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Abstract—In recent years, there has been a huge growth in
the amount of genomic data available as reads generated from
various genome sequencers. The number of reads generated
can be huge, ranging from hundreds to billions of nucleotide,
each varying in size. Assembling such large amounts of data
is one of the challenging computational problems for both
biomedical and data scientists. Most of the genome assemblers
that have developed use de Bruijn graph techniques. A de Bruijn
graph represents a collection of read sequences by billions of
vertices and edges, which require large amounts of memory and
computational power to store and process. This is the major
drawback to de Bruijn graph assembly. Massively parallel, multi-
threaded, shared memory systems can be leveraged to overcome
some of these issues. The objective of our research is to investigate
the feasibility and scalability issues of de Bruijn graph assembly
on Cray’s Urika-GD system; Urika-GD is a high performance
graph appliance with a large shared memory and massively
multithreaded custom processor designed for executing SPARQL
queries over large-scale RDF data sets. However, to the best of
our knowledge, there is no research on representing a de Bruijn
graph as an RDF graph or finding Eulerian paths in RDF graphs
using SPARQL for potential genome discovery. In this paper, we
address the issues involved in representing de Bruin graphs as
RDF graphs and propose an iterative querying approach for
searching cycles to find Eulerian paths in large RDF graphs. We
evaluate the performance of our implementation on real world
ebola genome datasets and illustrate how genome assembly can
be accomplished with Urika-GD using iterative SPARQL queries.

I. INTRODUCTION

Knowledge about genome sequences has become critical in
many areas, such as molecular biology, evolutionary biology,
medical diagnosis, biotechnology, forensic biology, and bio-
logical research. Genomes sequences are obtained using many
different methods and technologies, all of which are commonly
referred to as genome or DNA sequencing. The process of
determining the sequences of nucleotides bases (Adenine (A),
Guanine (G), Cytosine (C), and Thymine (T)) of an organism’s
genome [1] is called genome sequencing. It plays an important
role in identifying the causes of disease by decoding individual
genes, helping with personalized medicine, improving agricul-
ture, energy, the environment, and public health and welfare
[2]. The genomic sequencing technologies available today do
not produced the complete genomic sequence in a single pass,
but instead generate short extracts called the reads. Genomic
reads generated by different genome sequencers are constantly
growing, and may result in hundreds to billions of reads, each
varying in size. For example, the Illumina HiSeq [3] system
can generate up to 3 billion reads. These reads are not usable
or meaningful unless they are assembled into the original

genome. Genome assembly is the process of reconstructing
the original genome sequences of an organism from the read
sequences [4].

However, assembling those massive amounts of reads into
a potential genome has been one of the most challenging
problems in bioinformatics, since the reads are not complete
extracts of the original sequence and contain several types
of errors. For example, common errors include repeats, gap,
overlaps, and sequencing errors. Dealing with such errors
in unavoidable with most assemblers, because the de Bruijn
graph is heavily affected by even the smallest of sequencing
errors. Hence, it is necessary to uncover and reconsider those
sequencing errors in the reads before assembly. Our main goal
of this research is to discover the existence of an Eulerian path
in a given graph with no gaps, overlaps, errors, or repeats using
SPARQL queries. In the presence of errors, we apply existing
methods [5], [6] to deal with sequencing errors in reads and
then apply our approach for assembly.

When similar genomes are available, they can be used to
guide the reconstruction, and reads can be aligned with the
available genome. This assembly approach is called reference
assembly. In contrast, genome assembly performed without the
aid of a reference genome is called de novo genomic assembly.
De novo genomic assembly becomes necessary when working
with a new species or new genome sequence such as the
sequences produced by Illumina HiSeq [3] and Genome 10K
[7]. Various research has been going on in the area of de
novo assembly of genome reads even though the problem has
proven to be NP-hard [8]. De Bruijn graph assembly is one
type of de novo assembly, based on mathematical de Bruijn
graph concept. Many assemblers (Velvet [5], MEGAHIT [9],
SOAPdenov2 [10]) have used de Bruijn graphs for genome
assembly.

