EPICS V4 EVALUATION FOR SNS NEUTRON DATA*
K.U. Kasemir, G.S. Guyotte, M.R.Pearson, ORNL, Oak Ridge, TN37831, USA

Abstract

Version 4 of the Experimental Physics and Industrial
Control System (EPICS [1]) toolkit allows defining
application-specific structured data types (pvData) and
offers a network protocol for their efficient exchange
(pvAccess). We evaluated V4 for the transport of neutron
events from the detectors of the Spallation Neutron
Source (SNS) to data acquisition and experiment
monitoring systems. This includes the comparison of
possible data structures, performance tests, and
experience using V4 in production on a beam line.

MOTIVATION

On SNS beam lines, each neutron event consists of a
pixel ID that identifies the location of the detector where
a neutron was observed, and a time-of-flight measurement
that describes when the neutron was detected relative to
the most recent beam pulse. Depending on the beam line
and its specific configuration, event rates can reach a few
million events per seconds.

This neutron event information needs to be transferred
from detectors to processing stages that provide users of
the experiment with visual feedback, accumulate
information that allows for the automation of the
experiment, and finally stream the events into a data
collection pipeline for long-term storage of the
experiment data.

The original SNS beam line data acquisition software
used a locally developed UDP/IP-based network protocol
to transmit neutron event information [2]. The limited
performance and reliability of this protocol necessitated
an update of the overall data acquisition software [3].

EPICS V4

Based on a proven track record for control of the SNS
accelerator, EPICS had been chosen as a toolkit for the
beam line control system upgrade. While Channel Access
[4], the original EPICS network protocol, has a well
defined and functional set of data objects, this set is fixed
to types suitable for describing a single data point, for
example a temperature reading or voltage set point.

*This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-000R22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to
these results of federally sponsored research in accordance with the
DOE Public Access Plan(http://energy.gov/downloads/doe-public-
access-plan).

EPICS V4 [5] is an addition to the EPICS toolkit that
introduces an alternative to the existing EPICS V3 data
types and network protocol.

pvData

pvData is the EPICS V4 library for structured data. It
can describe such data in an operating-system
independent way, hold it in memory, and copy complete
or partial data containers. The data can include time
stamps, numeric values, enumerated data, text and alarm
information. Data can also be assembled into arrays and
structures.

Normative Types

pvData allows clients to define nearly arbitrary data
structures, which is ideal for packaging site-specific
information. At the same time it limits the interoperability
of applications. Normative Types are a set of agreed-upon
pvData types that all implementers of V4 applications are
encouraged to support. All original EPICS V3 data types
are described as Normative Types, allowing for an
eventual transition from V3 to V4. In addition, data types
like N-dimensional images or statistical samples that are
often used in higher-level control system applications are
available as Normative Types.

pvAccess

pvAccess is the V4 network protocol that allows for the
exchange of pvData. It is conceptually similar to V3
Channel Access, using UDP/IP for channel name
resolution, and then establishing a TCP/IP connection
between pvAccess servers and clients to exchange data. It
supports basic read and write access. A subscription mode
efficiently updates clients on changes in the data by only
transferring the modified structure elements. Finally, a
combined write/read mode supports remote service calls
by atomically sending parameters, awaiting the execution
of the remote service, then returning the result.

Both pvData and pvAccess have been implemented in
C++ and Java, with additional bindings for Python [6].

SNS NEUTRON DATA

SNS neutron data consists of a list of pixels and time-
of-flights as already described, combined with a
sequential pulse number and the proton charge of the
accelerator pulse that generated these neutrons.

The following pvData structure would be a direct
representation:

// Sequential pulse number
uint64 pulse



// Proton Charge

double proton charge

// Event array, each element is

// time-of-flight & pixel

struct

{
uint32 time of flight
uint32 pixel

} events[]

Each neutron event naturally combines the affected
detector pixel and the time of flight when the event
occurred. The above data structure always provides each
such event as a tuple of { time of flight, pixel }.

Some consumers, however, require only a subset of this
tuple. A time-of-flight histogram only needs to inspect the
time of flight elements, and a spatial X/Y histogram only
the pixel elements. With the above structure they need to
subscribe to the “events” array and thus always receive
both the time of flight and pixel information.

The following data structure holds the same
information, but allows clients to subscribe to just the
information of interest:

// Time stamp for everything in this
// structure.

// timeStamp.userTag holds

// sequential pulse number

time t timestamp

// Proton Charge
NTScalar proton_charge
double value

// Time-of-Flight values for N neutron events
NTScalarArray time of flight
uint[] value

// Pixel IDs for N neutron events
NTScalarArray pixel
uint[] value

With this optimized data structure, all producers and
consumers agree that the “time of flight” and “pixel”
arrays always contain the same number of elements,
because corresponding array elements constitute one
neutron event.

A tool that accumulates the X/Y histogram can now
subscribe to just the “pixel” element, receiving only this
data and thus reducing the network traffic. Tools that
require the complete information can still subscribe to the
whole pvData structure.

In addition, this updated structure packages the
sequential pulse number into the ‘user’ element of the
normative time stamp type, and bases the proton charge,
time of flight and pixel elements on Normative Types,
allowing for compatibility with generic V4 client tools.

pvData allowed us to package the events as either an
array-of-structures or a structure-of-arrays, and we chose

the latter to optimize network traffic for the various use
cases. For certain detector types or operating modes, the
above structure can be extended with additional data
elements, for example to transmit internal detector counts,
which are used during calibration.

