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Abstract: The dependence of the single -mode Rayleigh-Taylor (RT) instability on density difference effects is inves­
tigated using four different numerical codes. As the density difference driving the flow approaches infinity, bubbles 
reach a constant terminal velocity, in agreement with the classical result of Layzer [ 1]. At the same time, spikes are mr­
row and in free-fall, a result which can be understood through simple drag-buoyancy arguments. The extension of these 
ideas to finite density differences is characterized by terminal veloci ty for bubbles early in time in agreement with a 
corresponding potential flow theory (Goncharov [2]), and an acce lerating flow at late-times. The late-time acceleration 
is a new result and appears to be driven by the fo rmation of Kelv in-Helmholtz rollups, an effect that is not included in 
existing nonlinear models of RT. 

1 INTRODUCTION 

A sharp interface separating two flu ids of differen t densities is Rayleigh -Taylor unstable if an acceleration is directed 
from the light fluid to the heavy. In this paper, we consider only monochromatic or single -mode interfacial perturba­
tions of wavelength /...and amplitude h0• It has been shown [3] that an unders tanding of this simple flow is necessary be­
fore considering the fully turbulent RT instab ility . The growth of such perturbations at the interface is at first exponen­
tial [4] 

with a growth rate y, and then linear in time, with a correspondi ng terminal velocity given by 

v = Fr~ AgA. 
1+ A' 

( 1.1) 

( 1. 2) 

where Fr is a Froude number. The initial growth stage is often refe rred to as "linear" since only linear terms in the per­
turbation equations are important, while the latter stage is termed nonlinear. In the nonlinear stage, the light fluid rises 
as bubbles due to buoyancy, displacing the heavy flui d, which descends as spikes. While (1.1) is an exact result in the 
absence of viscosity or other stabilizing effects, the behavior of bubbles and spikes in the nonlinear stage as a function 

of the Atwood number ( A= P2 - p , ) is controversial due to disagreement among proposed models [2,5,6]. The diffe-
P2 + p , 

rences stem from the choice of potential functions and boundary conditions. In this work, we evaluate competing nonli­
near models using numerical simulations, and extend their description to latt}times. The results are of interest in descri­

bing the turbulent growth rate a which can be related to the Froude number of the dominant bubbles in a bubblefront 
using 

( 1.3) 

Image analysis from the Linear Electric Motor experiments show that hb!D b > 1 for leading RT bubbles in a turbulent 
flow. To evaluate bubble dynamics in a regime relevant to turbulent fl ow, we calculate RT singl&mode flow in an 
elongated box, and at late-times. 
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2 RESULTS 

We report on numerical simulations of the single-mode Raylei gh-Taylor problem up to intermediate and late-times. The 
calculations were performed us ing four different codes, and in an elongated box (Ax.A.x8/\.) to accommodate the late-time 
growth. 3D perturbations of the form 

h(x,y) = h0{cos(kx) + cos(ky)} (2 .1) 

were used, with the amplitude chosen such that kh0 << 1. Three of the codes belong to the MILES category, while a 
fourth Direct Numerical Simulation (DNS) was also employed. Other details of the calculations, including descriptions 
of the algorithms used are provided in [7]. 

Figure 2. 1 is a plot of the Froude numbers deduced from the intermediate-time saturation veloc ities of bubbles from the 
codes used in this study as a function of the Atwood number. All the codes give a constant Fr = 0.56 in agreement with 
[2], but not with [5 ] and [6] who predict a diffe rent functiona l form for the Froude numbers. This is because the form of 
potential functions used in [2] satisfies the condition of zero net mass -fl ux across the interface. 

Potentia l Flow 
0 RTf-3D 
t> FLASH 
¢ DNS 

t> 

¢o<> <> <> o <> <> <> 
t> ~ 0 0 

0 

Figure 2. 1 Froude numbers fro m 3D NS and potential flow theory of [2]. 

While bubbles reach a terminal velocity for intermediate times at all A, figure 2 2 (a) shows that spikes resemble bubble 

behavior at small A, but acce lerate at larger densi ty differences. As A -7 I, v ~ ~ 2A .!£from drag-buoyancy models 
s J- A k 

[8] and potential flow theory of [2] becomes unbounded, and spikes are in free-fall. This can be understood from a sin­
pie balance of drag and buoyancy terms on the spike objects: 

iz = A - ciz 2 P I 
s g s 

P1 + P2 hs 

1 
(2.2) 

1 
For A-) 1 (p1 -) 0), equation (2.2) and our NS (figure 2.2 (b)) give hs ~ 

2 
gt 2

. Finally, by applying mass conserv a-

tion on any horizontal plane, it also follows that as A-) 1, bubble diameters increase while spike diameters become va­
nishingly small. 
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Figure 2.2 (a) Time evolution of spike velocities at different A. (b)Non-dimensional spike 
acceleration coeffic ient vs . A. 

