



Project Title  
**Silicon-Nanowire Based Lithium Ion Batteries  
for Vehicles With Double the Energy Density**



Award Number DE-EE0005474  
10/01/2013 through 03/31/2015

Final Scientific/Technical Report  
10/01/2013 through 03/31/2015

Submitted

|           |                                         |                       |
|-----------|-----------------------------------------|-----------------------|
| Signature | /Ionel Stefan/                          | /Yehonathan Cohen/    |
| Date      | 4/2/2015                                | 4/2/2015              |
| Name      | Ionel Stefan                            | Yehonathan Cohen      |
| Title     | Principal Investigator                  | Project Manager       |
| E-mail    | ionel@amprius.com                       | yoni@amprius.com      |
| Telephone | 1-800-425-8803 ext. 9                   | 1-800-425-8803 ext. 7 |
| Address   | 225 Humboldt Court, Sunnyvale, CA 94089 |                       |

Recipient

Amprius, Inc.  
225 Humboldt Court  
Sunnyvale, CA 94043

DUNS: 828688205

## **Table of Contents**

|                                          |    |
|------------------------------------------|----|
| Executive Summary                        | 4  |
| Accomplishments vs. Goals and Objectives | 5  |
| Summary of Project Activities            | 6  |
| Products Developed                       | 11 |

## List of Figures

*Figure 1* – Higher specific capacity lowers anode and cell costs

*Figure 2* – Eliminating (or increasing the efficiency of) Amprius’ thermal CVD “cap” and transitioning to a lower cost substrate would significantly reduce anode and cell costs

*Figure 3* – 12 of the 18 cells Amprius shipped to INL during Budget Period II

*Figure 4* – 40 of the 48 end-of-project cells Amprius built during Budget Period III.

Amprius kept 24 cells for internal testing and delivered 24 to INL for independent testing

*Figure 5* – During Budget Period III, Amprius increased both energy density (left) and specific energy (right) by more than 20%

## List of Tables

*Table 1* – DOE support enabled Amprius to improve both anode structure and manufacturing

*Table 2* – Amprius increased cell energy more than 20% during the project’s final year

*Table 3* – Amprius completed all project milestones

*Table 4* – Specifications for the 18 Budget Period II cells Amprius shipped to INL

*Table 5* – Specifications for the 24 Budget Period III cells Amprius shipped to INL

## Executive Summary

*Amprius researched and developed silicon nanowire anodes. Amprius then built and delivered high-energy lithium-ion cells that met the project's specific energy goal and exceeded the project's energy density goal. But Amprius' cells did not meet the project's cycle life goal, suggesting additional manufacturing process development is required.*

With DOE support, Amprius developed a new anode material, silicon, and a new anode structure, nanowire.

- Amprius transitioned from building *small, single-layer* anodes to producing *larger, double-sided, multilayer* anodes, enabling Amprius to progress from stamp cells with low capacities to larger cells with >2Ah capacities.
- Amprius transitioned from building anodes with *low* silicon mass loading on *thick* substrates to producing anodes with *higher* silicon mass loading on *thin* substrates, enabling Amprius to increase cell energy from 200 Wh/kg and 520 Wh/L to 330 Wh/kg and 791 Wh/L.

During the project, Amprius also began to develop a new multi-step manufacturing process that does not involve traditional anode production processes (e.g. mixing, drying and calendaring).

- Amprius transitioned from a single-step process involving only thermal Chemical Vapor Deposition [CVD] to a multi-step process requiring both thermal CVD and plasma-enhanced CVD, enabling Amprius to extend cell cycle life from 180 cycles to 300-500 cycles.

|                           | Before DOE Project                  | Budget Period I                | Budget Period II                                | Budget Period III                       |
|---------------------------|-------------------------------------|--------------------------------|-------------------------------------------------|-----------------------------------------|
| Anode Size                | Exclusively<br>~529 mm <sup>2</sup> | Mostly<br>~529 mm <sup>2</sup> | Overwhelmingly<br>~2400 mm <sup>2</sup>         | Overwhelmingly<br>~2400 mm <sup>2</sup> |
|                           | Exclusively<br>Single-Sided         | Mostly<br>Single-Sided         | Overwhelmingly<br>Double-Sided                  | Overwhelmingly<br>Double-Sided          |
| Anode Substrate Thickness | Exclusively 75 µm                   | Mostly 75 µm                   | No 75 µm                                        | Exclusively 10 µm                       |
|                           |                                     | Some 15 µm                     | Some 10 µm                                      |                                         |
|                           |                                     |                                | Overwhelmingly 15 µm                            |                                         |
| Cathode Areal Loading     | Exclusively Lower                   | Mixed, Mostly Lower            | Mostly Higher                                   | Higher                                  |
| Cell Layers               | Exclusively                         | Overwhelmingly                 | Split Between<br>Single-Layer and<br>Multilayer | Overwhelmingly                          |
|                           | Single-Layer                        | Single-Layer                   |                                                 | Multilayer                              |
| Manufacturing Process     | Thermal CVD                         | Thermal CVD                    | Thermal CVD<br>and PE-CVD                       | Thermal CVD<br>and PE-CVD               |

Table 1 – DOE support enabled Amprius to improve both anode structure and manufacturing

*Amprius' research added to understanding of the area investigated.* Amprius' work advanced understanding of a silicon nanowire anode structure that enables both high energy and long cycle life. Amprius' research also advanced understanding of a new production process for silicon nanowire anodes.

