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Abstract
This report summarizes the beam studies on accelerating asymmetric
beams with unequal frequencies, during the proton-Gold/Aluminum run
in 2015. The experiment failed due to modulated beam-beam effects even
though the beams were separated by at least 15 mm.

1 Introduction

There have been a couple of asymmetric runs in RHIC [1, 2, 3]. The first one is
the 10 weeks deuteron-gold collision in 2003. During the 2003 operation beams
were initially injected with the same rigidity and therefore different revolution
frequencies at injection and the majority part of the ramp. This led to unac-
ceptably high beam loss at injection and during the early part of the energy
ramp. The modulated beam-beam effect due to different revolution frequencies
of the two beams was the underlying cause [4]. The frequencies have been kept
the same for both beams at injection and during the ramp to top energies for
all the rest asymmetrical collision physics programs afterwards.

For proton collision with any fully stripped ions, it is challenging to match the
frequencies of both beams. The DX magnets need to be moved to accommodate
beam orbits, the ramp is specially designed to match injection frequencies [5].
For p-Au(Al) run, Au(Al) beam is filled in the Yellow ring and ramped to cross
transition and sitting at a porch near transition. At the same time mode switch
back to proton. The proton beam was injected then to the Blue ring with the
same revolution frequency. Both beams are accelerated together to the top
energies with matched frequencies all along the ramp.

The increased complexity of the p-Au(Al) operation motivated the revisit of
accelerating beams with unequal frequencies. We did the experiments in both
p-Au and p-Al run. The results of the study in p-Al run will be presented here.

*The work was performed under Contract No. DE-SC0012704 with the U.S. De-
partment of Energy.
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Figure 1: The crossing angles and DO angles for the experimental ramp (Al-p).
Beam crossing angles are defined separately for injection and store on the upper
part. The DO angles in Yellow are shown in the middle lower part. The DX
offsets are the displacement of the DX magnets.

2 Machine setup

In order to avoid the cross talk hetween the common 9 MHz cavity and the
Yellow beam, the 28 MHz cavity was employed for the Blue beam in the study.
The frequency of the 9 MHz cavity was kept 6 kHz below the Yellow heam
frequency. The revolution frequencies of the proton and the Al beam are re-
spectively 78135.4155847 and 77950.4004115 Hz.

The ramp design is hased on the operation ramps for p-Al run. As men-
tioned, the Al beam is injected in the Yellow ring first and accelerated alone
to a intermediate energy. This part is the Alonly15-e0 ramp. The idea is to
inject both beam at nominal energies at the same time and ramp the Al beam
only to the intermediate energy. The ramp, Al-p, is a modified version of the
Alonly15-€0 ramp.

It was necessary to employ some tricks to fit the heams with DX magnets
moved. The DX magnets and other components were moved to accommodate
the asymmetric heams with equal revolution frequencies and different heam
rigidities (by factor of ~ 2.5). The beams in the study are at the nominal
injection bheam rigidities (79.4 Tm for proton, 81.1 Tm for Al). The crossing
angles and DO magnet angles were implemented to not only fit the beams in the
available aperture, but also to keep the power supplies within the limits.



The separation bumps were increased to reduce the beam-beam force for
both beams. The size of the bumps in Blue ring are 8, -8, 10, 10, 10, 10 mm at
IR6, 8, 10, 12, 2, and 4. The size of the bumps in Yellow ring are -7, 7, -9, -9,
-9, -9 mm at IR6, 8, 10, 12, 2, and 4.

3 Beam-beam for asymmetric beams

In this section, the beam-beam force for asymmetric beams will be derived
following the reference [6].

The charge distribution of the incoming beam (beam 2) is assumed Gaussian
distribution. The transverse profile is round. The transverse charge distribution
is given by:
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The beam-beam force experienced by particles in beam 1 is,
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The beam-beam force due to the incoming bunch is the integration of the
two dimensional force and the longitudinal density distribution of the incoming



bunch. The beam-beam kick can be obtained from the integration of the beam-
beam force,
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In p-Au operation, N, = 2.3 x 101, Ny, = 1.6 x 10%, ¢, = 2.5 x 1076, €4, =
3 x 107%. For p-Au collision, the beam-beam parameter for proton beam is
5 x 1073/IP, for Au beam is 4.4 x 1073 /IP.

In the beam study in p-Al, N, = 1.8 x 10", Ny = 1.2 x 10'°. The beam-
beam parameter for proton in head-on collision is 6.2 x 1073/IP, for Al is 4.1 x
103/IP assuming the same emittances as in p-Au.

The beta stars in both rings at injection are about 10 m, and DX is 9.8
m away from the IPs. Therefore, the beta functions at DX magnet is roughly

20 m. The RMS beam size of proton beam at injection is o, = (%) =
(225) = 1.4mm. The RMS beam size of Aluminum beam at injection is

op = J(B2) = /(252) = 22mm.

The beam separation is roughly 10 times beam size, which drops the beam-
beam parameter by a factor of 0.04 [6]. Considering there are long range beam
beam in all 6 IRs, the beam-beam tune shifts are 1.55 x 10~ for proton and
1.02 x 1072 for Al beam. A tune shift of that value is not large enough to cause
large beam losses. However, a tune modulation depth at this level caused major
beam losses in several experiments [7, 8, 9].

The difference in the revolution time of the two beams is AT = 1/fo—1/f1 =
3.0376"%. The time it takes for the same bunches to meet again next turn
is T1 + AT/2 = T2 — AT/2. The crossing point moves by ¢AT/2 during
one turn [4]. The distance from DX on one side to DX magnet on the other
side of IP is AL = 20m, which is the distance the two bunches can see one
another. Therefore, two bunches will experience the beam-beam force from one
another for AL/(¢AT/2) = 4 turns. For the only bunch in one of the ring, the
time it takes to slip into interaction with the next bunch in the other ring is
L/120/(eAT/2) = 7 turns. For the bunches in the full ring. the time it takes to
come back into interaction with the only bunch in the other ring after a slippage
of one sextant of the ring is L/6/(cAT/2) = 140 turns.
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Figure 2: Yellow (Al) beam loss when inject one Blue (proton) bunch. The
Yellow ring was filled with 111 bunches with 1.2 x 10'%ppb.

4 Observation during the study

We were able to fill the Yellow ring with Al bunches first, and injected proton in
the Blue ring. The one proton bunch suffered severe beam loss that the intensity
drop right away (Fig. 2).

After the Blue was filled with proton bunches, we started to inject one Al
bunch in the Yellow ring. The loss of the Al bunches intensity was less severe
(Fig. 3).

Fig. 4 shows the beam loss pattern around the ring.

The beam loss and emittance blow-up was so severe that no further beam-
beam observation was possible.
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Figure 3: Blue (proton) beam loss when inject one Yellow (Al) bunch.
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Figure 4: The beam loss pattern around RHIC. From left to right, the first line
is beam loss at IR6, the second line is beam loss around b06-qd9, the third line
is beam loss at the Yellow collimator, the fourth line is beam loss at the Blue

dump.
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