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Introduction

Compound Nuclear Reaction

o Bohr Hypothesis
o Incident particle shares its energy with the target
nucleons
o Compound nucleus (CN) attains statistical equilibrium
o Decay modes of CN are independent of formation

o The hypothesis holds very well at high energies

o Energy-average cross sections can be factorized by
penetration factors for each channel
o Hauser-Feshbach theory

o but not for isolated or weakly overlapping
compound-nucleus resonances

o Hauser-Feshbach theory corrected by
the width fluctuation correction, WFC

o decay width distribution over the eigenstates (resonances)
o incoming wave interferes in the elastic channel

TK, P. Talou, H.A. Weidenmiiller, PRC 92, 044617 (2015)
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Introduction

Average Compound Nucleus Cross Section

Reaction cross section from channel a to channel b is
written as

T 2 Compound States
Oab = ﬁgawab =S wl (1) <
a

and the energy average cross section

aa

V4
<O—ab> pgaq(sab - Sab|2>

T,=14<S_>I

[1-<S > |

\
P —

Ve
= 8 {l6a = Sap) + 4S5, P
a
= oy + (o) ()
The aim of various CN reaction theories is to express (o) in terms of (S ,,), or
the transmission coefficients

<Sau> = Sua(E + lI)’ Ta =1- |<Sau>|2 ) 0< Ta <1 (3)
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Introduction

Average Over Resonances
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Introduction

Width Fluctuation Correction

Hauser-Feshbach formula for the CN cross section

T T T;,
O—z{bF - zgaz (4)
c

with the width fluctuation correction (WFC) factor

CN _ b/ Ta Tb

Ow = k_ggaﬂwab (%)

Rigorously speaking, W, should be separated into two parts,
o the elastic enhancement factor W,
o and the width fluctuation correction factor
For the comparison of various approaches it is convenient to define WFC as

W = o /o HE (6)
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Theory

Statistical Theories for Compound Reactions

(]

Moldauer (1960 — 1980)

(]

o based on statistical S or K-matrix Moldauer
simulation Distribution of
. Decay width
KKM, Kawai-Kerman-McVoy (1973)

o projection operator method

o HRTW, Hofmann, Richert, Tepel,
Weidenmdiller (1975) HRTW, KKM

Unitarity of S
o based on statistical K-matrix
Mello and Seligman (1980)
o maximum entropy distribution of S

Verbaarschot, Weidenmdiller, /-
Zirnbauer (1985) —_—

o analytic expression based on GOE

/"IN resonances

©

A channels

©

All models, except for VWZ, have some approximations, phenomenological
parameters, or require numerical calculations.
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Theory

Statistical R and K Matrices for Computer Simulations

Compound nuclear reactions modelled by GOE-inspired ensembles

where

Elastic Scattering [b]

10

Y 7b
ab(E)—nZ —

Subz(

l—iK)
1+iK/w

o v, is sampled from Gaussian, zero-average and assumed width
o E, is sampled from Wigner distribution, Py (s) = n/2s exp(—ms?/4)

" ENDF/BMVILL ——

Elastic Scattering [b]

10

Statistical R-malrix

1.2
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Theory

HRTW and Moldauer

In HRTW all the channel cross sections are calculated from an effective
transmission coefficient V,

T V Vb
<O—ab> 2811 Zc

where the elastic enhancement W, was estimated by computer simulations.
When the y? distribution with the channel degree-of-freedom of v, is assumed to
yl%a, WFC can be evaluated numerically as

26, = 2T+ \ V12050
”)f a1+ =L (9)
Va 0 viT

v, were obtained by Monte Carlo simulations.