The de Bruijn graph used in de novo assembly is similar
to, but not exactly the same as, the mathematical concept and
plays a very important role in assembly. The de Bruijn graph
used in genome assembly is defined as a directed graph where
each node represents a unique k-mer (substring of length k)
present in the input reads, and an edge exists between two
vertices when corresponding k-mers share an exact (k − 1)
overlap [11]. These k-mers are obtained directly from the
reads, and this representation of the reads as a graph can result
in billions of vertices and edges. For example, nearly three
billion vertices and edges exist in the human genome graph
[11]. Hence, the challenge faced when using de Bruijn graphs
for de novo assembly is the size of the graph, which requires



massive amounts of memory and computational power for
storage and processing. Cray’s graph appliance, Urika-GD,
has been built to address the challenges of processing and
transforming huge amounts of data while at the same time
helping to find unknown and hidden relationships and patterns
in big data with its scalable-shared memory architecture [12].
Urika-GD is optimized for the Semantic Web technologies:
Resource Description Framework (RDF), SPARQL Protocol
and RDF Query Language (SPARQL). RDF has been used as
a scalable graph representation for integrating, querying, and
analyzing large data volumes. SPARQL is the query language
used to access information stored in RDF graph data sets. The
objective of our research is to investigate the scalability of de
Bruijn graph assembly using RDF graphs and SPARQL on
Cray’s Urika-GD appliance.

A. Motivation

Genomic data has been growing exponentially and repre-
sentations are often ambiguous. Various ontologies for rep-
resenting data both structurally and semantically have been
published to explicitly describe experimental details in order
to provide better understanding and quality checking, as well
as promote reuse, preproduction, and integration of the data
[13]. For example, Gene Expression Omnibus (GEO) [14],
Gemma repository [15], Oncomine [16], and ArrayExpress
[17] all meet the requirements outlined by the Minimum
Information About a Microarray Experiment (MIAME) [18]
standard. The MIAME standard allows these biomedical on-
tologies to provide consistent annotations of experiments.
However, the annotation represented by these ontologies are
not machine-readable by other software. Hence, the inte-
gration of knowledge across different data sources remain
a challenge. The availability of powerful graph appliance
(Urika-GD) for processing huge datasets and Semantic Web
techniques (RDF/SPARQL) to represent DNA sequences in a
machine-readable format is great motivation for assembling
entire genomes. The main goal of the Semantic Web is
to assist knowledge integration by creating a cross domain
and distributed knowledge base while representing data with
explicit meaning.

The increasing popularity of Semantic Web technologies has
huge potential in different research areas. We have tried to
apply this powerful technique to genome assembly research,
which we hope will be a useful contribution to both the
Semantic Web community and the healthcare domain in dif-
ferent ways. For example, genome annotation is a process
of providing descriptions about the genetic elements of a
sequenced genome in such a way as to aid all types of
biologists in extracting the knowledge needed for analysis
and interpretation [19]. In other words, annotations represent
the meaning of the sequenced genome. The main goal of
annotation is to identify the key features of the genes in order
to describe the life cycle of the species (i.e., the structure
and reproduction of the genes along with the proteins they
encode) [20]. After annotation, biologists are interested to
discover how the annotated regions interact with each other.

Escherichia coli RecA protein (recA) gene,
complete cds.

gene 783..1961
/gene="recA"

CDS 783..1961
/gene="recA"
/function="DNA repair protein"
/product="RecA protein"

(a) Traditional Methods

gene:Escherichia_coli
a:hasStart integer:783;
a:hasEnd integer:1961;
a:hasGeneName string:recA.

