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Abstract—We address the problem of minimizing the long-run
expected average cost of a complex system consisting of inter-
active subsystems. We formulate a multiobjective optimization
problem of the one-stage expected costs of the subsystems and
provide a duality framework to prove that the control policy
yielding the Pareto optimal solution minimizes the average cost
criterion of the system. We provide the conditions of existence and
a geometric interpretation of the solution. For practical situations
with constraints consistent to those studied here, our results imply
that the Pareto control policy may be of value when we seek to
derive online the optimal control policy in complex systems.

Index Terms—Stochastic optimal control, multiobjective opti-
mization, complex systems, Pareto control policy.

I. INTRODUCTION

A. Motivation

Complex systems consist of diverse entities that interact
both in space and time. Referring to something as complex
implies that it consists of interdependent entities that are
connected with each other and can adapt, i.e., they can respond
to their local and global environment [1]. Complex systems
are encountered in many applications including sustainable
transportation, fusion and other alternative energy strategies,
and biological systems. For example, the US electricity grid is
one of the world’s largest complex systems [2] consisting of a
dynamic collection of diverse, interacting components that can
adapt. These components are also interdependent and operate
under an enormous range of physical, reliability, economic,
social, and political constraints that need to be satisfied over
time scales ranging from seconds, for closed-loop control,
to decades, for transmission siting and construction. Hybrid
electric vehicles (HEVs) and plug-in HEVs is another complex
system [3] consisting of various interdependent subsystems,
e.g., the internal combustion engine, the electric machines
(motor and generator), and the energy storage system (battery),
that are connected and adapt appropriately to provide the
power demanded by the driver. Another example of complex
system is the hybrid distributed power generation system [4]
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consisting of wind turbines, photovoltaic generation, energy
storage, and the relevant energy conversion control.

Stochastic optimal control of complex systems is a ubiq-
uitous task in engineering. The problem is formulated as se-
quential decision-making under uncertainty where a controller
is faced with the task to select control actions in several time
steps to achieve long-term goals efficiently. While the nature of
these problems may vary widely, their underlying structure is
similar and has two principal features: an underlying discrete-
time dynamic system whose state evolves according to given
transition probabilities that depend on a decision at each time
and a cost function that is additive over time. The objective
is to derive an optimal policy that minimizes the long-run
expected average cost criterion.

Mathematically, the average cost criterion is prominent as
being complex to analyze compared to others; while other
classical criteria lead to rational complete solutions, the long-
run cost may not [5]. The average cost criterion in Markov
chains with finite state and action spaces is well understood
[6]–[12]. Dynamic programming (DP) [13] has been widely
employed as the principal method for analysis of these prob-
lems [14]–[20]. A significant amount of work has focused
on inventory problems using linear programming [21], [22],
which has been widely used as an alternative to DP method
[23]–[30]. Policy iteration [10] has been another method to
address problems considering the average cost criterion [31],
[32] by adjusting the policy of the system directly rather
than using value iteration to derive it. Various other methods
proposed in the literature have used matrix decomposition
[33], quadratic programming for multiple costs [34], learning
algorithms [35], [36], decentralized methods [37], and the risk-
sensitive criterion [38].

Despite the significant progress in optimization and control
methods within the last decades current techniques, in some
instances, may be computationally impractical for online opti-
mal control of large-scale complex systems [39]. One possible
approach for ameliorating this difficulty is to develop the
framework that exploits the structure of the system intercon-
nections and narrow the range of acceptable solutions.

In this paper, we seek to establish a rigorous framework for
the analysis and stochastic optimization of complex systems
that will permit online implementation of the optimal control
policy with respect to the long-run expected average cost
criterion. The contributions of this paper are (1) the devel-
opment of a duality framework for the analysis and stochastic
optimization of complex systems that can be used to derive the
optimal control policy; (2) the formulation and solution of a
multiobjective optimization problem of the one-stage expected



costs of all interactive subsystems yielding an equilibrium
operating point among the subsystems that minimizes the
long-run expected average cost of the system; and (3) the
geometric interpretation of the solution and the formation of
the conditions under which the optimal control policy exists.

The remainder of the paper proceeds as follows. In Section
II, we introduce our notation and formulate the problem.
In Section III, we develop a multiobjective optimization
framework to address the problem and introduce the Pareto
control policy. In Section IV, we show that the Pareto control
policy minimizes the long-run expected average cost criterion.
Finally, we present illustrative examples in Section V and
concluding remarks in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Notation

We denote random variables with upper case letters, and
their realization with lower case letters, e.g., for a ran-
dom variable X , x denotes its realization. Subscripts denote
time, and subscripts in parentheses denote subsystems; for
example, Xt(i) denotes the random variable of the subsys-
tem i at time t, and x(i) its realization. The shorthand
notation Xt(1:N) denotes the vector of random variables(
Xt(1), Xt(2), · · · , Xt(N)

)
and x(1:N) denotes the vector of

their realization
(
x(1), x(2), · · · , x(N)

)
. P(·) is the transition

probability matrix, and E[·] is the corresponding expectation
of a random variable. For a control policy π, we use Pπ(·),
Eπ[·] and βπ to denote that the transition probability matrix,
expectation and stationary distribution depend on the choice
of the control policy π.

