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Abstract 
Version 4 of the Experimental Physics and Industrial 

Control System (EPICS [1]) toolkit allows defining 
application-specific structured data types (pvData) and 
offers a network protocol for their efficient exchange 
(pvAccess). We evaluated V4 for the transport of neutron 
events from the detectors of the Spallation Neutron 
Source (SNS) to data acquisition and experiment 
monitoring systems. This includes the comparison of 
possible data structures, performance tests, and 
experience using V4 in production on a beam line. 

MOTIVATION 
On SNS beam lines, each neutron event consists of a 

pixel ID that identifies the location of the detector where 
a neutron was observed, and a time-of-flight measurement 
that describes when the neutron was detected relative to 
the most recent beam pulse. Depending on the beam line 
and its specific configuration, event rates can reach a few 
million events per seconds. 

This neutron event information needs to be transferred 
from detectors to processing stages that provide users of 
the experiment with visual feedback, accumulate 
information that allows for the automation of the 
experiment, and finally stream the events into a data 
collection pipeline for long-term storage of the 
experiment data. 

The original SNS beam line data acquisition software 
used a locally developed UDP/IP-based network protocol 
to transmit neutron event information [2]. The limited 
performance and reliability of this protocol necessitated 
an update of the overall data acquisition software [3].  

 

EPICS V4 
Based on a proven track record for control of the SNS 

accelerator, EPICS had been chosen as a toolkit for the 
beam line control system upgrade. While Channel Access 
[4], the original EPICS network protocol, has a well 
defined and functional set of data objects, this set is fixed 
to types suitable for describing a single data point, for 
example a temperature reading or voltage set point. 

EPICS V4 [5] is an addition to the EPICS toolkit that 
introduces an alternative to the existing EPICS V3 data 
types and network protocol. 

 

pvData 
pvData is the EPICS V4 library for structured data. It 

can describe such data in an operating-system 
independent way, hold it in memory, and copy complete 
or partial data containers. The data can include time 
stamps, numeric values, enumerated data, text and alarm 
information. Data can also be assembled into arrays and 
structures. 

Normative Types 
pvData allows clients to define nearly arbitrary data 

structures, which is ideal for packaging site-specific 
information. At the same time it limits the interoperability 
of applications. Normative Types are a set of agreed-upon 
pvData types that all implementers of V4 applications are 
encouraged to support. All original EPICS V3 data types 
are described as Normative Types, allowing for an 
eventual transition from V3 to V4. In addition, data types 
like N-dimensional images or statistical samples that are 
often used in higher-level control system applications are 
available as Normative Types. 

pvAccess 
pvAccess is the V4 network protocol that allows for the 

exchange of pvData. It is conceptually similar to V3 
Channel Access, using UDP/IP for channel name 
resolution, and then establishing a TCP/IP connection 
between pvAccess servers and clients to exchange data. It 
supports basic read and write access. A subscription mode 
efficiently updates clients on changes in the data by only 
transferring the modified structure elements. Finally, a 
combined write/read mode supports remote service calls 
by atomically sending parameters, awaiting the execution 
of the remote service, then returning the result.  

 
Both pvData and pvAccess have been implemented in 

C++ and Java, with additional bindings for Python [6]. 

SNS NEUTRON DATA 
SNS neutron data consists of a list of pixels and time-

of-flights as already described, combined with a 
sequential pulse number and the proton charge of the 
accelerator pulse that generated these neutrons. 

The following pvData structure would be a direct 
representation: 

 
// Sequential pulse number 
uint64   pulse 
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// Proton Charge 
double   proton_charge 
// Event array, each element is 
// time-of-flight & pixel 
struct 
{ 
    uint32  time_of_flight 
    uint32  pixel 
} events[] 

 
Each neutron event naturally combines the affected 

detector pixel and the time of flight when the event 
occurred. The above data structure always provides each 
such event as a tuple of {  time_of_flight, pixel }. 

Some consumers, however, require only a subset of this 
tuple. A time-of-flight histogram only needs to inspect the 
time_of_flight elements, and a spatial X/Y histogram only 
the pixel elements. With the above structure they need to 
subscribe to the “events” array and thus always receive 
both the time of flight and pixel information.  

The following data structure holds the same 
information, but allows clients to subscribe to just the 
information of interest: 

 
// Time stamp for everything in this 
// structure. 
// timeStamp.userTag holds 
// sequential pulse number 
time_t timestamp 
 
// Proton Charge 
NTScalar proton_charge 
   double value 
 
// Time-of-Flight values for N neutron events 
NTScalarArray time_of_flight 
    uint[]  value 
 
// Pixel IDs for N neutron events 
NTScalarArray pixel 
    uint[]  value 

 
With this optimized data structure, all producers and 

consumers agree that the “time_of_flight” and “pixel” 
arrays always contain the same number of elements, 
because corresponding array elements constitute one 
neutron event. 

