
CS-STUDIO SCAN SYSTEM PARALLELIZATION*

K.U. Kasemir, M.R. Pearson, ORNL, Oak Ridge, TN37831, USA

Abstract
For several years, the Control System Studio (CS-

Studio) Scan System has successfully automated the
operation of beam lines at the Oak Ridge National
Laboratory (ORNL) High Flux Isotope Reactor (HFIR)
and Spallation Neutron Source (SNS). As it is applied to
additional beam lines, we need to support simultaneous
adjustments of temperatures or motor positions.

While this can be implemented via virtual motors or
similar logic inside the Experimental Physics and
Industrial Control System (EPICS) Input/Output
Controllers (IOCs), doing so requires a priori knowledge
of experimenters requirements. By adding support for the
parallel control of multiple process variables (PVs) to the
Scan System, we can better support ad hoc automation of
experiments that benefit from such simultaneous PV
adjustments.

MOTIVATION
EPICS has been used with great success on the SNS

accelerator, and is now a key component of on-going
beam line software updates [1]. Compared to the
accelerator, each beam line presents a much smaller
number of devices to control. At the same time, the beam
line environment is more flexible as devices are added,
replaced, or operated in different ways.

The CS-Studio Scan System was developed to allow
the flexible assembly and execution of “recipes”, that is
lists of commands [2]. After gaining operational
experience on a couple of beam lines, the need for parallel
command execution became obvious.

For example, the control of incident beam energy
typically requires the adjustment of several neutron
chopper settings as well as motor positions for slits or
sample orientation. Executing these in parallel instead of
sequentially allows for a significantly faster experiment
preparation.

Another example is the combined movement of motors
or temperatures for ad-hoc experiments. Ideally, the need
for the parallel movement of motors is known in advance.
Choosing suitable motor controller hardware will then
allow configuring the desired motion curves into the
hardware, resulting in the most efficient and accurate

position control. In reality, the need for ganged motor
movement can arise without prior notice. The control
system software then needs to make a reasonable attempt
at combined motor movement.

SCAN SYSTEM

Basic Scan Commands
While the scan system supports several commands [2],

it is most important to understand the fundamental “Set”
command, which writes a value to an EPICS channel:

Set("MotorChannel", value=14)

It can wait for a read-back to match the written value,
with configurable tolerance and timeout in seconds:

Set("MotorChannel", value=14,
 readback="Motor.RBV", tolerance=0.1,
 timeout=30)

Alternatively, it can await “completion”:

Set("MotorChannel", value=14,
 completion=True,
 timeout=30)

Finally, it can await “completion” and then check a read-
back for matching the written value:

Set("MotorChannel", value=14,
 completion=True,
 readback="Motor.RBV", tolerance=0.1,
 timeout=30)

In the last case, the original implementation used the
timeout both to await completion and then to wait for the
read-back to match. Operationally, we found it more
practical to only apply the timeout to the completion.
Once the channel completes, the read-back is expected to
match right away as soon as the scan server reads the
most recent value of the read-back channel.

A motor-related channel will signal “completion” after
the controller hardware moved the motor toward the
commanded position, verified the encoder read-back,
maybe performed several retries, corrected for backlash,
and finally confirmed that the motor rests at the requested
position.

If a device does not support “completion”, it is
tempting to rely on only the read-back as in the second
example given above. That command will indeed wait
until the read-back of the device matches the desired
value, but it is misleading. The read-back may
temporarily match during an overshoot or backlash

 __

*This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

compensation while the controller is still adjusting the
value.

The completion mechanism, called “put-callback” in
the EPICS documentation, is therefore key to the reliable
control of intelligent beam line devices. Consequently, the
device support for SNS beam lines was carefully selected
or updated to support “completion” confirmation, for
example for the Parker 6K motion and Lakeshore 336/350
temperature controllers [4].

Commands Added for Parallelization
The “Parallel” command was added to the scan system.

In the following example it concurrently moves two
motors and adjusts one temperature:

Parallel(Set("Motor1", 13, completion=True, …),
 Set("Motor2", 24.5, completion=True, …),
 Set("Temperature3", 5.9, …))

The scan server performs a “Parallel” command by
submitting each command in its body to a separate thread,
and then awaiting completion of all threads. Each
individual command in the body may await completion
and/or check read-backs as previously described, but in
the example such details has been replaced by “…” for
clarity.

In some cases the actions that need to be performed in
parallel are not individual “Set” commands but again
consist of multiple commands. The “Sequence” command
allows construction such command chains:

Parallel(
 Sequence(Set("XYZMode", "Off"),
 Set("XYZSetpoint", 13, completion=True),
 Set("XYZMode", "Active"),
 Sequence(Set("ABCMode", "Off"),
 Set("ABCSetpoint", 13, completion=True),
 Set("ABCMode", "Active"))
)

In this example, we assume that the theoretical “XYZ”
and “ABC” devices can only be commanded to a new set
point while turned off, and then need to be re-enabled.
The scan commands will perform this sequence of
commands for both devices in parallel.

