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Abstract

The time-dependent behavior of the energy spectrum in neutron transport

was investigated with a formulation, based on continuous-time Markov pro-

cesses, for computing α-eigenvalues and eigenvectors in an infinite medium.

For this, a research Monte Carlo code called “TORTE” (To Obtain Real Time

Eigenvalues) was created and used to estimate elements of a transition rate

matrix. TORTE is capable of using both multigroup and continuous-energy

nuclear data, and verification was performed. Eigenvalue spectra for infinite
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homogeneous mixtures were obtained, and an eigenfunction expansion was

used to investigate transient behavior of the neutron energy spectrum.
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1. Introduction

A tally of the fission matrix may be used to estimate k eigenvalues and

eigenvectors of a system via Monte Carlo techniques (Carney et al., 2012).

The premise is that the spatial domain is discretized and transition prob-

abilities (probabilities of of particles born in cell i causing a fission in cell

j) are estimated by Monte Carlo tallies. For an adequately chosen spatial

mesh, the eigenvalues and eigenvectors of the fission matrix match those of

the underlying system.

The fission matrix formulation is a discrete-time Markov process where

the time intervals represent fission generations. A more accurate descrip-

tion of temporal behavior is obtained when the fission matrix is extended

to describe transitions in continuous time. This extension models the evo-

lution of a system as a continuous-time Markov process, where the analog

to the fission matrix is the transition rate matrix. A forward Monte Carlo

simulation can be used to estimate elements of the transition rate matrix,

similar to the way the fission matrix is estimated. The transition rate ma-

trix can be used to define a master equation for the process, which is the

Kolmogorov backward equation (Grimmett and Stirzaker, 2001). In the lan-

guage of neutron transport, the eigenvalues of the transition rate matrix

are the time-absorption or α eigenvalues, and the eigenvectors are discrete

approximations of the eigenfunctions of the adjoint (backwards) transport
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equations. Current Monte Carlo methods for determining these α eigenval-

ues are limited: they are based on a computationally expensive k-α iteration

and are only able to obtain a few α eigenvalues (Hill, 1983; Yamamoto, 2011).

For this paper, the discrete states are defined to be not over the spatial

domain, but intervals in the energy spectrum—the geometry is assumed to be

homogeneous and infinite in extent. The tallies needed to estimate elements

of the transition rate matrix are defined. A standalone code called “TORTE”

(To Obtain Real Time Eigenvalues), capable of using either multigroup or

continuous-energy nuclear data, was written in MATLAB (MATLAB, 2010),

and verification results for multigroup systems are presented. The results

of this verification show that, at least for infinite-medium multigroup prob-

lems, the transition rate matrix can accurately predict α eigenvalues. Ob-

servations of continuous-energy α eigenvalue spectra are given, and using an

eigenfunction expansion, an approximation of the time-dependent behavior

of the neutron energy spectrum is given. The results strongly suggest that

the transition rate matrix is capable of producing accurate α-eigenvalue spec-

tra for continuous energy as well. This provides a basis for an extension of

the transition rate matrix to consider geometry (space and angle) to study

more realistic problems.

2. Theory

The Monte Carlo method performs direct simulation of neutron transport

in systems. Through the use of mean values of estimators, called tallies,

solutions to the neutron transport equation (which also describe mean-value

neutron behavior) can be inferred. A typical assumption to handle time
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dependence is to assume that the temporal dimension is separable from the

rest of phase space (position, energy, direction) and that the flux ψ at any

time t can be described as

ψ(r, E, Ω̂, t) =
∞∑
n=1

Anψn(r, E, Ω̂)eαnt, (1)

where αn is the n-th eigenvalue, ψn is the corresponding shape eigenfunction,

and An is an amplitude coefficient related to the neutron source. Typically

of most interest is α0, the largest or fundamental eigenvalue describing the

asymptotic behavior of the system. In addition to separability, the complete-

ness of the eigenfunctions is assumed. This has never been rigorously proven

for a general system but seems to work well empirically (Larsen and Zweifel,

1974). For a complete description in a nuclear system with fission, delayed

neutron precursor rate equations must also be included. The delayed neutron

precursor concentrations Cm(r, t) also follow exponential time behavior.

