotheses are nested, and so simplifying the likelihood ratio

test.

The research reported here, while promising, should be viewed as preliminary. A

broad and impressive collection of forensic laboratory techniques have been developed

for a number of important evidence matching settings, including DNA, fingerprint, and

material composition, as well as the tool impression setting described here and the

closely related application of ballistic evidence. In many of these areas, the development

of appropriate statistical methodology is still needed. While our work is motivated by

real aspects of the tool mark comparison problem (the many-to-one nature of available

lab and field marks, and the demonstrated importance of tool angle), further refinement

is clearly needed before application can be made to forensic practice, for example:

• Are the parametric forms we’ve chosen in for our models adequate for this physical

setting, or would other forms be more appropriate?

• Our empirical work was limited to tool marks made in the laboratory, under con-

trolled conditions. Are further model features needed to account for the fact that

the field mark is never really produced this way, and may often (or always) be
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subject to additional sources of noise?

• While we’ve focused on data produced by relatively mature profilometry tech-

niques, newer non-contact measurement processes based on confocal microscopy

offer the potential for 3-dimensional mapping of a tool surface and computer gen-

erated “virtual tool marks” for almost any conceivable collection of physical con-

ditions, including tool angle, but also applied force, Ekstrand et al. (2013) . This

technology is new and not yet in wide-spread use in forensic laboratories, but it

likely will be available soon. How can the methodology we’ve outlined here be

extended to make use of the much larger and more diverse sets of synthetic lab

marks that will soon be available?

Finally, we need to point out that our development leads to a statistical inference

which is structurally different from what would be most appropriate in forensic analysis.

Tool mark examiners properly think of their evaluations as leading to a declaration

of “match” or “not enough evidence to classify as a match”. Our development aligns

the definitive statistical statement “reject the null hypothesis” with the non-definitive

forensic conclusion “not enough evidence to classify as a match”. Conversely, the non-

definitive “failure to rejectH0” aligns with the definitive “match”. Despite this structural

difficulty, our approach is a first logical step statistically because “match” corresponds

to a simpler statistical model, while the alternative requires the more complex model.

Our current research focuses on a recasting of this problem to reverse the roles of the

hypotheses so that the more important forensic error - false declaration of a “match” -

corresponds to the Type I error.
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CHAPTER 3. EXAMINING THE EFFECTS OF TOOL

MARK QUALITY

A paper to be submitted the Journal of Forensic Science

Amy B. Hoeksema 1 2 and Max D. Morris3 4

Abstract

Suppose a crime is committed such that a tool mark is left at the crime scene, and

a suspect tool is identified. Forensic examiners assess the strength of evidence that the

suspect tool was used in the crime by comparing the crime scene mark to marks made

in the laboratory with that tool. In current practice, for stronger support of a match

or non-match, multiple marks are made in the lab under the same conditions by the

suspect tool. However, through flaws in the mark surface or error in the mark making

process, it is possible to make tool marks under the same conditions using the same tool

that do not resemble one another. Thus it is necessary to incorporate a quality control

step in the tool mark matching process. Toward this end, we describe a method that

could be used to verify that all the lab marks made do in fact match each other well

enough to be considered reliable for comparing to a field tool mark, or to identify those

that should be eliminated.

1Graduate student, Department of Statistics, Iowa State University
2Primary researcher and author
3Department of Statistics, Iowa State University
4Department of Industrial and Manufacturing Systems Engineering, Iowa State University
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3.1 Introduction

When a tool is used in the commission of a crime, the tool mark that may be left at

the scene can be valuable forensic evidence. Although tool mark comparison practices

apply to marks made by any striated tool, for the purposes of this paper, we will focus

on tool marks that have been made by screwdrivers; for example, a screwdriver may

be used to pry open a window with a metal frame and an impression mark may be left

behind. If a suspect tool is identified, forensic examiners can make tool marks in the

laboratory using the suspect tool and compare them to the one left in the field. Since the

comparison of a lab tool mark to a crime scene mark only provides a single data value,

it is common for examiners to make multiple marks in the lab that are each compared

to the field tool mark (National Institute of Justice).

Although lab tool marks are made under controlled conditions, flaws in the surface

on which the marks are made and errors in the mark making process lead to variability in

the resulting tool marks. Small variations in tool marks are to be expected, however, we

have seen that occasionally a single “bad” tool mark can result that does not resemble

the others made under the same conditions. When forensic examiners compare tool

marks, they look at both the overall shape and pattern of the tool mark, which they

call the class or subclass characteristics, as well as the small scale noise or individual

characteristics. Different tools of the same type are apt to have the same or similar class

and subclass characteristics, but it is assumed that individual characteristics are unique

to each tool. Although we expect there to be some small differences in the individual

characteristics of matching tool marks, they should at least match in class and subclass

characteristics.

Figure 3.1 contains two sets of profilometer traces, each of multiple tool marks made

in the lab with a common tool under the same conditions. For each screwdriver, four

separate tools marks were made and then scanned using a stylus profilometer. In Figure
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3.1(a), all four tool marks are relatively parallel and display similar features. We can see

from these marks that all four display the same class characteristics, or large peaks and

valleys, and are also very similar in the smaller perturbations. Although there are some

differences in the noise, the primary signal or main features of the marks are the same.

In Figure 3.1(b), we can see that the red, green and blue tool marks are all relatively

similar, as in the previous panel. However, the tool mark shown in black seems to match

the other three over only half the length of the tool mark, and then tapers off into noise

without signal. (This likely indicates that the tool mark was incomplete, and that the

profilometer stylus reached the end of the tool mark and was scanning the lead plate on

which the mark was made.) As a result, the black tool mark would appear to be made

by a different tool, although it was not.

(a) Example of well matching lab tool marks. (b) Example of poorly matching lab tool marks.

Figure 3.1: Examples of tool marks made in the laboratory under identical conditions.

If a numerical matching algorithm, such as that proposed by Chumbley et al. (2010),

is applied to pairs of tool marks depicted in Figure 3.1(a), the tool marks are positively

identified to be made by the same tool. However, when the same algorithm is applied
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to the tool marks in Figure 3.1(b), the indication is that these marks were not all made

by the same tool. Although all marks are known to be made by the same tool, we get a

false indication of non-match because of the poor quality of one lab tool mark.

The collection of marks displayed in Figure 3.1(b) is just one example of how “bad”

marks can be made in the lab. If a lab mark is produced that does not accurately

reflect the suspect tool, comparisons of that mark to the evidence mark can easily lead

to a “non-match” conclusion when the correct conclusion is “match.” With multiple

lab marks, this danger is lessened because a single “non-match” comparison carries less

weight. But if such eliminations are made subjectively, without well-grounded rules, this

weakens the credibility of the forensic examination process. It is therefore important to

develop objective processes to eliminate potentially flawed lab marks before comparison

to the evidence mark begins.

