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We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak
lensing measurements from the preliminary Science Verification (SV) data. We use 139 square
degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point
measurements over three redshift bins we find Ug(Qn,/O.3)O'5 = 0.81 £ 0.06 (68% confidence), after
marginalising over 7 systematics parameters and 3 other cosmological parameters. We examine the
robustness of our results to the choice of data vector and systematics assumed, and find them to be
stable. About 20% of our error bar comes from marginalising over shear and photometric redshift
calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS
are mildly discrepant with the cosmological constraints from Planck CMB data; our results are
consistent with both datasets. Our uncertainties are ~30% larger than those from CFHTLenS
when we carry out a comparable analysis of the two datasets, which we attribute largely to the
lower number density of our shear catalogue. We investigate constraints on dark energy and find
that, with this small fraction of the full survey, the DES SV constraints make negligible impact on
the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of

08 (Qm/0.3)°® is present regardless of the value of w.

I. INTRODUCTION

The accelerated expansion of the Universe is the
biggest mystery in modern cosmology. Many ongoing
and future cosmology surveys are designed to shed new
light on the potential causes of this acceleration using a
range of techniques. Many of these surveys will probe
the acceleration using the subtle gravitational distortion
of galaxy images, known as cosmic shear. This method is
particularly powerful because it is sensitive to both the
expansion history of and the growth of structure in the
Universe [T, B6]. Measurement of both of these is im-
portant in trying to distinguish whether the acceleration
is due to some substance in the Universe, dubbed dark
energy, or whether General Relativity needs to be modi-
fied. Observations of cosmic shear offer the potential to
elucidate the properties of dark energy and the nature
of gravity. In addition, cosmic shear can constrain the
amount and clustering of dark matter, which may help
us to understand this mysterious constituent of the Uni-
verse and its role in galaxy formation.

* Corresponding author: niall. maccrann@postgrad.manchester.ac.uk
 Corresponding author: joseph.zuntz@manchester.ac.uk

Since the first detection of cosmic shear over a decade
ago [3} [62], 116, 23], a number of subsequent surveys led
to steadily improved measurements [38, 45, 51} 55 8T
08, [99, 112]. More recently the Sloan Digital Sky Survey
(SDSS) Stripe 82 region of 140 to 168 square degrees was
analysed by Lin et al. [75] and Huff et al. [52]. The re-
cent Deep Lens Survey (DLS) cosmological constraints by
Jee et al. [57] used 20 square degrees of data taken with
the Mosaic Imager on the Blanco telescope between 2000
and 2003. The Canada France Hawaii Telescope Lens-
ing Survey (CFHTLenS, [46]) analysed 154 square de-
grees of data taken as part of the Canada France Hawaii
Telescope Legacy Survey (CFHTLS) between 2003 and
2009. CFHTLenS cosmology analyses included Kilbinger
et al. [64] (hereafter [K13), Heymans et al. [47] (here-
after [H13)), Kitching et al. [68] and Benjamin et al. [9].
H13| performed a six-redshift bin tomographic analysis,
which is arguably the most constraining CFHTLenS re-
sult, since they marginalised over intrinsic alignments as
well as cosmological parameters. The Kilo-Degree Sur-
vey (KiDS) have just released a weak lensing analysis of
100 square degrees of their survey and compare their cos-
mic shear measurements to predictions from CFHTLenS
and Planck best-fit models [70].

Cosmic shear measures the integrated fluctuations in
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matter density along a line of sight to the observed galax-
ies, with a weight kernel that peaks approximately half
way to these galaxies. This value can be compared
with the clumpiness of the Universe at recombination
observed in the temperature fluctuations of the Cosmic
Microwave Background radiation (CMB), extrapolated
to the present day using the parameters of ACDM de-
rived from measurements of the CMB. The most recent
measurements from the Planck satellite [87] are in ten-
sion with CFHTLenS and some other low-redshift mea-
surements, which could point to new physics such as
non-negligible neutrino masses or a modified growth his-
tory [0} 14]. However, as noted by MacCrann et al. [77],
massive neutrinos are not a natural explanation because
they do not move the two sets of contours significantly
closer together in the og, Q, plane.

Gravitational lensing of the Cosmic Microwave Back-
ground radiation provides additional information on the
clumpiness of the low redshift Universe. It probes slightly
higher redshifts than cosmic shear (z < 2) and recent
measurements have a constraining power comparable to
that of current cosmic shear data [89, [105] [122].

At present, three major ground-based cosmology sur-
veys are in the process of taking high quality imaging
data to measure cosmic shear: the Kllo-Degree Survey
(KIDS)E which uses the VLT Survey Telescope (VST),
the Hyper Suprime-Cam (HSC) surveyE| using the Subaru
telescope, and the Dark Energy Survey (DES)E| using the
Blanco telescope. Furthermore, three new cosmology sur-
vey telescopes are under development for operation next
decade, with designs tuned for cosmic shear measure-
ments: the Large Synoptic Survey Telescope (LSST)EI7
Euclicﬂ and the Wide Field InfraRed Survey Telescope
(WFIRST)

Though one of the most cosmologically powerful tech-
niques, cosmic shear is also among the most technically
challenging. The lensing distortions are of order 2%, far
smaller than the intrinsic ellipticities of typical galax-
ies. Therefore these distortions must be measured sta-
tistically, for example by averaging over an ensemble of
galaxies within a patch of sky. To overcome statistical
noise, millions of objects must be measured to high ac-
curacy. The size and sky coverage of the next generation
surveys will provide unprecedented statistical power.

Before the power of these data can be exploited, how-
ever, a number of practical difficulties must be overcome.
The most significant of these fall broadly into four cat-
egories. (i) Shape measurements must be carried out in
the presence of noise, pixelisation, atmospheric distor-
tion, and instrumental effects. These can be significantly

! http://kids.strw.leidenuniv.nl

2 http://www.naoj.org/Projects/HSC/HSCProject .html
3 http://www.darkenergysurvey.org

4 nttp://wuw.lsst.org

5 http://sci.esa.int/euclid

6 http://wfirst.gsfc.nasa.gov

larger than the shear signal itself. Even with perfect
characterisation of these effects, biases can arise from e.g.
imperfect knowledge of the intrinsic galaxy ellipticity dis-
tribution or morphology (see e.g. Jarvis et al. [56]). (ii)
To make useful cosmological inferences based on shear
data one also needs accurate redshift information, but it
is observationally infeasible to obtain spectroscopic red-
shifts for the large number of source galaxies. Instead one
must rely on photometric redshift estimates (photo-zs),
which are based on models of galaxy spectra, or spec-
troscopic training sets that may not be fully representa-
tive, and can therefore also suffer from biases (see e.g.
Bernstein [I0], Bridle & King [19], Dahlen et al. [28], Ma
et al. [76], MacDonald & Bernstein [78]). (iii) The cosmo-
logical lensing signal must be disentangled from intrinsic
alignments (IAs). Systematic shape correlations can arise
from tidal interactions between physically nearby galax-
ies during formation [22] 26| 29]. Even excluding such
pairs of objects, correlations between the intrinsic shapes
of foreground galaxies and the shear of background galax-
ies can contaminate the cosmic shear signal. For recent
reviews of the field see Kirk et al. [66], Joachimi et al. [60]
and Troxel & Ishak [IT1I]. (iv) The density fluctuations
in the matter distribution must be predicted with suffi-
cient precision to allow interpretation of the data. On
small scales this is sensitive to uncertain effects of bary-
onic feedback on the underlying matter, which are not yet
fully understood from hydrodynamic simulations. Ignor-
ing these effects can induce significant bias in estimates
of cosmological parameters [40, 100} [12I]. For this reason
cosmic shear studies commonly exclude the small scales
where baryonic effects are expected to be strongest.

In this paper we present the first cosmological con-
straints from the Dark Energy Survey, using the Science
Verification data. A detailed description of the meth-
ods and tests of galaxy shape measurements is given in
Jarvis et al. [56] (hereafter [J15)); the photometric red-
shift measurements are described in Bonnett et al. [I§]
(hereafter [Bol5) and the cosmic shear two-point func-
tion estimates and covariances are described in Becker
et al. [7] (hereafter Belb). We focus here on cosmologi-
cal constraints and their robustness to systematic effects
and choice of data, as quantified in the companion pa-
pers. We describe the data in Section [[I] and present our
main results in Section [Tl In Section [V] we discuss the
impact of the choice of scales and two point statistic and
we investigate the robustness of our main results to our
assumptions about systematics in Section [V] Finally, we
combine and compare our constraints with those from
other surveys in Section [VI]and conclude in Section [VII}
More details on our intrinsic alignment models are given

in Appendix [A]

II. DES SV DATA

In this Section we overview some of the earlier work
that provides essential ingredients for the cosmology
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FIG. 1.

DES SV shear two-point correlation function £+ measurements in each of the redshift bin pairings (from Becker et al.

[7]). The 3 redshift bins ranges are 0.3 < z < 0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and each galaxy is assigned to a redshift
bin according to the mean of its photometric redshift probability distribution (or excluded if this value is outside the above
ranges). Alternating rows are &4 and £_, and the redshift bin combination is labelled in the upper right corner of each panel.
The non-tomographic measurement is in the bottom left corner. The solid lines show the correlation functions computed for
the best-fit Planck 2015 (T'T + lowP) base ACDM cosmology, using HALOFIT [103] [107] to model the non-linear matter power
spectrum. The blue dashed lines (mostly obscured by the black lines) and red dotted lines assume the same cosmology but
model nonlinear scales using FrankenEmu [44] (extended at high k using the ‘CEp’ presciption from Harnois-Déraps et al. [40])
and a prescription based on the OWLS ‘AGN’ simulation [96] respectively. Points lying in grey regions are excluded from the
analysis because they may be affected by either small-scale matter power spectrum uncertainty or large-scale additive shear

bias, as explained in Section

analysis presented here.