2.1. Transition rate matrix

The α eigenvalues and eigenfunctions are obtained from the Monte Carlo

simulation by discretizing the phase space into a collection of states. For now,

the spatial extent of the system is assumed to be infinite, and the states

include neutron energy intervals (or bins) and delayed neutron precursor

groups. The transition rate matrix Q has the following form:

Q =


−q11 q12 · · ·

q21 −q22 · · ·
...

...
. . .

 =

Qn,n Qn,p

Qp,n Qp,p

 . (2)

The quantity qii is the mean net removal rate from state i, and qij (i 6= j)

is the mean rate that neutrons transition from state i into j. Unlike typical
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continuous-time Markov processes, the rows do not sum to zero, meaning

there may be an overall net gain or loss in the neutron population (as would

be desired in a supercritical or subcritical system).

For these calculations, Q is organized into four partitions: the top-left

partition describes the transition of neutrons between energy bins (Qn,n),

the top-right partition pertains to neutrons causing fission resulting in the

production of delayed neutron precursors (Qn,p), the bottom-left partition

represents the emission of neutrons from precursors (Qp,n), and the bottom-

right partition represents the decay (removal) of the precursors (Qp,p). These

transition rates are expressible in terms of cross sections, decay constants,

and probabilities. In the top-left partition Qn,n,

qij =
vi(ΣRi − χpiνpiΣfi), i = j

vi(Σsij + χpjνpiΣfi), i 6= j
, (3)

where vi, ΣRi, and Σfi are the speed, removal, and fission cross sections for

energy bin i; νpi is the prompt neutrons emitted per fission for energy bin i;

χpi is the prompt fission emission probability for energy bin i; and Σsij is the

scattering cross section from energy bin i to j. For the top-right partition

Qn,p,

qij = viβjνdiΣfi, (4)

where βj is the delayed fraction for precursor group j and νdi is the mean

delayed neutron emission for energy bin i. For the bottom-left partition Qp,n,

qij = χijλi, (5)

where χij is the emission of neutrons from precursor group i into neutron

energy bin j, and λi is the decay constant for precursor group i. For the
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bottom-right partition Qp,p,

qij =
λj, i = j

0, i 6= j
. (6)

These quantities are identical to the elements of the matrix form of the

adjoint neutron transport equation, with the exception that the elements are

actually adjoint-weighted quantities. Because the adjoint eigenvalues α† are

the complex conjugates of the forward eigenvalues α, and considering that if

an eigenvalue is complex, its complex conjugate must also be an eigenvalue

because the matrix is all real, the eigenvalues of the transition rate matrix

are also the α eigenvalues of the forward neutron transport equation. The

forward eigenvectors are then obtained by taking Q>, exchanging the speeds

vi and vj, and finding the eigenvectors of the resultant matrix.

2.2. Monte Carlo tallies

The Monte Carlo simulation is carried out with a k-eigenvalue calculation

using the power iteration technique. Technically when the system is not

exactly critical, the energy spectrum is incorrect; the effect that this has on

the calculated α-eigenvalue spectrum diminishes as the number of energy bins

increases and is assumed to be negligible. During the simulation, reaction

rate tallies are used to estimate the qij’s.

All elements are combinations of removal rates and probabilities:

λi = τ−1Ri = (average decay time from precursor group i)−1,

viΣRi = τ−1Ri = (average removal time from energy bin i)−1,

viΣfi = viΣRi
Σfi

ΣRi

= τ−1Ri

(
# of fissions caused by neutrons in energy bin i

# of removals from energy bin i

)
, and
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viΣsij = viΣRi
Σsij

ΣRi

= τ−1Ri

(
# of scatters from energy bin i into bin j

# of removals from energy bin i

)
.

