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1 Project Overview

The project was a collaborative effort among MIT, Sandia National Laboratories (local PI Dr. Habib
Najm), the University of Southern California (local PI Prof. Roger Ghanem), and The Johns Hop-
kins University (local PI Prof. Omar Knio, now at Duke University). Our focus was the analysis
and reduction of large-scale dynamical systems emerging from networks of interacting components.
Such networks underlie myriad natural and engineered systems. Examples important to DOE in-
clude chemical models of energy conversion processes, and elements of national infrastructure—e.g.,
electric power grids. Time scales in chemical systems span orders of magnitude, while infrastruc-
ture networks feature both local and long-distance connectivity, with associated clusters of time
scales. These systems also blend continuous and discrete behavior; examples include saturation
phenomena in surface chemistry and catalysis, and switching in electrical networks. Reducing size
and stiffness is essential to tractable and predictive simulation of these systems. Computational sin-
gular perturbation (CSP) has been effectively used to identify and decouple dynamics at disparate
time scales in chemical systems, allowing reduction of model complexity and stiffness. In realistic
settings, however, model reduction must contend with uncertainties, which are often greatest in
large-scale systems most in need of reduction. Uncertainty is not limited to parameters; one must
also address structural uncertainties—e.g., whether a link is present in a network—and the impact
of random perturbations, e.g., fluctuating loads or sources.

Research under this project developed new methods for the analysis and reduction of complex
multiscale networks under uncertainty, by combining computational singular perturbation (CSP)
with probabilistic uncertainty quantification. CSP yields asymptotic approximations of reduced-
dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing
uncertainty in this context raised fundamentally new issues, e.g., how is the topology of slow
manifolds transformed by parametric uncertainty? How to construct dynamical models on these
uncertain manifolds? To address these questions, we used stochastic spectral polynomial chaos (PC)
methods to reformulate uncertain network models and analyzed them using CSP in probabilistic
terms. Finding uncertain manifolds involved the solution of stochastic eigenvalue problems, facili-
tated by projection onto PC bases. These problems motivated us to explore the spectral properties
stochastic Galerkin systems. We also introduced novel methods for rank-reduction in stochastic
eigensystems—transformations of a uncertain dynamical system that lead to lower storage and
solution complexity. These technical accomplishments are detailed below. This report focuses on
the MIT portion of the joint project.



2 Technical Accomplishments

2.1 Simplification of chemical kinetic systems under uncertainty

Simulation of chemical systems with detailed kinetics can be computationally intensive. While
homogeneous systems containing hundreds of species and thousands of elementary reactions can
be integrated in reasonable times, a direct approach is not practical when numerous calculations
are required, e.g., in the numerical simulation of reacting flow or in problems of optimization or
sampling. Here, model reduction techniques are required for computational tractability. Simplified
or reduced kinetic models can also provide insight into chemical systems by revealing key pathways
and interactions. Many existing methods for reduction in a deterministic setting take advantage
of timescale separation in chemical kinetic systems, where different timescales result from a range
of slow and fast reactions. However, the relevant reaction rate parameters are typically uncertain
and the impact of this uncertainty on model reduction had not previously been investigated.

We have used the method of computational singular perturbation (CSP) to calculate probabilis-
tic ‘importance indices’ for species-reaction pairs on both fast and slow timescales. By modifying
an existing deterministic algorithm, distributions of these indices are used to generate new reduced
models that take account of rate parameter uncertainty. We replace the deterministic threshold
used in the original algorithm with a new threshold based on the CVaR (conditional value-at-risk).
First, a 95% confidence level for each importance index is found; the CVaR is then the expected
value of an importance index given that it has exceeded the confidence level. This quantity pro-
vides a measure of risk and reduces the impact of both sampling errors and the subjective choice
of threshold values.

Different error criteria are used to examine these new reduced models for their ability to either
(1) yield predictions within probabilistic bounds determined by the full model, or (2) preserve
entire output probability distributions of the full model. Objective (1) allows for greater model
reduction by taking advantage of uncertainty to allow larger errors compared to the deterministic
case. Objective (2) gives greater confidence in the quality of the reduced model over a wider range
of parameters. These objectives do not always conflict; sometimes both objectives can be partially
satisfied.

We compared our results with both existing deterministic algorithms and with an exhaustive
search for the best reduced model of given size in a methane-air reaction mechanism at nominal
rate parameters. Although the deterministic simplification algorithm performs well, it has not
previously been compared to optimal results from an exhaustive search. We find that there is
an opportunity for considerable improvement to the algorithm in terms of both error in ignition
delay at nominal rate parameters and smallest achievable mechanism size. The modified algorithm
succeeds in allowing smaller mechanism sizes, but does not give lower error with nominal rate
parameters at sizes that can already be achieved. However, it significantly improves reproduction
of the output distribution when sampling from a distribution of rate parameters.