Based on these results, we can see the importance of incorporating a quality control

step in the current matching process. The purpose of this quality control component is

to determine whether any of the lab marks should be eliminated as inconsistent with the

rest, to avoid possible misleading comparisons to the evidence mark. The method we

propose is designed to operate on data that represents each comparison of two tool marks

as a single numerical index. For the purposes of this paper, we discuss using this method

with data produced with Chumbley’s algorithm. The details of the algorithm can be

seen in Chumbley et al. (2010) with a further introduction into the use of likelihood

ratio tests on tool mark comparisons in Hoeksema and Morris (2013). We provide a

brief summary of those papers supplying only the pertinent notation and details of the

process in Section 3.2. We then describe a model and analysis that can be used for

quality control in Section 3.3, with numerous examples in Section 3.4, and conclusions

and suggestions for future work in Section 4.5.
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3.2 Basic Model

For consistency, we will use the same notation as Hoeksema and Morris (2013); the

parts necessary for this paper are provided. Each physical tool mark is represented by a

digitized profilometer scan of the depths of the grooves of the striae plotted against pixel

location (e.g. as displayed in Figure 3.1). Since we are only interested in the lab tool

marks for quality control, we focus on notation for lab tool marks and do not include

field tool marks. Let xi, i = 1, ..., n, represent the ith digitized lab tool mark. Then

yij, i, j = 1, 2, ..., n and i < j, represents the index of comparison of tool mark i to tool

mark j, as described by Chumbley et al. (2010). For our purposes, a complete data set

contains N =
(
n
2

)
comparisons.

Computed comparison values are scaled Mann Whitney U-Statistics, and we assume

that the yij are approximately normally distributed. Let E(yij) = µ and assume the yij

have a common variance, σ2. Some pairs of comparisons share a common tool mark,

and the model contains a non-zero correlation between such comparisons:

Corr(yij, ykl) =


0 if i 6= k, i 6= l, j 6= k and j 6= l

ρ if i = k or i = l or j = k or j = l, but not (i, j) = (j, k)

1 if i = k and j = l.

(3.1)

Let y = (y12, y13, ..., yn−1,n)′ be the N -vector of all data values. Finally, we further

assume that the joint distribution of all pairwise comparisons of lab tool marks is mul-

tivariate normal, specifically y ∼ N(µ1′N, σ
2R), where the elements of R are defined as

in equation (3.1).

In Hoeksema and Morris (2013), the focus was on determining a match between a

field tool mark and a suspect tool based on whether the lab-lab comparisons have the

same mean as the lab-field comparisons. However, if the lab tool marks do not match

each other well, the distribution of lab-lab comparisons will not reflect that of a true

match. That is, any yij that are comparisons that include a “bad” lab tool mark will
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tend to be smaller than the other lab-lab comparisons, leading to a smaller fitted overall

mean for that sample than is appropriate. Thus is it necessary to incorporate a quality

control step in the matching process to assure the lab tool marks match each other well

before comparing them to the field tool mark.

3.3 Quality Model and Analysis

Our proposed quality control check is to compare all the lab tool marks pairwise,

then one-at-a-time isolate the comparisons involving a particular tool mark from the

rest to see if it is an outlier relative to the remaining marks. To achieve this, we propose

adding a “penalty” to the basic model for the mean of comparisons involving the selected

tool mark which could increase as the quality of tool mark decreases. If the addition of

this penalty to the model improves the likelihood significantly, this indicates that the

identified tool mark is not enough like the others, and should be removed.

To implement this approach, we introduce more notation and modify the basic model

for yij. Let γk represent the positive penalty for comparisons involving tool mark xk,

k = 1, ..., n. For each value of k, we will fit the model E(yij) = µ − γk1i=k − γk1j=k,

where γk > 0. Once tool mark k has been chosen for the penalty, any comparison that

involves that tool mark will have a mean of µ − γk, but the rest will have a mean µ.

Since it is required that the penalty be non-negative, inequality constrained regression

is used to fit the model with the constraint that γk ≥ 0. Parameters µ, γk and σ2 are

estimated using maximum likelihood with inequality constrained regression using the R

function pcls() within the MGCV package (Wood 2012). The correlation coefficient ρ is

estimated using a grid search within [0, .5). The normal likelihood is computed for each

tool mark held out as the penalized mark and the log likelihoods are compared.

For a set of lab marks, we compare the largest likelihood to the baseline likelihood

(i.e. that computed under the basic model with no penalty) to determine if the pe-
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nalized mark is significantly different from the remaining marks, indicating that the

penalty is necessary. Since constrained likelihood is used, the standard likelihood ratio

test (LRT) statistic, −2 ln(λ) where λ =
`(µ̂, 0, σ̂2, ρ̂)

`(µ̂, γ̂k, σ̂2, ρ̂)
and `(·) denotes the normal likeli-

hood function for the indicated set of parameter estimates, has a chi-bar(0,1) asymptotic

distribution (Chernoff 1954). That is, the distribution of the LRT, under the null hy-

pothesis of γk = 0, is a mixture with half of the density on a point mass at 0, and half

on a chi-squared distribution with 1 degree of freedom. Since multiple likelihoods (for

k = 1, 2, ..., n) are being compared simultaneously, we also use a Bonferroni correction

to control the overall error rate of the procedure.

3.4 Examples

To test the proposed quality control method, 30 sets of lab tool marks were examined

with the analysis described in Section 3.3. In each set, there were four lab tool marks

made by the same tool under the same set of laboratory conditions. All pairs of tool

marks in a set were compared to one another, resulting in six comparison values for a

single dataset. The quality model was fitted to these six values using each tool mark

as the penalized mark and the resulting log likelihoods were ordered from smallest to

largest. The baseline model was compared to the each fitted model using a chi-bar critical

value with an α level of 0.01. Incorporating the Bonferroni correction, the α/4 = 0.0025

chi-bar critical value is 7.88, so any model with a LRT statistic larger than this would

indicate the penalized mark is significantly different from the remaining three marks.

Five examples are described below which depict the range of results we observed.

For each, we present a figure showing the four lab tool marks that were compared to one

another as digitized tool marks. The resulting comparison values are provided in a table.

Finally, a table containing the results of the model fitting ordered by LRT statistic is

shown indicating which tool mark is being penalized, the fitted parameters and the LRT
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statistic. If the largest likelihood is significantly different from the baseline likelihood, a

dashed line is included in the table separating that model.

Figure 3.2: Example 1 lab marks.

yij x2 x3 x4

x1 4.105 4.187 3.098

x2 4.325 4.587

x3 3.345

Table 3.1: Summary statistics
from Example 1.

Penalized xk µ̂ γ̂k σ̂2 ρ̂ −2 ln(λ)

2 3.94 0.00 0.29 0.00 0.00

3 3.94 0.00 0.29 0.00 0.00

1 4.09 0.29 0.27 0.00 0.46

4 4.21 0.53 0.22 0.00 1.68

Table 3.2: Model estimates from Example 1.

The tool marks used in Example 1, shown in Figure 3.2 and repeated from Figure

3.1(a), appear to be well matching marks. The large comparison values in Table ??

confirm this impression since the smallest comparison value is 3.098 which indicates a

strong match. In Table 3.2, we see the results of fitting the quality model with each of

the four tools being given a penalty. For the first two marks, 2 and 3, the penalized

models are equivalent to the baseline model since γ̂2 = γ̂3 = 0. Thus µ̂ in these two

models represents the overall mean comparison value for the data. The model with the
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largest log likelihood places a penalty on x4, which we can confirm in Table ?? has

the smallest comparison values. Since the largest LRT statistic is 1.66, which is much

smaller than the chi-bar critical value of 7.88, we conclude that none of the tool marks

differ significantly from one another. Thus, all four lab marks match each other well

and could be further used to compare to a field mark.

