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ABSTRACT OF THE DISSERTATION

Successful Beam-beam Tuneshift Compensation

by

Kip Aaron Bishofberger

Doctor of Philosophy in Physics

University of California, Los Angeles, 2005

Professor James Rosenzweig, Chair

The performance of synchrotron colliders has been limited by the beam-beam

limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-

bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe

emittance growth. Breaking through this constraint has been viewed as impossible

for several decades.

A device known as the Tevatron Electron Lens (TEL) has been designed, con-

structed, and tested in the Tevatron at Fermilab. This device produces a pulsed

beam of electrons which interact with the antiproton bunches in the Tevatron. The

peak beam current is typically 2 A, and the beam energy can range from 4 keV

to 12 keV. The bunches interact with the beam’s electromagnetic field, causing their

tunes to shift opposite to the beam-beam limit. By tailoring the electron-beam

current for each bunch, the tuneshift can be individualized to compensate for the

adverse bunch-to-bunch variation. Additionally, shaping the electron-beam profile

xii



shifts the tune of each antiproton within each bunch selectively depending on their

amplitude, compensating for the intra-bunch tune spread.

The typical tuneshift that each antiproton feels is 0.0097 per interaction point,

and the bunch-to-bunch tune variation is approximately 0.007. The tune spread

within each bunch is expected to be about 0.004. Experiments with the TEL yielded

tuneshifts with proton bunches equal to 0.0089, which is equivalent to antiproton

tuneshifts of 0.0112. This value is more than necessary to successfully compensate

the beam-beam interactions. Additionally, the use of the TEL has significantly

reduced antiproton losses and emittance growth, evidence that such compensation

is indeed beneficial to synchrotron operation.

This dissertation introduces the physics of ultra-relativistic synchrotrons and

low-energy electron beams, with emphasis placed on the limits of the Tevatron and

the needs of a tuneshift-compensation device. A detailed analysis of the TEL is

given, comparing theoretical models to experimental data whenever possible. Fi-

nally, results of Tevatron operations with inclusion of the TEL are presented and

analyzed. It is shown that the TEL provides a way to shatter the previously in-

escapable beam-beam limit.
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Chapter 1:

Introduction

Effects of electromagnetic interaction between

colliding beams seem to place rather principle

restrictions on the achievable luminosity.

–V. Auslander et al. [13]

High-energy physics has been exploring our understanding of the physical world

in the most extreme conditions, ultra-high densities and ultra-high temperatures, in

order to explore the origins of our universe and the structure of matter beyond the

standard model of quarks and neutrinos. The Tevatron at Fermilab, the LHC at

CERN (currently under construction), and the focus on a possible Linear Collider is

testiment that high-energy colliders are by far the most useful tool for experimental

particle physics. In addition, accelerators have a variety of other applications (light

sources, FEL’s, medical tools, solid-state and plasma physics experiments) as well

as being a vital driver for technology development.
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However, the most immediate goal for all of the recent and largest accelerators

in the world is to provide a large number of high-energy collisions of two opposing

beams and measure the decay products of each collision. The luminosity L, defined

as the number of these collisions per unit time, is the overall driving force behind

Fermilab’s Tevatron and this thesis project.

The accelerator projects at Fermilab consistently attempt to increase the pro-

duction of luminosity, and several of these projects are currently being developed.

These projects enhance certain parameters or attack certain limitations. This disser-

tation covers the recent construction and successful testing of the Tevatron Electron

Lens, or TEL, an electrostatic focusing machine that compensates the beam-beam

tuneshift. The elimination of the barrier set by this phenomenon is expected to

boost luminosity production in the Tevatron and future colliders.

1.1. Fermilab overview

The Tevatron was first commisioned at its full energy of nearly 1 TeV (or 1�
1012 eV) in 1986[1], but the first collection of collision data (referred to as Run I)

lasted from 1993 to 1996. On either side of these dates, Fermilab performed various

fixed-target experiments, enhanced the Tevatron’s performance, and finished many

other construction projects. From the spring of 2001 through the current printing of

this dissertation, the Tevatron has been operating in what is known as Run II, which

is expected to last several more years, until after the LHC at CERN is commissioned

around 2009.
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Run II parameter value units

collision energy 978.5 GeV

peak luminosity 92 1030 cm−2sec−1

integrated luminosity 14 pb−1/week

luminosity lifetime 8 hours

store hours per week 100 hrs/week

store duration 28 hr

number of bunches 36

protons per bunch 240 109

antiprotons per bunch 30–40 109

typical horizontal tune νx 20.585

typical vertical tune νy 20.575

beta at collision point (β?) 35 cm

hourglass form factor 0.65

overall antiproton efficiency 77 %

avg. antiproton stacking rate 9 1010/hr

stack size at injection 140 1010

injection energy 150 GeV

acceleration time 84 sec

Table 1.1. List of some typical parameters associated with Run II per-

formance in the Tevatron. Average values over recent weeks are provided.

Most of these are described in this dissertation; the others can be found

in various references. Some of these numbers are likely to evolve as Run II

progresses [2,3].
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1.1.1. Basic Tevatron operations

In order to maximize the rate of proton-antiproton collisions, the Tevatron

is loaded with as many protons and antiprotons as is manageable, and they are

squeezed into a small area at the collision points (the proton-bunch rms radius is

typically 30µm at the collision points compared to generally over 0.5mm elsewhere).

Table 1.1 lists a number of parameters associated with a typical store, the term given

to the period of time (usually twenty to thirty hours) that a specific set of particles

remain revolving around the Tevatron. Most of these terms are defined in Chapter 2,

and while some of them are fixed by the physical construction of the Tevatron, others

can be adjusted for optimal performance.

The protons and antiprotons in the Tevatron are required to travel in small

bunches. Each store operates with thirty-six bunches of each species which counter-

rotate in one beam pipe. Most proton bunches contain approximately 25 � 1010

individual protons; decent antiproton bunches typically have 2 to 8� 1010 particles.

Each bunch is traveling with nearly 1 TeV of kinetic energy, and therefore they are

moving within 0.00005 % (5 � 10−7) of the speed of light. Strong magnetic fields

(over four tesla) are needed to keep bending these ultra-relativistic bunches around

the Tevatron ring and to keep the bunches from spreading transversely.

The thirty-six bunches of either species are not evenly spaced around the ring.

Three bunch trains are established with gaps between them, known as abort gaps.

As the next section describes, these gaps are necessary in order to load the bunches

and to dump the store after it is no longer fruitful. In Figure 1.1, the trains of both

species are drawn in a highly stylized fashion. Since the two species are revolving

in opposite directions, Figure 1.1 only indicates one particular instant during a
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Figure 1.1. Simplified cartoon of bunch spacing in the Tevatron. All of

the bunches cohabit the one beam pipe, and the antiproton orbit and the

proton orbit twist around each other. At CDF and DØ, the double-helix

orbits are designed to collapse onto each other, which allow the protons

and antiprotons to collide head-on.

revolution. The bunches labeled P1 and A1 are situated at the same place in the

ring. Meanwhile, P25 and A13 are colliding at CDF, one of the two colliders, and

P13 and A25 are colliding at DØ, the other collider. As the two species continue to

rotate according to the arrows, another pair of bunches will collide at each collider.

Figure 1.1 is sketched for easy comprehension, but in reality the two species

cohabit the same beam pipe. During collisions, the orbits twist around each other,

like a long circular DNA strand, for the majority of the ring. Only at the two

collision points CDF and DØ do the orbits intersect, allowing head-on collisions

between pairs of bunches.

Physicists commonly refer to the action of two bunches passing through each
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other as a collision. Even though there are very many particles in each bunch,

the cross-section of each particle is so small that typically only a few particles will

physically (inelastically) collide. For each collision, there are an average of about

two such events . The other particles continue through the interaction point and

are able to orbit around the Tevatron and participate in another collision. As the

revolution period of the Tevatron is 21µsec and there are two interaction points,

each bunch participates in 95,000 head-on collisions each second.

The different particles in a bunch have slightly different trajectories, quantified

as the emittance, which causes the bunch to spread out over a short time. Magnets

known as quadrupoles continually focus the bunches transversely (horizontally and

vertically), and large copper RF cavities prevent the bunches from spreading lon-

gitudinally. The magnets are discussed in detail in Chapter 2; the RF cavities are

fed 53.1MHz RF, which induces an oscillating longitudinal electric field along the

path of the bunches. This frequency is exactly 1113 times the revolution frequency

(47.713 kHz), establishing 1113 buckets where an antiproton or proton is able to

circulate with stability.

Most of the magnets in the Tevatron use superconducting wires, which are

cryogenically cooled by liquid helium at a temperature of 4.2 K. If the bunches

are not adequately contained, a large number of particles can crash into the beam

pipe in one area, depositing enough heat into the magnet wire, causing the magnet

to quench. Quenches stress the affectted magnets (and many people), cause the

immediate loss of the entire store, and require hours for recovery. Careful operation,

plenty of diagnostics, and numerous automated feedback systems all maintain the

Tevatron and limit the frequency of these setbacks.
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Figure 1.2. Cute cartoon of the accelerators involved at Fermilab. The

Main Injector is used both to slam protons into the target for antiproton

production and to inject proton and antiproton bunches into the Tevatron.

Also shown are several fixed-target lines not being used during Run II.

1.1.2. Getting there

Protons and antiprotons start their lives as negatively charged hydrogen mole-

cules. These are launched from a �750-kV source and accelerated down a linear

accelerator to 400 MeV, illustrated in Figure 1.2. The bunches pass through a foil,

stripping the electrons off of the protons and get accelerated in the Booster ring

to 8GeV. During typical operation, the Booster accelerates protons a couple times

a second.

The Main Injector is the next link in the chain for proton bunches. Typically

seven bunches are injected at one time; then the 53-MHz RF system accelerates them

to 150 GeV. After this, different cavities are turned on that resonate at 2.5MHz and

5.0MHz, creating a large bucket that engulfs all seven bunches. Through a procedure

known as coalescing, these bunches accumulate in the center of the bucket, when the
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53-MHz RF cavities are switched back on. This generates high intensity bunches

suitable for injection into the Tevatron. After all thirty-six bunches are injected, it

is time to add the antiprotons.

Antiprotons are difficult to produce — and more difficult to collect into a tightly

grouped, low-emittance bunch. While one Tevatron store is colliding, antiprotons are

simultaneously being produced on a target, collected by the Debuncher, and cooled

in the Accumulator, a long process referred to as stacking. When the Tevatron store

is terminated, enough antiprotons will are usually ready for injection to start a new,

full store. In this mode, the Main Injector again accelerates several bunches (albeit

to 120 GeV) but instead sends them to the Antiproton Source target. This target

is a high-cross-section metal, often nickel or copper, that sprays out a number of

different particles, including 8-GeV antiprotons (at the unfortunately low rate of

ten to twenty per million incident protons). These antiprotons travel around the

Debuncher ring, where they are gathered, cooled, and finally transferred to the

concentric Accumulator ring.

As more antiprotons are created, they are added to the stack in the Accumula-

tor. Both the Debuncher and Accumulator employ stochastic cooling. This process

uses sensitive beam-position monitors (BPMs) to pick up slight changes in the aver-

age transverse position of the passing beam; this signal is quickly sent downstream

via a laser beam cutting a diameter across the ring and applied to kickers to cor-

rect the displacement. Each time this occurs, the average transverse movement is

decreased slightly. After a few turns, the average transverse motion (emittance) has

not changed much, but over the course of hours of repeated small corrections, the

particles in the beam will have significantly less emittance.
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After hours of continuous stacking, enough antiprotons are gathered and suffi-

ciently cooled that they can be extracted into the Main Injector. The Accumulator

contains an RF-cavity system that can provide four buckets in which to capture

antiprotons, but the strength of the fields is kept very small, so that only a few

antiprotons have just the right amount of momentum to be captured. These parti-

cles are purposefully accelerated slightly and drawn to a larger-radius orbit, while

the majority of the antiprotons slide in and out of the buckets with incompati-

ble momenta. Therefore an “outer track” of four bunches is created alongside the

remaining continuous (DC) beam. These four bunches are kicked into the Main

Injector, accelerated to 150 GeV, and injected into the Tevatron. Repeating this

process nine times with increased Accumulator-RF strength generates the thirty-six

antiproton bunches in the Tevatron[7].

Recently, another ring known as the Recycler has been commissioned; it can

be used to stash portions of the antiproton stack. This is helpful, as the stacking

rate is significantly larger at small stack sizes. Stashing the first portion allows the

stacking process to run more efficiently.

1.2. Tevatron Overview

The Tevatron itself requires many systems beyond magnets and cavities for

it to function well; a few of them are used in various contexts in this dissertation.

Kickers are the electromagnetic devices that steer a few or all of the bunches at a

time when loading or dumping a store. BPMs track the transverse position of the

bunches at 216 locations around the ring. Beam loss monitors measure the rate at
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which particles are being lost. Schottky detectors measure an important parameter

known as the tune, defined in Chapter 2.

Many systems depend on precise timing with respect to the circulating bunches.

A serial communications bus is distributed through the Tevatron that contains many

specific timed signals along with a generalized beam sync. The time jitter on this

sync with respect to the actual bunches is less than 1 nsec. The subject of this

dissertation, the TEL, uses this sync as a trigger. Diagnostics and time-dependent

data expressed in the following chapters feed from this beam sync or derivative

signals.

1.2.1. Establishing collisions

When the first four bunches of each antiproton train are injected into the gaps

between proton-bunch trains, the Tevatron appears as illustrated in Figure 1.3a.

Separate RF cavities control the energy (and therefore the speed) of the protons and

antiprotons, which allows the antiprotons to precess with respect to the protons, a

technique known as cogging. After the antiprotons have cogged a desired amount,

shown in Figure 1.3b, the gap is now clear to add another set of four bunches. In

Figure 1.3c, these antiproton bunches are added, and all of the antiprotons are

again cogged until it reaches Figure 1.3d. Another batch of four bunches per train

is added (Figure 1.3e), and the antiprotons are cogged one final time so that they

are synchronized longitudinally to collide exactly at the centers of the CDF and DØ

detectors (Figure 1.3f). During this time, devices known as electrostatic separators

keep the paths of the proton and antiproton orbits transversely separated, lowering

the space-charge interference between the two species[4].
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Figure 1.3. Illustration of loading antiprotons into the Tevatron. The

hollow circles represent protons, which are loaded first. In 1a, the first four

antiproton bunches (filled circles) in each train have been injected into the

abort gap. These bunches are advanced forward (cogging) in 1b, before

another batch of four bunches is injected in 1c. The antiprotons are again

advanced (1d), the final batch is injected (1e), and everything is advanced

so that proper bunch can collide at CDF and DØ.

After all of the bunches are loaded, the Tevatron is ramped from 150 GeV

to 980 GeV, the nominal operational energy of the Tevatron (at the absolute max-

imum energy, 1.050TeV, the superconducting magnets were more susceptable to

quenches[1]). Again, the RF cavities accelerate the particles, while the dipoles,

quadrupoles, and other systems are simultaneously ramped. In spite of the enor-

mity of such an order, ramping typically succeeds with only a few percent of the

11



Figure 1.4. Cartoon of proton and antiproton bunches colliding. While

this illustration is not to scale, it demonstrates the reality that bunches

next to the collision point tend to pass each other quite closely, an issue

discussed in Section 2.4.

particles being lost.

Flanking either side of the two detectors are low-beta quadrupoles, which have

stronger fields than the other quadrupoles around the Tevatron. By increasing the

strength of these magnets, the transverse size of the bunches is decreased at the

collision points (the proton bunch radius becomes approximately 30µm and the

antiproton bunch radius becomes about 25µm). During this step, known as a low-

beta squeeze, the protons and antiprotons are still on disjoint paths; no head-on

collisions have yet occurred. The last step is to adjust the electrostatic separators

so that the orbits cross at the two collision points only. Figure 1.4 sketches how the

trains of bunches appear when collisions are taking place.

1.2.2. Luminosity

The term luminosity is often used for several different, but related, notions.

In general, the goal of the interaction points is to provide a large and consistant
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number of collisions per unit time ṅ, which can be written as

ṅ = σLi

in order to split the quantum mechanical cross-section σ and the accelerator-related

instantaneous luminosity Li. The cross-section describes the natural structure of

the particles, while the instantaneous luminosity folds in all of the features related

to the two colliding bunches. It is the latter that can be affected by accelerator

parameters and is the subject of this discussion.

The instantaneous luminosity for the Tevatron is therefore defined to be the

number of protons and the number of antiprotons passing through the same area

together. If the two bunches collide perfectly head-on, then an arbitrary distribu-

tion of particles would be the integral over all space of the density of both species

multiplied together[5]:

Li = 2βc

Z
all space

ρp(~x)ρp̄(~x) dV , 1.1

where 2βc represents the speed of the passing particles as seen by the detector, and

ρp(~x) and ρp̄(~x) describe the volume particle densities of the protons and antiprotons.

So far, the luminosity does not integrate over the time that the bunches pass

through each other. It has been shown that bunches tend to stabilize in a Gaussian

distribution[6], so that for each species,

ρ(~x, t) =
N

(2π)
3
2 σxσyσz

exp

"
x2

2σ2
x

+
y2

2σ2
y

+

�
z � ct

�2
2σ2

z

#

applies to each of the colliding bunches. In this context, N is the total number of

particles in the bunch, σx,y,z are the rms bunch radii in three dimensions, and �c is
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the velocity of the counter-propogating bunches. Integrating Li over time yields the

luminosity from a single bunch crossing:

Lb =

Z ∞

−∞
Li(t)dt =

NpNp̄

4πσxσy
, 1.2

and the time-average luminosity is Lb times the bunch collision frequency.

1.2.3. Detectors

An individual proton or antiproton is constructed from three quarks, some

gluons, and some other, more mystical, subatomic particles. A collision between

an opposing proton and antiproton is actually the interaction of only one quark or

gluon within each of them. Due to the large amount of total energy within each

of the quarks and the kinetic energy of the bunches, many types of particles can

be produced, most of which are very unstable and quickly decompose into a large

number of simpler, more stable particles.

Scores of these various final particles are usually generated from a single colli-

sion, and large, immensely complicated detectors surround both of the interaction

points, CDF and DØ. In Figure 1.5, a cross-section of each detector is shown. Each

detector wraps around the horizontal axis, and is symmetric on either side of the

interaction point. The two detectors are glued together in Figure 1.5 to display

discernable differences between them; however, the general layout of each detector

shows significant similarities.

Both detectors employ several methods to track particles out from the inter-

action point[8,10]. Resolution of tracks is high enough to see exactly where the
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Figure 1.5. Cross-section views of the CDF and DØ detectors show

some of their different components. Each detector is symmetric around

the central axis and surrounds the interaction point. In order to compare

differences and similarities, only half of each detector is displayed, sand-

wiched together around a common interaction point.

final decay particles originated from. When an unstable intermediary, such as the

top quark (discovered in Run I) or the Higgs boson (hopefully discovered in Run II),

is created, it will travel a distance as short as 100µm before decaying into a bevy

of more stable particles. Meticulous analysis of tracks reveals the small offset and

offers clues to the properties of these rare particles.

The fanciest piece of each detector is the silicon vertex detector, which employs

almost a million separate photodetector-amplifier circuits crowded microns away

from each other[11,13]. Each photodetector is extremely sensitive to almost any

passing particle, and hundreds will typically fire each time a pair of bunches collide.

Because of the huge amount of data that is generated by each collision, state-of-

the-art logic circuits (triggers) discriminate between “interesting” events and not-
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interesting events. Only the interesting ones, that appear to contain a sought particle

(like a top quark or Higgs boson or some other rare particle), are saved to hard disk

to be analyzed later.

Several constraints are forced on the bunches because of the detectors. Since

the tracks must be measured accurately, the collision point must remain station-

ary within a few microns. Also, the time of each event is measured to determine

speeds and delays, so the collision time must be known precisely. In general, the

Tevatron has a decently stable orbit path and timing system and allows adequate

measurements of these rare particles.

1.2.4. Pushing the limits — beam-beam effects

Over the past half century, the two variables maximized in every new collider

are the collision energy and the average luminosity. New technology enables ac-

celerator upgrades that can increase those two attributes. The collision energy of

the Tevatron is essentially limited; changing it would require an unrealistically huge

amount of effort. The luminosity, on the other hand, depends on the adjustable

quantities in Equation 1.2.

Independently, each variable can easily be improved. For example, more pro-

tons can be poured into each bunch, directly inflating the luminosity. This sec-

tion illustrates how larger numbers of protons will harm the antiproton beam size

and lifetime, in turn lowering the overall performance of the store. Operators are

“trained people that vigilantly balance various aspects of the store with the intent

of maximizing the average luminosity over the entire store[14].”
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An unfortunate consequence of employing circular colliders is the disruption

each bunch feels due to the electromagnetic fields generated by other, nearby

bunches. It is possible to separate these effects into two categories: the head-on

collisions at CDF and DØ, and long-range interactions when two bunches pass by

each other, often called parasitic crossings. The head-on collisions are stronger than

the parasitic ones. However, each bunch passes through only two head-on collisions,

whereas it experiences seventy parasitic crossings. Tevatron stores have eight times

the number of protons per bunch than antiprotons, so that the fields created by

the protons are much larger, and the antiproton bunches end up being much more

afflicted. The forces that an antiproton bunch witnesses is qualitatively sketched

here, but Chapter 2 canvasses the interaction more completely.

In the case of the head-on collisions, the antiprotons pass through the proton

bunch and feel a transverse focusing force that varies with radial position. Antipro-

tons that happen to be axially centered in the bunch feel no force, antiprotons a

small distance away feel a very strong force, and antiprotons on the outskirts of the

bunch feel a weaker force. Plotted in Section 2.4, the nonlinear force is typically

split into two portions: a linear part, expressed by F0(r) = �k0r, accounts for the

particles near the center of the bunch, and a nonlinear part, which asymptotically

approaches F1(r) = �k1/r.

Both the linear and nonlinear aspects of the focusing force make maintaining

the antiproton bunch more difficult. The linear force shifts a parameter known as

the tune of the particles, but it shifts all of the particles the same amount. The

nonlinear force shifts the tune different amounts for different particles, creating a

tune spread within a given antiproton bunch. This latter consequence is shown
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in Chapter 2 to be detrimental to the survival of the bunch, but has been nearly

impossible to remedy without sacrificing the luminosity of the machine.

Indeed, a several references over the past several decades have claimed that this

beam-beam limit puts a clamp on future circular-collider performance [15,16,17,18].

John Rees said in 1986: “And finally, [they]. . . came up against what may fairly be

characterized as the Fundamental Limit, the beam-beam limit of the colliding-beam

storage ring. This phenomenon has proved to be insurmountable and continues

to place the basic limit on the performance of colliding-beam storage rings. The

theorem deserves to be capitalized[20].” In 2004, Lyn Evans reaffirmed the finality

of this constraint: “. . . the beam-beam interaction will always be a Fundamental

Limit[21].”

The parasitic crossings are significantly different, since the antiproton bunch

passes by a proton bunch at a significant distance away, usually eight to twelve

times the rms bunch size. Unfortunately, the fields of the proton bunch, following the

�k1/r-dependence, are still significant at that range, and the antiprotons feel a force

at each of the seventy crossings. Mostly, the antiprotons are equally attracted to

the charge of the protons, generating a small deflection of the entire bunch that can

be compensated by various elements in the Tevatron. But the position-dependent

force again shifts the tunes of the antiprotons, again causing havoc.

The orbits in the Tevatron have numerous other constraints placed on them,

causing the transverse separation between proton and antiproton bunches to vary

from one crossing to another. Figure 1.1 displays each bunch train with an abort gap

between each one. Because of these gaps, the places where protons and antiprotons

cross is different for each of the antiproton bunches. Hence, each bunch feels a

unique net focusing effect and tuneshift.
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Most of the bunches are tuneshifted nearly the same amount, since the trans-

verse separations do not vary excessively around the ring. However, in order to draw

the bunches together at both of the head-on collision points, the parasitic crossings

on either side of each IP has a much smaller separation of 4.5–5 times the rms bunch

size. The majority of the antiproton bunches are significantly affected by passing a

proton bunch at each of these locations.

The first and last antiproton bunches in each train do not witness a proton

bunch at one of these close-range crossings, so their tunes are not shifted like those

of the “internal” bunches. As Chapter 2 elucidates, it is this difference in tuneshifts

between bunches that proves problematic.

The intra-bunch tune spread and the bunch-to-bunch tune differences have

different causes and attributes, but the final effect of both is that the antiprotons

have a range of average tunes. This total range, known as the tune footprint, can be

moved around through the use of various magnets. However, when the tune of any

particle falls near one of many resonances, the particle can increase its transverse

motion. This behavior expands the beam size σx,y and leads to particle losses. Both

of these lower the luminosity, and excessive particle losses can cause a quench of the

Tevatron. The tune footprint and resonances are also detailed in Chapter 2.

John Rees and Lyn Evans perceived the beam-beam limit very fatalistically

due to the fact that it is nearly impossible to correct either of these tune-expanding

causes: the area of the tune footprint seemingly cannot be decreased without giving

up luminosity. In order to repair the intra-bunch tune spread, a strong nonlinear

radial electric field would need to be created. Gauss’ law mandates that there needs

to be some sort of charged object along the axis to generate this[35]. Any metal

19



wire placed in the path of the antiprotons would intercept particles and destroy the

very bunch that it was trying to remedy. A strong azimuthal magnetic field could

also generate radial forces, but due to Faraday’s law, a current needs to flow along

the axis, creating the same problem.

The bunch-to-bunch tune variation presents its own complications. Changing

the tune of a bunch requires a strong electric or magnetic field; the superconducting

quadrupole magnets that establish the tune of the Tevatron put out several Tesla

fields. In order to change the tune of just one particle, these magnets would need

to be pulsed at very high frequencies, but the natural inductance of the coils resists

change in current. The current sources feeding the magnets would need unrealis-

tically high levels of power to effectively change the fields, and all of this power

translates into heat, which would immediately quench the superconducting wire.

Pulsing electrodes with voltages is easier than pulsing magnets, but the force

an antiproton feels from 1 T of magnetic field would require an electric field of

300MV/m[6]. Such huge voltages are impractical to generate or pulse at high rates,

and the electrodes would be prone to spark[22]. It is due to these difficulties that

the tune footprint has been perceived as immutable.

1.3. Tevatron Electron Lens overview

The Tevatron Electron Lens, or TEL, is a prototype machine that breaks

through the beam-beam limit imposed on circular colliders. By introducing an

electron beam into the midst of the antiproton bunches, a radial electric field is cre-

ated that shifts the tune of the particles. The electron beam current can be easily
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modulated, allowing the tuneshift to change for each bunch. Proper shaping of the

transverse electron density can change the tuneshift of individual particles in the

bunch, allowing a compression of the intra-beam tune spread.

Electron beams are easy to generate, and the kinetic energy of the electrons can

be chosen by convenience. Since electrons have the opposite charge of protons, the

passing antiprotons are affected in the opposite direction as they were by the protons.

Therefore, by mimicking the shape and strength of the protons, the electron beam

can “undo” the ailments antiprotons feel due to the protons. The goal of the TEL

is to compensate for the beam-beam interactions, namely tuneshift compensation.

Historically, the concept of compensating for the beam-beam interactions

has been proposed several times. In 1969, an idea was proposed to build an

electron-positron machine using four simultaneously colliding bunches, two of each

species[23]. The machine, known as DCI in Orsay, France, succeeded in producing

the complicated arrangement and observed a 30% increase of the effective space-

charge forces[24]. However, no significant increase in the luminosity was demon-

strated, which was blamed on high-order collective instabilities[25].

Regardless, any machine employing four distinct bunches is unappealing, and

Figure 1.5 indicates that the space around the collision points is already extremely

crowded. Section 3.2 justifies that tuneshift compensation does not need to take

place at the interaction point; it can be implemented anywhere around the ring

(albeit certain regions prove better than others). An unpublished document in 1976

floated an idea of using an electron beam to compensate for the beam-beam tuneshift

at CESR at Cornell University[26]. However, the electron beam crosses the particle

orbit, limiting the amount of time that the bunches sense the fields. In order to
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impart a significant tuneshift, the electron beam required extremely high current

densities[27].

A scheme for beam-beam compensation was also proposed for the SSC, with

an appearance very close to that of the TEL[28]. Since the SSC was intended for

proton-proton collisions, an electron beam could be used to compensate the tuneshift

in both of the proton beams. The brief proposal imagined that the electron-proton

interaction region would act like another collision point. The electron beam size

was identical to that of the protons, and an imaging and feedback system would

constantly correct the transverse position. Concerns about the correction system,

possible instabilities, and current densities would have needed to be resolved.

In 1997, Vladimir Shiltsev and David Finley proposed the device known as the

TEL for beam-beam compensation in the Tevatron[30]. While the design evolved

slightly over the following years[31], it is the first proposal to combat the beam-beam

limit while remaining straightforward, realizeable, and unobtrusive. Also, the fact

that it is relatively inexpensive allowed it to progress as an “experiment,” without

interfering with the general Tevatron program.

In its simplest form, the TEL consists of an electron gun, collector, and a set of

solenoid magnets that guide the electron beam from the gun, into the Tevatron beam

pipe, along the path of the antiprotons for two meters, and out to the collector. The

electron beam diameter is significantly larger than that of the antiprotons, so that

perfect alignment schemes are not necessary. The kinetic energy of the electron beam

is nominally 10 keV, and the gun puts out a couple amperes. The whole device only

spans 2.5m of the Tevatron circumference, and can be positioned wherever there

might be an unoccupied space. Chapter 3 will show that the TEL is more effective
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when certain Tevatron parameters meet optimal conditions, so only a few places

around the ring are ideal.

Control of the electron gun is crucial to successful compensation. Being a

thermionic gun, the cathode is set to a negative voltage, and the anode is pulsed to

different voltages. The current drawn off of the cathode is proportional to V
3/2
anode,

where Vanode is the voltage of the anode with respect to the cathode. By adjusting

this voltage between the passage of each antiproton bunch, the current and radial

forces is adjusted for each bunch. This allows each bunch to be tune-shifted inde-

pendently, allowing the bunch-to-bunch variation to be minimized. Additionally,

another electrode in the gun can change the radial charge distribution in the elec-

tron beam simply by adjusting its voltage. This electrode, affectionately called the

profiler, allows the central and outlying antiprotons to witness different focusing

forces. Thus, the nonlinear tune spread is able to be diminished.

Of course, the previous discussion ignores many details, each of which are

addressed in subsequent chapters. After the design of the TEL was finalized, the

pieces were fabricated and assembled in a testing area. Measurements of different

properties and alterations were performed, and then it was installed in the Tevatron.

Dedicated studies produced successful tuneshifts in a short amount of time, and after

some more perseverance, compensation of the tuneshift improved the preservation

of antiproton bunches.

1.4. This thesis project

This thesis describes the TEL, a novel device designed to compensate for the
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adverse beam-beam interactions. In general, the tuneshifts associated with colliding

beams had been believed to erect a limitation on the performance of circular colliders.

The goal of the TEL is to remove this barrier for future machines, and this disseration

evinces that initial experiments with the TEL are successful.

More specifically, the TEL is designed to produce an electron beam that in-

teracts with passing antiproton bunches in order to change the tune of that bunch.

This interaction is intended to compensate for the tuneshift that a given antipro-

ton bunch feels due to its collisions with proton bunches. Currently, the TEL has

succeeded in changing the tune of an entire bunch, known as linear compensation,

with the intention of compensating for the bunch-to-bunch tune spread.

Additionally, the TEL is able to produce an electron beam that generates non-

linear radial forces. With a shape similar to that of a proton bunch, the TEL is able

to vary the tuneshift for antiprotons within each specific bunch. By achieving this,

the spread of tunes within each of the bunches is decreased, preserving the emittance

of the antiproton bunch. Results are presented that indicate that the TEL is also

successful in this goal.

Neither of these results have ever been witnessed before the TEL was created.

Such a device paves a road to future colliders that are not hampered by the beam-

beam limit. The conclusions of this dissertation find no significant hurdles in adapt-

ing the TEL, or other TEL-like devices, to future accelerators or using them to

significantly increase the utility of any previous collider design.

In this dissertation, a brief introduction to general accelerator physics is given

in Chapter 2, emphasizing aspects relevant to the Tevatron and the TEL, notably

beam-beam effects. Chapter 3 quantifies specific requirements that the TEL must
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satisfy if it is to achieve the goals of successful beam-beam compensation. A theo-

retical analysis of electron-beam generation and propogation is given in Chapter 4,

which concludes that the TEL can provide the necessary quality of beam. A more

physical description of the TEL, including measurements of many beam properties,

is provided in Chapter 5. The final two chapters address the operation of the

TEL on the Tevatron performance. In particular, Chapter 6 tests several complex

interactions between the electron beam and proton/antiproton bunches. Lastly, ver-

ification of tuneshift and lifetime improvement is displayed in Chapter 7, along with

comparisons to theory, interpretations of the data, and predictions of future TEL

research.
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Chapter 2:

Particle motion in a
circular accelerator

The subject, however various and important, has already been

so frequently, so ably, and so successfully discussed, that it is now

grown familiar to the reader, and difficult to the writer.