2.3. Eigenfunction expansion coefficients

Capturing the temporal behavior requires computing expansion coeffi-

cients An(0) from the external source S(r, E, Ω̂, t). These are obtained from

the differential equation

dAn(t)

dt
= αnAn(t) +

〈
ψ†n, S

〉〈
ψ†n, v−1ψn

〉
+
∑
m

〈
C†m,n, Cm,n

〉 , (7)

where the brackets denote integration over all relevant phase space variables.

Often the source is defined as a pulse at t = 0: S(r, E, Ω̂, t) = S0(r, E, Ω̂)δ(t),

where δ(t) is the Dirac delta function. With this source, the solution to this

differential equation simplifies to

An(t) = An(0)eαnt, (8)

where

An(0) =

〈
ψ†n, S0

〉〈
ψ†n, v−1ψn

〉
+
∑
m

〈
C†m,n, Cm,n

〉 . (9)

3. Code description and verification

TORTE is a standalone research code written in MATLAB. It is capable

of performing k-eigenvalue power iteration calculations with either multi-

group or continuous-energy nuclear data (read from ENDF/B-VII.0 (Chad-

wick et al., 2006) or ENDF/B-VII.1 (Chadwick et al., 2011)). For scattering,

TORTE is capable of handling both free gas and continuous S(α, β) but is
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limited in that it does not treat high-energy inelastic scattering. The afore-

mentioned tallies for the qij’s (elements of the transition rate matrix) are

collected during this calculation, and the α eigenvalues and eigenfunctions

are estimated after the transport calculation.

Verification of the multigroup tallies was completed using test problems

where the multigroup cross sections are given. TORTE can reproduce the

known multigroup cross sections in the transition rate matrix to within 1%,

which is within the statistical uncertainty of the Monte Carlo method. Ver-

ifying the continuous-energy physics is more difficult because global quanti-

ties (i.e., the calculated k eigenvalue) will not match production codes be-

cause high-energy inelastic scattering is excluded. Limited verification of the

continuous-energy physics was completed by tabulating free-gas scattering

distributions and fission χ spectra and comparing them to known or ana-

lytic distributions. These comparisons show agreement within the statistical

deviation expected from the Monte Carlo simulation.

The calculated α-eigenvalue spectrum is verified with a highly idealized

problem with a known analytic solution.2 Consider a problem where all

energy groups g have the same speed v and downscattering may only occur

into the next group. Fission is only possible in the lowest energy group G,

which creates neutrons exclusively in the highest energy group (group 1). All

cross sections in all groups are identical except for group G, where the fission

cross section is equal to the group-to-group scattering cross section in the

other groups. The eigenvalue spectrum of the operator for this problem is a
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circle in the complex plane with G discrete eigenvalues given by

αn
v

= −Σc + Σsg,g+1

[
ν1/Ge2πin/G − 1

]
. (10)

Arbitrary data with G = 81 (Σc = 1, ΣfG = Σsg,g+1 = 100, v = 1, ν =

2.5) are used. The analytic and calculated eigenvalue spectra are given in

Fig. 1. The two sets of results agree qualitatively. The analytic fundamental

eigenvalue α0 is 0.13765 s−1, whereas the calculated α0 is 0.13839 s−1; these

agree within 1%. This small difference is due to the statistical uncertainty

associated with the tally of the qij’s in the transition rate matrix.

The eigenfunction expansion is tested by defining a monoenergetic high-

energy (g = 1) pulse source, where S0(1) = 5×104 cm−3·s−1. Snapshots of the

time evolution of the neutron flux are given in Fig. 2. At t = 0.10 s, neutrons

from the monoenergetic source begin to scatter out of energy group g = 1 at

different times, resulting in a small flux packet that begins to downscatter.

At t = 0.70 s, the flux packet continues to widen and decrease due to the

different rates at which neutrons are downscattering and neutron capture.