CDS:exampleCDS
a:hasGene gene: Escherichia_coli;
a:hasStart integer:783;
a:hasEnd integer:11;
a:hasProdDescription string:RecA protein;
a:hasFunDescription string:DNA repair protein;

(b) Semantic Web Technology

Fig. 1. Example of Prokaryotic Gene Annotation

Here, Semantic Web technologies play a vital role in dis-
covering relationship patterns among genes, providing huge
potential for diagnostic purposes. For example, neuroscience
information and the mapping of gene expressions across the
entire brain can be combined to comprehend illnesses such
as Parkinson’s Disease [21], [22]. RDF stores annotation
information in a standard way that is understandable to other
organizations. Figure 1 illustrates how Prokaryotic gene is
expressed using traditional methods as well as semantic web
technology. Another contribution could be to the Linked Open
Data (LOD) Cloud which is a representation of the RDF triples
that can be searched through SPARQL endpoints using the
SPARQL query language. RDF and SPARQL are two major
and powerful technologies of the Semantic Web. RDF is the
data model proposed by the World Wide Web Consortium
(W3C) that allows to linked entities across various data sources
on the web. RDF allows integration of annotations from
different data sources linked via the LOD cloud. RDF is
the standardized unified framework proposed by W3C for
accessing and integrating this data with other datasources.

B. Challenges

Motivated by the above features of Semantic Web technolo-
gies, we have developed a semantic aware de Bruijn graph
assembly solution on one of Cray’s Urika-GD appliances. Our
aim is to assemble large genome sequences with the Urika-
GD platform. However, implementing a genome assembly
algorithm with a de Bruijn graph approach based on SPARQL
queries is not a trivial task and presents several challenges that
arise when processing large graphs:

• De Bruijn graphs are not straightforward to represent as
RDF graphs, and Eulerian path finding algorithms are not
easy to implement with SPARQL queries. An iterative



algorithm needed to be designed to find Eulerian paths
in RDF graphs using mainly SPARQL queries.

• The RDF representation of de Bruijn graphs results in
huge sets of triples, and hence the scalability issue remain
the same as without the RDF representation.

• Many algorithms for finding Eulerian paths are recursive,
and iterative counterparts needed to be found.

• SPARQL does not directly support iterative queries, but
rather a sequence of queries to perform the task must be
generated.

C. Our Solution

To meet the above challenges, we design an iterative Eule-
rian path finding algorithm based on Hierholzer’s algorithm
using SPARQL. To achieve this, we apply the framework
outlined by Techentin et al. [23], and borrow some ideas from
GM-SPARQL [24]. The main contributions of this paper are
as follows:

• We present an iterative version of Hierholzer’s algorithm
based on SPARQL for iteratively obtaining Eulerian paths
in de Bruijn RDF graphs.

• We give a SPARQL implementation to solve the all pairs
shortest path problem.

• We evaluate the performance of our implementation with
Apache Jena Fuseki, a framework for processing RDF
data and the Urika-GD appliance. The experimental re-
sults show that the Urika-GD appliance has potential for
use in de Bruijn de novo assembly.

The following sections are organized as follows. Section II
introduces basic graph theory definitions as well as back-
ground information about Semantic Web technologies. In
Section III we describe our proposed method to find Eulerian
paths in de Bruijn graph using RDF/SPARQL. Section IV
presents our experimental results, and finally we conclude our
paper with some potential future work in Section V.

II. BACKGROUND

In this section we introduce basic definitions, concepts,
and techniques from graph theory and Semantic Web that
have been used for genome assembly on Cray’s Urika-GD
appliance.

A. Directed Graph

While none of the graphs we will be working with are
simple directed graphs, we take this opportunity to provide
the definition:

Definition 1: A (simple) directed graph, G = (V,E) is an
ordered pair consisting of a set of vertices, V , and a set of
edges, E ⊆ (V × V ) \ {(v, v) | v ∈ V }.

A simple directed graph does not contain loop edges (edges
from a vertex to itself) or multiple edges between a given pair
of vertices. The mathematical concept of a de Bruijn graph,
outlined in Section II-C, is a directed graph with loop edges.

Definition 2: A directed graph with loop edges is an ordered
pair, G = (V,E), consisting of a set of vertices, V , and a set

of edges, E ⊆ (V × V ). An edge of the form (v, v) where
v ∈ V , is called a loop edge.