–Gibbon: The decline and fall of the Roman empire

An understanding of basic accelerator physics is necessary to follow the motiva-

tion of the TEL and its effects on the Tevatron bunches. This chapter develops accel-

erator physics from fundamentals; however, an introductory, grandiose portrayal of

general accelerator theory is avoided for the sake of brevity. This dissertation does

not do justice to the field that numerous books already have[6,32,33]. Instead, this

chapter focuses on the background behind subjects that are relevant in subsequent

chapters.

Much of the following discussion applies to numerous accelerators, but atten-
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tion will be devoted only to the Tevatron. Chapter 1 briefly described the rest of the

accelerator chain at Fermilab, and other accelerator facilities have different operat-

ing characteristics. Additionally, the TEL, which uses a low-energy electron beam

immersed in a solenoidal magnetic field, is not discussed here. Chapter 3 devotes

its effort toward understanding that type of beam.

First, this chapter describes how a beam propagates through a circular accel-

erator, using strong focusing. A development of tunes and resonances follows. An

analysis of the beam-beam interactions is last, which illustrates the performance

issues that the TEL is designed to solve.

2.1. Matrix formulation of linear dynamics

The Tevatron consists of many systems and components. Thousands of elec-

trical, magnetic, and mechanical devices, each powered by hardware and software,

are vital to the sustainability of each store. Table 2.1 lists a selection of parameters

involved in Tevatron operation. Some values are immutable since the construction

of the Tevatron (the circumference, for example), while others are typical amounts

that are changed often between or during stores.

In its simplest form, the Tevatron ring is simply a vacuum pipe bent into a

large circle. Large, superconducting dipole magnets surround the pipe, which bend

the path of the charged particles. The dipoles are 6.1m long and bend the particles

only a small amount, about 8.12 mrad maximum. Within the magnet, the radius of

curvature is determined from F = γma [35]:

p = eBρ ,
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Tevatron parameter value units

Tevatron circumference 2π km

number of dipoles 774

dipole magnet length 6.12 m

dipole field strength 4.3 T

number of quadrupoles 216

quadrupole magnet length 1.678 m

quadrupole focal length 26.1 m

cell type FODO

phase advance per cell 68 deg

standard half-cell length 29.7 m

bend magnets per cell 8

βmax in cells �110 m

maximum dispersion Dx 6.2 m

revolution period 20.96 µsec

RF frequency 53.1 MHz

harmonic number 1113

transition gamma γtr 18.7

Table 2.1. List of Tevatron-related quantities, many of which are es-

sentially fixed by the hardware installation in 1986. Some values are ad-

justable, but rarely are these significantly altered. This chapter defines

most of these, but some are discussed in other chapters or references.
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operational parameter value units

proton emittance (95% norm.) 18 π mm-mrad

antiproton emittance (95% norm.) 12 π mm-mrad

antiproton beam-beam tuneshift per IP 9.7 10−3

proton beam-beam tuneshift per IP 3.8 10−3

number of parasitic crossings 70

transverse coupling 4 10−3

bunch spacing 396 nsec

bunch length 37 cm

longitudinal emittance 3 eV-sec

momentum spread (∆p/p) 9 10−5

synchrotron tune 2.7 10−4

Table 2.2. List of antiproton and proton parameters typical during recent

stores. Some of these parameters are adjusted regularly by operations

[1,3,34], and others are being improved as Run II proceeds.

where p is the particle’s momentum in MKS units, B is the magnetic field, and

ρ is the radius of curvature (literature often uses the more convenient unit eV/c

for momentum, so that p = cBρ). As Chapter 1 explains, the antiprotons and

protons in the Tevatron are traveling in opposite directions with the same momen-

tum p. Therefore, both species rotate at the same radius and cohabit the same

beam pipe.

The dipole magnets generate a field of 4.3T during collisions. A particle passing

through one magnet of length Ldipole = 6.12m bends an angle of

θ � Ldipole

ρ
=

eBLdipole

p
, 2.1

29



Figure 2.1. The reference frame used throughout this dissertation is

attached to the orbit of the moving bunches. The discussion will refer

to dimensions in the (inertial) laboratory frame, where the phenomena

described are static situations.

using the small-angle approximation, so that θ is merely 8.12 mrad for the Tevatron.

The sum of all of the dipoles must complete a full revolution, so

NX
i=1

eBLdipole

p
= 2π ,

where N = 774 is the total number of dipoles around the ring.

The fields of the dipoles are quite uniform throughout a large region of the beam

pipe. Particles that are not exactly on the closed orbit are still follow Equation 2.1.

In order to examine the dynamics of these particles, it is convenient to ignore the

common effects of the dipoles. A frame of reference is introduced that follows the

beam around the ring. The origin is on the closed orbit, the longitudinal axis ẑ points

tangentially along the orbit, and the two transverse axes x̂ and ŷ point horizontally

and vertically respectively. Figure 2.1 sketches the frame of reference centered on a

bunch and follows it around the ring.

By tracking a “perfect” particle as it traces out the closed orbit, describing

the dynamics of all of the real particles around it becomes much easier. First, the
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relativistic forward motion is removed from any calculation (though the effective

mass γm must be retained). Second, the dipole magnets can be effectively ignored

when quantifying the behavior of a bunch as it passes through these regions. This

feature is justified in the next section and embraced in the rest of this chapter.

The tremendous forward momentum of the particles in the Tevatron is much

larger than their transverse momentum. Transverse dynamics therefore almost never

affect longitudinal dynamics, leading to uncoupled motion and a much simpler analy-

sis. Often called the paraxial approximation, it also can be proclaimed as limiting the

angle between particle trajectories and the longitudinal axis ẑ to very small values.

Additionally, this accurate assumption allows the approximation tan θ � sin θ � θ.

As the next section describes, the components on the Tevatron beamline affect

particle motion in the horizontal and vertical motion largely independent of the

other axis. This decoupled motion is another convenient and reliable simplification

involved in understanding the dynamics. In general, a particle’s motion is described

fully by a six-dimensional vector (x, x′, y, y′, z, δ), where δ is defined as the particle’s

momentum over that of the ideal particle, δp/p0. The z coordinate refers to the

particle’s position again with respect to the reference frame, and is equal to �βc∆t.

A particle in front of the centroid of the bunch is said to be at a positive z-coordinate

and arrives at a location in the Tevatron earlier than the centroid. If the centroid

reaches a particular location at a time t0, the early bunch arrives at a negative

time ∆t.

Since the motion in each direction is largely decoupled, attention will be put

on only one pair of factors, such as x and x′. The vertical dimension follows sim-

ilar treatment to the horizontal, while the longitudinal follows distinctly different

mechanics.
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2.2 Building a machine lattice

When particles pass through most magnetic structures, they are kicked trans-

versely with respect to the reference frame depending on their position. This process

of kicking particles and then allowing them to drift is analogous to light passing

through optical lenses. Each element, including drifts, can be described by a matrix

that acts on the state vector of each particle. Therefore, passing a particle through a

large system of elements can be reduced to the multiplication of a series of matrices.

In this manner, a whole ring can be thought as a series of simple optical el-

ements that can be amalgamated into one transfer matrix. To a first-order ap-

proximation, most optical elements act in each dimension independently, and it is

convenient to mathematically analyze different elements under this approximation.

The current discussion tracks a particle in one transverse dimension, where the

transfer functions describing different optical elements are simply 2 � 2 matrices.

In Section 2.3, features such as coupling and momentum spread are shown to link

motion in different dimensions.

2.2.1 Drift sections

The simplest element to analyze is a simple drift section, where a particle is

allowed to travel without interference. In the top portion of Figure 2.2, an uninter-

rupted particle starts in a state ~x0 = (x0, x
′
0) and moves along the length Ldrift so

that its final position is simply ~x1 = (x0 +Lx′0, x
′
0). This can be rewritten in matrix

notation as:

~x1 =

 
1 Ldrift

0 1

!
~x0 . 2.2
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Figure 2.2. Two examples of a particle propogating through optical

elements. The top illustration is a drift section of length Ldrift. The bottom

shows a focusing quadrupole bending the particle toward the axis. In

both cases, (x0, x
′
0) represents the particle’s initial trajectory and (x1, x

′
1)

represents its final.

One of the conveniences of using a frame of reference which tracks the closed

orbit is that it bends around dipole magnets the same amount as the particles do.

Because everything bends in a nearly identical manner, the motion of a particle

through the dipole with respect to the closed orbit is almost same as if they were

traveling simply through a straight drift section. This means that each long dipole

length can be approximated as a drift. In reality particles that travel at an angle

through a given dipole sense a slightly longer length of field, and thus are bent more

than particles that are traveling straight through. Additionally, if the ends of the

dipoles are not perfectly parallel (for example, a sector magnet), particles passing

through at different transverse positions will be affected differently. In general, these
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effects are known as path-length focusing, and contribute a small correction to the

drift-length assumption. The next section describes much stronger forms of focusing,

so that the dipole contribution is either ignored or added to the larger contributions.

2.2.2 Quadrupole fields

The description of dipole magnetic fields is easy to write down, as the field

strength is a constant throughout the region of interest and pointed vertically in

order to bend the charged particles horizontally. For more sophisticated fields, it is

helpful to start with the general formula for magnetic fields.

Any two-dimensional field must satisfy Laplace’s equation r2Ψ = 0, and

the solutions that converge at r = 0 can be written by the well-known multipole

expansion[36],

Ψ = a0 +
∞X

n=1

(anr
n cosnφ + bnr

n sinnφ) , 2.3

where an and bn are constants determined by the specific geometry in question. A

dipole directed vertically is simply Equation 2.3 when b1 is the only non-vanishing

term. The magnetic field becomes

~Bdipole = �rΨdipole = �r(b1r sinφ) = � d

dy
(b1y)ŷ = �b1ŷ .

Since the magnetic field does not depend on radius, any particle passing through

the dipole will be bent identically.
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A more complicated magnet generates a position-dependent field. For example,

if b2 is the only nonzero constant, the field is

~Bquad = �rΨquad

= �r(b2r
2 sin 2φ)

= � d

dx
(2b2xy)x̂� d

dy
(2b2xy)ŷ

= �2b2yx̂� 2b2xŷ .

This field produces a force on ultrarelativistic particles given by:

~F = qvẑ � ~Bquad = (2b2ce)xx̂� (2b2ce)yŷ , 2.4

which illustrates the separation of the two transverse dynamics: a particle with a

specific offset x0 in the horizontal directions is accelerated by (2b2ce)x0/γmp kick

horizontally. Integrating this acceleration over the length of the quadrupole Lquad,

the horizontal trajectory is altered by

∆x′ =
∆px

pz
=

γmp

R
axdt

pz
=

2b2eLquad

pz
x0 . 2.5

A drawing of an example particle passing through a quadrupole is shown in the

bottom half of Figure 2.2.

If the initial path is parallel to the axis, a quadrupole with negative b2 will pull

the particle toward the axis. A focal length, identical to that in light optics, can be

introduced to described the strength of a quadrupole. The transfer matrix can be
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written[37,6]:

~x1 =

0
B@

1 0

� 1

f
1

1
CA~x0 , 2.6

where the focal length f is equivalent to �x0/∆x′, and an effective spring constant k,

used in the following section, is

k =
1

cpz

dFx

dx
=

2b2e

pz
.

Because the focal length of the quadrupole is commonly much larger than the length

of the physical magnet, the thin-lens approximation can be employed[37]. This

simplification is suggested by the dashed lines in Figure 2.2.

The linear field strength sets the focal length constant for particles at any in-

cident postion and transverse momentum. If b2 is negative, the particle is focused

in the horizontal direction. But the same b2 in the vertical plane generates a force

away from the axis, making the particle defocus. By reversing the current powering

the magnet, b2 will become positive, and the magnet will defocus in the horizontal

plane and focus in the vertical. Accelerator terminology has developed the conven-

tion of referring to quadrupoles by their action in the horizontal dimension. Another

convention, adopted in this dissertation but less consistently in other literature[38],

uses a positive value for the focal length to imply focusing and a negative value to

connote defocusing.

It is useful to see if any magnetic device is able to provide simultaneous hor-

izontal and vertical focusing. To do this, a loop can be traced around the central

beam axis, where the force ~F acting on particles is pointing inward at every point.
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Since ~F = qv~z� ~Bquad, Bφ must be positive around the loop. Integrating and using

Ampère’s law,
R

~B � ~dl = µ0Iinside indicates that this device would need to generate

a longitudinal current somehow immersed in the bunch path.

Three notable exceptions can be mentioned. First, a magnetic solenoid can

introduce angular momentum in the bunch. This, in turn, produces a ~vφ� ~Bz force

inward. A second-order effect, the force is very weak on high-energy bunches and

is analyzed more in Section 3.2. Second, plasma focusing produces focusing in

both transverse directions, but it is mostly caused by radial electric fields. The

electrostatic action of the TEL can be thought of as a (highly non-neutral) plasma

lens [40], and this effect is calculated in Section 3.4. Last, the TEL successfully

propagates a longitudinal current along the bunch path, producing an azimuthal

magnetic field. The contribution of this effect is also quantified in Section 3.4.

2.2.3 Equation of betatron motion

Dipoles and quadrupoles alone cannot provide significant focusing simultane-

ously in both transverse planes, but focusing is crucial to the stability of bunches

in any synchrotron, due to the need to contain orbits with transverse momentum

errors[6]. Sections 2.3 and 2.4 provide examples of mechanisms through which

particles can gain transverse momentum until they collide with the sides of the

beam-pipe aperature and are lost. Overall focusing in both transverse dimensions

simultaneously is imperative to preserve the stability of a bunch. It was shown

that alternating focusing and defocusing quadrupoles, separated by drifts, can pro-

vide overall focusing in both directions and therefore the stability needed for bunch
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preservation[41]. This concept ushered in the era of large, high-energy synchrotrons

such as the Tevatron[42].

The combination of a focusing magnet, drift, defocusing magnet, and another

drift can be expressed by the matrix

MFODO � M0MDM0MF =

 
1 Ldrift

0 1

! 
1 0

+1/f 1

! 
1 Ldrift

0 1

! 
1 0

�1/f 1

!
,

and is typically called a FODO cell. The stability of this cell can be proven un-

der the condition that Ldrift � 2f , though that proof is skipped in this discussion

[38,32,6]. The majority of the Tevatron consists of FODO cells, with parameters

described in Table 2.1. Near the interaction regions, large quadrupoles are used

that effectively squeeze the bunches into a smaller area. Section 1.3 examines the

increase in luminosity due to this compression. These regions are smoothly matched

into the rest of the ring.

As a particle travels around the ring, it is continually passing through quad-

rupoles that have an average effect of kicking it toward the axis. A typical particle

path through a series of FODO cells is drawn in Figure 2.3. This particle exercises

oscillations around the closed orbit. At any point along its trip, it feels a focusing

force k(z). This function is nonzero inside quadrupoles and zero through drifts.

Newton’s law for such a linear system becomes

x′′(z) + k(z)x(z) = 0 , 2.7

where k(z) is periodic when z completes each revolution.

This differential equation is known as Hill’s equation[43] and is simply that

of an undamped harmonic oscillator with a varying spring constant. The solution
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Figure 2.3. Sketch of a particle passing through a series of FODO cells,

viewed from above. The deviations from the axis is greatly exaggerated,

and different particles will exhibit different paths. In the vertical plane,

the roles of the focusing and defocusing magnets are reversed.

therefore can be written like a sinusoid, but with an amplitude and phase advance

that can change with time:

x(z) = Awx(z) cos
�
φ(z) + φ0

�
. 2.8

In this context, each particle can have its own initial amplitude A and phase φ0

(corresponding to some initial conditions x0 and x′0), and the machine itself possesses

its own amplitude and phase modifier that depends on the longitudinal position.

Therefore wx(z) and φ(z) are affiliated with “machine parameters,” since they are

defined by the lattice itself, regardless of the size, shape, and status of an injected

beam.

It is important to note that Equation 2.8 is able to describe the path of any

particle exactly, as it might appear in Figure 2.3. This description is deteriorated

slightly when multi-particle phenomena is taken into account, such as collisions,

space charge, and wake fields. Nevertheless, the amplitude function wx(z) and the

phase advance φ(z) can be solved for any given machine lattice. These functions
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can be better understood by substituting Equation 2.8 into the differential equation

given in Equation 2.7. Separating orthogonal terms yields two results,

2w′(z)φ′(z) + w(z)φ′′(z) =
1

w(z)

�
w2(z)φ′(z)

�′
= 0 , and 2.9

w′′(z)� w(z)
�
φ′(z)

�2
+ k(z)w(z) = 0 . 2.10

Simplifying Equation 2.9 reveals that w2(z)φ′(z) must be constant for all z. If

that constant is defined as c, it can be inserted into Equation 2.10, giving:

w′′(z) + k(z)w(z) =
c2

w3(z)
. 2.11

This equation is generally only solvable numerically, but directly relates the focus-

ing strengths around the ring, k(z), to the amplitude function w(z). Additionally,

integrating Equation 2.9 reveals that the phase advance between two points around

the ring is

∆φz0→z1
=

Z z1

z0

c dz

w2(z)
. 2.12

Equations 2.11 and 2.12 reveal that both w2(z) and φ(z) scale linearly with

the arbitrary constant c. In order to eliminate this unnecessary factor, a new func-

tion β(z) is defined as:

β(z) � w2(z)

c
,

which is commonly called the beta function and allows ∆φ to be rewritten as

∆φz0→z1
=

Z z1

z0

dz

β(z)
. 2.13
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Incorporating the constant c into the arbitrary constant A, Equation 2.8 can be

rewritten as

x(z) = A
p

βx(z) cos
�
φ(z) + φ0

�
. 2.14

At this point, two other parameters can be defined from the beta function for con-

venience:

α(z) � �β′(z)

2
, and

γ(z) � 1 + α2(z)

β(z)
.

The three parameters β(z), α(z), and γ(z) are called Twiss parameters, first used

by Courant and Snyder to describe the mapping of particles around a FODO-based

accelerator[44].

The beta function, and the other Twiss parameters, have already been defined

as machine parameters, which means they repeat in value after particles have tra-

versed one ring revolution. The matrix representation which represents the entire

ring of circumference C can be written as ~x(C) = Mrev~x(0), or

�
x(C)

x′(C)

�
=

 
M11 M12

M21 M22

!�
x(0)

x′(0)

�
, 2.15

where βx(C) = βx(0). Inserting Equation 2.8 and dividing out the common factors,

Equation 2.15 becomes

0
B@ cos(∆φrev)� 1

β(0)
sin(∆φrev)

1
CA =

 
M11 M12

M21 M22

!0B@ cos(φ0)� 1

β(0)
sin(φ0)

1
CA ,
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with ∆φrev � φ(C) � φ(0). This system appears to contain two equations in four

unknowns. However, this relation must hold for particles at any initial phase φ0, so

solving the matrix for two cases (such as the orthogonal solutions φ0 = 0 and φ0 =

π/2) defines each matrix entry exactly. After some algebra and substitutions, the

solution eventually becomes

Mrev =

 
cos∆φrev + α sin∆φrev β sin ∆φrev�γ sin ∆φrev cos ∆φrev � α sin ∆φrev

!
. 2.16

Every discussion of the Twiss parameters should mention what, on an intuitive

level, the beta function is and is not. It is not the radius of a beam, though it is

closely related and has units of length. It actually describes the wavelength of the

particles at that particular position z, assuming they were able to freely oscillate

around the closed orbit. The beta function in the Tevatron typically ranges from

about 30 m inside a defocusing lens to about 110m inside a focusing lens, though

it is crimped down to 35 cm at the collision points. It is not a coincidence that

the FODO cell length is on the order of the beta function size[6]. However, the

bunch size can be interpreted from Equation 2.14, because the average radius scales

with
p

β. The next section demonstrates that A is generally much smaller than

unity, so that the beam radius is significantly smaller than the large wavelength

dimensions.

2.2.4 Transverse bunch properties: tune and emittance

The Twiss parameters in a specific area are not determined by the optics only

in that area; instead, the matrix representation of the entire ring must be assembled
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Figure 2.4. Illustration of three particles traveling through a FODO

lattice. The envelope, proportional to
√

β(z), is shown in grey. The first

two particles have the maximum amplitude but different phases, so they

brush against the envelope at different positions. The third has a much

smaller amplitude, and deviates little from the central orbit.

in lattice form, multiplied together, and set equal to Equation 2.16. Then the beta

function and phase advance can be derived. Repetition, such as the FODO cells

defined in the previous section, simplifies this process, as does computer modeling of

the lattice. When the Twiss parameters are determined at one longitudinal position,

they can be tracked through the optics and plotted around the entire ring.

For example, Figure 2.4 shows a series of FODO cells similar to Figure 2.3, but

this time an envelope is plotted in addition to several particle paths. The envelope

equation is proportional to
p

β(z). Two of the particles drawn are specifically chosen

to have an amplitude of unity, such that, if the particle’s phase passes through zero, it

will reach the envelope. However, the two particles have different phase advances φ0,

so they touch the envelope at different places. A third particle is identical to the

first, except it has a smaller amplitude. Even though it moves synchronously with

the first particle, it never reaches the outside of the beam envelope.

Each particle witnesses the same phase advance as it progresses around the
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ring. In the Tevatron, the particles advance over twenty full betatron oscillations

per revolution. This value ν is defined as the tune (or betatron tune), and can be

produced from Equation 2.13:

νx � ∆φrev

2π
=

1

2π

I
turn

dz

βx(z)

in the horizontal plane, and νy is analogous in the vertical plane.

The horizontal and vertical tunes are utilized extensively throughout this disser-

tation. The Tevatron possesses complications, discussed in Section 2.4, that depend

on its tunes, and the TEL is shown in later chapters to mitigate some of these issues.

The tunes in the Tevatron are easily adjusted independently, but are nominally set

to 20.585 in the horizontal plane and 20.575 in the vertical plane. These numbers

together define a working point in the two-dimensional tune space, but often the

integer is ignored, revealing the fractional tune (for example, 0.585 and 0.575). Sec-

tion 2.4 explains the motivation behind the choice of these values and the motivation

to adjust the tunes during any store. Because the fractional tune plays a vital role in

the collider’s performance, a reference to the “tune” commonly ignores the integer

in favor of simply the fractional tune.

In a computer simulation, a single particle was tracked for 500 turns around

a ring that possessed a fractional tune of 0.585. At a specific location, the parti-

cle’s horizontal displacement x and its derivative x′ was recorded and plotted in

Figure 2.5. Each point is shown, while the first twenty turns are drawn with larger

dots. At each turn, the particle is at a new position and direction, but those points

fills in an ellipse in phase space. If a similar analysis of a particle was performed

at a different position along the ring, a different ellipse is generated. While the
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Figure 2.5. Phase space of a particle circling a ring 500 times, assuming

the phase advance is 0.575. If the particle starts at position #1, then on

the next passage it will appear at position #2, and so forth.

orientation and aspect ratio are different at each position, the area of each ellipse is

identical.

The preservation of the area inside the ellipses reveals an underlying constant

of particle motion. Figure 2.5 started at position #1, with position and derivative

chosen seemingly independently. However, the general equation for the particle’s

motion, expressed in Equation 2.8, gives only one variable, A, for the amplitude of

the particle’s motion (the initial phase advance φ0 defines where on the ellipse the

particle begins, not the size or shape of the ellipse). Therefore, A can be rewritten in

terms of x(z) and x′(z). Since A is a constant of the motion, so must the expression

involving x(z) and x′(z).

Squaring Equation 2.8 and its derivative permits the elimination of the sinu-

soidal term; in effect,

x2 +
�
βxx

′ + αxx
�2

= βxA
2 2.17
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at any point z around the ring. The area of the ellipse in Figure 2.5 is πA2 and is

termed the emittance ε. Using this definition, Equation 2.17 can be simplified to:

ε

π
= γx2 + 2αxx′ + βx′2 .

So far, this discussion has only analyzed one particle. However, the same

derivations can be applied to a bunch incorporating a large number of particles; in

this case, each particle travels around its own ellipse similar to Figure 2.5. Since the

orientation and aspect ratio are determined by the beta function and its derivative,

each particle will trace out concentric but identically shaped ellipses. Assuming

the bunch is well-collimated, whichever particle traces the largest ellipse defines the

total size of the entire bunch, and the emittance of that bunch is simply the area

of that ellipse. The beam radius r at a specific location is defined to be the largest

transverse position that this particle can ever take. Figure 2.5 indicates that this is

rx � Ax

p
βx =

p
εxβx/π in the horizontal plane and similarly for ry in the vertical

plane.

For the Tevatron and most synchrotrons, the particle distribution is not nearly

as well-defined as the previous paragraph purports. Due to diffusion and randomized

processes, any bunch will, over time, develop a Gaussian profile[32]. The distribution

can be modeled with a density function

n(x) =
Np
2π σx

e−x2/2σ2
x ,

assuming N is the total number of particles and σx is defined as the rms beam size.

Since there is no definite “maximum amplitude,” the beam emittance needs to be

defined at some specific radius so that its ellipse circumscribes a large portion of the

beam.
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In general, the emittance can be defined according to:

εx = �2πσ2
x

βx
ln(1� f) ,

where f is the fraction of particles inside the designated ellipse. Physicists involved

in hadron colliders habitually set f to the 95% level[6], so that the definition of

emittance becomes:

εx � 6πσ2
x

βx
. 2.18

The emittance, under the conditions described so far, is a constant of motion for

the bunch. However, when the Tevatron is ramped from injection energy (150 GeV)

to its normal colliding level (978GeV), the emittance changes significantly. The-

oretically, this is because the two axes in Figure 2.5, x and x′, are not conjugate

variables. Instead, a quantity known as the normalized emittance εN is defined in

terms of the area of the traced ellipse in this space. More specifically, εN is defined

as:

εN
x � 1

mp̄c

I
ellipse

dpx dx = γp̄βp̄

I
ellipse

dx′ dx = γp̄βp̄εx

for antiprotons, where γp̄ and βp̄ are the relativistic factors. The unnormalized and

normalized emittances have units identical to the units of [x �x′]: since x′ represents

an angle, the units for emittance are length times angle. In addition, the constant π

is often preserved to better separate each contributor to the total area. As an

example, Table 2.2 lists the typical normalized antiproton emittance as 12π mm-

mrad. Subsequent chapters in this dissertation use the 95% normalized emittance

exclusively.
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2.3 The real world: imperfections

The discussion thus far has analyzed an idyllic situation. Deflecting the par-

ticles through either bending dipoles or focusing quadrupoles is grounded in Equa-

tion 2.1, which simply gives the angle of deflection in terms of the particle’s mo-

mentum pz and an ideal magnetic field B. In reality, both of these quantities have

errors which need to be understood and compensated for successful bunch propaga-

tion. Off-momentum particles will be deflected differently than particles with the

design energy. Magnets can be constructed with intrinsically nonideal field patterns,

and they can be incorrectly positioned or rotated.

2.3.1 Effects of off-momentum particles

Longitudinal dynamics plays a crucial role in all accelerators (even the name ac-

celerator refers to longitudinal action), but is not the main thrust of this dissertation.

However, some of the consequences push themselves onto the TEL’s performance,

and therefore it is important to understand particle behavior in this dimension. The

following discussion highlights relevant results, while more complete analyses can be

found in many other sources[6,33,32].

Injection, acceleration, and collisions depend on a series of large copper cavities

stationed along the Tevatron beamline. These RF cavities resonate at 53.1 MHz,

and an intricate feedback system adjusts the phase and amplitude of this sinusoid

in order to maintain the bunches and perform various functions. The excited mode

of the cavity includes an on-axis electric field; it is this field that accelerates the

bunches. Often compared to a surfer riding ahead of the crest of an ocean wave, the

antiproton and proton bunches gain momentum as they traverse the cavities.
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During acceleration, the amplitude and phase of the cavities are adjusted to

transfer a large amount of forward momentum per passage. During collisions, how-

ever, the bunches pass through at a time when the electric field is nearly zero. Each

turn, a noticeable percentage of kinetic energy is lost through several mechanisms

(in the Tevatron, up to 50 keV is spent by a process called beam loading of the cavi-

ties[32,38], another 100 eV goes into wake fields around the ring, and a final 10 eV is

lost to synchrotron radiation[3]). Therefore, the cavities must be phased such that

the bunches regain the same energy that they lost on the previous turn.

However, another important feature of the sinusoidal electric field is the lon-

gitudinal focusing that it can provide. A particle with a nonideal energy behaves

differently through each magnetic element. For example, if a specific particle had a

higher energy than its peers, it would exhibit the following characteristics: a higher

speed, resulting in an early arrival at any position; a lower amount of bending

through the dipole magnets, resulting in a larger circumference to travel and a late

arrival; and lower focusing through the quadrupoles, resulting in a different tune.

The first two characteristics have opposite effects, and for low-energy machines,

the change in speed typically outweighs the change in path length, so high-energy

particles precede low-energy particles.

In accelerators where the particles are ultrarelativistic, the change in speed is

negligible. In these machines, low-energy particles arrive before high-energy ma-

chines. Many machines that accelerate particles pass through a transition point

where the ratio between the revolution period and momentum (known as the slip

factor, η) changes sign. The energy at which this occurs is called the transition

energy, and for the Tevatron, it is calculated to be 17.5GeV[45]. Since the Tevatron

ramps from 150 GeV to 980GeV, the Tevatron always operates above transition.
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A more severe impact on the revolution period in the Tevatron stems from the

change in quadrupole focusing on particle momentum. A particle with excessive

momentum does not get bent as much and therefore traces out a quicker path. The

amount of this effect depends on particle amplitude and lattice parameters, making

it complicated to quantify. However, it is the largest contributor to the connection

between an inherent momentum spread and a gradual elongation of the Tevatron

bunches[3]. Counteracting this effect is the sinusoidal behavior of the RF in the

cavities. The phase of the RF is adjusted such that the center of the bunch receives

enough kinetic energy to remain at 980GeV, but more energetic particles, arriving

early, gain slightly less energy, and less energetic particles gain slightly more. This

process constantly attempts to maintain the bunch’s energy spread and longitudinal

length.

Similar to the case of transverse motion, this undamped combination of dis-

placement and restoring force sets up longitudinal oscillitory behavior. The synchro-

tron tune, νs, is defined as the number of longitudinal oscillations per revolution,

but typically this number is much less than one. During collisions, the Tevatron’s

synchrotron tune is approximately 7.2� 10−4.

Particles with different energy levels trace out different paths. When they pass

through quadrupoles, they are not necessarily centered anymore, and therefore they

can receive a dipole kick in addition to focusing forces. The numerous bending and

focusing magnets around the Tevatron create a defined function of this transverse

deviation, known as the dispersion function, Dx(z), and is equal to δx0(z)/(δp/p0),

where δx0(z) is the amount of transverse offset for the closed orbit and δp/p0 is the

particle’s momentum difference divided by the design momentum. The dispersion
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function is another machine parameter (albeit related to the strength of focusing)

that is independent of the momentum spread of the injected bunches.

Because the central orbit for off-momentum particles can change, the appar-

ent beam radius σx can be larger than the formula given in Equation 2.18. The

transverse position of any particle can be separated into the portion related to its

betatron oscillations and the portion related to the orbit shift from its momentum.

In other words,

x(z) = xbetatron(z) +
δp

p0
Dx(z) , 2.19

and the rms beam radius is the quadrature sum of these terms, or[33]

σx(z) =

s
βx(z)εN

x

6πβp̄γp̄
+
�δp

p0
Dx(z)

�2
. 2.20

The dispersion at the collision points is designed to be zero, minimizing the bunch

radius. The radius then simplifies to:

σx,y(z) =

s
βx,y(z)εN

x,y

6πβp̄γp̄
. 2.21

The maximum horizontal dispersion around the Tevatron ring is approximately 6 m

and usually positive, and the vertical dispersion varies around �0.4m, since there

is no significant bending in the vertical plane[46] (the major source of vertical dis-

persion is through coupling , defined in the following discussion[3]).

Additionally, the dependence of bending with momentum suggests that the

focusing produced by each quadrupole is a function of momentum. Another param-

eter, named the chromaticity, relates a change in momentum to the consequential
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change in tune, or[6]

ξ � dν

δp/p0
= � 1

4π

I
turn

β(z)k(z)dz 2.22

in both transverse directions, where k(z) is the focusing strength used in Equa-

tion 2.7.

Without compensation, the negative natural chromaticity will induce a trans-

verse instability in the bunch[50]. Additional problems associated with a large tune

spread are analyzed in the next section, so limiting the chromaticity is advanta-

geous. In order to influence it, additional magnets known as sextupoles are added

to the lattice. These magnets have six poles and produce a magnetic field given by

Equation 2.3 when a3 or b3 are the only nonzero terms. The field strength varies

quadratically with transverse position. This is shown to lead to a focusing gradient

that is dependent on the transverse positiion of a passing bunch.

The magnetic vector potential given by Ψsex = b3r
3 sin 3φ generates a magnetic

field:

~Bsex = �rΨsex

= �r(b3r
3 sin 3φ)

= �r(3b3x
2y � b3x

3)

= �6bbxyx̂ + 3b3(y
2 � x2)ŷ ,

from which the force on a relativistic particle can be calculated similarly to Equa-

tion 2.4. The horizontal trajectory changes by an amount:

∆x′ =
3b3eLsex

pz
(x2 � y2) 2.23
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in the horizontal plane, and the associated focusing strength becomes

ksex =
1

cpz

dFx

dx
=

6b3e

pz
x .