When neutrons reach energy group g = 81, they begin to induce fission and

emit neutrons in energy group g = 1. At t = 1.60 s, the flux packet widens to

the point where it combines with the neutrons emitted from fission in energy

group g = 1. At t = 6.00 s, individual flux packets are no longer discernible

as the flux distribution begins to approach and follow the rising fundamental

mode. As t → ∞, the higher modes decay and the complete flux solution

approaches that of the fundamental mode. For this problem, this happens

2E. W. Larsen, Personal Communication, 2012.
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at t ≈ 20 s, which is long relative to the lifetime of the prompt modes. The

behavior observed here is as expected for this contrived problem.

4. Continuous-energy results

To understand the eigenvalue spectrum with continuous-energy nuclear

data, two systems are considered: one mixture that is hydrogenous and an-

other that is anhydrogenous (graphite moderated). These are representative

of highly idealized light-water and gas-cooled graphite-moderated reactors.

Both are slightly supercritical systems with G = 1,000 equal-lethargy bins

ranging from energies E0 = 20 MeV to EG = 1 × 10−11 MeV. Nuclear data

are obtained from ENDF/B-VII.0, except for the continuous-S(α, β) law for

graphite, which is from ENDF/B-VII.1.

4.1. Hydrogenous mixture

This is a delayed supercritical, continuous-energy, hydrogenous medium

with a 4 : 2 : 1 H : O : UO2 molecular ratio. The computed eigenvalue

spectrum is given in Fig. 3, where α0 is 1.4758× 10−3 s−1.

Figure 4 shows the approximated energy spectrum at selected times for

a t = 0 pulsed neutron source in the highest energy bin. At t = 0.5 ms,

neutrons from the monoenergetic pulse source begin to downscatter. Flux

depressions form at high energies as neutrons encounter resonances. Because

neutrons are able to downscatter to near-zero energies in a collision with

hydrogen, the neutron flux extends to lower energies. At t = 1.5 ms, neu-

trons continue to downscatter as the high-energy (fast) flux finally begins

to decrease. A very large flux packet forms. At t = 30.0 ms, the fast flux

continues to decrease and drops below the fundamental mode because the
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neutrons downscatter out of higher energies faster than they induce fissions

that emit neutrons at higher energies. Lower energy resonances cause de-

pressions in the flux packet as neutrons downscatter. At t = 150.0 ms, the

fast flux recovers as neutrons enter thermal energies and induce fission.

4.2. Graphite mixture

This is a highly scattering continuous-energy graphite medium with a

4,000 : 1 C : UO2 molecular ratio. It is slightly above delayed supercritical.

The calculated eigenvalue spectrum is given in Fig. 5, where α0 is 1.6529 ×

10−2 s−1.

Figure 6 shows the approximated energy spectrum at selected times for

a t = 0 pulsed neutron source in the highest energy bin. At t = 0.05 ms,

neutrons from the monoenergetic pulse begin to downscatter and form a dis-

tinct flux packet because neutrons colliding with carbon cannot scatter to

near-zero energies. The fast flux decreases rapidly because neutrons are not

at energies at which fission can replenish the fast flux. The peaks below the

lower energy boundary of the flux packet are statistical noise from the eigen-

function expansion attempting to model near-zero flux or very improbable

neutrons existing at lower energies. At t = 0.50 ms, the distinct flux packet

maintains its form and continues to propagate to lower energies. The fast

flux decreases considerably and forms depressions because of resonances. At

t = 9.00 ms, the flux packet encounters low energy resonances as the fast

flux decreases far below the fundamental mode. Not enough neutrons are

inducing fission because the majority of the neutrons are still above energies

at which fission is preferential. At t = 80.00 ms, the flux at higher energies

recovers because of neutrons inducing fission.
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4.3. Discussion