A. The survey

The Dark Energy Survey (DES) is undertaking a five
year programme of observations to image ~5000 square
degrees of the southern sky to ~ 24th magnitude in
the grizY bands spanning 0.40-1.06 um using the 570
megapixel imager DECam [36]. The survey will con-

sist of ~10 interlaced passes of 90 s exposures in each
of griz and 45 s in Y over the full area. The first
weak lensing measurements from DES, using early com-
missioning data, were presented in Melchior et al. [84].
Science Verification data were taken between November
2012 and February 2013, including a contiguous region
in the South Pole Telescope East (SPTE) field, of which
we use the 139 square degrees presented in [J15. A mass
map of this field was presented in Vikram et al. [I14] and
Chang et al. [24]. Significant improvements in instru-



ment performance and image analysis techniques have
been made during and since the Science Verification pe-
riod, so that we can expect the DES lensing results to
exceed those presented here in quality as well as quan-
tity.

B. Shear catalogues

The galaxy shape catalogue is discussed in detail
in |J15, and is produced using two independent shear
pipelines, NGMIX [I0I] and M3SHAPE [I19]. Both shape
measurement codes are based on model fitting tech-
niques. Each object is fitted simultaneously to multiple
reduced single epoch images. In addition to the intrin-
sic galaxy shape, the point spread function (PSF) and
pixelisation are included in the model. The PSF is es-
timated separately on each exposure using the PSFEx
package [II]. The software measures the distortion ker-
nel directly using bright stars. It then uses polynomial
interpolation across the image plane to estimate the PSF
at specific galaxy locations. |J15| carried out an exten-
sive set of tests of the shear measurements and found
them to be sufficiently free of systematics for the anal-
ysis presented here, provided that a small multiplicative
uncertainty on the ellipticities is introduced.

The raw number densities of the catalogues are 4.2
and 6.9 galaxies per square arcminute for IM3SHAPE and
NGMIX respectively; weighted by signal-to-noise to get an
effective number density we obtain 3.7 and 5.7 per square
arcminute respectivelyﬂ The fiducial catalogue is NGMIX;
in Section [V'A] we show the results using IM3SHAPE and
the results ignoring the multiplicative bias uncertainty.

1. Blinding

To avoid experimenter bias the ellipticities that went
into the 2-point functions used in this analysis were
blinded by a constant scaling factor (between 0.9 and
1); this moved the contours in the (os, ,,) plane. Al-
most all adjustments to the analysis were completed be-
fore the blinding factor was removed, so any tendency
to tune the results to match previous data or theory ex-
pectations was negated. After unblinding, some changes
were made to the analysis: the maximum angular scale
used for £ was changed from 30 to 60 arcmin as a result
of an improvement in the additive systematics detailed
in|J15, In particular, the shear difference correlation test
in 8.6.2 of |J15|significantly improved on large scales once
a selection bias due to matching the two shear catalogs
was accounted for. Additionally, a bug fix was applied to
the weights in the IM3SHAPE catalogue.

7 The definition of effective density used here differs from previous
definitions in the literature; see |J15|

C. Shear two-point function estimates

The first measurement of cosmic shear in DES SV is
presented in |[Bel5. The primary two-point estimators
used in that paper are the real-space angular shear cor-
relation functions &y, defined as &4(0) = (yn) (0) +
(vxvx) (9), where the angular brackets denote averag-
ing over galaxy pairs separated by angle § and v; x are
the tangential and cross shear components, measured rel-
ative to the separation vector. Our fiducial data vec-
tor, the real-space angular correlation functions mea-
sured in three tomographic bins, is shown in Figure
The redshift bins used span: (1) 0.3 < z < 0.55, (2)
0.55 < z < 0.83, and (3) 0.83 < z < 1.30.

Belb| carry out a suite of systematics tests at the two-
point level using &4 estimates and find the shear measure-
ments suitable for the analysis described in this paper.
They also calculate PolSpice [106] pseudo-Cy estimates of
the convergence power spectrum and Fourier band power
estimates derived from linear combinations of &4 values
[6]. In Section we compare cosmology constraints
using our fiducial estimators, £1, to constraints using
these.

Belb| estimate covariances of the two-point functions
using both 126 simulated mock surveys and the halo
model. The halo model covariance was computed from
the COSMOLIKE covariance module [34]. It neglects the
exact survey mask by assuming a simple symmetric ge-
ometry, but unlike the mock covariance it does not suf-
fer from statistical uncertainties due to the estimation
process. The 126 simulated mock surveys were gener-
ated from 21 large N-body simulations and hence include
halo-sample variance, and the correct survey geometry.
Taylor et al. [108] and Dodelson & Schneider [30] explore
the implications on parameter constraints of noise in the
covariance matrix estimate due to having a finite num-
ber of independent simulated surveys. The fiducial data
vector used in this analysis has 36 data points, hence we
can expect our reported parameter errorbars to be ac-
curate to ~ 18% (see [Bel5)). Belb| use a Fisher matrix
analysis to compare the errorbar on og({,/0.3)%% from
the two covariance estimates, and find agreement within
the noise expected from the finite number of simulations,
with a larger errorbar when using the mock covariance.
We believe the analytic halo model approach is a very
promising one, which, with further validation (for ex-
ample investigating the effect of not including the exact
survey geometry), has the potential to relax the require-
ment of producing thousands of mock surveys for future,
larger weak lensing datasets. For this study, we believe
that the mock covariance, although noisy, is the more
reliable and conservative option. We apply the correc-
tion factor to the inverse covariance described in Hartlap
et al. [41].

The analysis in this paper neglects the cosmology de-
pendence of the covariance, which as outlined in Ei-
fler et al. [32], can substantially impact parameter con-
straints, depending on the depth and size of the sur-



vey. |[K13| find this effect to be small for CFHTLenS and
since our data is shallower, we are confident that the
cosmology-independent noise terms dominate our statis-
tical error budget. However, we note that in regions of
cosmological parameter space far from the fiducial cos-
mology assumed for the covariance i.e. in the extremes
of the banana in e.g. Figure[2] the reported uncertainties
will be less reliable.

D. Photometric redshift estimates

The photometric redshifts used in this work are de-
scribed in [Bol5. They compare four methods: Skynet
[I7, 37, TPZ [2I], ANNz2 [94] and BPZ [8]. These
methods performed well amongst a more extensive list
of methods tested in Sénchez et al. [95]. The first three
are machine learning methods and are trained on a range
of spectroscopic data; the fourth is a template-fitting
method, empirically calibrated relative to simulation re-
sults from Chang et al. [23] and Leistedt et al. [73]. The
validation details are described in[Bol5| including a suite
of tests of the performance of these codes with respect
to spectroscopic samples, simulation results, COSMOS
photo-zs [53], and relative to each other. They conclude
that the photometric redshift estimates of the n(z) of the
source galaxies are accurate to within an overall additive
shift of the mean redshift of the n(z) with an uncertainty
of 0.05. The fiducial photometric redshift method is cho-
sen to be Skynet, as it performed best in tests, but in
Section [V B|we show the impact of switching to the other
methods.

IIT. FIDUCIAL COSMOLOGICAL
CONSTRAINTS

In this Section we present our headline DES SV cos-
mology results from the fiducial data vector, marginalis-
ing over a fiducial set of systematics and cosmology pa-
rameters. In the later sections we examine the robustness
of our results to various changes of the data vector and
modelling of systematics.

We evaluate the likelihood of the data from the two-
point estimates and covariances presented in |[Belb| and
the corresponding theoretical predictions, described in
Section [[VA] assuming that the estimates are drawn
from a multi-variate Gaussian distribution. Key re-
sults for this paper have been calculated with two sep-
arate pipelines: the CosMoSISf| [120] and Cosmo-
Li1KE [34] frameworks. The constraints from these inde-
pendent pipelines agree extremely well and thus are not
shown separately. COSMOLIKE uses the Eisenstein & Hu
[35] prescription for the linear matter power spectrum

8 https://bitbucket.org/joezuntz/cosmosis
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FIG. 2. Constraints on the amplitude of fluctuations og

and the matter density Qm from DES SV cosmic shear (pur-
ple filled /outlined contours) compared with constraints from
Planck (red filled contours) and CFHTLenS (orange filled,
using the correlation functions and covariances presented in
Heymans et al. [47], and the ‘original conservative scale cuts’
described in Section . DES SV and CFHTLenS are
marginalised over the same astrophysical systematics param-
eters and DES SV is additionally marginalised over uncertain-
ties in photometric redshifts and shear calibration. Planck is
marginalised over the 6 parameters of ACDM (the 5 we vary
in our fiducial analysis plus 7). The DES SV and CFHTLenS
constraints are marginalised over wide flat priors on ns,
and h (see text), assuming a flat universe. For each dataset,
we show contours which encapsulate 68% and 95% of the
probability, as is the case for subsequent contour plots.