B. The System Model

We consider a system consisting of N subsystems. The
subsystems interact with each other and their environment. At
time t, t = 1, 2, · · · , T , the state of each subsystem i,Xt(i),
takes values in a finite state space S(i), which is a metric space.
For each subsystem i, we also consider a finite control space
U(i), which is also a metric space, from which control actions,
Ut(i), are chosen.

The initial state of the system X0(1:N) is a random variable
taking values in the system’s state space, S =

∏N
i=1 S(i). The

evolution of the state is imposed by the discrete-time equation

Xt+1(1:N) = f(Xt(1:N), Ut(1:N),Wt(1:N)), (1)

where Wt(1:N) is the input from the environment. The system
state can be completely observed.

In our formulation, a state-dependent constraint is incor-
porated; that is, for each realization of the state of the
subsystem i, Xt(i) = x(i), there is a nonempty and closed
set C(x(i)) :=

{
u(i)|Xt(i) = x(i)

}
⊂ U(i) of feasible control

actions when the system is in state x(i). For each subsystem
i, we denote the set of admissible state/action pairs

Γ(i) : = {(x(i), u(i))|x(i) ∈ S(i) and u(i) ∈ C(x(i))}. (2)

The set of admissible state/action pairs for the system is

Γ: =

N∏
i=1

Γ(i) = {(x(1:N), u(1:N)))|x(1:N) ∈ S

and u(1:N) ∈ C(x(1:N))}, (3)

where C(x(1:N)) =
∏N
i=1 C(i)(x(i)).

For each state of the system Xt(1:N) = x(1:N), we define
the functions µ : S → U , where U =

∏N
i=1 U(i), that map

the state space to the control action space defined as the
control law. When the system is at state Xt(1:N) = x(1:N),
the controller chooses action according to the control law
u(1:N) = µ

(
x(1:N)

)
.

Definition 1: Each sequence of the functions µ is defined
as a stationary control policy of the system

π : =
(
µ(1), µ(2), · · · , µ(|S|)

)
, (4)

where |S| is the cardinality of the system’s state space S.
Let Π denote the set of the collection of the stationary

control policies

Π: =

{
π|π =

(
µ(1), µ(2), · · · , µ(|S|)

}
. (5)

The stationary control policy π operates as follows. As-
sociated with each state Xt(1:N) = x(1:N) is the function
µ
(
x(1:N)

)
∈ C(x(1:N)). If at any time the controller finds

the system in state x(1:N), then the controller always chooses
the action based on the function µ

(
x(1:N)

)
. A stationary

policy depends on the history of the process only through
the current state, and thus to implement it, the controller only
needs to know the current state of the system. The advantages
for implementation of a stationary policy are apparent as
it requires the storage of less information than required to
implement a general policy.

At each stage t, the controller observes the state of the
system, Xt(1:N) = x(1:N) ∈ S, and an action, ut(1:N) =
µ(Xt(1:N)), is realized from the feasible set of actions at
that state. At the same stage t, an uncertainty, Wt(1:N), is
incorporated in the system. At the next stage, t+1, the system
transits to the state Xt+1(1:N) = x′(1:N) ∈ S and a transition
cost for each subsystem i , ct(i)

(
Xt+1(i)|Xt(i), Ut(i)

)
, where

ct(i) : S(i) × C(x(i)) × S(i) → R, and for the system,
ct
(
Xt+1(1:N)|Xt(1:N), Ut(1:N)

)
, where ct : S × C(x(1:N)) ×

S → R, are incurred.

C. Assumptions

In the model described above, we consider the following
assumptions:

(A1) There exists µ such that the graph of µ is included in
Γ.

(A2) The input from the uncertainty Wt(1:N) is a sequence
of independent random variables, independent of the initial
state X0(1:N), and takes values in the finite set W .

(A3) For each stationary control policy π, the Markov chain{
Xt(1:N)|t = 1, 2, · · ·

}
has a unique probability distribution

(row vector).



(A4) The one-stage expected cost of the system, kπt : Γ →
R,

kπt
(
Xt(1:N), Ut(1:N)

)
=∑

x′
(1:N)

∈S

P (Xt+1(1:N) = x′(1:N)|Xt(1:N) = x(1:N), Ut(1:N))·

ct
(
Xt+1(1:N) = x′(1:N)|Xt(1:N) = x(1:N), Ut(1:N)

)
,

is a continuous function of the one-stage costs of the subsys-
tems and it is uniformly bounded.

(A5) The control action realized at each subsystem doesn’t
affect the transition probability matrix of the other subsystems.

We briefly comment on the above assumptions. A1 en-
sures that the set of the collection of the stationary control
policies, Π, is nonempty. A2 imposes a condition yield-
ing that the state Xt+1(1:N) depends only on Xt(1:N) and
Ut(1:N). Namely, the evolution of the state is a Markov
chain [9]. A3 implies that for each stationary policy π ∈
Π, there is a unique probability distribution (row vec-
tor) βπ =

(
β(1)π, β(2)π, · · · , β(k)π, · · · , β(|S|)π

)
, with∑|S|

k=1 β(k)π = 1 [40, p. 227] such that βπ = βπ · Pπ . Under
this assumption, it is known [41, p. 175] that

lim
T→∞

1

T + 1

T∑
t=0

[Pπ]
t

= 1 · βπ, (6)

where Pπ is the transition probability matrix and 1 =
[1, 1, · · · , 1]T . A4 imposes that the interaction of the subsys-
tems has an impact on one-stage expected cost of the system.
Finally, A5 implies that the subsystems evolve independently.