*The methods and techniques Amprius investigated are technically effective and economically feasible.* Amprius' development effort enabled the company to produce high-energy and long life silicon nanowire-based cells. Amprius' cost model suggests that volume manufacturing will enable production of silicon nanowire anodes at or below the per kilowatt-hour cost of premium graphite anodes.

*Amprius' project benefited the public.* DOE support accelerated Amprius' progress with silicon nanowire-based cells, facilitating the development and production of high-energy and low-cost batteries that will accelerate vehicle electrification, reducing America's dependence on foreign oil and greenhouse gas emissions.

### **Accomplishments vs. Goals and Objectives**

Amprius delivered 24 end-of-project cells to Idaho National Laboratory [INL]. The cells' average specific energy, 330 Wh/kg, met the project's goal, 330 Wh/kg. The cells' average energy density, 791 Wh/L, far exceeded the project's goal, 680 Wh/L.

Amprius tested end-of-project cells similar to those Amprius had shipped to INL. Amprius' end-of-project cycle life, >300 cycles, did not meet the project's goal, ≥750 cycles. (In Year 2, Amprius achieved >500 cycles. In Year 3, a new electrolyte improved high temperature performance, but at the expense of cycle life). Amprius did demonstrate more than 700 cycles in a single-layer cell, but could not replicate its results in a multi-layer cell – suggesting additional process development is required to achieve the long cycle life required for EV applications.

|                                                            | <b>Year 2<br/>Project Goal</b> | <b>Year 2<br/>Amprius Cells*</b> | <b>Year 3<br/>Project Goal</b> | <b>Year 3<br/>Amprius Cells**</b> |
|------------------------------------------------------------|--------------------------------|----------------------------------|--------------------------------|-----------------------------------|
| <b>Capacity</b>                                            | 2 – 2.2 Ah                     | 2.36 Ah                          | 2.2 – 2.4 Ah                   | 2.66 Ah                           |
| <b>Wh/kg</b>                                               | 250 Wh/kg                      | 271 Wh/kg                        | 330 Wh/kg                      | 330 Wh/kg                         |
| <b>Wh/L</b>                                                | 580 Wh/L                       | 646 Wh/L                         | 680 Wh/L                       | 791 Wh/L                          |
| <b>Cycle Life<br/>(to 80% of<br/>Initial<br/>Capacity)</b> | >300                           | >500                             | >750                           | >300                              |
|                                                            | at 80% Depth<br>of Discharge   | at 80% Depth<br>of Discharge     | at 80% Depth<br>of Discharge   | at 80% Depth<br>of Discharge      |

*Table 2 – Amprius increased cell energy more than 20% during the project's final year*

*\*Average energy of cells delivered to Idaho National Laboratory (INL), as measured at Amprius before shipment. Maximum cycle life tested at INL, as measured by INL*

*\*\*Average energy of cells delivered to INL, as measured at Amprius before shipment.*

*Maximum cycle life tested at Amprius, as measured by Amprius.*

## Summary of Project Activities

Amprius divided project work into four key development areas: anode substrate, anode production (i.e. anode template and coating) and cell build. In each area, Amprius made key advances.

*Anode Substrate:* Amprius successfully transitioned from thick 75  $\mu\text{m}$  foils to thin 10  $\mu\text{m}$  foils. Amprius also established specifications for high yield production and qualified foil vendors capable of meeting Amprius' new specifications.

*Anode Production:* Amprius developed a multi-step silicon nanowire anode production process that uses thermal CVD to produce nanowire templates and plasma-enhanced CVD to coat the nanowires. Amprius then optimized template growth and coating processes to enable production of short and sparse nanowires with high silicon mass loading.

*Cell Build:* Amprius improved cell build processes (e.g. by testing and incorporating new and thinner cell components).

During the project, Amprius encountered and overcame key challenges.

*Original hypothesis:* Amprius' most important hypothesis turned out to be true. Replacing the traditional anode material, carbon, with a new material, silicon, increases cell energy. More importantly, replacing the traditional anode structure, particles, with a new structure, nanowires, enables silicon to expand and contract successfully, addressing silicon's first-order challenge, swelling. Silicon nanowire anodes thus enable both high energy and long cycle life.

However, several of Amprius' less important hypotheses turned out not to be true. Explicitly, Amprius' project proposal and plan suggested that BASF would successfully develop high-energy NCM and thermal CVD alone would enable production of silicon nanowire anodes with the uniformity required for long cycle life. Implicitly, the project plan assumed that existing substrates would enable production of nanowires with the characteristics necessary for high energy.

*Approaches used:* Amprius focused on developing silicon nanowire anodes, as proposed and planned. During each project year, Amprius made progress in improving silicon nanowire anode structure, enlarging anode size, and/or increasing anode uniformity. Better silicon nanowire anodes enabled higher-energy cells; Amprius each year achieved higher-energy than prior year.