Ps(k, z), and CosMOSIS uses CAMB [74]. For a vanilla
ACDM cosmology (2, = 0.3, os = 0.8, ny, = 0.96,
h = 0.7), we find theory predictions using CAMB and
Eisenstein & Hu [35] differ by at most 1% for the scales
and redshifts we use. For the increased statistical power
of future datasets, differences of this order will not be
acceptable.

The fiducial data vector is the real-space shear—shear
angular correlation function £4 () measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <
0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photomet-
ric redshift probability distribution function) including
cross-correlations, as shown in Figure[l} The data vector
initially includes galaxy pairs with separations between
2 and 300 arcmin (although many of these pairs are ex-
cluded by the scale cuts described in Section . We
focus mostly on placing constraints on the matter density
of the Universe, ,, and og, defined as the rms mass den-
sity fluctuations in 8 Mpc/h spheres at the present day,
as predicted by linear theory.

We marginalise over wide flat priors 0.05 < Q,, < 0.9,
02<05<16,02<h<1,001<Q,<0.07and 0.7 <
ns < 1.3, assuming a flat Universe, and thus we vary 5



cosmological parameters in total. The priors were chosen
to be wider than the constraints in a variety of existing
Planck chains. In practice the results are very similar
to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters.
We use a fixed neutrino mass of 0.06 eV.

We summarise our systematics treatments below:
(i) Shear calibration: For each redshift bin, we
marginalise over a single free parameter to account for
shear measurement uncertainties: the predicted data vec-
tor is modified to account for a potential unaccounted
multiplicative bias as £9 — (1 + m;)(1 + m;)EY. We
place a separate Gaussian prior on each of the three m;
parameters. Each is centred on 0 and of width 0.05, as
advocated by [JI5. See Section [VA] for more details.
(ii) Photometric redshift calibration: Similarly, we
marginalise over one free parameter per redshift bin to
describe photometric redshift calibration uncertainties.
We allow for an independent shift of the estimated pho-
tometric redshift distribution n;(z) in redshift bin ¢ i.e.
ni(z) = n;(z—0dz). We use independent Gaussian priors
on each of the three §z; values of width 0.05 as recom-
mended by Bol5| See Section [VB]for more details.
(iii) Intrinsic alignments: We assume an un-
known amplitude of the intrinsic alignment signal and
marginalise over this single parameter, assuming the non-
linear alignment model of Bridle & King [19]. See Section
for more details of our implementation and tests on
the sensitivity of our results to intrinsic alignment model
choice.
(iv) Matter power spectrum: We use HALOFIT [103],
with updates from Takahashi et al. [I07] to model the
non-linear matter power spectrum, and refer to this pre-
scription simply as ‘HALOFIT’ henceforth. The range of
scales for the fiducial data vector is chosen to reduce the
bias from theoretical uncertainties in the non-linear mat-
ter power spectrum to a level which is not significant
given our statistical uncertainties (see Sections and
[VD] and Table[[for the minimum angular scale for each
bin combination).
We thus marginalise over 3 4+ 3 4+ 1 = 7 nuisance param-
eters characterising potential biases in the shear calibra-
tion, photometric redshift estimates and intrinsic align-
ments respectively.

Figure [2| shows our main DES SV cosmological con-
straints in the Q,, — og plane, from the fiducial data vec-
tor and systematics treatment, compared to those from
CFHTLenS and Planck. For the CFHTLenS constraints,
we use the same six redshift bin data vector and covari-
ance as [H13| but apply the conservative cuts to small
scales used as a consistency test in that work (for £ we
exclude angles < 3’ for redshift bin combinations involv-
ing the lowest two redshift bins, and for £_, we exclude
angles < 30’ for bin combinations involving the lowest
four redshift bins, and angles < 16’ for bin combinations
involving the highest two redshift bins). We see that
in this plane, our results are midway between the two
datasets and are compatible with both. We discuss this

further in Section [VTAl

Using the MCMC chains generated for Figure [2] we
find the best fit power law og(2y,/0.3)* to describe the
degeneracy direction in the og, Q,, plane (we estimate
« using the covariance of the samples in the chain in
logog — logQ,, space). We find o = 0.478 and so use a
fiducial value for « of 0.5 for the remainder of the paper
ﬂ We find a constraint perpendicular to the degeneracy
direction of

Sg = 08(2n/0.3)%° = 0.81+0.06 (68%). (1)
Because of the strong degeneracy, the marginalised 1d
constraints on either €, or og alone are weaker; we
find Q, = 0.36709) and o5 = 0.8170%5. In Table
we also show other results which are discussed in the
later sections, including variations of the DES SV anal-
ysis (see Sections and and combinations with
CFHTLenS and Planck (see Section [VTA)).

For comparison with other constraints we also inves-
tigated the impact of ignoring shear measurement and
photometric redshift uncertainties and find that the cen-
tral value of Sg changes negligibly, and the error bar de-
creases by ~20% (see Table [I| for details).

In Table [[] we also show results ignoring all systemat-
ics. This is the same as the “No photoz or shear sys-
tematics” case but additionally ignoring intrinsic align-
ments, so that only the other cosmological parameters
are varied. The central value shifts down by 0.037 and
the error bar is reduced by 27% compared to the fiducial
case. Therefore the systematics contribute almost half
(in quadrature) of our total error budget, and further
effort will be needed to reduce systematic uncertainties
if we are to realise a significant improvement in the con-
straints (from shear—shear correlations alone) with larger
upcoming DES samples.

IV. CHOICE OF DATA VECTOR AND SCALES
USED

In this Section we consider the impact of the choice of
two-point statistic on the cosmological constraints, and
investigate how our fiducial estimators are affected by the
choice of angular scales used.

A. Choice of two-point statistic

Belb| present results for a selection of two-point statis-
tics — see that work, and references therein for more de-
tailed description of the statistics and their estimators.

9 We would advise caution when using Sg to characterise the DES
SV constraints instead of a full likelihood analysis - Sg is sensi-
tive to the tails of the probability distribution, and also weakly
depends on the priors used on the other cosmological parameters



Model Sg = 08(2:m /0.3)%° Mean Error e} 08(Q2m /0.3)"

Primary Results

Fiducial DES SV cosmic shear 0.81219-959 0.059 0.478  0.8111)0%9
: +0.051 +0.051
No photoz or shear systematics 0.8097 ) 010 0.046 0.439  0.8067:;
. +0.045 - +0.046
No systematics 0.775" ) 041 0.043 0.462  0.7757 1
Data Vector Choice
. +0.117 +0.117
No tomography 0.72679-117 0.127  0.513 0.73079-1L7
va C. +0.063 +0.060
No tomography or systematics 0.7197 1 523 0.058 0.487  0.7167 160
B +0.075 +0.089
£-to-Cy bandpowers, no tomo. or systematics 0.7447 ' 05e 0.065 0.459  0.7397 55
PolSpice-Cy bandpowers, no tomo. or systematics 0.729‘:8:32‘; 0.076 0.518 0.732t3:g?§
Shape Measurement
Without shear bias marginalisation 0.81219-95% 0.054  0.492 0.81179-9%%
p- +0.088 = +0.089
IM3SHAPE shears 0.87570-0%% 0.082  0.579 0.86279-08
Photometric Redshifts
Without photo-z bias marginalisation 0.80970-95° 0.054 0.486  0.80870-054
TPZ photo-zs 0.81419-959 0.059 0.499  0.81410:0%9
. +0.060 +0.060
ANNZ2 photo-zs 0.82779-000 0.060  0.483 0.82679-990
+0.063 e +0.063
BPZ photo-zs 0.84870-00% 0.063  0.474 0.84570:00%
Intrinsic Alignment Modelling
H +0.053 +0.054
No IA modelling 0.77079-053 0.053  0.477 0.76979-:9%2
B B +0.063 +0.062
Linear alignment model 0.7997 5 5 0.059 0.479  0.7997 023
. . +0.061 +0.060
Tidal alignment model 0.8107 ) 50 0.060 0.494  0.8107 60
. . . 40.153 +0.145
Marginalised over redshift power law 0.7207 125 0.153 0.449  0.7237 ¢
. . . . 40.058 +0.058
Marginalised over redshift power law with A > 0 0.8087" ' (2% 0.058 0.493  0.807T 2,
High-k power spectrum
Without small-scale cuts 0.81919-005 0.065 0.487  0.819799%¢
+0.060 +0.060
OWLS ACN P(k) 0.82079-06¢ 0.061  0.485 0.81979-060
OWLS AGN P(k) w/o small-scale cuts 0.83870-0%5 0.064  0.484 0.83879997
Other lensing data
. . . +0.040 +0.040
CFHTLenS (H13) original conservative scales 0.7107 7 034 0.037 0.497  0.7127 7 3,
CFHTLenS (H13) modified conservative scales 0.69210-042 0.038 0.474 0.70479:92
CFHTLenS (H13) + DES SV 0.744700%% 0.033 0.487  0.7471]05%
CFHTLenS (K13) all scales 0.73810-05° 0.043 0.480  0.7397005¢
CFHTLenS (K13) original conservative scales 0.59619-050 0.077  0.602 0.6227597"
CFHTLenS (K13) modified conservative scales 0.67110-067 0.064 0.562  0.68870055
Planck Lensing 0.82012-1%9 0.121 0.241  0.79970-027
Planck 2015 Combination/Comparison
Planck (TT+LowP) 0.85070-05% 0.024  —0.021 0.82975012
Planck (TT+LowP)+DES SV 0.84810-022 0.022  —0.002 0.8297901%
. +0.020 +0.018
Planck (TT+EE+TE+Low TT) 0.86119-020 0.020  0.321 0.85679:01%
. . +0.017 +0.009
Planck (TT+LowP+Lensing) 0.825% 017 0.017 0.098  0.817F 10
) +0.013 +0.010
Planck (TT+LowP+Lensing)+ext 0.8247 015 0.013 0.098  0.8177 7 0

