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ABSTRACT 
 
 This Energy & Environmental Research Center (EERC) project is designed to determine if 
plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy 
made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially 
improving the lifetimes and maximum use temperatures of the parts. The method for joining the 
APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin 
foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an 
atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the 
alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses 
through the alloys and evaporates from their surfaces. 
 

Laboratory testing to determine the diffusion rate of Zn through the alloys has been 
completed. However, an analytical solution does not exist to model the diffusion of zinc through 
the alloys. For this reason, a finite difference algorithm using MATLAB was developed. It 
makes use of the hopscotch algorithm. The model allows the user to specify the dimensions of 
the metal parts, the Zn concentration at the bondline, the mesh size, time step, and Zn diffusivity. 
The experimentally measured values of diffusivity for Zn in APMT and Rene 80/CM 247LC are 
approximately 2.7 × 10-12 and 4 × 10-14 m2/s, respectively. 
 

While the qualitative behavior of the model appears correct, a comparison of the diffusion 
predictions with the experimental results from earlier in the project indicates that the expected Zn 
concentration is significantly higher than that measured experimentally. The difference depends 
on the assumed initial concentration, which is difficult to quantify exactly under experimental 
conditions for t = 0. 
 

In addition to the diffusion work, the coefficients of thermal expansions were determined 
for each of the alloys as a function of temperature. This information has been entered into a finite 
element model using ANSYS so that appropriate force-applying structures can be designed for 
use in joining structures composed of APMT and the nickel alloys. Finite element modeling has 
been performed to finalize the fabrication geometry for the corrosion-testing phase. The addition 
of another bolt increases stress uniformity away from the region where the clamping is applied. It 
appears that a bolt spacing of approximately 25 mm in each jig is appropriate. This will allow the 
fabrication of 50-mm-wide sections of joints for the corrosion-testing task. 
 

Gasifier sampling activities continue to determine what types of trace contaminants may 
occur in cleaned syngas that could lead to corrosion or deposition in turbines firing coal syngas. 
The EERC has several pilot-scale gasifiers that are continually used in a variety of test 
configurations as determined by the needs of the projects that are funding the tests. We are 
sampling both noncombusted and combusted syngas produced during some of the pilot-scale 
gasifier tests. This year sampling was performed of both syngas and combusted syngas while the 
entrained-flow gasifier (EFG) was firing subbituminous coal from the Antelope Mine in 



 

 

Wyoming. Results of scanning electron microscope analyses of the syngas before combustion 
showed no submicron particles, only flakes of iron oxide that had likely formed on steel surfaces 
inside the combustor. As shown in the 2013 annual report, soot was also collected from the 
syngas when the much-lower-temperature fluid-bed gasifier (FBG) was fired, indicating that the 
much higher temperature of the EFG prevented soot formation. However, particles collected 
from the combusted syngas consist almost entirely of submicron soot, and little to no vaporized 
metals made it past the warm-gas filters and scrubbers in the high-temperature EFG system 
which could then deposit in a turbine system burning a higher hydrogen syngas. These results are 
consistent with the analyses of the particulates collected from combusted syngas when the lower-
temperature FBG system is used. 
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EXECUTIVE SUMMARY 
 
 This Energy & Environmental Research Center (EERC) project was designed to determine 
if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl 
alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for 
substantially improving the lifetimes and maximum use temperatures of the parts, both those 
with thermal barrier coatings and those without. The superalloys being investigated for 
protection are CM247LC and Rene® 80. Both are alumina-scale-forming alloys. The method for 
bonding the APMT plate to the superalloys is called evaporative metal bonding, which involves 
placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and 
heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide 
skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn 
then diffuses through the alloys and evaporates from their surfaces. 
 
 If successful, the information developed will help move the protection process closer to 
demonstration testing. In addition, the team will characterize the microcontaminants in 
combusted higher-hydrogen-content gas. This information will be used to best simulate actual 
corrosion conditions in a turbine system and can also be used by other researchers studying 
deposition and gas flow in turbines. 
 
