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Introduction

Compound Nuclear Reaction

Bohr Hypothesis

Incident particle shares its energy with the target
nucleons
Compound nucleus (CN) attains statistical equilibrium
Decay modes of CN are independent of formation

The hypothesis holds very well at high energies

Energy-average cross sections can be factorized by
penetration factors for each channel
Hauser-Feshbach theory

but not for isolated or weakly overlapping
compound-nucleus resonances

Hauser-Feshbach theory corrected by
the width fluctuation correction, WFC

decay width distribution over the eigenstates (resonances)
incoming wave interferes in the elastic channel

TK, P. Talou, H.A. Weidenmüller, PRC 92, 044617 (2015)
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Introduction

Average Compound Nucleus Cross Section

Reaction cross section from channel a to channel b is
written as

σab =
π

k2
a

ga|δab − S ab|
2 (1)

and the energy average cross section

〈σab〉 =
π

k2
a

ga〈|δab − S ab|
2〉

=
π

k2
a

ga

{
|δab − 〈S ab〉|

2 + 〈|S fl
ab|

2〉
}

= σdir
ab + 〈σfl

ab〉 (2)

T
a 

=
 1

-|
<

S
aa

>
|2

|1-<S
aa

>|2

<|S
ab

|2>

Compound States

The aim of various CN reaction theories is to express 〈σab〉 in terms of 〈S aa〉, or
the transmission coefficients

〈S aa〉 = S aa(E + iI), Ta = 1 − |〈S aa〉|
2 , 0 ≤ Ta ≤ 1 (3)
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Introduction

Average Over Resonances
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Introduction

Width Fluctuation Correction

Hauser-Feshbach formula for the CN cross section

σHF
ab =

π

k2
a

ga
TaTb∑

c Tc
(4)

with the width fluctuation correction (WFC) factor

σCN
ab =

π

k2
a

ga
TaTb∑

c Tc
Wab (5)

Rigorously speaking, Wab should be separated into two parts,

the elastic enhancement factor Wa

and the width fluctuation correction factor

For the comparison of various approaches it is convenient to define WFC as

Wab = σCN
ab /σ

HF
ab (6)
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Theory

Statistical Theories for Compound Reactions

Moldauer (1960 – 1980)
based on statistical S or K-matrix
simulation

KKM, Kawai-Kerman-McVoy (1973)
projection operator method

HRTW, Hofmann, Richert, Tepel,
Weidenmüller (1975)

based on statistical K-matrix

Mello and Seligman (1980)
maximum entropy distribution of S

Verbaarschot, Weidenmüller,
Zirnbauer (1985)

analytic expression based on GOE

N resonances
HRTW, KKM
Unitarity of S

Λ channels

Moldauer
Distribution of
Decay width

All models, except for VWZ, have some approximations, phenomenological
parameters, or require numerical calculations.
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Theory

Statistical R and K Matrices for Computer Simulations

Compound nuclear reactions modelled by GOE-inspired ensembles

Kab(E) = π
∑
σ

γaµγµb

E − Eµ
, S ab =

(1 − iK
1 + iK

)
ab

(7)

where

γaµ is sampled from Gaussian, zero-average and assumed width

Eµ is sampled from Wigner distribution, PW (s) = π/2s exp(−πs2/4)
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Theory

HRTW and Moldauer

In HRTW all the channel cross sections are calculated from an effective
transmission coefficient Va

〈σab〉 =
π

k2
a

ga
VaVb∑

c Vc
{1 + δab(Wa − 1)} , (8)

where the elastic enhancement Wa was estimated by computer simulations.
When the χ2 distribution with the channel degree-of-freedom of νa is assumed to
γ2
µa, WFC can be evaluated numerically as

Wab = (1 +
2δab

νa
)
∫ ∞

0
dtΠ f

(
1 +

2tT f

ν f T

)−ν f /2−δ f a−δ f b

(9)

νa were obtained by Monte Carlo simulations.