The linear dependence of the focusing strength on position makes the sex-

tupoles uniquely useful. Placed in positions where the dispersion is high, they

can focus particles an amount dependent on the particles’ energies. For example,

particles with the correct energy are centered at x = 0, so that they receive no

additional focusing regardless of the strength of the magnetic field. Particles with

higher energy, however, pass through at larger horizontal positions, as expressed by

Equation 2.19. Without sextupole magnets, these particles would have had lower

tunes due to the lesser quadrupole focusing strengths contributing to Equation 2.22.

But by incorporating sextupole fields so that ksex > 0, these higher energy particles

end up receiving additional focusing. Likewise, lower-energy particles, otherwise

possessing a larger tune, pass through the sextupole at negative horizontal positions

and feel a defocusing force, which drives down their tune.

In this manner, the sextupole magnets help decrease the tune spread of the

protons and antiprotons in the Tevatron and are routinely used during stores[47].

However, Equation 2.23 shows the effect of introducing a nonlinear magnetic ele-

ment; the action in one transverse plane is now dependent on the position in the

other. Transverse kicks, dependent on sextupole settings, need to be included in the

closed orbit calculation. In fact, the original equation of motion must be modified

to include this nonlinear driving force. Equation 2.7 is rewritten as:

x′′(z) + kx(z)x(z) =
3b3e

pz

�
x2 � y2

�
Θ(z) and 2.24

y′′(z) + ky(z)y(z) = �6b3e

pz
xy Θ(z) ,
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where Θ(z) is unity for the longitudinal region of the sextupole in question. This

is the first example of the motion appearing as coupled harmonic motion, which

implies that coupled resonances are possible. A full analysis of resonant motion

requires a new section.

2.3.2 Resonant motion

The general vector potential for any magnet is given by Equation 2.3. Physical

magnets are never perfect, and their imperfections will result in small nonzero values

in each of the an and bn terms[48]. A magnet with a pole slightly out of alignment

can produce higher-order and lower-order multipoles in addition to the mode it

was designed to generate. Positioning a magnet off-center produces lower-order

multipoles as well. Rotating them induces coupling between the two planes. No

matter how carefully each magnetic element is manufactured and aligned, small

errors always exist, and therefore every accelerator will have unexpected magnetic

multipoles that can influence particle behavior.

Such motion can be hazardous due to the simple argument that the trans-

verse motion mimics an undamped harmonic oscillator. The horizontal motion, for

example, is

x′′(z) + kx(z)x(z) = gx(x, y, z) , 2.25

such that gx(x, y, z) is the horizontal driving force due to all of the nonlinear or

imperfect magnet fields. These are all fields not directly included in the closed orbit

or linear betatron oscillations, the motion of undriven particle behavior as described

in Section 2.2. In particular, the amplitude of the betatron oscillations can easily

54



increase without bound if the particle has a tune near specific resonant frequencies

associated with the driving function gx(x, y, z).

A full quantitative analysis of the resulting motion is well-documented in nu-

merous sources[6,32]. Typically, this includes a Floquet coordinate transformation

and a Hamiltonian rewriting of the equations of motion. This dissertation employs

a simpler Fourier analysis to justify resonant behavior. While less rigorous, this

straightforward approach provides an intuitive approach and yields the same quali-

tative results.

It is beneficial to first look at motion confined to one transverse direction. In

this case, any driving magnetic fields ∆B(x, z) can be written as an infinite sum

given by

∆B(x, z) =
∞X
i=0

ci(z)xi .

This general formula describes an arbitrary transverse field in terms of the orthogo-

nal functions xi, and it is expected that no ci(z) is identically zero for all z. In this

case, the driving function becomes

g(x, z) =
e

pz

∞X
i=0

ci(z)xi . 2.26

Since each ci(z) repeats with period equal to the ring’s circumference, a Fourier

transform can separate it into its harmonic constituents. Defining θ � φ/νx, each

term in g(x, z) can be expanded via:

ci(z) =
∞X

k=0

di,k cos kθ , 2.27
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where k can be any nonnegative integer and di,k is a constant. For example, the

c0 term contains terms oscillating at all harmonics kθ of the revolution frequency.

However, the assumption by Equation 2.14 is that the particle oscillates with a

frequency φ. Resonant behavior appears if the natural frequency is equal to a

driving frequency. Therefore trouble occurs if φ = kθ = kφ/νx, or νx = k. Setting

the tune to any integer value will allow amplitude growth through resonant driving.

The next term in Equation 2.26 is c1x (ignoring the constant e/pz). Substitut-

ing the general solution to particle motion, Equation 2.14, and expanding c1 through

Equation 2.27 produces terms proportional to cos kθ cosφ. These factors represent

two beating frequencies, so that c1x can be written as

c1(z)x(z) = A
p

β
∞X

k=0

�
di,k cos(kθ + φ) + di,k cos(kθ � φ)

�
.

Setting the second cosine term equal to that of the natural frequency yields φ =

kθ�φ, or νx = k/2. This says that setting the tune equal to any half integer allows

the particle to resonant with the driving function.

In general, the cmxm term can always be expanded via Equation 2.27 and will

produce a term proportional to cos kθ cosmφ. Trigonometric identities can again

expand this into separate beating frequencies, including kθ � mφ. Setting this

frequency equal to φ yields the general result that any rational tune, that is, any

tune that satisfies mνx = k for integers m > 0 and k � 0 has the potential to

resonate with terms in the driving force*.

So far, the discussion has only looked at driving functions in one dimension.

In reality, the particle can pass through the lattice at a different x and y position,

* The integer m is silently incremented in this result, and again in Equation 2.28. Here, visual
elegance eclipses irksome rigor.
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and therefore be subject to a driving force dependent on both directions. At first,

the analysis seems daunting, but following the previous technique, the driving force

can be expanded in both transverse dimensions, and individual Fourier frequencies

can again be set equal to the natural frequency to find resonance relations.

The general form for a driving function in both transverse planes can be written

as

g(x, y, z) =
e

pz

∞X
i=0

∞X
j=0

ci,j(z)xiyj .

Each individual cm,n(z) term can be written as a sum of harmonics mimicking Equa-

tion 2.27; each term within that series contains the oscillatory factors

cos kθx cosmφx cosnφy = cos(kθx �mφx � nφy) + cos(kθx �mφx + nφy) + � � �
for driving the particle in the horizontal plane, where θx = φx/νx and k, m, and n

are nonnegative integers. Setting the cosine argument equal to that of the particle’s

free motion reveals resonances that obey the relation:

mνx � nνy = k 2.28

and m 6= 0. This derivation is calculated for horizontal driving forces, but an

identical result can be generated for vertical oscillations, with n 6= 0. The sum p �
m + n is known as the order of the resonance.

Of course, for any rational horizontal and vertical tunes, there exists some

integers m, n and k such that Equation 2.28 is satisfied. It may therefore seem that

the ability to avoid resonances is infinitely impossible. However, the strength of the

driving function falls rapidly as the order p is increased. Typically, the Tevatron is
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run such that νx and νy avoid resonances of order p � 12. The specific tunes chosen,

called a working point, is often adjusted and optimized during many stores. Ideally,

the working point is just that: a point in tune space. Section 2.4 shows that the

realistic spread in tunes during collisions produces a large footprint, all of which is

moved around in order to avoid as many resonances as possible.

The modal analysis used in this discussion justifies the ability and propensity of

particles near certain tunes to begin resonant behavior, leading to particle losses and

emittance growth. However, a more rigorous approach can predict the width of each

resonant line and the amplitude of its oscillations. This treatment is reproduced in

numerous other sources[6,32,38]. One interesting consequence of that derivation is

that resonances such that both m and n are nonnegative, termed sum resonances,

can increase without bound. The others are called difference resonances and tend

to limit their amplitudes. The left side of Figure 2.6 draws all of the sum resonances

(plus the νx = νy line) through the fourth order. Numbers list the order of each

cluster of lines. As usual, the tune space refers to the fractional tune; the square

looks identical around the Tevatron working point.

The right side of Figure 2.6 is an expansion of a small region of tune space,

but with sum resonance lines through the twelfth order drawn. A nominal working

point for the Tevatron is shown, though it can be adjusted to find a region away

from strong resonances. Often some of the stronger difference resonances are shown,

though that is skipped here for simplicity. In practice, it is difficult to predict exactly

how strong each resonance line will be for a specific machine. Calculations from

lattice symmetries and tracking simulations combine to give reasonable estimates,

and, as always, experimental evidence has the final voice.

58



Figure 2.6. Tune plots depicting sum resonances. The left side covers the

entire tune landscape and shows resonance lines through the fourth order

(enumerated). The right side zooms in on a small section and includes

resonances through the twelfth order.

2.3.3 Focusing errors

The inclusion of unexpected fields implies that the observed tune of the machine

will not necessarily equal the targeted value. If there is a single quadrupole error in

an otherwise ideal lattice, the new revolution matrix would be

M ′
rev = Mrev

0
B@

1 0

� 1

f
1

1
CA , 2.29

where Mrev is the expected revolution matrix given by Equation 2.16. Assuming that

the additional gradient is small and does not excite resonant behavior, M ′
rev would

simply be a new revolution matrix of the same form as Equation 2.16, and each new
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Twiss parameter can be derived in terms of the old and the focal length f of the

magnet error.

In particular, the trace of both sides of Equation 2.29 yields

cos 2πν ′ = cos 2πν � β

2f
sin 2πν

in each transverse dimension, with the substitution ∆φrev = 2πν. The change in

tune can be defined through the substituion ν ′ = ν + ∆ν, and an expansion of the

left-hand side produces the linear relation

∆ν =
1

4π
� β
f

. 2.30

This relation pertains to any focusing or defocusing lens added to an already stable

lattice and applies to either transverse plane. Equation 2.30 is useful in both the

beam-beam interaction at the collision points and the TEL’s interaction region.

The linear result of Equation 2.30 implies that multiple focusing errors can

be summed together. Indeed, it can be shown that a distribution of small errors

generates the total tuneshift[32]

∆νtotal =
1

4π

X
k

βk

fk
, 2.31

where βk refers to the beta function at the location of the k-th focusing error and

in the relevant dimension.

This chapter has so far skirted the question of independently adjusting the

horizontal and vertical tunes during a store. Section 2.2 implies that the phase

advance through a FODO cell is nearly equal in both planes. This is true, due to

60



the equal focal lengths of both quadrupoles in each cell, and only the path-length

focusing of the dipoles can contribute differently to each dimension. A way around

the near symmetry is suggested by the beta-function dependence in Equation 2.31.

If the focusing magnet is increased in strength slightly, its focal length will decrease

by some amount ∆f . If the defocusing magnet is decreased in strength such that

its focal length is increased by the same ∆f , the tuneshifts due to both “errors” do

not cancel. The larger beta function at the focusing magnet means that the total

horizontal tuneshift will be slightly positive.

However, in the vertical plane, the roles of the quadrupoles are reversed, so

that the vertically focusing magnet is decreased in strength, lowering the tune. Since

this is where the vertical beta function is at its peak, the total vertical tuneshift is

slightly negative. Through subtle manipulation of the FODO lattice, it is possible

to independently change the horizontal and vertical tunes in any machine. For the

Tevatron, this process is utilized often during stores, and it has proved invaluable in

studying the effects of the TEL on the Tevatron operation, as explored in Chapter 6.

2.4 Beam-beam interactions

The discussion so far has been limited to linear motion and small higher-order

perturbations around that motion. Nonlinearities in the lattice can create resonance

lines, but they also change the tune of particles transversing them. The chromaticity

is an example of such a tuneshift dependent on each particle’s energy.

The spread of tunes due to lattice imperfections is generally very small (typi-

cally less than �0.001 in the Tevatron); however, the interaction between the proton
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and antiproton bunches at the two collision points, CDF and DØ, generates a strong

focusing force, altering the tunes of the bunches significantly (approximately +0.02).

In addition, the focusing force is strongly amplitude-dependent. This has the effect

of spreading the tunes between small-amplitude particles and large-amplitude par-

ticles within the same bunch.

As expressed in Table 2.2, the proton bunches have several times the number

of particles as the antiproton bunches. The force that the antiprotons feel directly

relates to the number of protons, while the force that the protons feel follows the

number of antiprotons. Due to the significantly larger number of protons, it is the

antiproton bunches that suffer the largest tuneshift and tune spread. If the total

footprint is small enough, then it is possible to move it to a working point region

away from any strong resonances. If the footprint is too large, then some antiprotons

will find themselves on or near perilous resonance lines.

2.4.1 Linear weak-strong beam-beam focusing

It is vital to understand the forces that antiprotons feel when they collide with

a proton bunch. This analysis is much simpler if the proton bunch is assumed

to be unaffected by the antiprotons — a reasonable assumption, since the number

of antiprotons is significantly less than that of the protons, and therefore so are

the associated fields. This assumption is called a weak-strong approximation, as

the protons are nearly impervious to the antiprotons. The forces acting on single

antiprotons are analyzed.
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The proton bunch typically exhibits an approximately Gaussian transverse

profile, so that its charge density is

ρp(r, z) =
λp(z)

2πσ2
r

e−r2/2σ2
r , 2.32

where σr is the rms bunch size at the interaction point and λp(z) is the longitudinal

linear charge density. The longitudinal bunch shape is typically Gaussian or more

complex, but it will prove irrelevant under the thin-lens approximation identical to

that employed in Section 2.2.

An antiproton passing through the proton bunch will witness a force given by:

~F = �e(~E + ~v � ~B) = �e(E + cB)r̂

for a round proton bunch. Since the bunch is long in its own rest frame, the electric

field is approximately radial, and Gauss’ law can be applied to Equation 2.32 to get

the electric field,

~Ep =
λp

2πε0r

�
1� e−r2/2σ2

r
�
r̂ ,

and the magnetic field likewise follows from Ampère’s law;

~Bp =
µ0cλp

2πr

�
1� e−r2/2σ2

r
�
φ̂ .

Paralleling the derivation of magnetic focusing elements in Section 2.2, the total

kick ∆r′ becomes

∆r′ =
∆pr

pz
= � e2Np

2πε0cpzr

�
1� e−r2/2σ2

r
�
, 2.33

where the additional factor of 1/2 stems from the fact that the test antiproton needs

only to travel half of the length of the proton bunch, since over the same time, the
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Figure 2.7. Plot of Equation 2.30, normalized to the proton bunch’s

rms bunch size σr and the maximum deflection angle. Two limits are also

drawn, the 1/r dependence at large separation and the linear dependence

near the center.

proton bunch has also passed by the antiproton (the fields, the geometry, and the

time are all measured in the laboratory’s frame of reference).

In Figure 2.7, the transverse deflection given in Equation 2.33 is plotted as a

function of the radial position of the incident antiproton. The vertical axis is scaled

to the maximum deflection, and the horizontal axis is scaled to the rms beam size σx

of the proton bunch. Antiprotons are expected to be focused by the proton bunch,

so the kick is negative for an antiproton passing at a positive horizontal position,

and the kick is positive for a negative horizontal position.

Two important limits should be noted in Equation 2.33. For large x, the

exponential is nearly zero and the kick follows a 1/x dependence. This imitates the

force a particle experiences due to a line charge. In Figure 2.7, a 1/x asymptotic

line is also drawn to illustrate the rate at which the two functions converge. If the

antiproton passes by the proton bunch at 3σx, the exponential term affects the kick

by only 1% from a simple 1/x dependence.
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The second limit is also shown in Figure 2.7. At small x, the exponential

term can be expanded, cancelling the constant and producing a linear relationship

between separation and deflection. In this case,

∆x′(x ! 0) = � e2Np

4πε0cpzσ2
x

x . 2.34

This line is drawn in Figure 2.7 and brings back memories of the linearly focusing

quadrupole defined in Equation 2.5. Therefore, small-amplitude antiprotons feel

a linear focusing force in both the horizontal and vertical planes at each collision

point, and the tune will be increased, according to Equation 2.30, by an amount

∆ν0 =
1

4π

β?

fIP
=

e2Npβ
?

16π2ε0cpzσ2
x

=
3RpNp

2εN
p

, 2.35

where Rp � e2/4πε0mpc
2 = 1.53 � 10−18 m is defined as the classical proton radius

and εN
p is the proton bunch’s normalized emittance, defined in Equation 2.18. It is

interesting to note that the final formula does not depend on the machine lattice at

all. A similar derivation for the tuneshift caused by an asymmetric proton bunch

(σx 6= σy) gives[51]:

∆ν0x,y =
RpNpβ

?

2πγp̄σx,y(σx + σy)

in each transverse dimension.

The last two equations correspond to antiprotons with betatron amplitudes

small enough to lie well within the linear approximation shown in Figure 2.7. A

specific machine will often refer to this tuneshift as the zero-amplitude tuneshift or

as the beam-beam parameter (usually with the letter ξ).
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2.4.2 Amplitude-dependent tuneshift

Equation 2.35 sets the maximum tuneshift an antiproton can feel due to its

interaction with a proton bunch. Core antiprotons are shifted by this amount, but

larger-amplitude particles will be shifted significantly less. Computation of the

average tuneshift for a particle with a specific amplitude has been performed in

other publications; only the final conclusions are reiterated in this discussion[52,53].

In general, an antiproton traces out an ellipse in phase space, as drawn in

Figure 2.5. By mapping normal phase-space coordinates to what are called action

variable coordinates, it is possible to find a convolution integral that predicts the

average tuneshift of the antiproton. This integral simplifies to

∆ν

∆ν0
=

2

πa

Z 2π

0

1

a2

�
1� e−(a2/2) cos2 φ

�
dφ ,

where ∆ν/∆ν0 is the ratio of the antiproton’s tuneshift to that of a zero-amplitude

antiproton and a is the antiproton’s amplitude normalized to the beam size of the

proton bunch (that is, a � Ap̄

p
βp̄/σp = Ap̄/εp using the general solution given by

Equation 2.14). Solving this integral employs the modified Bessel function I0 [54]:

∆ν

∆ν0
=

4

a2

�
1� I0

�a2

4

�
e−a2/4

�
. 2.36

Figure 2.8 plots this function, which is normalized to unity at a = 0. If the

betatron amplitude of the antiproton is nearly zero, then the tuneshift generated by

each collision point is equal to the maximum tuneshift calculated in Equation 2.35.

Another antiproton with a larger betatron amplitude undergoes a smaller tuneshift.

An antiproton with an amplitude equal to fize times the rms proton size, for example,

is only tune-shifted 13% of the maximum.
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Figure 2.8. Diagram illustrating the tuneshift experienced by antiprotons

with different betatron amplitudes. As a → 0, the tuneshift approaches

the zero-amplitude shift of Equation 2.35. The horizontal axis is scaled to

the rms proton bunch radius σp.

Particularly interesting is the fact that a large portion of the antiprotons are

smeared in tune space. Using parameters listed in Table 2.2, the antiproton bunch

radius is about 20% less than that the proton bunch, so 68 % of the antiprotons’

tunes are shifted at least 80 % of the maximum tuneshift. This leaves the other

32%, still a large percentage, at tunes less than 80% of the maximum.

During normal Tevatron operation, the maximum tuneshift can be calculated

from Equation 2.35. The antiprotons typically experience a +0.010 maximum tune-

shift per interaction point, or +0.020 total in each transverse dimension. The proton

bunches are also affected by the antiprotons, and their tunes get increased also. How-

ever, due to the much smaller number of antiprotons, the protons are shifted about

five times less, which means that they reside around a different tune region. The

total footprint, as it would be drawn into Figure 2.6, must include both species, and

is dramatically enlarged by these head-on interactions. A discussion of mitigating

this large footprint launches the next chapter.
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Chapter 3:

Requirements for

tuneshift compensation

Things should be made as simple as possible — but no simpler.

–Albert Einstein

The last chapter is an overview of standard accelerator physics, including the

linear tuneshift of the colliding proton and antiproton bunches. However, Section 2.4

outlined the complications of beam-beam interactions: at the interaction points, the

betatron tunes of outlying particles are shifted significantly less than that of the core

particles, and, away from the interaction points, long-range fields cause additional

tuneshifts unique for each bunch.

The spread in tune within each bunch and the bunches’ differing tuneshifts

both create a major difficulty in finding a stable Tevatron working point. Fig-
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ure 3.1 simtevfootprint presents the antiproton tune footprint of a typical store,

which crosses a number of resonance lines. This large footprint can be moved to

different working points in order to minimize the emittance growth and particle

losses, and in fact this is commonly done during many Tevatron stores. However,

increasing the number of protons enlarges the antiproton-footprint size even more,

which renders the possibility of finding a decent working point nearly impossible.

This constraint on the available luminosity in any circular collider is referred to as

the beam-beam limit and has impeded the functionality of colliders for decades.
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Chapter 4:

Electron-beam production

and propagation

In all realms of life, it takes courage to stretch your limits,

express your power, and fulfill your potential.

–Suze Orman

The goal of Chapter 2 was to develop a generalized treatment of particle be-

havior in a collider, which provided a basis for many of the conclusions reached in

Chapter 3. Likewise, this chapter analyzes the motion of low-energy electron beams

immersed in solenoidal fields, as this theory is fundamental to an explanation of the

TEL mechanics.

This chapter is divided into three distinct parts. The first analyzes electron

guns and the generation of an electron beam in general. Then a description of how

a solenoidal field contains a charged electron beam is developed. Finally, the loss
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of kinetic energy for an electron beam passing through a beam pipe is quantified

in the last portion. Each phenomenon is handled analytically for a generic beam,

but direct connections to the TEL are made, elucidating some of the requirements

described in Chapter 5.

4.1 Generation of an electron beam

Throughout the past century, a number of fundamentally different techniques

for generating electron beams have been invented. Each style has its stength and

weaknesses, and early in the TEL program, a list of the necessary characteristics of

the TEL electron beam was compared to the various schemes. As Section 1.3 states,

the gun is expected to supply up to two amperes of current at roughly 10 keV of

energy.

As Chapter 3 details, the current needs to be adjustable, responsive, and repeat-

able, and the transverse current profile ought to be malleable. Additional factors

are also considered, such as very tight space requirements, high reliability, radiation

hardness, and, like every project, low cost. The best option for sustained large

currents at low energy levels is the well-understood thermionic emission gun[33].

Fortunately, this technology also fits best with all of the other preferences.

At its most unadulterated level, a thermionic gun is simply one very hot metal

surface which is negatively charged, the cathode, facing another surface which has a

hole in it, the anode. The apparatus sits in a solenoid field, and if the electric field

between the cathode and anode increased enough, electrons on the cathode surface

will stream off of it toward the anode. These electrons, however, become trapped by
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the solenoidal magnetic fields and are directed through the hole, where they proudly

become known as a beam.

In order to understand the general behavior of thermionic guns more diligently,

the principles behind cathode emission must first be explored.

4.1.1 Electrons from a hot cathode

The first step to understanding a thermionic electron gun is to describe how

electrons are expelled from the cathode surface. A simple model for describing the

bulk metal treats the conduction electrons as an electron gas obeying Fermi-Dirac

statistics. Since fermions are not permitted to fill already occupied states, a metal

at temperature T � 0K is at its lowest energy, filling each state with an electron

until the supply of electrons is exhausted. The highest occupied state in a cold

metal defines the Fermi energy level EF. At a nonzero temperature, the likelihood

that a state at energy E is filled is given by the Fermi-Dirac distribution:

P (E) =
1

e(E−EF)/kBT + 1
, 4.1

where kB = 8.617 � 10−5 eV/deg is Boltzmann’s constant. Figure 4.1 plots this

distribution for several temperatures. It is interesting to note that at room tem-

perature, the probability distribution deviates only slightly from the distribution at

zero temperature. However, a temperature of above 1000 K increases the number of

occupied higher-energy states. The TEL’s cathode is thus understandably heated to

between 1100 K and 1200K[40].

Each atom in a macroscopic piece of metal can be thought of as an individual

quantum well with discrete energy levels. With infinite distance between each atom,
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Figure 4.1. Graph of Equation 3.2. The probability distribution of parti-

cles filling the lowest energy shells in a metal at absolute zero and at room

temperature are not very different. By the time the metal reaches 1000K

or above, however, a significant portion of the electrons are substantially

energized; even a small percentage of a macroscopic cathode will provide

a myriad of conduction electrons.

each well can be treated independently. However, bringing the atoms closer together

brings the wavefunctions together; there are redundant energy levels, and the ener-

gies for these levels begin to split. With a huge number of atoms, the degeneracy is

large enough to create a band of states instead of discrete levels.

This effect is illustrated in Figure 4.2. At large interspatial distances, each

atom acts like a distinct harmonic oscillator. Zero potential is set at the top of each

atom, so that free electrons have positive energy. When the atoms approach each

other, isolated states become connected and create a large degeneracy. This spreads

out the energy levels for the myriad of interconnected (conducting) states. Now the

higher-energy electrons can move freely about the metal, but are still trapped by the
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Figure 4.2. Cartoon showing how individual atoms, shown by separate

quantum wells, will create a material with a conduction band as the inter-

spatial distance decreases. Electrons in a warm metal will fill some of the

conduction band, but they require additional energy (the work function)

to escape the entire lattice.

surface of the material. This explains a major difference between the energy levels

in conductors and the overly simplified Fermi-Dirac distribution; however, within

the conduction band itself, Fermi-Dirac statistics apply, and it is valid to use this

theory to describe metal behavior.

Another important effect that is observed in Figure 4.2 is the fact that even

the most energetic electron requires a specific amount of energy gain before it can

escape from the conductor. This difference is called the work function and is a

property of each metal. The work function, typically between two and five eV,

depends in complicated ways on the lattice spacing, atomic size, and filled orbits.

The work function for several metals is pictured in Figure 4.3. Exposing different

crystal faces will somewhat alter this value, and providing a transition layer of a

different material can significantly change it. Section 5.2 discusses the choices made

in the TEL’s cathode.
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Figure 4.3. Correlation between lattice spacing and work function. Dif-

ferent elements will form different crystalline structures, and different faces

will yield different atomic planar densities; hence the lattice spacing is not

perfectly comparable. The alkali metals show a strong logarithmic con-

nection between spacing and the work function, as do the alkaline earth

metals. The transition metals tend to have similar behavior; most of them

huddle in the region around copper.

The goal of this discussion is to determine the number of electrons that will

escape the conductor’s surface at a given high temperature. Answering this requires

figuring out the number of electrons that reach a surface region A with high enough

momentum pz > pmin
z . Heisenberg’s uncertainty principle says that the smallest

volume that phase space can be divided is dτ = dx dy dz dpx dpy dpz = h3, where h is

Planck’s constant and only two electrons (of opposite spin) can occupy this region.

The Fermi-Dirac distribution is the most likely scenario of randomly distributing

fermions among the available cells, so that the number of electrons in a specific cell
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is

2 dτ

h3
� 1

e(E−EF)/kBT + 1
.

The Fermi energy is the boundary between filled and empty levels at low tempera-

tures and is given by

EF =

�
3

8π

�2
3 h2n

2
3

2me
,

where n is the density of free (conducting) electrons.

The number of electrons that reach the surface A during a time dt is in the

volume Adz = A (pz/me) dt. The current density J can therefore be written as

J =
2e

meh3

ZZZ ∞

pmin
z

pz

e(E−EF)/kBT + 1
dpz dpy dpx ,

where the energy E = (p2
x + p2

y + p2
z)/2me. It is important to note that the limit

pmin
z is the minimum momentum to escape the confines of the material; that is,

pmin
z =

p
2me(EF + W ).

Analyzing the integrand will elucidate certain features. The work function

of copper is 4.65 eV and its Fermi energy is 7.00 eV, so at room temperature

(T � 300 K) the exponent in the denominator for the lowest energy electrons, for

which E = EF + W , is about 180. In other words, the current density at this low

temperature is minuscule. As the temperature rises to above 1000 K, the exponent

decreases to about 27, allowing significantly more electrons to escape.

At temperatures significantly above absolute zero, the exponential term is much

larger than unity, leading to a useful simplification of the integrand (equivalently, the
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distribution at moderate temperatures appears Maxwellian). In this case, pulling

the constant term e(EF/kBT ) and evaluating gives

J =
2e

meh3
eEF/kBT

Z ∞

pmin
z

pze
−(p2

x+p2
y+p2

z)/2mekBT dpz dpy dpx ,

which can be separated and quickly processed:

J =
4πmeek

2
B

h3
T 2eEF/kBT e−(pmin

z )2/2mekBT .

Substituting pmin
z yields

J =
4πmeek

2
B

h3
T 2e−W/kBT . 4.2

Equation 4.2 is called the Richardson-Dushman equation, and illustrates the maxi-

mum available current density from any cathode surface. It does not mean, however,

that this many electrons will continually pour off of the conductor. In fact, as soon

as one electron does manage to escape, a net positive charge deepens the potential

well that the second electron must overcome.

If a strong electric field is applied between the hot cathode and a nearby an-

ode, all electrons overcoming the potential barrier will be pulled away, and the

current density will obey the Richardson-Dushman law. This situation is known

as temperature-limited flow and varies greatly with small changes in the cathode

temperature. In practice, controlling the temperature of a cathode is very difficult,

yet the current needs to be maintained to rather right tolerences (∆T/T � 0.1% for

the TEL, for example). Hence, temperature-limited emission is not a good regime

for the operation of most electron guns.
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4.1.2 Space-charge limited flow

However, at more moderate potential differences, a subset of electrons succeed

in being pulled to the anode and the rest are ”reflected” back into the conductor.

This can be understood quantitatively by realizing that in steady-state flow, the

current density J(z) must be a constant value throughout the region between the

cathode and anode. If this were not the case, excess charge would quickly build up

in one spot — obviously this situation could not continue forever.

In the planar electron gun, Poisson’s equation can be simplified to

d2V(z)

dz2
= � ρ

ε0
, 4.3

and the definition of current is given by

J = ρv = ρ

s
2eV(z)

me
. 4.4

Solving Equation 4.4 for ρ and inserting it into Equation 4.3 gives a straightforward

single-variable differential equation:

d2V(z)

dz2
=

J

ε0

r
me

2e
V(z)−1/2 .

Integrating this twice with appropriate boundary conditions and solving for current

density gives[55]

J =
4ε0

9

r
2e

me

V 3/2

d2
=
�
2.335� 10−6

� V 3/2

d2
, 4.5

where d is the separation between cathode and anode. If d is in centimeters, J will

be in amperes per square centimeter. The constant in the equation is called the

perveance and is a heavily discussed parameter in this thesis.
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Equation 4.5 describes the current flow in a planar diode gun as a function of

the applied voltage difference and the plate’s difference (note that for electrons, ρ is

negative and thus J points from anode to cathode, even though the beam is moving

away from the cathode — this assumption applies to the following discussions also).

When the voltage is turned high enough, the current begins to saturate at the

Richardson-Dushman limit. The mechanism that regulates the current flow below

this limit is the high space charge near the cathode surface; therefore this regime is

called space-charge-limited flow, and is the basis for a vast assortment of electron

and ion-based sources.

Other geometries of electron guns can be solved through the same approach. In

the cylindrical case, Poisson’s equation still reduces to a one-dimensional equation:

1

r

d

dr

�
r dV

dr

�
= � ρ

ε0
.

Solving the resulting differential equation requires a series expansion, and the final

equation requires use of an awkward series[55]:

β � u� 2u2

5
+

11u3

120
� � � � ,

where u � ln(ranode/rcathode). In this case, the current per unit length of the coaxial

gun is found to be

I

l
=
�
14.66� 10−6

� V 3/2

ranode β2
.

It should be noticed that β(u) starts at zero at u = 1, crosses β = 1 at around

ranode/rcathode = 11, reaches a maximum near ranode/rcathode = 40, and approaches

unity again. As long as ranode/rcathode > 7, then β is within 10% of unity.
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For spherical electrodes, a similar effect is found. Employing u from the previ-

ous paragraph, a function[55]

α � u� 0.3u2 + 0.075u3 � 0.00143u4 + 0.00216u5 � � � �
plugs into the total current from a spherical cathode:

I =
�
29.34� 10−6

� V 3/2

α2
.

Ignoring edge effects, the total current out of a cathode stretching over a portion of

a sphere is just the fraction represented by the area of the cathode over that of the

full sphere.

In fact, it can be shown through dimensional analysis that any geometry will

still provide a J � V 3/2 relationship. In general, Poisson’s equation is

r2V = � ρ

ε0
,

the current definition is

~J = ρ~v ,

and energy conservation maintains

1

2
mv2 = eV .

In the general case, the electron’s velocity will not necessarily move along the po-

tential gradient, so ~v and ~J must be vector quantities.

Let the potential be increased by some factor k. Then the space-charge den-

sity ρ will increase by k, and the velocity v will increase by k1/2. Hence, J will
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increase by k3/2, and all that remains is the constant of proportionality. The con-

stant is known as the perveance and is only dependent on the geometry of the

electron gun. Hence, the generalized relation is

I = PV 3/2 4.6

and is commonly called the Child-Langmuir law. The perveance P is usually ex-

pressed in units called pervs, where 1 perv � 1 ampere/volt3/2. A couple micropervs

are typical for fist-sized electron guns.

