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recommendation, or favoring by the United States Government or any agency thereof. The views 
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PREPARATION AND TESTING OF CORROSION-  
AND SPALLATION-RESISTANT COATINGS 

 
 
ABSTRACT 
 
 This Energy & Environmental Research Center (EERC) project is designed to determine if 
plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy 
made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially 
improving the lifetimes and maximum use temperatures of the parts. The method for joining the 
APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin 
foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an 
atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the 
alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses 
through the alloys and evaporates from their surfaces. 
 

Laboratory testing to determine the diffusion rate of Zn through the alloys has been 
completed. We have found that we were not able to create joints when temperatures much lower 
than the original temperature of 1214C are used. Therefore, we limited our diffusion rate 
measurements to the two hold temperatures used in the procedure: 700° and 1214C. The 
diffusivity of zinc in both APMT and CM247LC is quite similar at 700C. Diffusivity in the 
APMT appears to be slightly higher, but the midline composition after 30 minutes at this 
temperature is quite similar. At 1214C, the situation is very different. The calculated diffusivity 
of zinc in APMT is approximately 15 times higher than in CM247LC or Rene® 80 (~120 vs.  
~8 µm2/min) at that temperature. 
 

In addition to the diffusion work, the coefficients of thermal expansions were determined 
for each of the alloys as a function of temperature. This information has been entered into a finite 
element model using ANSYS so that appropriate force-applying structures can be designed for 
use in joining structures composed of APMT and the nickel alloys. 
 

Gasifier sampling activities continue to determine what types of trace contaminants may 
occur in cleaned syngas that could lead to corrosion or deposition in turbines firing coal syngas. 
The EERC has several pilot-scale gasifiers that are continually used in a variety of test 
configurations as determined by the needs of the projects that are funding the tests. We are 
sampling both noncombusted and combusted syngas produced during some of the pilot-scale 
gasifier tests. 
 

After modifying our sampling procedures to minimize contamination from the oxidizer, we 
obtained very good filter samples from both syngas and from the combustion products of the 
syngas blended with natural gas. Scanning electron microscopy analyses showed that the 
particles captured on the filter from the syngas were typically 0.2 to 0.5 µm in diameter, whereas 
those captured from the combusted syngas were slightly larger and more spherical. However, the 
particles were so small that we could not obtain good spectra from them either at the EERC or 
JEOL America, the maker of the EERC electron microscope systems. Therefore, the EERC 
applied for and received time on electron microscopes using different signal analyzers at the Oak 



 

 

Ridge National Laboratory (ORNL) ShaRE User Facility, which is sponsored by the U.S. 
Department of Energy Scientific User Facilities Division of the Office of Basic Energy Sciences. 
At ORNL, both x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy were 
performed on the samples because these are surface analyses that analyze electrons emitted from 
within a few nanometers of the surfaces of the particles and filters. The XPS data show that the 
particles do not contain any metals and, in fact, have an atomic composition almost identical to 
that of the polycarbonate filter. We currently believe that this indicates that the particles are 
primarily soot-based and not formed from volatilization of metals in the fluid-bed gasifier. The 
data indicate that the soot-based particles are not well burned in the thermal oxidizer, although 
they are significantly oxidized, nitrided, and sulfidized in the combustor. Ion etching to remove 
the surfaces of the particles indicates that the oxidation, nitridation, and sulfidation of the 
particles are primarily surface phenomena. 
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PREPARATION AND TESTING OF CORROSION-  
AND SPALLATION-RESISTANT COATINGS 

 
 
EXECUTIVE SUMMARY 
 
 This Energy & Environmental Research Center (EERC) project was designed to determine 
if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl 
alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for 
substantially improving the lifetimes and maximum use temperatures of the parts, both those 
with thermal barrier coatings and those without. The superalloys being investigated for 
protection are CM247LC and Rene® 80. Both are alumina-scale-forming alloys. The method for 
bonding the APMT plate to the superalloys is called evaporative metal bonding, which involves 
placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and 
heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide 
skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn 
then diffuses through the alloys and evaporates from their surfaces. 
 
 If successful, the information developed will help move the protection process closer to 
demonstration testing. In addition, the team will characterize the microcontaminants in 
combusted higher-hydrogen-content gas. This information will be used to best simulate actual 
corrosion conditions in a turbine system and can also be used by other researchers studying 
deposition and gas flow in turbines. 
 