*Problems encountered and departure from planned methodology:* Amprius encountered several key challenges during project development. First, BASF didn't advance high-energy NCM as projected. As a result, Amprius was unable to achieve the project's initial energy targets, which Amprius had calculated based on both Amprius' development of silicon nanowire anodes (inside the project) and BASF's projected improvements to NCM cathodes (outside the project). Amprius therefore built the interim and end-of-project cells with LCO cathodes – the material with which Amprius has the most experience and which therefore enabled Amprius to focus on silicon anode development.

Second, thermal CVD alone did not enable the production of silicon nanowire anodes with the attributes required for long cycle life. During Budget Periods I and II, Amprius found that coating nanowires using thermal CVD produced a “base layer,” a thick film of silicon at the base of the substrate. This continuous “base layer” provided little to no room for silicon to expand during lithiation, causing anode wrinkling and limiting cycle life. During Budget Period II, Amprius transitioned to PE-CVD for coating nanowires. Amprius then found that PE-CVD did not produce a significant “base layer,” and thus enabled long life by eliminating the failure mechanism of anodes coated with only thermal CVD.

Third, existing substrates did not enable production of nanowires with the characteristics necessary for high energy density. During Budget Periods II and III, Amprius found that currently available substrates were too thick, rough and large-grained to enable production of the short, sparse and uniform nanowires required to facilitate high silicon mass loading and enable high energy density. During Budget Periods II and III, Amprius therefore worked with foil re-rollers to develop a detailed specification for the thin, smooth and small-grained substrate required for high energy density anodes.

*Assessment of problems’ impact on project results:* Amprius was able to overcome the second challenge by incorporating PE-CVD into its production process and address the third challenge by developing a more specific substrate specification. However, the first challenge proved to be more problematic. Without advances in high-energy NCM cathodes, Amprius could not – with silicon anodes alone – achieve the project’s initial energy targets. After Amprius concluded – and the DOE concurred – that the project should focus on development of silicon nanowire anodes, Amprius therefore had no choice but to reduce project targets from 396 Wh/kg and 940 Wh/L (to 330 Wh/kg and 680 Wh/L; the maximum values Amprius’ model suggested were attainable when the targets were revised).

Amprius completed all projects milestones. *See Table 3.* Amprius reported on prior milestones in the company’s quarterly reports – but committed to describing its cost model and commercialization plan in the final report.

| Phase | New # | Process Step    | Milestone                                                                                 | Planned Completion Month (Since Year 2 Inception) | Status   |
|-------|-------|-----------------|-------------------------------------------------------------------------------------------|---------------------------------------------------|----------|
| II    | M1    | Anode Substrate | Selected Anode Substrate                                                                  | 18                                                | Complete |
| II    | M2    | Anode Template  | Identified Thermal CVD Process to Build Anode Templates on 10-12 $\mu\text{m}$ Substrates | 15                                                | Complete |
| II    | M3    | Template        | Achieved 250 Anode Templates/Day Processing Capacity                                      | 6                                                 | Complete |
| II    | M4    | Anode Template  | Integrated Manufacturing Metrology Into Anode Template Production Process                 | 8                                                 | Complete |

|     |     |               |                                                                                                                                                                                      |    |          |
|-----|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|
| II  | M5  | Anode Coating | Demonstrated that a PECVD Tool can Achieve the Target Structure                                                                                                                      | 9  | Complete |
| II  | M6  | Anode Coating | Identified and Documented Metrology Recipe for Critical Parameters                                                                                                                   | 7  | Complete |
| II  | M7  | Anode Coating | Identified First Order Process Conditions Necessary to Tune Anode Coating Structure                                                                                                  | 5  | Complete |
| II  | M8  | Anode Coating | Set a Working Specification for Process Conditions Necessary to Achieve Target Structure                                                                                             | 7  | Complete |
| II  | M9  | Anode Coating | Revised the Working Specification for Process Conditions Necessary to Achieve Target Structure                                                                                       | 9  | Complete |
| II  | M10 | Anode Coating | Identified a Coating Process and Structure to Enable $\geq 950\text{mAh/cc}$ and 300+ Cycles when Matched With either LCO in 2-2.2 Ah Multi-Layer Cells                              | 10 | Complete |
| III | M11 | Anode Coating | Identified a Coating Process and Structure to Enable $\geq 1,200\text{ mAh/cc}$ and 750+ Cycles when Matched With LCO in 2-2.2 Ah Multi-Layer Cells                                  | 18 | Complete |
| II  | M12 | Anode Coating | Made a Go/No Go Decision on Additional Electron Beam Evaporation Development                                                                                                         | 6  | Complete |
| II  | M13 | Cell Build    | Specified Prelithiation Protocol for PECVD Silicon, Brought Tools Online                                                                                                             | 18 | Complete |
| II  | M14 | Cell Build    | Documented Design of 2-2.2 Ah Multi-Layer Pouch Cell (Interim Cell for Phase 2)                                                                                                      | 3  | Complete |
| II  | M15 | Cell Build    | Demonstrated Initial Performance Target with an LCO Cathode [Cycle Life $\geq 200$ , Wh/kg $\geq 250$ and Wh/L $\geq 580$ ] in 2-2.2 Ah Multi-Layer Cell (Interim Cell for Phase 2)  | 6  | Complete |
| II  | M16 | Cell Build    | Demonstrated Interim Performance Target with an LCO Cathode [Cycle Life; $\geq 300$ , Wh/kg $\geq 250$ and Wh/L $\geq 580$ ] in 2-2.2 Ah Multi-Layer Cell (Interim Cell for Phase 2) | 10 | Complete |
| II  | M17 | Cell Delivery | Delivered 18 Interim 2-2.2 Ah Silicon-LCO Multi-Layer Cells and Test Plans                                                                                                           | 10 | Complete |
| II  | M18 | Cell Delivery | Delivered Interim Cell Test Report                                                                                                                                                   | 10 | Complete |
| II  | M19 | Cell Delivery | Updated Interim Cell Test Report (for Self-Discharge and Shelf Life Test Results)                                                                                                    | 12 | Complete |
| III | M20 | Cell Build    | Reported on Latest High-Energy NCM Performance in Quarterly Reports                                                                                                                  | 21 | Complete |
| III | M21 | Cell Build    | Documented Design of 2.2-2.24 Ah Multi-Layer Cell (Final Cell for Phase 3)                                                                                                           | 15 | Complete |