νa = 1.78 + (T 1.212
a − 0.78) exp(−0.228T ) T =

∑
c

Tc (10)
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Theory

Projection Operator Technique

Feshbach’s projection operators P and Q = 1 − P

(E − HPP)PΨ = HPQQΨ (11)

(E − HQQ)QΨ = HQPPΨ (12)

P space scattering wave function ψ(+)
a

(E − HPP)ψ(+)
a = 0 (13)

The unitary and symmetric S matrix is given by

S ab = S (0)
ab − 2πi

(
ψ(−)

a |HPQ
1

E −HQQ
HQP|ψ

(+)
b

)
(14)

Effective Hamiltonian in Q space

HQQ = HQQ + HQP
1

E+ − HPP
HPQ (15)
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Theory

Stochastic S -Matrix Based on GOE

Orthonormal basis of states labeled µ in Q space

Wµa = (µ|HQP|ψa) = Waµ = W∗aµ (16)

(
µ|HQP

1
E+ − HPP

HPQ|ν

)
= ∆µν − iπ

∑
c

WµcWcν ' −iπ
∑

c

WµcWcν (17)

(
µ|HQQ|ν

)
= Hµν ⇒ H(GOE)

µν (18)

Scattering matrix that includes GOE

S ab = δab − 2iπ
∑
µν

Waµ(D−1)µνWνb (19)

Dµν = Eδµν − H(GOE)
µν + iπ

∑
c

WµcWcν (20)
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Theory

Compound Nucleus Cross Section

N resonances

 Λ channels

coupled by W

|χ
aa

>

S (GOE)
ab = δab − 2iπ

∑
µν

Waµ

(
D−1

)
µν

Wνb (21)

Dµν = Eδµν − H(GOE)
µν + iπ

∑
c

WµcWcν (22)

H(GOE)
µν H(GOE)

ρσ =
λ2

N
(δµρδνσ + δµσδνρ) (23)

We assume that the energy average 〈|S aa|
2〉 can be replaced by the

ensemble average |S aa|
2 (to be considered later)

Ta given by eigenvalues of WWT

Our model parameters are Ta, N, and Λ
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GOE Simulation

GOE Generated Cross Sections
N = 20 and 100, Ta = 0.1, 0.5, and 0.99
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GOE Simulation

Ensemble Average Cross Section
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cross sections at the center of GOE

when N = 100, Λ = 2, and Ta ' 1
Hauser-Feshbach σ = T 2

a/(Ta + Tb) = Ta/2 = 0.5
while ensemble average σfl

aa = σaa − σ
SE
aa = 0.66

Waa = 1.32

Analytical expression by Verbaarschot, Weidenmüller, Zirnbauer (1985) reads

σfl
ab =

TaTb

8

∫ ∞

0
dλ1

∫ ∞

0
dλ2

∫ 1

0
dλ µ(λ, λ1, λ2)

∏
c

1 − Tcλ
√

(1 + Tcλ1)(1 + Tcλ2)
Jab(λ, λ1, λ2) (24)

which yields σfl
aa = 0.66.
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GOE Simulation

Why Monte Carlo Approach?

We know the exact solution for the average cross section. However,
the VWZ triple-integral formula is an analytical form of the ensemble average in
the limit of N → ∞
It is, unfortunately, inconvenient in realistic cross section calculation cases

triple-integral is time-consuming when Λ is large
the final state could be in a continuum; individual channel is not well-defined

MC approach enables us to explore various realistic cases
such as photon width distribution for neutron capture reaction

Various models proposed such as Moldauer’s are practically useful for
nuclear reaction cross section calculations

However, these models should be verified by rigorous GOE calculations
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GOE Simulation