 Laboratory testing to determine the diffusion rate of Zn through the alloys has been 
completed. However, an analytical solution does not exist to model the diffusion of zinc through 
the alloys. For this reason, a finite difference algorithm using MATLAB was developed. It 
makes use of the hopscotch algorithm. The model allows the user to specify the dimensions of 
the metal parts, the Zn concentration at the bondline, the mesh size, time step, and Zn diffusivity. 
The experimentally measured values of diffusivity for Zn in APMT and Rene 80/CM 247LC are 
approximately 2.7 × 10-12 and 4 × 10-14 m2/s, respectively. 
 
 While the qualitative behavior of the model appears correct, a comparison of the diffusion 
predictions with the experimental results from earlier in the project indicates that the expected Zn 
concentration is significantly higher than that measured experimentally. The difference depends 
on the assumed initial concentration, which is difficult to quantify exactly under experimental 
conditions for t = 0. However, it appears that the model predicts a concentration  
2–3 times higher than that measured experimentally after 10 hours of diffusion. Additional 
investigations of this discrepancy are ongoing. This uncertainty in the model behavior is not 
expected to affect the ability to create good joints for the corrosion testing but will reduce 
confidence in being able to guarantee that the process has truly been optimized. 
 
 Additional finite element modeling has been performed to finalize the fabrication geometry 
for the corrosion-testing phase. The addition of another bolt increases stress uniformity away 
from the region where the clamping is applied. It appears that a bolt spacing of approximately  
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25 mm in each jig is appropriate. This will allow the fabrication of 50-mm-wide sections of 
joints for the corrosion-testing task. 
 
 In addition to the laboratory testing, gasifier sampling activities continue to determine what 
types of trace contaminants may occur in cleaned syngas that could lead to corrosion or 
deposition in turbines firing coal syngas. The EERC has several pilot-scale gasifiers that are 
continually used in a variety of test configurations as determined by the needs of the projects that 
are funding the tests. Under the University Turbine System Research (UTSR) Program, we are 
sampling both noncombusted and combusted syngas produced during some of the pilot-scale 
gasifier tests. 
 
 During the October to December 2013 quarterly reporting period, sampling was performed 
at both the inlet and the outlet of the TOx while the entrained-flow gasifier (EFG) was firing 
subbituminous coal from the Antelope Mine in Wyoming. Results of SEM analyses of the 
syngas before combustion showed no submicron particles, only flakes of iron oxide that had 
likely formed on steel surfaces inside the combustor. As shown in the 2013 annual report, soot 
was also collected from the syngas when the much-lower-temperature fluid-bed gasifier (FBG) 
was fired, indicating that the much higher temperature of the EFG prevented soot formation. 
However, particles collected from the combusted syngas consist almost entirely of submicron 
soot, and little to no vaporized metals made it past the warm-gas filters and scrubbers in the high-
temperature EFG system which could then deposit in a turbine system burning a higher hydrogen 
syngas. These results are consistent with the analyses of the particulates collected from 
combusted syngas when the lower-temperature FBG system was used. 
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NOMENCLATURE 
 
 
APMT®  oxide dispersion-strengthened FeCrAl alloy made by Kanthal 
ASME  American Society of Mechanical Engineers 
CM247LC  alumina-scale-forming nickel-based superalloy 
CVAAS  cold-vapor atomic absorption spectrometry 
EDS   energy-dispersive spectroscopy 
EFG    entrained-flow gasifier 
EPA   U.S. Environmental Protection Agency 
FBG   fluid-bed gasifier 
Rene® 80  alumina-scale-forming nickel-based superalloy 
SEM   scanning electron microscopy 
UTSR  University Turbine System Research 
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PREPARATION AND TESTING OF CORROSION-  
AND SPALLATION-RESISTANT COATINGS 

 
 