|     |     |                              |                                                                                                                                                                                   |           |                                                                    |
|-----|-----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------|
| III | M22 | Cell Build                   | Selected Candidate Cell Designs for State of the Art Builds                                                                                                                       | 15        | Complete                                                           |
| III | M23 | Cell Build                   | Demonstrated Final Performance Target with a LCO Cathode [Cycle Life; $\geq 750$ , Wh/kg $\geq 330$ and Wh/L $\geq 680$ ] in 2.2-2.4 Ah Multi-Layer Cell (Final Cell for Phase 3) | 18        | Complete; <i>Cycle Life &gt;300-500, not <math>\geq 750</math></i> |
| III | M24 | Cell Delivery                | Delivered 24 Final 2.2-2.4 Ah Silicon-LCO Multi-Layer Cells and Test Plans                                                                                                        | 21        | Complete                                                           |
| III | M25 | Cell Delivery                | Delivered Final Cell Test Report                                                                                                                                                  | 21        | Complete                                                           |
| III | M26 | Technology Commercialization | Identified Large Scale Manufacturing Process, Tools and Costs                                                                                                                     | 20        | Complete                                                           |
| III | M27 | Technology Commercialization | Manufacturing Cost Model (in Final Report)                                                                                                                                        | 21        | Complete                                                           |
| III | M28 | Technology Commercialization | Commercialization Plan (in Final Report)                                                                                                                                          | 21        | Complete                                                           |
| III | M29 | Reporting                    | Delivered Quarterly Reports                                                                                                                                                       | Quarterly | Complete                                                           |

Table 3 – Amprius completed all project milestones

*Manufacturing Cost Model.* Amprius' cost model suggests that volume manufacturing will enable Amprius to produce (1) silicon nanowire anodes at or below the per kilowatt-hour cost of premium graphite anodes and (2) silicon nanowire-based cells at or below the per kilowatt-hour cost of State of the Art cells.

During (and outside) the project, Amprius demonstrated proof-of-concept for continuous, roll-to-roll manufacturing. Amprius then initiated design of a pilot tool – a design that better enables Amprius to project costs for volume manufacturing. Amprius' latest model assumes that to enable high energy and reduce production costs, Amprius will commercialize silicon anodes with specific capacities of at least 1,500 mAh/g. *See Figure 1.*

Amprius' cost model details three scenarios: (1) conservative (2) improved manufacturing and (3) improved manufacturing and lower-cost materials. The (1) conservative scenario assumes that Amprius will continue to produce silicon nanowire anodes using its existing process and substrate material. The (2) improved manufacturing scenario assumes that Amprius will eliminate or increase the efficiency of its third and final anode manufacturing step, the [post-PE-CVD] use of thermal CVD to create a “cap” that reinforces the nanowire. The (3) improved manufacturing and lower-cost materials scenario assume that Amprius eliminates or increases the efficiency of its thermal CVD “cap” AND transitions to a lower cost anode substrate. *See Figure 2.*