The de Bruijn graph used in genome assembly is not a
directed graph with loop edges but rather a directed multigraph
with loop edges.

Definition 3: A directed multigraph with loop edges is an
ordered pair, G = (V,E), consisting of a set of vertices, V ,
and a multiset of edges, E ⊆ (V × V ).

B. Eulerian Path

The idea of an Eulerian path is very importnat to de novo
genome assembly that uses de Bruijn graphs. It is the possible
Eulerian paths in the graph that define the potential genomes.

In a graph, a walk is a sequence of alternating vertices and
edges such that the end points of each edge are the same as
the preceding and following vertices. If there exists a walk
starting at vertex v and ending at vertex u, we say that vertex
u is reachable from vertex v. If all vertices in the sequence
are unique, we call the walk a path. In the case that all of the
vertices in the walk are distinct except the first and the last, the
walk is called a cycle. If all edges in the walk are distinct, we
call the walk a trail. If the first and last vertices in a trail are
the same, we call it circuit. An Eulerian trail (often called
an Eulerian path) is a trail in which every edge in the graph
appears. If the first and last vertices in an Eulerian trial are
the same, the trial is called an Eulerian circuit (often called
an Eulerian cycle).

The conditions required for a directed multigraph with
possible loop edges to contain an Eulerian path/cycle are well
known, and are given in the following theorem:

Theorem 1: Let G be a directed (multi)graph. G has an
Eulerian cycle if and only if every vertex has equal in-
degree and out-degree, and all vertices of nonzero degree
belong to a single weakly connected component (a maximal
collection of vertices in which every vertex is reachable
by another vertex in the collection when edge direction is
ignored). G has an Eulerian path if at most one vertex has
(out-degree) − (in-degree) = 1, at most one vertex has
(in-degree) − (out-degree) = 1, every other vertex has equal
in-degree and out-degree, and all vertices of nonzero degree
belong to to a single weakly connected component.

C. The De Bruijn Graph

There is a difference in the mathematical concept of a de
Bruijn Graph, named after Nicolaas Govert de Bruijn, and
the de Bruijn graph used in genome assembly, both of which
are defined over a set of fixed length sequences of symbols
coming from a known alphabet. The mathematical definition
is as follows:

Definition 4: An nth dimensional de Bruijn graph de-
fined on an alphabet A is a directed graph representing
the overlaps between all possible sequences of m sym-
bols from A. More specifically, if A = {a1, . . . , am}
is a collection of symbols, then the nth dimensional
de Bruijn graph on A is given by DBn,A = (V,E)
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Fig. 2. Example De Bruijn Graph

where V = {s1, . . . , sn | si ∈ A, 1 ≤ i ≤ n} and E =
{((s1, . . . , sn) , (s2, . . . , sn1

)) | si ∈ A, 1 ≤ i ≤ n+ 1}.
Informally, a de Bruijn graph is thought of as a directed

graph with loop edges. The vertices of the graph represent
sequences of characters from the alphabet, and two vertices
have an edge between them if their character strings share an
n− 1 character overlap. Figure 2 depicts the de Bruijn graph
DBn,A when n = 3 and A = {0, 1}. It is known that every
de Bruijn graph contains an Eulerian cycle and a Hamiltonian
cycle (a cycle in which every vertex appears).

A de Bruijn graph representation of a collection of strings
can be constructed in the following manner. Let k > 1 be
a fixed but arbitrary integer. For each k-mer (substring of
length k) in the strings, define the left and right k − 1-mer
to be the first k − 1 and last k − 1 characters of the string,
respectively. Each distinct k − 1-mer becomes a vertex in the
de Bruijn graph representation. For every k-mer, add an edge
from the vertex representing the left k − 1-mer to the vertex
representing the right k − 1-mer. This construction produces
a directed multigraph with loop edges. It differs from a true
de Bruijn graph in the following ways: (1) There can be
multiple edges between a pair of vertices. (2) Two vertices
that represent a k − 1 character overlap only have an edge
between them if the represented substrings appeared together
as left and right k − 1-mers of some k-mer in the original
collection of strings. The de Bruijn graph representation of the
text AAGACTCCGACTGGGACTTT when k = 4 can be seen in
Figure 3.