Obviously the above examples are useless for producing a beam that persists

past the anode. In order to create a beam, a hole is drilled in the anode and

the assembly is submerged in a solenoidal magnetic field. The latter directs the

electrons along the magnetic paths, following the theory of the next section, which

will often force the electrons to pass through the hole with kinetic energy equal to

the voltage difference between anode and cathode. Not only is the beam size (and

density profile) frozen by the magnetic field, but the anode shape can be chosen so

no electrons ever touch it. Adjusting or pulsing the anode voltage is much easier

when there is no current that is drawn from the electrode.

However, the hole size for most guns is typically big enough to significantly shift

the electric field lines such that analytic analysis of a given electron gun becomes

impractical or impossible. Computer simulations fill that void and allow adjusting

of electrodes’ positions and shapes in order to optimize the gun’s perveance, density

profile, etc. A discussion of the designs for the TEL electron guns is saved for

Section 5.1.
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4.2 Gyromotion in a solenoid

Once the electrons are off of the cathode, they are simply charged particles with

kinetic energy being pushed by various electromagnetic forces. Most electron guns

employ solenoids to “contain” the beam, which simply means that the magnetic

field is strong enough to prevent unwanted motion in transverse directions while

allowing the particles to move forward along the intended path.

The TEL utilizes solenoids from the electron gun all the way to the collector in

order to direct the electron beam. Additionally, each electron senses a strong radial

electric field due to the space charge of the other electrons around it. Together,

these forces define a complex equation of motion for the electrons.

4.2.1 General motion in a solenoid with space charge

The TEL possesses cylindrical symmetry, so it is convenient to write the the

generalized motion of a relativistic particle in cylindrical coordinates:

v = ṙr̂ + rθ̇θ̂ + βzcẑ .

In the case of antiprotons, βz � 1. The relevant fields are the logitundinal magnetic

field and the radial electric field:

Bsolenoid = Bẑ

Espace·charge = Er̂ , 4.7

and the relativistic equation of motion becomes

ṗ = γmv̇ = e(Espace·charge + v �Bsolenoid) .
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Breaking this vector equation into orthogonal components yields the coupled differ-

ential equations

�ωṙ = rθ̈ + ṙθ̇

r̈ =
E

B
ω + ωrθ̇ , 4.8

with ω defined as eB/γm. The time-derivative of the first can be equated to the

second, yielding the relation r̈̇ = ωṙ. This equation describes a simple harmonic

oscillator and can be solved by the general solution

r(t) = r0 + r1 cos (ωt + φr) .

A time t = 0 can be defined such that the particle is at the nominal beam

radius and traveling parallel to the z-axis, so that

r(t = 0) = re

ṙ(t = 0) = 0

.

These constraints yield the specific radial solution

r(t) = re +
γmE

eB2
(1� cosωt) . 4.9

If, over the length of the TEL, the time-dependent term in Equation 4.9 is similar in

magnitude to the original beam radius re, then the TEL would not act as a thin lens.

The effects would not be linear, and the tools of Chapter 2 would be worthless.

However, the parameters of the TEL are shown in the next section to obey

γmE

eB2
� re or cosωtmax � 1 , 4.10
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where tmax is the maximum amount of time that the antiprotons or electrons take to

traverse the length of the TEL. These limits imply that the radius is nearly constant

and facilitate a straightforward solution for the azimuthal motion. Equation 4.8 can

be simplified to

r̈ =
E

B
ω + ωreθ̇

giving a general solution for the azimuthal motion:

θ(t) = θ0 + θ1 sin(ωt + φθ) + Ωt .

If the coordinate axes are chosen so that θ(t = 0) = 0 and the radial motion is

defined by Equation 4.9, then the constants can be easily determined. The specific

motion is found to be

θ(t) =
γmE

eB2re
sinωt� E

Bre
t . 4.11

Equations 4.9 and 4.11 define the motion of a particle in the transverse plane as

it flies along the solenoidal field with momentum γmβc. These parametric equations,

illustrated in Figure 4.4, describe a cycloidal path slowly rotating around the beam

axis, which is closely related to the Cartesian equivalent of perpendicular uniform

electric and magnetic fields (indeed, that connection is enforced when Equation 4.10

is assumed; movement along r̂ is ignored, so the divergence of the electric field is

disregarded). This motion is in addition to the particle’s motion along the magnetic

field lines. Assuming the cycloidal motion is nonrelativistic, the amount of forward

momentum that is converted to transverse momentum is negligible (that is, p⊥ �
pz), and the forward momentum remains essentially unaffected.
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Figure 4.4. Motion of a particle in a solenoidal magnetic field and radial

electric field. This motion is found to be nonrelativistic and does not

affect movement along the longitudinal solenoidal field. The longitudinal

motion, however, increases the relativistic mass, which in turn influences

the cycloidal radius.

4.2.2 Combining electrons and antiprotons

The description of the fields in the previous section was oversimplified. In

reality, one antiproton immersed in the electron beam is witness to several fields:

the solenoidal magnetic field, the radial space charge of the electron beam, the radial

space charge of other antiprotons in its own bunch, and the azimuthal magnetic

field associated with the current of the electron beam. All of these fields, other

than the solenoid’s longitudinal field, produce a radial force on the antiproton. An

effective radial electric field can be defined to be the “sum” of these fields, where

the magnetic field acting on an ultrarelativistic antiproton becomes cBe. In this

manner, the electric field Espace·charge in Equation 4.7 evolves to an effective electric

field Eeff :

Espace·charge ! Eeff = (Ee + Ep̄ + cBe)r̂ . 4.12
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Each term in the effective electric field is easily calculated from Gauss’s law,

as was performed in Section 2.4. To ensure stable motion of the antiprotons and

electrons, the maximum value for each term can be calculated and summed, even

though all of them cannot be maximized simultaneously.

The electric field inside and outside a flat-profile electron beam of current

I = ρv(πr2
e) = ρβec(πr2

e) is given by:

Ee(r) =

8>>><
>>>:

�
I

2πε0βec

�
r

r2
e

for r < re ,

�
I

2πε0βec

�
1

r
for r > re ;

4.13

where re is the radius of the electron beam. The magnetic field associated with the

same electron beam is similar:

Be(r) =

8>>><
>>>:

�
µ0I

2π

�
r

r2
e

for r < re ,

�
µ0I

2π

�
1

r
for r > re .

4.14

Of course, these formulas are largest at r = re. For a nominal electron beam in the

TEL, I = 2A, re = 1.6 mm, and βe = 0.2; at these parameters, the peak electric field

is Ee(r = re) = 500 kV/m and the peak magnetic field is Be(r = re) = 3.33�10−4 T.

The electric field produced by the antiproton bunch is readily deduced from

Section 2.3; for a Gaussian bunch,

Ep̄ =
eNp̄

2πε0σzσx
,
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where σx and σz are the transverse and longitudinal beam size of the antiproton

bunch. In this case, the electric field for a bunch with 3 � 1010 particles is Ep̄ =

144 kV/m.

For a worst-case scenario, Equation 4.12 can be calculated using these values.

Any antiproton traveling through the TEL will witness less than

Eeff < 500 kV/m + 144 kV/m + c
�
3.33� 10−4 T

�
= 744 kV/m .

Using this effective electric field and the nominal 3.5T solenoid magnetic field, the

angular frequency is ωp̄ = 3.15 � 105, over the two-meter length of the TEL, the

antiprotons rotate merely 2.10mrad. Even though the radius of curvature is large

(γmE/eB2 = 0.2 m), the requirement stated in Equation 4.10 is met.

In this situation, the oscillating terms in Equations 4.9 and 4.11 can be sim-

plified. Substituting 1 � cosωt � (ωt)2/2 and sinωt � ωt generates very accurate

equations of motion for the antiprotons:

rp̄(t) = r0 +
eEeff

2γm
t2 4.15

θp̄(t) =
γmEeff

eB2rp̄
(ωt)� Eeff

Brp̄
t = 0 .

It is apparent that the azimuthal motion of the antiprotons through the TEL is neg-

ligibly small, and that the radial motion mirrors the quadratic motion of a particle

traveling through an electric field.

For the nominal 3.5-T magnetic field, the solenoid has inconsequential impact

on the antiproton motion. It is therefore expected that without the electron beam,

the operation of the solenoid has little impact on the parameters of the Tevatron.
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Section 6.1 measures these parameters while switching on and off the solenoid and

confirms this prediction.

——

The electrons interact with a similar effective electric field as the antiprotons

do. In this case, the effective field is

Espace·charge ! Eeff = (Ee + Ep̄ + βecBp̄)r̂ .

The worst-case scenario for the first two terms has already been computed, and the

magnetic field induced by the passage of the antiproton bunch is given by

Bp̄(t) =
µ0I(t)

2πr
,

where the current depends on the longitudinal profile of the bunch. It is possible

to assume a Gaussian (or other) longitudinal profile, calculate the time-dependent

current, and integrate over the length of the bunch to find the total effect of the

antiproton bunch; a simpler and more general solution relies on the fact that an

electron sees Np̄ antiprotons during its passage down the TEL. Hence the average

Bp̄

�
can be calculated immediately:



Bp̄

�
=

µ0hIi
2πr

=
µ0ceNp̄

2πrL
.

For the same conditions as previously stated, an electron at a radius re = 1.2mm

feels a magnetic field of 1.2 G and, thus, a total effective electric field of 651 kV/m.

The electrons have an angular motion of ω = 6.03�1011 rad/sec, implying that

they make nearly 3300 full revolutions along the length of the TEL. However, the ra-

dius of this motion is 0.31µm, which is much smaller than re. Because Equation 4.10

is valid, the equations of motion are still applicable.
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4.2.3 Gun and collector solenoids

After a suitable field strength has been chosen for the main solenoid, the

strengths of the gun and collector solenoids must be determined. Section 4.1 de-

rives the maximum density of electrons that a thermionic cathode can deliver; in

general, typical oxide-coated cathode can produce a maximum current density of

about 10A/cm2 [13]. For linear tuneshift compensation, Section 3.2 indicates a

beam with current 2.0A and radius 1.6mm suffices. Unfortunately, the correspond-

ing current density is 25 A/cm2, which is significantly larger than oxide cathodes

can reliably deliver.

In order to solve this problem, the gun is immersed in a weaker solenoid field

than that of the main solenoid. The gun solenoid is typically operated at approxi-

mately 3.8 kG and is situated at a right angle to the main solenoid. The lower field

is advantageous because the magnetic field lines that pass through both solenoids

are close together in the main solenoid but more spread out in the gun solenoid.

The electrons follow the gyro-orbits defined in Equations 4.9 and 4.11, which

means that, other than the azimuthal precession around the beam, each electron

circles a specific field line. By means of magnetic compression, the density of the

electron beam at the cathode can be decreased while maintaining the strong space-

charge density inside the main solenoid. As long as the field lines themselves pass

through both magnets and the electrons’ energy is high enough to overcome the

potential energy of compression, the beam will continue from one solenoid to the

next.
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The density of field lines is just a description of the strength of the solenoid.

Therefore, the area of the beam scales inversely with the magnetic field strength:

Bmain

Bgun
=

Agun

Amain
=

r2
gun

r2
main

.

The gun solenoid, in practice, operates at about 3.8 kG, which increases the elec-

tron-beam radius at the cathode to 4.9mm and decreases the current density to

3.4 A/cm2, well below the limit of oxide cathodes. In addition, the weaker field allows

the gun solenoid to be constructed from copper wires, eliminating the complications

involved in superconducting magnets.

The electron beam is collected after being bent back out of the Tevatron beam

pipe. Another solenoid is needed at this end to steer the field lines, and thus the

beam, into the collector. Section 5.3 discusses the collector more completely, but a

normal-conducting solenoid almost identical to the gun solenoid is used.

It is important to reanalyze the electron-beam behavior in the gun and collector

solenoids to ensure their feasibility. In this situation, Equations 4.9 and 4.11 are

still valid, and only the self-induced radial electric field contributes to the effective

electric field Eeff . No antiproton bunches are nearby to exert electric or magnetic

forces. The maximum radial electric field inside the gun solenoid is 163 kV/m at r =

rgun. With this electric field and a solenoidal strength of 3.8 kG, the gyrofrequency

is ωgun = 6.55 � 1010 rad/sec and the gyroradius is rgun = 6.552µm. The electrons

spiral many times within the gun solenoid, but the radius is less than 1 % of the

beam radius, so the overall beam shape is unaffected.

The bends themselves are more difficult, for several reasons. First, the field

strength depends on the fringe fields of the two solenoids, which is much more
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difficult to calculate than inside a solenoid with known parameters. Second, the

field is not cylindrically symmetric, making analytic computations of the field lines

much more challenging. Also, the fringe fields of a solenoid depend strongly on the

amount and position of any ferrous material near the exits of the solenoids. Each

of the solenoids use ferrous material to help confine and smooth the magnetic field,

so a small change in their parameters (for example, the ferrous material is slightly

thicker or its permeability µ is slightly different) can significantly impact the trace

of the field lines. Related to this, any ferromagnetic material in the vicinity of the

bends will change the trajectories significantly, and may even spell disaster for the

electron beam.

Simulations of the bends were performed to confirm that the field lines between

the two solenoids connect and that the electron beam can successfully pass from one

magnet to the next[80,82]. Figure 4.5 illustrates the results of one such simulation.

The region of the bend between the main solenoid and the collector solenoid is

shown. The horizontal dotted line represents the axis of the main solenoid, and the

vertical dotted line represents the axis of the collector solenoid. The small vertical

line illustrates where the main solenoid ends; its length extends to the left.

The three black curves trace three field lines: one in the center of the main

solenoid, and the other two are at a horizontal displacement of �5 mm, which pur-

posefully maps out a width larger than the electron beam. These three lines spread

out and then recombine as they enter the collector solenoid. Without any adjust-

ments of the magnetic field, the lines enter the collector solenoid displaced about

4 cm from the axis of the solenoid. Section 5.1 describes the correcting dipole mag-

nets within the main solenoid in greater detail, but these magnets have the ability

to offset the electron beam through the length of the main solenoid or upon the
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Figure 4.5. Field lines bending from the main solenoid (upper-left shaded

region) to the collector solenoid (lower-right region with axis). During

these tests, the main solenoid was set to 65 kG and the collector solenoid

was 4 kG. The shaded lines miss the axis of the collector, but 4 kG in the

downstream corrector brings these lines to the black, centered ones. A

theoretical curve (dashed line) is also included.

beam’s exit. By adjusting these correcting magnets, the offset can be elimintated.

The three shaded lines in the right drawing assume 0.4T is set in the last correcting

magnet. The use of this small perterbation successfully brings the field lines to the

center of the collector solenoid.

In the right drawing of Figure 4.5, the dashed line is a fourth line starting at a

horizontal position of �5.1mm but without the final corrector’s help. This field line

reaches the axis of the collector solenoid, indicating that a slight displacement in the

main solenoid results in a strong displacement in the collector. It was anticipated

in Section 3.3 that the electron beam would need significant steering in order to

encompass the antiproton bunches. Figure 4.5 verifies that by adjusting the final

correctors, the electron beam can easily be steered into the collector.

92



4.3 Longitudinal Dynamics

The magnetic subsystem has specific requirements outlined in the preceding

section. However, the electron beam also depends on several electrical premises as

well. The two most important voltages affecting the performance of the TEL is

the cathode-to-ground voltage Vcat and the anode-to-cathode voltage Vanode. The

former establishes the energy of the electron beam traveling through the TEL, and

the latter is pulsed to produce the desired amount of current from the cathode. The

current pulse or waveform that is shown in Figure 3.3 is produced by a similar voltage

waveform applied to the anode. In general, tuneshift compensation desires a specific

maximum current, so the electrical requirements are steered toward providing that

level.

There are two constraints on the cathode voltage. The first is that the beam

needs significant energy to overcome its space-charge potential; the second is that

the beam needs to move fast enough to “clear out” of the Tevatron beam pipe

between bunches. The anode voltage needs to be large enough to generate the

current required for tuneshift compensation, and it should be adjustable for each

bunch in the train repetitively.

4.3.1 Overcoming the space-charge potential

It is tempting to think that the anode accelerates the electrons from the cath-

ode, and, having gained this kinetic energy, they happily travel down the pipe

without regard to the beam pipe. However, the same electric field that accelerates

the electrons from the cathode toward the anode also pulls back on the electrons,

possibly even decelerating them, when the electrons exit the anode region.
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Figure 4.6. Sketch of the potential energy that an electron beam passes

through. Electrons, being negatively charged, see a negative voltage as

positive potential energy, so a region of higher energy corresponds to a

more negative voltage.

Energy is conserved, and the electrons’ initial potential energy while on the

cathode is the kinetic energy that they have on their journey through the TEL. The

anode voltage generates the current pulse, but it is the voltage on the cathode with

respect to ground that defines the kinetic energy of the beam. In Figure 4.6, a

cartoon describes the potential energy of the different regions through which the

beam passes. The inital hurdle of overcoming the work function at the cathode

surface is described in Section 4.2, but afterwards the beam gains significant kinetic

energy while traveling through the anode tube. After it leaves the anode, it passes

along the grounded beam pipe, and its kinetic energy is defined by the cathode’s

voltage.

An undiscussed complication is the space-charge potential that particles within

the electron beam sense. Bringing the electrons together (first at the cathode and

again near the main solenoid) requires work; the kinetic energy of the individual

particles is reduced to provide this potential energy.

A näıve but approximately correct approach to solving for the space-charge
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Figure 4.7. Plot of Equation 3.14 assuming Ie = 2A, βe = 0.2, rpipe =

35 mm, and re = 1.6 mm. At r = rpipe, the potential equals zero, and

creates a negative well inside the pipe. This function assumes that the

particles are traveling at the same speed.

potential Vs-c(r) within the beam is to derive it from the electric field inside and

outside the beam as expressed in Equation 4.13. Solving for Vs-c(r) = � R rpipe

r
E(r)dr

in this case, where rpipe is the radius of the beam pipe, yields the potential within

the beam. Setting Vs-c(rpipe) = 0 gives

Vs-c(r) =

8>>><
>>>:
� I

4πε0βec

�
1 + 2 ln

rpipe

re
� � r

re

�2�
for 0 � r � re ;

� I

2πε0βec
ln

rpipe

r
for re < r � rpipe .

4.16

This solution indicates a quadratic relation between the potential and radial position

within the beam and a logarithmic relation outside. At the grounded pipe wall, the

potential is zero. This curve is plotted in Figure 4.7 using typical TEL parameters,

including a relativistic beta βe of 0.2, which corresponds to 10 keV of kinetic energy.

Several important conclusions can be drawn from Equation 4.16. The space-

charge potential for the entire beam is a significant portion of the total kinetic energy.
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For example, in Figure 4.7, the beam’s potential energy is 1.85 keV at r = re and

2.15 keV at the center. Both of these values are a significant portion of the beam’s

total energy, 10 keV, which implies that the actual kinetic energy, and therefore the

speed, is lower than orginally assumed.

Second, the center of the beam requires 300 eV more potential energy than

the edge, so the center of the electron beam is moving somewhat slower than the

edges. This creates a larger charge density in the center, affecting the linearity

of the electric fields. It also means that the center of the beam requires a larger

cathode voltage to propogate than the edge; if the cathode voltage is set too low,

the outside of the beam will pass through the TEL with less in the center. Beam

profile measurements at low cathode voltages are displayed in Section 5.2. These

profiles indeed have decreased charge densities in the center.

Assuming that a uniform current density leaves the cathode and all of the

electrons are able to travel the length of the TEL, the current density will remain

constant throughout the beam. If the central portion of the beam is traveling slower,

however, then the charge density will be enhanced, requiring more potential energy

for the central electrons. This increase in the charge density is not accounted for in

the simple analysis of Equation 4.16. Instead, the difference in potential between

the center and the edge of the electron beam is expected to be larger than predicted

by Equation 4.16. At low or medium currents, the error is negligible, but if the

current reaches a level such that the space-charge potential is a large fraction of the

cathode voltage, the discrepancy becomes severe.

96



4.3.2 Beam-pipe acceptance

The circular relationship between the charge density and the potential can be

analyzed more rigorously through Poisson’s equation, r2Vs-c(r) = �ρ(r)/ε0. The

radially dependent charge density is ρ(r) = J/v(r), where the current density J is

independent of radius and the particle velocity v(r) is tied to the kinetic energy,

eVcat � eVs-c(r). Using cylindrical symmetry, Poisson’s equation is reduced to the

one-dimensional differential equation:

1

r

d

dr

�
r
dVs-c(r)

dr

�
= � J

ε0

s
γm

2e
�
Vcat � Vs-c(r)

� . 4.17

This differential equation cannot be solved analytically, but a limit can be

found on the amount of sustainable current before the space-charge potential of

the beam center is too large to allow the current to continue[85,86]. This limit is

defined by the maximum potential at the beam center, V max
s-c (r=0), and is equal to

the cathode voltage Vcat in the simplified analysis of Equation 4.16. Any realistic

beam radius is less than the beam-pipe radius, for which a converging series solution

is found to be

V max
s-c (r=0) =

2

3

 
1 +

1 + 6 ln rpipe/re

4
�
1 + 2 ln rpipe/re

�2 + � � �!Vcat . 4.18

The truncation of the series to the first two terms yields an error of less than 5 %

when re ! rpipe and less than 0.02 % for the TEL’s beam ratio, re/rpipe = 0.0457.

This function is plotted in Figure 4.8.

As expected, the energy provided by the cathode cannot be completely con-

verted into space-charge energy as Equation 4.16 hoped. For a large beam that

97



Figure 4.8. Plot of V max
s-c /Vcat as a function of re/rpipe for the maximum

current, as given in Equation 3.16. Large beams allows current such that

the potential is over 80 % of the cathode voltage, but a very small beam

only permits 2/3 of the total energy to be converted. The electron-beam

radius in the TEL is 0.0457 of the pipe radius and is indicated by the

vertical dashed line.

fills the entire pipe, re ! rpipe and V max
s-c (r = 0) approaches 0.833Vcat. Stating this

slightly differently, the cathode voltage needs to be at least 1.2 times the anticipated

center potential voltage to push all of the current through the beam pipe.

As the beam radius shrinks, V max
s-c /Vcat also decreases and approaches the

limit 2/3. This limit can be seen in Figure 4.8, where the horizontal dashed line

is only reached if re � rpipe. If the space-charge potential is expected to reach a

certain value, the cathode needs to be set at least 1.5 times larger.

The TEL’s beam-to-pipe ratio of 0.0457 is shown by the vertical dashed line. At

this level, V max
s-c (r=0) = 0.753�Vcat. In order to force all of the electron beam through

the main solenoid, the cathode voltage must be at least 4/3 times larger than than

the maximum space-charge potential. If the magnitude of the cathode voltage is

less than this value, the center of the beam gives up all of its kinetic energy into the

potential associated with space-charge, and some of the current is not permitted to
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pass into the main solenoid. Instead, the electrons create a traffic jam upstream,

distorting and decreasing the electric field near the gun cathode. Fewer electrons are

pulled from the center of the gun, and a new steady state is reached with a smaller

current density in the center of the beam as on the edge. Section 4.2 presents

observations of beam profiles with a significantly reduced center.

Equation 4.18 calculates the potential of the beam center at the maximum

current for a specific beam radius. The anode is pulsed at different levels, providing

current not necessarily equal to the maximum possible. An approximate solution to

Equation 4.17 is found iteratively[85] and can be expressed as

Ie = πε0

r
2e

γm
K

�
1� Vs-c(0)

Vcat

�3/2

V
3/2
cat , 4.19

where Ie is the total beam current and K is defined by the following:

K � Ax
�
1 + Bx + Cx2 + � � �� , with 4.20

x � Vs-c(0)/Vcat

1� Vs-c(0)/Vcat
,

A � 4

1 + 2 ln(rpipe/re)
,

B � 1 + 4 ln(rpipe/re)

8
�
1 + 2 ln(rpipe/re)

�2 , and

C � �
1 + 4 ln(rpipe/re)

�2
32
�
1 + 2 ln(rpipe/re)

�4 � 7
�
1 + 6 ln(rpipe/re)

�
144
�
1 + 2 ln(rpipe/re)

�3 .

This solution gives the total beam current as a function of both the beam size and

the space-charge potential at the center of the beam. In Figure 4.9, several example

curves are drawn, each representing a different beam size.

99



Figure 4.9. Approximation of the electron-beam current depending on

the space-charge potential at the center of a 10-kV beam. Nearly 30 A

of current can flow if the beam fills the entire beam pipe; in the TEL,

re/rpipe = 0.0457, and only 3.75A can be admitted.

In the limit that the beam fills the entire beam pipe, re/rpipe = 1, nearly thirty

amperes of current can be sustained. In the TEL, the radii ratio is 0.0457, and

only 3.75A is allowed. Figure 4.9 plots the total current, though dividing by the

cross-section area of the beam would instead indicate the current density. In this

case, the maximum current density of the TEL’s electron beam is sixty times the

density of the pipe-filling electron beam.

In Equation 4.20, the abbreviation of K after three terms gives a solution with

an error of much less than one percent for TEL operating conditions. However, the

error for large beam radii and large space-charge potentials increases to as much as

three percent. This error reshapes the highest curve in Figure 4.9 and pushes the

maximum to a position where V max
s-c /Vcat = 0.833 — in agreement with the results

shown in Figure 4.8. The beam radius of the TEL is only slightly adjustable, so the

lack of precision in Equation 4.20 is immaterial to the understanding of the TEL.
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Figure 4.10. Beam-pipe acceptance for different sized electron beams.

As the cathode voltage is increased (negatively), the beam pipe permits

more current to pass through, following Equation 3.19.

Equation 4.19 indicates a complicated relationship between the cathode volt-

age Vcat and the beam current Ie. However, for a specific beam radius, Equation 4.18

provides a fixed value for the ratio V max
s-c (0)/Vcat for the maximum current. Insert-

ing Equation 4.18 into Equation 4.19 gives a simple power relationship between the

maximum allowed current and the cathode voltage for a specific beam radius. In

Figure 4.10, three curves are shown, each with a slightly different TEL beam radius.

For a radius of 1.6mm, the maximum current that the pipe will accept is given by

the simple equation,

Imax
e = (3.75µP)V

3/2
cat , 4.21

where the derived numerical constant 3.75µP is known as the acceptance of the

beam pipe and has the same units as the perveance defined in Section 4.2; that

is, 1µP � 10−6 A/V3/2. The interpretation is essentially the same, too: given a

particular voltage potential of the beam, a specific amount of current is allowed to

flow.
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If the electron-beam radius is increased to 2.0 mm, the acceptance rises to

4.01µP. However, the current density decreases to 68 % of the original beam, severely

limiting the radial electric field and thus the tuneshift. Reducing the beam size

lowers the acceptance to 3.45µP, but the current density is 63% larger than that

of the 1.6-mm-radius beam. As Section 3.2 describes, a small-radius electron beam

has more difficulty surrounding an entire antiproton bunch, though such a beam

will have a stronger effect on the bunch due to its increased space-charge field.

4.3.3 Electron-beam speed

Incorporating the preceding section’s description of the space-charge potential

into the electron-beam motion is relatively straightforward. An initial, but inac-

curate, assumption is that the cathode voltage directly transforms into the beam’s

kinetic energy, yielding a relativistic velocity given by βe =
p

2eVcat/γemec2. In-

stead, the kinetic energy is eVcat � eVs-c(r) and depends on the current and beam

radius in addition to the cathode voltage. The general solution for βe(r) is therefore

βe(r) =

s
2e

γe(r)mc2

�
Vcat � Vs-c(r)

�
. 4.22

For a beam of given radius, Equation 4.19 determines the space-charge potential

as a function of current. Since the relativistic factor γe(r) depends on the electron

speed, a numerical solution can be found through the simplification:

βe(0) =

s
2e

γe(0)mc2

�
Vcat � Vs-c(0)

� �r 2e

mc2

�
Vcat � Vs-c(0)

� �
1� βe(0)

2

4

�
. 4.23
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Figure 4.11. Relationship between the speed of the beam center and the

total current pushed through the beam pipe, assuming Vcat = 10 kV. With

negligible current, both the center and edge of the beam move at nearly

0.2c. As the current is increased to the maximum, the center slows to less

than 0.12c.

This equation can easily be solved and introduces less than 0.3 % error. In the limit

of zero current, βe approaches 0.196, the speed of a single 10 keV electron in free

space. As the current increases, the beam center decreases speed; when the current

is nearing the acceptance limit given by Equation 4.21, the speed drops dramatically

toward 0.1c.

The three lower curves in Figure 4.11 show the relationship between current

and electron speed in Equation 4.23, assuming Vcat = 10 keV. Each curve represents

a different beam radius as drawn in Figure 4.10. For the typical TEL radius of

1.6mm, the center travels at 0.13c when the total current is 3.53A. If the beam

radius is reduced to 1.2mm, the effects of space charge are more pronounced, and

the center’s speed is 0.13c when only 3.25A is flowing. A larger beam of radius

2.0mm needs 3.78 A to slow down its center an equal amount.
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Because total beam current is known, the electric field outside the electric

beam follows Equation 4.13. Therefore, the space-charge potential expressed in

Equation 4.16 is valid for re � r � rpipe. Inserting Equation 4.16 into Equation 4.22

provides the connection between current and velocity for electrons on the beam

edge:

βe(re) =

s
2e

γe(re)mc2

�
Vcat � Vs-c(re)

�

�s 2e

mc2

�
Vcat � � ln(rpipe)/re

2πε0c

�
Ie

βe(re)

��
1� βe(re)

2

4

�
. 4.24

For beams of radius 1.2 mm, 1.6mm, and 2.0 mm, this relation is also plotted

in Figure 4.11. Each curve indicates a higher speed than the corresponding curve

for the beam center. Also, as the current decreases, the difference between center

and edge disappears. At the maximum current for each beam size, the edge of the

beam travels at about 0.14c.

Figure 4.11 covers the entire range of allowable current for TEL-like beams,

but the electron guns employed by the TEL are only able to operate between zero

and roughly two amperes, and most of their operation is less than 1.5 A. In this

range, the curves in Figure 4.11 are fairly linear. For comparisons between theory

and experiment in Chapter 6, it is reasonable to approximate the central electrons’

velocities as:

re = 1.2 mm : βe(0) � 0.1960� 0.0133Ie ;

re = 1.6 mm : βe(0) � 0.1960� 0.0122Ie ;

re = 2.0 mm : βe(0) � 0.1960� 0.0113Ie .

4.25
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The errors between these linear approximations and all of the numerical values are

less than 0.3%.

The relations reached in Equation 4.25 are important for two reasons. First,

the tuneshift as expressed in Equation 4.10 depends on the electron velocity; the

above results provide a more detailed description of βe than suggested in Section 3.2.

Second, the TEL gun is required to adjust the current between antiproton bunches.

This means that after a new level of current begins to flow, the electron speed must

be high enough to pass down the entire interaction length before the next antiproton

bunch arrives. If the current does not travel fast enough, the “new” bunch will feel

a tuneshift corresponding partially to the “old” current level, causing unnecessary

controls complications. Figure 3.3 sketches the idea of giving the beam enough time

to travel down the main solenoid.

Section 3.2 calculates the necessary time for the electron beam to pass through

the entire interaction region. As a “worst-case scenario,” an electron speed corre-

sponding to βe = 0.1 was shown to require 84 nsec to travel the entire length of the

TEL. As Figure 4.11 suggests, the TEL is realistically producing electrons moving

significantly faster than this, so that an antiproton bunch will only witness a level

of electron-beam current intended for that one bunch. In this manner, independent

control of each bunch’s tuneshift is ensured.

4.3.4 Electron charge density

The preceding section analyzed the decrease in electron speed as the current is

increased. This decrease in speed enhances the otherwise linear connection between
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the charge density and current, because ρe = I/(πr2βec). By substituting this

relation into Equation 4.10, the tuneshift becomes:

∆νx =
RpβxρeLTEL

4γp̄
� (1 + βe) 4.26

in the horizontal plane and similarly in the vertical plane. This equation indicates

an almost linear relationship between tuneshift and charge density. However, the

(1 + βe) term folds in a small nonlinearity, which can be explored by substituting

Equation 4.25 into Equation 4.26: at Ie = 1 A, the difference in tuneshift between

assuming a fixed βe of 0.196 and the calculated value is 1 %. At Ie = 3 A, this

difference increases to 3.8%. These discrepancies decrease as the beam is enlarged,

since βe is less mutable.

Modeling the charge density is important, as the BPM plates produce a volt-

age waveform proportional to the density. It is thus a useful stepping stone in

comparing theory to experiment. Inserting the relations plotted in Figure 4.11 into

Equation 4.26 yields the connections between charge density and current for differ-

ently sized beams; this is plotted in Figure 4.12. For each beam radius, the charge

density scales fairly linearly with low currents. However, as the current pushes to-

ward its upper limit, the density increases more rapidly. This is anticipated by the

decrease in electron speed at higher currents.

A significant difference in charge density can be seen between electron beams

of various radii. The 1.2 mm beam must pack the same number of electrons into a

much smaller area than the 2.0 mm beam with the same current. The charge density,

therefore, is much higher. The slope of the plotted functions at low currents are

proportional to 1/r2
e .
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Figure 4.12. Charge density at the center of an electron beam. The

density bends upwards due to the slowing of the electrons immersed in

the large current. A decrease in the beam radius drastically increases the

density, but it also increases the dependence on accurate alignment.