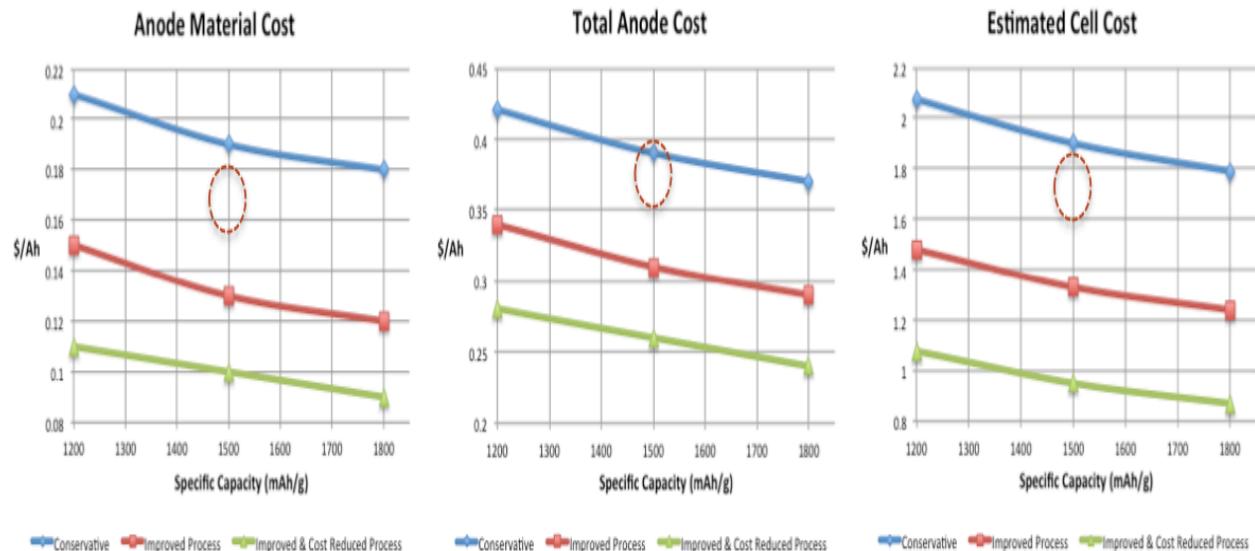



Figure 1 – Higher specific capacity lowers anode and cell costs

Figure 2 is a table showing anode cost components for three scenarios. The table has columns for Assumptions, Thermal Cap (Y/N), Argon (\$/m), Substrate (\$/kg), Silane (\$/kg), Anode Cost (\$/Ah), Material Only (\$/Ah), and Cell Cost\* (\$/Ah).

| Assumptions                   | Thermal Cap (Y/N) | Argon (\$/m) | Substrate (\$/kg) | Silane (\$/kg) | Anode Cost (\$/Ah) | Material Only (\$/Ah) | Cell Cost* (\$/Ah) |
|-------------------------------|-------------------|--------------|-------------------|----------------|--------------------|-----------------------|--------------------|
| Conservative                  | Y                 | 4            | 60                | 33             | 0.39               | 0.19                  | 1.90               |
| Improved Process              | N                 | 2            | 60                | 33             | 0.31               | 0.13                  | 1.33               |
| Improved Process & Lower Cost | N                 | 2            | 35                | 28             | 0.26               | 0.10                  | 0.95               |

**Likely cost in between these values**

\* cell cost assumes 10% anode material cost

Specific Capacity: 1,500 mAh/g  
Reversible Capacity: 3.85 mAh/cm<sup>2</sup>

Figure 2 – Eliminating (or increasing the efficiency of) Amprius' thermal CVD "cap" and transitioning to a lower cost substrate would significantly reduce anode and cell costs

**Commercialization Plan.** Amprius and its investors believe strongly in the electric vehicle opportunity. During Amprius' DOE-supported development, Amprius in 2014 briefed nearly all the major car companies on the company's progress. In January 2015, Amprius began a USABC-supported 3-year project to develop vehicle-size cells that will meet PEV requirements. At project's end, Amprius will start producing and selling cells for EV applications. In the interim, Amprius will continue to increase cell performance and support pilot tool development for anode production. In 2016, Amprius will begin to sample and sell cells for small form-factor products. Starting to sell silicon nanowire-based cells for such applications will help Amprius improve its anode and cell production processes and prepare the company to enter the EV cells

market.

### **Products Developed**

Amprius regularly reported to the DOE about its progress, summarized project progress during DOE visits to Amprius' laboratory and presented at DOE Annual Merit Reviews. In addition, Amprius has made and elected title to more than 20 invention disclosures as a result of DOE-funded research.

However, Other than DOE required reporting, Amprius has not publicly released information about its progress in the DOE project. Amprius has not reported on its progress in publications, conference papers or presentations, detailed its results on any websites or shared details on its proprietary technologies and techniques.

Amprius developed and delivered high-energy cells matching silicon nanowire anodes with LCO cathodes. During Budget Period II, Amprius delivered 18 cells to Idaho National Laboratory. *See Figure 3.* As measured at Amprius, the cells' average energies, 271 Wh/kg and 646 Wh/L, far exceeded the project's interim targets, 250 Wh/kg and 580 Wh/L. *See Table 4* for individual cell specifications. As tested at INL, maximum cycle life, >500 at C/3 and 80% depth of discharge, far exceeded the project's interim target,  $\geq 300$  cycles at C/3 and 80% depth of discharge.

At INL, Amprius' cells also passed Hybrid Pulse Power Characterization [HPPC] testing and demonstrated impressive capacity across a wide temperature range. Amprius' cells retained  $\sim 85\%$  of their capacity at 0°C and C/3 and achieved  $\sim 105\%$  of their capacity at 45°C and C/3.