INTRODUCTION 
 
 The objective of this Energy & Environmental Research Center (EERC) project was to 
take a recently developed method of plating nickel superalloys with protective FeCrAl layers 
closer to commercial use in syngas-fired turbines. The project is designed to determine if plating 
APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made 
by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially 
improving the lifetimes and maximum use temperatures of the parts, both those with thermal 
barrier coatings (TBCs) and those without. The superalloys being investigated for protection are 
CM247LC and Rene® 80, both alumina-scale-forming alloys. The method for bonding the 
APMT plate to the superalloys is called evaporative metal bonding (EMB), which involves 
placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and 
heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide 
skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn 
then diffuses through the alloys and evaporates from their surfaces. 
 
 If successful, the information developed will help move the protection process closer to 
demonstration testing. In addition, the team will characterize the microcontaminants in 
combusted higher-hydrogen-content gas. This information will be used to best simulate actual 
corrosion conditions in a turbine system and can also be used by other researchers studying 
deposition and gas flow in turbines. 
 
 
EXPERIMENTAL METHODS  
 

Laboratory Testing and Modeling 
 

Under Tasks 2 and 3, we are measuring properties of the alloys and developing computer 
models of their high-temperature properties in order to develop the best methods for joining the 
APMT plate to CM247LC and Rene 80 turbine parts. In order to determine the best heating 
schedules to use for joining APMT plates to superalloy parts, we are measuring the diffusion 
rates of Zn through the alloys as a function of temperature. The experimental setup is described 
in last year’s annual report. In order to develop the best clamp designs to use for holding the 
plating to the parts, we are measuring physical properties of the materials as a function of 
temperature. 
 

Gasifier Sampling 
 
 In addition to the laboratory testing, we are continuing Task 4 sampling activities to 
determine what types of trace contaminants may occur in cleaned syngas that could lead to 
corrosion issues in turbines firing syngas. The EERC has two pilot-scale gasifiers that are 
intermittently used in a variety of test configurations. One is a pressurized entrained-flow gasifier 
(EFG), and the other is a pressurized fluid-bed gasifier (FBG). They are described in detail in the 
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2012 annual report. Funding for the actual operation of the gasifiers comes from projects other 
than this University Turbine System Research (UTSR) project. Particulates are collected by 
pulling approximately 1 cubic meter of gas through a cooled probe and through a Nucleopore 
filter with 0.1-µm holes.  
 
 
RESULTS AND DISCUSSION 
 

Laboratory Testing 
 
 The thermal expansion properties used for these calculations are slightly different for the 
Rene 80, CM247LC, and APMT than those reported in the Year 2 Quarter 3 report. It was 
discovered that oxidation had occurred on the thermomechanical analyzer (TMA) probe that may 
have affected the original results. The current calculations also include the actual measured 
values for the thermal expansion of the Mo jig. Prior calculations had assumed a constant value 
for the thermal expansion of the Mo (6 × 10-6 m/m) found in the literature. Measurements 
indicated the actual value to be more than twice this number at high temperatures. As a result, 
the maximum stresses at 1200C are less than those reported previously (the higher thermal 
expansion of the Mo jig results in lower compressive stresses in the joint). Thermal expansion 
values used for each of the materials are shown in Table 1. 
 
 A review of studies that have investigated the effect of bonding pressure on diffusion 
bonding shows that joint strength tends to increase with bonding pressure up to a pressure in the 
low tens of MPa (1–4). At higher pressures, the resulting joint strength tends to decrease. No 
definitive explanation is available, but the consensus seems to be that the initial increase in joint 
strength is due to the flattening of surface asperities and more intimate contact between the 
mating surfaces. This increases the area available for diffusion. At some point, however, the  
 
 
Table 1. Linear Coefficient of Thermal Expansion () as a Function of Temperature for 
Each Material Involved with the Bonding Process 
Temperature, 
°C 