D. Eulerian Path Based Approach for Genome Assembly

In order to construct potential genomes from a sequence
of reads, the reads are first converted into a de Bruijn graph
representation. Due to reads overlapping, possible errors in
the data, and insufficient coverage, the graph representation
of the reads will almost certainly not contain an Eulerian
path. Various techniques can be applied to transform the graph
to ensure it will have an Eulerian path, but repeats in the
genome can give rise to the existence of multiple distinct
Eulerian paths. Our primary focuses has been to determine
if it is possible to find Eulerian paths using SPARQL, rather
than trying to modify the graph to ensure the existence of an

AAG AGA GAC ACT

CTC

TCCCCG

CGA

CTG

TGGGGG

GGA

CTT TTT

Fig. 3. De Bruijn Graph Representation of AAGACTCCGACTGGGACTTT for
k = 4

Eulerian path. We apply existing methods [5], [6] to deal with
sequencing errors in the reads to obtain an Eulerian graph in
which to apply our assembly approach. Once an Eulerian path
has been found, the reconstructed genome is found by taking
the characters from the first vertex in the path, followed by
the last character of each subsequent vertex. The graph seen
in Figure 3 has two possible Eulerian paths resulting in the
following two potential genomes:

• AAGACTCCGACTGGGACTTT
• AAGACTGGGACTCCGACTTT

E. RDF/SPARQL

The Semantic Web provides a huge collection of linked
datasets where RDF provides the standard representation for-
mat and facilitates easy interlinking with each other. RDF
is defined as an infrastructure that enables the encoding,
exchange, and reuse of structured metadata [25]. It sup-
ports relationships between entities of web resources that
are identified by URIs (Uniform Resource Identifiers). There
are several common serialization file formats for expressing
the web resources in RDF data (i.e., Turtle, N-Triples, N-
Quads, RDF/XML). An RDF statement is expressed as a triple
in the form subject,predicate,object. For example,
Tim Berners-Lee (subject) invented (predicate) World Wide
Web (object). The subject and predicate represents the web
resources (expressed as URIs), whereas objects can be either
a web resources or literals (integers or strings), which may
define other properties. One way to think of a triple is as a
directed edge in a graph where the subject is a source vertex,
the object is the destination vertex, and the predicate is a label
assigned to the edge. Properties of resources are identified with
the properties types. A property type is used to express the
relationship between subject resources and object resources in
a triple. A set of properties that define the same resource is
referred to as description. When two or more resources are
described with the same URI or have the same description,
they can be merged across different data sources [26]. And
so, in our research, an RDF data model is very useful and
flexible for defining different kinds of genes, which can be



easily aggregated in cases of similarity. The RDF data across
the datasets can be retrieved by a standard SPARAL query.

SPARQL is a W3C standard query language that allows
querying over the vast amount of RDF graph data. SPARQL
essentially works by matching patterns in the graph to retrieve
the RDF data. The basic concept of SPARQL queries are triple
patterns, where variables are bound to the subjects, predicates
or objects of the triples in the query to the triples of the RDF
data [27]. SPARQL queries are executed on RDF triplestores
via their SPARQL endpoints. There are various triplestores
available such as Sesame [28], rdfDB [29], Jena [30], Redland
[31], Kowari [32], Apache Jena Fuseki [33], and so on. We
have used Apache Jena Fuseki and Cray’s Urika-GD for our
triplestores. Various SPARQL libraries are available to interact
with RDF triplestores such as SPARQLWrapper for Python
[34], Sgvizler [35], EasyRdf [36]. We have used SPARQL-
Wraper to query the corresponding SPARQL endpoints with
Python scripts.

