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Abstract

The time-dependent behavior of the energy spectrum in neutron transport
was investigated with a formulation, based on continuous-time Markov pro-
cesses, for computing a-eigenvalues and eigenvectors in an infinite medium.
For this, a research Monte Carlo code called “TORTE” (To Obtain Real Time
Eigenvalues) was created and used to estimate elements of a transition rate
matrix. TORTE is capable of using both multigroup and continuous-energy

nuclear data, and verification was performed. Eigenvalue spectra for infinite
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homogeneous mixtures were obtained, and an eigenfunction expansion was
used to investigate transient behavior of the neutron energy spectrum.
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1. Introduction

A tally of the fission matrix may be used to estimate k eigenvalues and
eigenvectors of a system via Monte Carlo techniques (Carney et al., 2012).
The premise is that the spatial domain is discretized and transition prob-
abilities (probabilities of of particles born in cell i causing a fission in cell
j) are estimated by Monte Carlo tallies. For an adequately chosen spatial
mesh, the eigenvalues and eigenvectors of the fission matrix match those of
the underlying system.

The fission matrix formulation is a discrete-time Markov process where
the time intervals represent fission generations. A more accurate descrip-
tion of temporal behavior is obtained when the fission matrix is extended
to describe transitions in continuous time. This extension models the evo-
lution of a system as a continuous-time Markov process, where the analog
to the fission matrix is the transition rate matrix. A forward Monte Carlo
simulation can be used to estimate elements of the transition rate matrix,
similar to the way the fission matrix is estimated. The transition rate ma-
trix can be used to define a master equation for the process, which is the
Kolmogorov backward equation (Grimmett and Stirzaker, 2001). In the lan-
guage of neutron transport, the eigenvalues of the transition rate matrix
are the time-absorption or « eigenvalues, and the eigenvectors are discrete

approximations of the eigenfunctions of the adjoint (backwards) transport



equations. Current Monte Carlo methods for determining these a eigenval-
ues are limited: they are based on a computationally expensive k-« iteration
and are only able to obtain a few « eigenvalues (Hill, 1983; Yamamoto, 2011).

For this paper, the discrete states are defined to be not over the spatial
domain, but intervals in the energy spectrum—the geometry is assumed to be
homogeneous and infinite in extent. The tallies needed to estimate elements
of the transition rate matrix are defined. A standalone code called “TORTE”
(To Obtain Real Time Eigenvalues), capable of using either multigroup or
continuous-energy nuclear data, was written in MATLAB (MATLAB, 2010),
and verification results for multigroup systems are presented. The results
of this verification show that, at least for infinite-medium multigroup prob-
lems, the transition rate matrix can accurately predict a eigenvalues. Ob-
servations of continuous-energy « eigenvalue spectra are given, and using an
eigenfunction expansion, an approximation of the time-dependent behavior
of the neutron energy spectrum is given. The results strongly suggest that
the transition rate matrix is capable of producing accurate a-eigenvalue spec-
tra for continuous energy as well. This provides a basis for an extension of
the transition rate matrix to consider geometry (space and angle) to study

more realistic problems.

2. Theory

The Monte Carlo method performs direct simulation of neutron transport
in systems. Through the use of mean values of estimators, called tallies,
solutions to the neutron transport equation (which also describe mean-value

neutron behavior) can be inferred. A typical assumption to handle time



dependence is to assume that the temporal dimension is separable from the
rest of phase space (position, energy, direction) and that the flux ¢ at any
time ¢t can be described as

U(r, E,Q,t) = iAn%(r,E, Q)ent, (1)

n=1

where «, is the n-th eigenvalue, 1, is the corresponding shape eigenfunction,
and A, is an amplitude coefficient related to the neutron source. Typically
of most interest is oy, the largest or fundamental eigenvalue describing the
asymptotic behavior of the system. In addition to separability, the complete-
ness of the eigenfunctions is assumed. This has never been rigorously proven
for a general system but seems to work well empirically (Larsen and Zweifel,
1974). For a complete description in a nuclear system with fission, delayed
neutron precursor rate equations must also be included. The delayed neutron

precursor concentrations Cy,(r,t) also follow exponential time behavior.