*Figure 3 – 12 of the 18 cells Amprius shipped to INL during Budget Period II*

| Device-ID  | Nominal Device Capacity (mAh) | Nominal Device Energy (Wh) | Nominal Discharge Voltage at C/2 (V) | GED (Wh/kg) | VED (Wh/L) | Shipping OCV (V) | Shipping Z(1kHz) / mΩ | Shipping Thickness / mm | Weight/g |
|------------|-------------------------------|----------------------------|--------------------------------------|-------------|------------|------------------|-----------------------|-------------------------|----------|
| D-15326    | 2471.51                       | 8.74                       | 3.54                                 | 286         | 680        | 3.53             | 14.6                  | 4.48                    | 30.59    |
| D-15444    | 2368.64                       | 8.31                       | 3.51                                 | 272         | 638        | 3.56             | 18.7                  | 4.54                    | 30.55    |
| D-15453    | 2374.74                       | 8.32                       | 3.50                                 | 274         | 641        | 3.56             | 20.2                  | 4.52                    | 30.36    |
| D-15479    | 2402.49                       | 8.45                       | 3.52                                 | 274         | 650        | 3.55             | 16.2                  | 4.53                    | 30.90    |
| D-15489    | 2345.52                       | 8.24                       | 3.51                                 | 267         | 629        | 3.56             | 16.4                  | 4.56                    | 30.84    |
| D-15532    | 2337.12                       | 8.20                       | 3.51                                 | 265         | 621        | 3.57             | 15.5                  | 4.63                    | 30.95    |
| D-15809    | 2348.51                       | 8.30                       | 3.53                                 | 270         | 659        | 3.55             | 15.0                  | 4.37                    | 30.70    |
| D-15810    | 2398.39                       | 8.53                       | 3.56                                 | 279         | 673        | 3.54             | 17.3                  | 4.35                    | 30.57    |
| D-15811    | 2291.63                       | 8.07                       | 3.52                                 | 261         | 618        | 3.57             | 19.6                  | 4.42                    | 30.90    |
| D-15812    | 2335.52                       | 8.22                       | 3.52                                 | 267         | 633        | 3.57             | 17.1                  | 4.49                    | 30.81    |
| D-15856    | 2340.72                       | 8.23                       | 3.52                                 | 266         | 634        | 3.56             | 15.7                  | 4.49                    | 30.98    |
| D-15857    | 2394.41                       | 8.48                       | 3.54                                 | 272         | 653        | 3.54             | 15.8                  | 4.45                    | 31.13    |
| D-15858    | 2381.25                       | 8.41                       | 3.53                                 | 278         | 650        | 3.54             | 16.5                  | 4.48                    | 30.25    |
| D-15859    | 2393.10                       | 8.46                       | 3.54                                 | 276         | 646        | 3.54             | 15.7                  | 4.52                    | 30.71    |
| D-15860    | 2394.57                       | 8.47                       | 3.54                                 | 271         | 652        | 3.54             | 16.2                  | 4.47                    | 31.21    |
| D-15861    | 2258.15                       | 8.00                       | 3.54                                 | 264         | 646        | 3.54             | 15.0                  | 4.28                    | 30.35    |
| D-15864    | 2359.38                       | 8.33                       | 3.53                                 | 270         | 659        | 3.56             | 14.4                  | 4.38                    | 30.85    |
| D-15865    | 2335.14                       | 8.25                       | 3.53                                 | 267         | 653        | 3.55             | 15.4                  | 4.37                    | 30.83    |
| Average    | 2362.82                       | 8.33                       | 3.53                                 | 271.06      | 646.39     | 3.55             | 16.41                 | 4.46                    | 30.75    |
| St. Dev    | 46.84                         | 0.17                       | 0.01                                 | 6.15        | 16.24      | 0.01             | 1.64                  | 0.09                    | 0.26     |
| St. Dev, % | 1.98%                         | 2.10%                      | 0.42%                                | 2.27%       | 2.51%      | 0.35%            | 9.99%                 | 1.94%                   | 0.86%    |

Table 4 –Specifications for the 18 Budget Period II cells Amprius shipped to INL

During Budget Period III, Amprius delivered 24 cells to Idaho National Laboratory. See Figure 4. As measured at Amprius, the cells' average energies, 330 Wh/kg and 791 Wh/L, met the project's final specific energy goal, 330 Wh/kg, and far exceeded the project's final energy density goal, 680 Wh/L. See Table 5 for individual cell specifications. As tested at Amprius, maximum cycle life, >300 at C/3 and 80% depth of discharge did not approach the project's final cycle life goal,  $\geq 750$  cycles at C/3 and 80% depth of discharge.

At Amprius, end-of-project cells also passed HPPC testing and demonstrated impressive capacity across a wide temperature range. During Budget Period III, Amprius' cells retained  $\sim 90\%$  of their capacity at  $0^{\circ}\text{C}$  and C/3 – a 5% improvement over Budget Period II – and achieved  $\sim 105\%$  of their capacity at  $45^{\circ}\text{C}$  and C/3. During Budget Period III, Amprius' new electrolyte thus improved high temperature performance – but at the expense of cycle life.