III. FINDING EULERIAN PATHS IN DE BRUIJN GRAPHS
USING SPARQL

Assembling a genome from a sequence of reads using de
Bruijn graph involves finding all unique Eulerian paths in
the graph. In order to performed de novo assembly on a de
Bruijn graph using SPARQL, we first had to design an RDF
representation of a de Bruijn graph. Every edge in the de
Bruijn graph must be represented as a triple in the RDF graph.
The source (subject) and destination (object) of the edge must
be URIs. We use URNs of the form urn:[text] as the
source and destination. Here, [text] is the substring (the
left or right k − 1-mer) represented by the vertex. To achieve
multiple edges between a given pair of vertices, predicates
are created using the form urn:edge/[n], where n is an
arbitrary unique label for the edge. Before attempting to find
an Eulerian path, we apply existing techniques for modifying
the de Bruijn graph representation in order to obtain a graph
with an Eulerian path. The obvious first attempt to obtain
an Eulerian path involves writing a direct query in SPARQL
to obtain the path. Upon constructing the query it becomes
obvious that this approach will not work. We have chosen
to implement an iterative version of Hierholzer’s algorithm
written using a sequence of SPARQL queries.

A. Direct Queries

While it is possible to construct a direct query to obtain an
Eulerian path from a graph, it is unfeasible for large graph.
We choose to present it here since a very similar approach is
used to extract cycles from a graph needed for the Hierholzer’s
algorithm. Figure 4 depicts the direct query used to obtain the
Eulerian path of the graph seen in Figure 6b. Notice that for
each edge in the graph, a triple must be specified. This part
of the query grows linearly with respect to the number of
edges in the graph. Also notice the use of filters to ensure that
no edge is repeated. The number of conditions in the filter
grows at a quadratic rate with respect to the number of edges.
And so, even for relatively small graphs, the query generated

SELECT ?v0 ?e0 ?v1
?e1 ?v2 ?e2
?v3 ?e3 ?v4
?e4 ?v5 ?e5
?v6 ?e6 ?v7
?v7 ?e7 ?v8

WHERE {
VALUES ( ?v0 ?v8 ) { (<urn : a> <urn : i>) }
<urn : a> ?e0 ?v1 .
?v1 ?e1 ?v2 .
?v2 ?e2 ?v3 .
?v3 ?e3 ?v4 .
?v4 ?e4 ?v5 .
?v5 ?e5 ?v6 .
?v6 ?e6 ?v7
?v7 ?e7 <urn : i> .
FILTER (

?e0 != ?e1 && ?e0 != ?e2 && ?e0 != ?e3 &&
?e0 != ?e4 && ?e0 != ?e5 && ?e0 != ?e6 &&
?e0 != ?e7 && ?e1 != ?e2 && ?e1 != ?e3 &&
?e1 != ?e4 && ?e1 != ?e5 && ?e1 != ?e6 &&
?e1 != ?e7 && ?e2 != ?e3 && ?e2 != ?e4 &&
?e2 != ?e5 && ?e2 != ?e6 && ?e2 != ?e7 &&
?e3 != ?e4 && ?e3 != ?e5 && ?e3 != ?e6 &&
?e3 != ?e7 && ?e4 != ?e5 && ?e4 != ?e6 &&
?e4 != ?e7 && ?e5 != ?e6 && ?e5 != ?e7 &&
?e6 != ?e7

)
}

Fig. 4. Example Direct Query

becomes very large. In order to reduce the search space the
SPARQL query engine must explore, the starting and ending
vertices of the path are specified within the query. Determining
the starting and ending vertex in SPARQL is fairly straight
forward, and a query to obtain these vertices can be found in
Figure 5. Note that the starting vertex is the vertex with one
more outgoing edge than incoming, and the ending vertex is
the vertex with one more incoming edge than outgoing.