TABLE 1. 68% confidence limits on Sg = 0(2m/0.3)%% in ACDM for various assumptions in the DES SV analysis, compared
to CFHTLenS and Planck and combined with various datasets. In the first column the power law index from the fiducial
case, 0.478, is rounded to 0.5 and used for all variants. The second column shows the symmetrised error bar on Sg for ease of
comparison between rows. In the third column we show the fitted power law index « for each variant, and in the final column
we show the constraint on os(2m/0.3)%, where the value of « is fixed to the value given in the third column, separately for
each variant. A graphical form of the first column is shown in Figure

For an overview of the theory presented here see Bartel- bin ¢ and j, which can be related to the matter power
mann & Schneider [4]. spectrum, Pj(k, z), by the Limber approximation

The statistics can all be described as weighted inte-

grals over the weak lensing convergence power spectrum ci _ 9HGOZ  [Xx» d ' (09" (%) P I4 @)
at angular wavenumber ¢, C’, of tomographic redshift ¢ 4ct o X g fK(X)’X ’
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FIG. 3.

Graphical illustration of the 68% confidence limits on Sz = 05(Qm/0.3)>> values given in Table

showing the

robustness of our results (purple) and comparing with the CFHTLenS and Planck lensing results (orange) and Planck (red).
The grey vertical band aligns with the fiducial constraints at the top of the plot. Note that Planck lensing in particular, and
other non-DES lensing measurements optimally constrain a different quantity than shown above e.g. see the second and third

columns of Table[ll

where x is the comoving radial distance, xy is the co-
moving distance of the horizon, a(y) is the scale factor,
and fx(x) the comoving angular diameter distance. We
assume a flat universe (fx(x) = x) hereafter. The lens-
ing efficiency ¢’ is defined as an integral over the redshift

distribution of source galaxies n(x(z)) in the i redshift
bin:

0= [ dx'ni(x’)w R

Our fiducial statistics, the real space correlation func-

tions, &4 (0), are weighted integrals of the angular power
spectra:

)= g [anuwor,

where Jy4 is the Bessel function of either 0" or 4" or-
der. &4 have the advantage of being straightforward to
estimate from the data, whereas the C,’s require more
processing but are a step closer to the theoretical pre-
dictions. An advantage of using C,’ is that the signal is
split into two parts, E- and B-modes, the latter of which
is expected to be very small for cosmic shear. The cos-
mic shear signal is concentrated in the E-mode because
to first order the shear signal is the gradient of a scalar
field. The B-mode can therefore be used as a test of

systematics as discussed in and

also implement the method of Becker & Rozo
[6] which uses linear combinations of {1 () to estimate
fourier space bandpowers of Céj . Also presented are Pol-

Spice [106] estimates of the C’éj s from pixelised shear
maps using the pseudo-Cy estimation process, which cor-
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FIG. 4. Comparison of constraints on og and {2y, for var-
ious choices of data vector: £+ with no tomography or sys-
tematics (purple filled), C;’ bandpowers (dashed red lines)
and PolSpice-C; bandpowers (solid green lines) (both with
no tomography or systematics). We do not show our fiducial
constraints, or Planck, since we have not marginalised over
systematics for the constraints shown here, so agreement is
not necessary or meaningful (although Table [I| suggests there
is reasonable agreement).
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FIG. 5. The fractional bias on og due to ignoring an OWLS
AGN baryon model (solid lines) compared to the statistical
uncertainty on og (dashed lines) as a function of minimum
scale used for £_ (0, , x-axis) or &1 (6}, | colours). Whereas
the statistical error is minimised by using small scales, the bias
is significant for §_. < 30" and 6F. < 3.

min min

rects the spherical harmonic transform values for the ef-
fect of the survey mask (see Hikage et al. [48] for the
first implementation for cosmic shear). For simplicity
we do not perform a tomographic analysis using these
estimators. To compare cosmological constraints with
these different estimators we do not marginalise over any
systematics, to enable a more conservative comparison
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between them. (Note that marginalising over intrinsic
alignments inflates the errors of non-tomographic anal-
yses as described in Section . Figure |4| shows con-
straints from the different estimators, and we see that
the three are in good agreement. A more detailed com-
parison can be made using the numbers in Table[I} which
are shown graphically in Figure 3] The relevant lines
for comparison are the “No tomography or systematics”
line which uses the fiducial £+ data vector, and the two
Cy bandpower lines. The uncertainties are similar be-
tween these methods, and the PolSpice-C} constraints are
shifted to slightly lower Sg, though are consistent with
constraints based on the {4 approach. Although we find
the qualitative agreement between the constraints from
the different estimators encouraging, we note that test-
ing on survey simulations would be required to make a
quantitative statement about the level of agreement.

B. Choice of scales

All the two-point statistics discussed thus far involve a
mixing of physical scales: it is clear from Eq. [4| that £+
at a given real space angular scale uses information from
a range of angular wavenumbers ¢, while Cy itself uses
information from a range of physical scales k in the mat-
ter power spectrum Pj(k,z). In Section we discuss
some of the difficulties in producing an accurate theoreti-
cal estimate of Ps(k, z) for high &k (small physical scales).
In this work, we aim to null the effects of this theoreti-
cal uncertainty by cutting small angular scales from our
data vector, since using scales where the theoretical pre-
diction is inaccurate can bias the derived cosmological
constraints, mostly due to unknown baryonic effects on
clustering.

Figure [5| demonstrates the impact of errors in the mat-
ter power spectrum prediction on estimates of og from
a non-tomographic analysis. In this figure we estimate
the potential bias on og as that which would arise from
ignoring the presence of baryonic effects; as a specific
model for these effects we use the OWLS AGN simula-
tion [96]. See Section for more details, in partic-
ular Eq. [§ for the implementation of the AGN model.
For a given angular scale £_ is more affected than &,:
for example the fractional bias when using all scales in
¢_, but none in &y (0, = 2,05 = 245.5) is ~ 0.03
whereas the bias when using all scales in £, but none
in & (0, = 2,0, = 245.5) is ~ 0.015. For the
non-tomographic case, we use a minimum angular scale
of 3 arcminutes for £, and 30 arcminutes for £_, be-
cause on these angular scales the bias is < 25% of the
statistical uncertainty on og (with no other parameters
marginalised).

For the tomographic case, we now need to choose a
minimum scale for xi+ and xi- for each of the redshift
bin combinations - i.e. 12 parameters. Hence a procedure
analagous to that based on Figure 5 is non-trivial. We
instead use a more general (but probably non-optimal)

~
~



Redshift bin combination 0in(£4) Omin(E-)

(1,1) 4.6 56.5
(1,2) 4.6 56.5
(1,3) 4.6 24.5
(2,2) 4.6 24.5
(2,3) 2.0 24.5
(3,3) 2.0 24.5

TABLE II. Scale cuts for tomographic shear two point func-
tions £+ using the prescription described in the text.

prescription in which we cut angular bins that change sig-
nificantly when we change the model for the non-linear
matter power spectrum. We remove data points where
the theoretical prediction changes by more than 5% when
the nonlinear matter power spectrum is switched from
the fiducial to either that predicted from the Franken-
Emﬂ code (based on the Coyote Universe Simulations
described in Heitmann et al. [44], and extended at high
k using the ‘CEp’ presciption from Harnois-Déraps et al.
[40]), or to the OWLS AGN model (the baryonic model
used in Figure 5). We believe 5% is a reasonable (but
again, probably not optimal) choice, since on these non-
linear scales, the signal is proportional to o3, so a 5% pre-
diction error would result in a og error of order 0.05/3 i.e.
below our statistical uncertainties. The inferred biases
for the non-tomographic £+ shown in Figure [5| suggest
similar angular cuts. The results of these cuts are sum-
marised in Table [l We demonstrate the effectiveness
of these cuts in producing robust robust constraints, and
discuss other methods of dealing with non-linear scales
in Section

We limit the large scales in £, to < 60 arcmin, since
the large scales in &4 are highly correlated, and we have
verified that little is gained in signal-to-noise by including
larger scales. Furthermore, including these larger scales
would also increase the number of data points, increasing
the noise in the covariance matrix, and degrading our
parameter constraints.

V. ROBUSTNESS TO SYSTEMATICS

We now examine the robustness of our fiducial con-
straints to assumptions made about the main systematic
uncertainties for cosmic shear. In each subsection we con-
sider the impact of ignoring the systematic in question,
and examine alternative prescriptions for the input data
or modelling.

10 http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html
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FIG. 6. Robustness to assumptions about shear measure-

ment. Shaded purple (fiducial case): NGMIX, with one shear
mulitiplicative bias parameter m for each of the 3 tomographic
redshift bins, with an independent Gaussian prior on each m;
with ¢ = 0.05. Solid blue lines: IM3SHAPE with the same
assumptions. Planck is shown in red.