It is important to note that Figure 4.12 follows the center of the electron beam.

The charge density around the perimeter of the beam can also be easily calculated,

and is somewhat lower (and more linear) than the central portion. The BPM plates

detect the total linear charge density, and integrating ρe over the cross-sectional

area of the beam would yield this total. However, this measurement is not critical

to the tuneshift. The large majority of antiprotons have small beta functions, so

they only interact with a small region of the electron beam around the center. Large-

amplitude particles will witness the density outside of the center, though even they

also often pass through the center of the electron beam. As a result, the charge

density at the edge of the beam does not play a large role in shifting antiproton

tunes. Hence, the comparison between experiment and theory in Chapters 6 and 7

uses the center of the electron beam for its analysis.

The previous discussion has incorporated different beam sizes in its theory.

Figure 4.12 proves that a smaller electron beam is an effective way to provide more
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Figure 4.13. Dependence of charge density in the center of the electron

beam on cathode voltage. By setting the cathode voltage larger (more

negative), the electrons have larger total energy and are not as influenced

by the space-charge potential. A beam with only 6 keV of total energy, for

example, cannot sustain much more than one ampere.

tuneshift for the same current. However, as Section 3.2 points out, a small beam

has more difficulty surrounding an entire antiproton bunch, and it also is more

susceptible to misalignment. Another method for adjusting the tuneshift capabilities

of the TEL is to change the cathode voltage. As the voltage is decreased in amplitude

(toward zero, since the voltage is negative). Adjusting Vcat in Equation 4.24 provides

an understanding of how the charge density can be altered. In Figure 4.13, the

cathode voltage ranges between -6 kV and -12 kV.

A significant difference can be seen between different voltage levels. This is di-

rectly related to the amount of kinetic energy the electrons begin with, as Figure 4.6

illustrates. Without much space charge, the velocity follows βe =
p

2eVcat/γemec2,

so the density at low currents is expected to have different slopes proportional to

V
−1/2
cat . Higher currents, as usual, require more energy to be earmarked for the beam’s

space-charge potential, which slows down the electrons (seen in Equation 4.23) and
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increases their density. As Figure 4.13 indicates, the divergence from a linear rela-

tionship occurs at significantly different currents depending on the cathode voltage.

For example, at Vcat = �6 kV, the beam is unable to sustain even two amperes.

However, at Vcat = �12 kV, the density is moderately linear above four amperes.

The cathode voltage sets the total energy available; when an abundance of energy

is available, the limit is not sensed. When it is in short supply, the space-charge

potential easily consumes a large portion and leaves very little left for motion, a

commonly observed phenomenon[73,56,57].
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Chapter 5:

The Tevatron Electron
Lens apparatus

All my study be to no effect?

You are deceived: for what I mean to do

See here in bloody lines I have set down;

And what is written shall be executed.

– Shakespeare: Titus Andronicus

So far, a need for beam-beam compensation has been described, and an analyt-

ical description of the necessary beam parameters has been developed. A detailed

look at the physical machinery is important, as it elucidates numerous features

and issues. Chapter 1 outlined the main subsystems, which are expounded in this

chapter. Table 5.1 lists many of the different TEL parameters, including a nominal

setting and an adjustable range in order to conduct experiments.

The TEL can be divided into three main subsystems. The magnets comprise

the most important one for the success of the TEL, as they are needed to guide the
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TEL parameter nominal range units

electron beam energy 10 5–12 keV

peak beam current 1 0–3.5 A

main solenoid field 35 25–40 kG

gun/collector solenoid field 3.7 3.0–4.2 kG

cathode radius 5 mm

beam radius in main solenoid 1.6 1.1–2.0 mm

electron density 3.3 2.1–6.9 1010/cm3

interaction length 2.05 m

horizontal beta function 101.67 m

vertical beta function 30.89 m

anode modulator rise time >200 nsec

modulator pulse width �300 nsec

current stability 0.1 %

Table 5.1. Table of a few quantities associated with the TEL as it is typ-

ically run for tuneshift compensation. In anticipation of bunch-by-bunch

compensation, the anode modulator can produce staircase waveforms as

sketched in Figure 3.3.

electron beam along the orbit of the antiprotons. Their fields must be steerable

yet remain straight to ensure that the antiproton bunch and the electron beam

are collinear through the whole interaction range. Additionally, the magnets must

turn the electrons into the collector regardless of how they were steered through the

interaction region.

Two electron guns were developed to appease two different goals. The first was

designed to create a flat charge density over a wide range, while the second generated

a rounded, Gaussian-like distribution. Both were optimized to produce the largest

amount of current as possible. A beam pipe and collector were also designed such
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that the beam could be diagnosed and collected without complications.

The third subsystem is the electrical circuit that furnishes current and power

for the TEL. The largest amount of effort was devoted to the anode pulse modula-

tor. Also, the TEL uses recirculating current, necessitating more complex circuitry

between the gun and collector. Other details complicate the electrical layout of the

TEL, discussed in Section 5.4.

As Section 3.2 mentions, a second TEL is currently being fabricated. Due to

the success of the design of the first TEL, the second uses a very similar design,

adding very few significant changes. This fact affirms the notion that the first TEL’s

design is quality.

5.1 Magnetic subsystem

The three solenoids in the TEL are oriented as shown in Figure 5.1. The gun

solenoid sits in the lower-left corner perpendicular to the long Tevatron beam pipe,

the main solenoid surrounds the beam pipe, and the collector solenoid resides in the

lower right. Electrons, germinating from the electron gun, follow these field lines as

shown in Section 4.2.

5.1.1 Solenoids

The solenoids were manufactured at IHEP in Protvino, Russia and tested at

Fermilab. The main solenoid uses NbTi wire intertwined with copper wire, rated

for 550 A at a temperature of 4.2 K; the wire itself measures 1.44 mm by 4.64 mm
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Figure 5.1. A drawing of the solenoid magnets in the TEL. The electrons

are contained by the magnetic field throughout their journey from the

electron gun, along the interaction length, and finally into the collector. By

adjusting the relative strengths of the solenoids, the beam size, position,

and curvature can be altered. This is a view from above the TEL.

cross-section[81]. A 4.85 cm-thick, low-carbon steel shield wraps around the coils,

which enhances the field strength, keeps the field lines compressed near the solenoid’s

ends, improves the homogeneity throughout the interaction region, and reduces stray

fields. The specific design of the solenoid is outsid the scope of this dissertation, but

it involved careful simulations and sophisticated experience[81,82].

The coils of the main solenoid are immersed in a liquid helium bath, and

the total weight of this cold mass is 1350 kg. Due to hysterisis effects and eddy

currents in steel, a small amount of heat is generated whenever the curret in the

superconductor is changed. Quantifying the heat generated from a current ramping

rate is difficult, but the manufacturers specify that 10 A/sec is a maximum rate at

which the current is changed. In practice, the main solenoid is rarely powered up

or down, but usual ramp rates lie under 4 A/sec. Quenches are avoided whenever
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possible.

While the nominal operating strength of the main solenoid is 3.5T, it is de-

signed to handle 6.5 T. However, superconducting magnets often require a “training

period,” where they quench at lower strengths before attaining their rated capacity.

During initial operation with the main solenoid, it successfully reached 6.6T before

quenching. The current was pushed to 6.7T again, without quenching. After some

time, it was decided to put it in operation without further conditioning, and it has

rarely been pushed beyond 4.0T. In the occasional times that other Tevatron mag-

nets quench, the main solenoid will also sometimes quench. In addition, occasionally

during operation the main solenoid has quenched on its own. However, the number

of times this has happened is extremely small, and it is not considered a liability to

the performance of the TEL.

The field measured inside the main solenoid scales very linearly with current;

less than one percent of variation was observed. The measured field strength was

36.7G/A, which compares well with predictions[82]. The main solenoid does not

contain a closed current loop; when energized, the current flows out of its current

leads and through external power supplies. The following sections describe the

advantage that this has for quench protection, as the solenoid can contain up to

1MJ of energy when it reaches its maximum rating of 6.5T. Also described are

superconducting dipole correctors contained in the solenoid’s assembly.

The gun and collector solenoids use copper windings, produce much weaker

fields, and require less support systems. Water-cooled, these magnets can support

340A across their 0.19-Ω load. The measured inductance of the 391 turns of wire

is roughly 18mH. The bore of each magnet has a diameter of 24.0 cm and a length

of 30.0 cm, enough to contain the electron gun and the entrance to the collector.

114



Figure 5.2. Field strengths produced by the gun and collector solenoids.

The left side shows the strength through each solenoid with 325 A of cur-

rent. The grey rectangle represents the length of the gun solenoid, and the

black represents the additional iron plate of the collector solenoid. The

right plot shows the measured field strength in black with fitted approxi-

mations in grey.

A small design difference between the gun and collector solenoids is useful. The

collector solenoid has an additional iron plate on its back end, which deliberately

reduces the field strength outside of the solenoid (in the region of the collector itself,

as seen in Figure 5.1). Measurements of the field strength in each magnet is shown

on the left side of Figure 5.2. The horizontal axis indicates distance from the center

of the Tevatron beam pipe (�x), while the vertical shows the strength of the field

at a current of 325 A in each magnet, close to the typical operating currents.

A grey bar at the bottom of Figure 5.2 extends the length of both magnets’

coils. The iron plate added to the collector solenoid is indicated by the small black

region. The effect of this plate is apparent: the strength of the field beyond it, inside

the collector region, is significantly reduced from the equivalent position along the

gun solenoid. This reduction of field strength is intended to encourage the electron

115



beam to spread before colliding with the collector walls, an effect which is elaborated

in Section 5.3.

The extra iron has three additional effects. First, the inclusion of more iron

increases the maximum field generated in the collector solenoid for the same current

level. This can be seen by the higher attainable fields in the collector-solenoid data

than the gun-solenoid data. Second, the iron plate breaks the symmetry of the field.

The last effect of the iron plate is that it decreases the nonlinear aspect of the

magnetic field. Saturation effects in the gun solenoid cause the field-to-current ratio,

also known as the transfer function, to sag at high currents, a characteristic which

is less observed in the collector solenoid. The right side of Figure 5.2 illustrates

both the higher peak fields and the improved linearity of the collector solenoid over

a broad range of currents. In this plot, the transfer functions B/I for both magnets

are measured at different currents. As expected, both solenoids exhibit decreasing

transfer functions, with the gun solenoid deteriorating faster than the collector sole-

noid. Lines were fitted to the data with weight given to the measurements around

325A, since the corresponding 3.8–4.0 kG fields are typical settings during operation.

A linear fit corresponds to a quadratic fit between field strength and current.

For the two solenoids, these fits are

Bgun =(12.58)I � (0.00261)I2 and

Bcol =(12.72)I � (0.00053)I2 ,

where B is measured in Gauss and I is in Amps. These polynomials describe the

peak magnetic fields in both solenoids quite well over the range shown in Figure 5.2,

and are very accurate over the relavant range of fields around 3.8 kG.
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5.1.2 Dipole correctors

Proton and antiproton orbits are observed to drift transversely over time during

a given store, and often the orbits are deliberately altered either during or between

stores. Therefore, the TEL needs the ability to orient the electron-beam path such

that it coincides with the antiproton path. Without any bending magnets, the

antiproton orbit is a straight line through the TEL. At the upstream end of the TEL,

that is, the place where the electron beam first enters the Tevatron beam pipe and

is intended to contact the antiproton orbit, the orbit has a horizontal and vertical

position with respect to the center of the beam pipe. The orbit extends in a straight

line through the TEL at specific horizontal and vertical angles. Therefore the TEL

needs the ability to adjust to four degrees of freedom: the upstream position and

the angle, both in the horizontal and vertical directions.

The TEL design included four dipole corrector magnets in order to accomplish

this steering. Two of these correctors, one oriented horizontally and one vertically,

are located at the upstream end of the main solenoid; their goal is to adjust the

upstream transverse position of the electron beam to equal that of the antiproton

orbit. Figure 5.3 illustrates an example of how these dipole correctors work, though

the transverse offsets in the illustration are exaggerated. In reality, the length of

the main solenoid is two meters and offsets are only several millimeters.

The black line represents the antiproton orbit while the grey line is the electron

beam. Uncorrected, the electron beam follows the straight, dashed line, which is not

colinear with the antiproton orbit. The short upstream correctors are then activated

to “push” the electron beam over to where the antiproton orbit is located. The

upstream horizontal and vertical correctors therefore have the ability to account for
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Figure 5.3. Sketch of the placement and action of the dipole correctors,

with an extremely exaggerated transverse scale. Without activating the

correctors, the electron beam would follow the dashed grey path. By using

them, the electon beam can overlay the antiproton orbit.

the upstream position of the antiproton orbit. Section 5.3 describes beam-position

monitors (BPMs), which are diagnostics intentionally located at the end of the

upstream correctors. These BPMs are able to detect the transverse position of the

antiprotons, protons, and electrons, and can verify that the upstream position of

the electron beam equals that of the antiproton bunches.

Two other correctors extend nearly the length of the main solenoid. These

long correctors have the ability to angle the electron beam along their entire length.

Once the upstream correctors are set, the long correctors are adjusted so that the

electron beam coincides with the antiproton orbit, as drawn in Figure 5.3. Another

set of BPMs are situated at the downstream end of the long correctors in order to

confirm that the two species finish at identical transverse positions.

The electron beam can end at a variety of positions, yet it must be able to

pass into the collector. To accomplish this, a third set of correctors are located

downstream of the long correctors in order to steer the beam back into a position

where it will successfully enter the collector. These correctors, identical to the
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Figure 5.4. Longitudinal strength of the dipole correctors inside of the

main solenoid. The solenoid field strength Bz is also included, and the

longitudinal position is referenced to the center of the main solenoid.

upstream correctors, often are adjusted simultaneously with either the upstream or

the long correctors, but in the opposite direction; in this sense, they “undo” the

changes made by the other correctors.

The specific location, and length, of each of these correctors is shown in Fig-

ure 5.4. The dashed line illustrates the strength of the main solenoid on axis

as a function of longitudinal position. It is at a maximum nearly from �100 cm

to +100 cm and rapidly falls to almost zero at �150 cm and +150 cm.

The solid lines in Figure 5.4 represent the measured strength of each set of

dipole correctors. The upstream short correctors peaks around �115 cm, the long

corrector extends from �75 cm to +75 cm, and the downstream short correcto ap-

pears at +115 cm. Since the strength of each corrector and the main solenoid can

be arbitrarily set, their magnitudes are all normalized to 1.0 in Figure 5.4. In the

actual measurements, the solenoid was set to 6.5 T, the short correctors were 0.8 T,
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and the long was 0.2 T. No significant difference was observed between horizontal

and vertical correctors.

Without the solenoidal field, the dipole correctors would act as dipole magnets

were described in Section 2.2. There, each dipole bends the bunches. In this con-

text, however, the electron beam spirals around the solenoidal field lines as derived

in Section 4.2. The dipole correctors add a small perturbation to the nominally

longitudinal solenoidal field. By superposition, the vector field of the correctors

gets added to the vector field of the main solenoid. Since the former is a uniform

field pointing transversely and the latter is a uniform field pointing longitudinally,

the net result is a field that points at an angle represented by the sum of the two

vectors. The electron beam, dutifully following the field lines, tracks the resultant

field. Beyond the region of the corrector, the field lines and the electron beam again

point longitudinally, but from this new position.

The strength of the correctors is listed in Table 5.2. However, a more useful

measure is the amount that the beam gets shifted transversely, but this depends on

the field of the corrector, the length of the corrector, and the field of the solenoid.

More specifically, geometry of the two fields says that the total horizontal deflection

∆x can be derived from

∆x =

Z
Bcorrector(z)

Bsolenoid(z)
dz ,

where the two field strengths are functions of the longitudinal position z, and the

integral covers the pertinent length shown in Figure 5.4. A similar expression can

be written for the vertical corrector, assuming the appropriate corrector field is

used.
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corrector name coil length field strength displacement
[cm] [G/A] [kG-mm/A]

upstream horizontal 27 39 5.88

upstream vertical 27 41 6.59

long horizontal 196 20 34.6

long vertical 196 20 37.7

downstream horizontal 27 39 5.75

downstream vertical 27 41 6.35

Table 5.2. Attributes of the dipole correctors. The field strengths were

measured in Protvino, where the solenoid was constructed [81]. The dis-

placement strengths were measured at Fermilab and agree with BPM ob-

servations.

In Table 5.2, the total deflection power of each corrector is given in units of

kG-mm/A, which is ∆x � Bmain per unit current. Dividing these numbers by the

main solenoid strength yields a valid transverse displacement for a known amount

of current. Separate measurements of electron-beam deflection using BPM readings

verified these calibration numbers[83].

5.1.3 Peripheral subsystems

The main solenoid and its correctors are superconducting. If the solenoid

quenches at 6.5 Tesla, nearly 1MJ of stored energy is released over a mere two

seconds[84]. The current in each magnet loops through external power supplies,

allowing external quench detection circuits and loads to absorb most of that en-

ergy. Simulations of quenches suggests that roughly 90% of the total energy can be

dissipated in external resistive loads, with the remaining 10 % being dissipated in
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the solenoid itself. In these simulations, the hottest point in the coil rises to about

270K.

The dipole correctors only contain up to 1.3 kJ of energy, and dissipating this

energy within the magnet is not worrisome. However, heat in one region could

cause a quench in the main solenoid. Therefore, the correctors are also connected

to quench protection circuits and loads.

Each monitor was originally designed to observe the voltage across its magnet

and the time-derivative of the current, which were compared to an assigned limiting

voltage: ����Lmagnet

dI(t)

dt
� V(t)

���� < Vlimit , 5.x

where Lmagnet is the inductance of the magnet. If the above condition ever became

invalid, the magnet was assumed to have begun to quench, and crowbar resistors

would be immediately bridged across the magnet to absorb its energy. The reason

that Equation 5.x works is that an ideal inductor generates a voltage difference given

by LdI/dt, so the left side of the equation ideally is zero. If the magnet quenches,

the current suddenly decreases without changing voltage; the left-hand side increases

dramatically.

However, the inductance L of a large (0.5Henry) solenoid is typically not

constant at low frequencies (1-10Hz), due to iron-saturation effects and eddy cur-

rents. The overly simplified model expressed in Equation 5.x led to occasional false

quench detections. A more sophisticated model using higher-order effects of both

V(t) and I(t) was adopted and is now in use. The quench protection monitor tests

the relation, ����Lmagnet

�
dI

dt
+ κ1

d2I

dt2

�� �V + κ2

dV

dt

����� < Verror .
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The addition of κ1 and κ2 offers the ability to better mimic the physical behavior of

the magnets over a range of frequencies. As expected, the number of false quench

detections has decreased dramatically since this change.

The power supplies for each of the solenoids and correctors need to be able to

sustain each magnet’s full current. The main solenoid in normal operation requires

a full kiloamp; large cables send this current from the power supply to the solenoid

itself. The short dipole correctors employ 200-A supplies, while the long correctors

ue 50-A supplies. Since the correctors might need to be energized in either direction,

each supply is fed through a reversing-switch box. This box is able to swap the leads,

effectively turning the unipolar supplies into bipolar supplies.

The current ramp rates for each of the superconducting magnets is limited,

and all of the settings are done remotely through computer control. The reversing-

switch circuits automatically handle ramping the current through zero and switching

polarity properly. Scanning the electron beam transversely becomes feasible.

5.1.4 Straightness of field lines

This chapter so far has assumed that the main solenoid’s magnetic field is

extremely straight through its length. If there is any significant bending, then the

electron beam, which religiously follows the field lines, would not interact properly

with the antiproton bunches. Worse yet, the beam would impart nonlinear forces

and kicks on the bunch, as Section 6.3 discusses.

If the electron beam has a diameter of about 3 mm inside the main solenoid,

the centroid of the electron beam should not deviate from a line by significantly less
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Figure 5.5. Drawing of the gimble and photograph of the cart. The gim-

ble measured only an inch across and had very little mechanical resistance.

The cart was pulled by a long track, and it rolled inside an aluminum pipe

temporarily thrust into the solenoid bore.

than that. This provides a comfortable column within which the antiproton bunches

may pass and be effectively focused. A rough estimate of this requirement is 10% of

the electron beam diameter, or 0.3 mm. While the magnet was designed and built

to be as uniform as possible, it was imperative to measure the magnetic field lines.

Observing the field lines requires some clever techniques. A small iron rod was

centered in a non-magnetic gimbal and mounted on a small cart, as illustrated in

Figure 5.5. The cart was dragged through the solenoid, and the solenoid magnetized

the rod, which constantly attempted to align itself along the field lines (a magnetized

ferromagnet feels a torque ~τ = ~M�~B attempting to align it along the field lines[36]).

A small mirror that was attached perpendicularly to the rod (actually surrounding

the rod) reflected a laser beam from one end of the solenoid back down the same

direction.

The resolution of this measurement can be calculated from the fact that the
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Figure 5.6. Simplified cartoon illustrating the technique used to measure

the magnetic-field lines in the main solenoid. In reality, the laser beam

reflected off of the mirror nearly on top of the incident beam, and a one-

way mirror deflected the beam onto the light-position sensor.

deviation of the field lines is simply the integral of the perpendicular magnetic field:

xfield line =

Z x

x0

B⊥

B‖
dx′ .

Turning this formula around yields what angles of the rod are necessary to measure

(these angles are very much within the small-angle approximation), namely,

θrod � B⊥

B‖
=

∆x

∆z
.

A maximum deflection from the bounds described earlier would be ∆x < 0.3 mm

over half of the solenoid length, or 1 m. This corresponds to angles of 3 � 10−4, so

the magnetic rod needs to be sensitive to angles less than that.

The reflected laser beam (returning at twice the angle of the magnetic rod)

struck a two-dimensional light-position sensor. This large CCD target contains

some processing electronics that reports where on its surface the laser light was

incident. In this manner, minute angles could be observed, and Figure 5.6 depicts

how the entire apparatus was operated.
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Figure 5.7. Drawing of one horizontal and vertical field line at 4 T. A

non-parallel laser beam generates an offset and angle artifact in the data,

which has been normalized out of this plot. Each circle is a data point.

A difficulty with sensitive magnetic field measurements is a systematic offset

or tilt brought by the measuring device. In this case, the laser was positioned by

hand such that its reflection successfully tracked on the CCD target, but there is no

feasible manner to ensure that the laser beam was within microns of being parallel

to the solenoid or its fields. The analyzation process therefore needed to include a

removal of these arbitrary artifacts.

The field lines in the center of the solenoid are shown in Figure 5.7. The field

does not bend more than 200µm in the horizontal direction and only about 45µm in

the vertical. Therefore the electron beam is able to surround the antiproton bunches

through the entire solenoid length. The 200µm variation is conveniently small and

allows the option to experiment with beam-beam compensation at different electron-

beam sizes.

Figure 5.8 shows how the straightness of the field lines change as the solenoid’s

field is ramped up or down. The deviation is rarely more than 20µm, so changing the
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Figure 5.8. Changes in central field lines with magnetic-field strength.

Above 1 T, the magnetic field lines do not shift more than 5 µm. At 1 T,

the deviations reach 100µm. The 100 data points per trace are not drawn

in order to improve clarity.

solenoid strength should not impair the ability of the TEL to work its magic on the

antiproton tune (obviously, a different solenoid strength does shift the electron-beam

path horizontally and will affect the charge density, but adjusting the correctors and

the beam current (following Equation 5.1) negates these issues).

The cautious reader will note that dragging the cart down the axis of the

solenoid is not the same as following a specific field line; Figures 5.7 and 5.8 assume

that different field lines follow parallel trajectories, and therefore measuring the field

angles for numerous field lines still accurately portrays the trajectory of one line.

In order to test this hypothesis, the cart’s track was offset by a small distance and

data was again taken. In Figure 5.9, data was compared for five different transverse

positions. Both horizontal and vertical field lines were adequately parallel to the

central axis, so the solenoid would adequately carry the entire electron beam in a

mostly straight path while preserving the beam diameter. If the solenoid showed

significant deviation from its ideal model, calculating the expected tuneshift from the
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Figure 5.9. Comparison of several “parallel” field lines near the central

axis. The central field line and the constant offset (either 0.5 or 1.0 mm)

was subtracted from each field line. The field lines are parallel to within

6 µm of the central line.

TEL would be much more difficult. Fortunately, the field generated by the solenoid

is similar enough to a straight, ideal solenoidal field to avoid such complications.

5.2 Electron gun

The physics behind electron guns is theoretically developed in Section 4.1. In

that discussion, attention is spent on attaining high current densities while main-

taining a desired current profile. In order to supply a beam with a flat density

distribution, the size of the hole in the anode should be significantly smaller than

the longitudinal distance between anode and cathode[36]. By scaling both dimen-

sions equally, a large gun can produce more total current, but the anode requires
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pulses of higher voltages.

In the TEL, a compromise between gun size and anode voltage was reached; the

anode is pulsed up to around 7 kV above the cathode potential, a number detailed

in Section 5.4. Meanwhile, the gun’s emitting cathode has a radius of 5 mm, and

the anode’s inner radius approximately 7mm. Using Equation 4.5, a 1 cm cathode-

to-anode distance yields 1.4 A/cm2, far less than the potential yield that a more

creative design could generate. In addition, the hole diameter is much larger than

the cathode-to-anode distance creating a beam intense on its edges but weak or

nonexistant in its center. This type of profile is not desirable.

Instead, the electron guns use more complicated geometries to preserve their

desired profiles while producing as much current as possible for a given anode voltage,

that is, a high perveance. In order to predict and optimize the guns’ geometries,

they were forged initially in simulation. The first gun was specifically designed to

produce a wide, uniform density profile, and the second produces a tapered profile

mimicking the proton-bunch distribution.

5.2.1 Mechanical design of TEL electron guns

The layout of the first gun is illustrated in Figure 5.10. It is called the flattop

gun since it was designed to maintain a uniform current density across the width

of the beam. In Figure 5.10, the horizontal axis is the central axis of the gun; the

heated cathode is in the lower left and the anode in the upper right. Wrapping the

diagram around the central axis, the anode appears more like a short tube than a

plate. The electric field from the anode draws electrons off of the rounded surface of
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Figure 5.10. Cross-section of the flattop electron gun, the first electron

gun designed and built for the TEL. All three grey electrodes are symmetric

around the longitudinal axis.

the cathode. A strong longitudinal magnetic field oriented horizontally forces these

electrons to stream to the right from the cathode.

Section 4.1 models a planar gun as having a cathode plate and an anode plate,

and the hole in the anode is small with respect to the distance between the plates.

The previous discussion suggests that the TEL guns need to have a much larger hole

in order to provide suitable levels of current. However, the electric field from the

anode will not be uniform against a planar cathode surface; the field is strongest

around the edge of the cathode and drops near the center. Figure 5.10 exemplifies

this problem, since the diameter of the hole is larger than the separation distance.

In order to counteract the nonuniform current that would result from the

nonuniform field distribution, the cathode is spherically convex. This feature con-
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centrates the electric field nearer the center, enhancing current flow from the center.

This technique is common in high-current guns and can provide significantly flatter

profiles than a simple flat cathode can.

One important addition to this gun was the use of a secondary electrode cir-

cling the cathode. This non-heated electrode can be imagined as a grid or control

electrode. When not in use, it is set to the same potential as the cathode and sim-

ply extends the apparent surface of the cathode for the electric field lines, without

actually giving off current, since it is not heated. However, if it is set to a voltage

negative with respect to the cathode, it steals electric field lines from the outer edges

of the cathode and effectively suppresses emission from that region. Figure 5.11 il-

lustrates the effect of changing the voltage on this electrode, which is named the

profiler.

If the profiler is set to zero volts with respect to the cathode, then the entire

cathode/profiler surface senses electric field lines from the anode. For reasons ex-

plained in the next section, the field is not perfectly uniform; significantly stronger

fields are felt on the edges of the cathode, which translates into a higher current

density than in the center. Nevertheless, the profiler is not suppressing these fields.

When the profiler is set to a voltage more negative than the cathode, the

electric field lines are attracted to it, leaving less strength on the ring of the cathode.

Even at -300 V, the profiler successfully reduces the current emission from the edges,

while the current density in hte center is nearly unchanged. Not only has the peak

current density decreased dramatically, but the radius of the beam has shrunken

approximately 1 mm.
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Figure 5.11. The current density profile of the electron beam. With

the profiler set to the cathode voltage, electrons are easily emitted from

the entire surface. The widest trace indicates that the current density was

strongest at the edge. But applying a negative voltage to the profiler, the

emitting area is effectively reduced.

As the profiler is set more negatively, the influence it has on the cathode’s

current gets stronger. An additional -300V tends to reduce the beam radius by

roughly 1mm, which is the same as 0.33 mm difference in the beam radius inside

the main solenoid. Even though the radius of the beam is significantly reduced, the

density of the electron beam at the center remains relatively constant.

The total current can be easily measured as a function of profiler voltage. In

Figure 5.12, the total current decreases significantly when the magnitude of the

profiler voltage is increased. This confirms the notion that emissions from the edges

of the cathode are suppressed by the influence of the profiler.

Many results in the following chapters discuss results using this flattop gun,
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Figure 5.12. Total current expended by the cathode. It can be seen that

the profiler can easily cut off some of the current, but must be set to a

large (negative) voltage to suppress most of the current.

which proved reliable for linear tuneshift compensation. Often it was run with -300V

applied to the profiler in order to limit the edges of the profile. However, it was

observed that the steep sides of the profile provided a significant nonlinear focusing

effect on large-amplitude particles, leading to significant losses. This phenomenon is

analyzed in Section 7.2, but a second electron gun, with a more rounded profile, was

also constructed. Adjustments of the positions of its electrodes produced a profile

that better imitated the profile of the proton bunches, since Section 3.1 argues that

the ideal compensation scheme requires a radially dependent focusing force similar

to the beam-beam effects at each IP.

Since proton bunches stabilize in a Gaussian distribution, the current profile

of this second gun was designed to appear similar to a Gaussian curve[68]. This

gun, known therefore as the Gaussian gun, is drawn in Figure 5.13, which includes
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Figure 5.13. Cross-section of the more recent Gaussian gun. The pro-

filer is shaped different, and a new collar electrode surrounds the cathode.

Simulated paths of electrons are drawn in (black), along with equipotential

lines (grey).

simulations of the paths of electrons streaming from the surface. In comparison to

the flattop-gun design, the most apparent changes are the profiler’s position and

the addition of a fourth electrode. The fourth electrode, called the collar electrode,

has been electrically connected to the cathode, extending the surface similar to how

the profiler behaved in the flattop gun. Not heated, the collar electrode does not

produce any current, but smooths out the electric field lines that otherwise would

concentrate on the edge of the cathode.

The profiler has been positioned much more prominently in the Gaussian gun

than in the flattop gun. Its position now shields the edge of the cathode from the

electric field, while the center of the cathode still feels the full field strength. In

fact, the cathode is also curved more in the Gaussian gun, so that the electric field

is further enhanced at the center of the cathode.
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In all, the electric field at the center of the Gaussian gun’s cathode is nearly

as strong as it is in the flattop gun’s cathode. The field strength near the edges,

however, is significantly reduced. In Figure 5.13, field equipotential lines are drawn

in grey. These lines are tightly clustered near the center of the cathode, whereas

they are spaced apart near the rim of the cathode. Since the electric field is the

gradient of the potential, the simulation agrees that the current profile will smoothly

decrease at larger radii.

Measurements of the current profile confirm the simulations. Figure 2 display

the radial profile of the Gaussian gun, and the profile, shown with solid points, has

a rounded appearance much closer to the Gaussian distribution of the bunches in

the Tevatron. As a reference, a measured profile of the flattop gun, under identical

conditions, is shown with open points. It is immediately obvious that the edges of the

beam are hugely suppressed in the Gaussian gun, providing a smooth distribution

of space charge.

5.2.2 Gun electrical properties

The cathode itself is tungsten metal and impregnated with calcium oxide[13].

By heating the cathode in a vacuum, the oxide slowly leaks out of the surface, pro-

viding an atomic layer that lowers its effective work function. It has been found that

the work function with the calcium oxide is about 1.1 eV, significantly lower than the

4.65 eV work function of raw copper. The Richardson-Dushman law (Equation 4.3)

predicts an exponential relationship between the maximum possible current and the

work function, and indeed, before the oxide layer has been “activated,” very little

current is observed. As the cathode is heated, that current begins to rise until finally
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Figure 5.14. Current-density profile typical of the Gaussian electon gun

(solid points) and the flattop gun (open points). The Gaussian gun puts

out much less total current, but clearly it better mimics the profile of the

proton bunches at collsions.

the limit set by Richardson-Dushman surpasses the Child-Langmuir limit, and the

gun then operates in the space-charge-limited regime. If the gun is exposed to air,

the oxide layer is ruined (the tungsten will oxidize, creating a nasty layer with a

high work function) and another processing is required.