A tool that accumulates the X/Y histogram can now 
subscribe to just the “pixel” element, receiving only this 
data and thus reducing the network traffic. Tools that 
require the complete information can still subscribe to the 
whole pvData structure. 

In addition, this updated structure packages the 
sequential pulse number into the ‘user’ element of the 
normative time stamp type, and bases the proton charge, 
time of flight and pixel elements on Normative Types, 
allowing for compatibility with generic V4 client tools. 

pvData allowed us to package the events as either an 
array-of-structures or a structure-of-arrays, and we chose 

the latter to optimize network traffic for the various use 
cases. For certain detector types or operating modes, the 
above structure can be extended with additional data 
elements, for example to transmit internal detector counts, 
which are used during calibration.  

PERFORMANCE TESTS 
We implemented a V4 server that emits data of the 

above format with sequential pulse numbers as well as a 
V4 client that subscribes to this data, counting the 
received elements and specifically detecting missed pulse 
numbers [7]. 

Figure 1 shows network traffic results from executing 
the demonstration server and client on a 1 gigabit 
Ethernet link. The server was sending 100 updates per 
second, varying the number of events in each of these 
updates. When each packet contains 150000 events, 100 
times a second, this would equate transmitting 15 million 
SNS neutron events per second. Up to about 15 million 
events per second, the measured network traffic scaled 
linearly. There is very little overhead on the expected 
network traffic based on the underlying data size, proving 
that pvAccess efficiently serializes the pvData. 

As we increased the event rate beyond 15 million SNS 
neutron events per second, the network traffic 
asymptotically approaches 95 MB per second. The client 
starts to indicate lost pulse updates. CPU loads of the 
server and client were only about 30%, indicating that we 
reached the limit of TCP on 1GigE.  

 

 
Figure 1: Network traffic on 1GigE network when 
sending various amounts of neutron events packaged into 
100 updates per second. 

 
On a 10GigE test setup, the simulated SNS neutron 

event rate could be increased to about 100 million events 
per second before reaching CPU load limits on the server. 

GENERIC V4 TOOLS 
EPICS V4 includes generic command line tools. The 

“pvinfo” command displays the IP address of the V4 



server and the pvData structure of a V4 channel. This is 
useful for testing if a V4 server is online, and to check if 
the data contains the expected elements. 

The “pvget” command can display the complete 
structure of a current value, or subscribe to selected 
elements. For example, the following command would 
show updates to the pixel array of the data sent by the V4 
server, on a V4 channel named “neutrons”, used in the 
performance tests: 

 
pvget –m –r neutrons.pixel  

USE OF V4 AT SNS BEAM LINES 
As part of the update to the SNS detector control 

software to EPICS, the nED software [8] was developed 
to provide a pluggable framework for interfacing to the 
various detector configurations found at different beam 
lines. One nED module is a V4 server that publishes the 
SNS neutron data in the format we described. 

There are two primary network clients for this data. 
One is a streaming data acquisition system that writes all 
neutron events to files for later analysis. The other is 
ADnED, an EPICS Area Detector driver which provides 
user displays and information for automation [9]. 

Ideas from the example server code [7] were used to 
create the V4 server in nED. Similarly, the example 
server was useful to create test data during the 
development of ADnED, allowing independent 
development and testing of these tools. 

CONCLUSION 
SNS neutron data can be packaged in pvData. By 

comparing different packaging options, we were able to 
optimize the network traffic based on the expected types 
of network clients. 

The performance of pvAccess easily meets our 
requirement of about 10M events/sec on 1GigE and 
exceeds it on 10GigE. 

While the original SNS beam line data acquisition 
software was limited to Microsoft Visual C++ on 
Windows, the EPICS V4 libraries for pvData and 
pvAccess are available on Linux, Mac OS and Windows, 
for C++, Java and Python. This allowed us to implement 
nED and ADnED in C++ on Linux to obtain the required 
performance, while test and calibration tools are often 
implemented in Python, offering more flexibility. 

While the original SNS beam line neutron event data 
server and clients had no additional network test tools, we 
can now use the generic EPICS V4 command line tools to 
test if a server is online, or to monitor the data on the 
network. 

At the time of writing, the SNS beam lines USANS, 
CORELLI, HYSPEC, VISION and SEQUOIA have been 
updated to use V4 pvData and pvAccess, along with nED 
and ADnED, for the critical first stages of neutron data 
transfer. Operation has been very reliable, especially 
considering that pvData and pvAccess are new 
developments. The SNS is the first facility to utilize these 

technologies in production systems on operating beam 
lines. 
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