Figure 3.3: Example 2 lab marks.

yij x2 x3 x4

x1 0.631 1.391 0.894

x2 3.115 2.054

x3 2.352

Table 3.3: Summary statistics
from Example 2.

Penalized xk µ̂ γ̂k σ̂2 ρ̂ −2 ln(λ)

2 1.74 -0.00 1.13 0.45 0.00

3 1.74 0.00 1.13 0.45 0.00

4 1.74 0.00 1.13 0.45 0.00

1 2.51 1.53 0.15 0.00 8.58

Table 3.4: Model estimates from Example 2.

Example 2 shows four poorly matching tool marks. In particular, x2 (red) and x3

(blue), shown in Figure 3.3 (repeated from Figure 3.1(b)), visually appear to match each

other well across the entire length of the tool mark. A third mark, x4 shown in green,

appears to match x2 and x3 over part of the trace but differs at the right end. The
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fourth mark, x1, however is significantly different from the other three since it seems to

only have transfered part of the tool mark onto the surface. These visual observations

are numerically confirmed in Table ?? since comparisons involving x1 result in smaller

values than the comparisons only invovling the other three tool marks.

Table 3.4 shows the results of fitting the quality model using all four marks. We can

see that penalizing marks 2, 3 and 4 results in the baseline model since γ̂2 = γ̂3 = γ̂4 = 0,

but penalizing mark 1 significantly increases the log likelihood. The LRT statistic from

penalizing x1 is 8.58 which is larger than the critical value, so this provides evidence

that x1 is significantly different from the other three tool marks. In this situation, the

quality model successfully identifies that these lab marks do not match each other well

and that x1 should be removed from the set before comparing to the field tool mark.

Figure 3.4: Example 3 lab marks.

yij x2 x3 x4

x1 2.906 -0.126 2.628

x2 1.141 3.443

x3 0.503

Table 3.5: Summary statistics
from Example 3.
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Penalized xk µ̂ γ̂k σ̂2 ρ̂ −2 ln(λ)

1 1.75 0.00 1.82 0.45 0.00

2 1.75 0.00 1.82 0.45 0.00

4 1.75 0.00 1.82 0.45 0.00

3 2.99 2.49 0.28 0.45 11.32

Table 3.6: Model estimates from Example 3.

Example 3 shows a different type of error that can occur on lab tool marks which

results in a false non-match classification. From Figure 3.4, we can see that marks 1, 2

and 4, shown in black, red and green, visually match each other well. Mark 3, shown

in blue, also seems to match the other three well except in the middle of the tool mark.

During the making of this tool mark, the mark was made too deep on the lead surface

and as a result, when the stylus profilometer was recording the depths of the mark it

reached its minimum recording value during this stretch of mark which recorded as the

flatline shown.

Table ?? shows the summary statistics that confirm our observations since compar-

isons involving x3 have the smallest comparison values. Table 3.6 indicates the quality

model successfully determines mark 3 is significantly different from the other three marks

and should be removed from the set of lab marks. Each of the other three tool marks

result in a baseline model since γ̂2 = γ̂3 = γ̂4 = 0. When the penalty is applied to x3,

the LRT statistic is 11.32 which is larger than the Bonferroni corrected chi-bar critical

value of 7.88.
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Figure 3.5: Example 4 lab marks.

yij x2 x3 x4

x1 2.605 2.823 2.817

x2 3.340 3.556

x3 3.120

Table 3.7: Summary statistics
from Example 4.

Penalized xk µ̂ γ̂k σ̂2 ρ̂ −2 ln(λ)

3 3.04 0.00 0.11 0.00 0.00

4 3.04 0.00 0.11 0.00 0.00

2 3.04 0.00 0.11 0.00 0.00

1 3.34 0.59 0.02 0.00 9.84

Table 3.8: Model estimates from Example 4.

Figure 3.5 shows four tool marks that appear to be very similar. The table of

comparison values, Table ??, confirms that all four tool marks match each other very

well since the smallest yij is 2.605, suggesting a strong match. However, when we examine

the results of fitting the quality model to each tool mark in Table 3.8, three marks result

in LRT statistics of zero, but applying a penalty to x1 has a LRT statistic of 9.84 which

is larger than the critical value. Based on these results, we would conclude that x1 does

not match the other tool marks.

Although the quality model suggests one of the tool marks is an outlier, the summary
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statistics and visual comparison of the tool marks do not seem consistent with this

result. Examining the parameter estimates of the significant model show that when x1

is penalized, σ̂2 = 0.02. This very small variance estimate, combined with the small

sample size of this dataset, make small differences in tool marks easily identifiable.

Figure 3.6: Example 5 lab marks.

yij x2 x3 x4

x1 3.095 0.308 2.443

x2 2.338 2.504

x3 3.656

Table 3.9: Summary statistics
from Example 5.

Penalized xk µ̂ γ̂k σ̂2 ρ̂ −2 ln(λ)

2 2.39 0.00 1.08 0.00 0.00

4 2.39 0.00 1.08 0.00 0.00

3 2.68 0.58 0.99 0.00 0.50

1 2.83 0.88 0.88 0.00 1.20

Table 3.10: Model estimates from Example 5.

In Example 4, we saw a set of tool marks that were so similar that a false non-

match was concluded. Example 5 represents the opposite situation, where the tool

marks do not appear to match each other well, but none is identified as an outlier in the

analysis. Figure 3.6 shows the four lab tool marks, and Table ?? shows the comparison

values. From the figure, we can see that there do not seem to be any strong class or
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subclass characteristics in these tool marks. As a result, the tool marks all match each

other consistently but none of them match each other strongly. In addition, Table ??

indicates that comparisons involving x1 are much smaller than the rest. Based on these

observations, we might expect that a penalty applied to comparisons involving x1 might

result in a better-fitting model. However, the quality model can not distinguish between

the marks, and penalizing them individually does not improve the model significantly.

The largest LRT statistic is 1.20, which is much smaller than the critical value.

As with Example 4, the reason for the seemingly false matching conclusion can be

found in the parameter estimates. In this case, the estimates of σ2 are much larger

than we saw in Example 4. This indicates that there is, overall, more mark-to-mark

variability in this dataset. Because the level of noise is greater, and the sample size is

so small, even the mark that differs from the rest in the set is not significantly different.

3.5 Conclusions and Future Work

Hoeksema and Morris (2013) use a likelihood ratio test to successfully distinguish

between known matching and known non-matching pairs of tool marks. The method

relies on the use of multiple tool marks made in the laboratory by the suspect tool

to strengthen the evidence by comparing samples of field-lab comparisons and lab-lab

comparisons. However, we observed that the repetition of the mark-making process

sometimes results in large mark-to-mark variation. If the degree of mark-to-mark varia-

tion is large enough so that the lab marks do not match each other well, this can result

in a false non-match result when the lab tool marks are compared to the field tool mark.

Thus we have a need to implement a quality control step in the process to assure the

lab marks match well before comparing them to a field tool mark.

The model proposed in Section 3.3 imposes a penalty to comparisons involving each

tool mark one-at-a-time and compares the resulting log likelihood to that of an unpe-
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nalized model. If it is found that the largest log likelihood is significantly larger than

the baseline, using a chi-bar distribution with a Bonferroni correction, we can conclude

the mark that was penalized in that model is significantly different from the others in

the set.

