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EOS Interpola tion and Thermodynamic Consistency 
J. Tinka Gammel, T-1, LANL 
10/7/11, modified 11/13/15 to add Air example (Fig. 3) 
 
As discussed in LA-UR-08-05451 [1], the current interpolator used by Grizzly, OpenSesame, EOSPAC, and similar 
routines is the rational function interpolator from Kerley [2]. While the rational function interpolator is well-suited for 
interpolation on sparse grids with logarithmic spacing and it preserves monotonicity in 1-d, it has some known problems: 

1) Thermodynamic quantities are interpolated separately, rather than in a thermodynamically consistent manner, which 
can lead to thermodynamic inconsistencies. 

2) While monotonicity is preserved for the 1-d form, for either of the 2-d interpolation formulas given in [2], regions 
with monotonic grid values can have non-monotonic interpolants within the 2-d grid. 

3) The 2-d interpolation is C0 (or C1 for the form given in the appendix), and so thermodynamic quantities calculated 
from the interpolated values can have unphysical discontinuities. 

 
Form of the  1-d Rational  Funct ion Interpola tor 
 
Re-analyzing Kerley's 1-d form, one sees it can be re-written as: 

f[q] = +f0*(1-q) +f1*q +(df0-f1+f0)*g[q, dg1] 
where for Kerley's form g is given by 

gK[q,dg1]=dg1*(1-q)*q/(dg1*(1-q) -q)  for dg1<0 
gK[q,dg1]=dg1*q*(1-q)*(1-2*q)/(dg1*(1-q)+q) for dg1>0 

and where 
q=(x-x0)/(x1-x0) 
del=(x1-x0) 
df0=df/dq|x0=del*df/dx|x0 
df1=df/dq|x1=del*df/dx|x1 
dg1=(df1-f1+f0)/(df0-f1+f0) 

and where f0,f1 are the tabulated values of the function at pts x0,x1, and df/dx|x0,1 are it's estimated derivatives at these 
points. Note g satisfies the symmetry condition 

g[q,dg1] = -dg1*g[1-q,1/dg1] 
so the interpolant is direction-independent, and it's behavior is spanned by analyzing -1<dg1<1. 
 
Thermodynamic consis tency 
 
From the re-analysis above of Kerley's form one can easily see that for, eg, interpolation of a (Helmholtz free E) as a 
function of density, instead of  using estimated derivates one could use the tabulated values of p (pressure) and 
da/drho=p/rho^2. The resultant behavior of a and p was shown in Fig 5.a of [1] for Al 3720, reproduced here as  Fig. 1. 
 
From Fig 1, one sees clearly that there are problems with the tabulated EOS. There are likely several sources of the 
problem [3]: 

1) numerical issues with TFD, 
2) replacing some gridlines with their interpolants, and 
3) thermodynamically inconsistent splicing of model regions. 

These issues are not specific to this EOS, and these problems are more significant on denser EOS grids. Analyzing the 
values, it turns out that the minimum and maximum monotonic p interpolants (p=pmin and p=pmax) simply do allow for 
any monotonic interpolant which satisfies 
    a1-a0 = int{rho0,rho1} drho p(rho)/rho^2 
This indicates there is a need for a quick graphic test to highlight areas where EOS's have problems with thermodynamic 
consistency for their tabulated values (independent of the interpolation scheme). 
 
Fig. 6 of [1], reproduced here as Fig. 2, showed plots for the Al 3720 EOS highlighting values for the following two tests: 
1) a,p consistency:  
     { a1-a0 -(rho1-rho0)*(p1/rho1^2+p0/rho0^2)/2 } / {(rho1-rho0)*(p1/rho1^2-p0/rho0^2)/2 } 
2) a,s consistency:  
     { a1-a0 -(t1-t0)*(-s1-s2)/2 } / {(t1-t0)*(-s1+s0)/2 } 



Values of these quantities with magnitudes greater than 1 emphasize regions of the grid where a minimum or maximum in 
p or s, respectively, would be required to fit both tabulated values, and so no thermodynamically consistent monotonic fit 
is possible for that line segment. Although a few of the highlighted regions are where p or s are expected 
thermodynamically to have an extremum,  there is significant "stipple" indicating the tabulated points are 
thermodynamically inconsistent - again, independent of the interpolation scheme. 
 
 

 

 
Fig 1. X marks grid points. Comparison of  Kerley form 
fit to a (red) or p (blue) vs Kerley form fit to both 
(green) for the T=5222K isotherm of Aluminum 
(sesame 3720). The green curves demonstrates that the 
tabulated values do not allow for thermodynamically 
consistent interpolation with this form. Further analysis 
indicates the inconsistency is independent of the form of 
the interpolator. 
 