2.1. Transition rate matrix

The « eigenvalues and eigenfunctions are obtained from the Monte Carlo
simulation by discretizing the phase space into a collection of states. For now,
the spatial extent of the system is assumed to be infinite, and the states
include neutron energy intervals (or bins) and delayed neutron precursor

groups. The transition rate matrix Q has the following form:

—q11 412
Qn,n Qn,p

Q=g —qu | = : (2)
Qp,n Qp,p

The quantity ¢;; is the mean net removal rate from state i, and ¢;; (i # j)

is the mean rate that neutrons transition from state ¢ into j. Unlike typical

4



continuous-time Markov processes, the rows do not sum to zero, meaning
there may be an overall net gain or loss in the neutron population (as would
be desired in a supercritical or subcritical system).

For these calculations, Q is organized into four partitions: the top-left
partition describes the transition of neutrons between energy bins (Q,.),
the top-right partition pertains to neutrons causing fission resulting in the
production of delayed neutron precursors (Q,,,), the bottom-left partition
represents the emission of neutrons from precursors (Q,,,,), and the bottom-
right partition represents the decay (removal) of the precursors (Q,,). These
transition rates are expressible in terms of cross sections, decay constants,

and probabilities. In the top-left partition Q, .,

vi(ZRi - XpiypiEfi>a 1=

(3)

4ij = o
V(Bsij + XpiVpilgi), 1 F ]

where v;, X, and Yy; are the speed, removal, and fission cross sections for
energy bin i; v, is the prompt neutrons emitted per fission for energy bin i;
Xpi is the prompt fission emission probability for energy bin i; and X;; is the
scattering cross section from energy bin ¢ to j. For the top-right partition
Qnp;

Gij = ViBvaiXyi, (4)

where f3; is the delayed fraction for precursor group j and vg is the mean

delayed neutron emission for energy bin . For the bottom-left partition Q, .,
Gij = XijNi, (5)

where x;; is the emission of neutrons from precursor group ¢ into neutron

energy bin j, and \; is the decay constant for precursor group . For the



bottom-right partition Q, ,,

A

YK 1=

o (6)
0, i#J

qij =

These quantities are identical to the elements of the matrix form of the
adjoint neutron transport equation, with the exception that the elements are
actually adjoint-weighted quantities. Because the adjoint eigenvalues of are
the complex conjugates of the forward eigenvalues «, and considering that if
an eigenvalue is complex, its complex conjugate must also be an eigenvalue
because the matrix is all real, the eigenvalues of the transition rate matrix
are also the «a eigenvalues of the forward neutron transport equation. The
forward eigenvectors are then obtained by taking Q', exchanging the speeds

v; and v;, and finding the eigenvectors of the resultant matrix.

2.2. Monte Carlo tallies

The Monte Carlo simulation is carried out with a k-eigenvalue calculation
using the power iteration technique. Technically when the system is not
exactly critical, the energy spectrum is incorrect; the effect that this has on
the calculated a-eigenvalue spectrum diminishes as the number of energy bins
increases and is assumed to be negligible. During the simulation, reaction
rate tallies are used to estimate the g¢;;’s.

All elements are combinations of removal rates and probabilities:

A = Tgil = (average decay time from precursor group 2')_1,

v;¥p; = T, = (average removal time from energy bin ),
Xt _4 ( # of fissions caused by neutrons in energy bin ¢
VX = ViXipies— = Tpi — , and
YiRi # of removals from energy bin ¢
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Zsi’
— i _ -1
Vidisij = ViXipim— = Tg;

# of scatters from energy bin 7 into bin j )
YRi '

# of removals from energy bin ¢
2.3. FEigenfunction expansion coefficients

Capturing the temporal behavior requires computing expansion coeffi-
cients A,(0) from the external source S(r, E,2,t). These are obtained from
the differential equation

dA,(t)
dt

(¢}, 5)
(65,0790 ) + 3 (Chs Con)

= An(t) + (7)

where the brackets denote integration over all relevant phase space variables.
Often the source is defined as a pulse at t = 0: S(r, E,Q,t) = Sy(r, E, Q)5(t),
where §(t) is the Dirac delta function. With this source, the solution to this

differential equation simplifies to
Au(t) = An(o)eantv (8)

where

<1/J7Tm SO> '
<¢;[L, v—1¢n> + Z <Cjn’n, C’m,n>

An(o) =

3. Code description and verification

TORTE is a standalone research code written in MATLAB. It is capable
of performing k-eigenvalue power iteration calculations with either multi-
group or continuous-energy nuclear data (read from ENDF/B-VIL.0 (Chad-
wick et al., 2006) or ENDF/B-VII.1 (Chadwick et al., 2011)). For scattering,
TORTE is capable of handling both free gas and continuous S(a, 8) but is



limited in that it does not treat high-energy inelastic scattering. The afore-
mentioned tallies for the ¢;;’s (elements of the transition rate matrix) are
collected during this calculation, and the a eigenvalues and eigenfunctions
are estimated after the transport calculation.