Client/Scripting Library
Scan commands are submitted to the scan server

network interface in an XML representation. Initially, we
used a Java library, invoked by Jython from within the
CS-Studio user interface, for this task [2]. To allow more
software tools to interact with the scan server, we
implemented the PyScanClient, a library that supports
assembling scans, submitting them to the scan server,
monitoring and controlling the execution, and
downloading logged data [5]. The PyScanClient can be
used with Jython as well as C-Python.

All code examples in this paper are based on the
PyScanClient syntax. A short but complete program for
submitting a scan looks like this:

from scan import *
client = ScanClient("localhost")
cmds = [Set("Motor1", 43)]
client.submit(cmds)

While the coordinated movement of two motors is best
implemented in the controller hardware, a script like the
following can approximate it by computing the desired
points and assembling them into a list of parallel moves:

cmds = []
for pos in range(0, 100):
 # Demonstration of moving motors X, Y along
 # 0 .. 100 resp. 0 .. 200
 cmd.append(Parallel(Set("X", pos),
 Set("Y", 2*pos)))

Site-Specific Settings
EPICS is a loosely coupled, distributed system. Given

solely a channel name “XYZ”, it is impossible to tell if
that channel supports “completion”, if there is a related
read-back channel, or which timeout and tolerance would
be suitable for comparing the read-back to the desired
value.

A site-specific standard for channel names can often
determine that for example all channels with names
containing “:Mot:” are motors, so they should be
controlled with completion, using a read-back channel
that is based on the same channel name with an added
“.RBV” suffix.

The PyScanClient library supports creating such a site-
specific setup based on a combination of regular
expressions for channel names with python code to
handle specific channel names:

Site-specific scan settings
class BeamlineScanSettings(ScanSettings):
 def __init__(self):
 super(BeamlineScanSettings, self).__init__()
 self.defineDeviceClass(".*:Mot:.*",
 completion=True, readback=True,
 tolerance=0.1, timeout=30)
 self.defineDeviceClass("BL:Mot:X42",
 completion=True,
 readback="BL:Mot:X42_Encoder”,
 tolerance=0.001, timeout=60)

 def getReadbackName(self, device_name):
 if ":Mot:" in device_name:
 return device_name + ".RBV"
 return device_name

Based on this example, scan commands that access
channels which contain “:Mot:” in their name will use

completion and read-back verification as just described
with a default tolerance of 0.1 and a timeout of 30
seconds. One specific motor, “BL:Mot:X42”, will use a
designated encoder channel for read back instead of the
default “BL:Mot:X42.RBV”.

When the PyScanClient library has such site-specific
settings, individual scan commands can still override
them. For example, while a “Set” command for a
temperature controller may default to awaiting
completion, an experiment that needs to take data while
the temperature changes can issue a “Set” command with
“completion=False” to override the default.

Meta Commands
The site-specific settings can introduce meta-

commands. For example, starting an experiment may be
defined as follows to reset counts, start the data
acquisition and assert that it enters the correct mode:

def Start():
 return Sequence(Set("Det:Counts", 0),
 Set("BL:DAQ:Mode", "ON"),
 Wait("DAQ:State", "Running"))

When assembling a scan within a python script, this

“Start” command can now be used just like the predefined
scan server commands. Wrapping its internal commands
into a “Sequence” asserts that they will be executed
sequentially even when added to the body of a “Parallel”
command.

Table Scan
The PyScanClient library offers a table-based

abstraction for creating scans. It its most basic form, each
column of the table specifies a channel name. Cells in
each row provide desired values:

Temperature3 BL:Mot:X42

50 1
100 2

This table creates the following scan:

Set("Temperature3", 50)
Set("BL:Mot:X42", 1)
Set(Temperature3", 100)
Set("BL:Mot:X42", 2)

Cells can remain empty if a device should not be changed
in that row. Cells that contain ranges or lists are expanded
left to right:

Temperature3 BL:Mot:X42

[50, 100] range(1, 3)

This table creates the following scan:

Set("Temperature3", 50)
Set("BL:Mot:X42", 1)
Set("BL:Mot:X42", 2)

Set(Temperature3", 100)
Set("BL:Mot:X42", 1)
Set("BL:Mot:X42", 2)

“Wait For” and “Value” columns are used to start data
acquisition, await a condition, and stop data acquisition.
The specifics of how to start and stop data acquisition are
provided in the form of meta-commands in the site-
specific PyScanClient settings. For SNS, these consist of
“Set” commands that instruct the streaming neutron event
acquisition to start respectively stop. A simple yet
complete scan could be expressed like this:

