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bolitary Waves in Nonlinear Dirac

FROM FIELD THEORY TO DIRAC MATERIALS

Avadh Saxena (Los Alamos National Lab)

1. SOLITONS: in nature and physics.

2. Balance between nonlinearity and dispersion.

3. Soliton bearing systems and equations: NLS, KdV, sine-Gordon.
4. Nonlinear Dirac solitons: scalar & vector interaction.

5. Stability criteria and simulations.

6. Conclusions (and comments on quantum elasticity).

F. Cooper, A. Khare, F.G. Mertens, B. Mihaila, N.R. Quintero, S. Shao
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DIRAC MATERIALS
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Possible Relevance

1. BE condensate in a honeycomb lattice in the long wavelength
limit
Ref: Haddad and Car, Physics D238, Eurp Phys. Lett. 94

2. Multicomponent BEC order parameter has an exact spinor
structure

3. Binary optical wave guide arrays

Ref. Ann. Phys. 340, 179, J. Optics Soc. of Ame. B31, 1132
4. Nonlinear Dynamics in Honeycomb lattices

PRA 84, 021802(R)

5. Nonlinear Diffraction in Photonic Graphine

Opt. Lett. 36, 3762



JOHN SCOTT RUSSELL (1808-1882)

1834: First observation
of solitons (Edinburgh).

“Report on Waves”: 1844
1895: Korteweg-de
. Vries (KdV)

. 'H 1965: Zabusky-Kruskal
. (numerics, FPU)







Great Red Spot (storm) on Jupiter







t = 0.00460




DISPERSION NONLINEARITY




SOLITONS GO THROUGH EACH OTHER
WITHOUT SHAPE CHANGE




|. SOLITON BEARING
EQUATIONS



EXACT KINK SOLUTIONS

Consider the Ginzburg-Landau free energy

g
Far(9,¢') = V(¢) +5¢%,
After two integrations we get

> _ 9(=) d¢
:\/“;—(CB —z0) = /d)
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Sine-Gordon Equation
¢tt — ¢azaz - Siﬂ¢ =0
V(e)=1—cosé ~ /o

Soliton solution:

¢(x,t) = 4arctan exp[v(:(; — vt)|
v =1/(1—v%)



NONLINEAR PENDULUM

0 = ‘,w‘.-“_.
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Sine-Gordon breather

s Pu
9 a2 Fsmu = U
1 — w? cos(wt
u = 4 arctan vi-« (@ )‘ ,
w cosh(v1 — w? x)
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BREATHERS, ILMs







¢uv = Sin ¢ -ve Gaussian curvature




DOUBLE WELL (¢*) POTENTIAL

2( 12 2
V(g) = ¢”(¢" —a”)
SOLITON (second order transition):

6(x) = o tanh(x/¢)
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TRIPLE WELL (¢6) POTENTIAL
V() = ap® + bp* + c¢°




®° Model Soliton Solutions

First order transition

=@
P(x) = =
Pulse: J1— e tanh?(222)
+¢ytanh ==
Kink: p(x) =

\/1 — 32 tanh2 X—%o .

r

HALF-KINK: ¢<x>=ﬁ[4mp(;; Jg_/g)]’”

Pulse: P (x) = {




Vsq(¢) = COS @. Ve (¢) = cosh ¢.

:
> m——————

¢

Vpsa(d) = asiné + Bsin ¢ Vpsmc(e) = (¢ cosh2¢ — n)*

I\V(<P)

2
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DOUBLE Vpsg = 1 +4|477| [— COS%—-I—ncosc/ﬁ] .
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Nonlinear Schrodinger Equation (NLS)

it + dzo — K670 = 0
Envelope Soliton:
¢(x,t) = ¢pgsech((x — vt)/E)
Nontopological R e
soliton (pulse)

total phase shift

Nonlinear Dirac Equation s====m5—+—



Korteweg-de Vries (KdV) Equation

Soliton:

C

¢(x,t) = 5 sech?