GOE Monte Carlo Approach vs Models

Comparison of numerical average |S fl
aa|

2 with the statistical models
N = 100, Λ = 2

Ta 0.1 0.5 0.99
Elastic Inelastic Elastic Inelastic Elastic Inelastic

MC simulation 0.0733 0.0261 0.351 0.149 0.660 0.330
VWZ 0.0734 0.0260 0.351 0.148 0.661 0.330

Hauser-Feshbach 0.0500 0.0500 0.250 0.250 0.495 0.495
KKM 0.0662 0.0332 0.333 0.167 0.660 0.330

HRTW 0.0737 0.0257 0.352 0.147 0.661 0.330
Moldauer 0.0734 0.0260 0.349 0.150 0.665 0.325

Ernebjerg-Herman 0.0742 0.0252 0.366 0.134 0.681 0.310
Kawano-Talou 0.0735 0.0259 0.351 0.148 0.661 0.330

Hauser-Feshbach (1952), Kawai-Kerman-MacVoy (1973), HRTW (1980),
Moldauer (1980), Ernebjerg-Herman (2004), and Kawano-Talou (2014)
VWZ agrees even for small N!
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Ensemble Averages

Ensemble Average and Energy Average

Ensemble average in the limit N → ∞
analytical form given by the VWZ triple integral formula
it can be performed by MC simulation

While, we wan to know the energy-average cross section
Do these averages agree?∫ +∞

−∞

w(E0, E, I)S (E)dE = S (E0), w(E0, E, I) =
I
π

1
(E − E0)2 + I2 (25)

where width I specified in units of d/π, or weaker condition∣∣∣〈S 〉 − S
∣∣∣2 = 0 (26)

which is equivalent to

∫ +∞

−∞

dE1w(E0, E1, I)
∫ +∞

−∞

dE2w(E0, E2, I)S fl(E1)S fl∗(E2) = 0 (27)
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Ensemble Averages

Two-Point Function, S flS fl∗

S fl
ab(E1)S fl∗

cd (E2)

=
1
8

∫ ∞

0
dλ1

∫ ∞

0
dλ2

∫ 1

0
dλ µ(λ, λ1, λ2)e−ir(λ1+λ2+2λ)

∏
c

1 − Tcλ
√

(1 + Tcλ1)(1 + Tcλ2)
J(λ, λ1, λ2)
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Ensemble Averages

Definition of L-Function

L(Ta,Λ, I) =

∫ ∞

−∞

∫ ∞

−∞

w(E1, 0, I)w(E2, 0, I)R(E2 − E1; Ta,Λ) dE1dE2 (28)

R(E2 − E1; Ta,Λ) =
<

{
S flS fl∗(|E2 − E1|)

}
|S |2(0)

(29)
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Ensemble Averages

Required Lorentzian Average Width
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I = 100 corresponds to 100d/π ∼ 30d.
L-function will be sufficiently small when the energy-averaging interval is one or
two orders of magnitude larger than the average resonance spacing d.
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Strong Absorption

Strong Absorption Limit

〈σab〉 =
(1 + δab)TaTb∑

c Tc
+ . . . .

(30)

Almost al models predict
the elastic enhancement
factor Wa of two, when∑

a Ta � 1
While, Moldauer’s model
gives the asymptotic value
of νa = 1.78. P.A. Moldauer, NPA 344, 185 (1980)

νa =
2

Wa − 1
, 1 ≤ νa ≤ 2, 2 ≤ Wa ≤ 3 (31)

Moldauer obtained this result by performing a similar Monte Carlo simulation
based on GOE.
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Strong Absorption

Decay Width Distribution
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Using the eigenvalue of H(GOE), Eσ

Kab(E) =
∑
σ

W̃aσW̃σb

E − Eσ
, (32)

W̃σa =
√
π
∑
ν

OσνWνa , (33)

O−1H(GOE)O = diag(Eσ) , (34)

In this form the width amplitudes W̃aσ =
√
πγaσ

are uncorrelated Gaussian-distributed random
variables with zero mean values and the
standard deviation.
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Strong Absorption

Emulating Moldauer’s MC Method

Moldauer’s K matrix can be written as

KM
ab(E) = δab<K0

a +
∑
σ

waσwσb

E − Eσ
(35)

where the elements K0
a of the elastic background matrix and the variances of the

amplitudes w are determined by the energy-averaged S matrix.