 
 
 

  
Fig 2. BeO EOS (sesame 7613 with TFD contributions having KGH's corrections) colored to highlight regions (non-
green) where the tabulated values of (i) p,a (left) and (ii) p,s (right) require p or s, respectively, to have an extremum.  
x,y,z values for these plots are r,t,s While not easily visible at this scale, blowing up the p,a relation plot shows a line of 
inconsistency near rho=rhoref, an artifact of the very dense grid used in that region.  

(i) (ii) 



Interpolator- independent  thermodynamic consis tency tes ts 
 
Generalizing the tests discussed in [1] and above, once can define 
monotonicity consistency test for relations of form V = dW/dX|Y 
where V,W combinations of tabulated t,rho,p,e,a and X,Y = t,rho or rho,t 
Specifically, define 
  test_mono =  ( W1-W0 -(X1-X0)*(V1+V0)/2 )  / ( (X1-X0)*(V1-V0)/2 ) 
where 
  W1 = W(t=t1,rho=rho1), etc and Y0=Y1 
then if  V(X) is monotonic, |test_mono| < 1 if  V and W are consistent. 
 
Once can also define smoothness consistency test for relations of same form. 
Specifically, define 
  dWdX_min = min [  (W1-W0)/(X1-X0), (W2-W1)/(X2-X1) ] 
  dWdX_max = max ["] 
  test_smooth = ( V1- (dWdX_min +dWdX_max) /2 ) / ( (dWdX_max -dWdX_min )/2 ) 
then |test_smooth |<1 if  V at point 1 lies between discrete slopes of W on either side of 
that point and V and W are consistent. 
 
Specific cases of these tests of interest for SESAME EOS tables and 
the variables names as currently coded to plot as 3-d gmv files  
are given below and shown in Fig.s 2 and 3. 
 
a,p: 
Using the relation da/drho|t = p/rho^2 yields 
smoothness, monotonicity tests with: W=a, V=p/rho^2 X=rho Y=t. 
This is plotted as “thrm_dr” for the BeO EOS 7613 in Figure (2.i), with 
thrm_dr={ a1-a0 -(rho1-rho0)*(p1/rho1^2+p0/rho0^2)/2 } / {(rho1-rho0)*(p1/rho1^2-p0/rho0^2)/2 } 
 
a,s (a,e) : 
Using the relation  da/dt = -s = (a-e)/t yields 
smoothness, monotonicity tests with:  W=a, V=(a-e)/t, X=t Y=rho 
This is plotted as “thrm_dt” for the BeO EOS 7613 in Figure (2.ii), with 
thrm_dt={ a1-a0 -(t1-t0)*(-s1-s2)/2 } / {(t1-t0)*(-s1+s0)/2 } 
 
Using the relation  u = -(T^2) d(a/T)/dT|v yields 
smoothness, monotonicity tests with:  W=a/T, V=-u/t^2 X=t Y=rho 
 
p,e : 
using the relation 
  P = T*dP/dT|rho +rho^2*du/drho|T 
and defining 
  dpdt_01 = (p1-p0)/(t1-t0)   dpdt_12 = (p2-p1)/(t2-t1) 
  dudr_01 = (u1-u0)/(t1-t0)   dudr_12 = (u2-u1)/(t2-t1) 
  p_0101 = t1*dpdt_01 +rho^2*dudr_01  p_0112 = t1*dpdt_01 +rho^2*dudr_12 
  p_1201 = t1*dpdt_12 +rho^2*dudr_01  p_1212 = t1*dpdt_12 +rho^2*dudr_12 
  p_min=min(p_0101,p_0112,p1201,p1212) p_max=max(p_0101,p_0112,p1201,p1212) 
  p_av=(p_max+p_min)/2   d_p=(p_av-p_min) 
  thrm_du = (p-p_min)/d_p   
Then |thrm_du| < 1 if  dP/dT|rho and du/drho|T at a given point lie between the discrete slopes on either side of 
P(t,rho=const) and u(t=const, rho), respectively. 
This is plotted as “thrm_du” for the Air EOS 5030 in Figure (3), with thrm_du as defined above.  
 
Additional cases can relatively easily be added to the variables plotted should there be sufficient interest. 
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monotonic regions. 
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for integral minus linear fit 
area (dark grey) to shaded 
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montonic fit is possible for 
the given tabulated values. 
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Fig. 3: u(t,rho) for Air EOS (sesame 5030) colored to highlight regions (non-green) where the tabulated values of p,u 
require at least one of the derivatives dP/dT|rho and du/drho|T to have a local extremum. The plot xyz corresponding to 
x=x'/max|x'| with x'=asinh(t/RT), y=y'/max|y'| with y'=asinh(r/(1.d-4*rhoref)), and z=z'/max|z'| with z'=asinh(e/.5). Note 
however this analysis assumes the contribution to the total EOS of the chemical potential can be ignored as at fixed 
particle number. However, since 5030 is a multiphase EOS, with the percentage of each species varying [4], this 
“effective single phase” consistency test should be re-examined in the grand canonical ensemble. 
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