Figure 5.15 illustrates the transition between space-charge and temperature-

limited regions of operation. The resistive filament behind the cathode was set to

different temperatures, and, after the cathode’s temperature re-equilibrated, the

total current was measured. At high enough temperatures, Child-Langmuir fixed

the current by the anode’s voltage and the gun perveance. At low temperatures,

Richardson-Dushman limited the current following a T 2e−W/T dependence. As the

first gun was used extensively, it was noticed that the required temperature to reach

the space-charge-limited regime increased somewhat. While this issue never limited

its functionality, the most likely cause is the slow elimination of the oxide; as less
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Figure 5.15. Current production at a constant anode-cathode voltage

difference for different cathode temperatures. At lower temperatures, the

gun operates in the temperature-limited regime expressed by Equation 4.2,

while above a certain temperature, the gun follows Equation 4.6 of the

space-charge-limited regime. Because the temperature is very difficult to

measure directly, the power dissipated in the cathode filament is shown

(the strong Stephen-Boltzmann function makes an accurate calculation of

temperature impossible). A bolometer check of the cathode revealed that

the temperature is around 1000 K to 1100 K at the knee in this function.

oxide remains, it requires higher temperatures to replenish the supply.

Unfortunately, this solution circles back to the problem, since a higher tem-

perature boils off the oxide layer faster[73]. Towards the end of experimentation

with the flattop gun, it was feared that the cathode might be nearing its expiration

date. After installation of the Gaussian gun, the filament’s temperature was more

carefully regulated to barely more than necessary in order to prolong the cathode’s

life as long as possible. No significant degradation has been seen.

One of the most important goals of these designs was to produce the largest
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Figure 5.16. Perveance of each of the guns. The Gaussian gun produces

significantly less current than the flattop for the same anode voltage; this

was a known side effect of reducing the edges of the beam so that the

profile, shown in Figure 5.14, would be much smoother. Unfortunately

the anode modulator used to pulse the Gaussian gun can not generate the

same amplitude as the modulator used for the flattop gun.

current for a given anode voltage. This means the perveance of the guns was max-

imized while maintaining a decent current profile. The electrode shapes and posi-

tions shown in Figures 5.10 and 5.13 were adjusted in many ways before settling

on the displayed schemes. The simulation code SuperSAM predicted a perveance

of 4.7µpervs, and the results of measurements are shown in Figure 5.16. The data

very well matches Child-Langmuir’s relation, though the values for the perveance is

somewhat different between experiment and theory.

138



5.3 Beam pipe and collector

As Figure 5.1 illustrates, the electron beam streaming out of the gun travels

through a beam pipe until it finally reaches the collector. The beam pipe through

which the electron beam travels preserves a constant inner diameter along nearly the

entire length of the electron-beam path. This starts just downstream of the anode,

continues around the first bend, through the main solenoid, around the second bend,

and into the collector solenoid.

The inner pipe diameter in the main solenoid needed to be as large as the

physical aperature of the Tevatron, as the the TEL was not intended to ever inhibit

the performance of the Tevatron. The dotted line in Figure 5.17 outlines the typical

aperature found around the Tevatron ring. The circumscribed circle of radius 35mm

is the inner radius of the pipe through the length the TEL. The assurance that the

pipe is larger than or equal to that of most of the Tevatron has the effect that, if

the TEL is turned off, the Tevatron performs exactly as it did before the TEL was

installed.

5.3.1 Beam-pipe limitations on the electron beam

A theoretical discussion of the space-charge potential is developed in Sec-

tion 4.3. That analysis is crucial to the comprehension of measurements of beam

current and charge density in the TEL, as it derives the acceptance of a beam pipe

such as the TEL. In particular, a beam pipe of radius 35mm supporting a 1.6-mm

radius beam is calculated in Equation 4.21 to be 3.75µP. This value is dependent

on the beam size and therefore the magnetic field strengths of the gun and main
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Figure 5.17. Cross-section of the TEL beam pipe. A number of items

need to be squeezed between the minimum radius of the Tevatron beam

pipe and the maximum radius of the bore of the main solenoid’s cryostat.

solenoids. The importance of the beam size is preserved in Equation 4.19 and

demonstrated in Figure 4.10.

The acceptance sets the maximum current that the beam pipe will allow, given

a set cathode voltage and beam size. If the electron gun attempts to send more

current, the space-charge potential uses up all of the beam’s available energy, denying

the electrons the ability to move forward. This traffic jam extends back into the

gun and shields the cathode from the electric field of the anode[73]. Increasing the

anode-pulse amplitude further has no effect on the TEL current. This argument

assumes a steady-state situation; that is, the rise time of the anode pulse must be

slow enough that the beam current can reach the main solenoid and relay back

information about space-charge issues. The distance from the gun cathode to the

entrance of the main solenoid is less than one meter, so electrons traveling at a speed

of 0.2c require 15 nsec to traverse the distance. An additional 3 nsec is necessary for

the electric fields to propogate back to the cathode surface.

140



The modulator circuit, expounded by Section 5.4, generates pulses with charac-

teristic rise times of about 300 nsec, significantly larger than the 18 nsec total delay

time for the current to begin, reach the main solenoid, and send back information

about the space-charge effects. Because the rise time is much larger than the feed-

back delay time, any limits to the current due to the beam pipe’s finite acceptance

are broadcast back to the fields in the gun, detering additional production of current,

before the anode has increased significantly in voltage. If, however, the rise time

was close to or less than this delay time, this feedback loop could enter an unstable,

oscillating mode detrimental to the performance of the TEL[66].

During normal operation of the TEL, the cathode potential was set to a large

negative voltage (nominally -10 kV) so that the acceptance of the beam pipe would

not limit the beam current. In selective studies, the cathode was intentionally

decreased in magnitude while the anode was still pulsed. Measurements of the

beam current are shown in Figure 5.18.

When the cathode voltage is set to a large negative level, such as -12 kV, there is

enough beam energy that the acceptance of the beam pipe does not limit the current.

Instead, the current follows the anode-pulse voltage according to Ie = PV
3/2
anode, where

V
3/2
anode is the voltage of the anode with respect to that of the cathode, as discussed

in Section 4.1. Over 3A of current was produced without being significantly limited

by the beam pipe.

As the cathode voltage is brought toward zero, however, the allowed current

diminishes. Even at Vcat = �10 kV, the highest attainable anode voltage only pro-

duced 2.8A of current. Further decrease in the cathode voltage brought down the

maximum current. At Vcat = �4 kV, a mere 1.5A was produced at anode volt-

ages even larger than those for other cathode-voltage settings (difficulties with the
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Figure 5.18. Dependence of collector current on the anode voltage. A

cathode voltage near zero produces large charge densities, which rob the

electrons’ energy and denies them the ability to pass through the beam

pipe.

anode-modulation circuit prevented pulsing the anode to these impressive levels at

the other cathode settings[67]).

At lower anode-voltage amplitudes, Figure 5.18 indicates a convergence of the

cathode-current curves. Indeed, the current is independent of the pipe acceptance,

contrasting with the constraints imposed at higher anode voltages. Instead, the

current in this instance is solely determined by the perveance of the gun, identified

in Figure 5.16.

A theoretically derived acceptance of 3.75µP implies that at -4 kV, only 0.948A

may pass. However, the observed current for this low cathode voltage is seen to ex-

tend to at least 1.45 A. Similarly, a limit of 1.33A exists for Vcat = �5 kV, while

the measured current extends to 1.6 A and is continuing to rise. A couple reasons

can explain this significant discrepancy between theory and experiment. The cal-
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culation presented in Section 4.3 assumes that the beam is centered in the beam

pipe. However, an off-center beam can be shown to exhibit a higher acceptance[33].

In these measurements, an attempt to center the beam was not performed; instead,

the TEL parameters followed their setting during tuneshift compensation.

In addition, Figure 5.18 displays data that was taken when the anode was

being pulsed at the usual 47 kHz repetition rate with a long pulse duration of ap-

proximately 1µsec. The result is a relatively large duty cycle (4.8 %). Residual gas

molecules bombarded by the electron beam can result in positively charged ions.

These ions are attracted to the negative potential well of the electron beam, and

can accumulate over the time of each pulse. Between pulses, the potential well dis-

appears, allowing the ions to scatter, but because the duty factor is rather large,

many of the ions do not have time to fully escape or recombine[51,68]. Due to this

phenomenon, a net positive space charge can develop over time (usually just a few

pulses), which counteracts the space-charge forces of the electron beam. More elec-

trons can enter the beam pipe without being stopped by the space-charge potential,

and therefore more current is allowed to flow[76].

The simple acceptance relation between cathode potential and beam current

is convenient, but tuneshift compensation relates more directly to the space-charge

density of the beam. A pair of BPM plates are described more fully in the follow-

ing discussion, but essentially they are two electrodes that detect the electric field

produced by a passing charged beam. In this case, adding the integrated waveforms

from both plates in a BPM pair yields a measure of the total space charge passing

through. In Figure 5.19, this amplitude is plotted again against anode-pulse am-

plitude for the same variety of cathode potentials. The vertical scale has arbitrary
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Figure 5.19. Plot of charge density, as seen by BPM plates, on anode

voltage. Due to the higher kinetic energy at Vcat = −12 kV, the charge

density is significantly decreased, whereas the beam-pipe acceptance limit

is observed when Vcat = −12 kV.

units, but the magnitude of the received signal scales linearly with the density of

the beam’s space charge.

Since the current obeys Ie = λeβec, where λe is the linear charge density, the

space charge is expected to depend on the anode and cathode voltages similarly

to the dependence of the current. However, the speed of the electrons depends on

the current and cathode potential according to Equation 4.24. This complicated

relation generates a more challanging connection between the beam current and

charge density.

Nevertheless, it can be seen in Figure 5.19 that at low cathode potentials, the

acceptance of the beam pipe limits the charge density; the curve for Vcat = �4 kV

flattens at high anode amplitudes. However, even though the density is limited,

the slower speed of the electrons creates more space-charge for essentially all of the

144



parameter ranges accessible by the TEL. As the cathode potential is increased, two

effects are observed. First, the speed increases, lowering the space-charge density

for most of the space in Figure 5.19. This suggests that the largest tuneshifts from

the TEL will typically occur at lower cathode potentials.

However, the second phenomenon is that the beam’s charge density does not

saturate. At the highest levels of anode pulsing, a beam with more kinetic energy

has a greater charge density than one with less kinetic energy, even though it is

actually traveling faster. This is simply due to the fact that the electrons are given

more total energy, so that they can continue traveling forward in spite of strong

space-charge forces in the main solenoid.

The saturation effect at low cathode potentials is undesirable to typical TEL

operation; tuneshift beyond a certain amount become impossible. Even though the

beam current needs to be higher for moderate charge densities, the TEL was envi-

sioned to run with a cathode potential of about -10 kV, which provides a smoothly,

monotonically increasing level of space charge with anode voltage over the entire

range of interest.

Both Figure 5.18 and Figure 5.19 do not show a quick transition point where

the perveance-limited regime switches to the acceptance-limited regime. The main

reason for the very gentle “rolling off” stems from the potential inside the beam

itself as given by Equation 4.16. The potential at the very center of the beam is

always lower than at the edge of the beam. Therefore, at moderate anode voltages,

the edge of the beam may still have enough kinetic energy to continue moving, while

the center of the beam has used it all to overcome the charge potential. The center

then will begin to drop out, even though the edges keep traveling at full current

density.
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As the anode voltage is increased, a larger central portion of the beam is ad-

versely affected, repelling the full current from entering the beam pipe. Eventually,

the anode is pulsed at a voltage high enough that the full beam is space-charge

limited. However, there exists a large range where some portion of the beam is

limited by the pipe while the rest is not. The effect of this is to spread the transi-

tion point out into a rounded knee. This effect is readily apparent in Figure 5.18

and Figure 5.19. Not expressed in Figure 5.19 is the susceptibility of the accep-

tance limit to different parameters, such as cathode potential, residual gas density,

pulse length, and corrector settings. The fact that these parameters easily change

the charge density creates a difficult situation for a steady level of compensation.

By avoiding operating the TEL under these conditions, these complications can be

avoided. Instead, the TEL’s cathode potential is typically kept high enough so that

the entire beam current can travel through the beam pipe; it is simply the anode

voltage that determines the strength of tuneshift compensation from one bunch to

the next.

5.3.2 Electrodes along the beam pipe

The cross-section of the beam pipe shown in Figure 5.17 indicates a space of

radius 1.5 cm between the desired aperature and the high-vacuum wall. Along the

length of the main solenoid in this region must fit the TEL diagnositics. Figure 5.20

sketches the numerous electrodes involved in detecting and measuring the electron

beam and the antiproton and proton bunches. Each of these electrodes is electrically

isolated from the grounded beam pipe and is wired, through vacuum feedthroughs,

to coaxial cables leading out of the Tevatron tunnel and to support electronics. Not
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Figure 5.20. Sketch of the electrodes in the TEL. While not to scale, a

qualitative picture of the shape of each electrode is given.

drawn to scale, the two sets of BPMs reside near the beginning and the end of the

main solenoid.

The wires shown in the center are two mechanically actuated forks. One is

oriented vertically, the other horizontally, and each has a tungsten wire strung across

the gap. Remotely operated motors are able to swing each fork into the middle of

the beam pipe, where the electron beam is flowing. By adjusting the correctors, the

beam can be swept across the fork, and the intercepted charge flows through the

fork and again into cables that bring the signal out to be measured. The amount

of current as a function of beam position yields data that can be converted into a

profile of the current density. This conversion process uses a well-known technique

often called an Abel inversion[58,60], and the resulting profiles are displayed in

Section 5.2. The forks are always rotated out of the beam pipe before stores are

injected in the Tevatron. In Figure 5.21, a picture is shown that looks down the

beam pipe while both wires are inserted.
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Figure 5.21. Pictures of different diagnostics. The left looks down into

the gun bend area, where a pair of curved elbow electrodes and one holy

electrode can be seen. The middle picture peers down the pipe at the two

profile-measuring, retractable wires. The right looks at the support pipe

with a diagnolly cut BPM plate showing in the window.

The elbow electrodes are curved imitating the path of the electron beam around

each of the bends. Horizontally opposed, a high-voltage difference can be applied in

order to generate a strong horizontal electric field. While this was tested in order

to witness an ~E � ~B drift, the electrodes have not been used during normal TEL

operation. Figure 5.21 shows a pair of curved elbow electrodes inside the bending

area near the gun. Some mechanics involved in the operation of the wires can also

be seen.

The holy electrodes are simply cylindrical electrodes that have a hole cut into

one side. The electron beam passes through this hole as it enters and leaves the

region of the antiproton orbit. These and the elbow electrodes were installed to

assist with initial TEL commisioning. If the electron beam failed to pass through the

solenoids and into the collector, observing which electrodes were absorbing current

would indicate how to correct the guiding fields. Pleasantly, the electron beam had

little difficulty propogating completely into the collector, and the utility of these
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electrodes diminished quickly. A picture of one can also be seen in Figure 5.21 next

to the elbow electrode.

Next to the holy electrodes in Figure 5.20 are cylindrical electrodes intended

for clearing out ions. Ions are created by electrons bombarding residual gas mole-

cules floating in the beam-pipe vacuum. The once-neutral molecule can easily lose

electrons, turning it positively charged and attracted to the electron beam’s space

charge. Past machines often witness instabilities associated with these ions inter-

acting with the propogating beam[61,62], and a moderately high voltage on these

electrodes successfully attracts these ions away from the electron beam. In actual-

ity, the influence of ions has been small enough not to induce instabilities or other

problems, and these electrodes are typically grounded with the others.

The beam-position monitors, or BPMs, are pairs of plates that produce signals

corresponding to the transverse position of any passing charged particle. Discussed

at length in other references[33], a BPM consists of two electrodes opposing each

other and electrically connected to separate amplifiers or integrators. When any

charged particle passes through them, the electrical fields set up by the particle

induce a charge on each plate. While this phenomenon occurs in any electrode,

the two separate plates each induce an image charge linear with the distance that

the particle is from the plate. By normalizing the amplified voltage on each plate

to the total charge observed, the average position of any amount of charge can be

measured. The position simply follows the linear relationship:

x = k
VA � VB

VA + VB
, 5.4

where x is the transverse distance of the beam from the center of the beam pipe,

VA and VB are the measured voltages on the two plates, and k is a constant em-
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pirically determined from calibration measurements. The BPMs in the TEL have a

calibration constant k = 33.57mm when each Vi is the total integral of the bunch’s

charge profile, which in turn is the integral of the doublet current signal as charge

is first pulled onto the electrode, then returned, as the bunch passes by.

Each BPM measures the beam’s position in only one dimenstion and at only

one longitudinal position. Therefore a pair of BPMs are needed on the “upstream”

end of the main solenoid in order to record both the horizontal and vertical positions,

and another pair of BPMs are needed on the “downstream” end. By pinpointing

the electron beam’s position at these two points, the trajectory of the electron beam

is determined.

In the TEL, a fast oscilloscope and a dedicated computer process the wave-

form signals and compute positions constantly during stores. The design of this

system includes the ability to measure the position of antiproton bunches and pro-

ton bunches with the same BPM plates as the electron beam. In this manner, it

becomes possible to confirm that the electron beam and the antiproton bunches are

colinear within the main solenoid.

BPMs, while theoretically simple, are difficult to implement without complica-

tions. The first is the amount of noise in the system — the TEL BPM system must

average measurements over hundreds of turns in order to report positions with low

error bars. Additionally, the oscilloscope cannot digitize the electron, antiproton,

and proton signals at precisely the same time. Instead, the software accumulates

and processes each species sequentially over several seconds. Similarly, the one oscil-

liscope can only monitor one BPM at a time; the software is able to automatically

switch through all four BPMs. In this manner, the horizontal and vertical positions

150



Figure 5.22. Example of optimal BPM positions. The average positions

reported by the downstream horizontal BPM was 2.29 mm, -2.12 mm, and

2.33mm for protons, antiprotons, and electrons respectively. This average

value was subtracted out (with ±20µm added) in order to zoom in on

the fluctuations. The upper black data set represents the proton-bunch

position, the lower black set are the antiprotons, and the grey are the

electrons.

both upstream and downstream of all three species are reported during normal

operation.

In Figure 5.22, the positions reported by the BPM system for one location

and plane are shown over the course of five hours. In order to see the fluctuations

between readings, the average value of each measurement was subtracted and a

small offset added to better display the spread in each data set. Over the course

of the five hours, the Tevatron orbit positions will change slightly, reflected in the

long-term trends in the data. After accounting for this, the standard deviation for

the data sets are �1.2µm for the proton signal, �2.1µm for the antiproton signal,

and �8.9µm for the electron signal[70].

An additional issue is the linearity of the BPM signals across a wide portion of

the beam pipe. In order to improve this linearity, the BPMs are constructed slightly

differently than Figure 5.20 implies. The plates are cut at an angle, which can be
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seen inside its support pipe in Figure 5.21. This design allows the measurement of

position to be linear over a large range[63,64], which is important since the orbits

of the antiproton and proton bunches are approximately six millimeters apart.

The TEL BPM system has received a significant amount of attention. Sev-

eral references have detailed the operation of the system[40,65], but one significant

drawback has been the frequency-dependent response of the plates. The frequency

spectrum of a passing antiproton bunch centers around 53 MHz, while the much

longer electron beam encompasses a wide bandwidth around 2 MHz. This difference

generates a systematic difference in the BPM calibration between the two species,

and is mutable by a change in the electron-beam pulse width.

To showcase this effect, the anode was pulsed at varying lengths ranging from

20 nsec to 100 nsec, and the apparent position of the beam was measured and plotted

in Figure 5.23. The BPM system reported over 1mm difference in position over this

range, which does not include the pulse length of a typical antiproton bunch. The

anode modulator circuit is unable to produce shorter pulses. Because the magnetic

correctors did not need to be adjusted to push the electron beam all the way to

the collector, the actual beam position is believed to be reasonably stationary over

this range. During beam-beam compensation studies, the electron beam has been

centered on the bunch orbit by maximizing the tuneshift and minimizing particle

losses, described in Chapter 7, even though the BPM system reports a significant

offset in the position of the two species.

The calculation of position can be challenging, as each signal VA and VB always

contains some level of noise, but subtracting the two signals yields a result much

smaller than either of the two sources, while the noise level is increased. The signal-

to-noise ratio can be difficult to overcome, which explains why typical position
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Figure 5.23. Position dependence on length of electron beam. The fact

that the BPM system calculates different positions depending on the length

of the beam corroborates the frequency-dependent response of the plates.

measurements averages over hundreds of turns. Due to this susceptibility to noise

and the nanosecond-scale signals on the BPM leads, special attention needed to be

placed on the cabling from the plates all the way to the oscilloscope. Fifty-ohm cable

is attached to each BPM plate, drawn through coaxial feedthroughs in the vacuum

wall, brought out of the Tevatron tunnel, and into the BPM electrical apparatus.

While the outer conductor is grounded at several places along the route (such as the

vacuum feedthrough and the signal switcher) reasonable preservation of the signals

has been observed.

The other electrodes also have leads drawn through the vacuum wall and to

various power supplies and equipment. All of these cables are also shielded in 50-

ohm cabling and separated from pulsed power signals, such as the anode modulator

pulses. This level of caution succeeded in preventing significant contamination of

low-level signals by high-power level transients.
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Figure 5.24. Scaled drawing of the collector cross-section. The collector

itself is a water-cooled copper cavity that resides outside of the solenoids.

This allows the electron beam to spread out, distributing the heat load

and decreasing the production of secondary electrons.

5.3.3 Collector design

A drawing of the collector appears in Figure 5.24, with a view of the expanding

electron beam. Spreading out the beam has several uses, one being the distribution

of the heat load. Locating the heating in one spot could melt the copper if the TEL is

operated at full capacity. Instead, the magnetic field lines beyond the collector sole-

noid spread out, and the electrons, religiously following the field lines, are absorbed

by a much larger area of the copper collector. Additionally, chilled water is piped

into the collector, where it passes through ducts within the copper and extracts up

to 50 kW of heat[76]. The intake pipe is shown in Figure 5.24 to illustrate the setup.

A more serious concern is the production of secondary electrons. Whenever an

energetic particle impinges on a surface, it has the ability to produce two effects.

154



First, it can inelastically collide with other electrons and impart enough kinetic

energy for them to escape from the metal’s surface. Second, it can elastically collide

with an atom and reflect off of the surface.

The inelastically produced electrons generally have a small fraction of the in-

cident electron; few are above 20 eV. The elastically reflected electron, on the other

hand, often has most of its original energy. These electrons can travel backward

through the TEL, creating a second, weaker, electron beam collinear with the first.

The primary and secondary beams are able to interact adversely, generating what

is typically known as a two-stream instability [71,72].

The mechanical design of the collector targets this issue. The secondary elec-

tron has a kinetic energy that is conserved as it attempts to pass into the collector

solenoid. Its energy can be split into parts parallel and perpendicular to the field

lines; that is,

v2
tot = v2

‖ + v2
⊥ , 5.5

where each portion is flexible total remains fixed. The electron, witnessing the

magnetic field lines, takes on a spiraling orbit as derived in Section 4.2. As pointed

out in that discussion, the angular momentum of the field-and-particle system must

be conserved, leading to the result that Br2 is constant as the magnetic field B

intensifies as the electron approaches the collector solenoid.

However, the transverse momentum p⊥ is related to the orbital radius by

p⊥ = eBr, which means that v2
⊥/B must also be constant, or as the magnetic

field increases, so must the perpindicular velocity. Equation 5.5 can therefore be

written

v2
‖(s) = v2

tot � �B(s)

B(0)

�
v2
⊥(0) ,
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where s is the distance along the field lines starting at the collector surface. This

relation holds for real values of velocity, which enforces the constraint

v‖(0) > v⊥(0)

s
B(s)

B(0)
� 1 . 5.6

An electron must originate with enough parallel momentum to overcome the mag-

netic compression; if the electron does not have enough, it will run out of longitudinal

momentum and be returned back to the collector surface.

The TEL’s collector surface has a residual field on the order of 100 G, while the

collector solenoid runs at 3.8 kG, implying that the longitudinal momentum needs

to be over six times larger than the perpendicular momentum. If the electrons are

emitted from the collector surface uniformly over all solid angles, only 1.2% of those

electrons meet that constraint. More importantly, the number of electrons that can

pass all the way into the 35 kG main solenoid is 0.14%.

The total number of secondary electrons is able to be larger than the number

of primaries, but the kinetic energy of most of them is typically a few eV, which sig-

nificantly impairs their ability to pass from the collector into the solenoid region[73].

Backscattered electrons often have kinetic energy close to that of the primary, but

the number of these that are germinated from copper is about 30% of the number

of primaries[74], and for an oblique incident angle, the percentage that point in the

small solid angle satisfying Equation 5.6 is even smaller than the percentages listed

above[75]. Under normal operation, the TEL is able to retain at least 99.7% of

the incident electron beam, as comparisons with the cathode and ground current

(explained in the next section) determine.
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5.3.4 Properties of a depressed collector

The collector is electrically isolated from the ground of the beam pipe. The

electron beam is absorbed by the collector and produces a current in a lead that is

brought back, via a floating power supply, to the cathode. By adjusting the power

supply, the collector can be set to a voltage different than ground. If the power

supply is set to zero, then the voltage on the collector would equal that of the

collector. In this theoretical situation, electrons are born at the cathode potential

and accelerated by the anode and the beam pipe according to Section 4.3, but as

they approach the collector, they are slowed back down to zero energy.

Realistically, the collector must be at a voltage somewhat more positive than

the cathode, so that the electrons still carry some forward momentum when they

are received by the collector. Nevertheless, there are two advantages to keeping

the voltage difference small. First, the heat load generated by the incident beam is

directly related to its kinetic energy with respect to the collector: a 10 keV electron

on a (-)6 kV collector imparts only 4 keV of energy. When the TEL is operated at

maximum capacity, the total power deposited in the collector could be considerable,

and lowering the voltage difference would be useful.

The second advantage to a small voltage difference is related, since the power

dumped into heat orginates with a power supply. If the collector is grounded, the

supply feeding the cathode would need to maintain -10 kV for as much as three

amperes. It is this supply that feeds the heat load of the collector. Instead, a

supply connecting the collector back to the cathode but with a smaller voltage

difference needs to provide much less power while still maintaining the complete

current loop. This technique of returning the current back to the cathode on a path
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electrically separate from ground is known as a recirculating beam, and is used in

many high-power beam systems[33].

A side benefit benefit of floating the cathode power supply is that the current

between the cathode and ground is, ideally zero. Discussed in the next section,

this current is nonzero only when electrons are able to get to the beam pipe, which

means the beam is scraping along a side, a magnet is incorrectly set, or something

has failed. A safety interlock can use this signal to confirm that the TEL is operating

adequately.

The complex geometry of the collector, the changing beam size, and the non-

grounded collector walls make a calculation of the collector acceptance difficult.

However, it is important that the electron beam is able to pass into the collector

just as Section 4.3 analyzed the beam passing into the beam pipe. A test of the

collector consists of setting its voltage to nearly that of the cathode and measuring

the current that it receives. As the voltage difference approaches zero, the current is

expected to drop to nearly zero, implying the space-charge potential is too high for

the current to continue moving forward. At larger voltages, more and more current

will be collected, until finally the amount will level off at the full available current.

The data from this experiment is shown in Figure 5.25. At zero voltage differ-

ence, a small amount of current is measured on the collector, implying that through

energy spread or space charge forces, a quarter of the beam can still manage to

reach the collector surface. However, as the voltage is raised, the amount of current

reaching the collector increases. As the difference approaches 1 kV, all of the current

is received.
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Figure 5.25. Measurement of collector acceptance. As the collector volt-

age is adjusted with respect to the cathode voltage, the current admitted

by the collector changes. At around 0.75 kV, the space-charge potential of

the entire beam just equals to the kinetic energy.

Ideally, a sharp corner would appear where the space-charge potential just

barely equals the full energy of the electron beam, and the acceptance could be

calculated using the voltage and current at that point. However, due to the beam’s

energy spread, the finite rise time, and the complex geometry of the collector, this

corner is smoothed out, and the acceptance can only be approximated. Using the

data point where the maximum current is truly witnessed, the acceptance of the

collector appears to be 9.21µP. Using the point somewhat lower in total current

for the calculation, the collector functions at 13.61µP. In reality, the collector has

an approximate acceptance of around 10µP, much larger than that of the beam

pipe[76]. The collector has never been a limit on the TEL’s performance, since its

voltage can always be increased if necessary. Normal TEL operation usually sets it

at about 5 kV above the cathode voltage.
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Two electrodes are also shown in Figure 5.24, which have primarily been used

for monitoring the beam’s passage into the collector. For example, the scraper elec-

trode, closest to the collector, has its own current monitor, and if it reads something

other than zero, the TEL beam is, at least partially, running into it. Adjusting the

downstream magnetic correctors such that this signal is eliminated assures optimal

performance of the TEL.

5.4 Electrical subsystem

While the various elements, such as the electron gun, the collector, and various

electrodes, have been analyzed, the manner in which these elements are typically

operated has not been described. Likewise, each of the probes used to measure

various features of the beam must be understood before they can be trusted.

5.4.1 Basic model of electrical layout

A recirculating DC beam could be generated by the simple circuit illustrated

in Figure 5.26. In this case, the cathode power supply does not need to produce any

current. The beam current does flow through the collector power supply, but the

voltage that this supply must support can be significantly less. The anode power

supply also carries no current and simply “kicks” the current around the loop.

The actual TEL requires pulses of beam current with fast rise and fall times. In

addition, the Tevatron tunnel, filled with radiation during operation, is a poor place

for solid-state electronic equipment. The power supplies must be located above the
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Figure 5.26. Oversimplified schematic of the TEL circuitry. In this

picture, the power supplies are located close to the TEL, and the anode,

filament, and profiler voltages are referenced to stable cathode voltage.

tunnel, connected by cables over a hundred feet in length. Keeping the inductance of

the current loop to a minimum and assuming the TEL will only be used in a pulsed

application, the loop was configured with a large capacitor near the TEL, while

the collector power supply that simply maintains the voltage difference is located

upstairs.

Likewise, the cathode power supply is located upstairs, but clearly as current

begins to flow from the cathode, the voltage will begin to drop. This simply relates

to the total capacitance between the cathode and ground. In direct measurements,

the cathode-ground capacitance of the gun itself is only about 20 pF, but the cables

attached to it increase that significantly. The process of changing the cathode

voltage follows dV/dt = I/C if C was a known value, but the cables act like a

distributed capacitance, creating a confusing circuit to model. It was decided to
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add an additional capacitance between the cathode wire and ground to “make sure”

the voltage remains steady, and monitors of the cathode voltage before and after

the addition show marked improvement in its stability.

Another concern is the cathode filament connections. While an ideally designed

cathode would be electrically isolated from the filament, constraints on the space

allotment made this difficult. Instead, the filament is connected on one side to the

cathode, and the other side has its own tap. The filament is therefore powered by

60Hz which is electrically isolated through a high-voltage transformer. This allows

the primary side to be referenced to ground and only the secondary is floating near

the cathode voltage.

While some of this discussion may seem overly fastidious, it is important to

understand the cathode’s connections when the question is asked how the current

from the cathode is measured. A high-bandwidth, commercial current transformer

encircles the wire attached to the cathode. The transformer’s signal is preserved over

the long (heliax) cable by only grounding it upstairs where an oscilloscope measures

it. This prevents ground noise to corrupt the signal. Keeping the impedance at

50Ω also reduces electrical coupling from other sources over the long propagation

distance and reflection issues. Risetimes of 1 or 2 nsec and currents of a few milliamps

are visible. However, the low-frequency filament current passes through the current

transformer, so the return cable was obliged to pass through it also; the two currents

are always in opposition and therefore cancel.

This complexity is depicted in Figure 5.27. The majority of the electronics and

power supplies are harbored outside of the tunnel due to the damaging radiation

produced by the Tevatron operation. This means that long cables must span the
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sixty meters between the TEL itself and the gallery where these supplies are situ-

ated. For the majority of these cables, high-voltage, shielded coax (RG-213) of 50Ω

impedance is used. In order to connect the capacitors, current meters, and various

connections, a high-voltage enclosure was constructed that sits next to the electron

gun and houses the components. This enclosure is not shown in Figure 5.27, but is

detailed in other documents[77]. In order to keep cable issues at a minimum, the

cables leading to the gun and collector from this box are minimized.

A simple brief analysis of the capacitances reveals one concern. The capaci-

tance from the cathode conductor to ground provides the initial current when the

anode draws current (hence increasing that capacitance holds its voltage better). If

the cathode itself has about 20 pF to ground, the two-foot cable provides another

60 pF, and the additonal capacitor is 1 nF, then only about 92 % of a sudden cur-

rent pulse will be witnessed by the current transformer. Shortly after this moment,

the additional cables (traveling upstairs) and capacitance on the other side of the

recirculating capacitor contribute to the current flow (eventually replenishing all of

the lost electrons). The effect on the current transformer’s signal is similar to a

low-pass filter, but the cathode’s capacitance is low enough to keep the distortion

below significant levels.