2.1.1 Numerical examples

CSP versus optimal simplified models We first present results obtained in an entirely deter-
ministic context. Skeletal mechanisms generated using the CSP simplification algorithm of Valorani
et al. are compared to “optimal” simplified mechanisms of a given size, found through an exhaustive
search of all possible simplified mechanisms. Exhaustive search has combinatorial complexity and
is obviously not practical as a simplification algorithm, but the goal of this comparison is to assess
how far the results of a fast heuristic simplification algorithm lie from the best possible skeletal
model. This assessment has additional relevance below, where we consider two new error criteria
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Figure 1: Relative error in ignition delay predictions, for mechanisms obtained via CSP simplification
(blue) and optimal mechanisms obtained via exhaustive search (red).

that incorporate uncertainty, then introduce a new heuristic simplification algorithm designed to
do a “good” job minimizing these errors.

Figure 1 shows relative error in ignition delay time as predicted by simplified mechanisms of
differing sizes (where size corresponds to the number of retained species). The simplified mech-
anisms are found through CSP simplification or by exhaustive search, as described above. The
“full” mechanism in this example is GRIMech 3.0 with C3 and NOy chemistry removed. (Removal
of these species/reactions is simply a practical choice, intended to make exhaustive search more
computationally feasible.) The ignition delay of a hydrogen-enriched methane-air mixture under
constant-pressure and adiabatic conditions is calculated for three different initial temperatures and
mixture compositions; the figure shows the relative error in this ignition delay, averaged over all
three cases.

Both the optimal and CSP-produced simplified mechanisms show a trend of smaller errors with
larger mechanism sizes. Error of the optimal mechanisms is strictly non-increasing with mechanism
size, as expected. For intermediate sizes, the CSP-produced mechanisms yield errors that are within
one order of magnitude of the optimal (minimal) error; this performance may be considered quite
reasonable, given the vastly different computational costs of the two simplification schemes.

Figure 2 shows the species actually removed in the CSP-simplified model and in the optimal
simplified model of any size. Species removed by CSP simplification form nested sets—i.e., if
a species is removed in mechanism of size n, it necessarily will be removed in mechanisms of size
n—1 or smaller, as the latter result from larger values of the importance index threshold parameter.
Exhaustive search, on the other hand, has no such constraints; thus, the removed species in an
optimal mechanism of a given size do not need to be nested.

It is also worth noting that these results do not fully evaluate the generality of the simplified
mechanisms. While the exhaustive-search mechanisms are optimal for the prescribed error criterion,
it is entirely possible that the CSP-simplified mechanisms might better predict ignition delays at
alternate initial conditions, or better reproduce different functionals of the species trajectories.
While the heuristic CSP simplification algorithm takes into account the dynamics and structure of
the chemical mechanism, it does not optimize for any particular output error criterion.
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Figure 2: Species removed by CSP simplification (blue squares) and by exhaustive search for an optimal
mechanism of given size (red ‘x’s).

New error criteria for reduction under uncertainty One of the key notions we explored
in this research project is whether uncertainty provides opportunities for model reduction over a
deterministic case. In other words, is it possible—and reasonable—to reduce a detailed mecha-
nism that has uncertain parameters further than a detailed mechanism with precise/deterministic
parameters?

We approached this question by devising output error criteria that will guide model reduction
under uncertainty. A first criterion states that the difference between the simplified model prediction
ys and the detailed model prediction y4 of some output quantity of interest should be normalized
by the standard deviation of the detailed model prediction. The criterion is thus

|ys - yd’
oq

err = (1)

A more general criterion comes from the realization that, given a probabilistic description of
uncertainty in the rate parameters, both the full-model and simplified-model outputs are random
variables. Accordingly, one may choose among many established notions of “distance” between
probability measures. Here, we employ the Kullback-Leibler (K-L) divergence. If y5 has probability
density ps and y, has probability density pg, the K-L divergence from py to ps is

B o pa(y)
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We note that the K-L divergence can reduce to (1) in the case of Gaussian output distributions
with identical variance.

CSP simplification with risk-based thresholding We have modified the CSP simplification
algorithm to account for parametric uncertainty in the detailed mechanism. CSP-based simplifica-
tion relies on the evaluation of slow and fast CSP importance indices I} and I; , which quantify

4



the importance of reaction k£ to the slow or fast evolution of species m. Uncertainty in rate pa-
rameters (e.g., pre-exponential factors, activation energies, temperature exponents, etc) gives rise
to uncertainty in these importance indices. Given a probabilistic description of the rate parameter
uncertainties, the importance indices are naturally endowed with a joint probability distribution.