 Laboratory testing to determine the diffusion rate of Zn through the alloys has been 
completed. We have found that we were not able to create joints when temperatures much lower 
than the original temperature of 1214C are used. Therefore, we limited our diffusion rate 
measurements to the two hold temperatures used in the procedure: 700° and 1214C. The 
diffusivity of zinc in both APMT and CM247LC is quite similar at 700C. Diffusivity in the 
APMT appears to be slightly higher (~4 vs. ~2 µm2/min), but the midline composition after  
30 minutes at this temperature is quite similar. At 1214C, the situation is very different. 
Because only about 15 wt% zinc remained at the midline after the low-temperature hold, the 
absolute difference in compositions between the APMT, CM247LC, and Rene 80 at 1214C is 
relatively small. However, the calculated diffusivity of zinc in APMT is approximately 15 times 
higher than in CM247LC or Rene 80 (~120 vs. ~8 µm2/min) at 1214C. 
 
 In addition to the diffusion work, the coefficients of thermal expansions were determined 
for each of the alloys as a function of temperature. This information has been entered into a finite 
element model using ANSYS so that appropriate force-applying structures can be designed for 
use in joining structures composed of APMT and the nickel alloys. 
 
 In addition to the laboratory testing, gasifier sampling activities continue to determine what 
types of trace contaminants may occur in cleaned syngas that could lead to corrosion or 
deposition in turbines firing coal syngas. The EERC has several pilot-scale gasifiers that are 
continually used in a variety of test configurations as determined by the needs of the projects that 
are funding the tests. Under the University Turbine System Research (UTSR) Program, we are 
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sampling both noncombusted and combusted syngas produced during some of the pilot-scale 
gasifier tests. 
 
 The gas and particulate sample is withdrawn nonisokinetically from the source, particulate 
emissions are collected in the probe and on a heated filter, and gaseous emissions are then 
collected in aqueous acidic solutions of H2O2 and KMnO4, respectively. While filters are 
analyzed using scanning electron microscopy (SEM), impinger solutions are analyzed using 
inductively coupled plasma–mass spectrometry. 
 
 After modifying our sampling procedures to minimize contamination from the oxidizer, we 
obtained very good filter samples from both syngas and from the combustion products of the 
syngas blended with natural gas. SEM analyses showed that the particles captured on the filter 
from the syngas were typically 0.2 to 0.5 µm in diameter, whereas those captured from the 
combusted syngas were slightly larger and more spherical. However, the particles were so small 
that we could not obtain good spectra from them either at the EERC or JEOL America, the 
maker of the EERC electron microscope systems. Therefore, the EERC applied for and received 
time on electron microscopes using different signal analyzers at the Oak Ridge National 
Laboratory (ORNL) ShaRE User Facility, which is sponsored by the U.S. Department of Energy 
Scientific User Facilities Division of the Office of Basic Energy Sciences. At ORNL, both x-ray 
photoelectron spectroscopy (XPS) and Auger electron spectroscopy were performed on the 
samples because these are surface analyses that analyze electrons emitted from within a few 
nanometers of the surfaces of the particles and filters. In XPS, areas of the filter on which 
particles reside are analyzed. In Auger electron spectroscopy, individual particles can be 
analyzed, but this type of analysis was not found to be useful because it was hampered by 
excessive charging of the samples because of their nonconductive nature. In addition, some 
particles were transferred to transmission electron microscopy grids that were covered with a 
carbon film to support the particles. In this case, individual samples could be analyzed, but those 
data will be presented in a future report because they are not yet summarized. 
 
 The XPS data show that the particles do not contain any metals and, in fact, have an atomic 
composition almost identical to that of the polycarbonate filter. We currently believe that this 
indicates that the particles are primarily soot-based and not formed from volatilization of metals 
in the FBG. The data indicate that the soot-based particles are not well burned in the thermal 
oxidizer, although they are significantly oxidized, nitrided, and sulfidized in the combustor. Ion 
etching to remove the surfaces of the particles indicate that the oxidation, nitridation, and 
sulfidation of the particles are primarily surface phenomena. 
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NOMENCLATURE 
 