BL:Mot:X42 Wait For Value
range(1, 3) NeutronCount 1e5

This table creates the following scan, assuming that the
start and stop commands in the PyScanClient are
configured to write to a “DataAcq” channel:

Set("BL:Mot:X42", 1)
Set("DataAcq", "Start"),
WaitFor("NeutronCount", 1e5),
Set("DataAcq", "Stop")
Set("BL:Mot:X42", 2)
Set("DataAcq", "Start"),
WaitFor("NeutronCount", 1e5),
Set("DataAcq", "Stop")

Before taking data as just shown, a preceding table row to
can adjust the sample environment The sample
environment adjustments need to complete before taking
data, but they can be performed in parallel. A “+p “ prefix
in the column header instructs the PyScanClient library to
use parallel commands:

+p T +p P BL:Mot:X42 Wait For Value
30 45

This table results in the following commands:

Parallel(Set("T", 30), Set("P", 45))

The following table describes an experiment that
commands two temperature controllers to initial setting,
and then takes data while the temperatures are changed to
a different value:

+p T1 +p T2 Wait For

30 40
300 330 Completion

Additional columns could previously adjust the rate-of-
change on the temperature controllers to obtain the
desired temperature variation over time.

User Interfaces
The primary SNS beam line user interface is CS-

Studio, which includes PyDev, a Python development
environment. Users can edit, inspect, debug and execute

Python scripts that assemble and submit scans in CS-
Studio.

In practice, however, most users prefer a graphical
interface to a script editor. For routine operations, a CS-
Studio operator interface panel specifically created for the
task allows adjusting the required parameters. When users
push a “Submit” button, this triggers a python script to
read the parameters from the display, assemble the scan
commands, and submit them to the scan server.

 All SNS beam lines have so far been able to utilize a
common “Alignment Scan” user interface that allows
moving once device from start to end, logging an EPICS
channel at each point, and finally performs a Gaussian fit
to the data.

Table scan support is integrated into the CS-Studio user
interface by allowing users to load, edit, save and submit
table scans. The editing inside CS-Studio is admittedly
limited, so more complex tables are best prepared in
dedicated spread sheet programs like Gnumeric [7], and
only loaded into CS-Studio for a final review and
submission.

While the scan system user interfaces appear similar to
those described in [2], they now utilize the PyScanClient
library. As a result, it is now easy to extend and combine
them. For example, a custom experiment that uses a
python script to assemble scan commands can now
include an alignment or table scan, while adding
additional commands to be executed before and after
those operations.

CONCLUSION
The scan system has been very reliable since its

introduction in early 2013. It is now used on seven ORNL
beam lines (HFIR CG1D, SNS USANS, VULCAN,
CORELLI, HYSPEC, VISION, SEQUOIUA) as the main
experiment automation interface for beam line staff and
visiting experimenters. In case of problems, the
combination of scan system console logs and archived
control system data [8] has always allowed us to
determine which device had timed out or not responded as
expected.

We prefer to implement support for routine beam line
operations in IOCs. Beam line energy adjustments,
ganged operation of temperature controllers, complex
multi-motor movements are whenever possible based on
EPICS database logic, EPICS sequences, or python-based
IOCs, because this allows for more thorough testing,
optimization and also long-term archiving of key
parameters.

Nevertheless, the introduction of “Parallel” and
“Sequence” scan commands makes it very easy to
perform timesaving instrument adjustments, or to
approximate coordinated movements for ad-hoc scenarios
when such prior IOC-based implementation was not
possible.

As we update more advanced SNS instrument control
systems, we initially assumed that the required
automation could only be performed with custom
scripting. In practice, we found that the Table Scan

abstraction supports most of them. The table itself may no
longer be entered by a user but is instead created by a
python script, and the PyScanClient library allows such
scripts to directly submit the resulting scan.

ACKNOWLEDGMENT
We thank Qiu Yongxiang, Dylan Maxwell, and Guobao

Shen for their collaboration in the PyScanClient
development.

REFERENCES
[1] X. Geng, X.H. Chen, K. Kasemir, “First EPICS/CSS

Based Instrument Control And Acquisition System at
ORNL”, ICALEPCS 2013, San Francisco, CA, USA
(2013).

[2] K. Kasemir, X. Chen, E. Berryman, “CSS Scan
System”, ICALEPCS 2013, San Francisco, CA, USA
(2013).

[3] X.H. Chen, K. Kasemir, “BOY, A Modern Graphical
Operator Interface Editor and Runtime”, PAC 11,
New York, NY, USA (2011).

[4] M. Pearson, “EPICS on SNS Instruments”, EPICS
Collaboration Meeting, Michigan State University,
East Lansing, MI (2015).

[5] https://github.com/PythonScanClient/PyScanClient
[6] http://www.pydev.org
[7] http://www.gnumeric.org
[8] K. Kasemir, “Control System Studio Data Browser”,

PCaPAC08, Ljubljana, Slovenia (2008).