The importance indices calculated here are normalized for each species. Additionally, we con-
sider only the time average of each normalized importance index; averages are calculated over the
time trajectory of each ignition process. Monte Carlo simulation of homogeneous autoignition,
over the space of uncertain rate parameters, is used to construct the probability distribution of the
importance indices. (Polynomial chaos approximations to the importance indices are, of course, a
viable and potentially far more efficient alternative to Monte Carlo; we shall explore this avenue
in future work.) We consider eight uncertain parameters; all are pre-exponential factors endowed
with log-normal probability distributions. These pre-exponential factors correspond to elemen-
tary reactions involved in hydrogen oxidation. The resulting marginal probability distribution of a
particular fast importance index is shown in Figure 3.

Deterministic CSP simplification employs a user-defined threshold on normalized importance
indices to decide which reactions influence the evolution of a particular species, and which reactions
may be neglected. The retained reactions enlarge the set of retained species, and the algorithm
iterates to convergence. Here, we replace the hard threshold on importance index with a proba-
bilistic criterion. In particular, we consider the conditional value-at-risk (CVaR). As depicted in
Figure 3, the CVaR is the expected value of the importance index given that the importance index
exceeds a particular level:

CVaR = E [Iim|lem > 1] (3)

where p is determined by P {1y, > u} = . In this definition, 1 — « is known as the confidence level
while y is the value-at-risk (VaR). Compared to VaR, numerical evaluation of CVaR is less sensitive
to sampling error. Moreover, using CVaR avoids the difficulties of arbitrary threshold selection,
and naturally captures the notion that exceeding a threshold by a large amount is undesirable.

Beginning with the importance index distributions calculated above, we use a CVaR threshold
in the simplification algorithm to construct simplified mechanisms of various sizes. We then use
Monte Carlo simulation with each simplified mechanism to evaluate a probability density for the
predicted ignition delay. Figure 4 shows probability densities resulting from several simplified
models (colored solid line), compared to the probability density produced by the full detailed
model (dashed line). Agreement is quite good, even for a 20-species mechanism. Figure 5, on the
other hand, shows ignition delay probability densities calculated with a different set of simplified
mechanisms—mechanisms constructed via the usual deterministic CSP simplification algorithm.
In this case, the simplified mechanisms do a much poorer job replicating the output probability
density of the detailed model.

2.2 Rank reduction for parametric partial differential equations

In a parallel effort at MIT, we have developed preconditioning techniques to reduce the solution
rank of parametric partial differential equation (PDEs). By applying these techniques, efficient
integration of the PDE can be achieved through classical tensor methods. Although our abstract
formulation is quite general, we have focused on time dependent problems. In particular, we study
a preconditioner based on a nonlinear change of the time coordinate, which is determined as the
solution of an optimal control problem for rank minimization.
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Figure 3: Probability density function of the fast importance index of {20H — O + Hy0} to HO5. Also
shown are the VaR and CVaR at a 95% confidence level.
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Figure 4: Probability densities of ignition delay as predicted by simplified mechanisms constructed with
risk-based thresholding. Detailed mechanism predictions are depicted with the dashed red line.
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2.2.1 Motivation

Let u(x,£) : X X Z — R be the solution field of a well-posed parametric equation:

G(u; ) = f(,€) (4)

where G(-;€) is a possibly nonlinear partial differential operator parameterized by & and f(x,§)
is a forcing term. X is the range of the physical variable & and = represents the range of the
parametric variable £. We can introduce a suitable function space Q2 x «= of functionals defined over
X x E to characterize a solution of (4) in a weak sense. In practice, we always assume Qx = to
be a separable Hilbert space. Since Qxx=z ~ Qx ® Q=, any function in Qx«= can be written as a
possibly infinite converging series of separable functions defined over X and =:

h(@, &) =Y wi(@)Ai(€) (5)
=1

where w; € Qx, A; € 2=, and the cardinality of the sum is said to be the rank of h, possibly infinite.
The convergence of (5) is with respect to a metric of Qx ® 2=z. In numerical applications, it is
often more convenient the notion of e-rank defined as the minimal cardinality of a series like (5)
needed to approximate h with relative precision of at least €. For ease of notation and without loss
of generality, we always refer to the numerical e-rank whenever dealing with the notion of rank.

Efficient numerical techniques to solve parametric equations exploit linear separability (5) of the
solution. In this case, the solution is low rank and its realizations {u(x,&;)}, lie in a low dimensional
subspace of Q2x. Thus, the rank is a crucial quantity that measures both the dimensionality of a
representation of the solution, and the complexity of solving the associated equation. Ideally,
we want a low rank solution. Unfortunately, this is not always the case. When the solution is
high rank, classical linear reduction techniques such as PGD, POD, and RB are not numerically
efficient in terms of CPU and memory requirements and one has to resort on expensive classical
simulations. The key observation is that even though the solution is high rank, there might exist
a low dimensional map of a low rank field y which yields the solution: u = ®(y). We seek the map
® () and we call it: the preconditioner.