 
APMT®  oxide dispersion-strengthened FeCrAl alloy made by Kanthal 
ASME  American Society of Mechanical Engineers 
CM247LC  alumina-scale-forming nickel-based superalloy 
CVAAS  cold-vapor atomic absorption spectrometry 
EDS   energy-dispersive spectroscopy 
EFG    entrained-flow gasifier 
EPA   U.S. Environmental Protection Agency 
FBG   fluid-bed gasifier 
Rene® 80  alumina-scale-forming nickel-based superalloy 
SEM   scanning electron microscopy 
UTSR  University Turbine System Research 
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PREPARATION AND TESTING OF CORROSION-  
AND SPALLATION-RESISTANT COATINGS 

 
 

INTRODUCTION 
 
 The objective of this Energy & Environmental Research Center (EERC) was to take a 
recently developed method of plating nickel superalloys with protective FeCrAl layers closer to 
commercial use in syngas-fired turbines. The project is designed to determine if plating APMT®, 
a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by 
Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially 
improving the lifetimes and maximum use temperatures of the parts, both those with thermal 
barrier coatings (TBCs) and those without. The superalloys being investigated for protection are 
CM247LC and Rene® 80, both alumina-scale-forming alloys. The method for bonding the 
APMT plate to the superalloys is called evaporative metal bonding (EMB), which involves 
placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and 
heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide 
skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn 
then diffuses through the alloys and evaporates from their surfaces. 
 
 If successful, the information developed will help move the protection process closer to 
demonstration testing. In addition, the team will characterize the microcontaminants in 
combusted higher-hydrogen-content gas. This information will be used to best simulate actual 
corrosion conditions in a turbine system and can also be used by other researchers studying 
deposition and gas flow in turbines. 
 
 
EXPERIMENTAL METHODS  
 

Laboratory Testing and Modeling 
 

Under Tasks 2 and 3, we are measuring properties of the alloys and developing computer 
models of their high-temperature properties in order to develop the best methods for joining the 
APMT plate to CM247LC and Rene 80 turbine parts. In order to determine the best heating 
schedules to use for joining APMT plates to superalloy parts, we are measuring the diffusion 
rates of Zn through the alloys as a function of temperature. The experimental setup is described 
in last year’s annual report. In order to develop the best clamp designs to use for holding the 
plating to the parts, we are measuring physical properties of the materials as a function of 
temperature. 
 

Gasifier Sampling 
 
 In addition to the laboratory testing, we are continuing Task 4 sampling activities to 
determine what types of trace contaminants may occur in cleaned syngas that could lead to 
corrosion issues in turbines firing syngas. The EERC has several pilot-scale gasifiers that are 
continually used in a variety of test configurations. They are described in detail in last year’s 
annual report. Funding for the actual operation of the gasifiers comes from projects other than 
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this University Turbine Systems Research (UTSR) project. The trace contaminants are collected 
using standard U.S. Environmental protection Agency (EPA) sampling techniques after the 
syngas produced by the gasifiers is burned in refractory-lined thermal oxidizers. The sampling 
trains used are for EPA Method (M) 29 sampling for particulate- and vapor-phase metals and 
M26A for halogens. Sampling is conducted when either one of two pilot-scale gasifiers are being 
operated. One is a pressurized entrained-flow gasifier (EFG), and the other is a pressurized fluid-
bed gasifier (FBG).  
 
 
RESULTS AND DISCUSSION 
 

Laboratory Testing 
 
 Final analysis of the diffusion rates of zinc through the three alloys has been completed. 
After bonding, each joint was sectioned parallel to the sample axis (perpendicular to the bond 
line) and each joint analyzed via scanning electron microscopy (SEM) and energy-dispersive 
spectroscopy (EDS). EDS data were then used to estimate the diffusivity of zinc in each alloy at 
each temperature based on Equation 1 [1]: 
 

,ݔሺܥ  ሻݐ ൌ ఉ

ଶ√గ஽∗௧
݌ݔ݁ ቀି௫

మ

ସ஽∗௧
ቁ [Eq. 1] 

 
where  is the initial concentration of diffusing species, D* is the diffusivity, t is time, and x is 
distance from the midline. Originally, it was planned that we would determine the diffusion rates 
at several different temperatures in order to determine bonding times at various temperatures. 
However, we have found that we were not able to create joints when temperatures much lower 
than the original temperature of 1214C are used. Therefore, we limited our diffusion rate 
measurements to the two hold temperatures used in the procedure: 700° and 1214C. 
 
