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Non-sinusoidal RMI Analysis and
other factors

F. J. Cherne and J. E. Hammerberg
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General Outline

= A brief introduction as to why Molecular Dynamics over a
hydrodynamic code.

= Prior molecular dynamics studies on copper looking at both sinusoidal
and chevron shaped grooves.

= Present preliminary results on similar copper simulations looking the
sinusoidal breakup of sheets.

= Examination of various non-sinusoidal shapes and comparing them
with the ejecta model.

=  Summary and Conclusions
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Large-scale (>107-atom) molecular dynamics
simulations provide insight into mechanisms

s  EAM potential for Cu [A. F. Voter, PRB 57, 13985 (1998)]
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s Quasi-2D geometry (periodic boundary conditions in lateral directions):

¥
ﬂ ) A E i
50-60 million Cu atoms < 257 nm vacuum
U, L |
AN A
< 11pm ——>
< 2.2 ym >

A The material properties such as surface tension and viscosity result from the
ﬁ)otential.
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To understand the inhibition of Richtmyer-Meshkov
instability growth by material strength, we have focused
on single-mode geometries

2
m  Sinusoidal surface profile, with scaled amplitude ##, _ 27y

T e

= An fcc lattice of atoms were oriented so that the shock wave was going
down the <111> orientation.

e 60 million atoms

* The dimensions of the simulated cell were 257 nm x 2.5 nm x 1100 nm
* A sinusoidal groove of varying amplitudes were “machined” ranging from 1-41 nm
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The single shock copper Hugoniot and secondary
shock Hugoniot provide a clear phase boundary line

. 3500 I I 1 I 1 I I | I I I
= Creation of a double
shock B #»—# Second shock Hugoniot
m—m Single Shock Hugoniot
Instantly change the 3000 - -
momentum of the atoms
impacting the wall as a factor -
of the first shock strength at
some time delay. %, 2500 - =
b
. - =
= The mixed phase region ¢ ¥
for the single shockand £ | i
double shocked state =
allow for the mapping of i
the phase boundary in o _
copper.
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Prior works by the O. Durant and L. Soulard (JAP

111,044901 (2012)

= The MD simulation sizes were typically on the order of 88 nm (3

wavelengths) x 88 nm x 176 nm (shock direction).

=  Round trip transit times of the release waves provide short lived

sustained shocks.

m Typical shock strength was a up of ~3.5 km/s.

= Breakup of the spikes and bubbles showed a large degree of

atomization and short break up times.

88 nm Zone 1
/ 4 Zone 2
< 4

10 nm

>

88 nm

Vacuum

z

Ly
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Simulations using 3 different wavelengths with a wide
cross-section and a “long” shock direction length.

= The images presented here are late time nominally the same time after
shock breakout from the bottom of the surface all with a kh0=0.5 at a
up=2.5 km/s.
e Wavelength=30 nm, 60 nm, and 120 nm
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Scaled Areal Mass densities are comparable yet the 30
nm wavelength shows a recoil.
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Bubble velocities for each of the wavelength and width
combinations show pretty good agreement.

-Late time decay in the bubble ST 1 1
velocity is directly related to I N I
the release wave reaching the 5 -ﬂ ™ Y
bubble interface. - g

N
|
l

-For the wider simulations
there is good agreement with
a small amount of noise at
early times.

w
]
|

bubble velocity (nm/ps)
[\
|
|

— A=257 nm, w=2.67 nm

-The narrow simulation at s =120 mm.w=120nm | |

early times shows some : =30 nm, w120 om
. . — A=60 nm, w=60
fluctuations in the bubble oM e
l L l L l L l

velocity. 0 100 200 300 400
Time (ps)
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Spike velocities show a decay which could be related to
viscosity or surface tension effects.

-The longest wavelength yet narrow s

simulation shows a slight decay in i |
the velocity as a function of time yet
is around 7 nm/ps or approximately ¢ 7

2 nm/ps greater than the free
surface velocity.

-All the other simulations show
variable decays as a function of

wavelength in spite of the same oy e
value for the kh,. The 30 nm : _ }=30nm. w120 nm
wavelength simulation actually falls

0 _h 1 1 1 1 1 1
0

1
100 200 300 400

spike velocity (nm/ps)

slightly below the free surface Time (o)
velocity.
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In looking at a similar u, value as O. Durand and L.
Soulard at t=

-The delta time between the upper and lower images is 36 ps which is
much longer than the time where Durand observed breakup.

-A shorter shock direction simulation is currently underway at this shock
strength to see if the void formation is percolating into the bubble region
assisting in the break up of the spikes.
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Examination of various surface shapes upon ejected
mass

= Examine the effect of surface
profile upon ejecta formation

= Conditions:

* U,= 2.5 km/s (material is melted
upon 15t shock)

e khy=1.0 a) b) c) d)
s Shapes:
 Sine wave
« Chevron e) f) g) h)
 U-shape
e W-shape

e Fly-cut profile
e Square wave
e Narrow Gaussian

e Wide Gaussian
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Spike tip growth for u,=2.5 km/s as a function of shape

a) Sine Wave
) —
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Bubble heights and velocities for kh,=1.0
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Bubble heights and velocities for kh,=1/8
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Spike heights and velocities for kh,=1.0
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Spike heights and velocities for kh,=0.125

kh0=1/8 kh0=1/8
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Images from Sawtooth from t=0-50 ps at 5 ps intervals
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Images from Sawtooth from t=50-150 ps at 10 ps
intervals
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M/(2/3 M)

Mass from sinusoidal, chevron, and sawtooth kh,=1.0

— Sinusoidal
— Chevron
—— Sawtooth 1
L | | | L
100 200 300
Time (ps)

scaled mass vs time
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Spike heights and velocities

1000 ————— ———— 77— 3"""'u"""'
I ) b Mo o]
A
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m  Spike height below 100 ps for the sawtooth shape is difficult to determine with
the information that is coming out of the simulations due to the lack of
symmetry about the middle of the simulation. It will also be observed in the
bubble height and velocities shown on the next slide.
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Bubble heights and velocities

= Bubble heights for the sawtooth are complicated as per note for the
spike position. Furthermore the bubble velocities are even harder to
obtain and thus the bubble velocities below about 100 ps are not

reliable.
: Bubble velocit
Bubble Height y
T I T I T I T T I T I
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Preliminary comparison of copper MD simulations
Sinusoidal/Flycut(aka Buttler scoops) at t=160 ps

-Sine vg,= 1.829
nm/ps with an
initial, vgpo =
1.575 nm/ps

-Flycut(aka Buttler
SCOOPS) V,,=2.951

nm/ps
‘/Sg lycut
P ___1613
V inusoidal
Sp
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Multimode simulations with double shocks

-Initial surface has 2 wavelengths with the same amplitude superimposed
upon a single_wavelength wave

mesas multimode above
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Conclusions and future work

m  The results for the collapse of the areal mass predicted by the model
does a good job although there still needs some work on the analysis
of the spike velocities.

* One approach will be to analyze more completely the simple two Fourier modes
like just shown paying close attention to the velocity interaction.

m  The bubble velocities do show the behavior as predicted by the longest
mode of the Fourier series.

= Initial reported literature behavior of ejecta breakup with molecular
dynamics appears to be affected by small shock direction lengths and
may show percolation of the defects into the bubble region.
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