PERFORMANCE TESTS

We implemented a V4 server that emits data of the
above format with sequential pulse numbers as well as a
V4 client that subscribes to this data, counting the
received elements and specifically detecting missed pulse
numbers [7].

Figure 1 shows network traffic results from executing
the demonstration server and client on a 1 gigabit
Ethernet link. The server was sending 100 updates per
second, varying the number of events in each of these
updates. When each packet contains 150000 events, 100
times a second, this would equate transmitting 15 million
SNS neutron events per second. Up to about 15 million
events per second, the measured network traffic scaled
linearly. There is very little overhead on the expected
network traffic based on the underlying data size, proving
that pvAccess efficiently serializes the pvData.

As we increased the event rate beyond 15 million SNS
neutron events per second, the network traffic
asymptotically approaches 95 MB per second. The client
starts to indicate lost pulse updates. CPU loads of the
server and client were only about 30%, indicating that we
reached the limit of TCP on 1GigE.

100

:1: /
/

MB/sec sent

:
%

0 5 10 15 20 25

Million Events per second

Figure 1: Network traffic on 1GigE network when
sending various amounts of neutron events packaged into
100 updates per second.

On a 10GigE test setup, the simulated SNS neutron
event rate could be increased to about 100 million events
per second before reaching CPU load limits on the server.

GENERIC V4 TOOLS

EPICS V4 includes generic command line tools. The
“pvinfo” command displays the IP address of the V4



server and the pvData structure of a V4 channel. This is
useful for testing if a V4 server is online, and to check if
the data contains the expected elements.

The “pvget” command can display the complete
structure of a current value, or subscribe to selected
elements. For example, the following command would
show updates to the pixel array of the data sent by the V4
server, on a V4 channel named “neutrons”, used in the
performance tests:

pvget —m —r neutrons.pixel

USE OF V4 AT SNS BEAM LINES

As part of the update to the SNS detector control
software to EPICS, the nED software [8] was developed
to provide a pluggable framework for interfacing to the
various detector configurations found at different beam
lines. One nED module is a V4 server that publishes the
SNS neutron data in the format we described.

There are two primary network clients for this data.
One is a streaming data acquisition system that writes all
neutron events to files for later analysis. The other is
ADnED, an EPICS Area Detector driver which provides
user displays and information for automation [9].

Ideas from the example server code [7] were used to
create the V4 server in nED. Similarly, the example
server was useful to create test data during the
development of ADnED, allowing independent
development and testing of these tools.

CONCLUSION

SNS neutron data can be packaged in pvData. By
comparing different packaging options, we were able to
optimize the network traffic based on the expected types
of network clients.

The performance of pvAccess easily meets our
requirement of about 10M events/sec on 1GigE and
exceeds it on 10GigE.

While the original SNS beam line data acquisition
software was limited to Microsoft Visual C++ on
Windows, the EPICS V4 libraries for pvData and
pvAccess are available on Linux, Mac OS and Windows,
for C++, Java and Python. This allowed us to implement
nED and ADnED in C++ on Linux to obtain the required
performance, while test and calibration tools are often
implemented in Python, offering more flexibility.

While the original SNS beam line neutron event data
server and clients had no additional network test tools, we
can now use the generic EPICS V4 command line tools to
test if a server is online, or to monitor the data on the
network.

At the time of writing, the SNS beam lines USANS,
CORELLI, HYSPEC, VISION and SEQUOIA have been
updated to use V4 pvData and pvAccess, along with nED
and ADnED, for the critical first stages of neutron data
transfer. Operation has been very reliable, especially
considering that pvData and pvAccess are new
developments. The SNS is the first facility to utilize these

technologies in production systems on operating beam
lines.

ACKNOWLEDGMENT

We thank Matej Sekoranja, Marty Kraimer and David
Hickin for their assistance while learning about V4, their
help when implementing the performance test code, and
their fast response whenever we found problems in
pvData and pvAccess.

REFERENCES

[1] http://www.aps.anl.gov/epics/

[2] R.E.Riedel, “Overview of Data Acquisition at the
SNS”, NOBUGS 2004,
http://Ins00.psi.ch/nobugs2004/papers/paper00055 .pd
f

[3] S.M.Hartman, “SNS Instrument Data Acquisition
And Controls”, ICALEPCS 2013, San Francisco,
CA, USA.

[4] http://www.aps.anl.gov/epics/docs/CAproto.html

[5] L.R.Dalesio et al, “EPICS V4 Expands Support to
Physics Application, Data Acquisition, and Data
Analysis”, ICALEPCS 2011, Grenoble, France.

[6] http://epics-pvdata.sourceforge.net

[7] K.Kasemir, EPICS V4 Example Server and Client
for SNS Neutron Data,
https://github.com/kasemir/EPICSV4Sandbox

[8] G.Guyotte, “nED — EPICS-based Neutron Data
Acquisition and Detector Control Software”, EPICS
Meeting, FRIB, MSU, Lansing, MI, 2015.

[9] M. Pearson, “ADnED - V4 Neutron Event Data in
areaDetector”, EPICS Meeting, FRIB, MSU,
Lansing, MI, 2015.
https://github.com/areaDetector/ADnED