APMT, 
10-6/°C 

CM247LC, 
10-6/°C 

Rene 80, 
10-6/°C 

Mo, 
10-6/°C 

Steel, 
10-6/°C 

100 13.0 13.2 14.0 7.5 16.0 
200 14.4 14.3 14.7 8.5 18.1 
300 16.5 15.4 15.5 10.0 20.6 
400 17.9 16.2 16.2 10.9 21.9 
500 18.6 16.9 16.7 11.5 22.6 
600 18.8 17.3 17.0 11.7 23.0 
700 19.3 17.7 17.5 11.9 23.2 
800 19.6 18.0 17.9 12.1 21.9 
900 20.0 18.3 18.4 12.1 22.2 
1000 20.5 18.3 19.1 13.3 22.5 
1100 21.0 17.5 20.3 14.7 22.7 
1200 21.2 16.9 21.3 15.2 23.0 
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Table 2. Strength and Elongation Data for TZM Mo as a Function of Temperature and 
Rolling Direction (3) 

Temperature, 
°C 

Yield 
Stress, 
MPa 

Ultimate 
Tensile 

Strength, 
MPa 

Total 
Elongation, 

% 

Uniform 
Elongation, 

% 

Reduction 
in Area, 

% 

Young’s 
Modulus, 

GPa 
Longitudinal (LSR) Data 
−194 NA1 1455 0 0 0  
−150 NA 1436±73 1±1 0±0 3  
−100 1224±33 1232±26 1.9±1.7 0.7±0.1 7 312±18 
−50 1033±33 1041±33 8.11±5.4 4.2±3.2 29±14  
RT2 730±32 808±34 16.3±3.1 9.2±2.7 47±11 291±18 
100 650±19 756±30 12.3±1.7 6.5±1.3 65 273±3 
200 577±12 674±18 9.0±0.9 4.7±1.5 61 250±8 
300 600 669 8.0 1.9 70  
400 615 673 7.0 2.6 69  
600 572±3 628±14 4.8±0.2 2.2±0.3  242±9 
702 510 556 5.0 1.6 75  
800 497±21 539±38 4.0±0.5 1.9±0.1  243±3 
976 448 487 5.0 1.6 >99  
1000 489±19 524±16 3.6±0.4 1.5±0.4  223±18 
1201 402 414 7 7 86  
1406 107 172 30 30 97  

Transverse (TSR) Data 
−194 NA 1390 0 0 0  
−150 NA 1536 <1 <1 0  
−100 1328±22 1333±14 0.8±0.2 0.6±0.0 0 326±5 
−50 1170±56 1155±61 4.3±2.9 0.6±0.1 13 319±3 
0 895 929 11 6 40  
RT 810±43 852±27 11.7±1.7 5.4±0.5 36 294±15 
100 761±23 815±18 8.6±2.2 4.2±1.1 47 296±0 
200 662±38 721±27 6.3±1.1 3.5±0.6 55 270±17 
300 652 694 5 3 61  
400 607 648 6 2 68  
600 637±9 670±20 2.5±0.4 1.0±0.1  268±7 
701 544 611 4.0 1.0 59  
800 575±26 600±24 2.7±0.4 0.8±0.1  242±1 
1000 550±34 570±35 2.6±0.4 0.9±0.1  223±15 

1 Not analyzed. 
2 Room temperature. 
 
 

Modeling 
 
 Figure 2 shows the diffusion conditions experienced by joints during the evaporative 
bonding process. “Initial” and “boundary” refer to the type of condition. The schematic makes 
use of symmetry about the midline of the zinc layer. 
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Gasifier Sampling 
 