{1+ 06a(Wa — D}, (8)

Wap = (1 +

Vo= 178 + (T2 - 0.78) exp(-0.2287) T = Z T, (10)

c
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Projection Operator Technique

Feshbach’s projection operators Pand 9 =1-P

(E—-Hpp)PY = HppQ¥ (11)
(E-Hpp)Q¥ = HopP¥ (12)
P space scattering wave function g
(E - Hpp" = (13)
The unitary and symmetric S matrix is given by
1
Sap = S(O) 2 ONH H (+) 14
b i (% | PO Ho orltr, (14)
Effective Hamiltonian in Q space
=Hpp+Hop———H 1
Hog = Hoo + Hop1— 1, ee (15)
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Theory

Stochastic S -Matrix Based on GOE

Orthonormal basis of states labeled i in Q space

Wya = (ﬂ|HQP|ly[/a) = Way = W;ﬂ (16)

1 . .
'U|HQPE+——I‘IPPHPQ|V) = A#V - UTZ Wchcv = —lﬂz WchcV (1 7)

(ulHgolv) = H,, = HTY (18)

Scattering matrix that includes GOE

Sab = 6ab —2in Z Waﬂ(Dil)quVb (1 9)
v
Dy = Eu—-HSP 4in Z W We, (20)
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Theory

Compound Nucleus Cross Section

N resonances

§G0B) S — 2im Z Wy (D‘l)yv W (21)
uv

coupled by W
D,

Ebuw = HOOP +ix > WyeWe, (22)

<

A channels

- /12
- HGOPHSO = 5 Cuoducr + 0urbp) (23)

aa

o We assume that the energy average {|S ..|*>) can be replaced by the
ensemble average |S ,|? (to be considered later)

o T, given by eigenvalues of WW7

o Our model parameters are T,, N, and A
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GOE Simulation

GOE Generated Cross Sections

N =20and 100, 7, = 0.1, 0.5, and 0.99

F™@t=d 3 10 F 7 o T=o0d 1

Energy [in units of A] Energy [in units of A]
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GOE Simulation

Ensemble Average Cross Section

- Ta<05 T,-090 i Ensemble average over Monte Carlo generated
] cross sections at the center of GOE

o whenN=100,A=2,and T, ~ 1

o Hauser-Feshbach o = T2/(T, + T) = T,/2 = 0.5
o while ensemble average o, = T, — 3F = 0.66
I T 0 Wy =132

11820

Analytical expression by Verbaarschot, Weidenmdller, Zirnbauer (1985) reads

T.T
o = "f Lulf dﬁzfd/l,u(ﬂ Al,/lg)rl \/(H”)(H”) Jan(A, A1, ) (24)
1 2

which yields 1 = 0.66.

Cross Section Distribution
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GOE Simulation

Why Monte Carlo Approach?

o We know the exact solution for the average cross section. However,

o the VWZ triple-integral formula is an analytical form of the ensemble average in
the limit of N — oo
o ltis, unfortunately, inconvenient in realistic cross section calculation cases

o triple-integral is time-consuming when A is large
o the final state could be in a continuum; individual channel is not well-defined

o MC approach enables us to explore various realistic cases
o such as photon width distribution for neutron capture reaction

o Various models proposed such as Moldauer’s are practically useful for
nuclear reaction cross section calculations

o However, these models should be verified by rigorous GOE calculations

T. Kawano (LANL, T-2) Compound Nuclear Reaction SCGP 2015 14/29



GOE Simulation

GOE Monte Carlo Approach vs Models

Comparison of numerical average |

aa

S 12 with the statistical models

N=100,A =2

T, 0.1 0.5 0.99
Elastic Inelastic Elastic Inelastic Elastic Inelastic
MC simulation 0.0733 0.0261 0.351 0.149 0.660 0.330
VWZ 0.0734 0.0260  0.351 0.148 0.661 0.330
Hauser-Feshbach  0.0500 0.0500 0.250 0.250 0.495 0.495
KKM 0.0662 0.0332  0.333 0.167 0.660 0.330
HRTW 0.0737 0.0257 0.352 0.147  0.661 0.330
Moldauer 0.0734 0.0260 0.349 0.150 0.665 0.325
Ernebjerg-Herman  0.0742 0.0252  0.366 0.134 0.681 0.310
Kawano-Talou 0.0735 0.0259  0.351 0.148 0.661 0.330

Hauser-Feshbach (1952), Kawai-Kerman-MacVoy (1973), HRTW (1980),
Moldauer (1980), Ernebjerg-Herman (2004), and Kawano-Talou (2014)

VWZ agrees even for small N!