*Figure 4 – 40 of the 48 end-of-project cells Amprius built during Budget Period III. Amprius kept 24 cells for internal testing and delivered 24 to INL for independent testing*

During the project's final year, Amprius significantly improved anode and cell uniformity. The standard deviation of the specific energies of Amprius' Budget Period III cells – less than 1% – was far lower than that of Amprius' Budget Period III cells – more than 6%.

During Budget Period III, Amprius also increased cell energy by more than 20%. *See Figure 5.* Amprius' end-of-project silicon anode-based cells have ~35-40% higher energy than similarly sized graphite anode-based cells.

| Device-ID  | Nominal Values at C/20 Rate |             |             |             |            | Nominal Values at C/3 Rate |             |             |             |            | Specifications at Shipping |             |                |            |             |            |
|------------|-----------------------------|-------------|-------------|-------------|------------|----------------------------|-------------|-------------|-------------|------------|----------------------------|-------------|----------------|------------|-------------|------------|
|            | Capacity (Ah)               | Energy (Wh) | Voltage (V) | GED (Wh/kg) | VED (Wh/L) | Capacity (mAh)             | Energy (Wh) | Voltage (V) | GED (Wh/kg) | VED (Wh/L) | OCV (V)                    | Z@1kHz (mΩ) | Thickness (mm) | Width (mm) | Height (mm) | Weight (g) |
| 20452      | 2.635                       | 9.540       | 3.621       | 341         | 799        | 2.537                      | 9.060       | 3.572       | 324         | 758        | 3.65                       | 17.7        | 4.34           | 49.77      | 57.16       | 27.95      |
| 20453      | 2.650                       | 9.570       | 3.611       | 342         | 823        | 2.577                      | 9.200       | 3.571       | 329         | 791        | 3.65                       | 15.3        | 4.23           | 50.23      | 57.27       | 27.99      |
| 20463      | 2.647                       | 9.590       | 3.622       | 341         | 798        | 2.569                      | 9.200       | 3.581       | 327         | 765        | 3.65                       | 14.9        | 4.37           | 50.02      | 56.68       | 28.15      |
| 20500      | 2.696                       | 9.494       | 3.521       | 347         | 825        | 2.651                      | 9.160       | 3.455       | 334         | 796        | 3.61                       | 12.5        | 4.19           | 50.02      | 56.63       | 27.39      |
| 20524      | 2.625                       | 9.500       | 3.619       | 341         | 816        | 2.562                      | 9.170       | 3.579       | 329         | 788        | 3.64                       | 16.5        | 4.23           | 50.45      | 57.55       | 27.86      |
| 20594      | 2.679                       | 9.624       | 3.593       | 340         | 807        | 2.616                      | 9.269       | 3.543       | 328         | 777        | 3.63                       | 14.1        | 4.34           | 50.12      | 56.66       | 28.27      |
| 20601      | 2.660                       | 9.624       | 3.619       | 338         | 803        | 2.612                      | 9.377       | 3.590       | 330         | 783        | 3.64                       | 12.3        | 4.36           | 49.56      | 56.01       | 28.45      |
| 20603      | 2.654                       | 9.627       | 3.627       | 339         | 808        | 2.607                      | 9.372       | 3.595       | 330         | 786        | 3.65                       | 13.0        | 4.34           | 49.76      | 56.72       | 28.40      |
| 20605      | 2.661                       | 9.600       | 3.608       | 341         | 829        | 2.583                      | 9.224       | 3.572       | 328         | 797        | 3.64                       | 14.5        | 4.21           | 50.17      | 57.02       | 28.13      |
| 20606      | 2.658                       | 9.618       | 3.619       | 345         | 845        | 2.583                      | 9.245       | 3.579       | 332         | 813        | 3.64                       | 14.3        | 4.14           | 50.08      | 56.61       | 27.86      |
| 20607      | 2.653                       | 9.595       | 3.616       | 341         | 836        | 2.589                      | 9.207       | 3.556       | 327         | 802        | 3.65                       | 13.3        | 4.17           | 50.04      | 56.94       | 28.15      |
| 20609      | 2.675                       | 9.665       | 3.614       | 341         | 803        | 2.612                      | 9.373       | 3.588       | 330         | 779        | 3.64                       | 14.5        | 4.38           | 50.35      | 57.20       | 28.39      |
| 20629      | 2.673                       | 9.668       | 3.617       | 340         | 797        | 2.626                      | 9.413       | 3.584       | 331         | 776        | 3.64                       | 13.0        | 4.41           | 49.93      | 56.91       | 28.46      |
| 20630      | 2.660                       | 9.639       | 3.624       | 342         | 787        | 2.607                      | 9.357       | 3.590       | 332         | 764        | 3.65                       | 12.4        | 4.46           | 50.01      | 56.63       | 28.15      |
| 20631      | 2.675                       | 9.656       | 3.610       | 343         | 806        | 2.626                      | 9.388       | 3.575       | 333         | 783        | 3.63                       | 13.4        | 4.36           | 49.80      | 56.61       | 28.16      |
| 20632      | 2.669                       | 9.648       | 3.614       | 344         | 811        | 2.615                      | 9.354       | 3.578       | 333         | 786        | 3.64                       | 13.4        | 4.33           | 49.57      | 56.83       | 28.05      |
| 20684      | 2.661                       | 9.660       | 3.630       | 344         | 809        | 2.623                      | 9.432       | 3.596       | 336         | 790        | 3.65                       | 13.4        | 4.34           | 50.07      | 56.71       | 28.09      |
| 20687      | 2.627                       | 9.454       | 3.599       | 336         | 782        | 2.566                      | 9.150       | 3.565       | 325         | 757        | 3.64                       | 13.6        | 4.40           | 49.90      | 56.85       | 28.12      |
| 20708      | 2.669                       | 9.653       | 3.616       | 343         | 836        | 2.625                      | 9.387       | 3.576       | 333         | 813        | 3.38                       | 16.8        | 4.20           | 49.95      | 56.47       | 28.17      |
| 20710      | 2.668                       | 9.661       | 3.621       | 338         | 854        | 2.626                      | 9.411       | 3.584       | 330         | 832        | 3.38                       | 14.9        | 4.11           | 50.01      | 56.89       | 28.55      |
| 20757      | 2.618                       | 9.457       | 3.612       | 336         | 824        | 2.593                      | 9.245       | 3.566       | 328         | 806        | 3.40                       | 20.3        | 4.17           | 49.59      | 57.09       | 28.16      |
| 20759      | 2.659                       | 9.587       | 3.605       | 343         | 854        | 2.595                      | 9.242       | 3.561       | 331         | 824        | 3.33                       | 18.6        | 4.08           | 49.91      | 56.67       | 27.93      |
| 20760      | 2.687                       | 9.691       | 3.607       | 340         | 841        | 2.646                      | 9.443       | 3.569       | 332         | 819        | 3.36                       | 17.3        | 4.19           | 49.76      | 57.23       | 28.47      |
| 20761      | 2.670                       | 9.641       | 3.612       | 341         | 845        | 2.630                      | 9.395       | 3.572       | 333         | 823        | 3.37                       | 15.5        | 4.15           | 49.66      | 56.57       | 28.25      |
| Average    | 2.66                        | 9.60        | 3.61        | 341.16      | 818.23     | 2.60                       | 9.29        | 3.57        | 330.21      | 791.98     | 3.57                       | 14.81       | 4.27           | 49.95      | 56.83       | 28.15      |
| St. Dev    | 0.02                        | 0.07        | 0.02        | 2.57        | 20.86      | 0.03                       | 0.11        | 0.03        | 2.92        | 21.21      | 0.12                       | 2.09        | 0.11           | 0.23       | 0.32        | 0.25       |
| St. Dev, % | 0.72%                       | 0.71%       | 0.58%       | 0.75%       | 2.55%      | 1.08%                      | 1.17%       | 0.77%       | 0.88%       | 2.68%      | 3.37%                      | 14.12%      | 2.53%          | 0.47%      | 0.57%       | 0.90%      |