Five examples were given showing the range of results based on the data we had

available. The penalized mean quality control step is capable of identifying outlying tool

marks in the majority of situations. The exceptions are situations where the tool marks

have very little mark-to-mark variation, or a large amount of mark-to-mark variation. In

the first case, the small sample size makes it easier to identify small differences, so marks

that we would expect to match result in a false non-match due to the small variance

estimate. In the second case, again, small sample size makes it harder to identify the

outlying tool mark since the variance is larger.

Future work on this model should be based around larger datasets. We saw that the

small sample size makes small and large variations in tool marks lead to false non-match

or false match results that were unexpected. Also, due to the small sample size, the

examples we showed could not be continued recursively. With larger sample sizes, the

tool mark elimination process could be repeated, removing one tool mark at a time until

the remaining tool marks all match each other.
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CHAPTER 4. USING SYNTHETIC TOOL MARKS IN A

LIKELIHOOD RATIO TEST FOR FORENSIC

COMPARISONS

A paper to be submitted to Technometrics
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Abstract

Over the last few years, several numeric methods have been proposed for comparing

a field tool mark found at a crime scene to ones made in the laboratory using a suspect

tool, with the goal of determining whether the field tool mark and lab marks “match,”

i.e. were made with the same tool. For comparisons resulting in a single numerical index,

Hoeksema and Morris (2013) proposed the use of a likelihood ratio test to analyze the

difference between a sample of comparisons of lab tool marks to a field tool mark, against

a sample of comparisons of two lab tool marks. In that analysis, a one-sided hypothesis

test was used for which the null hypothesis states that the means of the two samples are

the same, and the alternative hypothesis states that they are different and appropriately

ordered. The weakness of this approach is that the hypotheses are reversed from the

desired analysis; we must assume that the null hypothesis is true until we can prove

1Graduate student, Department of Statistics, Iowa State University
2Primary researcher and author
3Department of Statistics, Iowa State University
4Department of Industrial and Manufacturing Systems Engineering, Iowa State University
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otherwise, which equates to assuming the tool marks were made by the same tool (i.e.

the evidence supports the suspect’s guilt) until we can prove otherwise. Using synthetic

tool marks generated from a statistical model fitted to the lab tool marks, we propose a

method for comparing marks that reverses the hypotheses to achieve the desired test.

Keywords: Outlier test, Profilometry, Striae, Synthetic data
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4.1 Introduction

When a crime is committed using a striated tool, such as a screwdriver, forensic

scientists sometimes rely on tool marks left at the crime scene as physical evidence.

Tool marks made in the laboratory by a suspect tool are compared to the field tool

mark to evaluate the likelihood of a match, i.e. that the suspect tool was also used at

the crime scene. However, over the last few years the current process of determining

tool mark match status through expert visual analysis has come under scrutiny after the

National Research Council stated that “With the exception of nuclear DNA analysis...

no forensic method has been rigorously shown to have the capacity to consistently, and

with a high degree of certainty, demonstrate a connection between evidence and a specific

individual or source” (N.R.C. 2009, p. 7). As a result, several more automated methods

based on digitized representations of the tool marks have been proposed over the last few

years. For a more thorough background, see Hoeksema and Morris (2013). Despite the

numerous proposals, “There are no standard methods for the application of probability

and statistics to the analysis of tool mark evidence” (Petraco et al. 2012, p. 901)

Several numerical approaches rely on a single index of similarity to compare two

tool marks; two examples are described by Bachrach et al. (2010) and Chumbley et

al. (2010). Hoeksema and Morris (2013) proposed a multivariate analysis using as

data any normally distributed similarity index in which two samples of comparisons,

one from field tool mark with lab tool mark comparisons (field-lab) and one from lab

mark with lab mark comparisons (lab-lab), are compared using a likelihood ratio test

(LRT). Under this approach, it is assumed that if the tool marks were made by the same

tool, both samples should also have the same mean and the LRT is constructed to test

this hypothesis.

Although the method described by Hoeksema and Morris (2013) is effective, there

is an inherent weakness in the structure of the hypotheses on which it is based. In
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a standard hypothesis test of this sort, the null hypothesis states that the means are

equal, which is interpreted as evidence that the tool marks were made by the same tool.

The alternative hypothesis states that the means are not equal, which is interpreted

as evidence that the tool marks were not made by the same tool. Hence the structure

of the procedure leads to an assumption of suspect “guilt” unless “innocence” can be

positively demonstrated. Thus it is necessary to find a way to reverse the hypotheses

so that we can assume the tool marks do not match unless evidence positively indicates

that they do.

In this paper, we propose such a method using synthetic tool marks generated from a

model fit to the lab tool marks. If these synthetic tool marks do not match the field tool

mark as well as the lab tool marks do, this provides evidence that the field tool mark

was made by the suspect tool. If the field tool mark was made with a different tool,

then the synthetic tool marks will still match the lab tool mark well, but the field tool

mark will not match either the synthetic or lab tool marks. We will begin by providing

a review of the model used in Hoeksema and Morris (2013) in Section 4.2, followed by

an overview of our approach in Section 4.3. We then demonstrate the process in Section

4.4 and discuss conclusions and future research directions in Section 4.5.

4.2 Basic Model - Likelihood Ratio Test

Hoeksema and Morris (2013) described a likelihood ratio test for normally dis-

tributed index values generated by comparing pairs of tool marks, and for demonstration

used data generated with the Chumbley algorithm (Chumbley et al. 2010). We will con-

tinue to use comparison values, yij, computed using this algorithm and now define some

relevant notation. This algorithm can be applied to any striated tool mark, however,

we will focus on data and results for screwdrivers. For our purposes, a tool mark is first

reduced to a single cross-striae “scan” or depth profile along a path perpendicular to
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the parallel striae of the physical tool mark. In the data available to us, these profiles

consist of depth values recorded at approximately 9600 “pixel locations” along a linear

path. Let x0 represent the field tool mark, and x1, ..., xn represent n tool marks that

were made by the suspect tool in the lab. Let yij, i < j, represent the numerical index

of similarity that results from comparing xi to xj using Chumbley’s algorithm. A com-

parison between the field tool mark and a lab tool mark, y0j, will be referred to as a

field-lab comparison, and a comparison between two lab tool marks, yij, 1 ≤ i < j ≤ n,

will be referred to as a lab-lab comparison.

In the model described by Hoeksema and Morris, µ0 is the mean for a field-lab

comparison, that is E(y0j) = µ0 for j = 1, ..., n, and µ1 is the mean for a lab-lab

comparison, so E(yij) = µ1 for i, j = 1, ..., n and i < j. For their analyses, they propose

using a LRT to compare the sample of field-lab comparisons to the sample of lab-lab

comparisons in a test of

H0 : µ0 = µ1 vs HA : µ0 < µ1. (4.1)

If the means of the two samples are the same, this is evidence that the tool marks were

made by the same tool. In the standard framework for comparing a simple hypothesis

to a composite hypothesis, the simple hypothesis (null) is assumed to be true unless

there is sufficient evidence for the alternative hypothesis. However, in this scenario, this

implies we are assuming the tool marks match and trying to provide evidence that they

do not match. This is not consistent with standard forensic and legal principles, thus

there is a need to find a way to compare the samples of comparisons with the hypotheses

reversed.