One might wonder how a such a low dimensional map could possibly exist. The reason is
straightforward: high rank does not necessarily correspond to a high degree of information content.
We give a simple example to clarify this point. Consider the identity matrix I € R™*". This matrix
is full rank despite its simplicity. Any attempt to represent I in a classical low rank fashion without
loss of information is doomed to failure. However, we can certainly write the identity I as a low
dimensional map of a low rank matrix. Namely:

1 1
1= . |=ef] : (6)
1 1

where ® suitably shifts the entries of each row of the input matrix to yield the identity (6). The
shift is uniquely defined once we assign a scalar for each row of the input matrix. Hence, the linear
invertible map ® can be represented by an element of R” and thus, it is low dimensional.

2.2.2 Abstract formulation

For brevity and generality, we describe here only the abstract formulation of our rank reduction
approach. If u is a solution of the parametric equation G(u) = f, we regard any field y satisfying



®(y) = u for some map P, as the preconditioned solution field. The preconditioned solution field
solves a slightly different equation than (4), namely:

(Go®)(y) =f (7)

We want to find a preconditioner such that the solution of (G o @) (-) = f is low rank and thus, easy
to integrate. Invertibility of the preconditioning map is a desirable property since it guarantees
well-posedness of (7) for any given map ®, but it is definitely not necessary. If ® is not invertible,
we can always relax the constraint (7) as:

1(Go®)(y) = fll <6 (8)

where § > 0 is a free parameter controlling the norm of the residual. In particular, for a given map
®, there need not exist a feasible preconditioned field. For the sake of simplicity, we will focus on
invertible preconditioners in the rest of the paper.

Our goal is mathematically equivalent to a constrained minimization problem: find an optimal
map ®* and a preconditioned solution field y* such that

d*,y* € arginfg , rank[y] 9)
(Go®)(y) =1
¢ e i

where @™ is the constraining set of admissible maps. Namely, 2™ is the set of measurable maps

from Qx«= to Qx«=, possibly invertible, and need not be a linear space. In practice, we have to
constrain the dimensionality of functions in ®*I™ to retain the benefits of a low rank preconditioned
solution. Problem (9) should be contrasted with:

®* € arginfg rank[®(u)] (10)

Gu) = f
¢ € P

In (10), we first solve for a possibly high rank solution field uw such that G(u) = f, and then,
we look for an invertible map ®(-) that minimizes the rank of ®(u). This is not what we want.
We never want to deal with the high rank original field. The problem we solve is (9), where
the preconditioner and a low rank solution field are determined at the same time without never
resorting on the solution of the unpreconditioned problem. The existence of a low rank solution
of (9) is still an open issue and it is mostly problem dependent. Clearly, the richer the space of
admissible maps for the preconditioner, the more likely is a low rank preconditioned field. It should
be clear, however, that we are not imposing a low rank ansatz for the solution. We just want to find
a preconditioned equation whose solution is intrinsically low rank. There is no loss of information
between the original and the preconditioned field, as long as the preconditioner is an invertible
map.

Example. As a more concrete example, consider the case of a linear operator G = G € R"P*"P
over the finite dimensional space Qx ® Q=, with dimQx = n and dimQ= = p. The unfolded
solution tensor u € R™ solves the linear system Gu = f where f € R™ is a forcing term. The
rank of the solution field is defined as the matrix rank of a suitable folding of the solution as an
element of R™P which is isomorphic to Qx ® Qz. Restrict the set of admissible maps ®*I™ to
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linear functions, possibly low rank. Thus, our goal is to find a matrix ® € and a low rank

unfolded preconditioned field y € R™ such that:

(GP)y = f (11)

and the rank of y is minimized.

2.2.3 Specific instantiations

The framework that we have developed and described above is quite general. But we have focused
many of our implementations on time dependent problems for at least two reasons. On the one
hand, we have an intuitive notion of preconditioner based on space-time dilations. On the other
hand, we can achieve good balance between the cost of determining an optimal preconditioner *
and the advantages of integrating a low rank preconditioned field y* over a possibly high rank
original solution.

Specific instantiations of the framework are therefore as follows:

e A time-dilation preconditioner, applied to advection equations and to the Navier-Stokes equa-
tions at moderate Reynolds number, to solve a problem of stochastic vortex shedding behind
a cylinder.

e A space-and-time dilation preconditioner, applied to a multi-front advection diffusion problem
with multiple distinct stochastic front velocities

e A time-independent problem, solved via the proper generalized decomposition (PGD) method;
here we introduced new preconditioners at each iteration, effectively composing multiple
preconditioners as we deflated the problem.
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