skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose

Abstract

The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5 domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [1]
  1. Univ. of Georgia, Athens, GA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1225358
Report Number(s):
NREL/JA-2700-65047
Journal ID: ISSN 1754-6834
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Related Information: Biotechnology for Biofuels; Journal ID: ISSN 1754-6834
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANAYLYTICAL CHEMISTRY; crystalline cellulose; acidothermus cellulolyticus e1 endoglucanase

Citation Formats

Chung, Daehwan, Young, Jenna, Cha, Minseok, Brunecky, Roman, Bomble, Yannick J., Himmel, Michael E., and Westpheling, Janet. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose. United States: N. p., 2015. Web. doi:10.1186/s13068-015-0296-x.
Chung, Daehwan, Young, Jenna, Cha, Minseok, Brunecky, Roman, Bomble, Yannick J., Himmel, Michael E., & Westpheling, Janet. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose. United States. https://doi.org/10.1186/s13068-015-0296-x
Chung, Daehwan, Young, Jenna, Cha, Minseok, Brunecky, Roman, Bomble, Yannick J., Himmel, Michael E., and Westpheling, Janet. 2015. "Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose". United States. https://doi.org/10.1186/s13068-015-0296-x. https://www.osti.gov/servlets/purl/1225358.
@article{osti_1225358,
title = {Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose},
author = {Chung, Daehwan and Young, Jenna and Cha, Minseok and Brunecky, Roman and Bomble, Yannick J. and Himmel, Michael E. and Westpheling, Janet},
abstractNote = {The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5 domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.},
doi = {10.1186/s13068-015-0296-x},
url = {https://www.osti.gov/biblio/1225358}, journal = {Biotechnology for Biofuels},
issn = {1754-6834},
number = 1,
volume = 8,
place = {United States},
year = {Thu Aug 13 00:00:00 EDT 2015},
month = {Thu Aug 13 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrolysis of cellulose using ternary mixtures of purified celluloses
journal, March 1998


Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass
journal, May 2012


Crystal Structure of Thermostable Family 5 Endocellulase E1 from Acidothermus cellulolyticus in Complex with Cellotetraose ,
journal, January 1996


Extremely thermophilic microorganisms for biomass conversion status and prospects
journal, June 2008


Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007


Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature
journal, January 2013


The challenge of enzyme cost in the production of lignocellulosic biofuels
journal, November 2011


Isolation and Characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a New Genus of Thermophilic, Acidophilic, Cellulolytic Bacteria
journal, July 1986


A new thermostable endoglucanase,Acidothermus cellulolyticus E1: Synergism withTrichoderma reesei CBH I and comparison to Thermomonospora fusca E5
journal, March 1994


Efficient Degradation of Lignocellulosic Plant Biomass, without Pretreatment, by the Thermophilic Anaerobe "Anaerocellum thermophilum" DSM 6725
journal, May 2009


Use of Label-Free Quantitative Proteomics To Distinguish the Secreted Cellulolytic Systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis
journal, April 2011


Genome Sequence of the Anaerobic, Thermophilic, and Cellulolytic Bacterium "Anaerocellum thermophilum" DSM 6725
journal, April 2009


Synergistic interactions in cellulose hydrolysis
journal, January 2012


Designing the deconstruction of plant cell walls
journal, June 2008


Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome
journal, January 1985


Deletion of Caldicellulosiruptor besciiCelA reveals its crucial role in the deconstruction of lignocellulosic biomass
journal, October 2014


Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii
journal, June 2014


Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725
journal, January 2011


Revealing Nature's Cellulase Diversity The Digestion Mechanism of Caldicellulosiruptor bescii CelA
journal, December 2013


Biochemical and Mutational Analyses of a Multidomain Cellulase/Mannanase from Caldicellulosiruptor bescii
journal, January 2012


The cellulosome — A treasure-trove for biotechnology
journal, September 1994


Ultra-Thermostable Cellulases From Acidothermus cellulolyticus: Comparison of Temperature Optima with Previously Reported Cellulases
journal, August 1989


Three Microbial Strategies for Plant Cell Wall Degradation
journal, March 2008


Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii
journal, November 2012


Organization and distribution of the cellulosome in Clostridium thermocellum.
journal, January 1985


Effect of Single Active-Site Cleft Mutation on Product Specificity in a Thermostable Bacterial Cellulase
book, January 2002


The challenge of enzyme cost in the production of lignocellulosic biofuels
journal, November 2011


New thermostable endoglucanase from Spirochaeta thermophila and its mutants with altered substrate preferences
journal, January 2021


Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii
journal, November 2012


Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome
journal, January 1985


The cellulosome — A treasure-trove for biotechnology
journal, September 1994


Extremely thermophilic microorganisms for biomass conversion status and prospects
journal, June 2008


Designing the deconstruction of plant cell walls
journal, June 2008


Ultra-Thermostable Cellulases From Acidothermus cellulolyticus: Comparison of Temperature Optima with Previously Reported Cellulases
journal, August 1989


Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature
journal, January 2013


Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii
journal, June 2014


Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725
journal, January 2011


Isolation and Characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a New Genus of Thermophilic, Acidophilic, Cellulolytic Bacteria
journal, July 1986


Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007


Revealing Nature's Cellulase Diversity The Digestion Mechanism of Caldicellulosiruptor bescii CelA
journal, December 2013


Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002


Deletion of Caldicellulosiruptor besciiCelA reveals its crucial role in the deconstruction of lignocellulosic biomass
journal, October 2014


Three Microbial Strategies for Plant Cell Wall Degradation
journal, March 2008


Effect of Single Active-Site Cleft Mutation on Product Specificity in a Thermostable Bacterial Cellulase
journal, January 2002


Works referencing / citing this record:

Engineering hydroxyproline‐ O ‐glycosylated biopolymers to reconstruct the plant cell wall for improved biomass processability
journal, January 2020


Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms
journal, August 2019


Effects of the linker region on the structure and function of modular GH5 cellulases
journal, June 2016


An update on enzymatic cocktails for lignocellulose breakdown
journal, July 2018


High activity CAZyme cassette for improving biomass degradation in thermophiles
journal, February 2018


Effects of the linker region on the structure and function of modular GH5 cellulases
journal, June 2016


High activity CAZyme cassette for improving biomass degradation in thermophiles
journal, February 2018


In silico Identification and Taxonomic Distribution of Plant Class C GH9 Endoglucanases
journal, August 2016


Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B
journal, October 2015