D. Problem Formulation

We are concerned with deriving a stationary optimal control
policy π to minimize the long-run expected average cost of the
system

J(π) = lim
T→∞

1

T + 1
Eπ
[
T∑
0

kπt
(
Xt(1:N), Ut(1:N)

)]
. (7)

Since for each control policy the Markov chain has a unique
probability distribution (A3), it follows that the limit in (7)
exists. Substituting (6) into (7) shows that the long-run average
cost, J(π), does not depend on the initial state X0(1:N) and
is given simply as

J(π) = βπ · kπ, (8)

where βπ the the stationary probability distribution of the
entire system and

kπ =

(
kπt
(
1, Ut(1:N)

)
, kπt
(
2, Ut(1:N)

)
, · · · kπt

(
|S|, Ut(1:N)

))T
,

(9)
is the column vector of the system’s one-stage expected cost.

Various methods that discussed in the Introduction can be
used to solve (7) or (8) offline and derive the optimal control
policy that minimizes the long-run expected average cost J of
the system. In this paper, we seek the theoretical framework

that will implement the optimal control policy online while the
subsystems interact with each other. The intention here is to
identify an equilibrium operating point among the subsystems;
if the systems operate at this equilibrium, then the average cost
of the system will be minimized.

III. MULTIOBJECTIVE OPTIMIZATION ANALYSIS

A. Pareto Control Policy

To identify an equilibrium operating point among the sub-
systems we formulate a multiobjective optimization problem
for the one-stage cost of the subsystems. Let’s consider the
function f : Γ→ RN ,

f =

(
kπt(1)

(
Xt(1:N), Ut(1:N)

)
, kπt(2)

(
Xt(1:N), Ut(1:N)

)
, ...,

kπt(N)

(
Xt(1:N), Ut(1:N)

))
, (10)

where kπt(i)
(
Xt(1:N), Ut(1:N)

)
is the one-stage expected cost

for each subsystem i and the following multiobjective opti-
mization problem

min
Ut(1:N)∈C(x(1:N))

(
kπt(1)

(
Xt(1:N), Ut(1:N)

)
,

kπt(2)

(
Xt(1:N), Ut(1:N)

)
, ..., kπt(N)

(
Xt(1:N), Ut(1:N)

))
. (11)

The result of the problem (11) is called Pareto efficiency. In
a Pareto efficiency allocation among agents, no one can be
made better without making at least one other agent worse.
The following result provides the conditions that the Pareto
efficiency exists.

Proposition 1 [42]: Let Γ be a nonempty and compact
set, and the one-stage expected cost for each subsystem i,
kπt(i)(Xt(i), Ut(i)) : Γ → R, be lower semicontinuous for all
i = 1, · · · , N . Then the Pareto efficiency is not empty.

In our problem, the set of admissible state/action pairs, Γ,
is a nonempty compact set (A1). Furthermore, the one-stage
expected cost for each subsystem i, kπt(i)(Xt(i), Ut(i)), is a
continuous function (A4). Consequently, the Pareto efficiency
exists.

Definition 2: The Pareto control policy πo is defined as the
policy that yields the minimum one-stage expected cost of
the system, kπ

o

t (Xt(1:N), U
o
t(1:N)), at each realization of the

system state Xt(1:N) = x(1:N).

B. Impact of the Pareto Control Policy on the System’s Ex-
pected Cost

To simplify notation, in the rest of the paper
the one-stage expected cost of each subsystem i,
kπt(i)

(
Xt(1:N), Ut(1:N)

)
, and the one-stage expected cost

of the system, kπt
(
Xt(1:N), Ut(1:N)

)
, incurred when the

system operates under the control policy π, will be denoted
by kπt(i) and kπt respectively.

Definition 3: In a system consisting of N interactive sub-
systems, the group of subsystems whose expected costs are a



decreasing function with respect to the cost of the system is
defined as the minor group.

Definition 4: In a system consisting of N interactive sub-
systems, the group of subsystems whose expected costs are an
increasing function with respect to the cost of the system is
defined as the principal group.

Without loss of generality, we assume that the minor group
consists of the subsystems 1, 2, · · · ,m,m ∈ N, and the
principal group consists of the subsystems m + 1, · · · , N .
Thus, since the one-stage expected cost of the system is a
function δ of the one-stage cost of the subsystems (A4),

kπt = δ
(
kπt(1), k

π
t(2), · · · , k

π
t(N)

)
, (12)

from Definition 3, for each subsystem i in the minor group and
for any two control policies π, π′ ∈ Π such that kπt(i) ≤ k

π′

t(i),
if we fix the one-stage cost of the other subsystems in both
minor and principal groups we have

kπt = δ
(
· · · , kπt(i), · · ·

)
≥ kπ

′

t = δ
(
· · · , kπ

′

t(i), · · ·
)
. (13)

Similarly, from Definition 4, for each subsystem j in the
principal group and for any two control policies π, π′ ∈ Π
such that kπt(j) ≤ kπ

′

t(j), if we fix the one-stage cost of the
other subsystems in both minor and principal groups we have

kπt = δ
(
· · · , kπt(j), · · · ,

)
≤ kπ

′

t = δ
(
· · · , kπ

′

t(j), · · · ,
)
. (14)

1) Problem 1: We consider the special case where the
system consists of N subsystems of a minor group only.