Depressions in the neutron flux due to 238U capture resonances are re-

solved with G = 1,000. For the two mixtures, the depths of the resonance

effects are different because of the vastly different relative concentrations of

moderating nuclei. The flux packet is far more defined in Fig. 6 because the

neutrons lose only a fraction of their energy in a collision with a carbon nu-

cleus. This also contributes to the fast flux decreasing below the fundamental

mode more than the fast flux of the hydrogenous mixture. Furthermore, the

fast flux in the graphite mixture tends to oscillate more, rising and decreasing

before approaching the fundamental mode solution. This is a result of more

complex eigenvalues with larger real components (relative to the fundamen-

tal) in the eigenvalue spectrum of the graphite-moderated mixture than in

that of the hydrogenous mixture. The fast flux in the fundamental mode is

greater in the hydrogenous mixture because it has a much lower concentra-

tion of scattering nuclei, which significantly hardens the energy spectrum.

These problems show the potential for the use of eigenfunction expan-

sion to approximate the time dependence of the energy spectrum. In both

problems, the higher kinetic modes do not decay to the fundamental mode

solution for a few seconds. During these first few seconds (and particularly

the first fraction of a second), the fundamental mode solution is a completely

inaccurate representation of the energy-dependent flux shape. In addition,

recent comparisons to true time-dependent Monte Carlo solutions (using the

same code physics) show the accuracy of the eigenfunction expansion in ap-

proximating the time-dependent behavior of the flux.

12



5. Conclusions and future work

The transition rate matrix method, the continuous-time analog of the fis-

sion matrix method, can accurately compute α eigenvalues and eigenvectors

of infinite media. These can be applied to model transient behavior of the en-

ergy spectrum. The standalone research code TORTE is capable of perform-

ing these calculations with either multigroup or continuous-energy nuclear

data. The ability of TORTE to compute multigroup α-eigenvalue spectra

has been verified, as has much of its continuous-energy scattering physics.

TORTE is shown to be able to calculate continuous-energy α-eigenvalue spec-

tra, and results have been obtained for both hydrogenous and anhydrogenous

mixtures.

Future work will focus on studying the numerical convergence of the α

eigenvalues and quantifying their uncertainties. Research will also be per-

formed to extend this method to calculate spatial modes in multiple dimen-

sions in addition to just energy modes.

Acknowledgements

Funding for this work was provided by the US Department of Energy

National Nuclear Security Administration Advanced Scientific Computing

and Nuclear Criticality Safety programs.

References

S. E. Carney, F. B. Brown, B. C. Kiedrowski, W. R. Martin, Fission Matrix

Capability for MCNP Monte Carlo, in: Trans. Am. Nucl. Soc., vol. 107,

2012.

13



G. R. Grimmett, D. R. Stirzaker, Sec. 6.9: Continuous-time Markov chains,

in: Probability and Random Processes, 3rd Ed., Oxford University Press,

Oxford, UK, 2001.

T. R. Hill, Efficient Methods for Time Absorption (α) Eigenvalue Calcula-

tions, Tech. Rep. LA-9602-MS, Los Alamos National Laboratory, 1983.

T. Yamamoto, Higher Order α Mode Eigenvalue Calculation by Monte Carlo

Power Iteration, Progress in Nuclear Science and Technology 2 (2011) 826–

835.

MATLAB, version 7.10.0, The Mathworks Inc., Natick, Massachusetts, 2010.

E. W. Larsen, P. F. Zweifel, On the Spectrum of the Linear Transport Op-

erator, Journal of Mathematical Physics 15 (1974) 1987–1997.
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Figure 1: The α-eigenvalue spectrum for the 81-group verification problem.
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Figure 2: Snapshots of a transient for the 81-group verification problem (legend applies

to all snapshots).
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Figure 4: α-eigenvalue spectra for a graphite-moderated mixture.
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Figure 5: Snapshots of a transient in the hydrogenous mixture (legend applies to all

snapshots).
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Figure 6: Snapshots of a transient in the graphite mixture (legend applies to all snapshots).
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