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Abstract: The dependence of the single-mode Rayleigh-Taylor (RT) instability on density difference effects is inves-
tigated using four different numerical codes. As the density difference driving the flow approaches infinity, bubbles
reach a constant terminal velocity, in agreement with the classical result of Layzer [1]. At the same time, spikes are nar-
row and in free-fall, a result which can be understood through simple drag-buoyancy arguments. The extension of these
ideas to finite density differences is characterized by terminal velocity for bubbles early in time in agreement with a
corresponding potential flow theory (Goncharov [2]), and an accelerating flow at latetimes. The late-time acceleration
is a new result and appears to be driven by the formation of Kelvin-Helmholtz rollups, an effect that is not included in
existing nonlinear models of RT.

1 INTRODUCTION

A sharp interface separating two fluids of different densities is Rayleigh -Taylor unstable if an acceleration is directed
from the light fluid to the heavy. In this paper, we consider only monochromatic or single-mode interfacial perturba-
tions of wavelength A and amplitude /. It has been shown [3] that an understanding of this simple flow is necessary be-
fore considering the fully turbulent RT instability. The growth of such perturbations at the interface is at first exponen-
tial [4]

h = hye”, (1.1)
with a growth rate y, and then linear in time, with a corresponding terminal velocity given by

Agh
1+ 4

v=Fr , (1.2)

where £ is a Froude number. The initial growth stage is often referred to as “linear” since only linear terms in the per-
turbation equations are important, while the latter stage is termed nonlinear. In the nonlinear stage, the light fluid rises
as bubbles due to buoyancy, displacing the heavy fluid, which descends as spikes. While (1.1) is an exact result in the
absence of viscosity or other stabilizing effects, the behavior of bubbles and spikes in the nonlinear stage as a function

of the Atwood number ( 4 = P2 = Piy is controversial due to disagreement among proposed models [2,5,6]. The diffe-
Pt P

rences stem from the choice of potential functions and boundary conditions. In this work, we evaluate competing nonli-

near models using numerical simulations, and extend their description to late-times. The results are of interest in descri-

bing the turbulent growth rate & which can be related to the Froude number of the dominant bubbles in a bubblefront

using

_Fr’p +p, D,
8 o, M

o (1.3)

Image analysis from the Linear Electric Motor experiments show that #,/D, > | for leading RT bubbles in a turbulent
flow. To evaluate bubble dynamics in a regime relevant to turbulent flow, we calculate RT single-mode flow in an
elongated box, and at latetimes.
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2 RESULTS

We report on numerical simulations of the single-mode Rayleigh-Taylor problem up to intermediate and latetimes. The
calculations were performed using four different codes, and in an elongated box (AxAx84) to accommodate the late-time
growth. 3D perturbations of the form

h(x,y) = hy{cos(kx) + cos(ky)} @2.1)

were used, with the amplitude chosen such that ki, << 1. Three of the codes belong to the MILES category, while a
fourth Direct Numerical Simulation (DNS) was also employed. Other details of the calculations, including descriptions
of the algorithms used are provided in [7].

Figure 2.1 is a plot of the Froude numbers deduced from the intermediatetime saturation velocities of bubbles from the
codes used in this study as a function of the Atwood number, All the codes give a constant Fr = 0.56 in agreement with
[2], but not with [5] and [6] who predict a different functional form for the Froude numbers. This is because the form of
potential functions used in [2] satisfies the condition of zero net mass-flux across the interface.
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Figure 2.1 Froude numbers from 3D NS and potential flow theory of [2].
While bubbles reach a terminal velocity for intermediate times at all A, figure 22 (a) shows that spikes resemble bubble
behavior at small A4, but accelerate at larger density differences. As4 > 1, |, - ‘ﬁﬁ from drag buoyancy models
: 1-A4 k