SELECT ?v ? i n d e g ? o u t d e g r e e
WHERE {
{

SELECT ?v
(COUNT( ? d s t ) AS ? o u t d e g r e e )
(COUNT( ? s r c ) AS ? i n d e g )
WHERE {
{?v ?edg ? d s t }
UNION
{ ? s r c ?edg ?v}

}
}
FILTER ( ? o u t d e g r e e != ? i n d e g )

}

Fig. 5. Sample Path Finding Query

B. Hierholzer’s Algorithm

Hierholzer’s algorithm [37] is one of most efficient algo-
rithms known for finding Eulerian cycles in graphs. Hier-
holzer’s algorithm begins by choosing an arbitrary vertex and
finding an arbitrary circuit involving the chosen vertex. A
circuit is guaranteed to be found because the graph is strongly
connected and the in degree is equal to the out degree for every
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Fig. 6. Iterative Queries Approach

vertex. Upon finding a circuit, the algorithm checks to see if
any vertices along the circuit contain edges that are not part of
the circuit. While such edges remain, the algorithm repeats the
process to ensure only unused edges are traversed. By expand-
ing the newly found circuit in the previously found circuit,
the Eulerian cycle is build up. Traditionally, this processes
is implemented using a stack and a depth first search. The
correctness of the Hierholzer’s Algorithm hinges on a lesser
known characterization of Eulerian graphs: a graph contains
an Eulerian circuit if and only if all vertices of nonzero degree
belong to a single weakly connected component and the graph
can be decomposed into edge-disjoint cycles.

C. Hierholzer’s Algorithm in SPARQL

The first step for implementing Hierholzer’s Algorithm
using SPARQL is to ensure the graph has an Eulerian cycle
instead of an Eulerian path. Since an Eulerian path exists in
the graph, one can simply add an edge from the ending vertex
in the path to the starting vertex in the path to create a graph
with an Eulerian cycle. It is easy to identify the staring and
ending vertices of the Eulerian path, and the SPARQL query
to accomplish this can be found in Figure 5. After this, we
proceed by identify and removing edge-disjoint circuits from
the graph using SPARQL queries. Once all edges have been
removed from the graph, the resulting circuits can be expanded
into an Eulerian cycle. To obtain all possible Eulerian cycles,
one must explore all possible expansions of the circuits found.
To find circuits of a fixed length, it is possible to write a direct
query similar to the one found in Figure 4 for obtaining paths
by requiring the starting vertex to be the same as the ending
vertex (thus obtaining a cycle instead of a path). Naively
guessing at the length of the cycles can result in queries

1: ALGORITHM HIERHOLZER’S ALGORITHM(G)
2: Identify beginning vertex src in Eulerian path.
3: Identify ending vertex dst in Eulerian path.
4: Add edge (dst, src) to G
5: while G is not empty do
6: Run n iterations of AllPairsShortestPath.
7: Identify cycle lengths.
8: Retrieve and store disjoint cycles.
9: Remove cycle edges from G.

10: end while
11: Expand cycles. (Accomplished using pure Python)
12: end ALGORITHM

Fig. 7. Hierholzer’s Iterative SPARQL Algorithm

that return no results, hence wasting computation. Rather than
guessing a possible cycle lengths, we designed a SPARQL
implementation to solve the all pairs shortest path problem.
A Python program was written to generate and submit the
necessary SPARQL queries, and after obtaining the circuits
using SPARQL, the Python program was solely used to expand
the circuits into an Eulerian cycle. After obtaining an Eulerian
cycle, the desired Eulerian path can be obtained by removing
the additional edge that was inserted to ensure the graph had
an Eulerian cycle as apposed to an Eulerian path. Figure 7
outlines the basic algorithm for submitting and evaluating
SPARQL queries to find an Eulerian cycle.

D. All Pairs Shortest Path in SPARQL

We implemented an iterative SPARQL query algorithm to
solve the all pairs shortest path problem to aid us in identifying
cycles. While it is possible to build a direct query to find cycles
of length n, if no such cycles exist, all of that computation
could have been used trying find cycles of length n+1. The key
idea of the algorithm is to allow each vertex to keep a record
of its neighborhood and expand that neighborhood by one
additional hop each iteration. The algorithm starts by recording
the adjacent neighbors for each vertex using the initialization
SPARQL query found in Figure 8. Figure 9 depicts the first
two queries used to fine all neighbors two and three hops away.