 Table 1 shows diffusivity calculations for the APMT and CM247LC at 700C. The units 
are given as volume/distance/time. No usable results were able to be obtained for the Rene 80 
samples at this temperature. Table 2 shows the calculated diffusivities for APMT, CM247LC, 
and Rene 80 at 1214°C. In both tables, “Center” indicates composition data taken from the 
midline of the sectioned joints. “Edge” indicates composition data taken from the outer limit of 
the bonded region. This is illustrated in Figure 1. The apparent higher diffusion rate measured at 
the edge is greater than that at the center because the method is based on changes in composition 
with distance, and near the edges, zinc evaporates from the surface, creating a more rapid 
apparent diffusion rate. 
 
 Table 3 shows the center line composition of each of the joints from Tables 1 and 2 (data 
taken at the center position of each joint). 
 
 Several observations can be made about the data in Tables 1–3. First, the diffusivity of zinc 
in both APMT and CM247LC is quite similar at 700C. Diffusivity in the APMT appears to be 
slightly higher (~4 vs. ~2 µm2/min), but the midline composition after 30 minutes at this  
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Table 3. Center Line Composition of Each Joint, wt% zinc 

Material Temp., °C Time, min 
Center 

Composition, wt% 
APMT 700 30 16.2 
  1214 60 2.6 
  1214 300 1.9 
CM247LC 700 30 16.7 
  1214 60 6.9 
  1214 180 4.1 
  1214 300 3.5 
  1214 600 3.7 
  1214 1200 2.1 
Rene 80 1214 60 8.1 
  1214 180 6.8 
  1214 300 4.8 

1214 600 2.7 
  1214 1200 1.4 

 
 
for diffusivity in terms of the diffusion coefficient, Do, and the activation energy for diffusion, 
Q, where R is the ideal gas constant and T is the absolute temperature: 
 

∗ܦ  ൌ ݌ݔ௢݁ܦ ቀ
ିொ

ோ்
ቁ [Eq. 2] 

 
If Do and Q are assumed to be independent of temperature and composition for each material 
system and the approximate ratio of the diffusivities calculated above is substituted into Equation 
2 for APMT and CM247LC, the difference in activation energies for diffusion of zinc through 
the two alloys can be estimated. This calculation yields: 
 

 Qେ୑ଶସ଻ െ Q୅୔୑୘ ≅ െ54 ୩୎

୩୫୭୪
 [Eq. 3] 

 
For reference, this value is similar in magnitude and sign to the difference in activation energies 
for the diffusion of copper in pure nickel (258 kJ/kmol) and pure iron (295 kJ/kmol) [2]. 
 

Modeling 
 
 Table 4 shows the linear coefficient of thermal expansion as a function of temperature for 
each of the materials used in this study (parent materials and jig materials). Each value is the 
average of four measurements. The units are microstrain/C, sometimes given as x10-6/C. These 
data were entered into a finite element model of the sample and jig to determine the stress 
distribution within the joint during bonding. The finite element model is shown in Figure 2. 
Figures 3–5 (units in Pa) show that the stresses at the bond line are not symmetrical about the 
axis of the joint during bonding. This is because of the geometry of the jig and the contact 
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Each impinger is rinsed with water, and the rinse is added to the corresponding storage bottle. 
All sample collection bottles are sealed, labeled, and sent to the analytical laboratory for 
analysis. 
 
 During the January to March 2013 quarterly reporting period, sampling was performed at 
both the inlet and the outlet of the thermal oxidizer while the pressurized FBG was firing a 
subbituminous coal from the Eagle Butte Mine, Wyoming. No sulfur removal technology was 
used during the gasifier test. Four M29 samples were collected, two immediately before the 
thermal oxidizer and two at the bottom of the thermal oxidizer. The first test was conducted on 
March 12 (Test 1), the second (Test 2) and third on March 13 (Test 3), and the fourth test on 
March 15 (Test 4). The first and second tests were conducted at the inlet before the combustor, 
while the third and fourth tests were conducted at the outlet after combustion. 
 
 During the March to June 2013 quarterly reporting period, we attempted to analyze these 
filter samples in the EERC JEOL 5800 SEM equipped with an Oxford Instruments INCA EDS 
system and a silicon drift x-ray detector. However, measureable x-ray signals could not be 
obtained with the EERC EDS system, so the compositions of the particles could not be 
determined. Therefore, during the current reporting period, a piece of the filter sample collected 
from the inlet to the thermal oxidizer was sent to JEOL USA for analysis by Natasha Erdman 
with a more powerful field emission-type SEM.  
 