4.3 Modeling to Generate Synthetic Marks

In the courtroom, a criminal is innocent until proven guilty. Similarly, with the

forensic comparison of tool marks, we should assume that the tool marks were made by
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different tools until we can demonstrate substantial evidence that they match. That is,

using the notation in Section 4.2 we should test

H0 : µ0 < µ1 vs HA : µ0 = µ1. (4.2)

Before describing our proposed test, we first offer a brief description of the process that

forensic examiners currently use to compare tool marks visually.

All striated tool marks are thought to be made up of class characteristics, subclass

characteristics and individual characteristics. According to the N.R.C. (2009, p.152),

class characteristics are “distinctive features that are shared by many items of the same

type... such as the width of the head of the screwdriver” and individual characteristics

are “the fine microscopic markings and textures that are said to be unique to an indi-

vidual tool or firearm. Between these two extremes are ‘subclass characteristics’ that

may be common to a small group of firearms and that are produced by the manufactur-

ing process, such as when a worn or dull tool is used to cut barrel rifling.” Currently, a

forensic examiner must confirm that the tool marks resemble one another closely enough

to justify a microscopic comparison at which point, s/he can visually discount similarity

due to both class and subclass characteristics. The National Institute of Justice (NIJ)

states in their on-line Firearm Examiner Training module that “Examination of the tool

allows the examiner to assess the level of subclass characteristics...The examiner com-

pares the class characteristics of the two objects; if all class characteristics correspond,

the examiner proceeds to compare the individual characteristics” (National Institute of

Justice).

Bachrach et al. (2010) relate the different characteristics to modeling the signature

and correlation components of the tool mark. Specifically, they state, “The main purpose

of the signature generation component is to isolate those features that are characteristic

of the specimen under consideration (individual characteristics) from those that are

common to all specimens of the same type (class characteristics). Consider, for example,
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the case of a group of screwdrivers of the same make and model. As these screwdrivers

are manufactured to the same specifications, the overall geometric shape of the tool

marks created by them is very similar. On the other hand, as no two manufactured

parts are ever identical, there are microscopic variations specific to each screwdriver

blade” (p. 3). They further describe the class characteristics as the “waviness” aspect

of the mark (or large scale traits) and the individual characteristics as the “roughness”

(or small scale traits).

To identify the match status between two tool marks, it is critical to verify that the

individual characteristics of the tool marks match and that they do not just match in

class characteristics. Taking this into account, we propose using the lab tool mark to

create synthetic tool marks; marks that have been statistically generated as realizations

of a model fit to the lab tool mark to match in class characteristics and vary only in

individual characteristics. If we can show that the field tool mark matches the lab tool

mark better than any of the synthetic tool marks, while the synthetic tool marks and

the lab tool mark all match one another equally well, this provides evidence that the

field tool mark was made by the same tool as the lab tool mark.

The rationale for our proposed test is not direct, and deserves additional elaboration.

As described above, suppose that the crime lab had a suspect tool and that it is used

to create a tool mark. But suppose that the lab could also procure additional tools of

the same type, and perhaps with similar wear characteristics, and could make additional

marks with these as well. Our proposal, then, would be that were the tool used at the

crime scene different from the suspect tool, the field-lab comparison should not result

in a value that is unusual compared to the comparison of the field tool mark to those

marks made by tools known not to be the one used in the crime. Indeed, in this case,

each tool mark examined would have been made by a different tool, and there should

be no a priori reason to expect any of the comparisons to be unusual relative to any of

the others. But if the suspect tool actually was used in the commission of the crime,



68

then the field-lab comparison produces the only data value generated from marks that

(truly) match, and so this comparison value might be expected to be unusual (an outlier)

compared to the others. The null hypothesis (“the suspect is innocent”) is that every

pair of tool marks is, in a sense, “exchangeable.”

This proposal might, in fact, merit some consideration, but would likely be physically

difficult to implement in practice. It might be possible to procure tools that were of the

same type as the suspect tool, but it is hard to imagine how they might be found to

have plausible comparable degrees of wear, so that the “exchangeable” argument could

be made. Our proposal is that rather than finding physical tools that are comparable in

this sense, that the suspect tool be used as the basis for modeling synthetic tool marks

to take their place. In essence, we have to generate tool marks that share the class and

subclass characteristics of the suspect tool mark, but differ in individual characteristics

while still being “comparable.” In 2012, Neumann (2012) developed a methodology

that relies on simulated fingerprints to incorporate probability into fingerprint analysis.

In this paper, we have proposed to generate synthetic tool marks by simply decomposing

the suspect tool mark into two segments, the first of which (the smooth) represents all

class and subclass characteristics, and the second of which (the residuals) represents

individual characteristics. Further we propose that the residuals can be used to fit a

statistical model that can be regarded as a reliable “generator” of comparable tool mark

profiles - essentially that the individual characteristics of a tool can be regarded as

random draws from this model.

4.3.1 Modeling the Lab Tool Mark

Unlike in Hoeksema and Morris (2013), for these analyses, we are only interested

in a single lab tool mark. In modeling the lab tool mark, we wish to capture the class

characteristics as fixed and repeatable while treating the individual characteristics as

random. This is so that realizations from the fitted model may be regarded as synthetic
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tool marks produced by hypothetical tools that are distinct from, but share the class

characteristics of, the suspect tool. To achieve this, we fit a Loess smoother to the

digitized lab tool mark using the loess function in R. The procedure requires a single

tuning parameter, called the span, be specified. The span determines the percentage of

data points in the mark that are used in fitting the smoothed value at any one location;

the larger the span, the more smooth the fitted function will be. Figure 4.1 illustrates

the effects of changing this parameter with the black curve representing the actual tool

mark. In this case there are data values corresponding to 9600 pixel locations in each

tool mark, so a span value of 0.01 specifies that the data at 96 pixel locations is used to

fit the smooth at each point. As a result, the red line which was made using a span of

0.01 almost completely covers the actual tool mark and (visually) hardly smooths at all.

The remaining lines, green for a span of 0.05, blue for a span of 0.10 and purple for a

span of 0.20, show much higher degrees of smoothing. For the purposes of this analysis,

we chose to use a span of 0.05 to capture the class characteristics. The residuals from

the (span=0.05) smooth displayed in Figure 4.1 are shown in Figure 4.2.

Figure 4.1: A tool mark, shown in black, with four different smoothing curves with
smoothing parameters of 0.01 (red), 0.05 (green), 0.10 (blue) and 0.20 (purple).
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Figure 4.2: Residuals from the mark in Figure 4.1 using a Loess smoother with span =
0.05.