Proposition 2: The solution of the following multiobjective
optimization problem at each realization of the state Xt(1:N) =
x(1:N) yields the Pareto control policy of the system.

max
Ut(1:N)∈C(x(1:N))

(
kπt(1), · · · , k

π
t(N)

)
subject to Xt(1:N) ∈ S.

(15)

Proof: Let u∗(1:N) ∈ C(x(1:N)) be the solution of (15)
at each realization of the state Xt(1:N) = x(1:N) under the
control policy π. Thus, if we operate the system under π, then
kπt(i) ≥ kπ

′

t(i), i = 1, . . . , N , for all π′ ∈ Π. Therefore from
Definition 3 we have kπt ≤ kπ

′

t , for all π′ ∈ Π, and hence
from Definition 2 π is the Pareto control policy.

2) Problem 2: We consider the special case where the
system consists of N subsystems of a principal group only.

Proposition 3: The solution of the following multiobjective
optimization problem at each realization of the state Xt(1:N) =
x(1:N) yields the Pareto control policy of the system.

min
Ut(1:N)∈C(x(1:N))

(
kπt(1), · · · , k

π
t(N)

)
,

subject to Xt(1:N) ∈ S.
(16)

Proof: Let u∗(1:N) ∈ C(x(1:N)) be the solution of (16)
at each realization of the state Xt(1:N) = x(1:N) under the
control policy π. Thus, if we operate the system under π, then
kπt(i) ≤ kπ

′

t(i), i = 1, . . . , N , for all π′ ∈ Π. Therefore from
Definition 4 we have kπt ≤ kπ

′

t , for all π′ ∈ Π, and hence
from Definition 2 π is the Pareto control policy.

3) Problem 3: We consider the general case where the
system consists of N subsystems of both a minor and principal
group.

In this case, to derive the Pareto control policy, we formulate
the following optimization problem for the one-stage cost of
the system

min
Ut(1:N)∈C(x(1:N))

kπt

min
Ut(1:N)∈C(x(1:N))

δ
(
kπt(1), k

π
t(2), · · · , k

π
t(N)

)
, (17)

subject to Xt(1:N) ∈ S.

The Pareto control policy is derived by computing at each
realization of the system state Xt(1:N) = x(1:N) ∈ S,
the control action uo(1:N) that yields the minimum one-stage
expected cost of the system in (17).

IV. DUALITY FRAMEWORK

A. Geometric Framework for Duality Analysis

We use a geometric framework from duality analysis, re-
ferred to as min common/max crossing point problems

(
see

[43], p. 120
)
, to show that the Pareto control policy is an

optimal control policy that minimizes the long-run expected
average cost of the system, and provide a geometric interpre-
tation of the solution.

The min common/max crossing point framework captures
the most essential elements of duality by considering two
geometric problems. Let’s consider a nonempty subset Λ of
Rn+1 as shown in Fig. (1). The axis θ corresponds to Rn and
the axis ϕ corresponds to R.

The first geometric problem, the min common point, seeks
to find the minimum value ϕ∗ of the subset Λ in ϕ axis.
The second geometric problem, the max crossing point, seeks
to find the nonvertical hyperplane that contains Λ in its
corresponding upper closed half space and crosses ϕ axis at a
maximum point b∗.

Mathematically, the min common point problem can be
written as

minϕ (18)

subject to : (0, ϕ) ∈ Λ

A nonvertical hyperplane in Rn+1 is specified by its normal
(ν, 1) ∈ Rn+1, where ν ∈ Rn, and a scalar λ ∈ R as

ϕ+ ν′θ = λ. (19)

Such a hyperplane crosses the (n+1)st axis, ϕ, at (0, λ). The
hyperplane contains Λ in its upper closed half plane if and
only if for all (θ, ϕ) ∈ Λ

ϕ+ ν′θ ≥ λ. (20)

Similarly
inf

(θ,ϕ)∈Λ

{
ϕ+ ν′θ

}
≥ λ. (21)

Thus the max crossing point problem can be written

max inf
(θ,ϕ)∈Λ

{
ϕ+ ν′θ

}
(22)



subject to : ν ∈ Rn

The function b(ν) = inf
{
ϕ+ ν′θ

}
is the dual function.

Definition 5: If (θ̄, ϕ̄) belongs to the closure of Λ and for all
(θ, ϕ) ∈ Λ, θ̄+ ν′ · ϕ̄ ≤ θ+ ν′ ·ϕ, we say that the hyperplane
supports Λ at (θ̄, ϕ̄).
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Fig. 1. Geometric framework for duality analysis.

Proposition 4: (see [43], p. 123
)

The max crossing point
of the dual function is less than or equal to the min common
point, namely b∗ ≤ ϕ∗.