T. Kawano (LANL, T-2)
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Ensemble Averages

Ensemble Average and Energy Average

o Ensemble average in the limit N — o
o analytical form given by the VWZ triple integral formula
o it can be performed by MC simulation

o While, we wan to know the energy-average cross section
o Do these averages agree?

~+00 _ 1 l
f W(E(), E, I)S (E)dE = S(E()), W(E(), E, I) = ;m (25)

where width I specified in units of d/x, or weaker condition

ksy-5]" =0 (26)

which is equivalent to

-+00 +0o _—
f dEw(Ey, El,I)f dE>w(Ey, E>, DSY(E)S(E>) =0 (27)

00
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Ensemble Averages

Two-Point Function, S 1§

(El)S (Ez)

-T.A
1 2
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Ensemble Averages

Definition of L-Function

L(Ta, A1) = f f W(Ey, 0, DW(E>, 0, DR(E> — E1; Ty, A) dE dE) (28)
R (STST(E, - Eq))
R(E; - Ei;Ta, N) = — (29)
IS12(0)
0.001 L L L \\\\\\n 0.001 L L L L L \K .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Lorentzian Width, | Lorentzian Width, |
SCGP 2015 18/29
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Ensemble Averages

Required Lorentzian Average Width

L-function
Lorentzian Width, |

0 ! ! !
0 5 10 15 20

Lorentzian Width, | Number of Channels, A

I =100 corresponds to 100d/x ~ 30d.
L-function will be sufficiently small when the energy-averaging interval is one or
two orders of magnitude larger than the average resonance spacing d.
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Strong Absorption

Strong Absorption Limit

(1 + 6ab)TaTh +
YeTe

(Ow) =
(30)
o Almost al models predict

the elastic enhancement
factor W, of two, when

YaTa>1 L ‘ . _
o While, Moldauer’s model o ’ ® hd ” * *
gives the asymptotic value
Of V() = 178 P.A. Moldauer, NPA 344, 185 (1980)
Va = 2 1<y, <2, 2<W, <3  (31)
W,—-1

Moldauer obtained this result by performing a similar Monte Carlo simulation
based on GOE.
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Strong Absorption

Decay Width Distribution

25

20 |

Distribution
i
&

T

fieg
1S5}
T

51 ]
. /\
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Width [in units of lambda]

W for the case N = 100, A = 2,
and three values of T, = 0.1,
0.5, and 0.99

T. Kawano (LANL, T-2)

Using the eigenvalue of HCP) E_

Z Waa'WO'b
P E_EO' ’

W(m = \/7_1' Z Oo'va > (33)

Kab(E) = (32)

(34)

In this form the width amplitudes W, = Vay.s
are uncorrelated Gaussian-distributed random
variables with zero mean values and the
standard deviation.

O 'HC®0 = diag(E,),
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Strong Absorption

Emulating Moldauer's MC Method

Moldauer’s K matrix can be written as
Wa W(r
KM(E) = 6,RK0 + Z oob (35)
where the elements K? of the elastic background matrix and the variances of the
amplitudes w are determined by the energy-averaged S matrix.

o 1 —SGCB(E+iD
=1
1 + SGOE(E + i)

(36)

Ensemble average of Eq. (35)

o Generate S Y, then convert it into K
o K= K(E +il) and

— d

0'3 =2nyl = — |5K2|
v/
o The decay amplitudes sampled from Gaussians with widths o,
independently of the GOE eigenvalues.
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Strong Absorption

Moldauer’s Channel Degree-of-Freedom

Channel Degree-of-Freedom

vq.(Moldauer) =
1
vo(LANL) = 2-
1+ a T“_JrTT
a =

standard GOE

1.78 + (T 1212 — 0.78) exp(—0.228T)

Moldauer

(0.0288T, + 0.246) (1 + 2.5T,(1 — T,) exp(-2T))

(b)
Moldauer K-matrix, T = 0.25

.75
Moldauqr (1980) ——

2 - - )
£
18 | | £
@
o
4
16 | ] :
@
<
>
1.4 [ | g
(@) » FE,
1.2 GOE S-matrix, T=025 © | 5 L
075 & 5
Kawano-Talou (2013)
asymptoric ex‘pansion ,,,,,,
! 1
o 10 20 30 h
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Strong Absorption