[8] and potential flow theory of [2] becomes unbounded, and spikes are in free-fall. This can be understood from a sim-
ple balance of drag and buoyancy terms on the spike objects:

h, = Ag — Ch? T S (2.2)
P+ Py h,

1
For4 - 1 (p; = 0), equation (2.2) and our NS (figure 2.2 (b)) give h; ~ ngz . Finally, by applying mass conserv a-

tion on any horizontal plane, it also follows that as 4> 1, bubble diameters increase while spike diam eers become va-
nishingly small.
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Figure 2.2 (a) Time evolution of spike velocities at different A. (b)Non-dimensional spike

acceleration coefficient vs. A,

Figure 2.3 shows the evolution of bubble Froude numbers up to late times for different Atwood numbers. The Froude
number is plotted against the bubble aspect ratio h4/D;. The small 4 calculations exhibit a curious acceleration away
from the terminal velocity, followed by a saturation to a higher Fr late in time, while the large 4 cases (4>0.5) remain
terminal. This behavior is observed in all of the codes used here, and occurs at hy/Dj ~1. Such a deviation from the clas-
sical potential flow result has been observed earlier by [9] who attribute the effect to bubble-tip curvature effects. Ho-

wever, our image analysis indicates that this is not the case.
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Figure 2.3 Time history of bubble Froude numbers from NS at different A.
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Figure 2.4 Kelvin-Helmholtz growth rates fram 2D NS and linear stability theory.

We attribute the observed behavior to the formation of secondary Kelvin-Helmholtz (KH) vortices on the neck of the
bubbles at small density differences. The induced flow from such secondary vortices creates a momentum jet that acce-
lerates the bubbles to a higher Froude number. Such a mechanism has been identified in boosting the rise velocity of
turbulent RT bubbles [10], and by certain species of fish to propel themselves [11]. However, note that the appearance
of secondary KH instabilities in RT is confined to small density differences. This is consistent with linear stability ana-
lysis of KH flow [4] which suggests that at large density differences, the shear layer growth ¢; is suppressed inertially
according to

c, =+ —kl(AU)ZL, 2.3)
' ) (.\O1+J02)2

where AU is the velocity difference driving the flow. Thus, from (2.3) ¢; = 0 for A = 1. This is also observed in our
2D simulations of KH flow, the growth rates from which are summarized in figure 2.4. The calculations used a square
domain (AxA) with the velocity contrast AU spread across 3 zones and g = 0, since buoyancy is not relevant here. Our
calculations which correspond to a piecewise linear profile are in good agreement with the linear stability analysis of [4]
who assumed a step-function for the velocity profile, and with [12] who considered a tangent hyperbolic function. Fur-
thermore, the growth rates from theory and NS are only weakly sensitive to A for small density differences. This ex-
plains why the observed acceleratio n in RT appears at approximately the same point in time for cases with small A (at
hy /Dy ~1), since the growth rates of the underlying KH instability remains nearly uniform under such conditions.

These ideas can be further verified by quantifying the size of secondary vortex cores in RT for different A. We adopt
the definition proposed by [13] that identifies connected regions with two negative eigen-values of the velocity gradient
tensor as a vortex. This condition ensures that a local pressure minimum exists in a vortex core, while at the same time
eliminating false positives due to unsteady straining and viscous effects. Figure 2.5 shows the evolution of the % vo-
lume occupied by vortex cores (identified using this technique) within the computational domain, as a function of hy/D,
at 4 = 0.005 and 1.0. Clearly, there is a sudden development of secondary vortex structures near #,/D; ~ 1, for the low
Atwood case. This event concides with the onset of the observed acceleration. Conversely, the high Atwood case
shows no such trend, consistent with the lack of observed acceleration.
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Figure 2.5 Evolution of % volume of computational box occupied by vortex cores at A = .005 and 1.0.

3 SUMMARY

We have investigated the single-mode Rayleigh -Taylor instability in a long box, and at latetimes, so that the results
bear direct relevance to the turbulent flow. We find that initially, the nonlinear flow is in agreement with the model of
[2], because their choice of the velocity potential function satisfies the no flux condition across the interface. At ate-
times, the behavior depends on the Atwood number. At small A, secondary Kelvin-Helmholtz vortices form on the neck
of the primary bubble, the induced flow from which accelerates the bubbles away from the expected terminal velocity.
The formation of KH vortices at large A is suppressed, consistent with the linear stability theory of [4]. We conclude
that potential flow models are accurate in the regime they are applicable (at high A). At low A, the development of sec-
ondary instabilities complicate the evolution due to the associated vertical momentum jet propelling the bubbles for-
ward. We suggest further numerical simulations of this simple problem to verify our conclusions.
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