Proof: For all (θ, ϕ) ∈ Λ and ν ∈ Rn we have

b(ν) = inf
(θ,ϕ)∈Λ

{
ϕ+ ν′θ

}
≤ inf

(0,ϕ)∈Λ

{
ϕ
}
. (23)

Taking the supremum over ν ∈ Rn, we have

b∗ = sup
ν∈Rn

inf
(θ,ϕ)∈Λ

{
ϕ+ ν′θ

}
≤ ϕ∗ = sup

ν∈Rn

inf
(0,ϕ)∈Λ

{
ϕ
}
.

(24)

B. Strong Duality of the Pareto Control Policy

We want to investigate the impact of the Pareto control
policy on the long-run expected average cost of the system.
This will involve characterizing the solution of the Pareto
control policy within a duality framework. We recall that
kπ is the column vector of the system’s one-stage expected
cost for each state, 1, 2, · · · , |S|, under the control policy
π =

(
µ(1), µ(2), · · · , µ(|S|)

)
, namely

kπ =

(
kπ
(
1, µ(1)

)
, kπ
(
2, µ(2)

)
, · · · , kπ

(
|S|, µ(|S|)

))T
.

We formulate the following problem:

min
π∈Π
‖kπ + Mπ · q‖ (25)

subject to : βπ ·Mπ = 0,

where Mπ = Pπ − I, q ∈ R|S| such that Mπ · q > 0,
and βπ =

(
β(1)π, β(2)π, · · · , β(|S|)π

)
is the probability

distribution corresponding to the control policy π.
We refer to this problem as the primal problem, and we

denote by ‖kπ + Mπ · q‖∗ its optimal value. The Lagrangian
function of the above minimization problem is

L(π, ν) = ‖kπ + Mπ · q‖+
(
βπ ·Mπ

)
· ν, (26)

where ν ∈ R|S| is the vector of the Lagrange multipliers.
We use the min common/max crossing point framework

described above to visualize the duality in (26). We consider
the following set

Λ :=
{(
βπ ·Mπ, ‖kπ + Mπ · q‖|π ∈ Π

}
. (27)

Lemma 1: The hyperplane with norm (ν, 1) that passes
through the vector

(
βπ · Mπ, ‖kπ + Mπ · q‖

)
intercepts the

vertical axis ϕ at the value of L(π, ν).
Proof: The hyperplane with norm (ν, 1) that passes

through
(
βπ ·Mπ, ‖kπ + Mπ · q‖

)
satisfies

ϕ+ θ′ · ν = ‖kπ + Mπ · q‖+
(
βπ ·Mπ

)
· ν = L(π, ν). (28)

Lemma 2: The hyperplane that passes through ‖kπ+Mπ ·q‖∗
supports Λ.

Proof: From Lemma 1 we have

ϕ+ θ′ · ν = ‖kπ + Mπ · q‖+
(
βπ ·Mπ

)
· ν = λ. (29)

Since for each stationary control policy we have a unique
probability distribution (A3),

βπ = βπ · Pπ ⇒ βπ ·
(
Pπ − I

)
= 0⇒(

βπ ·Mπ
)

= 0.
(30)

Thus for each control policy π ∈ Π, the elements of the set Λ
are located only on the axis ϕ, and

‖kπ + Mπ · q‖ = λ. (31)

Thus

‖kπ
∗

+Mπ∗ · q‖∗ = ϕ∗ ≤ ‖kπ +Mπ · q‖ = λ, ∀π ∈ Π. (32)

Theorem 1: The Pareto control policy πo is the optimal
control policy that minimizes the long-run expected average
cost criterion of the system, under the assumption (A3) and
(A4).

Proof: Let

1 · ψ = kπ + Mπ · q, ∀π ∈ Π, (33)

where 1 =
(
1, 1, ..., 1

)T
, and ψπ ∈ R. Recall that q ∈ R|S|

such that Mπ · q > 0.
Multiplying the above equation by βπ =(
β(1)π, β(2)π, · · · , β(k)π, · · · , β(|S|)π

)
from the left



we have

ψπ = βπ · kπ + βπ ·Mπ · q (34)

= βπ · kπ + βπ ·
(
Pπ − I

)
· q (35)

= βπ · kπ + βπ · Pπ · q − βπ
o

· q (36)
= βπ · kπ + βπ · q − βπ · q = βπ · kπ (37)

since Mπ = Pπ − I and βπ = βπ ·Pπ . So from (8), ψπ is the
long-run expected average cost corresponding to the control
policy π.

From the Definition 2 of the Pareto control policy

kπ
o

≤ kπ, ∀π ∈ Π, (38)

and since Mπ · q > 0, (38) through (33) can be written

kπ
o

≤ kπ + Mπ · q = 1 · ψπ, (39)

where ψπ is the long-run expected average cost corresponding
to any control policy π ∈ Π. Multiplying (39) by βπ

o

from
the left we have

ψπ
o

= βπ
o

· kπ
o

≤ ψπ, ∀π ∈ Π. (40)

Thus the Pareto control policy is the optimal control policy
that minimizes the long-run expected average cost.