We regard a digitized tool mark x to be comprised of a smooth component, s, esti-

mated by the Loess fit, and a residual component r

x(i) = s(i) + r(i) (4.3)

where i is an index representing pixel location along the tool mark. For purposes of

modeling, we regard the residuals from the Loess smooth as a realization of a stationary

stochastic process. To fit a stochastic process model to the residuals from the smooth

of the lab tool mark, we need to determine an appropriate covariance structure. To

do this for the tool mark and smooths shown in Figure 4.1, we used variograms which

are shown in Figure 4.3. Using the residuals from the Loess smoother, we plot the

squared difference between residuals against the lag (absolute difference between pixel

indices for those two residuals) to form variograms. Due to the large sample size in the

lab tool marks, we randomly chose 100 pairs of residuals for each lag value and have

plotted only the average squared difference of residuals for each lag. In Figure 4.3(b),

corresponding to a span of 0.05, we can see that the variogram appears approximately

linear with positive slope between lag values of 0 and about 50. For lags greater than
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50, the variogram is approximately constant with minor oscillating pattern. Thus, we

chose to use a covariance function that has the form

Cov(r(i), r(i+ l)) =

 0 if l > L

σ2(1− l

L
) if l ≤ L.

(4.4)

which represents the covariance for residual r between pixel locations i and i+ l.

(a) Span = 0.01 (b) Span = 0.05

(c) Span = 0.10 (d) Span = 0.20

Figure 4.3: Variograms showing the mean of 100 randomly chosen squared residuals at
each lag point for smoothing parameters of (a) 0.01 , (b) 0.05, (c) 0.10 and (d) 0.20.
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With the span parameter and covariance function chosen, we can now fit a stochastic

process model to the residual series from the lab tool mark. The parameters we will

estimate are µ = E(r), σ2 = V ar(r) and L. Due to the large sample size of these tool

marks, the matrix calculations involved in computing the maximum likelihood estimates

are unstable. Instead, for a given value of L (which is estimated separately), method of

moments (MoM) estimators for µ and σ2 are used. In this case, since we are fitting the

model to the residuals of the mark,

µ̃ = r̄ (4.5)

σ̃2 =
s2

1− L− 1

n− 1

(
1− L+ 1

3n

) (4.6)

where r̄ and s2 represent the sample mean and sample variance of the residuals, respec-

tively.

The goal of this method is to use one lab tool mark to generate synthetic tool marks

that differ from it only in small-scale details typical of “individual characteristics.” For

a specified value of L and the resulting values of µ̃ and σ̃2, we simulate a large number

of synthetic tool marks. The index y is then computed for comparisons of each synthetic

mark to the lab mark (lab-synthetic comparisons) and for each pair of synthetic tool

marks (synthetic-synthetic comparisons). The difference between these two samples is

characterized using the Kolmogorov-Smirnoff (K-S) statistic. We use the L value leading

to the minimum K-S statistic as our estimate, L̃.

For demonstration of this method, we used a grid of values for L, computed the

MoM estimates for µ and σ2, and generated 50 tool marks. For each value of L, Figure

4.4 displays boxplots of the two index samples with the white boxes representing the

lab-synthetic comparisons and the grey boxes representing the synthetic-synthetic com-

parisons. The value of L is shown on the x-axis. Recall the goal is to identify the pair of

boxplots that are most alike which is done objectively using a Kolmogorov-Smirnoff test
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statistic;this will be the value of L that is chosen for the rest of the analysis. The test

statistics and p-values from performing the K-S test on each set of samples are shown in

Figure 4.5(a) and 4.5(b), respectively. The value of L is chosen for which the sample of

synthetic-synthetic comparison values was most like the sample of lab-synthetic values,

that is the value of L that produced samples with the smallest K-S test statistic, or

largest p-value. In this particular example, L̃ is 50.

Figure 4.4: Boxplots showing the lab-synthetic comparisons (white) and synthetic-

synthetic comparisons (red) for each value of L shown on the x-axis.
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(a) Kolmogorov-Smirnoff statistics by value of L. (b) Kolmogorov-Smirnoff p-values by value of L.

Figure 4.5: Results of the Kolmogorov-Smirnoff test showing the test statistics (a) and
the p-values (b) for each value of L that was considered.

4.3.2 Creating Synthetic Tool Marks

In order to explain how we simulate data, we must first describe part of the algorithm

that is used to compute the comparison values (y’s). Following by analogy the process

used by expert forensic examiners, Chumbley’s algorithm computes a comparison value

for two tool marks by determining how similar the marks are numerically. The algorithm

first finds the small subsets of each tool marks that match most closely; these are called

the best match windows. Once the best matching windows have been found, the algo-

rithm calculates the comparison value by evaluating similarity of the areas surrounding

the best match windows to determine if those areas match well too. Since tool marks

are very large datasets, even non-matching marks can have best match windows that

match well, however they are less likely to match along the surrounding areas.

Section 4.3.1 describes our method of modeling the data from a single lab tool mark

resulting in a smooth, s and parameter estimates for the residual data, µ̃, σ̃2, and L̃.
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Synthetic tool marks are created by adding a generated residual series (representing

individual tool characteristics) to the smooth (representing class characteristics). How-

ever, to intelligently add noise, and assure that the synthetic tool marks match the lab

tool mark in characteristics that are most important to the matching algorithm used, we

force the synthetic marks to be identical to the lab marks within the best match window.

Thus, the best match window in the lab mark is first identified when it is compared to

the field mark, it is then copied into the analogous segment of each synthetic tool mark,

and the remainder of the synthetic residuals are generated conditional on these fixed

values.

Because we are assuming a Gaussian model for the residuals, conditional simulation

of synthetic residuals is straightforward. We reorder and partition the vector of residuals

from the smooth of the lab tool mark, r, as r =
(
r1
r2

)
, where r1 is the section of residuals

of length n1 outside the best match window, and r2 is the section of residuals of length

n2 inside the best match window. Then using the estimate of the covariance function

defined in (4.4), we construct variance and covariance matrices:

V ar(r1) = Σ11 (4.7)

V ar(r2) = Σ22 (4.8)

Cov(r1, r2) = Σ12 (4.9)

and simulate individual characteristics conditioned on the best matching window using

the conditional multivariate normal distribution with

E(r1|r2) = µ̃1n2 + Σ12Σ
−1
22 (r2 − µ̃1n1) (4.10)

V ar(r1|r2) = Σ11 − Σ12Σ
−1
22 Σ21. (4.11)

The completed synthetic tool mark is then calculated as s+r, the vectors of smooth and

residual components respectively. An example showing the lab tool mark (black) with 10

synthetic tool marks (red) modeled in this way is shown in Figure ??. The vertical black
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lines identify the best match window, in which all the tool marks are exactly identical.

Outside the best match window, the marks appear to follow the same trends or have

the same class characteristics, but differ in individual characteristics or the noise of the

tool mark.

Figure 4.6: A lab tool mark (black) alongside 10 synthetic tool marks (grey) that were
modeled off the lab tool mark.

4.3.3 Field Versus Lab Analysis

The last step of the analysis is to incorporate the field tool mark into the testing

procedure and compare it to the lab mark as well as the synthetic marks. In the opti-

mization step for L, 50 synthetic tool marks were created and compared to the lab mark

and each other, and the two samples were compared using the Kolmogorov-Smirnoff

statistic. The parameter L̃ was selected by minimizing the K-S statistic; and µ̃ and σ̃2

are MoM estimates conditioned on L̃. We already verified that the synthetic tool marks

are indistinguishable from the lab tool mark using a KS statistic; now we use the same

50 synthetic tool marks and compare them to the field tool mark.