Verification of the multigroup tallies was completed using test problems
where the multigroup cross sections are given. TORTE can reproduce the
known multigroup cross sections in the transition rate matrix to within 1%,
which is within the statistical uncertainty of the Monte Carlo method. Ver-
ifying the continuous-energy physics is more difficult because global quanti-
ties (i.e., the calculated k eigenvalue) will not match production codes be-
cause high-energy inelastic scattering is excluded. Limited verification of the
continuous-energy physics was completed by tabulating free-gas scattering
distributions and fission y spectra and comparing them to known or ana-
lytic distributions. These comparisons show agreement within the statistical
deviation expected from the Monte Carlo simulation.

The calculated a-eigenvalue spectrum is verified with a highly idealized

2 Consider a problem where all

problem with a known analytic solution.
energy groups g have the same speed v and downscattering may only occur
into the next group. Fission is only possible in the lowest energy group G,
which creates neutrons exclusively in the highest energy group (group 1). All
cross sections in all groups are identical except for group GG, where the fission

cross section is equal to the group-to-group scattering cross section in the

other groups. The eigenvalue spectrum of the operator for this problem is a



circle in the complex plane with G discrete eigenvalues given by

% — N Sy gpr [ CG 1] (10)

Arbitrary data with G = 81 (X, = 1, Xy = X911 = 100, v = 1, v =
2.5) are used. The analytic and calculated eigenvalue spectra are given in
Fig. 1. The two sets of results agree qualitatively. The analytic fundamental
eigenvalue oy is 0.13765 s~!, whereas the calculated ag is 0.13839 s™1; these
agree within 1%. This small difference is due to the statistical uncertainty
associated with the tally of the g;;’s in the transition rate matrix.

The eigenfunction expansion is tested by defining a monoenergetic high-
energy (g = 1) pulse source, where Sy(1) = 5x10* cm~3.s71. Snapshots of the
time evolution of the neutron flux are given in Fig. 2. At ¢ = 0.10 s, neutrons
from the monoenergetic source begin to scatter out of energy group g = 1 at
different times, resulting in a small flux packet that begins to downscatter.
At t = 0.70 s, the flux packet continues to widen and decrease due to the
different rates at which neutrons are downscattering and neutron capture.
When neutrons reach energy group g = 81, they begin to induce fission and
emit neutrons in energy group g = 1. At ¢ = 1.60 s, the flux packet widens to
the point where it combines with the neutrons emitted from fission in energy
group g = 1. At t = 6.00 s, individual flux packets are no longer discernible
as the flux distribution begins to approach and follow the rising fundamental
mode. As t — oo, the higher modes decay and the complete flux solution

approaches that of the fundamental mode. For this problem, this happens

2E. W. Larsen, Personal Communication, 2012.



at t ~ 20 s, which is long relative to the lifetime of the prompt modes. The

behavior observed here is as expected for this contrived problem.

4. Continuous-energy results

To understand the eigenvalue spectrum with continuous-energy nuclear
data, two systems are considered: one mixture that is hydrogenous and an-
other that is anhydrogenous (graphite moderated). These are representative
of highly idealized light-water and gas-cooled graphite-moderated reactors.
Both are slightly supercritical systems with G = 1,000 equal-lethargy bins
ranging from energies Ey = 20 MeV to Eg = 1 x 10~ MeV. Nuclear data
are obtained from ENDF /B-VIIL.0, except for the continuous-S(a, 3) law for
graphite, which is from ENDF /B-VII.1.

4.1. Hydrogenous mixture

This is a delayed supercritical, continuous-energy, hydrogenous medium
with a4 :2:1H: O : UOy molecular ratio. The computed eigenvalue
spectrum is given in Fig. 3, where oy is 1.4758 x 1073 s7L.

Figure 4 shows the approximated energy spectrum at selected times for
a t = 0 pulsed neutron source in the highest energy bin. At t = 0.5 ms,
neutrons from the monoenergetic pulse source begin to downscatter. Flux
depressions form at high energies as neutrons encounter resonances. Because
neutrons are able to downscatter to near-zero energies in a collision with
hydrogen, the neutron flux extends to lower energies. At ¢ = 1.5 ms, neu-
trons continue to downscatter as the high-energy (fast) flux finally begins
to decrease. A very large flux packet forms. At ¢ = 30.0 ms, the fast flux

continues to decrease and drops below the fundamental mode because the
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neutrons downscatter out of higher energies faster than they induce fissions
that emit neutrons at higher energies. Lower energy resonances cause de-
pressions in the flux packet as neutrons downscatter. At ¢ = 150.0 ms, the

fast flux recovers as neutrons enter thermal energies and induce fission.