Theorem 2: The Pareto control policy πo supports Λ.
Proof: From Theorem 1 we have

kπ
o

+ Mπo

· q ≤ kπ + Mπ · q, ∀π ∈ Π. (41)

Hence

‖kπ
o

+ Mπo

· q‖ ≤ ‖kπ + Mπ · q‖. (42)

and from Lemma 2

‖kπ
∗

+ Mπ∗ · q‖∗ = ‖kπ
o

+ Mπo

· q‖. (43)

Corollary 1: There is no duality gap in (26), and thus the
Pareto control policy πo yields the global optimal solution.

V. ILLUSTRATIVE EXAMPLES

A. Preliminary Results

In this section, we provide some results that we need to use
for the illustrative examples in the next subsection. We begin
by recalling the Kronecker product and its properties (see [44],
[45]).

Definition 6: If A is an m-by-n matrix and B is a p-by-q
matrix, then the Kronecker product A ⊗ B is the mp-by-np
block matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .
The next proposition provides an expression of the transition
probability of the entire system as a Kronecker product of the
transition probabilities of each subsystem.

Proposition 5 [46] : Consider N evolving subsystems
with corresponding transition probability matrices P(i), i =

1, · · · , N defined by P(i)(Xt+1(i) = x′(i)|Xt(i) = x(i), Ut(i) =
u(i)). Now consider that the system operates under the control
policy π. Then the transition probability matrix of the entire
system satisfies

Pπ = Pπ(1) ⊗ Pπ(2) ⊗ · · · ⊗ Pπ(N). (44)

Proposition 6 [46]: Consider a controlled Markov chain
with a unique probability distribution for each control policy π
(A3) for the entire system and another one for each subsystem.
Then the stationary probability of the entire system, βπ , can be
expressed as the Kronecker product of each stationary proba-
bility of each corresponding subsystem i, βπ(i), i = 1, · · · , N ,
i.e.,

βπ = βπ(1) ⊗ β
π
(2) ⊗ · · · ⊗ β

π
(N). (45)

B. A System with Subsystems of a Minor Group

We consider a system of two interactive subsystems of a
minor group [46], illustrated in Fig. 2.

Fig. 2. A System of two subsystems.

Each subsystem has two states, i.e., S(i) = {1, 2}, and two
control actions U(i) = {a, b}. Thus the system has four states

S = {1, 2, 3, 4} =
{ [ 1

1

]
,

[
1
2

]
,

[
2
1

]
,

[
2
2

] }
, and

there are sixteen control policies. The transition probability
matrices associated with the control policies for the first

subsystem are Pπ1

(1) = Pπ2

(1) = Pπ3

(1) = Pπ4

(1) =

[
0.7 0.3
0.4 0.6

]
,

Pπ5

(1) = Pπ6

(1) = Pπ7

(1) = Pπ8

(1) =

[
0.7 0.3
0.2 0.8

]
, Pπ9

(1) =

Pπ10

(1) = Pπ11

(1) = Pπ12

(1) =

[
0.9 0.1
0.4 0.6

]
, and Pπ13

(1) = Pπ14

(1) =

Pπ15

(1) = Pπ16

(1) =

[
0.9 0.1
0.2 0.8

]
. Similarly, the transition

probability matrices for the second subsystem are Pπ1

(2) =

Pπ5

(2) = Pπ9

(2) = Pπ13

(2) =

[
0.5 0.5
0.45 0.55

]
, Pπ2

(2) = Pπ6

(2) =

Pπ10

(2) = Pπ14

(2) =

[
0.5 0.5
0.3 0.7

]
, Pπ3

(2) = Pπ7

(2) = Pπ11

(2) =



Pπ15

(2) =

[
0.6 0.4
0.45 0.55

]
, and Pπ4

(2) = Pπ8

(2) = Pπ12

(2) = Pπ16

(2) =[
0.6 0.4
0.3 0.7

]
.

The output for each subsystem with respect to each control
policy is given by four 2 × 2 matrices as we have two
states and two actions for each subsystem. For the first
subsystem corresponding to each control policy the output

is given: Y π
1

t(1) = Y π
2

t(1) = Y π
3

t(1) = Y π
4

t(1) =

[
4.8 4.0
5.6 9.6

]
,

Y π
5

t(1) = Y π
6

t(1) = Y π
7

t(1) = Y π
8

t(1) =

[
4.8 4.0
11.2 10.4

]
,

Y π
9

t(1) = Y π
10

t(1) = Y π
11

t(1) = Y π
12

t(1) =

[
8.0 6.4
5.6 9.6

]
, and

Y π
13

t(1) = Y π
14

t(1) = Y π
15

t(1) = Y π
16

t(1) =

[
8.0 6.4
11.2 10.4

]
. The

output of the second subsystem with respect to each control

policy is Y π
1

t(2) = Y π
5

t(2) = Y π
9

t(2) = Y π
13

t(2) =

[
4.9 4.2
6.3 7.0

]
,

Y π
2

t(2) = Y π
6

t(2) = Y π
10

t(2) = Y π
14

t(2) =

[
4.9 4.2
7.7 9.8

]
, Y π

3

t(2) =

Y π
7

t(2) = Y π
11

t(2) = Y π
15

t(2) =

[
6.3 8.4
6.3 7.0

]
, and Y π

4

t(2) = Y π
8

t(2) =

Y π
12

t(2) = Y π
16

t(2) =

[
6.3 8.4
7.7 9.8

]
.