A. Shear calibration

The measurement of galaxy shapes at the accuracy re-
quired for cosmic shear is a notoriously hard problem.
The raw shapes in our two catalogues are explicitly cor-
rected for known sources of systematic bias. This involves
either calibration using image simulations in the case of
IM3SHAPE or sensitivity corrections in the case of NG-
MIX (see|J15). We rely on a number of assumptions and
cannot be completely certain the final catalogues carry no
residual bias. It is therefore important that our model
includes the possibility of error in our shape measure-
ments. As in Jee et al. [57] we marginalise over shear
measurement uncertainties in parameter estimation.

J15| estimate the systematic uncertainty on the shear
calibration by comparing the two shape measurement
codes to image simulations, and to each other. Following
that discussion we include in our model a multiplicative
uncertainty which is independent in each of the three red-
shift bins. We thus introduce three free parameters m;
(i =1,2,3). The predicted data are transformed as

é-l]prcd = (1 + ml)(l + mj)gzé{rue (5)
for redshift bins i, j.

As discussed in |J15, we use a Gaussian prior on the
m; parameters of width 0.05, compared to a 0.06 uniform
prior used by Jee et al. [57]. We note that since the m; are
independent, the effective prior on the mean multiplica-
tive bias for the whole sample is less than 0.05. No sys-
tematic shear calibration uncertainties were propagated
by CFHTLenS in [H13| or earlier work (although [K13|did
investigate the statistical uncertainty on the shear cali-
bration arising from having a limited calibration sample).



If we neglect this uncertainty and assume that our shape
measurement has no errors (fixing m; = 0) then our un-
certainty on Sy is reduced by 9% and the central value is
unchanged (see the “Without shear bias marginalisation”
row in Table [[| and Figure [3| for more details).

Figure [6] shows the result of interchanging the two
shear measurement codes, swapping NGMIX (fiducial)
to IM3SHAPE. The IM3SHAPE constraints are weaker,
because the shapes are measured from a single imag-
ing band (r-band) instead of simultaneously fitting to
three bands (r, i, z) as in NGMIX, and IM3SHAPE re-
tains fewer galaxies after quality cuts (in particular the
IM3SHAPE catalogue contains around half as many galax-
ies as NGMIX in our highest redshift bin). The preferred
value of Sg is shifted about 1o higher for IM3SHAPE than
NGMIX and the error bar is increased by 38% (see the
“IM3SHAPE shears” row in Table [I| and Figure [3)). While
we do not expect the constraints from the two shear codes
to be identical, since they come from different data selec-
tions, the two codes do share many of the same galaxies,
and of course probe a common volume. We can esti-
mate the significance of the shift using the mock DES
SV simulations detailed in |Belb. Carefully taking into
account the overlapping galaxy samples, correlated shape
noise and photon noise, and of course the common area,
we create an NGMIX and an IM3SHAPE realisation of our
signal for each mock survey. We then compute the dif-
ference in the best-fit ogs (keeping all other parameters
fixed to fiducial values for computational reasons) for the
two signals, and compute the standard deviation of this
difference over the 126 mock realisations. We find this
difference has a standard deviation of 0.028, compared
with the difference in this statistic (the best-fit og with
all other parameters fixed) on the data of 0.046. We
conclude that although this shift is not particularly sig-
nificant, it could be an indication of shape measurement
biases in either catalogue. The decreased statistical er-
rors of future DES analyses will provide more stringent
tests on shear code consistency.

B. Photometric redshift biases

In this subsection we investigate the robustness of our
constraints to errors in the photometric redshifts. As mo-
tivated by [Bolb| for our fiducial model we marginalise
with a Gaussian prior of width 0.05 over three indepen-
dent photometric redshift calibration bias parameters §z;
(i =1,2,3) where

nP(2) = R (2 — 6z)

i

(6)

for redshift bin ¢, where nj**®*%(z) is the measured pho-
tometric redshift probability distribution and nP**4(z) is

i
the redshift distribution used in predicting the shear two-
point functions (i.e. our model for the true n;(z) assum-
ing the given d0z;). This model is discussed further in

Bo15| where it is shown to be a reasonably good model
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FIG. 7. Results using different photoz codes. Purple filled

contours: fiducial case (SkyNet). Blue dashed lines: ANNz2.
Green solid lines: TPZ. Red dash-dotted lines: BPZ w/ cor-
rection.

for the uncertainties at the current level of accuracy re-
quired.

If we neglect photometric redshift calibration uncer-
tainties then the error on Sg is reduced by ~10% and its
value shifts down by ~10% of the fiducial error bar (see
the row labelled “Without photo-z bias marginalisation”
in Table || and Figure [3)).

In Figure [7] we show the impact of switching between
the four photometric redshift estimation codes described
in |[Bol5. We see excellent agreement between the codes,
although as detailed in[Bol5| the machine learning codes
are not independent - Skynet, ANNZ2, TPZ are trained
on the same spectroscopic data, while an empirical cali-
bration is performed on the template fitting method BPZ
using simulation results. As quantified in Table [[] and il-
lustrated in Figure[3] the constraint on Ss moved by less
than two thirds of the error bar when switching between
photometric redshift codes, with the biggest departure
occurring for BPZ, which moves to higher Sg. A more
detailed analysis and validation of the photo-zs using rel-
evant weak lensing estimators and metrics is performed
in |Bolj| for galaxies in the shear catalogues.

C.

Intrinsic alignments

In this subsection we investigate the effect of assump-
tions made about galaxy intrinsic alignments (IAs), by
repeating the cosmological analysis with (i) no intrin-
sic alignments, (ii) a simpler, linear, intrinsic alignment
model, (iii) a more complete tidal alignment model, and
(iv) adding a free power law redshift evolution. We also
show constraints on the amplitude of intrinsic alignments
and show the benefit of using tomography. We use the
same data vector and likelihood calculation for all mod-
els.
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FIG. 8. Left: Constraints on the clustering amplitude og and the matter density 2, from DES SV alone. The purple shaded
contour shows the constraints when our fiducial NLA model of intrinsic alignments is assumed, the green filled lines shows
constraints when the LA model is used, the dot-dashed red lines the CTA model and the blue dashed lines shows constraints
when TAs are ignored. Right: Constraints on 0502 and the intrinsic alignment amplitude A from DES alone. The purple
shaded contour shows the constraints when our fiducial NLA model of intrinsic alignments is assumed with three tomographic
bins, the red lines shows constraints, again using our fiducial NLA model, but using only a single redshift bin and the green
dashed contour shows our fiducial NLA model, with three tomographic bins, but marginalised over an additional power law in
redshift, where the power law index is a free parameter. Note that the treatment of IAs in both panels assumes a prior range

for the amplitude A = [-5, 5].

It was realised early in the study of weak gravitational
lensing [22] [26], 27, 43] that the unlensed shapes of phys-
ically close galaxies may align during galaxy formation
due to the influence of the same large-scale gravitational
field. This type of correlation was dubbed “Intrinsic-
Intrinsic”, or II. Hirata & Seljak [49] then demonstrated
that a similar effect can give rise to long-range IA cor-
relations as background galaxies are lensed by the same
structures that correlate with the intrinsic shapes of fore-
ground galaxies. This gives rise to a “Gravitational-
Intrinsic”, or GI, correlation. The total measured cosmic
shear signal is the sum of the pure lensing contribution
and the TA terms:

Cots(0) = Cia(0) + Ce1(0) + Crg (O + C{ (). (T)
Neglecting this effect can lead to significantly biased cos-
mological constraints [19, 43} 59, [65] [69].

We treat IAs in the “tidal alignment” paradigm, which
assumes that intrinsic galaxy shapes are linearly re-
lated to the tidal field [22], and thus that the addi-
tional C'% () terms above are integrals over the 3D matter
power spectra. It has been shown to accurately describe
red/elliptical galaxy alignments [15], [59]. More details of
all the IA models considered in this paper can be found
in Appendix [A] Within the tidal alignment paradigm,
the leading-order correlations define the linear alignment
(LA) model. As our fiducial model, we use the “non-
linear linear alignment” (NLA) model, an ansatz intro-
duced by Bridle & King [19], in which the non-linear mat-
ter power spectrum, Pénél(k, z), is used in place of the lin-
ear matter power spectrum, Pgig“ (k, z), in the LA model
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predictions for the IT and GI terms. Although it does not
provide a fully consistent treatment of non-linear contri-
butions to TA, the NLA model attempts to include the
contribution of non-linear structure growth to the tidal
field, and it has been shown to provide a better fit to
data at quasi-linear scales than the LA model [19, [102].

We also consider a new model, described in Blazek
et al. [16], which includes all terms that contribute at
next-to-leading order in the tidal alignment scenario,
while simultaneously smoothing the tidal field (e.g. at
the Lagrangian radius of the host halo). The effects of
weighting by the source galaxy density can be larger than
the correction from the non-linear evolution of dark mat-
ter density. This more complete tidal alignment model
(denoted the “CTA model” below) is described in more
detail in Appendix [A]

The left panel of Figure [§] shows cosmological con-
straints for the fiducial (NLA), LA, and CTA models,
as well as the case in which IAs are ignored. These con-
straints include marginalization over a free IA amplitude
parameter, A, with a flat prior over the range [-5,5]. As
shown by the values in Table [[] and illustrated in Fig-
ure |3 cosmological parameters are robust to the choice
of TA model. The largest departure from the fiducial
model happens when IAs are ignored entirely. This de-
creases the best-fit Sg by roughly two thirds of the 1o
uncertainty. Results for all TA models retain the other
choices of our fiducial analysis, including cuts on scale
and the choice of cosmological and other nuisance pa-
rameters that are marginalised.