 In addition to the laboratory testing and modeling, Task 4 gasifier sampling activities 
continue to determine what types of trace contaminants may occur in cleaned syngas that could 
lead to corrosion or deposition in turbines firing coal syngas. The EERC has several pilot-scale 
gasifiers that are continually used in a variety of test configurations as determined by the needs 
of the projects that are funding the tests. Under the UTSR Program, we are sampling both 
noncombusted and combusted syngas produced during some of the pilot-scale gasifier tests. The 
pressurized EFG was described in the January–March 2012 quarterly report, and the pressurized 
FBG was described in the April–June 2012 quarterly report. The thermal oxidizer used to 
combust the syngas contains a burner at the top of a refractory-lined chamber that admits the 
syngas and air separately and also includes a premixed natural gas and air supplemental gas 
stream. An accurate flame temperature is not available for the thermal oxidizer because 
thermocouples burn out too quickly in the flame. Particulates are collected from the syngas 
before the burner and from the combusted syngas at the bottom of the downfired oxidizer. The 
gas being sampled at the bottom is at approximately 750°C. It is quenched as it is pulled through 
the glass sampling tube to approximately 100°C before reaching the filter. The sampling train 
consists of a cooled one-piece glass nozzle–probe liner leading to a polycarbonate filter 
(Whatman™ Nucleopore™ type) with 0.1-µm holes. The gas and particulate sample are 
withdrawn nonisokinetically from the source. 
 

During the October to December 2013 quarterly reporting period, sampling was performed 
at both the inlet and the outlet of the TOx while the EFG was firing subbituminous coal from the 
Antelope Mine in Wyoming. Three samples were collected: one at the inlet of the TOx and two at 
the outlet. The first sample was collected on October 29 at the outlet while coal syngas was being 
fired; the second was collected on October 30 from the coal syngas at the inlet to the TOx; and 
the third sample was collected on November 4 at the TOx outlet while firing on natural gas only. 
During these sampling periods, a total syngas volume of 153.25 ft3 was collected in the sampling 
train with 56.8 ft3 (1.61 m3) for the first sample, 49.0 ft3 (1.39 m3) for the second, and 47.5 ft3 
(1.34 m3) for the third. Particulate loadings were 0.808 mg/m3 at the TOx outlet when syngas was 
fired, 6.906 mg/m3 at the TOx inlet, and 0.698 mg/m3 at the TOx outlet when only natural gas 
was fired. 
 
 Initial analyses of the particles with the EERC JEOL 5800 scanning electron microscope 
(SEM) were reported in the April through June 2014 quarterly technical progress report. 
However, that SEM has relatively low resolution, so it was decided to repeat the analyses using a 
new high-resolution SEM on the University of North Dakota (UND) campus. Those analyses are 
now complete. The new UND field emission SEM is an FEI Quanta 650 FEG. The samples 
analyzed were cut from the filter and mounted on a carbon plug using carbon paint to hold them 
to the plugs. The samples were lightly coated with evaporated carbon to increase the electrical 
conductivity of their surfaces. Figure 10 shows the particles collected at the outlet of the TOx 
while syngas and natural gas were being fired in the TOx. The particles are primarily 0.05 to  
0.2 µm in diameter. Energy- dispersive spectroscopy (EDS) of individual particles indicates that 
they all consist of approximately 89% carbon, 9% oxygen, and 1% nitrogen. Although we can 
expect that the EDS results would be heavily contaminated by x-rays from the filter 
(polycarbonate), we should have seen some signals from any metals that were present, indicating  
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Gasifier sampling activities continue to determine what types of trace contaminants may 
occur in cleaned syngas that could lead to corrosion or deposition in turbines firing coal syngas. 
This year sampling was performed of both syngas and combusted syngas while the EFG fired 
subbituminous coal from the Antelope Mine in Wyoming. Results of SEM analyses of the 
syngas before combustion showed no submicron particles, only flakes of iron oxide that had 
likely formed on steel surfaces inside the combustor. As shown in the 2013 annual report, soot 
was also collected from the syngas when the much-lower-temperature FBG was fired, indicating 
that the much higher temperature of the EFG prevented soot formation. However, particles 
collected from the combusted syngas consisted almost entirely of submicron soot, and little to no 
vaporized metals made it past the warm-gas filters and scrubbers in the high-temperature EFG 
system which could then deposit in a turbine system burning a higher hydrogen syngas. These 
results are consistent with the analyses of the particulates collected from combusted syngas when 
the lower-temperature FBG system was used. 
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