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EOS Interpolation and Thermodynamic Consistency
J. Tinka Gammel, T-1, LANL
10/7/11, modified 11/13/15 to add Air example (Fig. 3)

As discussed in LA-UR-08-05451 [1], the current interpolator used by Grizzly, OpenSesame, EOSPAC, and similar
routines is the rational function interpolator from Kerley [2]. While the rational function interpolator is well-suited for
interpolation on sparse grids with logarithmic spacing and it preserves monotonicity in 1-d, it has some known problems:
1) Thermodynamic quantities are interpolated separately, rather than in a thermodynamically consistent manner, which
can lead to thermodynamic inconsistencies.
2) While monotonicity is preserved for the 1-d form, for either of the 2-d interpolation formulas given in [2], regions
with monotonic grid values can have non-monotonic interpolants within the 2-d grid.
3) The 2-d interpolation is C° (or C' for the form given in the appendix), and so thermodynamic quantities calculated
from the interpolated values can have unphysical discontinuities.

Form of the 1-d Rational Function Interpolator
Re-analyzing Kerley's 1-d form, one sees it can be re-written as:

flq] = +0*(1-q) +f1*q +(dfO-f1+f0)*g[q, dgl]
where for Kerley's form g is given by

gklq,dgl]=dgl*(1-q)*q/(dg1*(1-q) -q) for dgl<0

gk[q.dgl]=dgl*q*(1-q)*(1-2*q)/(dg1*(1-q)+q) for dg1>0
and where

q=(x-x0)/(x1-x0)

del=(x1-x0)

df0=df/dq|x0=del*df/dx|x0

df1=df/dqx1=del*df/dx|x1

dg1=(df1-f1+{0)/(df0-f1+f0)
and where f0,f1 are the tabulated values of the function at pts x0,x1, and df/dx|x0,1 are it's estimated derivatives at these
points. Note g satisfies the symmetry condition

glq.dgl] = -dgl*g[1-q,1/dgl]
so the interpolant is direction-independent, and it's behavior is spanned by analyzing -1<dg1<I.

Thermodynamic consistency

From the re-analysis above of Kerley's form one can easily see that for, eg, interpolation of a (Helmholtz free E) as a
function of density, instead of using estimated derivates one could use the tabulated values of p (pressure) and
da/drho=p/rho”2. The resultant behavior of a and p was shown in Fig 5.a of [1] for Al 3720, reproduced here as Fig. 1.

From Fig 1, one sees clearly that there are problems with the tabulated EOS. There are likely several sources of the
problem [3]:

1) numerical issues with TFD,

2) replacing some gridlines with their interpolants, and

3) thermodynamically inconsistent splicing of model regions.
These issues are not specific to this EOS, and these problems are more significant on denser EOS grids. Analyzing the
values, it turns out that the minimum and maximum monotonic p interpolants (p=pmin and p=pmax) simply do allow for
any monotonic interpolant which satisfies

al-a0 = int{rho0,rhol} drho p(rho)/rho"2
This indicates there is a need for a quick graphic test to highlight areas where EOS's have problems with thermodynamic
consistency for their tabulated values (independent of the interpolation scheme).

Fig. 6 of [1], reproduced here as Fig. 2, showed plots for the Al 3720 EOS highlighting values for the following two tests:
1) a,p consistency:

{ al-a0 -(rhol-rho0)*(p1/rho1"2+p0/rho072)/2 } / {(thol-rho0)*(p1/tho172-p0/rho0"2)/2 }
2) a,s consistency:

{ al-a0 -(t1-t0)*(-s1-s2)/2 } / {(t1-t0)*(-s1+s0)/2 }



Values of these quantities with magnitudes greater than 1 emphasize regions of the grid where a minimum or maximum in
p or s, respectively, would be required to fit both tabulated values, and so no thermodynamically consistent monotonic fit
is possible for that line segment. Although a few of the highlighted regions are where p or s are expected
thermodynamically to have an extremum, there is significant "stipple" indicating the tabulated points are
thermodynamically inconsistent - again, independent of the interpolation scheme.
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Fig 2. BeO EOS (sesame 7613 with TFD contributions having KGH's corrections) colored to highlight regions (non-
green) where the tabulated values of (i) p,a (left) and (ii) p,s (right) require p or s, respectively, to have an extremum.
x,y,z values for these plots are r,t,s While not easily visible at this scale, blowing up the p,a relation plot shows a line of
inconsistency near rho=rhoref, an artifact of the very dense grid used in that region.