K0 = i
1 − S (GOE)(E + iI)
1 + S (GOE)(E + iI)

(36)

Ensemble average of Eq. (35)

Generate S GOE, then convert it into K

K0 = K(E + iI) and

σ2
a = 2πγ2

a =
d
π

∣∣∣=K0
a

∣∣∣
The decay amplitudes sampled from Gaussians with widths σa,
independently of the GOE eigenvalues.
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Strong Absorption

Moldauer’s Channel Degree-of-Freedom

νa(Moldauer) = 1.78 + (T 1.212
a − 0.78) exp(−0.228T ) (37)

νa(LANL) = 2 −
1

1 + α Ta+T
1−Ta

(38)

α = (0.0288Ta + 0.246)
(
1 + 2.5Ta(1 − Ta) exp(−2T )

)
(39)

standard GOE Moldauer
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Strong Absorption

Moldauer’s Decay Width Distribution

In the case of Moldauer’s simulation, the width will be

σ2
a =

d
π

∣∣∣=K0
a

∣∣∣ =
d
π

Ta

2 − Ta
(40)
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Inelastic Scattering

Inclusion of Direct Channel in Hauser-Feshbach

Cross section calculations for strongly deformed systems

Approximated Method
calculate transmissions from Coupled-Channels S-matrix

Ta = 1 −
∑

c

|〈S ac〉〈S ∗ac〉|
2

∑
a Ta gives correct compound formation cross section

HF performed in the direct-eliminated cross-section space

Engelbrecht-Weidenmüller (EW) transformation
diagonalize S -matrix to eliminate the direct channels
HF performed in the diagonal channel space
transform back to the cross section space

Theory of Kawai-Kerman-McVoy (KKM)
correct at the limit of channel degree of freedom ν = 2.0
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Inelastic Scattering

Implementation of Direct Channel in Stochastic S -Matrix

Unitary background matrix S (0)
ab

S ab = S (0)
ab − i

∑
µ

γµaγµb

E − Eµ − (i/2)Γµ
(41)

Since generating a unitary matrix including off-diagonal elements is cumbersome,
we employ a K-matrix method.

Kab(E) = K(0) +
∑
µ

W̃aµW̃µb

E − Eµ
. (42)

where the background term K(0) is a model parameter. When K is real and
symmetric, unitarity of S is automatically fulfilled.
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Inelastic Scattering

Generated Elastic/Inelastic Cross Sections

Fixed resonances, background component Kab changed from 0 to 2
N = 100, Λ = 2

Elastic Inelastic
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Inelastic scattering cross sections affected by the direct reaction strongly due to
the interference between the resonances and the background term.
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Inelastic Scattering

Inelastic Scattering Enhancement

Compound inelastic scattering cross section as a function of σDI/σR
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The approximation method largely underestimates the compound inelastic
scattering cross sections.

T. Kawano (LANL, T-2) Compound Nuclear Reaction SCGP 2015 28 / 29



Conclusion

Concluding Remarks

We have investigated the statistical properties of the scattering matrix containing a
GOE Hamiltonian in the propagator.

For all parameter values studied, the numerical
average of MC-generated cross sections
coincides with the result of the VWZ
triple-integral formula.

Energy average and ensemble average agree
reasonably well when I is one or two orders of
magnitude larger than d

In the strong-absorption limit, the channel
degree-of-freedom νa is 2.

We find that the direct reaction increases the
inelastic cross sections while the elastic cross
section is reduced

Work performed with P. Talou (LANL) and H.A. Weidenmüller (MPI)
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