(x — ct — a)

MR




near-recurrence

KdV solitons




BOUSSINESQ EQUATION

¢tt o ¢xaz T ¢x:ca:x + 3(¢2)x33 = 0
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DISCRETE SOLITON EQUATIONS

Discrete sine-Gordon (Frenkel-Kontorova)
Discrete nonlinear Schrodinger (DNLS)
Discrete ¢* 4% models.

Peierls-Nabarro barrier
Exceptional discretization
Conserved quantities; [ILMs.



The Toda Lattice: Discrete Solitons

o\

pt(n,t) = exp —[q(n,t) — q(n — 1,t)] —exp —[g(n + 1,t) — q(n, t)]

qt (na t) — p(na t)
SOLITON:

L + o= - exp(—2kn + 2o sinh (k)t) )

n,1) = log - )t
q1(n.t) = q4 + log (1 + —L== exp(—2k(n + 1) + 20 sinh(k)t)




II. NONLINEAR DIRAC
EQUATION (NLD)



NONLINEAR DIRAC EQUATION: SOLITONS:

Introduction

Not much work on Soliton solutions in fermionic theories
Exceptions

Gross-Neuve and Massive Thirring models (1+1)
L= ()
j=1

L= (yubjbivy)

j=1



@ Generalization of these two models to arbitrary nonlinearity
L= (Yip)H

L = ()2
Ref. Cooper, Mihaila, Saxena and AK: PRE 82 (2010) 036604

Q@ Stability of SS Solitons
Ref. Shao, Quintero, Mertens, Cooper, Saxena and AK, PRE 90
(2014) 032915

© Behaviour of Solitons in the Presence of Forcing Term and
Damping
Ref. Mertens, Quintero, Cooper, Saxena and AK, PRE 86 (2012)
046602

@ Solitary Waves in PT-symmetric Nonlinear Dirac Equation

Ref. Cuevas-Maraver, Kevrekidis, Saxena, Cooper, Comech,
Bender and AK, arXiv:1508.00852



Nonlinear Dirac Equation:

Plan of the Talk

1. Solitary Wave Solutions for arbitrary x

(a) SS case (b) VV case

2. Nonrelativistic Limit: Generalized NLSE +0O(1/2m)
3. Various Stability Criteria (SS)

a. Derrick’'s Theorem

b. Vakhitov-Kolokokov (VK) Criterion

c. Bogolubsky Criterion: Stability to Changes in frequency at Fixed
Charge

4. Numerical Simulation Results
5. PT-Symmetric NLD with SS Interaction
6. Open Questions



The Solitary Wave Solutions

£ = P(ir"0, — m)p + L1

SS case:
,

. g o \k+1
ﬁ/—,{+1(¢¢)+

VV case:
2

L) = S (yapdy )3

D(v) =1/2
g dimensionless if Kk =1

nonrenormalizable if K > 1

super renormalizable if Kk < 1



The Solitary Wave Solutions

We treat as effective field theory and ignore the question of
renormalizability

We look for stationary solutions of the form

Y(x,t) = e P(x)

wwz(ﬁ)

1L — jos

choose 7° =03, ~

U s (mtw)v — (P~ [vPYv =0

dv

_ _ 2 2 2\,
P 4 (m—w)u— g2(luP = vy =0



The Solitary Wave Solutions

Look for bound states, i.e. 0 < w < m

P(x) ——>0 asx = oo

0, T =0
uniquely leads (in both SS and VV cases)

tan #(x) = atanh(kSx)

u= Rcostl, v=Rsinf

&:\/m—w’ B=vVm?— w2

m -+ w



2 _
RSS_

w + mcosh(2k[x)

m

R

2 _ (1+ k)52

W g% (w + mcosh(2k6x)

(
W cosh(2mﬁx)} Lr?(m w cosh(2k B x

11/k



NLDE

NLSE =-=----
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Properties of Solutions

@ In SS case, bound states exist for all values of &

and g > gmin
©Q IN VV case though bound states exist only if K < 2.5
© Two conserved quantities Q, H

+00 Joo
Q:/ dxwﬂbz/ dx R?