4.2. Graphite mizture

This is a highly scattering continuous-energy graphite medium with a
4,000 : 1 C : UOy molecular ratio. It is slightly above delayed supercritical.
The calculated eigenvalue spectrum is given in Fig. 5, where g is 1.6529 x
1072 571

Figure 6 shows the approximated energy spectrum at selected times for
a t = 0 pulsed neutron source in the highest energy bin. At ¢t = 0.05 ms,
neutrons from the monoenergetic pulse begin to downscatter and form a dis-
tinct flux packet because neutrons colliding with carbon cannot scatter to
near-zero energies. The fast flux decreases rapidly because neutrons are not
at energies at which fission can replenish the fast flux. The peaks below the
lower energy boundary of the flux packet are statistical noise from the eigen-
function expansion attempting to model near-zero flux or very improbable
neutrons existing at lower energies. At t = 0.50 ms, the distinct flux packet
maintains its form and continues to propagate to lower energies. The fast
flux decreases considerably and forms depressions because of resonances. At
t = 9.00 ms, the flux packet encounters low energy resonances as the fast
flux decreases far below the fundamental mode. Not enough neutrons are
inducing fission because the majority of the neutrons are still above energies
at which fission is preferential. At ¢t = 80.00 ms, the flux at higher energies

recovers because of neutrons inducing fission.
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4.8. Discussion

Depressions in the neutron flux due to 238U capture resonances are re-
solved with G = 1,000. For the two mixtures, the depths of the resonance
effects are different because of the vastly different relative concentrations of
moderating nuclei. The flux packet is far more defined in Fig. 6 because the
neutrons lose only a fraction of their energy in a collision with a carbon nu-
cleus. This also contributes to the fast flux decreasing below the fundamental
mode more than the fast flux of the hydrogenous mixture. Furthermore, the
fast flux in the graphite mixture tends to oscillate more, rising and decreasing
before approaching the fundamental mode solution. This is a result of more
complex eigenvalues with larger real components (relative to the fundamen-
tal) in the eigenvalue spectrum of the graphite-moderated mixture than in
that of the hydrogenous mixture. The fast flux in the fundamental mode is
greater in the hydrogenous mixture because it has a much lower concentra-
tion of scattering nuclei, which significantly hardens the energy spectrum.

These problems show the potential for the use of eigenfunction expan-
sion to approximate the time dependence of the energy spectrum. In both
problems, the higher kinetic modes do not decay to the fundamental mode
solution for a few seconds. During these first few seconds (and particularly
the first fraction of a second), the fundamental mode solution is a completely
inaccurate representation of the energy-dependent flux shape. In addition,
recent comparisons to true time-dependent Monte Carlo solutions (using the
same code physics) show the accuracy of the eigenfunction expansion in ap-

proximating the time-dependent behavior of the flux.

12



5. Conclusions and future work

The transition rate matrix method, the continuous-time analog of the fis-
sion matrix method, can accurately compute a eigenvalues and eigenvectors
of infinite media. These can be applied to model transient behavior of the en-
ergy spectrum. The standalone research code TORTE is capable of perform-
ing these calculations with either multigroup or continuous-energy nuclear
data. The ability of TORTE to compute multigroup a-eigenvalue spectra
has been verified, as has much of its continuous-energy scattering physics.
TORTE is shown to be able to calculate continuous-energy a-eigenvalue spec-
tra, and results have been obtained for both hydrogenous and anhydrogenous
mixtures.

Future work will focus on studying the numerical convergence of the «
eigenvalues and quantifying their uncertainties. Research will also be per-
formed to extend this method to calculate spatial modes in multiple dimen-

sions in addition to just energy modes.
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Figure 1: The a-eigenvalue spectrum for the 81-group verification problem.
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Figure 2: Snapshots of a transient for the 81-group verification problem (legend applies

to all snapshots).
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Figure 3: a-eigenvalue spectra for a hydrogenous mixture.
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Figure 5: Snapshots of a transient in the hydrogenous mixture (legend applies to all

snapshots).
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Figure 6: Snapshots of a transient in the graphite mixture (legend applies to all snapshots).
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