The NLA model assumes a particular evolution with



redshift, based on the principle that the alignment of
galaxy shapes is laid down at some early epoch of
galaxy formation and retains that level of alignment af-
terwardsE We can test for more general redshift evolu-
tion through the inclusion of a free power-law in (1 + z),
Nother, Which we vary within the (flat) prior range [-5,5]
and marginalise over, in addition to the TA amplitude
free parameter, A. Details of these terms and of our TA
models are explained in more detail in Appendix [A]

Our fiducial constraints rely on our ability to constrain
the free IA amplitude parameter A. We can do this with
our standard three-bin tomography because the cosmic
shear and TA terms evolve differently with redshift, mean-
ing they contribute with different weight to the observed
signal from each bin pair. In the right panel of Figure
we show constraints on Sg and the IA amplitude, A,
for our fiducial NLA model with three-bin tomography
as well as after marginalising over the redshift power law
Nother- We also show the constraints from an analysis of
the fiducial NLA model (no redshift power law) without
tomography.

This figure clearly demonstrates the need for redshift
information to constrain the IA contribution. Using three
tomographic bins and our fiducial NLA model we obtain
a constraint on the IA amplitude which is entirely consis-
tent with A = 1, although the contours are wide enough
that it is also marginally consistent with zero IAs. As
soon as the redshift information is reduced, either by
using only a single tomographic bin, or by marginalis-
ing over an additional power law in redshift, the con-
straints on the TA amplitude degrade markedly, becom-
ing nearly as broad as our prior range in each case. The
constraints on cosmology are also significantly degraded,
an effect which is almost entirely due to the degener-
acy between the lensing amplitude and the (now largely
unconstrained) IA amplitude. The constraints on Sg are
considerably stronger if we ignore IAs in the case without
tomography.

The use of the free power law in redshift substantially
reduces the best-fit value of Sg as well as greatly increas-
ing the errors, as shown in Table [[] and Figure [3] This
is driven by the preference of this model for low values
of og and €, when sampling at the negative end of the
prior range in A. Motivated by astrophysical arguments
and observational evidence that red galaxies exhibit ra-
dial alignment with overdensities (i.e. A > 0) while blue
galaxies are weakly aligned [e.g. [59, [79] [102], we repeat
the analysis restricting A > 0. As expected, impos-
ing this lower bound significantly improves constraints
when flexible redshift evolution of IA is allowed (see Ta-
ble [I| and Figure |3). While allowing for mildly nega-
tive A within the tidal alignment paradigm may par-
tially account for potential non-zero alignments of blue

I See Kirk et al. [65] and Blazek et al. [16] for further discussion
of the treatment of non-linear density evolution in the NLA and
similar models.
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FIG. 9. The effect of AGN feedback on cosmological con-

straints. The purple shaded region and the red solid lines use
the our fiducial matter power spectrum (HALOFIT) and the
OWLS AGN model respecitvely. Blue dashed and red dot-
dashed lines use a more aggressive data vector, using scales
down to 2 arcmin in &4 and £_, again with the fiducial mat-
ter power spectrum (HALOFIT) and the OWLS AGN model
respectively.

and mixed-population source galaxies, a more sophisti-
cated treatment (e.g. including “tidal torquing” of spiral
galaxy angular momenta) should be included in the anal-
ysis of future weak lensing measurements with increased
statistical power.

D. Matter power spectrum uncertainty

Along with TAs, the main theoretical uncertainty in
cosmic shear is the prediction of how matter clusters on
non-linear scales. For the scales which our measurements
are most sensitive to, we require simulations to predict
the matter power spectrum Pjs(k, z).

Under the assumption that only gravity affects the
matter clustering, Heitmann et al. [44] used the Coyote
Universe simulations to achieve an accuracy in Ps(k, z) of
1% at k ~ 1Mpc ™! and z < 1, and 5% for k < 10Mpc !
and z < 4, a level of error which would have little im-
pact on the results described in this paper. For use in
parameter estimation, they released the emulator code
FrankenFEmu to predict the matter power spectrum given
a set of input cosmological parameters. For the range of
scales we used in this work, we find very close agreement
between HALOFIT and FrankenEmu, as demonstrated in
Figure [ We can therefore use HALOFIT for our fidu-
cial analysis. However, these codes are based on gravity-
only (often referred to as ‘dark matter-only’) simulations
which do not tell the whole story. Baryonic effects on
the power spectrum due to active galactic nuclei (AGN),
gas cooling, and supernovae could be of order 10% at
k=1 Mpc™' [12I]. To predict these effects accurately



requires hydrodynamic simulations, which are not only
more computationally expensive, but are also sensitive
to poorly understood physical processes operating well
below the resolution scales of the simulations. The ef-
fect of baryonic feedback on the matter power spectrum
at small scales is therefore sensitive to ‘sub-grid’ physics.
See Jing et al. [58] and Rudd et al. [93] for early appli-
cations of hydrodynamic simulations in this context, and
Vogelsberger et al. [II5] and Schaye et al. [97] for the
current state of the art.

As discussed in Section [[VB] in this paper we reduce
the impact of non-linearities and baryonic feedback by
excluding small angular scales from our data vector. To
get an idea of the magnitude of these effects, we have
analysed the power spectra from van Daalen et al. [121]
which are based on the OWLS simulations (a suite of hy-
drodynamic simulations which include various different
baryonic scenarios). For a given baryonic scenario, we
follow Kitching et al. [68] and MacCrann et al. [77] by
modulating our fiducial matter power spectrum P(k, z)
(from CAMB and HALOFIT) as follows:

Pbaryonic (ka Z)

P(k,z) —
(k. 2) Ppyonty

Pk, 2) (3)
where Pharyonic(k, 2) is the OWLS power spectrum for a
particular baryonic scenario, and Ppyonrny is the power
spectrum from the OWLS ‘DMONLY’ simulation, which
does not include any baryonic effects. We assume this
somewhat ad-hoc approach of applying a cosmology-
independent correction to the cosmology-dependent fidu-
cial matter power spectrum is sufficient for estimating the
order of the biases in our constraints expected from ig-
noring baryonic effects. McCarthy et al. [82] find that
of the OWLS models, the AGN model best matches ob-
served properties of galaxy groups, both in the X-ray and
the optical. Furthermore Semboloni et al. [I00], Zentner
et al. [I17], and Eifler et al. [33] examine the impact
of various baryonic scenarios on cosmic shear measure-
ments, and find that the AGN model causes the largest
deviation from the pure dark matter scenario, substan-
tially suppressing power on small and medium scales. Of
the hydrodynamic simulations we have investigated, the
OWLS AGN feedback model is the only one that affects
our results significantly, and so we focus on this model
here.

Figure[J]shows the constraints resulting when perform-
ing the modulation above on the matter power spectrum,
using the AGN model as the baryonic prescription. The
purple shaded region and red solid lines, which have
small scales removed as described in Section [VB] are
very similar to each other, indicating that our choice of
scale cuts is conservative, and suggesting that our results
are robust to baryonic effects on the power spectrum.
The blue dashed and red dot-dashed lines show the con-
straints when not cutting any small scales from our data
vector (i.e. using down to 2 arcminutes in both £, and
&_). Here more of a shift in the constraints is apparent.
This is quantified in Table [ and illustrated in Figure
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When we use all scales down to 2 arcminutes, the inclu-
sion of the AGN model causes an increase in Sg of 20%
of our error bar (compare the “Without small-scale cuts”
line in Table [If with the “OWLS AGN P(k) w/o small-
scale cuts” line). However, with our fiducial cuts to small
scales the increase is only 13% of our error bar (compare
the “OWLS AGN P(k)” line in Table [I| with the Fidu-
cial line). We note that although the contours in Figure
[0 do appear to tighten slightly along the degeneracy di-
rection when including small scales, the errorbar on Sg
increases slightly. This could be due to the theoretical
model being a poor fit at small scales, or the noisiness of
the covariance matrix.

To take advantage of the small scale information in fu-
ture weak lensing analyses, more advanced methods of
accounting for baryonic effects will be required. Eifler
et al. [33] propose a PCA marginalisation approach that
uses information from a range of hydrodynamic simu-
lations, while Zentner et al. [ITI8] and Mead et al. [83]
propose modified halo model approaches to modelling
baryonic effects. Even with more advanced approaches
to baryonic effects, future cosmic shear studies will have
to overcome other systematics that affect small angular
scales, such as the shape measurement selection biases
explored in Hartlap et al. [42].

VI. OTHER DATA

In this Section we compare the DES SV cosmic shear
constraints with other recent cosmological data. We first
compare our results to those from CFHTLenS. We then
compare and combine with the Cosmic Microwave Back-
ground (CMB) constraints from Planck (Planck XIII
2015), primarily using the TT + lowP dataset through-
out (which we refer to simply as “Planck” in most fig-
ures). We also compare to another Planck data combi-
nation which used high-¢ TT, TE and EE data and low-¢
polarisation data.

Planck also measured gravitational lensing of the
CMB, which probes a very similar quantity to cosmic
shear, but weighted to higher redshifts (z ~ 2); we refer
to this as “Planck lensing” when comparing constraints.
We discuss additional datasets and present constraints
on the dark energy equation of state. See Planck Collab-
oration et al. [88] and Lahav & Liddle [71] for a broad

review of current cosmological constraints.