If the field tool mark was made by a tool other than that used in the lab, there is

no reason to expect a better match between the lab and field marks than between the
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synthetic and field marks. However, if the same tool made both lab and field marks,

there is reason to believe this comparison will more strongly indicate a match than

comparisons of the field mark to the synthetic marks (each of which contains “artificial”

individual characteristics). That is, if the physical marks do indeed match, the class and

individual characteristics should all match so that the field-lab comparison is larger than

any of the comparisons of the field tool mark to the synthetic tool marks. In order to

perform a test of the null hypothesis that the field and lab marks were not made by the

same tool, we will use an outlier test on all the comparisons involving the field tool mark

and determine where in the sample, the field-lab comparison lies. Since, under the null

hypothesis, all comparisons involving the field sample come from the same distribution,

we can compute a p-value as the number of field-synthetic comparisons that are greater

than or equal to the field-lab comparison, and divide this value by n = 51, the total

number of comparisons involving the field mark.

4.4 Results

To demonstrate the method described in Section 4.3, we now present example anal-

yses based on known matching and known non-matching tool marks. For each available

set of data, there are four matching tool marks, all made in the lab under the same

conditions, which we will call x1, x2, x3 and x4. For the known matching data examples,

x1 was chosen to be the lab tool mark and 50 synthetic tool marks were modeled from

it and analyses were completed using each for x2, x3 and x4 as the field mark. For the

known non-match examples, three tool marks made under the same conditions but by

a different tool were chosen as the field tool marks.

Within each example, we observe the samples of lab-synthetic comparisons, synethetic-

synthetic comparisons, and three samples of field-synthetic comparisons (one for each of

the three field marks) along with the three field-lab comparison values. For the purposes
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of these examples, we will denote the samples of comparisons as L-S for lab-synthetic

and S-S for synthetic-synthetic. The three samples involving the field tool mark are

divided into the sample of field-synthetic comparisons, denoted F-S, and the individual

comparison value for the field-lab comparison, denoted F-L. The three samples are dis-

tinguished by color, red for x2, blue for x3 and green for x4. For each example there is a

figure showing boxplots of the lab-lab comparison, lab-synthetic comparisons, and each

set of field-synthetic comparisons and the field-lab comparison denoted by the notations

given. There is also a table giving the p-values from the Kolmogorov-Smirnoff test com-

paring the lab-synthetic comparisons to the synthetic-synthetic comparisons, and the

p-values from each of the three outlier tests performed. Finally, to show visually how

well the tool marks match one another, there is a figure showing the four digitized tool

marks used.

4.4.1 Known Matches

Example 1 contains four matching tool marks, shown in Figure 4.8. The lab mark,

x1, shown in black, was used to create 50 synthetic tool marks. We can see from the

boxes in Figure ?? that the synthetic-synthetic comparisons (grey) visually match the

synthetic-lab comparisons (white), which is confirmed by the large p-value of 0.8609

from the K-S test shown in Table 4.1. After confirming the lab-synthetic comparisons

are indistinguishable from the synthetic-synthetic comparisons, we then performed an

outlier test using each of the three other matching tool marks, x2, x3 and x4 (shown in

red, green and blue respectively) as the field mark, comparing the field-lab comparison

to the field-synthetic comparisons. The single colored dashes in Figure ?? show the

field-lab comparisons and the results of the outlier tests are shown in Table 4.1. All

three outlier tests have a p-value of 0.020, so we reject the null hypothesis that the data

value in question (the field-lab comparison) is from the same distribution as the rest of

the data (field-synthetic comparisons) and we would conclude that the lab tool mark
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and all three field tool marks were made by the same tool.

Figure 4.7: Example 1 yijs showing lab-synthetic comparisons (white), synthetic-
synthetic comparisons (grey) and three sets of field-synthetic comparisons using x2 (red),
x3 (blue), and x4 (green). The single lines are the field-lab comparisons for the three
field marks.

Example 1 Test Results

Test p-value

K-S test: Lab Mark, x1 0.543

Outlier test: Field 1, x2 0.020

Outlier test: Field 2, x3 0.020

Outlier test: Field 3, x4 0.020

Table 4.1: Example 1 p-values. Figure 4.8: Example 1 tool marks.

Example 2 also contains four tool marks that were made by the same tool under the

same conditions, however, we can see from Figure 4.10 that one of the marks, x2 shown in

red, does not resemble the other three tool marks. As before, x1 shown in black was used

to create 50 synthetic tool marks which were compared to one another and are shown as

boxplots in Figure ?? in white (lab-synthetic comparisons) and grey (synthetic-synthetic
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comparisons). Table 4.2 confirms that these comparisons are indistinguishable since the

p-value is 0.1773. Each of the three remaining tool marks was compared to the lab and

synthetic tool marks. We can see from the results of the outlier test in Table 4.2 that

x3 (blue) and x4 (green) both have small p-values of 0.020 so we would conclude these

two marks were made by the same tool as the lab tool mark. However, x2 shown in

red, fails to reject the null hypothesis in the outlier test since the p-value is 0.392 and

we conclude that it was not made by the same tool as the lab tool mark. Although we

know this to not be true, it is not a surprising result since we can visually confirm in

Figure 4.10 that x2 does not resemble any of the other three tool marks in this set.

Figure 4.9: Example 2 yijs showing lab-synthetic comparisons (white), synthetic-
synthetic comparisons (grey) and three sets of field-synthetic comparisons using x2 (red),
x3 (blue), and x4 (green). The single lines are the field-lab comparisons for the three
field marks.
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Example 2 Test Results

Test p-value

K-S test: Lab Mark, x1 0.937

Outlier test: Field 1, x2 0.275

Outlier test: Field 2, x3 0.020

Outlier test: Field 3, x4 0.020

Table 4.2: Example 2 p-values. Figure 4.10: Example 2 tool marks.

4.4.2 Known Non-Matches

In the first non-match example, Example 3, we are using a lab tool mark, x1, that is

known to be made by a different tool than the three field marks, x2, x3 and x4. Figure

4.12 shows the four tool marks, and we can see that the black tool mark shows none of

the individual characteristics of the other three tool marks. Table 4.3 shows that the

synthetic tool marks are indistinguishable from the lab tool mark, since the K-S test

has a p-value of 0.6134, and we can visually see this from the lab-synthetic comparison

(white) and synthetic-synthetic comparison (grey) boxes in Figure ??. However, none

of the three field marks reject the null hypothesis in the outlier test, as demonstrated

in the boxplots. Not only are none of the field-lab comparisons outliers, but the boxes

also indicate the field and synthetic tool marks do not match since the lab-synthetic

comparisons are all much larger than the field-synthetic comparisons. Since the field

and lab tool marks do not match, it is not surprising that the boxes showing the field-

synthetic comparisons resemble those of non-matching comparisons since the synthetic

tool marks are generated from a model of the non-matching lab tool mark.
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Figure 4.11: Example 3 yijs showing lab-synthetic comparisons (white), synthetic-
synthetic comparisons (grey) and three sets of field-synthetic comparisons using x2 (red),
x3 (blue), and x4 (green). The single lines are the field-lab comparisons for the three
field marks.