H = / dx h(x)
h = hy + hy + h3
hy = —ipytouep
ho = i)
h3 = —L;

hy

For the stationary solutions one can show that h; = L



Nonrelativistic Reduction

gNLDE can be written as

1030t + 10201 — my — Vjh =0

oL o
9 g (V)

Moore’'s Decoupling Method

V, =

Vi(A) = (1+03)/2V) + A(1 —03)/2V,
Perturbation theory in A

m —w

gNLDE — gNLSE F O( )

2m



Stability of NLD Solitons

We apply same 3 criteria which work for gNLSE

1 + Pxx + g2’¢|2’€¢ =0
Derrick’s Theorem

X — A\X

M = [7°|i]? dx  Preserved

W(x) = (V)Y2P(Ax)
gNLSE soliton stable (unstable) if k < (>)2
r = 2 Marginal case

Blow up if M > M. = 2.72 ...Simulation Result
Our result using exact solution sech'/*(x) : M. = 2.7207



Stability of NLD Solitons

Vakhitov-Kolokolov Criterion
If == dM < 0...Soliton is stable

For gNLSE we get the same result as above
Bogolubsky (PLA 73 (1979) 87) Criterion

If energy increased (decreased) as w is varied for fixed M
then soliton is stable (unstable)

Again same result as above for gNLSE

Thus for gNLSE all three criteria predict

gNLSE soliton stable (unstable) if k < (>)2



Stability of NLD Solitons

For NLD, 3 criteria give totally different answers

@ Derrick Theorem
0 <k <1(k>1)..soliton stable (unstable) for any w

Q Vakhitov-Kolokolov Criterion
0 < k <2 Soliton Stable for any w

x > 2 Soliton unstable except if w < wc

© Bogolubsky Criterion
0 < k <2 soliton stable if w > wp = 0.7

k > 2 soliton is unstable but for a tiny region of w



Stability of NLD Solitons

Why 3 approaches give different results?

Perhaps because in NLD there is no lower bound on H

Put another way, for NLD, one needs to prove that the stable
solutions of Dirac eq. are not merely stationary sols. of

variational principle but are actually minimum of H

Results of Comech et al (Ann. Inst. Henri Poincare 31 (2014) 639)
For w close to m, NLD soliton stable for 0 < xk < 2



Numerical Simulation Results

Using Fourth Order Operator splitting Integration method (Sihong
Shao)

0 < Kk <2 soliton stable if w, <w < m
K = O.].7 wc — 0.35

r=0.75, wc=0.53
k=175 w:;=0.89

For kK > 2 soliton unstable



PT-symmetric NLD With SS Interaction

PT-symmetry playing Important role not only in QM but also in
Optics

Egs. for PT-invariant NLD with SS interaction are

du
dx

d .
= (m = w)u— g2(|uf — [v?)"u + i =0

(m+w)v — g2(Juf — V)V — iqu =0

P: x— —x, u—u, v——v

T t——t, I — —I



PT-symmetric NLD With SS Interaction

Exact Solutionsat m=0and k = 1

© 1
u= [lw| 4+ B tanh Bx — iv]
2\/8w|
1
v = [lw| — Btanh Bx — i7]
2\/8w|
© 1
u= B — |w|tanh Bx + iytanh 5x
1
v = [— 5 — |w|tanh Bx + iy tanh Bx]
2\/8w|

Not Localized Solitary Wave Solutions

Solutions Break PT-symmetry



Open Problems

@ One criticism of our work is that perhaps the discretization is
giving spurious instability for Kk < 2, w < w. and may be VK
criterion is correct, i.e. soliton is stable for
0 < Kk <2forany w

©Q Stability of VV NLD solitons



Conclusions

Solitons: balance of dispersion with nonlinearity.
Breathers: dynamical localization (ILMs).

Integrability: inverse scattering and conserved
quantities.

NLD systems, solutions and equations.
Stability of NLD solitons nontrivial.

External force driving simulaions.