INSERT {
GRAPH <urn : s h o r e s t p a t h> {?v ?o 1}

}
WHERE {

GRAPH <urn : g raph> { ?s ?p ?o}
} ;

Fig. 8. All Pairs Shortest Path Initialization Query

IV. EVALUATION AND ANALYSIS

We evaluated our approach on the Ebola virus 2014 genome
[38]. Using k = 10, the final de Bruijn RDF graph rep-
resentation of the read sequence consisted of 18,948 edges
(triples). Along with Urika-GD, the data was loaded into an
Apache Jena Fuseki triplestore. The hardware overview for
the machines used to run Apache Jena Fuseki can be seen in
Table I while Table II depicts the hardware overview for the



INSERT {
GRAPH <urn : s h o r e s t p a t h> {?v ?o 2}

}
WHERE {

GRAPH <urn : s h o r e s t p a t h> {?v ?s 1}
GRAPH <urn : g raph> { ?s ?p ?o}
MINUS
{

GRAPH <urn : s h o r e s t p a t h> {?v ?o ?hop}
}

} ;

INSERT {
GRAPH <urn : s h o r e s t p a t h> {?v ?o 3}

}
WHERE {

GRAPH <urn : s h o r e s t p a t h> {?v ?s 2}
GRAPH <urn : g raph> { ?s ?p ?o}
MINUS
{

GRAPH <urn : s h o r e s t p a t h> {?v ?o ?hop}
}

} ;

Fig. 9. All Pairs Shortest Path Update Query

Hardware Overview

Processor Name: Intel Xeon Processor X5690
Processor Speed: 3.47 GHz
Number of Processors: 4
Cores per Processor: 6
Total Number of Cores: 24
Intel Smart Cache: 12 MB
Memory: 96 GB

TABLE I
APACHE JENA FUSEKI HARDWARE OVERVIEW

machine running the Urika-GD appliance. Note that while the
machines running Apache Jena Fuseki had 24 logical cores,
Apache Jena Fuseki executes SPARQL queries in a single
thread and can only make use of the additional cores for
garbage collection.

Using the all pairs shortest path algorithm, it was found that
the diameter of the graph (the longest of the shortest paths) was
363 hops, while the longest cycle was 224 hops. The execution
time of the Hierholzer’s Algorithm in SPARQL is greatly
affected by the time it takes to determine the cycle lengths.
Figure 10 depicts the run time of each iteration of the all
pairs shortest path algorithm for both Urika-GD and Apache
Jena Fuseki. Urika-GD takes roughly the same amount of time
per iteration. Whereas, Apache Jena Fuseki’s time increases

Hardware Overview

Processor Name: Threadstorm4 Graph Accelerators
Number of Processors: 64
Hardware Threads / Processor: 128
x86 Management and I/O 32
Global Shared Memory: 2 TB

TABLE II
CRAY’S URIKA-GD HARDWARE OVERVIEW

quickly over the first couple of iterations. This is probably
due to the fact that Apache Jena Fuseki is not parallel. Also,
the number of vertices in the n hop neighborhood of any given
vertex increases quickly at first and then begins to stabilize,
resulting in roughly the same execution time for all iterations
700 and above. Figure 11 shows the combine time required to
perform the first n iterations.
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Fig. 10. Execution Time Per Iteration
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Fig. 11. Total Execution Time

V. CONCLUSION AND FUTURE WORK

In this paper we described the use of an iterative Eulerian
path finding algorithm using SPARQL queries wrapped within
Python scripts. Based on the timing results we achieved, it
appears that the Urika-GD appliance has potential for use
in de Bruijn de novo assembly. Our major contributions are
an all pairs shortest path algorithm and Eulerian path finding
algorithm written primarily in SPARQL. In the future, rather
than having to rely on existing tools, we would like to develop
an RDF/SPARQL approach for error correction in the read
sequences so as to ensure the existence of an Eulerian path in
the de Bruijn graph representation.
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