Example 3 Test Results

Test p-value

K-S test: Lab Mark, x1 0.717

Outlier test: Field 1, x2 0.686

Outlier test: Field 2, x3 0.726

Outlier test: Field 3, x4 0.922

Table 4.3: Example 3 p-values.
Figure 4.12: Example 3 tool marks

Example 4 is another set of four tool marks such that x1 (black) is a tool mark made

by a different tool than x2 (red), x3 (green), and x4 (blue); marks are shown in Figure

4.14. The first two boxplots in Figure ?? show the lab-synthetic (white) and synthetic-

synthetic (grey) comparisons from making 50 tool marks genereated from a model of the

lab tool mark. Table 4.4 shows that once again, the lab tool marks are indistinguishable

from the synthetic tool marks since the K-S test p-value is 0.9762. When the three
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field tool marks are compared to the synthetic tool marks, we once again note that

the red, green and blue field-synthetic comparisons boxplots are similar to those from

non-matching comparisons. Similarly, the outlier test returns large p-values for all three

field tool marks which indicates the lab and field tool marks were not made by the same

tools.

Figure 4.13: Example 4 yijs showing lab-synthetic comparisons (white), synthetic-
synthetic comparisons (grey) and three sets of field-synthetic comparisons using x2 (red),
x3 (blue), and x4 (green). The single lines are the field-lab comparisons for the three
field marks.

Example 4 Test Results

Test p-value

K-S test: Lab Mark, x1 0.552

Outlier test: Field 1, x2 0.196

Outlier test: Field 2, x3 0.216

Outlier test: Field 3, x4 0.294

Table 4.4: Example 4 p-values. Figure 4.14: Example 4 tool marks
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4.5 Conclusions and Future Work

Although the Likelihood Ratio Test procedure proposed in Hoeksema and Morris

(2013) consistently fails to reject the null hypothesis of equal means when known match-

ing tool marks are compared, the error of falsely rejecting a claim that the field and lab

tool marks were not made by the same tool (the alternative hypothesis in this case)

cannot be controlled. Further methods are needed that can prove tool marks match

rather than proving they are not non-matching. In the methods described in Section

4.3, we propose modeling synthetic tool marks that match the lab tool mark in class

and subclass characteristics and differ only in individual characteristics, similar to ran-

dom noise. When we compare the lab-synthetic comparisons to the synthetic-synthetic

comparisons, we confirm using a Kolmogorov-Smirnoff test that the lab tool mark is

indistinguishable from the synthetic tool marks. When the field tool mark is compared

to the lab and synthetic tool marks, if the lab and field tool marks were made by the

same tool, the field-lab comparison is distinguishable from the field-synthetic compar-

isons as an outlier. When the tool marks were not made by the same tools, the field-lab

comparison is not distinguishable.

The method as it has been presented, succeeds at identifying known matches and

known non-matches in example calculations. Our method might be improved through

better parameter estimation. For the purposes of this paper, the smoothing parameter

was chosen, then the lag parameter, L, was estimated using a coarse grid search from

0 to 100 in increments of 10. For future work, both parameters could be estimated

together. In addition, we used method of moments estimators for µ and σ2 primarily

due to the numerical challenge of maximum likelihood estimation. Future work could

explore whether there are better ways to estimate these parameters.

We fully admit that, before practical application of this approach could be considered,

substantial further justification would be needed. In particular, while it is generally
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understood that the “length characteristics” of class and individual characteristics are

relatively longer and shorter, respectively as was suggested by Bachrach et al. (2010),

it is hard to defend the premise that selecting a choice of smoother span by simple

graphical examination (as we have done here) reasonably corresponds to separation of

class and individual marks. And even if so, the claim that there is enough information

in one set of residuals to build a statistical model representing the population of class

characteristics is clearly also debatable. While the follow-up work that would be required

to fully develop a methodology of the type described here for practical application is

substantial (and certainly beyond what our limited resources would support), we believe

that our approach has substantial merit, and that such follow-up research would be

valuable.
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CHAPTER 5. SUMMARY AND CONCLUSIONS

Chapters 2, 3 and 4 present the proposals for improving the process of tool mark

comparison statistically. We began in Chapter 2 by proposing a new approach involving

the use of multiple lab tool marks and analyzing samples of comparisons all at once,

rather than analyzing them individually. Doing so, we can apply a likelihood ratio test

(LRT) to the two samples to determine the match status of the tool marks. With this

method in place, we then enhanced the model by adding a component to account for

the angle at which tool marks are made. We determined the angle at which a tool is

held affects the appearance of the resulting tool mark, so the basic model is amended

by allowing for the different angles within a comparison while also predicting the angle

at which the field tool mark is made. While our resources only allowed for the use of

marks made at five different angles, we found that the prediction of the field angle is

accurate, but for further work, tool marks should be made at five degree increments.

In Chapter 3, we address the effect that the quality of lab tool marks has on the

likelihood ratio test approach that was proposed in Chapter 2. Mark-to-mark variation

has a significant effect because if the lab tool marks do not match each other well, the

LRT could falsely conclude a non-match. We propose adding a quality control step to the

process during which we compare the lab tool marks to one another, before comparing

them to the field tool mark, and determine if one of the lab tool marks is significantly

different from the others. If a lab tool mark is determined to be significantly different

from the others, it can be removed before comparison to the field tool marks to remove

the effects of poor tool mark quality. When the method was applied to the the tool
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marks available to us, we found that the majority of lab tool marks identified a poorly

matching tool mark when appropriate, and returned no significant differences when

appropriate. However, in a few situations, the small sample size became a factor when

the four tool marks compared either matched too well and had a very small estimated

variance, or did not match well but had a large estimated variance. As a result, the

method unexpectedly identified an outlying tool mark in the first case, and did not

identify an outlying mark in the second case. With a larger number of lab tool marks

to compare, the variance estimates will have less of an affect and the method could

be applied iteratively, removing one tool mark at a time until the remaining marks all

match each other well.

In Chapter 4, we address a concern from Chapter 2, in which the hypotheses from

the test used in the likelihood ratio test need to be reversed. When you assume that

the null hypothesis is true in Chapter 2, that is that the means of the sample of lab-lab

comparisons and field-lab comparisons are the same, we are assuming the tool marks

match before analysis is done. To reverse the hypotheses, we propose modeling synthetic

tool marks from the lab tool marks. This is to simulate the affect of having many tools

of the same make and model (same class characteristics) but with different wear and

other individual characteristics. Once we verify the lab tool mark and synthetic tool

marks match well using a Kolmogorov-Smirnoff statistic, we then determine a match if

the comparison between the field tool mark and the lab tool mark is an outlier compared

to the sample of comparisons of the field tool mark to each of the synthetic tool marks.

Using the available tool marks, we show that when the lab and field tool marks match

each other well, the field-lab comparison is an outlier. However, there are also examples

of known matches that do not match well visually, and thus the field-lab comparison is

not an outlier.

Each of these chapters provides examples that show, in most cases, the proposed

methodologies are able to enhance the basic model and method from Chapter 2. How-
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ever, the lack of available resources is apparent in each. For further research, more tool

marks from more angles, specifically at 5 degree increments, is necessary. In the angle

analysis, this would allow us to estimate all of the parameters in the model, in particular

θ. We could also estimate the field angle more precisely and further check the accuracy

of the model. The quality control analysis proposed in Chapter 3 could be improved

with more data since it would remove the affect of the variance of the tool marks, and

allow the model to be applied iteratively. Finally, in the proposed model using synthetic

tool marks, we would like to further explore the methods of parameter estimation.
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