In order to confirm that the beam current passed all of the way into the collec-

tor, another current transformer monitored the current returning from the collector

to the recirculating capacitor. A third transformer watched the scraper electrode’s

current (Figure 5.17 shows that they were placed beside the collector, before any

cable runs), since this provided the narrowest aperature and the easiest way to ad-

just field strengths in order to steer the beam into the collector (finding a zero is

less challenging than finding a maximum). The scraper fed into the collector cable,
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Figure 5.27. Realistic circuit of the TEL. The shaded barrier is actually

about sixty meters between the Tevatron tunnel and the gallery where the

supplies and electronics are stationed. The filament is connected to the

cathode potential on one side, so the AC power supply needs to be isolated

from ground via a transformer, and its signal needs to be “subtracted” from

the cathode current meter.

so that the collector current should be identical (though delayed) to the cathode

current. A typical oscilloscope trace of these three currents is shown in Figure 5.28.

As has been consistently observed, the peak collector current is less than that of

the cathode current. Section 6.1 explains how the electron beam is expected to

lengthen longitudinally due to energy spread, which would lower the peak current

at the collector.
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Figure 5.28. Oscilloscope trace illustrating a typical pulse of cathode,

collector, and scraper currents. The cathode current transformer registers

a peak current of about 1.2A, and the collector reads 1.1A. The time delay

is simply the amount of time it takes for the electron beam to travel the

entire path from cathode to collector, plus another 1.5 meters of additional

cabling to the high-voltage enclosure.

A second reason for the discrepancy between the cathode and collector currents

is the much larger capacitance between the collector and ground. It was found to

be about 600 pF, much larger than that of the cathode. An additional 3 nF of

capacitance was placed on the other side of the current transformer to attempt to

offset this capacitance, but a low-pass filtering effect is still expected on the signal.

Fast risetimes and low noise has been seen on the collector current transformers;

however, the cathode current remains the more dependable resource for observing

the beam current. Most data in this dissertation use the cathode current readings.

It should be noted that a better design would be to include a vacuum-

compatible current transformer (or one outside a ceramic break and covered by
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a continuous ground plane) slightly downstream of the anode. This would enable

direct measurement of the beam current without complications, though juggling the

bore size, low-frequency limit, and high-frequency limit, especially in a magnetic

field, would require some effort. Another less-choice option is putting it right be-

hind the cathode-filament connections around their leads — still some analysis of

its feasibility would be needed. Both of these options are more trustworthy in their

measurement of actual beam current, the former being the best, since it surrounds

the beam itself. A similar approach would be useful for the collector current as well.

5.4.2 Anode modulation

The requirements for pulsing the TEL were described in Chapter 3. The beam

current not only must reach an arbitrary new level within 396 nsec, it must be stable

at the new level early enough to propagate down the interaction region. If the speed

of the electrons is about 0.2c and the distance is 2m for the interaction length plus

another 1 m from the cathode, the “flushing” time is at a minimum 50 nsec. The

anode voltage must be stabilized at its selected level, as Section 3.2 points out.

It is tempting to think that a significant overshoot (or undershoot) is accept-

able, since the added “bump” in current can be compensated by dialing in a lower

(or higher) chosen level. This works well for single-bunch operation (including this

discussion), but if tune-shift compensation is set for multiple bunches, adjusting

the current level for one bunch should not affect the current levels for neighboring

bunches.

Impressive solid-state technology is available for high-voltage, high-speed power

switching. However, the waveform as shown in Figure 3.3 requires a high-bandwidth
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amplifier. These difficult constraints led to a large effort to produce an adequate

amplifier. The current scheme, which has barely succeeded the TEL’s requirements,

centers around a tetrode RF tube. Several publications describe this circuit, but

the high-power circuit is briefly mentioned here.

A commercial, low-level waveform generator is triggered by the Tevatron-based

timing system mentioned in Section 1.2 and produces a small version of the desired

pulse train. This is amplified by a 500W wideband amplifier. The output of this

device, illustrated in Figure 5.29, is transported via high-power heliax into the Tev-

atron tunnel to the grid electrode of the RF tube. Meanwhile, about 6 kV provided

through a large resistor, shown with the tube in Figure 2, to the top plate of the tube

and, before any pulses arrive, the tube is left on, which means current pours from

the top plate to the bottom collector. This maintains the plate’s voltage at nearly

the same low voltage as the bottom collector, while the large resistor dissipates the

large current.

When a pulse arrives, the grid cuts off the current a certain amount, which

allows the tube’s plate to jump in voltage. The gun’s anode is capacitively coupled

to this plate, so the jump in voltage is transferred to the anode. The waveform

arriving at the grid is magnified at the gun anode. In order to ensure that the

anode stays at zero potential with respect to the cathode when beam current is not

wanted, the anode is inductively coupled to the cathode.

This system has a few complications. The first is that the 6 kV power supply

must be willing to drive a 1.5 kΩ load up to 100 % of the time. Second, the resistor

(and its cooling water) must dissipate the same power. These specifications lead

to rather large and unwieldy components. The RF tube also must be high-voltage
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Figure 5.29. Typical trace of the signals produced by the anode modula-

tor circuit. The low-level pulse is sent to the wideband amplifier, which is

located in the gallery. Then the high-power signal is sent into the tunnel,

where the RF tube is located. The voltage is applied to the grid electrode

of the tube, and the outputed voltage is sent to the gun anode.

and high-power, making it also quite expensive, and it requires filament heating and

biasing. The entire amplifier circuit, therefore, has several adjustable parameters

that will affect its gain, risetime, and repeatability.

While the overall gain can be achieved by turning everything up enough, the

performance of the RF tube deteriorates rather quickly (weeks of operation) until

it either puts out negligent voltage or it fails catastrophically. Either way, replacing

the RF tube is expensive and often impossible, so recent experiments with the

lens use severely restricted gains. Even so, the beam current has slowly decreased

significantly over a year, and several teams have recently been analyzing possible

methods to improve or replace the RF-tube concept. One option that is showing
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promise is a “distributed amplifier” scheme. In this case the one RF tube is replaced

by several smaller (and therefore more manageable) tubes. Delaying the low-level

signal activates each tube in succession, but their outputs are delayed also, so each

contributes to the final single waveform[78].
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Chapter 6:

TEL integration

For it is written: I will destroy the wisdom of the wise;

the intelligence of the intelligent I will frustrate.

–1 Corinthians 1:19

6.1 Instabilities

When the concept of beam-beam compensation was being proposed for the TEL,

a number of questions arose in regards to the introduction of a new and untested

device that can affect and be affected by the Tevatron bunches[13]. Besides the

hope of tuneshifting the bunches, the TEL electron beam can react to the passage

of bunches while affecting them at the same time. In general, this circular influence
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can lead to instabilities. Calculations, simulations, and measurements of different

effects have been performed, since any adverse situations will negate any benefits of

tuneshift compensation.

6.1.1 Transverse-Mode Coupling Instability I

The electron beam interacts with the head and tail of each antproton bunch.

Fortunately the electron beam is “replenished” between consecutive bunches, so that

the electron beam does not transmit forces from one bunch to the next. However,

one portion of the electron beam does interact with the head and tail within a given

bunch. This implies that if the head of the bunch was to affect the electron beam,

the electron beam would be altered when the tail arrived. On each passage, this

phenomenon could escalate, creating an instability for the antiproton bunches.

This description is similar to numerous head-tail interactions. In each case,

the head of the bunch produces a wakefield that, through some medium, affects

the tail. The kick is imparted on every turn, but the tail particles migrate to the

head (through synchrotron oscillations) and cause other particles to be affected. The

circular relationships between different portions of the bunch is what destabilizes the

motion, leading to a transverse-mode coupling instability (TMCI). In this section,

the simplest mode of this TMCI is considered. The antiproton is modeled as two

macroparticles, each containing half of the total antiproton charge. Oscillations

of the two macroparticles illustrate the dipole mode of this instability and can be

solved analytically. The next section presents results from simulations of more

general modes.
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In most instances of TMCI, an offset in one plane generates a kick in the

same plane. However, the TEL solenoid generates motion in one transverse plane

from motion in the other. Therefore the analysis of this instability is somewhat

more complicated than standard head-tail phenomena. The full treatment has been

produced in several other publications and requires a development of the concept of

wake functions. In this dissertaion, pedantic theory is replaced by relevant results.

A simple model of the coupling is illustrated in Figure 6.1. First, the electron

beam interacts with the head of the antiproton bunch. However, the beam and

the bunch cannot be perfectly colinear, so there is a small ∆x offset between their

centers. If a slice of the antiproton bunch near the head has total charge Q, then

the electron beam feels a collective momentum kick

∆pe(t = 0) =
2eQ∆x

(1 + βe)cσ
2
p̄

x̂ .

This momentum kick causes coherent gyromotion of the entire electron beam similar

to Equations 3.3 and 3.5. In this situation, the motion will follow

xe(t) =
∆px0

eB
sinωt ,

ye(t) =
∆px0

eB
(1� cosωt) ;

where ω is still defined as eB/γm.

It is evident that a displacement in one direction results in movement in both di-

rections as the rest of the antiproton bunch passes. Wake-function analysis describes

the impact of the electron beam’s fields on any subsequent slice of the antiproton
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Figure 6.1. Sketch of head-tail coupling, leading to TMCI. The electron

beam begins by being slightly off-center of the antiproton bunch. This

offset generates a kick in the electron beam away from the antiprotons.

However, the solenoid field translates that horizontal kick into horizontal

and vertical displacement, so that the electron beam’s impact on the tail

of the antiproton bunch depends on the head.

bunch. If a particular slice is distance s behind the first and has the same total

charge Q, then it will receive momentum kicks

∆px(s) = �eQ

c

�
Wd(s)∆x�Ws(s)∆y

�
,

∆py(s) = �eQ

c

�
Ws(s)∆x + Wd(s)∆y

�
;

6.1

in which the direct wake function Wd(s) and the skew wake function Ws(s) are

defined by

Wd(s) = W sin ks θ(s) ,

Ws(s) = W (1� cos ks) θ(s) ;
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where θ(s) is the step function and W and k are

W =
4LIe

(1 + βe)βecr2
eσ

2
p̄B

,

k =
ω

(1 + βe)c
.

In this situation, L is the interaction length of the TEL, Ie is the beam current,

re and σp̄ are the electron beam and antiproton bunch radii, and B is the solenoid

field strength.

Through a tedious analysis of the synchrotron motion, the impact of the mo-

mentum kicks described in Equation 6.1 can be solved. The direct wake effect can

be mitigated if the gyrofrequency ω is fast enough to allow many rotations during

the passage of the bunch. The skew wake is decreased by keeping the tune difference

jνx � νyj large.

Bounded solutions can be found in terms of the horizontal and vertical tune-

shifts ∆νx,y and the Tevatron’s synchrotron tune νs. In this case, the minimum

solenoid field Bmin is given by

Bmin � 1.3 eNp̄

r2
e

s
∆νx∆νy

νsjνx � νyj , 6.2

where Np̄ is the number of protons. For a realistic situation where ∆νx = 0.01,

∆νy = 0.003, Np̄ = 6 � 1010, re = 1.6 mm, νs = 0.001, and jνx � νyj = 0.01, the

minimum magnetic field is approximately 0.96T. This value is based on theoretical

precision; a real machine could easily have other phenomena occurring that encour-

ages the growth of the instability. In addition, the TEL is designed to allow for

different operating parameters. For example, a higher-current electron gun or more
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antiprotons per bunch can easily push the minimum magnetic field higher. Finally,

this analysis only pertains to the dipole mode of TMCI instabilities; the head and

tail act as two macroparticles that oscillate against each other. A more general

description of the antiproton bunch that incorporates multiple modes is pursued

next.

6.1.2 Transverse-Mode Coupling Instability II

The preceding section derives the relation between the minimum stable mag-

netic field and various parameters, but only accounts for the dipole motion of the

antiproton bunch. By splitting the bunch into a greater number of macroparticles, a

numerical tracking algorithm observed the excitation of many different TMCI modes

as a function of the relevant parameters found in Equation 6.2. In these simulations,

between 128 and 2048 macroparticles were assembled following a Gaussian distribu-

tion in longitudinal position and momentum. The horizontal and vertical position of

every macroparticle was followed as they rotated through their synchrotron orbits.

A revolution around the Tevatron ring was modeled as a rotation through phase

space in all three dimensions; the longitudinal position was advanced by the phase

angle 2πνs, and the transverse positions were likewise rotated by 2πνxi and 2πνyi.

The transverse tunes were spread over a small range, typically 0.002, in order to

mimic the tune spread of a real bunch.

After each revolution, the macroparticles were sorted from head to tail and

allowed to collide with the electron beam. This interaction caused electron-beam

motion as described by Equation 4.15, which in turn influenced subsequent anti-

proton macroparticles. Each macroparticle acted on and responded to the electron
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beam. Afterwards, the new transverse position and momentum were translated back

into a betatron amplitude and phase for each direction, and the antiproton bunch

was ready to be sent around the Tevatron again. The tracking program repeated

this process for tens of thousands of turns, depending on the specific application.

The first analysis related the threshold magnetic field to the strength of the

TEL electron beam. In this situation, the tuneshift of the electron beam and the

number of antiprotons were fixed, and the solenoid’s field strength was chosen. Af-

ter 10,000 turns, the macroparticle transverse-oscillation amplitude was tested. The

instability would manifest itself as a significant increase in the oscillation amplitude

over this many turns. If no significant increase was detected, the simulation’s sole-

noid strength was lowered; if a large increase was observed, the solenoid strength

was raised.

By repeating this method and iteratively adjusting the field strength, the

threshold magnetic field could be estimated for a specific bunch population and

TEL tuneshift. Figure 6.2 plots the results of these simulations, where each data

point represents the threshold magnetic field for TMCI. If the magnetic field is larger

than the threshold, the instability was held in check by the rigidity of the electron

beam. Below the threshold, and significant oscillations of the antiproton macropar-

ticles was observed. As the figure indicates, three different antiproton numbers were

tested at a range of TEL tuneshifts.

As the strength of the TEL or the number of antiprotons increases, the required

magnetic field strength also increases. Three bunch populations were chosen, Np̄ =

1�1010, 6�1010, and 1�1011, and the effective tuneshift in both the horizontal and

vertical directions was adjusted between 0.002 and 0.020. The simulation was run
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Figure 6.2. Plot of the minimum field strength in the TEL solenoid to

prevent TMCI. The simulation gives sensible results; the approximately

linear dependence on the number of antiprotons and on the tuneshift is

apparent. The staircase appearance of the Np̄ = 1× 1010 case stems from

the limited number of iterations performed. The linear dependence relates

well to the linear dependence of Bmin on Np̄ and the total tuneshift ∆ν =√
∆νx∆νy expressed in Equation 3.13. In these simulations, νx = 0.585,

νy = 0.575, νs = 0.0012, and σp̄ = 0.7 mm.

for 10,000 turns, which is significantly less than a second of time in the Tevatron,

but the minimum magnetic field is clearly dependent on both parameters. More

specifically, Bmin follows roughly a linear dependence on Np̄ and ∆ν. In these

simulations, the horizontal and vertical tuneshifts were identical, so that ∆ν =p
∆νx∆νy. This linear relationship is predicted in Equation 6.2, so the simulation

is in good agreement with the two-mode analytical model.

Figure 6.2 predicts that at the current operation of the TEL at 35 kG, a tuneshift

of ∆ν = 0.020 could act on antiproton bunches with Np̄ < 6� 1010 without exciting
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Figure 6.3. Relationship of the minimum magnetic field strength to

the synchrotron tune. The data shown was generated with νx = 0.585,

νy = 0.575, ∆ν = −0.01, Np̄ = 6 × 1010, and σp̄ = 0.7 mm. A fitted

function Bmin = k∆ν
−1/2
s produced a constant k = 0.557 and is also

drawn.

the TMCI. This is double the maximum tuneshift results discussed in Chapter 6,

providing a large safety margin before exciting this instability.

The synchrotron tune νs is also expected to influence the onset of TMCI. In

Figure 6.3, this parameter was varied and the minimum solenoid strength was again

found. The two-mode model expressed in Equation 6.2 predicts a ∆ν−1/2
s depen-

dence, and the data points are fitted to this curve. Again, the data matches the

simple model quite well. The Tevatron’s current operating parameters include a

synchrotron tune of about 0.0003, where the data and curve are approaching 30 kG.

The operation of the TEL at 35 kG is above this limit, though close enough to be

warrant more careful simulations.

Combining the parameters from Figures 6.2 and 6.3, contours of the minimum
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Figure 6.4. Contours of minimum magnetic field strength for a range of

TEL tuneshifts and synchrotron tunes. Typical operation sets the tuneshift

∆ν =
√

∆νx∆νy at less than 0.01 and the synchrotron tune νs greater than

0.0003.

solenoid strength can be plotted as a function of tuneshift and synchrotron tune.

In Figure 6.4, the range of synchrotron tunes associated with Tevatron operation

are analyzed more closely. As the synchroton tune approaches zero, the required

field increases to infinity. This limit makes sense, as a bunch that never reverses the

head and tail, or reverses them too slowly, will drive the tail of the bunch at the

betatron frequency via the skew wake function in Equation 6.1. This driving force is

not damped by the reversal of roles, and the tail will be driven into the beam pipe.

Therefore the minimum magnetic field in Figure 6.4 explodes as νs approaches zero.

In the realistic case where the synchrotron tune is approximately 0.0003 or

larger, the simulations predict a tuneshift above 0.015 is necessary to excite TMCI.

Typical TEL operation operates with a horizontal tuneshift νx no more than 0.01

and a vertical tuneshift νy less than 0.003, so the simulations suggest that operation
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Figure 6.5. Minimum field strength as the horizontal tune is scanned

across the vertical tune. In this case, νy = 0.575, νs = 0.001, ∆ν = −0.01,

Np̄ = 6× 1010, and σp̄ = 0.7 mm.

of the TEL is stable.

Equation 6.2 shows a jνx � νyj−1/2 dependence for the minimum solenoid field.

By adjusting one tune while holding the other fixed yields a strong influence on

Bmin. The TMCI simulation was run while scanning the horizontal tune from 0.52

to 0.63; the vertical tune was held at 0.575. Figure 6.5 presents the minimum field

for stability along this scan. It is clear that when the tunes are close (jνx � νyj is

less than approximately 0.015) the ability to suppress TMCI is extremely difficult.

A fitted curve following the jνx � νyj−1/2 dependence is drawn also, and this curve

again connects the simulation results with the analytic theory behind Equation 6.2.

Farther away from the strong coupled-mode resonance, the simulation levels

off, contrary to Equation 6.2. This is expected, as higher-order modes of TMCI take

over. Lastly, as the horizontal tune approaches 0.5, the half-integer resonance forces
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the minimum field strength to increase. These phenomena are still significantly

below the operational 35 kG that the TEL functions at. As long as the horizontal

and vertical tunes are not within about 0.01 of each other, the TEL solenoid does

not excite TMCI.
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Chapter 7:

Successful results of
TEL operation

A Vorlon said understanding is a three edged sword:

your side, their side, and the truth.

– Captain John Sheridan

The measurements detailed in Chapter 5 focus on internal aspects of the TEL.

Chapter 6 proves that undesirable interactions between the electron beam and Tev-

atron bunches will not manifest. In this chapter, the successful results of TEL are

presented. Section 7.1 measures tuneshift with respect to several parameters, and

for much of the discussion, the flattop gun was used, as its linear focusing yielded

the largest and clearest shifts.

Because the edges of the flattop beam profile tended to interfere with long

lifetimes, the Gaussian gun replaced the flattop gun. In Section 7.2, a comparison
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between the two guns is given; it is with the Gaussian gun that the slowest emittance

growths were observed.

Due to the time required to produce antiproton bunches, outlined in Section 1.1,

many tests were performed on proton bunches. The dynamics are similar, but the

electric and magnetic forces that the electron beam imparts on proton bunches

is different. The electrostatic force is negative, since the protons are positively

charged and attracted to the electron beam. The proton bunch travels in the same

direction as the electron beam, so their associated currents are in opposite directions.

Therefore, the force due to the magnetic field is outward, or positive, weakening the

effect of the electric field. Hence, any tuneshift that the TEL performs on a test

proton bunch is less than the same TEL acting on a corresponding antiproton bunch.

Of course, this can be quantified by copying the derivation of TEL-induced

tuneshift given in Section 3.2. In particular, the factor (1+βe) in Equation 3.4 adds

the electric and magnetic forces together when acting on antiprotons, since both

terms are defocusing and therefore of the same sign. Since they are of opposite sign

when acting on proton bunches, the tuneshift is instead proportional to (1� βe). If

the electron beam travels at a speed 0.2c, the effective antiproton tuneshift from a

measured proton tuneshift can be found by multiplying the former by �(1+βe)/(1�
βe) = �1.5.

7.1 Tuneshift measurement

The Tevatron has had finely tuned Schottky detectors that measure the average

betatron tune of both protons and antiprotons. In Figure 7.1, two spectra are shown,
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Figure 7.1. Horizontal Schottky spectra with and without the TEL acting

on a single proton bunch. The left set of peaks is crosstalk from the vertical

tune, while the right set are the significantly changed horizontal tune.

each of which shows the horizontal tune spectra of a single proton bunch that was

injected into the Tevatron.

In the lower trace, the electron beam in the TEL is turned off, and the observed

spectra is simply the horizontal signature of the tune. The peaks on the right side of

the lower trace shows peaks, which are clearly centered around a tune of 0.5831 (the

actual tune is 20.5831, but Section 2.2 explains that the integer is typically ignored).
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The peaks on the left side actually bleed in from the vertical tune. Decreasing the

crosstalk between the two dimensions has required serious effort.

The trigger of the TEL was then timed to coincide with the bunch passage, the

cathode voltage was set to -10 kV, and the collector-to-cathode voltage was +5 kV.

So far, the anode was not was not being pulsed, so there was no beam current. The

magnetic fields in the gun, main, and collector solenoids were 3.8, 35, and 3.8 kG

respectively, corresponding to a beam radius of 1.6mm. After adjusting the correc-

tors to center the electron beam onto the proton bunch, the anode was pulsed so

that the current slowly increased. During this process, the horizontal spectra slowly

shifted to the right. The upper plot in Figure 7.1 shows the new spectra at a full

current of 2.03 A. The fact that the new central peak is centered around 0.5868 is

proof that the TEL successfully tuneshifted the proton bunch. The lifetime of the

bunch, defined later in subsequent sections, was measured to be about twenty hours.

This is just an example of many successful attempts to clearly tuneshift proton and

antiproton bunches.

Additional features in Figure 7.1 are worthy of mention. The area under each

of the traces represents the amount of transverse energy being transferred to the

particles, which leads to higher losses and emittance growth. This area is known

as the total Schottky power, and it is significantly larger when the TEL is operating

on the bunch. This fact suggests that the TEL is exciting betatron motion in the

particles. Section 7.3 delves into the measured impact of TEL noise.

7.1.1 Comparing tuneshift with theory

The expected tuneshift caused by an electron beam is calculated in Section 3.2.
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Since tuneshift is the immediate goal of the TEL, the equation for tuneshift given

in Equation 3.2 is the first to experimentally verify. Over the course of testing

the performance of the TEL, many measurements of tuneshift were performed while

adjusting its different parameters.

The relation between tuneshift and electron-beam current is important and

relatively straightforward to test. This connection was measured a number of times,

a few of which are shown in Figure 7.2. Each time, the translational position of the

TEL needed to be optimized in order to produce the maximum tuneshift. Chapter 5

demonstrates the complexities involved in aligning the electron beam well, and it

describes the problems associated with trusting the beam-position monitors (bpms).

Instead, adjustments to the dipole correctors were made while maximizing the ob-

served tuneshift. For a number of reasons, attaining the best alignment proved

difficult.

The experimental data often appeared close to the values expected by theory.

During some experiments, mostly during the first tests, the experimental tuneshift

were seen to be much less than theoretical predictions. The cause for this large

discrepancy is blamed on poor translational alignment. As experience developed

over three years of experimentation, large differences were rarely seen.

In Figure 7.2, the data from four select experiments is shown. In all of these

cases, the flattop gun was used with a beam radius of 1.6mm. The experiment

labeled as Experiment #4 is the earliest data plotted in Figure 7.2, but is in fact the

fourth experimental session with the TEL after it was installed in the Tevatron. As

the table shows, the Tevatron’s horizontal tune was set to 0.5825 before the electron-

beam current was turned on, and the TEL’s cathode voltage was set to �7.5 kV. As
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Figure 7.2. Observed horizontal tuneshift as it depends on current,

over several separate experiments. Theoretical predictions, following Equa-

tion 4.3, are plotted as grey lines for each relevant cathode potential. Be-

tween each data point, the current was adjusted slowly to allow the bunch’s

tune to change adiabatically. It is important to note that in each of these

experiments, the gun and main solenoids had respective field strengths

of 3.8 and 35 kG, so the electron beam had a radius of 1.6mm.
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the current was increased, the tune shifted by the shown amounts. While the amount

of tuneshift was significant, the amount was significantly below the expected amount,

which is expressed by the grey line labeled Theory #4.

In Experiment #14, the same test was performed. First, the TEL was aligned

to the proton orbit, then the cathode voltage was set to �7.5 kV. Tuneshifts were

recorded as the current was ramped up and down, with the highest attained shift of

0.0089, which corresponds to an antiproton tuneshift of 0.0112. While the base tune

in Experiment #14 was 0.5642, significantly different than that of Experiment #4,

the difference in results is not attributable to that. Instead, it is believed that

the electron beam was much better aligned to the proton orbit, causing a stronger

tuneshift for the same current. The tuneshift of 0.0089 on a proton bunch is the

largest observed tuneshift during all of the operation of the TEL, and the equivalent

tuneshift of 0.0112 on an antiproton bunch achieves and surpasses the requirements

of successful tuneshift compensation.

Additionally, Experiment #14 provides tuneshifts comparable with theoretical

prediction, with significant departure only at its highest current levels. The model

follows Equation 3.4, including the description of the electron-beam speed discussed

in Section 4.3. This theory says that, up to the current accepted by the beam pipe,

the current density and speed is uniform across the beam radius. In that scenario,

the tuneshift curves upward as the larger charge density is enhanced by the reduction

of electron speed.

In Figure 4.7, the center of the electron beam is suggested to be at a lower

potential than the edge, and therefore the electrons at the center are somewhat

slower and more dense than those on the edge. Since the majority of the protons
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in the affected bunch have small betatron amplitudes with respect to the electron-

beam radius, they sense the center of the electron beam more than the edge. This

could explain why the data of Experiment #14 below 1.5A is slightly higher than

the prediction of the theory, which does not tackle the nonlinear potential inside the

electron beam.

More interesting is the divergence of the data and the theory at large currents.

Without consideration of the space-charge potential within the electron beam, the

current should follow the Child-Langmuir law, given in Equation 4.6, until the ac-

ceptance of the beam pipe limits it. A plot of current versus anode voltage under

this scenario would show a 3/2-power relation to a sharp corner, beyond which the

current would remain constant. Instead, Figure 5.18 demonstrates a very gentle

rolling-off of current.

This phenomenon, analyzed in Section 5.3, agrees with the idea that the center

of the electron beam requires significantly higher energy than the edge. Because of

this, the center is partially rejected even at moderate currents. Since the protons

typically witness the center of the beam more than the edges, their tunes are not

shifted as much as the uniform-density model predicts.

Other TEL parameters were explored in other experiments. Two such cases are

also shown in Figure 7.2. In Experiment #18, the cathode potential was set to �8 kV

and tuneshift measurements from the base value of 0.5832 produced a curve less than,

but close to, the corresponding theoretical prediction. Other than a small upswing

at its highest current, the data exhibits similar features as Experiment #14. It is

interesting to note that both of these examples yielded somewhat linear relationships

between observed tuneshift and current, which is discussed in Section 7.4.
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Experiment#25 displays results when the cathode voltage was set to �4.7 kV,

significantly below its value during most of the other experiments. Due to the

slowly-moving electrons, a significantly higher charge-density yielded large tuneshifts

even at low current levels. This experiment impressively matches the theoretical

prediction. If more current was attainable during that experiment, it is expected

to drift away from the theoretical model, since electron rejection is a significant

problem at low cathode potentials. This prediction is justified in Figure 5.18, where,

at currents as low as 1 A, the beam pipe is unable to accept the total available current

when the cathode potential is �4 kV or �5 kV.

7.1.2 Translational alignment

Much of the discussion in this dissertation stems from the difficulty of producing

a large but dense electron beam. The net result is that, in the interaction region, the

electron-beam radius is significantly larger than the rms bunch radius. Nevertheless,

it is small enough that a little error in position can cause the electron beam to miss

the bunch at least partially. For example, if the head of the electron beam is centered

on the bunch and it travels at a mere 1 mrad angle to the bunch’s orbit, the centers

will be 2 mm apart, which is larger than the beam radius.

Figure 7.3 sketches the effects of a displaced electron beam on a proton bunch.

The left diagram illustrates the horizontal force exerted on protons in the ideal case,

where the electronbeaam and the proton bunch are perfectly collinear. Protons

initially to the right of the center receive a negative kick, while protons to the left

receive a positive kick. A dashed line passing through the center of the proton
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Figure 7.3. Illustration of how displacements can cause positive or neg-

ative tuneshifts. A proton bunch centered on the electron beam feels a

maximum positive tuneshift (left). A vertical displacement generates a

lesser tuneshift (middle), but a horizontal displacement can create a nega-

tive tuneshift (right).

bunch and tangent to the force represents the linear tuneshift, as has been analyzed

in Section 3.2. The slope of this line correlates to the magnitude of the shift.

The middle diagram in Figure 7.3 illustrates the horizontal force protons feel

when the electron beam is significantly displaced in the vertical direction. Even

though the protons are mostly outside the volume of the electron beam, they still

witness a focusing force in the horizontal direction. The magnitude of this force,

however, sharply reduced, yielding a smaller tuneshift. For proton bunches, both

scenarios exhibit positive tuneshifts.

A horizontally misplaced electron beam creates a more interesting situation,

as shown on the right side of Figure 7.3. In this case, all of the protons feel an

attractive force toward the electron beam (toward �x̂), but the protons closest to
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the electron beam are more strongly pulled than the others; the bunch is defocused.

This can be interpreted by the force diagram. The proton bunch in this case passes

through the force field where the slope is of opposite sign (the force scales with 1/r

instead of with r). The linear tuneshift, represented by the dashed tangent line, is

now negative.

Thus, the proton bunch is expected to demonstrate a positive horizontal tune-

shift when it is well-aligned with the electron beam, or if it is simply vertically

offset, but if it is significantly misaligned horizontally, a negative tuneshift should

be observed. In Figure 7.4, this hypothesis is tested and proven correct. An electron

beam, initially centered on a proton bunch, was steered vertically while the tune

was monitored. After it was recentered, it was steered in the horizontal direction.

Throughout this time, the horizontal tune was measured and plotted.

The plateau at the center of the figure indicates positions where the flattop

electron beam surrounded the proton bunch. With a current of 2.5A and a cathode

voltage of �7 kV, the simplified theoretical model predicts a horizontal tuneshift of

over 0.010, but Figure 7.2 predicts that the TEL will only shift approximately 0.009.

Indeed, the highest tuneshift in Figure 7.4 is 0.0088, with most of the plateau resting

at about 0.0085.

The solid dots in Figure 7.4 show a sudden decrease in tuneshift as the electron

beam is displaced more than its radius of 1.6mm. As the separation distance is

increased, the tune asymptotically approaches the unshifted base tune (which was

0.5644 during the experiment). Between each datum, the electron beam was moved

approximately 0.57mm; however, at positions where the proton bunch was scraping

the edges of the electron beam, the forces acting on the bunch are highly nonlinear.
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Figure 7.4. Measured tuneshift as the electron-beam path was displaced

from the proton-bunch orbit. The horizontal tune was measured as the

electron beam was steered vertically (solid circles), then horizontally (open

circles). Gaps in the horizontal data were due to indecipherable Schottky

spectra.

The Schottky spectra under these circumstances are unable to measure a well-defined

tune, and these displacement values are skipped.

The open-circle data shows the horizontal tuneshift while the beam was dis-

placed horizontally. Each increment was about 0.29 mm, but large regions failed to

produce a clear, distinct proton tune. Nevertheless, the separate regions reveal that

the tuneshift does in fact become negative when the proton bunch passes outside

the electron beam; Figure 7.3 predicted this effect. At large separations, the tune

again approaches the base tune, but when the bunch is near the edge of the electron

beam, the nonlinear space-charge forces prevent proper measurement of the proton

tune.
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An additional conclusion can be drawn from Figure 7.4. Within the plateau

region, both vertical and horizontal changes suggest that there is a slight decrease in

tuneshift in the exact center of the electron beam, with larger shifts obserbed closer

to the beam edges. This corroborates with the understanding in Figure 7.2, where

at high currents, the center of the electron beam begins to be rejected, decreasing

the space-charge density in this region. Due to this theoretical understanding, a

lower tuneshift is expect at the center of the beam, which is what is observed in

Figure 7.4.

The electron beam can be angled with respect to the closed orbit instead of

simply offset. The effect of such a misalignment is less severe, since the effective

tuneshift becomes an average of the derivative of the electric field over the relevant

extent of the transverse range. For example, if the angle is small enough such that

the head of a 1.6 mm-radius electron beam is horizontally displaced by +1 mm and

the tail is displaced by �1 mm, then a small bunch would still exhibit the same

horizontal tuneshift, since the derivative of the field is constant within the beam.