 Figure 6 shows an image of the inlet particles with the JEOL USA system. The particles 
captured at the inlet have diameters typically between 0.2 and 0.5 µm. Figure 7 is composed of 
two higher-magnification images of the same area. Figure 7a is taken using secondary electron 
imaging (SEI), whereas 2b is taken using backscatter electron imaging (BEI). In BEI imaging, 
the contrast is modified by the density of the particles, denser particles appearing brighter than 
less dense particles. The images show that a few of the particles are denser than the majority of 
the particles and, therefore, likely contain higher-atomic-number elements such as sulfur or 
metals. It also shows that many of the larger particles are composed of conglomerates of  
0.1-µm particles. However, JEOL USA was also not able to obtain sufficient EDS data from the 
small particles for identification, other than carbon and sulfur, which could have been 
interference from x-rays emanating from the underlying filter. The small black circles are holes 
in the filter.  
 
 Figure 8 is an SEI image taken with the EERC SEM showing particles collected on the 
filter at the outlet of the thermal oxidizer. The image shows that the particles are somewhat 
larger and more spherical than those at the inlet to the oxidizer. As with the inlet particles, the 
EDS data were not conclusive as to the compositions of these particles, although more oxygen 
was detected. 
 
 Figure 9 is an SEI image taken with the EERC SEM showing particles collected on the 
filter at the outlet of the thermal oxidizer when no syngas was being burned in the oxidizer. It 
shows that the particles collected are much smaller and much less concentrated than the filter 
samples collected from the syngas and from the syngas combustor. 
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particles are primarily soot-based and not formed from volatilization of metals in the FBG. 
Figure 6 compares the spectra for particles collected from the syngas to the particles collected 
from the combusted syngas. Filter area is also included in the analyses. The data indicate that the 
soot-based particles are not well burned in the thermal oxidizer, although they are significantly 
oxidized, nitrided, and sulfidized in the combustor.  
 
 Figure 7 shows data for the thermal oxidizer outlet particles as well as spectra for the same 
areas after one and two ion etchings. The etching removes the outer layers of the particles. The 
data indicate that the oxidation, nitridation, and sulfidation of the particles are primarily surface 
phenomena. 
 
 
CONCLUSIONS  
 

We have found that we were not able to create joints when temperatures much lower than 
the original temperature of 1214C are used. Therefore, we limited our diffusion rate 
measurements to the two hold temperatures used in the procedure: 700° and 1214C. The 
diffusivity of zinc in both APMT and CM247LC is quite similar at 700C. Diffusivity in the 
APMT appears to be slightly higher, but the midline composition after 30 minutes at this 
temperature is quite similar. At 1214C, the situation is very different. The calculated diffusivity 
of zinc in APMT is approximately 15 times higher than in CM247LC or Rene 80 (~120 vs.  
~8 µm2/min) at that temperature. 
 

In addition to the diffusion work, the coefficients of thermal expansions were determined 
for each of the alloys as a function of temperature. This information has been entered into a finite 
element model using ANSYS so that appropriate force-applying structures can be designed for 
use in joining structures composed of APMT and the nickel alloys. 
 

Gasifier sampling activities continue to determine what types of trace contaminants may 
occur in cleaned syngas that could lead to corrosion or deposition in turbines firing coal syngas. 
The EERC has several pilot-scale gasifiers that are continually used in a variety of test 
configurations as determined by the needs of the projects that are funding the tests. We are 
sampling both noncombusted and combusted syngas produced during some of the pilot-scale 
gasifier tests. 
 

SEM analyses showed that the particles captured on the filter from the syngas were 
typically 0.2 to 0.5 µm in diameter, whereas those captured from the combusted syngas were 
slightly larger and more spherical. However, the particles were so small that we could not obtain 
good spectra from them either at the EERC or JEOL America. At ORNL, XPS data show that the 
particles do not contain any metals and, in fact, have an atomic composition almost identical to 
that of the polycarbonate filter. We currently believe that this indicates that the particles are 
primarily soot-based and not formed from volatilization of metals in the FBG. The data indicate 
that the soot-based particles are not well burned in the thermal oxidizer, although they are 
significantly oxidized, nitrided, and sulfidized in the combustor. Ion etching to remove the 
surfaces of the particles indicates that the oxidation, nitridation, and sulfidation of the particles 
are primarily surface phenomena. 
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