A. Comparisons

A comparison of DES SV constraints to those from
other observables is shown in Figure[I0] The observables
shown are described below. Constraints on Sg from these
comparisons are also shown in Table [[] and Figure
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FIG. 10. Joint constraints from a selection of recent datasets
on the total matter density €2, and amplitude of matter fluc-
tuations og. From highest layer to lowest layer: Planck TT
+ lowP (red); X-ray cluster mass counts (Mantz et al. [80]
white/grey shading); DES SV (purple); CFHTLenS or-
ange); Planck CMB lensing (yellow); CMASS fos (Chuang
et al. 25] green).

1. Other lensing data

CFHTLenS remains the most powerful current cosmic
shear survey, with 154 square degrees of data in the w,
g, 7, i, and z bands. Table [ summarises the constraints
from the non-tomographic analysis of and the to-
mographic analysis of that we have computed using
the same parameter estimation pipeline as the DES SV
data (starting from the published correlation functions
and covariance matrices).

We investigate the effect of the scale cuts used for the
CFHTLenS analysis so that we can make a more fair
comparison to DES SV. In Table [ and Fig [3] we show
constraints using scale cuts that were used in both
and to test the robustness of the results, labelled
“original conservative scales” exclude angles < 3/
for redshift bin combinations involving the lowest two
redshift bins from &, , and excluding angles < 30" for bin
combinations involving the lowest four redshift bins, and
angles < 16’ for bin combinations involving the highest
two redshift bins from £_. [K13|exclude angles < 17’ from
&y and < 53 from £_). Finally, we show the CFHTLenS
results using minimum scales selected using the approach
described in Section [[VB] which we refer to as “modified
conservative scales” in Table[l] and Fig [3]

We show constraints from with our scale cuts, on
(Qm, 08) as orange contours in Figure Our cosmo-
logical constraints are consistent with but have a
higher amplitude and larger uncertainties.

The values in Table[[|show that our prescription for se-
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lecting which scales to use gives similar results to the pre-
scription in (compare the “CFHTLenS (H13) orig-
inal conservative scales” line to the “CFHTLenS (H13)
modified conservative scales” line). Theresults show
some sensitivity to switching from using all scales to cut-
ting small scales (possibly because of the apparent lack of
power in the large scale points that K13 used but [H13|did
not), with a lower amplitude preferred when excluding
small scales (though see also Kitching et al. [68] which
prefers higher amplitudes). The uncertainties increase
by ~ 50% for the “modified conservative scales” case
(Ormin(E4) = 3.5 and 0,0, (§—) = 28') compared to using
all scales.

The most comparable lines in Table [[] show that our
tomographic uncertainties are ~ 20% larger than those
from CFHTLenS (compare “No photoz or shear sys-
tematics” with “CFHTLenS (H13) modified conservative
scales”) The main differences between the two datasets
are (i) the DES SV imaging data are shallower and have
a larger average PSF than CFHTLenS (ii) we are more
conservative in our selection of source galaxies (see
(iii) we use a larger area of sky gour 139 deg? square de-
grees instead of 75% of 154deg” ~ 115deg?; Heymans
et al. [46]) although our sky area is contiguous instead
of four independent patches. The upshot of the differ-
ent depths and galaxy selection are that CFHTLenS has
an effective source density of ~ 11 per arcmin? while
DES SV has an effective density of 6.8 and 4.1 galax-
ies per arcmin® for NGMIX and IM3SHAPE respectively,
using the definition. While the extra redshift reso-
lution in the 6-redshift-bin analysis may contribute
to their better constraining power (particularly on intrin-
sic alignments), we expect the main contribution comes
from their increased number density of galaxies. Given
the size of our errors, we do not yet have the constrain-
ing power required to resolve the apparent discrepancy
in the Qs vs og plane between CFHTLenS and Planck
[5l [72] [77], and we are consistent with both.

We also show in Table [I] and Figure [3] the result of
combining CFHTLenS and DES SV constraints together,
which is is straightforward since the surveys do not over-
lap on the sky. As expected, the joint constraints lie be-
tween the two individual constraints. Although judging
agreement between multi-dimensional contours is non-
trivial, by the simple metric of difference in best-fit Sg
divided by the lensing error bar on Sg, the tension be-
tween CFHTLenS and Planck is somewhat reduced by
combining CFHTLenS with DES SV.

Our constraints are also in good agreement with those
from Planck lensing [89], which are shown as yellow con-
tours in Figure[I0] The Planck lensing measurement con-
strains a flatter degeneracy direction in (€, og) because
it probes higher redshifts than galaxy lensing, as dis-
cussed in Planck Collaboration et al. [89] , Pan et al. [85],
and Jain & Seljak [54]. This means that the constraints
it imposes on og(£2,,/0.3)%® are rather weak, as shown in
Table[[]Jand Figure[3] but the constraints with the best fit-
ting combination og(€2,,/0.3)%-24 are much stronger (also



shown in Table [I).

2. Non-lensing data

Figure [I0] clearly shows that DES SV agrees well with
Planck on marginalising into the og—;,, plane in ACDM.
We see in Table [l that this is true for both the Planck
TT + lowP and the TT+TE+EE+lowP variant of the
Planck data. Since the DES-SV constraints show very lit-
tle constraining power on any of the other ACDM param-
eters varied, agreement of the multi-dimensional contours
with Planck seems likely. Since submission of this paper,
Raveri 2015 used a Bayesian data concordance test to
judge agreement between the constraints from different
datasets, including Planck and CFHTLenS. They apply
ultra-conservative cuts to the CFHTLenS data, resulting
in much enlarged contours in the €2y, - og plane, which ap-
pear to be in agreement with Planck, however their data
concordance test still suggests disagreement between the
two datasets. A natural question is whether the converse
situation is also be possible - where 2d marginalised con-
tours disagree, but a data concordance test will not show
tension. It is clear that caution must be exercised when
judging agreement based on 2d marginalised contours.

At the time of writing, the Planck 2015 likelihood
code has not been released, but chains derived from it
are publicly available. As we therefore cannot calculate
likelihoods for general parameter choices, we must in-
stead combine Planck with DES SV data using impor-
tance sampling: each sample in the Planck chain is given
an additional weight according to their likelihood under
DES SV data. Since the Planck chains do not, of course,
include our nuisance parameters we must also generate
a sample of each of those from our prior to append to
each Planck sample. In this approach we must also then
not apply the nuisance parameter priors again when com-
puting our posteriors during sampling, since that would
count the prior twice. As usual in importance sampling
for a finite number of samples this procedure is only valid
when the distributions are broadly in agreement, as in
this case. Table [l shows that the Planck uncertainties on
Sg are reduced by 10% on combining with DES SV, and
the central value moves down by about 10% of the error
bar. This can be compared to the combination of Planck
with Planck Lensing, which brings Sg down further and
tightens the error bar more.

Galaxy cluster counts are a long-standing probe of the
matter density and the amplitude of fluctuations (see
Mantz et al. [80] for a recent review). The constraints
from the Sunyayev—Zel’dovich effect measured by Planck
[90] are at the lower end of the amplitudes allowed by the
DES SV cosmic shear constraints and are in some ten-
sion with those from the Planck TT+ lowP primordial
constraints, depending on the choice of mass calibration
used. X-ray cluster counts also rely on a mass calibra-
tion to constrain cosmology and tend to fall at the lower
end of the normalisation range (see e.g. Vikhlinin et al.
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FIG. 11. Non-tomographic DES SV (blue circles),
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points projected onto the matter power spectrum (black
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the Planck best fit cosmology in ACDM. The Planck error
bars change size abruptly because the Cys are binned in larger
£ bins above ¢ = 50.

[113]). Finally, optical and X-ray surveys can use lens-
ing to measure cluster masses and abundances; there are
several ongoing analyses in DES to place constraints on
the cluster mass calibration. Figure [I0] includes a con-
straint in white from an analysis of X-ray clusters with
masses calibrated using weak lensing from Mantz et al.
[80]. This is clearly in good agreement with the DES SV
results presented here.

Spectroscopic large-scale structure measurements with
anisotropic clustering, such as the CMASS data pre-
sented in Chuang et al. [25], can be used to constrain
the growth rate of fluctuations, and are shown in green
in Figure[I0] There is a broad region of overlap between
that data and DES SV.

The Planck 2015 data release contains chains that
have been importance sampled with large scale struc-
ture data from 6dFGS, SDSS-MGS and BOSS-LOWZ
[2, 13, ©2], supernova data from the Joint Likelihood
Analysis [12], and a re-analysis of the Riess et al. [91]
HST Cepheid data by Efstathiou [3I]. In Table | and
Figure [3| we we refer to this combination as ‘ext’ and in-
clude it in our importance sampling. Planck alone mea-
sures 0g(Qm/0.3)%% = 0.850 & 0.024, while Planck+ext
measures g (2, /0.3)%% = 0.824 £ 0.013.