We assume that 25% of the subsystem’s output goes to
subsystem 2, i.e., Z(12)

t = 0.25 · Yt(1) and also 43% percent
of the subsystem’s output goes to subsystem 1, i.e., Z(21)

t =
0.43 · Yt(2). The input for each subsystem is Wt(1) = 15 and
Wt(2) = 16 respectively. Furthermore, we assume that the
transition cost for each subsystem is given by

ct(1)

(
Xt(1), Ut(1)

)
=
Wt(1) + Z

(21)
t

Yt(1) + Z
(12)
t

, (46)

and

ct(2)

(
Xt(2), Ut(2)

)
=
Wt(2) + Z

(12)
t

Yt(2) + Z
(12)
t

(47)

respectively. The transition cost for the entire system is given
by

ct
(
Xt(1:2), Ut(1:2)

)
=
Wt(1) +Wt(2)

Yt(1) + Yt(2)
. (48)

The transition cost matrix for each subsystem and for the
entire system is a 4×4 matrix since we have four states in total
(two for each subsystem), and the cost depends on each state
and control action. For example, if we want to compute the
transition cost matrices for each subsystem, Cπ1

(1),C
π1

(2), and for
the system, Cπ1

, when the system operates under the control
policy π1, substituting Wt(1),Wt(2), Y

π1

t(1), Z
(12)
t , Y π

1

t(2), Z
(21)
t

in (46), (47), and (48) yields

Cπ
1

(1) =


2.85 2.80 3.42 3.36
2.95 3.00 3.54 3.60
2.44 2.40 1.43 1.40
2.53 2.57 1.48 1.50

 ,

Cπ
1

(2) =


2.45 2.87 2.43 2.83
1.56 1.23 1.55 1.21
2.69 3.13 2.66 3.10
1.71 1.34 1.69 1.33

 , and

Cπ
1

=


3.19 3.44 3.48 3.78
2.48 2.12 2.64 2.24
1.92 2.01 2.02 2.12
1.64 1.47 1.71 1.53

 .
The entry (3, 2) in the transition cost matrices Cπ1

(1),C
π1

(2), and
Cπ1

corresponds to the costs incurred when the subsystem 1
resides at state 2 and transits to state 1 while the subsystem 2
resides at state 1 and transits to state 2 following the control
policy π1.

Similar to the cost matrix, the transition probability matrix
is also a 4× 4 for the four states. When the system operates
under the control policy π1, the transition probability matrix
is given from Proposition 5, i.e., Pπ1

= Pπ1

(1)⊗P
π1

(2). Therefore,

Pπ1

=


0.35 0.35 0.15 0.15
0.315 0.385 0.135 0.165
0.2 0.2 0.3 0.3
0.18 0.22 0.27 0.33

.

The one-stage expected cost, kπ
(
Xt(1:2), Ut(1:2)

)
, of each

subsystem i is a 4× 1 vector, and the value of the element m
is computed as follows:

kπt(i)
(
Xt(1:2), Ut(1:2)

)
=

4∑
k=1

[Pπ]mk · [Cπ]mk. (49)

For example, to compute the one-stage expected cost for
subsystem 1 following the control policy π1 we have

kπ
1

(1)

(
Xt(1:2), Ut(1:2)

)

=


∑4
k=1 [Pπ1

]1k[Cπ1

(1)]1k∑4
k=1 [Pπ1

]2k[Cπ1

(1)]2k∑4
k=1 [Pπ]3k[Cπ1

(1)]3k∑4
k=1 [Pπ1

]4k[Cπ1

(1)]4k



=


2.9945
3.1562
1.8170
1.9154

 . (50)

The stationary probability distribution is given by
(45). For example, the stationary distribution imposed
by the control policy π1, is βπ

1

= βπ
1

(1) ⊗ βπ
1

(2) =

[ 0.2707 0.3008 0.2030 0.2256 ]. Hence the average
cost of subsystem 1 with respect to policy π1 is given by
(8), J(π) = βπ · kπ1

(1) = 2.5602. In a similar way we
can compute the corresponding one-stage cost vectors and



probability distributions for the subsystems 1, 2, and the entire
system for all 16 control policies. The average costs for the
subsystems and the system corresponding to each control
policy are summarized in Tables I, II and III. Each value in
the table (reading the table row by row) corresponds to the
long-run expected average cost for the control policies from
π1 to π16. We note that subsystem 1 reaches its minimum
average cost J1 when the policy π13 is used. For subsystem
2, the optimal cost is attained with the policy π4. Finally, for
the entire system optimality occurs under the control policy
π16 which is the Pareto control policy as it corresponds to the
Pareto efficiency one-stage expected cost for each subsystem.