Interpolator-independent thermodynamic consistency tests

Generalizing the tests discussed in [1] and above, once can define Test compares area needed
monotonicity consistency test for relations of form V = dW/dX|Y \Y for integral minus linear fit
where V,W combinations of tabulated t,rho,p,e,a and X,Y = t,rho or rho,t area (dark grey) to shaded
Specifically, define triangle (light+dark grey).
test mono = ( W1-WO0 -(X1-X0)*(V1+V0)/2) / ((X1-X0)*(V1-V0)/2) V(X) must lie in triangle if
where monotonic (convex case
W1 = W(t=tl,tho=rhol), etc and YO=Y1 X shown).
then if V(X) is monotonic, |test mono| <1 if V and W are consistent. 0 1 Non-monotonic fits can
also satisfy |test monol|<I,
Once can also define smoothness consistency test for relations of same form. so this only tests if a
Specifically, define montonic fit is possible for
dWdX_min = min [ (W1-W0)/(X1-X0), (W2-W1)/(X2-X1) ] the given tabulated values.

dWdX max = max ["]

test smooth =( V1- (dWdX min +dWdX max) /2 )/ ( (dWdX max -dWdX min )/2)
then |test _smooth <1 if V at point 1 lies between discrete slopes of W on either side of
that point and V and W are consistent.

W satisfying smoothness

Specific cases of these tests of interest for SESAME EOS tables and
the variables names as currently coded to plot as 3-d gmv files
are given below and shown in Fig.s 2 and 3.

assumption that

discrete slopes

a,p:
Using the relation da/drho|t = p/rho”2 yields

smoothness, monotonicity tests with: W=a, V=p/rho"2 X=rho Y=t.
This is plotted as “thrm_dr” for the BeO EOS 7613 in Figure (2.1), with
thrm_dr={ al-a0 -(rho1-rho0)*(p1/rho1"2+p0/rho072)/2 } / {(tho1-rho0)*(p1/rho1*2-p0/rho0"2)/2 }

a,s (a,e):

Using the relation da/dt = -s = (a-e)/t yields

smoothness, monotonicity tests with: W=a, V=(a-e)/t, X=t Y=rho

This is plotted as “thrm_dt” for the BeO EOS 7613 in Figure (2.ii), with
thrm_dt={ al-a0 -(t1-t0)*(-s1-s2)/2 } / {(t1-t0)*(-s1+s0)/2 }

Using the relation u = -(T"2) d(a/T)/dT|v yields
smoothness, monotonicity tests with: W=a/T, V=-u/t"2 X=t Y=rho

p.e:
using the relation

P = T*dP/dT|rho +rho”*2*du/drho|T

and defining
dpdt 01 = (p1-p0)/(t1-t0) dpdt 12 = (p2-pl)/(t2-t1)
dudr_01 = (ul-u0)/(t1-t0) dudr_12 = (u2-ul)/(t2-t1)
p_0101 =tl*dpdt 01 +rho”2*dudr 01 p_0112 =tI*dpdt 01 +rho"2*dudr 12
p_1201 =tl*dpdt 12 +rho”2*dudr 01 p_1212 =tl*dpdt 12 +rho”2*dudr 12
p_min=min(p_0101,p 0112,p1201,p1212) p_max=max(p_0101,p 0112,p1201,p1212)
p_av=(p_max+p_min)/2 d p=(p_av-p_min)

thrm_du = (p-p_min)/d_p
Then |thrm_du| <1 if dP/dT|rho and du/drho|T at a given point lie between the discrete slopes on either side of
P(t,rho=const) and u(t=const, rho), respectively.
This is plotted as “thrm_du” for the Air EOS 5030 in Figure (3), with thrm_du as defined above.

Additional cases can relatively easily be added to the variables plotted should there be sufficient interest.

dW/dX lies between

doesn't rule out non-
monotonic regions.



5030 EOS, xyz=asinh(tre)
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Fig. 3: u(t,rho) for Air EOS (sesame 5030) colored to highlight regions (non-green) where the tabulated values of p,u
require at least one of the derivatives dP/dT|rho and du/drho|T to have a local extremum. The plot xyz corresponding to
x=x'/max|x'| with x'=asinh(t/RT), y=y'/max|y'| with y'=asinh(r/(1.d-4*rhoref)), and z=z'/max|z'| with z'=asinh(e/.5). Note
however this analysis assumes the contribution to the total EOS of the chemical potential can be ignored as at fixed
particle number. However, since 5030 is a multiphase EOS, with the percentage of each species varying [4], this
“effective single phase” consistency test should be re-examined in the grand canonical ensemble.

References

[1]J.T. Gammel, LA-UR-08-05451

[2] G.I. Kerley, LA-6903-MS

[3] S. Crockett, private communication.
[4] H.C. Grabosky, UCID-16901