Figure [11] shows the DES SV, CFHTLenS and Planck
data points translated onto the matter power spectrum
assuming a ACDM cosmology. This uses the method de-
scribed in MacCrann et al. [77] which follows Tegmark &
Zaldarriaga [109] in translating the central § and ¢ val-
ues of the measurements into wavenumber values k. The
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w and Sy = 05(,/0.3)*?, from DES SV (purple), Planck
(red), CFHTLenS (orange), and Planck+ext (grey). DES SV
is consistent with Planck at w = —1. The constraints on Sy
from DES SV alone are also generally robust to variation in
w.

wavenumber of the point is the median of the window
function of the P(k) integral used to predict the observ-
able ({4 or Cy). The height of the point is given by the
ratio of the observed to predicted observable, multiplied
by the theory power spectrum at that wavenumber. For
simplicity we use the no-tomography results from each of
DES SV and CFHTLenS (K13). The results are there-
fore cosmology dependent, and we use the Planck best fit
cosmology for the version shown here. The CFHTLenS
results are below the Planck best fit at almost all scales
(see also discussion in MacCrann et al. [[7). The DES
results agree relatively well with Planck up to the maxi-
mum wavenumber probed by Planck, and then drop to-
wards the CFHTLenS results.

B. Dark Energy

The DES SV data is only 3% of the total area of the
full DES survey, so we do not expect to be able to signifi-
cantly constrain dark energy with this data. Nonetheless,
we have recomputed the fiducial DES SV constraints for
the second simplest dark energy model, wCDM, which
has a free (but constant with redshift) equation of state
parameter w, in addition to the other cosmological and
fiducial nuisance parameters (see Section 3). The purple
contours in Figure show constraints on w versus the
main cosmic shear parameter Sg; we find DES SV has a
slight preference for lower values of w, with w < —0.68 at
95% confidence. There is a small positive correlation be-
tween w and Sg, but our constraints on Sy are generally

18

robust to variation in w.

The Planck constraints (the red contours in Figure
agree well with the DES SV constraints: combining
DES SV with Planck gives negligibly different results to
Planck alone. This is also the case when combining with
the Planck+ext results shown in grey. Planck Collabo-
ration et al. [87] discuss that while Planck CMB tem-
perature data alone do not strongly constrain w, they
do appear to show close to a 20 preference for w < —1.
However, they attribute it partly to a parameter volume
effect, and note that the values of other cosmological pa-
rameters in much of the w < —1 region are ruled out by
other datasets (such as those used in the ‘ext’ combina-
tion).

Planck CMB data combined with CFHTLenS also
show a preference for w < —1 [87]. The CFHTLenS con-
straints (orange contours) in Figure [12]show a similar de-
generacy direction to the DES SV results, although with
a preference for slightly higher values of w and lower Sg.
The tension between Planck and CFHTLenS in ACDM is
visible at w = —1, and interestingly, is not fully resolved
at any value of w in Figure This casts doubt on the
validity of combining the two datasets in wCDM.

VII. CONCLUSIONS

We have presented the first constraints on cosmology
from the Dark Energy Survey. Using 139 square de-
grees of Science Verification data we have constrained
the matter density of the Universe €1, and the am-
plitude of fluctuations og, and find that the tightest
constraints are placed on the degenerate combination
Sg = 08(Qn/0.3)%5, which we measure to 7% accuracy
to be Sg = 0.81 £ 0.06.

DES SV alone places weak constraints on the dark
energy equation of state: w < —0.68 (95%). These
do not significantly change constraints on w compared
to Planck alone, and the cosmological constant remains
within marginalised DES SV-+Planck contours.

The state of the art in cosmic shear, CFHTLenS, gives
rise to some tension when compared with the most pow-
erful dataset in cosmology, Planck [88]. Our constraints
are in agreement with both Planck and CFHTLenS re-
sults, and we cannot rule either out due to larger uncer-
tainties caused by a smaller effective number density of
galaxies and our propagation of uncertainties in the two
most significant lensing systematics into our constraints.

We have investigated the sensitivity of our results to
variation in a wide range of aspects of our analysis, and
found our fiducial constraints to be remarkably robust.
Our results are stable to switching to our alternative
shear catalogue, IM3SHAPE, or to any of our alternative
photometric redshift catalogues, TPZ, ANNZ2 and BPZ.
Nonetheless, to account for any residual systematic error
we marginalise over 5% uncertainties on shear and pho-
tometric redshift calibration in each of three redshift bins
in our fiducial analysis; this inflates the error bar by 9%.



Our results are also robust to the choice of data vec-
tor: constraints from Fourier space C are consistent with
those from real space £4(0). As expected, a 2D analy-
sis is less powerful than one split into redshift bins; the
biggest benefit of tomography comes from its constraints
on intrinsic alignments.

In the future, DES will be an excellent tool for learning
about the nature of IAs. In this current analysis we only
aim to show that the details of TA modelling do not affect
the cosmological conclusions drawn from the SV dataset.
We investigated four alternatives to our fiducial intrin-
sic alignment model and found the results to be stable,
even when including an additional free parameter adding
redshift dependence. Similarly, the similarity in param-
eter constraints when using the NLA and CTA models,
as well as the minor shift when compared with the LA
and no IA cases, is consistent with the results of Krause
et al. [69], who forecast the effects of IA contamination
for each of these models for the full DES survey.

The DES SV results are also robust to astrophysical
systematics in the matter power spectrum predictions.
We chose to use only scales where the effect of baryons
on the matter power spectrum predictions are expected
to be relatively small, however, our results are relatively
insensitive to the inclusion of small angular scales and to
the effects of baryonic feedback as implemented in the
OWLS hydrodynamic simulations. Our fiducial results
are shifted by only 14% of the error bar when the OWLS
AGN model is included.

In the analysis of future DES data from Year One and
beyond we aim to be more sophisticated in several ways.
Greater statistical power will allow us to constrain our
astrophysical systematics more precisely, and algorithmic
improvements will reduce our nuisance parameter priors.
Forthcoming Dark Energy Survey data will provide much
more powerful cosmological tests, such as constraints on
neutrino masses, modified gravity, and of course dark
energy.
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Appendix A: Intrinsic Alignment Models

Here we briefly describe our fiducial, NLA, model of
intrinsic alignments (IAs), as well as the other models
we compare against in Section [V C|

The observed cosmic shear power spectrum is the sum
of the effect due to gravitational lensing, GG, the TA
auto-correlation, IT, and the gravitational-intrinsic cross-
terms:

Cots(0) = Ca () + CEL(0) + Cig () + C (6). - (A1)
When we quote results for “No IAs” we are simply ig-
noring the three IA terms on the right hand side of this
equation.

Each of these contributions can be written as integrals
over appropriate window functions and power spectra,

Cda() = / %g%z)gﬂ'(m(s(k,z)a (A2)
Céi(b) = / ggi(z)na‘(z)P@I(kvz)’ (A4)

where g%(z) is the lensing efficiency function, n;(z) is the
redshift distribution of the galaxies in tomographic bin
1 and we have assumed the Limber approximation. The
details of any chosen TA model are encoded in the auto-
and cross-power spectra, Pi; and Pgy.

Within the tidal alignment paradigm of IAs (see
Joachimi et al. [61], Kiessling et al. [63], Kirk et al.
[67], Troxel & Ishak [110] for general reviews of IAs),
the leading-order correlations define the linear alignment
(LA) model [50]. In the LA model predictions for the II
and GI terms give

Pu(k, z) = F?(2)Pss(k, 2), Pai(k,z) = F(2)Pss(k, 2),
(A5)
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where

O
F(z) = —AC1perit = -

D) (A6)

Perit 18 the critical density at z 0, Cy 5 x
1()’1471’2M51Mpc3 is a normalisation amplitude [19 20}
39], and A, the dimensionless amplitude, is the single
free parameter. D(z) is the growth function. In the case
where redshift dependence for IA is included, the ampli-

tude is
1 + 2 MNother
—_— . (A7
( 1+ 2 ) ( )

In the LA alignment paradigm galaxy intrinsic align-
ments are sourced at the epoch of galaxy formation and
do not undergo subsequent evolution, as such they are
unaffected by non-linear clustering at late times, and the
Pss(k, z) that enter equation are linear matter power
spectra. Our fiducial model, the non-linear alignment
(NLA) model, simply replaces the linear power spectra
with their non-linear equivalents, Pg‘g, wherever they oc-
cur, increasing the power of IAs on small scales. This
simple ansatz has no physical motivation under the LA
paradigm, but it has been shown to agree better with
data [19] [102]. The non-linear power spectra are cal-
culated using the Takahashi et al. [I07] version of the
HALOFIT formalism [104].

O
—AC1Perit

F(Zanothcr) = D(Z)

22

We also consider a model called the complete tidal
alignment (CTA) model [16]. This model includes all
terms that contribute at next-to-leading order in the tidal
alignment scenario, while also smoothing the tidal field.
The equivalent IT and GI terms

58
Pgr(k,z) =Fcra(z) | Pau(k, 2) + ﬁblaéﬂm + b1 Pojoe |

116
Pry(k,2) =F&pp(2)[PaL(k, z) + ﬁblggplin

+2b1 Pyjog + b3 Pogoz] , (A8)

where by is the linear bias of the source sample (approx-
imated to be b; = 1 for our sample), 0% is the variance
of the density field, smoothed in Fourier space at a co-
moving scale of k = 1 h~!Mpc, corresponding to roughly
the Lagrangian radius of a dark matter halo. Fyoe and
Pogjoe are O(PF,) terms that arise from weighting the in-
trinsic shape field by the source density. The amplitude
of the CTA model is given by

-1
58
Fora = —AC1perit m (1 + 2) (1 + 1051?10?9) - (A9)
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