If the angle was increased beyond the edge of the electron beam, then part of the

interaction region would defocus the bunch while another part would focus it. The

net effect for moderate angles is still a positive tuneshift for protons, though of a

decreased magnitude.

Evidence supporting this claim is shown in Figure 7.5. This data was taken by

more sophisticated manipulation of the dipole correctors within the main solenoid.

Described in Section 5.1, it is possible to pivot the electron beam around its center by

simultaneously changing the upstream, long, and downstream correctors. Figure 5.3

in particular illustrates two distinct electron-beam paths, one slightly rotated around

the center of the main solenoid from the other.
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Figure 7.5. Measurement of tuneshift at various angles of the electron

beam. The beam path was angled around the center of the main solenoid.

This required coordinated adjustments of the upstream correctors, long

correctors, and downstream correctors.

In Figure 7.5, the correctors were adjusted to cover 2mrad of total pivoting

range. This experiment was performed during a different study period than the

previous tests. At 3A of electron-beam current and �7.5 kV on the cathode, a max-

imum of 0.0036 horizontal tuneshift was observed in the proton bunch during this

test. Over a range of 1 mrad, the tuneshift remained at this maximum (the center

of which was defined as zero), but at larger angles, the shift began to decrease. The

extent of this plateau corresponds to the head and tail regions of the interaction

length each moving by one millimeter, a value significantly less than the diameter of

the electron beam. A vertical displacement or angle would have the effect of decreas-

ing the range of maximum tuneshift in the horizontal direction. This possibility is

also supported by the fact that the maximum observed tuneshift is noticeably less

than what is expected for the electron-beam current.

The Schottky detectors are quite sensitive to the alignment of the electron

beam to the orbit of interacting bunches. Without the TEL, the Schottky spectra of
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Figure 7.6. Two examples of Schottky spectra. The left data show

the horizontal and vertical spectra of a well-aligned, one-Ampère electron

beam acting on a proton bunch, while the right data indicate that the TEL

is poorly aligned to the bunch. While the tune peaks are still visible, the

higher power (up to −40 dBm, instead of −53 dBm) indicates significant

emittance growth. Worse alignment obscure the peaks altogether.

the protons or antiprotons appears as a small number of peaks clustered around the

nominal tune. Separate detectors in the horizontal and vertical planes provide good

separation of the signals in either direction. When the TEL is optimally positioned

on a bunch, the spectra generally looks like the left example in Figure 7.6. First, the

set of peaks slides to a new position, providing proof positive that the TEL is indeed

shifting the tune. Additionally, the height of the peaks and the surrounding baseline

increases in magnitude, which implies that the particles are in general oscillating

with larger betatron amplitudes. When the TEL is centered correctly, the total

Schottky power, represented by the area under the peaks and baseline, does not

increase dramatically.
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When the displacement is not optimized, however, the increase in total power

is more significant. The right set of data in Figure 7.6 shows much more power

being deposited into the proton bunch. The TEL was unchanged between the two

cases, except the beam was translated by about two millimeters. The tuneshift

in both planes has decreased, and the height of the peaks has risen. The hori-

zontal data shows the most extreme difference. The pedestal on the left side sits

at about �69 dBm, while on the right, it has become �62 dBm. The peaks reach

to �53 dBm of power in the optimal case and �40 dBm in the suboptimal case.

If the alignment is worse, or if there is a higher level of fluctuations in the

current, the pedestal can swallow the peaks altogther, so that a reading of a specific

tune becomes impossible. This was the case during portions of the displacement ex-

periment shown in Figure 7.4, for example. Additionally, the tune spectra produced

by the Schottky detectors during collisions is significantly more complicated, due

to the inclusion of antiprotons and protons and the complex distribution of particle

behavior. The use of Schottky detectors to verify proper TEL performance is not

realistic.

7.1.3 Additional tuneshift dependencies

The previous discussion scrutinized the consequences of a bunch passing through

the electron beam at different transverse positions. The bunch must also pass

through the electron beam at a time when the beam current is maximized. Since

the anode modulator is pulsed by a delay circuit after the Tevatron clock signal, it is

possible to observe the tuneshift while adjusting the delay pulse over a wide range.
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Figure 7.7. Tuneshift caused by a delayed electron pulse. As the trigger

timing was adjusted, the bunch witnessed either the head or the tail of the

electron pulse. Again, changes were adiabatic to prevent bunch blowup.

When the delay is very short, the electron beam fires before the bunch arrives

at the location of the TEL, resulting in zero tuneshift. If the delay time is increased

slightly, the electron bunch will have fired too early, but the bunch will pass through

the tail end of the pulse, generating a small amount of tuneshift. Increasing the delay

further allows the bunch passes through the optimal time when the full electron-

beam current fills the interaction region. At larger delays, the bunch arrives early

and witnesses just the head of the electron beam.

In short, sweeping the delay and recording the tuneshift ought to map the lon-

gitudinal profile of the electron beam. Figure 7.7 plots data under these conditions;

the delay circuit was swept over a wide range of time while the tuneshift mapped

out the shape of the electron pulse. Since a larger delay time correlates to the front

of the pulse, the outline is horizontally reverse of the typical current pulse.

In order to compare the data to the pulse shape, a shaded rendering of the

current profile is reversed and included in Figure 7.7. The data impressively copies

the pulse shape, including the small bumps riding on top of the flat plateau. The
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Figure 7.8. Antiproton tuneshift as a function of cathode voltage. Dur-

ing experimentation with antiproton bunches, the voltage applied to the

cathode was varied, while the current remained at approximately 1.92A

and the profiler electrode was set to −150 V.

fact that the bunch can discern these small changes is important in the discussion

on fluctuations in Section 7.3.

The tuneshift generated by the TEL also depends on the cathode voltage, as

Figure 7.2 suggests. An experiment was performed on the tune of an antiproton

bunch while changing the cathode voltage. The data produced in this experiment is

plotted in Figure 7.8. The black data points show a decreasing tuneshift as cathode

voltage is increased in magnitude. This is expected, since the tuneshift is linear with

the charge density ρ = Ie/ve. An electron beam with 13 keV has a large speed, so

for constant current, the charge density is small, producing small tuneshift in the

antiproton bunch. An electron beam with only 6 keV of energy has more charge

density and generates a larger tuneshift.

It should be noted that the current was observed to decrease slightly at the

lower cathode potentials. This current, also plotted in Figure 7.8, ranged from

1.75A at the least cathode potential to 1.92 A at the largest. Additionally, the
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profiler electrode was set to �150 V with respect to the cathode potential. Shown in

Figure 5.11, the effect of the profiler is to eliminate current emission from the edge of

the cathode. This reduces the radius of the beam and the total current output, but

has negligible effect on the current density near the center. The effective reduction

of the radius can be determined from Figure 5.12. Setting the profiler to �250 V

from zero reduces the effective area by 4.1 % or the beam radius by 2.0%.

Using the correlated cathode voltage, beam current, and beam radius, Equa-

tion 3.4 generates a theoretical prediction for the optimal tuneshift that the antipro-

ton bunch can experience. The upper grey curve in Figure 7.8 plots this relation.

As previous discussion have concluded, it is difficult to align the electron beam

perfectly with the orbit, so a small reduction of the theoretical prediction is not

unexpected. The lower grey curve is simply the original theory multiplied by 0.9.

This curve fits the data impressively well at cathode voltages beyond �7 kV, while

at �6 kV and �7 kV, the difference becomes significant.

An explanation for the data’s departure from theory is similar to that of Fig-

ure 7.2; namely, when the cathode voltage is extremely low, the space-charge po-

tential is large enough that some of the current in the center of the beam cannot

penetrate the beam pipe. Since the majority of antiprotons in a bunch have small

betatron amplitudes with respect to the radius of the electron beam, they only sense

the charge density near the beam’s center. With less current at the center, the elec-

tron beam cannot shift the tune of the bunch as much as Equation 3.4 predicts.
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7.2 Successful operation

During many study periods, the shifting of the tune of proton or antiproton

bunches has been quite successful. The results shown in Figure 7.2 is a sampling of

many quality experiments. The dependability and alacrity with which TEL param-

eters could be optimized increased with the accrument of experience. However, a

number of attempts indicates that a significant number of particles in the bunches

were being lost as the TEL intercepted them. The lifetime of these bunches was

noticeably reduced, which has an obviously adverse effect on the eventual utility of

the TEL.

7.2.1 Controlling particle losses

Typically the lifetime of proton bunches in the Tevatron, before collisions and

without the TEL, is on the order of 150–300 hours. As the bunch traverses the

Tevatron ring billions of times, several mechanisms contribute to a gradual growth

in emittance of about 0.5π mm-mrad/hr. These include: residual-gas scattering,

intra-beam scattering (IBS), and fluctuations in the ring elements. As the bunch size

increases, particles gradually diffuse to larger oscillation amplitudes until they finally

collide with some aperture restriction, usually one of many adjustable collimators

inserted in the Tevatron beam pipe.

Each time a particle intercepts a collimator, it emits radiation due to the

loss of its forward momentum. X-ray detectors, known as beam-loss monitors, are

strategically positioned near the collimators such that they detect most of these

pulses of radiation. The readouts from these monitors report a frequency at which
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Figure 7.9. Typical bunch lifetime of a single proton bunch interacting

with the TEL electron beam. This data is for the flattop gun, and it

singlehandedly indicates the necessity of switching to a smoother beam

profile, as discussed in Section 3.4. Shortly after this problem was noted,

the Gaussian gun was installed.

X-ray pulses are registered, but reliable gating techniques allow losses from each

individual proton and antiproton bunch to be monitored independently. Lifetimes

of specific bunches can be observed via these detectors, and the results of certain

actions can be observed relatively quickly.

Figure 7.9 presents the results of an experiment where the rate of losses,

as indicated by the beam-loss monitors, was measured as the TEL current was

changed. This test was performed on a single proton bunch, and the cathode voltage

was �10 kV. The losses varied from about 250 Hz at low currents to 1 kHz at the

highest currents. At zero current, the average loss rate was approximately 230 Hz

over a large portion of an hour.

Several features are apparent in Figure 7.9. The losses data were converted into

lifetimes, producing more tangible results. This translation was straightforward,

202



since the lifetime τ = �cN
�
(dN/dt), where N was the current total number of

particles and dN/dt was the loss rate measured by the beam-loss monitors. The

constant c was determined from a calibration test. During a period of a couple

hours, the bunch was allowed to proceed without any changes made to the TEL.

After this amount of time, the number of particles had diminished enough to directly

compute the lifetime. Since the number of particles and the average loss rate were

also known, the constant could be derived.

The maximum current in this experiment was about 0.75 A, far less than the

two or more Ampères that is intended for useful beam-beam compensation. Never-

theless, the proton bunch’s lifetime at the higher electron-beam currents is less than

fifty hours, significantly less than the typical 175-hour lifetime without interference.

While it was impossible to guarantee that the electron beam was perfectly centered

on the proton orbit, adjustments of the beam’s position yielded no improvement in

the bunch’s lifetime.

In order to predict the relationship between beam current and bunch lifetime,

the sources of the losses must be understood. Without the TEL, a nonzero loss

rate can be measured. The mechanisms behind these losses, previously listed in

this discussion, are unaffected by the action of the TEL. Therefore, the loss rate is

expected to have a constant level to which the effects of the TEL add.

If the electron beam was perfectly uniform and had a radius much larger than

the bunch size, then the losses due to the TEL are expected to be negligible. It

is the edges of the flattop beam profile that is expected to effectively eliminate

particles of large betatron amplitude. If any particle that gains sufficient amplitude

is assumed to be removed quickly, the loss rate due to the TEL then corresponds

203



directly to the average expansion of the particle betatron amplitude. In Section 3.3,

the emittance growth rate was shown to follow the square of fluctuations in the

electron-beam current, which is usually a constant percentage of the total current.

Since the emittance is defined to be an average of the particles’ amplitudes, it follows

that the loss rate due to the TEL should depend on the square of the current.

The measured losses data was fitted with a curve consisting of a constant (non-

TEL) term and a quadratic (TEL) term. The curve plotted in Figure 7.9 is the

inversion of this curve to represent lifetime. The data follows this trend very well,

suggesting that the fluctuation level of the electron beam is a major contributor to

particle losses during experimentation.

A different experiment, shown in Figure 7.10, measures the loss rate with re-

spect to the transverse position of the TEL electron beam. If the beam and the

proton orbit are perfectly aligned, the core protons would be tune-shifted but sta-

ble. Only the most extreme protons could sense the nonlinear edges of the flattop

electron beam and be lost. At this position, the average losses are expected to be

relatively small.

If, however, the electron beam is slightly displaced transversely, the core pro-

tons would pass near the edge of the electron beam, generating much larger losses.

Finally, as the electron beam is positioned further from the proton orbit, fewer pro-

tons would sense much of its fields at all, again reducing losses. Hence, the shape

of the losses was expected to resemble a hill with a narrow hole in its center.

While the results in Figure 7.10 indicated a significant increase in the loss

rate when the electron beam was intercepting the proton bunches, there was no

indication of a stable center position. The center position (x = 0) was determined
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Figure 7.10. Analysis of how bunch losses compare with displacement

of the electron beam with the intercepted bunch. As expected, the losses

decrease drastically as the electron beam is far away from the bunch. How-

ever, a local minimum was expected at the ideal center position (x = 0),

which is not witnessed.

by the position of the largest tuneshift. However, at that position, the loss rate also

reached its maximum. The lack of a central stability region can be explained by an

imperfect orientation either in the other direction or an angle.

6.2.2 Comparison of electron guns

The last discussion presented more examples of the severe constraints that the

flattop edges place on the performance of the TEL. The Gaussian gun was designed

to possess much smoother edges so that particles at large betatron amplitudes would

not feel strongly nonlinear space-charge forces. Section 5.2 describes the differences

between the two guns. In order to quantify the differences between them, a scan

of working points was performed with each of the guns. In this test, the Tevatron
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horizontal and vertical tunes were independently adjusted to cover approximately a

0.020 span in both dimensions. By adjusting the tunes in 0.002 increments, the loss

rate was measured, recorded, converted to a lifetime, and plotted in Figure 7.11.

In order to simplify the understanding, both guns were set to currents such

that the horizontal tuneshift was 0.004 and the vertical was 0.0013. The Tevatron

is equipped with tune-adjustment parameters, which provided a convenient way to

adjust the tune. Confirmation of the correct tune was sometimes possible with the

Schottky detectors, but when the loss rate was high, an accurate measurement of

the tune was difficult to determine.

Whenever the tunes were adjusted, a short amount of time was needed before

the loss rate stabilized. Sometimes it reacted quickly, while other times required a

longer period before a specific loss rate could be determined. The number of protons

in the test bunch was measured throughout the experiment period, and a calibration

test was performed as mentioned in the previous section. This allowed the loss-rate

data to be changed into lifetimes as shown in Figure 7.11.

The shaded scale shown on the right side of the scans indicates the lifetime,

in hours, witnessed at each data point. In order to more effectively convey the

regions of high and low lifetime, a two-dimensional interpolation algorithm turned

the individual data points into a smooth, shaded surface. Individual isocurves are

also drawn at multiples of 20 hours.

Unfortunately, the regions covered by the two scans do not span the exact

same tune space, but significant overlapping allows significant differences between

the flattop and the Gaussian guns to become apparent. In the upper scan, the

flattop gun usually produced poor lifetimes. This implies that the TEL flattop gun
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Figure 7.11. Scans of working points with the TEL shifting the Tevatron

tune. Both of the flattop (top) and Gaussian (bottom) guns were set to

push the tune of a single proton bunch by about 0.004 horizontally. Data

points generating these greyscale maps were taken at 0.002 intervals in

each direction.
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tended to excite oscillations in at least some portion of the bunch particles, and

recorded lifetimes were mostly less than ten hours.

However, along a diagonal region near the main diagonal (νx = νy), there is

a relatively consistent pattern of lower losses. Along this strip, lifetimes as high as

seventy hours were observed, almost as high as the lifetime of the bunch without the

TEL operational. This achievement suggests that fluctuations in the TEL current

can be small enough that the bunch lifetime is nearly acceptable. However, this is

only observed in a very small portion of the tested tune space.

It is important to notice that if the losses incurred by the TEL operated by

a scattering process or driven oscillations by TEL fluctuations (steering, current,

ion instabilities, etc.), losses would be significant regardless of the bunch’s tune.

The particles being driven would be lost due to the mechanism independent of the

Tevatron settings. Instead, the observation of low losses at particular tunes indicate

that the losses are driven by a resonant phenomenon. While fluctuations can still

contribute to the process, the particles must be excited at select resonant frequencies,

as described in Section 3.4.

The large regions of low lifetime again supports the hypothesis that the flattop

electron beam is adversely affecting protons. The outlying particles, witnessing

strongly nonlinear focusing forces from the electron beam, do not survive as long as

the core particles. Through the majority of the tested tune space, these particles are

able to escape very quickly, and the gradual emittance growth of the core protons

constantly feeds these losses. Only in a small working-point region do the outlying

particles not escape so nimbly, slowing the rate at which particles are lost.
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The second scan in Figure 7.11 shows the massive difference that the Gaussian

gun had on the lifetime. The highest measured lifetimes were around 130 hours,

almost indistinguishable from the bunch’s lifetime without the TEL. Much larger

regions of lifetimes over twenty hours can also be seen.

The fact that the highest lifetimes are nearly the same as the unperturbed

proton bunch bolsters the idea that TEL fluctuations cannot, by themselves, remove

particles from the bunch completely. Instead, it is believed that the fluctuations

contribute to a gradual emittance growth, and because there are no strongly non-

linear edges to the electron beam, the protons are still stable at larger orbits. This

explains why a much larger percentage of the tested tune space offered moderate

lifetimes over that of the flattop gun and the best lifetimes using the Gaussian gun

significantly outlast those of the flattop.

It is interesting to note that the diagonal region of stability for the flattop

gun does not appear in the Gaussian-gun case. It is known that the particular

resonance in question (νx = νy) requires a minimum amount of coupling between

the two degrees of freedom[68]. While relatively weak, this resonance has been

observed in Tevatron studies, and the regions are avoided during operations[3]. In

general, a coupling resonance is effective because motion in one transverse plane

encourages motion in the other. It is possible that the flattop gun’s highly nonlinear

forces disrupts this correlation too much and disables this particular resonance, while

the Gaussian gun is gentle enough that the protons are able to resonate. More

experiments are necessary to test this conjecture.
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7.2.3 Successful reduction of emittance growth

The previous section presented the exciting success of the TEL, producing a

strong tuneshift without compromising the lifetime significantly. However, the ini-

tial goals of the TEL, stated in Section 3.1, were to compensate for the tuneshift and

possibly the spread of the antiproton bunches incurred by the protons. The under-

lying issue is the fact that bunch lifetimes are already lowered by the beam-beam

interactions, and that the TEL should mitigate this malady by increasing the life-

time of the afflicted bunches. Can the TEL improve the performance of the Tevatron

during collisions?

When a batch of protons and antiprotons first collide, the emittances of the

antiprotons tend to increase significantly. This initial emittance growth is studied

in Section 2.4, but after the first period of bunch expansion, lasting on the order

of an hour, the bunches reach a more stable size and suffer lower losses. Since the

Tevatron is typically operated such that stores last for a long time, it is difficult

to verify that the TEL might be improving the store’s performance by measuring

the lifetime over the latter portion of the store. Additionally, the period of time it

takes to measure lifetime scales with the lifetime, so doing TEL experiments at the

end of a store, when emittance-growth lifetimes are at their longest, would take an

extremely long time to produce a significant result.

Instead, the TEL was operated during the first half hour of collisions, acting on

a single bunch, while the bunch’s size was monitored. The goal was to significantly

decrease the growth of the particular bunch with respect to its sibling bunches (the

equivalent bunches in the other two trains), or with respect to the same bunch in

other, similar stores. This feat would be a successful instance of tuneshift compen-

sation.
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store number duration A9 growth A21 growth A33 growth

#2536 40min 9.9 9.2 9.3

#2538 35min 1.9 1.7 2.8

#2540 34min 4.1 2.2 1.0 TEL on

#2546 30min 3.9 1.9 4.0 TEL on

#2549 26min 4.5 3.6 7.1 TEL on

#2551 34min 6.7 6.6 7.0

Table 7.1: Growth of the rms vertical bunch size in the

first portion of several stores. All of the growth numbers are

in units of π mm-mrad. For the indicated stores, the TEL was

acting on bunch A33.

Several attempts were made to test this ability, each on a new store during

the first short period. These tests, along with pertinent parameters, are shown in

Table 7.1, where each row represents a different store (the designated store number

is listed down the left column).

In the three stores listed without the TEL in Table 7.1, the growth of bunch A33

is similar or larger than that of its siblings. In stores #2546 and #2549, it is still

larger. However, in store #2540, the growth of bunch A33 is significantly less than

that of the other two bunches. The size, as a function of time, is shown in Figure 7.12.

The data starts just after collisions began and the TEL was applied to A33. While

the other two bunches significantly increased in size over the next thirty minutes,

A33 did not increase as much.

While the other stores are analyzed in the same way, with the results shown

in Table 7.1, it is useful to visualize the bunch sizes in a similar store without the
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Figure 7.12. Evolution of three bunch sizes during the first thirty minutes

of collisions in store #2540. A line was fitted to each of the bunches to

determine their average growth rate. Antiproton bunch A33 clearly grows

at a much slower pace than its siblings.

TEL. Figure 7.13 plots the same parameters for the same bunches in the previous

store, #2538. In this situation, the three sibling bunches all increase at nearly the

same rate. The difference between the two consecutive stores is considerable, and

the only intentional difference is the application of the TEL.

After the initial half hour of each store listed in Table 7.1, the growth of each

bunch decreased significantly; it is understood that after the antiproton bunches

reach a certain size, their interaction with the proton bunches at collisions is much

more benign. This activity was witnessed regardless of whether the TEL was oper-

ated or not, and decreasing this already minimal growth rate would be very difficult.

The scope trace shown in Figure 7.14 shows the exact timing situation of the

TEL during store #2540. The lower trace shows as raw BPM-plate signal inside
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Figure 7.13. Evolution of the same bunches as Figure 7.12, but for the

previous store (#2538) and without the TEL. A linear fit of each bunch size

shows the average growth of each bunch to be nearly the same. Admittedly

the growth is not very linear in this case.

the TEL. Four proton signals are clearly marked, with antiproton signals occurring

roughly 150 nsec after each proton pulse.

The upper trace is the time-integral of the BPM plate signal. The large rise and

fall is the electron beam pulse, and the short negative spikes are the proton bunches

passing. The integrator has difficulty tracking the fast but small antiproton pulses,

but following the same time delay as seen on the raw BPM signal, one antiproton

pulse, namely that of bunch A33, intercepts the electron beam shortly before the

latter’s falling edge.
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Figure 7.14. Display of the bunches passing through the TEL electron

beam pulse. The upper trace shows an integrated BPM plate, the lower

shows a raw BPM plate signal. The slowly rising and falling electron beam

intercepts several proton and antiproton pulses, but only the antiproton

pulses are transversely centered on the electron beam.

7.3 Other observations

So far in this chapter, results directly related to expressed goals of the TEL have

been shown. A number of uses for the TEL have become apparent, mostly involving

shifting the tune of antiprotons or protons, increasing the lifetime of bunches in the

Tevatron, or shaving unwanted particles out of the Tevatron ring.

The interaction between the TEL and the Tevatron possess a number of other

interesting features, which are discussed here.
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7.3.1 Gentle bunch collimation

The flattop gun is shown in Figure 7.11 to typically cause higher losses than

the Gaussian gun. The major cause for this difference is the fact that the flattop

beam profile, shown in Figure 5.11, has such sharp edges. Indeed, Section 3.2 shows

that the ideal profile for linear compensation is an infinitely large flat distribution.

Small-amplitude particles and large-amplitude particles would both feel the same

focusing power, and the tuneshift would be independent on a particular particle’s

betatron amplitude.

Therefore the flattop gun was predicted to safely shift the tune of the core

particles — those with small amplitudes. The particles with larger amplitudes

would witness the sharp edges and would be driven out of the bunch. The remains,

after some amount of time, would be a smaller, lower-emittance bunch. The TEL

would act as a “gentle” collimator, coaxing the outlying particles away from the

bunch and eventually into the beam pipe wall.

A convenient way to measure this effect is to observe the bunch size as the TEL

trims away extraneous particles. In Figure 7.15, one bunch was monitored over a

hundred minutes as the TEL shaved the bunch size. The TEL was first set to 1 A

of peak current for the first 45 minutes. After a ten-minute respite, the current

was increased to 2 A (these settings are shown above the two graphs). After about

85minutes, the TEL was purposefully missteered in order to observe a “blowup” the

bunch sizes.

The upper plot shows the horizontal and vertical beam size measured many

times during this process. Also shown is the longitudinal bunch size. While this

parameter is largely ignored in this dissertation, coupling between the transverse
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Figure 7.15. Graphs that monitor the TEL acting as a “gentle collimator.”

Above both plots is a description of what was done. First the TEL was

set to 1A peak current. After 45minutes, it was turned off, and after an

additional 10minutes, was set to 2 A. After 85 minutes, the correctors were

changed so that the bunch passed through the edge of the beam. The upper

graph shows the bunch sizes decrease as the bunch was slowly shaved, and

the lower graph monitors the total number of particles remaining. The

horizontal axis (time) is the same for both graphs.

and longitudinal oscillations suggests that the longitudinal behavior ought to mimic

the transverse. Indeed, it does.

The lower plot shows the intensity of the bunch during this process. As shaving

particles suggests that the intensity should always go down, it is expected that, under

one set of conditions (like the TEL staying at one current), the intensity should

expontially decay. The semilog graph makes the different rates of decay stand out

more clearly.
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If the bunch was not being collimated, in other words, particles were driven

out irrespective of their betatron amplitude, then the beam sizes would decrease

exponentially until all particles are eliminated (and the sizes would be zero). Instead,

there is a fast initial decreasing of size, but after about ten minutes, the rate of

decrease drops significantly; this implies that the large-amplitude particles have

been cleared, and the core is more stable inside the electron beam.

In addition, the increase of the TEL current to 2 A was expected to worsen the

bunch-size lifetime, but the smaller bunch was well preserved for the remaining time

that the TEL was on and centered. The stability of the bunch size is remarkable,

suggesting that the flattop profile was ideal for the small bunch size.

However, it is known that particles inside of a bunch will diffuse through phase

space; a collimated edge in a bunch will not last indefinitely[6]. It is expected that

even when the bunch size is fixed, a slow attrition of particles will be witnessed.

The lower graph in Figure 7.15 illustrates this fact. Again, after a short interval of

faster losses, the rate decreases significantly to a smooth exponential (linear on the

logrithmic vertical axis). When the TEL current is doubled, the exponential decay

is nearly unchanged. A direct analysis of particle diffusion could be performed from

this data.

After the bunch was observed for a while, the TEL was moved transversely

so that the bunch intercepted the edge of the electron beam. As expected, the

particles were suddenly feeling extremely nonlinear forces, causing emittance (and

size) growth, shown by the bump in the upper plot, and heavy losses, shown by the

fast decline of the lower plot.
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7.3.2 Effects of fluctuations

Successful antiproton preservation is dependent on a very repeatable electron

beam. The tolerable limit of shot-to-shot variations in the peak beam current is

shown in Section 3.5 to be around 0.1 % of the total beam current. It is interesting

and important to observe the effect that the level of fluctuations has on emittance

growth in the antiproton bunches.

The modulator pulse circuit was modified to produce a random-amplitude

pulse. This was established by setting an average pulse amplitude modulated by

a noise generator. A trace of multiple pulses is shown in Figure 7.16, where the

average current is about 500mA and the rms variation was adjustable from 10 mA

to about 150mA. At different noise levels, the bunch size is observed long enough

to record its growth (and converted into emittance growth). At the same time, the

Schottky spectra was monitored, and the total power in the spectra was measured.

Figure 7.17 shows the data of this analysis. According to Section 3.2, the emit-

tance growth is expected to increase as the square of the amplitude fluctuations.

The measured data were fitted to an arbitrary quadratic, which they follow ade-

quately. In addition, the Schottky power data, having units of decibels, should scale

as the logarithm of the emittance growth, or linearly with the level of fluctuations.

As Figure 2 shows, the power is a little more anemic than fully linear. However,

the process by which the test was done allowed the bunch to grow somewhat before

the final, noisiest data was taken. This means that the total bunch population had

decreased before the final power was measured, which lowers the measured Schottky

power. It is therefore not surprising that Schottky power does not track as well as the
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Figure 7.16. Multiple traces of intentionally varying current amplitudes.

First, the average current is established (about half of an Ampère); then,

the rms fluctuation level is adjusted.

emittance growth; if it were possible to measure the effects of fluctuations without

significantly disrupting the bunch, the results should follow theory better.

Section 4.3 explains the inimical complexities of directly measuring shot-to-

shot variations in peak current (low-frequency changes, between 0.1 Hz and 1 kHz,

are much easier, but they are of lesser consequence to Tevatron bunches). Though

the maximum allowed fluctuations are stated in that discussion, a clever technique

for estimating that limit uses the curve in Figure 2. The Tevatron, without the TEL,

has a typical emittance growth of 0.2π–0.5π mm-mrad/hr. If the TEL is allowed to

only enhance the emittance growth by 0.1π mm-mrad/hr, added in quadrature to

the Tevatron’s inherent emittance growth, Figure 2 equates that limit to 3.5 mA rms

variation, which is 0.17% of a nominal 2 A-peak current.

219



Figure 7.17. Effects of large current fluctuations on bunch particles. The

emittance growth reasonably follows a quadratic curve. The total power

measured in the Schottky spectra is also recorded. Ideally, this should be

linear, but the effect of bunch growth accounts for the less-than-perfect

relation.

Another source of fluctuations is timing jitter. Because the peak of the current

pulse is typically quite broad, the timing jitter has shown itself to be rather benign.

Exploring this further, the electron beam was delayed various amounts with respect

to an impending bunch so that the bunch intersected the rising or falling edge

(following the description in Figure 7.7). Instead of waiting for the bunch’s emittance

to grow at each step, a measurement of the Schottky power was taken. Figure 7.18

displays the results of these measurements.

Although spectra power appears somewhat random, there is a discernable cor-

relation between its peaks and the largest slopes of the pulse shape. For example,

the maximum observed power is 4 dB over the next highest peaks and coincides with

the falling edge of the pulse. Along the rising edge, there are two somewhat steeper

edges with a more gentle portion between 665 nsec and 675 nsec. The registered
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Figure 7.18. Analysis of the measured Schottky power as the TEL trigger

delay is adjusted with respect to the intercepted bunch. The total Schottky

power is plotted at each step, and should mimic the derivative (magnitude)

of the pulse shape if timing jitter is significant.

power is lower in this region than before or after.

In addition, the small bump in charge density at 645 nsec, observed also in other

figures in different sections, can contribute to jitter-induced Schottky power, since

a small change in timing still produces a variation in the charge density. Indeed, a

large peak in Schottky power is centered directly on the small bump.

An interesting event occurred when the triggering circuit for the TEL began

failing intermittently. Large variations in the current, as shown in Figure 7.19, im-

pacted a couple bunches during a Tevatron collider store. Two antiproton bunches,

A28 and A29, intercepted the TEL electron beam. Over the course of about two

minutes, those two particular bunches were essentially eliminated.

Figure 7.20 illustrates the impact of the frenetic TEL on the two bunches. The

upper left graph displays the number of particles in each of the antiproton bunches.

221



Figure 7.19. Trace of how the TEL agitated two antiproton bunches

during a particular store. While the individual signals are overlaid, the

light grey is the current from the cathode and the black is the BPM plate

signal (integrated once). The multiple traces typify the large pulse-to-pulse

variations.

While most bunches have between 15�109 and 25�109, the two bunches in question

have a tenth those amounts. Before the two-minute operation, these bunches were

also around 20� 109 apiece. The upper right plot shows the attempt at measuring

the longitudinal bunch length. Again, while the rest of the bunch trains have 1.5–

2.0 nsec lengths, A28 and A29 have too few particles remaining to make a valid

measurement.

The bottom two graphs attempt to measure emittances horizontally and verti-

cally. While the other bunches consistently stabilize around 20π mm-mrad horizon-

tally and 30π mm-mrad vertically, the lack of a signal for the depleted pair appears

like they have vastly larger emittances. It is interesting to note that the next bunch

in the train, A30, has lost a noticeable portion of its particles also, and its emittance
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Figure 7.20. Data about the antiproton bunches after the crazed TEL

interfered with the store. The upper left plot shown that A28 and A29

had been nearly completely eliminated. The longitudinal beam sizes (upper

right) could not be measured, and their emittances (lower plots) were vastly

increased.

has also blown up considerable. The tail end of the TEL pulse can be longer than

expected from a quick glance at the cathode current signal.

At the same time, bunches A4, A5, and A6 were also briefly toyed with by the

TEL, but for much less time. A few particles were lost, appearing as a slight dip in

the upper left plot. More noticeably, their emittances were enlarged, which explains

why they stand out in the lower plots. Without the application of a fluctuating

electron beam, the emittances would stay much more in line with their neighbors.
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