Table 5 –Specifications for the 24 Budget Period III cells Amprius shipped to INL

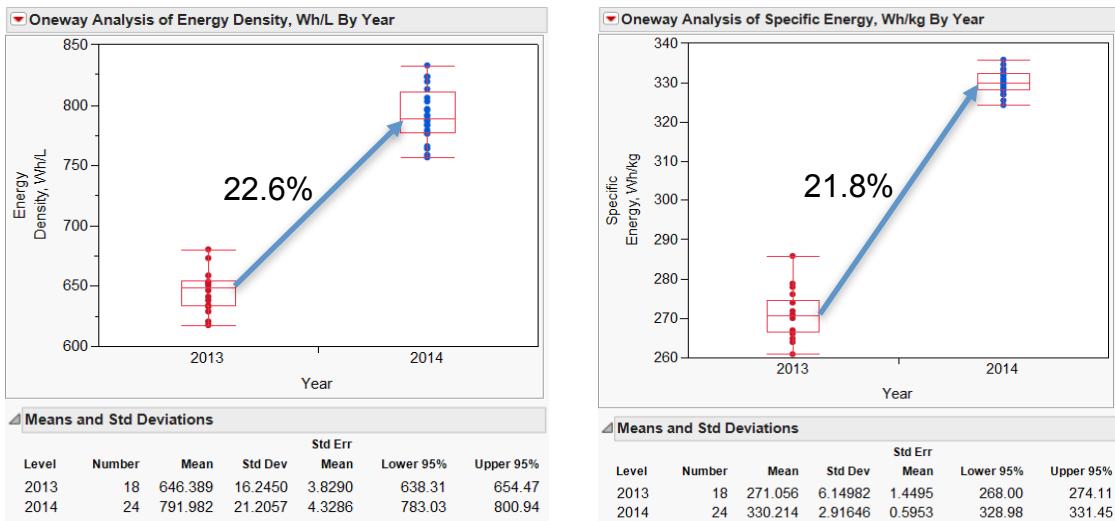



Figure 5 – During Budget Period III, Amprius increased both energy density (left) and specific energy (right) by more than 20%