Figure 2.3 shows the evolution of bubble Froude numbers up to late times for different Atwood numbers . The Froude 
number is plotted against the bubble aspect ratioht/Db. The small A calculations exhibit a curious acceleration away 
from the terminal velocity, followed by a saturation to a higher Fr late in time, while the large A cases (A>0.5) remain 
terminal. This behavior is observed in all of the codes used here, and occurs at hb!D b ~ 1. Such a deviation from the clas­
sical potential flow result has been observed earlier by [9] who attribute the effect to bubble-tip curvature effects. Ho­
wever, our image analysis indicates that this is not the case. 

0 A=O.l 
D A=0. 2S .. A=0.5 
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0 A=0. 9 

Figure 2.3 Time history of bubble Froude numbers from NS at different A. 
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Figure 2.4 Kelvin-Helmholtz growth rates fran 2D NS and linear stability theory. 

We attribute the observed behavior to the formation of secondary Kelvin-Helmholtz (KH) vortices on the neck of the 
bubbles at small density differences. The induced flow from such secondary vortices creates a momentum jet that acce­
lerates the bubbles to a higher Froude number. Such a mechanism has been identified in boosting the rise velocity of 
turbulent RT bubbles (10], and by certain species offish to prope l themselves [11]. However, note that the appearance 
of secondary KH instabilities in RT is confined to small dens ity di fferences. This is consistent with linear stability an&­
lysis of KH flow [4] which suggests that at large dens ity differences, the shear layer growth c; is suppressed inertially 
according to 

(2 .3) 

where ~U is the velocity difference driving the fl ow. Thus, from (2.3) c i -7 0 for A -7 1. This is also observed in our 
2D simulations of KH flow, the growth rates from which are summarized in figure 2.4. The calculations used a square 

cbmain (A.xA.) with the velocity contrast ~U spread across 3 zones and g = 0, since buoyancy is not relevant here. Our 
calculations which correspond to a piecewise linear profi le are in good agreement with the linear stability analysis of [ 4] 
who assumed a step-function for the velocity profile, and wi th [12] who considered a tangent hyperbolic function. Fur­
thermore, the growth rates from theory and NS are only weakly sensi ti ve to A for small density differences. This ex­
plains why the observed acceleration in RT appears at approx imately the same point in time for cases with small A (at 
h/Db -1), since the growth rates of the underlying KH instabil ity remains nearly uniform under such conditions. 

These ideas can be further verified by quantifyi ng the size of secondary vortex cores in RT fo r different A. We adopt 
the definition proposed by (13] that identifies connected regions with two negative eigen-values of the velocity gradient 
tensor as a vortex. This condi tion ensures that a local pressure minimum exists in a vortex core, while at the same time 
eliminating false positives due to unsteady strain ing and viscous effects. Figure 2.5 shows the evolution of the% vcr 
lume occupied by vortex cores (identified using this technique) within the computational domain, as a function of h/Db 
at A = 0.005 and 1.0. Clearly, there is a sudden development of secondary vortex structures near hb/Db- 1, for the low 
Atwood case. This event concides with the onset of the observed acceleration. Conversely, the high Atwood case 
shows no such trend, consistent with the lack of observed acceleration. 
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Figure 2.5 Evolution of % volume of computat ional box occupied by vortex cores at A= .005 and 1.0. 

3SUMMARY 

We have investigated the single-mode Rayleigh -Taylor instab ility in a long box, and at lat~times, so that the results 
bear direct relevance to the turbulent flow. We fi nd that initially, the nonlinear flow is in agreement with the model of 
[2], because their choice of the veloci ty potential fu nction satisfies the no fl ux condition across the interface. At I ate­
times , the behavior depends on the Atwood number. At small A, secondary Kelvin-Helmholtz vortices form on the neck 
of the primary bubble, the induced fl ow from which accelerates the bubb les away from the expected terminal velocity. 
The formation of KH vortices at large A is suppressed, cons istent with the linear stabil ity theory of [4]. We conclude 
that potential flow models are accurate in the regime they are applicable (at high A). At low A, the development of sec­
ondary instabili ties complicate the evolution due to the associated vertical momentum jet propelling the bubbles for­
ward. We suggest further numerical simulations of this simple prob lem to verify our conclusions. 
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