Moldauer’s Decay Width Distribution

In the case of Moldauer’s simulation, the width will be

s dyoo d T,
or == |3K)| == (40)
n n2-T,
0.1 — 8 T T
GOE e T,=099 ——
e Gaussian
0.08 | E
6 | B
c
2
© 0.06 c
3 2
S ]
] k4]
E 0.04 a
2]
oL i
0.02
0 P S T S SR o . . .
0 01 02 03 04 05 06 07 08 09 1 0.3 0.2 0.1 0 0.1 0.2 0.3

Tranmission Coefficient
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Inelastic Scattering

Inclusion of Direct Channel in Hauser-Feshbach

Cross section calculations for strongly deformed systems

o Approximated Method
o calculate transmissions from Coupled-Channels S-matrix

Ty=1- ) KSuXSiP

o >, T, gives correct compound formation cross section
o HF performed in the direct-eliminated cross-section space

o Engelbrecht-Weidenmdiller (EW) transformation

o diagonalize S-matrix to eliminate the direct channels
o HF performed in the diagonal channel space
o transform back to the cross section space

o Theory of Kawai-Kerman-McVoy (KKM)
o correct at the limit of channel degree of freedom v = 2.0

T. Kawano (LANL, T-2) Compound Nuclear Reaction SCGP 2015
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Inelastic Scattering

Implementation of Direct Channel in Stochastic S -Matrix

. . (0)
Unitary background matrix §

. Yua¥Yub
Sap=80—iy — K 41
b ab l; E — E/.l _ (1/2)1—*# ( )

Since generating a unitary matrix including off-diagonal elements is cumbersome,
we employ a K-matrix method.

Wy W
Ka(E) = KO+ 3" 48 (42)
- E-E

where the background term K© is a model parameter. When X is real and
symmetric, unitarity of S is automatically fulfilled.
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Inelastic Scattering

Generated Elastic/Inelastic Cross Sections

Fixed resonances, background component K,, changed from 0 to 2
N=100,A =2

Elastic Inelastic

LR

&
cooo000000R
R

corRENNWW A

15 15

2 2
- 05
12-8] 1Background ko Isi 1Background k,

CEEEIEEES

0.5 05

0
0.2.015.0.1 0.2.015.01
005 0 0,05 0.0 515 020 005 0 0.05 0.1 5,15 5p
Energy [in units of A] Energy [in units of A]

Inelastic scattering cross sections affected by the direct reaction strongly due to
the interference between the resonances and the background term.
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Inelastic Scattering Enhancement

Inelastic Scattering

Compound inelastic scattering cross section as a function of opy/or

0.4 T T T T T
MC simulation o
(@ T,=05 modified transmission --------
EW transformation
0.3 N=2 E

0.2

Compound Inelastic C.S. / Reaction C.S

0 L L

0.4

0.3

02

Il Il Il Il
02 03 04 05 06
Direct Inelastic C.S. / Reaction C.S.

Compound Inelastic C.S. / Reaction C.S

:
(b) T,=0.9
A=2

T T
MC simulation o
modified transmission
EW transformation

0.7

0.8 0

Il Il
02 03 04 05 06
Direct Inelastic C.S. / Reaction C.S.

0.1 0.7

The approximation method largely underestimates the compound inelastic

scattering cross sections.
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Conclusion

Concluding Remarks

We have investigated the statistical properties of the scattering matrix containing a
GOE Hamiltonian in the propagator.

o For all parameter values studied, the numerical
average of MC-generated cross sections
coincides with the result of the VWZ
triple-integral formula.

o Energy average and ensemble average agree
reasonably well when [ is one or two orders of
magnitude larger than d

o In the strong-absorption limit, the channel
degree-of-freedom v, is 2.

o We find that the direct reaction increases the
inelastic cross sections while the elastic cross
section is reduced

Work performed with P. Talou (LANL) and H.A. Weidenmdller (MPI)
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