TABLE I
LONG-RUN AVERAGE COSTS FOR SUBSYSTEM 1

2.5602 2.6712 2.6390 2.7255
2.0249 2.1127 2.0872 2.1556
1.8029 1.8811 1.8584 1.9193
1.6317 1.7025 1.6820 1.7371

TABLE II
LONG-RUN AVERAGE COSTS FOR SUBSYSTEM 2

2.2511 1.8617 1.7921 1.5235
2.3194 1.9182 1.8464 1.5697
2.3102 1.9106 1.8391 1.5634
2.3383 1.9338 1.8615 1.5825

TABLE III
LONG-RUN AVERAGE COSTS FOR ENTIRE SYSTEM

2.7557 2.4427 2.4607 2.2307
2.3801 2.1328 2.1522 1.9695
2.3178 2.0876 2.1108 1.9398
2.1821 1.9746 1.9977 1.8431

C. A System with Subsystems of a Minor Group with Varying
Transition Probability and Cost Matrices

In this example we use synthetic data to examine the Pareto
control policy of the systems. First, we use DP to compute
the optimal control policy, denoted by π∗, that minimizes the
average cost of the entire system. We anticipate that the Pareto
control policy π0 will yield the same result.

Let the subsystems’ inputs be Wt(1) = 15,Wt(2) = 16
as in the previous example. Next, a random output of each
subsystem is considered. The total output of the first subsystem
1 associated with action, a, is a matrix with random entries dis-
tributed according to a uniform distribution, Y (1, 3). Similarly,
the total output of the same subsystem with respect to action
b, is a matrix with entries distributed according to Y (8, 10).
For the second subsystem, the entries of the matrix associated
with action a are independent and identically distributed (i.i.d.)
Y (2, 4), and the ones associated with action b i.i.d. Y (9, 12).

Next, let ρ∗ .= ρ(π∗) be the map defined as

ρπ = ‖f − fs‖, (51)

where

f =

(
kπt(1)

(
Xt(1:2), Ut(1:2)

)
, kπt(2)

(
Xt(1:2), Ut(1:2)

))
, (52)

and

fs =

(
min

Ut(1:2)∈C(x(1:2))
kπt(1)

(
Xt(1:2), Ut(1:2)

)
,

min
Ut(1:2)∈C(x(1:2))

kπt(2)

(
Xt(1:2), Ut(1:2)

))
. (53)

We perform 1,000 replications and we observe in Fig. 3 that
the absolute difference between ρ(π0) and ρ(π∗) is zero. This
indicates that π0 yields in fact the strong Pareto solution for
the one-stage expected costs. Furthermore, Fig. 3 shows that
minπ∈Π ρ(π) = ρ(π0), where π0 is such that J∗ = J(π0).
Hence, based on these synthetic data, one can conclude that
the optimal control policy of the entire system is the Pareto
control policy.
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Fig. 3. Histograms of the difference between the average costs corresponding
to the optimal and Pareto control policies π∗ and πo respectively.

D. Power Management Control of a Hybrid Electric Vehicle:
A System with Subsystems of a Principal Group

The results presented here have been used in the problem
of optimizing online the power management control in a
HEV [47] consisting of subsystems of a principal group. The
Pareto control policy was validated through simulation and it
was compared with the control policy derived offline by DP
using the long-run expected average cost. Both control policies
achieved the same cumulative fuel consumption as illustrated
in Fig. 4, demonstrating that the Pareto control policy is the
optimal control policy with respect to the average cost criterion
and can be implemented online. This work has been extended
[48] by considering the battery in the problem formulation
in addition to the engine’s and motor’s efficiency that can
provide insights on how to prioritize these objectives based
on consumers’ needs and preferences.
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Fig. 4. Cumulative fuel consumption and state of charge of the battery for a
parallel hybrid electric vehicle using the control policy derived from dynamic
programming and the Pareto control policy over the city-suburban heavy duty
vehicle route driving cycle [47].

VI. CONCLUDING REMARKS

In this paper, we established a framework for the analysis
and stochastic optimization of complex systems consisting of
interactive subsystems. We formulated the stochastic control
problem as a multiobjective optimization problem of the
one-stage expected costs of the subsystems and developed
a duality framework to prove that the Pareto control policy
minimizes the long-run expected average cost criterion of the
system. We provided a geometric interpretation of the solution
and conditions for its existence. The Pareto control policy
identifies an equilibrium operating point among the subsystem.
If the system operates at this equilibrium, then the long-run
expected average cost per unit time is minimized. For practical
situations with constraints consistent to those studied here, our
results imply that the Pareto control policy may be of value
when we seek to derive online the optimal control policy in
complex systems.

One potential extension of this work could be to investigate
whether a similar analysis can yield the desired emergence in a
complex system from a decentralized perspective. Emergence
refers to the spontaneous creation of order and functionality
from the bottom up. Wherever we see complex systems in the
physical world, we see emergent patterns at every level, both in
structure and functionality. Emergence occurs without a central
planner, from the bottom up, based on the interaction of the
individual entities in a system. As a simple example from
the natural world of how emergence arises, we can consider
the flying patterns created by a flock of birds following three
simple rules: 1) stay close but don’t bomb into birds around
me, 2) fly as fast as birds near me, and 3) move towards the
center of the group. The fact that a rule applied locally leads
to a macro-level property is what is meant by the term bottom
up. Another example of a bottom-up emergent phenomenon is

the traffic jam resulting from a specific sequence of vehicle-to-
vehicle and vehicle-to-infrastructure interactions. If we could
develop the framework to characterize emergence, then we
would be able to designate the rules for the interactions of the
individual subsystems so that the desired emergent phenomena
would occur.
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